Weeds Associated with a Sisal Crop (Agave fourcroydes Lem.) in the State of Yucatan, Mexico

Abstract

The objective of this study was to know the weed species associated with a sisal crop (Agave fourcroydes) in the State of Yucatán, Mexico. In this sense, best weed control management strategies can be proposed to sisal producers. The weed collection was carried out in a three years old sisal crop. For the taxonomic identification images of the adult plant with flowers, fruits and seeds were taken, supported by a herbarium. The Importance Value Index (IVI) showed 23 predominate species, 78.26% with broad-leaves and 21.74% with narrow-leaves. The most predominant species were: Melanthera nivea (Asteraceae), Dactyloctenium aegyptium (Poaceae) and Malvastrum corchorifolium (Malvaceae) with the higher IVI’s, with 61.1%, 46.6% and 37.2% respectively. The presence of weeds represents a significant increase in the production costs of sisal production; so its identification is essential for an effective weed management program.

Share and Cite:

Avilés-Baeza, W., Lozano-Contreras, M.G. and Ramírez-Silva, J.H. (2023) Weeds Associated with a Sisal Crop (Agave fourcroydes Lem.) in the State of Yucatan, Mexico. Open Access Library Journal, 10, 1-18. doi: 10.4236/oalib.1110782.

1. Introduction

Sisal (Agave fourcroydes Lem.) is a crop well adapted to areas with medium and low rainfall and stony soils, such as the north-central region of the state of Yucatán, Mexico. It is considered a low investment crop because producers use very few agrochemicals. However, before harvesting, maintenance activities are important to keep maximum fiber yields. Control of weeds, especially in the rainy season, can avoid delays in the time of cutting, reduction of the quantity and length of leaves emitted per year, as well as the quantity and length of the fiber.

Without weeds competition, number of leaves increases with a direct influence on fiber yield [1] . Avilés-Baeza and Santamaría-Basulto (1996) [2] suggested that weeds can affect the quality of leaves by reducing rate of emission (48%), length (33.2%), width (45.6%) and Leaf Area (64.2%) during three years.

In this sense, various authors have documented the negative effect of weeds on sisal crop [3] as a result of competition for nutrients, soil, water and light or by harmful substances released to the crop [4] [5] [6] [7] [8] .

Weeds have the advantage of being more efficient since they group various species, with different needs and abilities and a non-uniform spatial distribution [9] . They can explore more efficiently the environment in search for the essential factors [10] [11] .

According to Oerke, 2006 [12] , weeds and crops have similar needs for carbon dioxide and nitrogen from the atmosphere and water and minerals from the soil, but when competition starts, weeds are more efficient and the crop yield is reduced [13] .

Producers are very cautious to avoid yield losses [14] . And they use different methods to control weeds such as: mechanical cutting, application of herbicides and burning. Slashing is a conventional practice carried out carefully since in the process the roots or trunks can be damaged favoring the incidence of pathogens [15] [16] .

Paraquat is the herbicides commonly used by farmers [17] , as well as glyphosate, a non-selective, broad-spectrum systemic herbicide widely used to control annual and perennial weeds [18] . Both herbicides are to be used more than one time [19] .

Regardless of the method of control it is compulsory to know the bio-ecological characteristics of the species and their interactions with crops. The objective of this study was to determine the dominant weed species and their specific diversity in competition with the Sisal crop [13] .

2. Materials

2.1. Location

This study was carried out from October to December, 2022 in the facilities of the factory Sisal Tejidos SA of CV in the municipality of Motul, Yucatan, Mexico located at 21˚05'49.51'' north latitude and 89˚18'28.48'' west longitude at 10 meters above sea level. Soils are classified as Tzekel lu’um in the Mayan terminology and lytic Leptosol in the World Reference Base (WRB) [20] .

2.2. Taxonomic Identification

For the taxonomic identification of weeds, images and live adult plants with flowers, fruits and seeds were taken and compared with botanical information from different Mexican Institutions such as: The National Commission for the Knowledge and Use of the Land, National Commission for the Knowledge and Use of Biodiversity (CONABIO, http://www.conabio.gob.mx/malezasdemexico/2inicio/paginas/lista-plantas.htm), the Scientific Research Center of Yucatan (CICY, http://www.cicy.mx/sitios/flora%20digital/index.php) and the National Herbarium of Mexico of the National Autonomous University of Mexico (MEXU, http://www.ib.unam.mx/botanica/herbario/).

3. Methods

Weed Collection

In order to identify and quantify weed population associated to Sisal, a plot of 1.0 hectare of a three years old local variety of Sisal was selected. A simple sampling model of weeds was implemented, using twelve squares of 1.0 m2 (1.0 × 1.0 m) randomly located between rows of the crop. Frequency of appearance, abundance and dominance of each species were recorded and the Importance Value Index (IVI) of each weed was calculated adapting the methodology described by Gámez López et al. (2011) [21] .

The Importance Value Index (IVI) was developed by Curtis & McIntosh (1951) [22] . It is a synthetic structural index, developed mainly to rank the dominance of each species in mixed stands. It was calculated as follows: IVI = Relative dominance (a) + Relative density (b) + Relative frequency (c) [23] .

According to Campo and Duval (2014) [24] , these three parameters are calculated as follows:

(a) Relativedominance = Dominanceofeachspecies Dominanceofallspecies × 100

(b) RelativeDensity = Numberofindividualsofeachspecies TotalNumberofindividuals × 100

(c) Relativefrecuency = Frequencyofeachspecies Frequencyofallspecies × 100

4. Results

Weed Species Found and the Importance Value Index (IVI).

The 23 weed species found on the henequen plot are described in Table 1 considering: common names according to different countries and regions, scientific names, botanical behaviors (A = Annual; B = Biannual; D = Dicot; M = Monocot; P = Perennial), geographical distribution and impact on agriculture crops.

The Importance Value Index (IVI) of each species are shown in Figure 1 and the results are showing the presence of twenty-three species of weeds one week before planting Henequen: Melanthera nivea, Dactyloctenium aegyptium, Malvastrum corchorifolium, Rynchelitrum repens, Megathyrsus maximus, Bidens pilosa, Crotalaria pumila, Piscidia piscipula, Chamaecrista nictitans, Melochia

Table 1. Characteristics of the predominant weed species associated with Sisal (Agave fourcroydes).

*A = annual; D = dicot; M = monocot; P = perennial.

Figure 1. Importance Value Index (IVI) of weeds associated to Sisal crop.

pyramidata, Boerhavia erecta, Cyanthillium cinereum, Elytraria imbricata, Commelina erecta, Cynodon dactilon, Ipomoea nil, Tragia yucatanensis, Euphorbia cyathophora, Gynandropsis gynandra, Sida acuta, Corchorus siliquosus, Distimake aegyptius, Heliotropium curassavicum.

Of the total species, 78.26% were broad-leaved and 21.74% narrow-leaved. The species Melanthera nivea (Asteraceae), Dactyloctenium aegyptium (Poaceae) and Malvastrum corchorifolium (Malvaceae) were the most predominant ones with the highest IVI’s with 61.1%, 46.6%, and 37.2% respectively.

5. Discussion

According to Poggio (2012) [14] , the specific impacts of agricultural practices, as well as the crop dominance during its growth period, influence the presence of weeds through changes in flowing materials, energy and information. These changes modify both the diversity and species composition of weed communities and their abundance (biomass and density of individuals).

As was observed in this research, broad-leaved species predominated over narrow-leaved species. This could be related to the type of soils on which the Sisal crop is established, in the state of Yucatán, and the months of lower temperaturas and rainfall (October to December).

This crop adapts well to stony soils of the north-central region of the state where agricultural machinery is omitted and in consequence weed seed dispersal is limited. In contrast, the weed species found such as: Cyperus ligularis (Cyperaceae), and Megathyrsus maximus (Poacea) [79] , were not so abundant in the South of the state where agricultural machinery is highly used.

The weed species most associated to Sisal was Melanthera nivea (Asteraceae). However, it is a protecting plant for beneficial insects [80] such as butterflies and other insects attracted by its nectar for honey production [25] - [31] . Therefore, for future research or decision-making, it would be important to consider the advantage or disadvantage that this plant may have in agricultural production systems.

The three botanical families identified, (Asteracea, Poaceae and Malvaceae) are among the most important botanical families of weeds in Mexico, according to the Catalog of Weeds of Mexico [60] .

6. Conclusions

Weeds are considered a problem when they affect a crop, due to their invasive action and high level of competition for resources. They can behave as hosts for pests and diseases. Identification of weeds can contribute to better control management in a more sustainable way. In fact, knowledge of weed communities associated with a specific crop, as well as the importance value index (IVI) of each one, allows a more precise selection of an effective control measures, especially when chemical control is used. In this study of weed species associated with a sisal crop, the following is concluded:

1) Twenty-three species of weeds were found associated to Sisal crop: Melanthera nivea, Dactyloctenium aegyptium, Malvastrum corchorifolium, Rynchelitrum repens, Megathyrsus maximus, Bidens pilosa, Crotalaria pumila, Piscidia piscipula, Chamaecrista nictitans, Melochia pyramidata, Boerhavia erecta, Cyanthillium cinereum, Elytraria imbricata, Commelina erecta, Cynodon dactilon, Ipomoea nil, Tragia yucatanensis, Euphorbia cyathophora, Gynandropsis gynandra, Sida acuta, Corchorus siliquosus, Distimake aegyptius, Heliotropium curassavicum.

2) From the total amount of species found, 78.26% were classified as broad-leaved and 21.74% as narrow-leaved.

3) Melanthera nivea (Asteraceae), Dactyloctenium aegyptium (Poaceae) and Malvastrum corchorifolium (Malvaceae) were the most important species, according to their highest IVI values: 61.1%, 46.6% and 37.2%, respectively.

Acknowledgements

We thank the National Institute of Forestry, Agricultural and Livestock Research (INIFAP) for financing this work, as part of the project: Alternatives to the use of Glyphosate for weed control in Mexico.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Reyes Chávez, E. and Avilés Baeza, W.I. (1993) Combate de maleza. In: Henequen. Barrera Hernández, A. and Díaz Plaza, R., Eds., Technical Brochure for Producers, INIFAP and CIRSE, Mérida, 25-28.
[2] Avilés-Baeza, W.I. and Santamaría-Basulto, F. (1996) Período crítico de competencia entre maleza y henequén Agave fourcroydes Lem. Agricultura Técnica de México, 22, 21-37. http://www.acuedi.org/doc/1074/periodo-crtico-de-competencia-entre-maleza-y-henequn-agave-fourcroydes-lem-.html
[3] Blanco, Y. and Leyva, A. (2007) Las arvenses en el agroecosistema y sus beneficios agroecológicos como hospederas de enemigos naturales. Cultivos Tropicales, 28, 21-28. https://www.redalyc.org/pdf/1932/193217731003.pdf
[4] Rao, V.S. (2000) Principles of Weed Science. CRC Press, Boca Raton. https://doi.org/10.1201/9781482279603
[5] Zimdahl, R.L. (2008) Weed-Crop Competition: A Review. 2nd Edition, Blackwell Publishing, Oxford.
[6] Ahmadvand, G., Modani, F. and Golzardi, F. (2009) Effect of Crop Plant Density on Critical Period of Weed Competition in Potato. Scientia Horticulturae, 121, 249-254. https://doi.org/10.1016/j.scienta.2009.02.008
[7] Fernández, E.O., Gavotti, R.E. and Marengo, E. (2017) Diversidad y manejo de malezas mediante cultivos de cobertura y barbecho químico invernal en la región centro de Córdoba. Ph.D. Thesis, Universidad de Córdoba, Córdoba. https://rdu.unc.edu.ar/bitstream/handle/11086/6000/Fernandez%2C%20O.%20E.%3B%20Gavotti%2C%20R.%20E.%3B%20Marengo%2C%20E.%20-%20Diversidad%20y%20manejo%20de%20malezas%20mediante%20cultivos%20de....pdf?sequence=4&isAllowed=y
[8] Cerrudo, D. (2010) Effects of Early Stress on Plant-to-Plant Variability and Grain Yield in Maize (Zea mays L) (2010) Master’s Thesis, University of Guelph, Guelph. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/20252/Cerrudo_Diego_MSc.pdf?sequence=1
[9] Kruchelski, S., Szymczak, L.S., Deiss, L. and Moraes, A. (2019) Panicum maximum cv. Aries Establishment under Weed Interference with Levels of Light Interception and Nitrogen Fertilization. Planta Daninha, 37, e019188589. https://doi.org/10.1590/s0100-83582019370100011
[10] Souza Filho, A.P.S., Veloso, C.A.C. and Gama, J.R.N. (2000) Capacidade de absorção de nutrientes do capim-marandu (Brachiaria brizantha) e da planta daninha malva (Urena lobata) em função do pH. Planta Daninh, 18, 443-450. https://doi.org/10.1590/S0100-83582000000300008
[11] Ruas, R.A.A., Lima, J.C.L., Appelt, M.F. and Dezordi, L.R. (2012) Controle de Brachiaria decumbens Stapf com adição de ureia à calda do glifosato. Pesquisa Agropecuaria Tropical, 42, 455-461. https://doi.org/10.1590/S1983-40632012000400013
[12] Oerke, E.C. (2006) Crop Losses to Pests. Journal of Agricultural Science, 144, 31-43. https://doi.org/10.1017/S0021859605005708
[13] Daramola, O.S., Adeyemi, O.R., Adigun, J.A. and Adejuyigbe, C.O. (2020) Influence of Row Spacing and Weed Control Methods on Weed Population Dynamics in Soybean (Glycine max L.). International Journal of Pest Management, 68, 43-58. https://doi.org/10.1080/09670874.2020.1795300
[14] Poggio, S.L. (2012) Cambios florísticos en comunidades de malezas: un marco conceptual basado en reglas de ensamblaje. Ecología Austral, 22, 81-158. https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1259
[15] Hernández, S.S., Sancho, M.G. and Gamboa, C.J. (1990) Combate agroquímico de malezas en un huerto de guanábana (Annona muricata L.) en edad productiva. Boletín Técnico Estación Fabio Baudrit, 23, 1-9. https://www.kerwa.ucr.ac.cr/handle/10669/78715?show=full
[16] MAG (Ministerio de Agriculturay Ganadería) (1991) Aspectos Técnicos sobre Cuarenta y Cinco Cultivos Agrícolas de Costa Rica. Dirección General de Investigación y Extensión Agrícola. San José.
[17] Hess, F.D. (2000) Light Dependent Herbicides—An Overview. Weed Science, 48, 160-170. https://doi.org/10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2
[18] Dias, R.C., Tropaldi, L., Dadazio, T.S., Macedo, G.C., Silva, P.V., Carbonari, C.A. and Velini, E.D. (2021) Growth Regulation of Bermuda Grass (Cynodon dactylon) and Zoysiagrass (Zoysia japonica) with Glyphosate. Journal of Environmental Science and Health, Part B, 56, 241-250. https://doi.org/10.1080/03601234.2021.1877982
[19] Weed Science Society of America (WSSA) (2002) Herbicide Handbook. 8th Edition, Weed Science Society of America. Kansas.
[20] Bautista, F., Maldonado, D. and Zinck, A. (2012) Clasificación maya de los suelos. Ciencia y Desarrollo, 260, 65-70. https://www.cyd.conacyt.gob.mx/archivo/260/articulos/clasificacion-maya-suelos.html
[21] Gámez López, A., Hernández, M., Díaz, R. and Vargas, J. (2011) Caracterización de la flora arvense asociada a un cultivo de maíz bajo riego para producción de jojotos. Agronomía Tropical, 61, 133-139. http://ve.scielo.org/pdf/at/v61n2/art04.pdf
[22] Curtis, J.T. and McIntosh, R.P. (1951) An Upland Forest Continuum in the Pariré-Forest Border Region of Wisconsin. Ecology, 32, 476-496. https://www.jstor.org/stable/1931725 https://doi.org/10.2307/1931725
[23] Zarco-Espinoza, V.M., Valdez-Hernández, J.I., ángeles-Pérez, G. and Castillo-Acosta, O. (2010) Estructura y diversidad de la vegetación arbórea del parque estatal Agua Blanca, Macuspana, Tabasco. Universidad y Ciencia, 26, 1-17. https://www.redalyc.org/articulo.oa?id=15416251001
[24] Campo, A.M. and Duval, V.S. (2014) Diversidad y valor de importancia para la conservación de la vegetación natural. Parque Nacional Lihué Calel (Argentina). Anales de Geografía de la Universidad Complutense, 34, 25-42. https://ri.conicet.gov.ar/handle/11336/77965 https://doi.org/10.5209/rev_AGUC.2014.v34.n2.47071
[25] Viera, W., Medía, P., Noboa, M., Obando, J., Soto-mayor, A., Vásquez, W. and Viteri, P. (2015) Arvenses asociadas a los cultivos de naranjilla y tomate de árbol. Revista Científica Ecuatoriana, 2, 41-47. https://repositorio.iniap.gob.ec/bitstream/41000/3108/1/iniapscR2015v2n1p43.pdf https://doi.org/10.36331/revista.v2i1.6
[26] Franck, A.R., Gann, G.D., Sadle, J. and Farid, A. (2021) Sharpening Plant Taxonomy in South Florida: Baccharis and Melanthera (Asteraceae), Borreria and Chiococca (Rubiaceae), and Lantana (Verbenaceae). Phytologia, 103, 29-68. https://www.phytologia.org/uploads/2/3/4/2/23422706/103_2_29-68francksouthflorida26apr2020.pdf
[27] Chien-Fan, C., Ching-Ghuan, H., Po-Hao, C. and Sheng-Zehn, Y. (2017) Melanthera nivea (L.) Small (Asteraceae), a Newly Naturalized Plant in Taiwan. Taiwan Journal of Biodiversity, 19, 173-178. https://www.researchga-te.net/profile/Po-Hao-Chen/publication/330211165_Melanthe-ra_nivea_L_Small_Astera-ceae_A_Newly_Naturali-zed_Plant_in_Taiwan/links/5c33f475299bf12be3b6758c/Melanthera-nivea-L-Small-Asteraceae-A-Newly-Naturali-zed-Plant-in-Taiwan.pdf
[28] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2022) Especie: Melanthera nivea. http://www.conabio.gob.mx/malezasdemexico/asteraceae/melanthera-nivea/fichas/pagina1.htm
[29] Flórula digital de la Estación Biológica La Selva (2022) Páginas de Especies: Melanthera nivea. https://sura.ots.ac.cr/florula4/find_sp2.php?customer=Melanthera+nivea&busca=Buscar
[30] Hassler, M. (2004) World Plants. Synonymic Checklist and Distribution of the World Flora. Version 16.3. https://www.worldplants.de/world-plants-complete-list/complete-plant-list/?name=Melanthera-nivea#plantUid-401743
[31] Centro de Investigación Científica de Yucatán (CICY) (2023) Flora de la Península de Yucatán. Melanthera nivea. https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=965
[32] Chauhan, B. (2011) Crowfootgrass (Dactyloctenium aegyptium) Germination and Response to Herbicides in the Philippines. Weed Science, 59, 512-516. https://doi.org/10.1614/WS-D-11-00048.1
[33] Laguna, E., Ferrer, P.P., Collado-Rosique, F. and Vizcaíno-Matarredona, A. (2009) Primera cita de Dactyloctenium aegyptium (L.) Willd. (Poaceae) en la Comunitat Valenciana. Studia Botanica, 28, 175-178. https://revistas.usal.es/historico/index.php/0211-9714/article/view/8745/9466
[34] Vibrans, H. (2009) Dactyloctenium aegyptium. Malezas de México. http://www.conabio.gob.mx/malezasdemexico/poaceae/dactyloctenium-aegyptium/fichas/pagina1.htm
[35] Centro de Investigación Científica de Yucatán (CICY) (2023) Flora de la Península de Yucatán. Dactyloctenium aegyptium. https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=499
[36] Gachoka, K., Obeng-Ofori, D. and Danquah, E. (2005) Host Suitability of Two Ghanaian Biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on Five Common Tropical Weeds. International Journal of Tropical Insect Science, 25, 236-244. https://doi.org/10.1079/IJT200583
[37] Díaz-Pérez, W.A. and Gonzalo Febres, F. (2023) Florística de comunidades vegetales en Cerro Quemado, Puerto Ordaz, estado Bolívar, Venezuela. Boletín del Centro de Investigaciones Biológicas, 51, 45-60. https://doi.org/10.5281/zenodo.8021254
[38] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Rhynchelytrum repens. http://www.conabio.gob.mx/malezasdemexico/poaceae/rhynchelytrum-repens/fichas/pagina1.htm
[39] Ramírez-Contreras, R., Lara-Bueno, A., Uribe-Gómez, M., Cruz-León, A., Rodríguez-Trejo, D.A. and Valencia Trejo, G.M. (2020) Comportamiento forrajero del estrato herbáceo en diferentes densidades arbóreas de selva baja caducifolia. Revista Mexicana de Ciencias Agrícolas, 11, 881-893. https://doi.org/10.29312/remexca.v11i4.2467 https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/2467
[40] Rivas-Jacobo, M., Sandoval-Alvarado, J., Herrera-Corredor, A., Marín-Sánchez, J., Escalera-Valente, F. and Loya-Olguín, J. (2018) Evaluación de semilla de pastos cosechados en caminos y campos de cultivos. Abanico Veterinario, 8, 36-46. https://doi.org/10.21929/abavet2018.81.3
[41] Melgoza Castillo, A., Balandrán Valladares, M., Mata-González, I. and Pinedo ál-varez, C. (2014) Biología del pasto rosado Melinis repens (Willd.) e implicaciones para su aprovechamiento o control: Revisión. Revista mexicana de ciencias pecuarias, 5, 429-442. https://doi.org/10.22319/rmcp.v5i4.4015 http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242014000400004&lng=es&tlng=es
[42] Cabrera, D.C., Sobrero, M.T., Chaila, S. and Pece, M. (2015) Germinación y emergencia de Megathyrsus maximus var. Maximus. Planta Daninha, 33, 663-670. https://doi.org/10.1590/S0100-83582015000400004
[43] Vidal Jaimes, E. and Ruiz Seguismunda, Y. (2013) Identificación de malezas dicotiledóneas prevalentes en cultivos de interés agrícola en el valle de Huánuco. Investigación Valdizana, 7, 80-83. https://revistas.unheval.edu.pe/index.php/riv/article/view/317/299
[44] Más, E.G. and Lugo-Torres, M.L. (2013) Malezas Comunes en Puerto Rico and Islas Vírgenes Americanas/Common Weeds in Puerto Rico and U.S. Virgin Islands. Universidad de Puerto Rico, University of Puerto Rico, Recinto Universitario de Mayagüez/Mayagüez Campus. USDA Servicio de Conservación de Recursos Naturales. Natural Resources Conservation Service. área del Caribe/Caribbean Area. 90-275. https://www.nrcs.usda.gov/resources/guides-and-instructions/malezas-comunes-en-puerto-rico-y-usvi-common-weeds-in-puerto-rico
[45] Singh, S., Khurma, U. and Lockhart, P. (2010) Weed Hosts of Root-Knot Nematodes and Their Distribution in Fiji. Weed Technology, 24, 607-612. https://doi.org/10.1614/WT-D-09-00071.1
[46] Soa Paing, O., Zaw Lin, M.H., Swe Swe, M. and Htay Htay, H. (2016) Hojas Volantes Para Agricultores Amaranthus spinosus. Bulletin Plantwise, 1 p. https://plantwiseplusknowledgebank.org/doi/10.1079/pwkb.20167800672 https://doi.org/10.1079/pwkb.20167800672
[47] Gilbert, B., Ferreira Alves, L. and Favoreto, R. (2013) Bidens pilosa L. Asteraceae (Compositae; subfamília Heliantheae). Revista Fitos, 8, 53-67. https://doi.org/10.32712/2446-4775.2013.194
[48] Laizer, H.C., Chacha, M.N. and Ndakidemi, P.A. (2019) Farmers’ Knowledge, Perceptions and Practices in Managing Weeds and Insect Pests of Common Bean in Northern Tanzania. Sustainability, 11, Article 4076. https://doi.org/10.3390/su11154076
[49] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Crotalaria pumila Ort. Chipil. http://www.conabio.gob.mx/malezasdemexico/fabaceae/crotalaria-pumila/fichas/ficha.htm
[50] Del Toro Rivera, J.O., Vargas Batis, B., Rizo Mustelier, M. and Candó González, L. (2018) Composición, estructura y distribución de la vegetación arvense existente en fincas de la agricultura suburbana en Santiago de Cuba. Revista Científica Agroecosistemas, 6, 68-81. https://aes.ucf.edu.cu/index.php/aes/article/view/166
[51] Centro de Investigación Científica de Yucatán (CICY) (2023) Flora de la Península de Yucatán. Chamaecrista nictitans. https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=1460
[52] Fiallo-Olivé, E., Zerbini, F.M. and Navas-Castillo, J. (2015) Complete Nucleotide Sequences of Two New Begomoviruses Infecting the Wild Malvaceous Plant Melochia sp. in Brazil. Archives of Virology, 160, 3161-3164 https://doi.org/10.1007/s00705-015-2619-4
[53] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Melochia pyramidata L. http://www.conabio.gob.mx/malezasdemexico/sterculiaceae/melochia-pyramidata/fichas/pagina1.htm
[54] Centro de Investigación Científica de Yucatán (CICY) (2023) Flora de la Península de Yucatán. Tillandsia festucoides. https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=188
[55] Lárez-Rivas, A. (2007) Claves para identificar malezas asociadas con diversos cultivos en el Estado Monagas, Venezuela II. Dicotiledóneas. Revista UDO Agrícola, 7, 91-121.
[56] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Elytraria imbricata (Vahl) Pers. http://www.conabio.gob.mx/malezasdemexico/acanthaceae/elytraria-imbricata/fichas/ficha.htm
[57] Franco Urquijo, P.A. (2014) Evaluación de la actividad biológica e identificación de los principales metabolitos secundarios de Elytraria imbricate. Tesis para obtener el título de Ingeniero Bioquímico. Instituto Tecnológico de Tuxtla Gutiérrez. Tuxtla Gutiérrez, Chiapas.
[58] Daniel, T.F. (2004) Acanthaceae of Sonora: Taxonomy and Phytogeography. Proceedings of the California Academy of Sciences, 55, 690-805.
[59] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Commelina erecta L. http://www.conabio.gob.mx/malezasdemexico/commelinaceae/commelina-erecta/fichas/pagina1.htm
[60] Villaseñor, R.J.L. and Espinosa, F.J.G. (1998) Catálogo de malezas de México. Universidad Nacional Autónoma de México. