A Simple and Efficient Procedure for a 2-Pyridones Synthesis under Solvent-Free Conditions


A new series of 3-cyano-2-pyridones derivatives have been prepared by reaction of enaminonitriles with pri-mary amine under solvent free condition. This procedure have the advantage of high yields and being environ-mentally-friendly.

Share and Cite:

Z. Kibou, N. Cheikh, D. Villemin, N. Choukchou-Braham, B. Mostefa-Kara and M. Benabdallah, "A Simple and Efficient Procedure for a 2-Pyridones Synthesis under Solvent-Free Conditions," International Journal of Organic Chemistry, Vol. 1 No. 4, 2011, pp. 242-249. doi: 10.4236/ijoc.2011.14035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Blasco-Jiménez, A. J. Lopez-Peinado, R. M. Martin- Aranda, M. Ziolek and I. Sobczak, “Sonocatalysis in Solvent-Free Conditions: An Efficient Eco-Friendly Me- thodology to Prepare N-Alkyl Imidazoles Using Amino- Grafted NbMCM-41,” Catalysis Today, Vol. 142, No. 3-4, 2009, pp. 283-287. doi:10.1016/j.cattod.2008.11.028
[2] D. Kumar, V. B. Reddy, B. G. Mishra, R. K. Ranna, M. N. Nadagouda and R. S. Varma, “Nanosized Magnesium Oxide as Catalyst for the Rapid and Green Synthesis of Substituted 2-Amino-2-Chromenes,” Tetrahedron, Vol. 63, No. 15, 2007, pp. 3093-3097. doi:10.1016/j.tet.2007.02.019
[3] L. F. Teitze, “Domino Reactions in Organic Synthesis,” Chemical Reviews, Vol. 96, No. 1, 1996, pp. 115-136. doi:10.1021/cr950027e
[4] R. Maggi, R. Ballini and G. Sartori, “Basic Alumina Catalysed Synthesis of Substituted 2-Amino-2-chromenes via Three-Component Reaction,” Tetrahedron Letters, Vol. 45, No. 11, 2004, pp.2297-2299. doi:10.1016/j.tetlet.2004.01.115
[5] J. A. Wang, X. Bokhimi, O. Novaro, T. Lopez, F. Tzompantzi, R. Gomez, J. Navarrete, M. E. Llanos and M. Lopez-Salinas, “Effects of Structural Defects and Acid-Basic Properties on the Activity and Selectivity of Isopropanol Decomposition on Nanocrystallite Sol-Gel Alumina Catalyst,” Journal of Molecular Catalysis A: Ch- emical, Vol. 137, No. 1-3, 1999, pp. 239-256. doi:10.1016/S1381-1169(98)00077-6
[6] S. Paul, P. Nanda, R. Gupta, and A. Loupy, “Ac2O-Py/ Basic Alumina as a Versatile Reagent for Acetylations in Solvent-Free Conditions under Microwave Irradiation,” Tetrahedron Letters, Vol. 43, No. 23, 2002, pp. 4261- 4265. doi:10.1016/S0040-4039(02)00732-3
[7] C. M. Figueiredo, “Preparation of Aluminas from a Basic Aluminium Carbonate,” Catalysis Today, Vol. 5, 1989, pp. 433-442. doi:10.1016/0920-5861(89)80007-0
[8] S. Carre, B. Tapin, N. S. Gnep, R. Revel and P. Magnoux, “Model Reactions as Probe of the Acid-Base Properties of Aluminas: Nature and Strength of Active sites. Corre- lation with Physicochemical Characterization,” Applied Catalysis A: General, Vol. 372, No. 1, 2010, pp. 26-33. doi:10.1016/j.apcata.2009.10.005
[9] M. T. Cocco, C. Congiu and V. Onnis, “Synthesis and Antitumor Activity of 2-Hydroxy-2-pyridones Deriva- tives,” European Journal of Medicinal Chemistry, Vol. 35, No. 5, 2000, pp. 545-552. doi:10.1016/S0223-5234(00)00149-5
[10] F. Manna, F. Chimenti, A. Bolasco, A. Filippelli and E. Lampa, “Antiinflammatory, Analgesic and Antipyfuztic 4,6-Disubstituted 3-Cyanopyridine-2-ones and 3-Cyano- 2-aminopyridines,” Pharmacological Research, Vol. 26, Suppl. 1, 1992, pp. 267-277. doi:10.1016/1043-6618(92)91243-A
[11] R. L. Parreira, O. Abrah?o and S. E. Galembeck, “Con- formational Preferences of Non-Nucleoside HIV-1 Re- verse Transcriptase Inhibitors,” Tetrahedron, Vol. 57, No. 16, 2001, pp. 3243-3253. doi:10.1016/S0040-4020(01)00193-4
[12] X. Fan, D. Feng, Y. Qu, X. Zhang, J. Wang, P. M. Loiseau, G. Andrei, R. Snoeck, E. De Clercq, “Practical and Efficient Synthesis of Pyrano[3,2-c]pyridone, Pyrano [4,3-b]pyran and Their Hybrids with Nucleoside as Potential Antiviraland Antileishmanial Agents,” Bioor- ganic & Medicinal Chemistry Letters, Vol. 20, No. 3, 2010, pp. 809-813. doi:10.1016/j.bmcl.2009.12.102
[13] E. L. Presti, R. Boggia, A. Feltrin, G. Menozzi, P. Dorigo and L. Mosti, “3-Acetyl-5-acylpyridin-2(1H)-ones and 3- Acetyl-7,8-dihydro-2,5(1H,6H)-quinolinediones: Synthesis, Cardiotonic Activity and Computational Studies,” II Farmaco, Vol. 54, No. 7, 1999, pp. 465-447. doi:10.1016/S0014-827X(99)00053-1
[14] W. K. Anderson, D. C. Dean and T. Endo, “Synthesis, Chemistry, and Antineoplastic Activity of α-Halopyridi- nium Salts: Potential Pyridone Prodrugs of Acylated Vinylogous Carbinolamine Tumor Inhibitors,” Journal of Medicinal Chemistry Vol. 33, No. 6, 1990, pp. 1667-1675. doi:10.1021/jm00168a021
[15] P. S. Dragovich, T. J Prins, Z. Ru, E. L. Brown, F. C. Maldonado, S. A. Fuhrman, L. S. Zalman, L. Iuniland, C. A. Lee and S. T. Worland, “Structure-Based design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 6. Struc-ture- Activity Studies of Orally Bioavailable, 2-Pyridone- Containing Peptidomimetics,” Journal of Medicinal Chemistry, Vol. 45, No. 8, 2002, pp. 1607-1623. doi:10.1021/jm010469k
[16] B. Kozlevcar, M. Radisek, Z. Jaglicic, F. Merzel, L. Glazar, A. Golobic and P. Segedin, “Strong Antiferro- magnetism in the Dinuclear 2-Pyridone Complex with N-C-O Bridges: A Paddle-Wheel Analogue of the Dinu- clear Tetracarboxylates,” Polyhedron, Vol. 26, 2007, pp. 5414-5419. doi:10.1016/j.poly.2007.08.019
[17] T. Mochida, M. Ueda, C. Aoki and H. Mori, “Structures and Properties of Trans-Dichloro{Tetrakis (5-Chloro-2 (1H)-pyridone-O)}M(II) [M=Mn, Fe, Co, Ni, Cu]; For- mation of Quasi-Macrocyclic Metal Complexes through Hydrogen Bonding,” Inorganica Chimica Acta, Vol. 335, No. 27, 2002, pp. 151-155. doi:10.1016/S0020-1693(02)00817-4
[18] K. R. Gibson, L. Hitzel, R. J. Mortishire-Smith, U. Gerhard, R.A. Jelley, A. J. Reeve, M. Rowley, A. Nadin and A. P. Owens, “Synthesis and Conformational Dynamics of Tricyclic Pyridones Containing a Fused Seven- Membered Ring,” Journal of Organic Chemistry, Vol. 67, No. 26, 2002, pp. 9354-9360. doi:10.1021/jo026411a
[19] I. Collins, C. Moyes, et al., “3-Heteroaryl-2-pyridones: Benzodiazepine Site Ligands with Functional Delectivity for Alpha 2/Alpha 3-Subtypes of Human GABA (A) Re- ceptor-Ion Channels,” Journal of Medicinal Chemistry, Vol. 45, No. 9, 2002, pp. 1887-1990. doi:10.1021/jm0110789
