Rate Enhancements in the Acetylation and Benzoylation of Certain Aromatic Compounds with Vilsmeier-Haack Reagents Using Acetamide, Benzamide and Oxychlorides under Non-Conventional Conditions

Abstract

Acetylation and benzoylation reactions of certain aromatic aldehydes, ketones with Vilsmeier-Haack Re- agents using Acetamide and Oxychloride (SOCl2 or POCl3) under conventional (thermal) and non conven- tional [microwave irradiated (MIR), ultrasonic assisted and solvent free mortar pestle (grinding)] conditions. Reactions afforded good to excellent yields of products with both the VH reagents, reaction times were fairly less in the case of [amide/POCl3] than those of [amide/SOCl2] reagent. Reactions are dramatically acceler- ated in under sonicated and microwave irradiations with a trend: MIR (few seconds) >> Sonication (minutes) > Grinding (min) >> thermal (several hrs).

Share and Cite:

M. Venkateswarlu, K. Rajanna, M. Kumar, U. Kumar, S. Ramgopal and P. Saiprakash, "Rate Enhancements in the Acetylation and Benzoylation of Certain Aromatic Compounds with Vilsmeier-Haack Reagents Using Acetamide, Benzamide and Oxychlorides under Non-Conventional Conditions," International Journal of Organic Chemistry, Vol. 1 No. 4, 2011, pp. 233-241. doi: 10.4236/ijoc.2011.14034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. W. Greene and P. G. M Wuts, “Protection Groups in Organic Synthesis,” 3rd Edition, John Wiley, New York, 1999.
[2] G. Sartori, R. Ballini, F. Bigi, G. Bosica, R. Maggi and P. Righi, “Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis,” Che- mical Reviews, Vol. 104, No. 1, 2004, pp. 199-250.
[3] A. L. Pearson and W. J. Roush, “Handbook of Reagents for Organic Synthesis; Activating Agents and Protecting Groups,” John Wiley, Chichester, 1999.
[4] D. Harton, “Organic Synthesis Collective,” Wiley, New York, 1991.
[5] R. L. Zhdarov and S. M. Zherodarova, “Chemical Methods of Oligonucleotide Synthesis,” Synthesis, Vol. 1975, No. 4, 1975, pp. 222-245. doi:10.1055/s-1975-23714
[6] G. Hoefle and W. Steglich, “N,N-Dimethyl-4-pyridinamine, a Very Effective Acylation Catalyst,” Angewandte Chemie International Edition in English, Vol. 8, No. 12, 1969, p. 981. doi:10.1002/anie.196909811
[7] G. Hoefle, W. Steglich and H. Vorbrueggen, “4-Dialkyl- aminopyridines as Highly Active Acylation Catalysts. New Synthetic Method (25),” Angewandte Chemie International Edition in English, Vol. 17, No. 8, 1978, pp. 569-583.
[8] E. F. V. Scriven, “4-Dialkylaminopyridines: Super Acylation and Alkylation Catalysts,” Chemical Society Reviews, Vol. 12, No. 2, 1983, pp. 129-161. doi:10.1039/cs9831200129
[9] T. Sano, K. Ohaschi and T. Oreyama, “Remarkably Fast Acylation of Alcohols with Benzoyl Chloride Promoted by TMEDA,” Synthesis, Vol. 7, 1999, pp. 1141-1144.
[10] E. Vedejs, N. S. Bennett, L. M. L. Conn, S. T. Diver, M. Gingras, S. Lin, P. A. Oliver and A. L. Peterson, “Tributylphosphine-Catalyzed Acylations of Alcohols: Scope and Related Reactions,” Journal of Organic Chemistry, Vol. 58, No. 25, 1993, pp. 7286-7288.
[11] E. Vedejs and S. T. Diver, “Tributylphosphine: A Remarkable Acylation Catalyst,” Journal of the American Chemical Society, Vol. 115, No. 8, 1993, pp. 3358-3359. doi:10.1021/ja00061a056
[12] E. Vedejs, O. Daugulis and S. T. Diver, “Enantioselective Acylations Catalyzed by Chiral Phosphines,” Journal of Organic Chemistry, Vol. 61, No. 2, 1996, pp. 430-431. doi:10.1021/jo951661v
[13] A. C. Cope and E. C. Herrich, “Organic Synthesis Collective,” Wiley, New York.
[14] S. Chandrasekhar, T. R. Chander and M.Takhi, “Acylation of Alcohols with Acetic Anhydride Catalyzed by TaCl5: Some Implications in Kinetic Resolution,” Tetrahedron Letters, Vol. 39, No. 20, 1998, pp. 3263-3266. doi:10.1016/S0040-4039(98)00465-1
[15] R. Dalpozzo, A. De Nino, L. Maiuolo, P. A. Procopio, M. Nardi, G. Bartoli and R. Romeo, “Highly Efficient and Versatile Acetylation of Alcohols Catalyzed by Cerium(III) Triflate,” Tetrahedron Letters, Vol. 44, No. 30, 2003, pp. 5621-5624. doi:10.1016/S0040-4039(03)01358-3
[16] M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. M. Baltrork and R. Shabani, “Rapid and Efficient Acetylation of Alcohols and Phenols with Acetic Anhydride Catalyzed by Electron-Deficient Tin(IV) Porphyrin,” Journal of Moecular Catalysis A: Chemical, Vol. 219, No. 1, 2004, pp. 73-78. doi:10.1016/j.molcata.2004.05.004
[17] K. Ishihara, M. Kubota, H. Kurihara and H. Yamamoto, “Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydrides,” Journal of Organic Chemistry, Vol. 61, No. 14, 1996, pp. 4560- 4567. doi:10.1021/jo952237x
[18] P. A. Procopiou, S. P. D. Baugh, S. S. Flack and G. G. A. Inglis, “An Extremely Powerful Acylation Reaction of Alcohols with Acid Anhydrides Catalyzed by Trimethylsilyl Trifluoromethanesulfonate,” Journal of Organic Ch- emistry, Vol. 63, No. 7, Vol. 63, 1998, pp. 2342-2347. doi:10.1021/jo980011z
[19] K. K. Chauhan, C. G. Frost, I. Love and D. Waite, “Indium Triflate, an Efficient Catalyst for Acylation Reactions,” Synlett, Vol. 11, 1999, pp. 1743-1744. doi:10.1055/s-1999-2941
[20] D. Chandra, P. Saravanan, R. K. Singh and V. K. Singh, “Lewis Acid Catalyzed Acylation Reactions: Scope and Limitations,” Tetrahedron, Vol. 58, No. 7, 2002, pp. 1369- 1374. doi:10.1016/S0040-4020(01)01229-7
[21] A. Orita, G. Ta?áis and A. Kakuda, “Highly Efficient and Versatile Acylation of Alcohols with Bi(OTf)3 as Catalyst,” Angewandte Chemie International Edition, Vol. 39, No. 16, 2000, pp. 2877-2879. doi:10.1002/1521-3773(20000818)39:16<2877::AID-ANIE2877>3.0.CO;2-V
[22] M. L. Kantam, K. Aziz and P. R. Likhar, “Bis(Cyclo- pentadienyl) Zirconium Dichloride Catalyzed Acetylation of Phenols, Alcohols and Amines,” Catalysis Communications, Vol. 7, No. 7, 2006, pp. 484-487. doi:10.1016/j.catcom.2005.10.001
[23] J. W. J. Bosco, A. Agrahari and A. K. Saikia, “Molecular Iodine Catalyzed Selective Acetylation of Alcohols with Vinyl Acetate,” Tetrahedron Letters, Vol. 47, No. 24, 2006, pp. 4065-4068.
[24] M. A. Zolfigol, A. Khazaei, A. G. Choghamarani, A. Rostami and M. Hajjami, “Acylation of Alcohols Catalyzed by Using 1,3-Dibromo-5,5-dimethylhydentoin or Trichloroisocyanuric Acid,” Catalysis Communications, Vol. 7, No. 6, 2006, pp. 399-402. doi:10.1016/j.catcom.2005.12.004
[25] H. T. Clarke and E. Rahrs, “Organic Syntheses. Collective Volumes,” Coll, Vol. 1, 1941, p. 91.
[26] J. Stawinski, T. Hozumi and S. A. Narang, “Benzoyltetrazole: A Mild Benzoylating Reagent for Nucleosides,” Journal of the Chemical Society, Chemical Communications, Vol. 3, 1976, pp. 243-244. doi:10.1039/c39760000243
[27] M. Yamada, Y. Watabe, T. Sakakibara and R. Sudoh, “Preparation of a Water-Soluble Acylating Agent: Benzoylation of Acids, Amines, and Phenols with 2-Benzoy- lthio-1-methylpyridinium Chloride in Aqueous Phase,” Journal of the Chemical Society, Chemical Communications, Vol. 4, 1979, pp. 179-180. doi:10.1039/c39790000179
[28] F. A. Carey and K.O. Hodgson, “Efficient Syntheses of Methyl 2-O-Benzoyl-4,6-O-benzylidene-α-D-glucopyra- no-side and Methyl 2-O-Benzoyl-4,6-O-benzylidene-α-D- ribo-hexopyranosid-3-ulose,” Carbohydrate Research, Vol. 12, No. 3, 1970, pp. 463-465. doi:10.1016/S0008-6215(00)80628-X
[29] T. W. Greene, “Protective Groups in Organic Synthesis,” Wiley, New York, 1981.
[30] C. B. Reese, “Protective Groups in Organic Chemistry,” Plenum, London, 1973.
[31] S. Paul, P. Nanda and R. Gupta, “PhCOCl-Py/Basic Alumina as a Versatile Reagent for Benzoylation in Solvent-Free Conditions,” Molecules, Vol. 8, 2003, pp. 374- 380. doi:10.3390/80400374
[32] G. A. Olah, St. J. Kuhn, “Friedls Craft’s and Related Reactions,” John Wiley and Sons, New York, 1964.
[33] H. Ulrich, “The Chemistry of Imidoyl Halides,” Plenum Press, New York, 1968.
[34] R. Bonnet, “The Chemistry of the Carbon Nitrogen Double Bond,” John Wiley Sons, New York, 1970. doi:10.1002/9780470771204.ch13
[35] E. Compaigne and W. L. Archer, “Organic Synthesis,” John Wiley and Sons, New York, 1953.
[36] G. F. Smith, “Indoles. Part I. The Formylation of Indole and Some Reactions of 3-Formylindole,” Journal of the Chemical Society, Vol. 1, 1954, pp. 3842-3846. doi:10.1039/jr9540003842
[37] R. N. Silverstein, C. Ryskiewez, C. Willert and R. C. Kocher, “Improved Synthesis of 2-Pyrrolealdehyde and of N-Methyl-2-Pyrrolealdehyde. Further Studies of Pyrrole Alcohols,” Journal of Organic. Chemistry, Vol. 20, No. 5, 1955, pp. 668-672. doi:10.1021/jo01123a019
[38] A. Lorenz and R. Winzinger, “über die Vinylenhomologen der Triphenylmethanfarbstoffe II,” Helvetica Chimica Acta, Vol. 28, No. 1, 1945, pp. 600-612. doi:10.1002/hlca.660280183
[39] H. H. Boshard and H. Zollinger, “Die Synthese von Aldehyden und Ketonen mit Amidchloriden und Vilsmeier-Reagenzien,” Helvetica Chimica Acta, Vol. 42, No. 5, 1959, pp. 1659-1671.
[40] S. Alumi, P. Linda, G. Marino, S. Santine and G. Salvelli, “The Mechanism of the Vilsmeier-Haack Reaction. Part II. A Kinetic Study of the Formylation of Thiophen Derivatives with Dimethylformamide and Phosphorus Oxychloride or Carbonyl Chloride in 1,2-Dichloroethane,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, No. 14, 1972, pp. 2070-2073.
[41] P. Linda, A. Lucccarelli, G. Marino and G. Savelli, “The Mechanism of the Vilsmeier-Haack Reaction. Part III. Structural and Solvent Effects,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, No. 13, 1974, pp. 1610-1612.
[42] Z. Arnold and A. Holy, “Collection Czech,” Chemical Communications, Vol. 27, 1962, pp. 2886-2895.
[43] T. D. Smith, “The Reaction of NN-Dimethylformamide with Phosphorus Trichloride,” Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, pp. 841-842.
[44] G. J. Martin, S. Poignant, M. L. Filleux and M. T. Quemeneeuer, “Recherches sur la Reaction de Vilsmeier- Haack etude du Mecanisme de Formation du Complexe par des Mesures Cinetiques en Resonance Magnetique Nucleaire,” Tetrahedron Letters, Vol. 11, No. 58, 1970, pp. 5061-5064.
[45] G. J. Martin and S. Poignant, “Nuclear Magnetic Resonance Investigations of Carbonium Ion Intermediates. Part I. Kinetics and Mechanism of Formation of the Vilsmeier-Haack Reagent,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, 1972, pp. 1964-1966. doi:10.1016/S0040-4039(00)96986-7
[46] K. C. Rajanna, F. Soloman, M. M. Ali and P. K. Saiprakash, “Vilsmeier-Haack Formylation of Coumarin Derivatives. A Solvent Dependent Kinetic Study,” International Journal of Chemical Kinetics, Vol. 28, No. 12, 1996, pp. 865-875. doi:10.1002/(SICI)1097-4601(1996)28:12<865::AID-KIN1>3.0.CO;2-L
[47] J. G. Dingwall, D. H. Reid and K. Wade, “Studies of Heterocyclic Compounds. Part VI. NN-Dimethylth- ioform-Amide: A New Reagent in the Vilsmeier Reaction,” Journal of the Chemical Society C: Organic, Vol. 6, 1969, pp. 913-915.
[48] T. L. Davis and W. E. Yelland, “Addition of Butylamine to Butyl Isocyanide,” Journal of the American Chemical Society, Vol. 59, No. 10, 1937, pp. 1998-1999. doi:10.1021/ja01289a059
[49] A. Cipiciani, S. Clementi, P. Linda, G. Marino and G. Savelli, “Kinetics and Mechanism of N-Substitution of Indoles and Carbazoles in Vilsmeier-Haack Acetylation,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, 1977, pp. 1284-1287.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.