[20] F. A. Abu-Shanab, A. D. Redhouse, J. R. Thompson and B. J.Wakefield, “Synthesis of 2,3,5,6-Tetrasubtituted Pyridines from Enamines Derived from N, N-Dimethyl- formamide Dimethyl Acetal,” Synthesis, Vol. 5, 1995, pp. 557-560. doi:10.1055/s-1995-3954
[21] W. D. Jones, R. A. Schnettler and E. W. Huber, “A Convenient Synthesis of 5-Acyl-6-substituted 3-cyano-2 (1H)-pyridinones,” Journal of Heterocyclic Chemistry, Vol. 27, No. 3, 1990, pp. 511-518. doi:10.1002/jhet.5570270307
[22] H. Fukatsu, Y. Kato, S. Murase and S. Nakagawa, “Synthesis and Cardiotonic Activity of 5-(2-Substituted thiazol-4-yl)-2-pyridones and Thiazolo[4,5-f] quinolino- nes,” Heterocycles, Vol. 29, No. 8, 1989, pp. 1517-1528. doi:10.3987/COM-89-4984
[23] I. Sircar, B. L. Duell, J. A. Bristol, R. E. Weishaar and D. B. Evans, “Cardiotonic Agents. 5. 1,2-Dihydro-5-[4- (1Himidazol-1-yl)phenyl]-6-methyl-2-oxo-3-pyridinecar- bonitriles and Related Compounds. Synthesis and Inotropic Activity,” Journal of Medicinal Chemistry, Vol. 30. No. 6, 1987, pp. 1023-1029. doi:10.1021/jm00389a011
[24] D. W. Robertson, E. E. Beedle, J. K. Swartzendruber, N. D. Jones, T. K. Elzey, R. F. Kauffman, H. Wilson and J. S. Hayes, “Bipyridine Cardiotonics: The Three-Dimen- sional Structures of Amrinone and Milrinone,” Journal of Medicinal Chemistry, Vol. 29, No. 5, 1986, pp. 635-640. doi:10.1021/jm00155a009
[25] J. J. Chen and I. J. Wang, “Synthesis and Colour Assessment of Some 3-Cyano-4-pyrenyl-6-substituted-2-pyri- done Derivatives,” Dyes and Pigments, Vol. 29, No. 4, 1995, pp. 305-313. doi:10.1016/0143-7208(95)00055-0
[26] A. H. Abadi, T. M. Ibrahim, K. M. Abouzid, J. Lehmann, H. N Tinsley, B. D.Gary and G. A. Piazza, “Design, Synthesis and Biological Evaluation of Novel Pyridine Derivatives as Anticancer Agents and Phosphodiesterase 3 Inhibitors,” Bioorganic & Medicinal Chemistry, Vol. 17, No. 16, 2009, pp. 5974-5982. doi:10.1016/j.bmc.2009.06.063
[27] D. Villemin, B. Mostefa-Kara, N. Bar, N. Choukchou- Braham, N. Cheikh, A. Benmeddah, H. Hazimeh and C. Ziani-Cherif, “Base Promoted Reaction in Ionic Liquid Solvent: Synthesis of Butenolides,” Letters in Organic Chemitry, Vol. 3, 2006, pp. 558-559. doi:10.2174/157017806778341807
[28] D. Villemin, N. Cheikh, B.Mostefa-Kara, N. Bar, N. Choukchou-Braham and M. A Didi, “Solvent-Free Reaction on KF-Alumina under Microwave: Serendi- pitous One-Pot Domino Synthesis of New Isobenzofuran- 1(3H)-ones from Alpha-Hydroxyketones,” Tetrahedron Letters, Vol. 47, No. 31, 2006, pp. 5519-5521. doi:10.1016/j.tetlet.2006.05.137
[29] N. Cheikh, N. Bar, et al., “Efficient Synthesis of New Butenolides by Subsequent Reactions: Application for the Synthesis of Original Iminolactones, Bis-Iminolactones and Bis-Lactones,” Tetrahedron, Vol. 67, No. 8, 2011, pp. 1540-1557. doi:10.1016/j.tet.2010.12.062
[30] Q. Shi, J. Chen, Q. Zhunag and X. Wang, “The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water,” Chinese Chemical Letters, Vol. 14, 2003, pp. 1242-1245.
[31] T. B. FranColse and F. Andre, “Knoevenagel Condensation Catalysed by Aluminium Oxide,” Tetrahedron Letters, Vol. 23, No. 47, 1982, pp. 4927-4928. doi:10.1016/S0040-4039(00)85749-4
[32] P. de la Cruz, E. Diez-Barra, A. Loupy and F. Langa, “Silica Gel Catalysed Knoevenagel Condensation in Dry Media under Microwave Irradiation,” Tetrahedron Letters, Vol. 37, 1996, pp. 1113-1116. doi:10.1016/0040-4039(95)02318-6
[33] G.-H. Gao, L. Lu, et al., “Basic Ionic Liquid: A Reusable Catalyst for Knoevenagel Condensation in Aqueous Media,” Chemical Research in Chinese Universities, Vol. 23, No. 2, 2007, pp. 169-172. doi:10.1016/S1005-9040(07)60035-X
[34] B. Siebenhaar, B. Casagrande, M. Studer and H. U. Blaser, “An Easy-to-Use Heterogeneous Catalyst for the Knoevenagel Condensation,” Canadian Journal of Ch- emistry, Vol. 79, No. 5-6, 2001, pp. 566-569. doi:10.1139/v01-072
[35] M. L. Kantam and B. Bharathi, “Mn(III) Salen Catalyst for Knoevenagel Condensation a Novel Heterogeneous System,” Catalysis Letters, Vol. 55, No. 3-4, 1998, pp. 235-237. doi:10.1023/A:1019051416463
[36] S. Balalaie and N. Nemati, “Ammonium Acetate-Basic Alumina Catalyzed Knoevenagel Condensation under Microwave Irradiation under Solvent-Free Conditions,” Synthetic Communications, Vol. 30, No. 5, 2000, pp. 869- 875. doi:10.1080/00397910008087099
[37] A. McCluskey, P. J. Robinson and T. Hill, “Green Chemistry Approaches to the Knoevenagel Condensation: Comparison of Ethanol, Water and Solvent Free (Dry Grind) Approaches,” Tetrahedron Letters, Vol. 43, No. 17, 2002, pp. 3117-3120. doi:10.1016/S0040-4039(02)00480-X
[38] F. Freeman, “Properties and Reactions of Ylidene- malononitriles,” Chemical Reviews, Vol. 80, No. 4, 1980, pp. 329-350. doi:10.1021/cr60326a004
[39] A. W. Erian, S. M. Sherif, A. Alassar and Y. M. Elkholy, “β-Enaminonitriles in Heterocyclic Synthesis: A Novel Synthesis and Transformations of α-Substituted-β-enam- inonitriles,” Tetrahedron, Vol. 50, No. 6, 1994, pp. 1877- 1884. doi:10.1016/S0040-4020(01)80859-0
[40] A. W. Erian, “The Chemistry of β-Enamino Nitriles as Versatile Reagents in Heterocyclic Synthesis,” Chemical Reviews, Vol. 93, No. 6, 1993, pp. 1991-2005. doi:10.1021/cr00022a002

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.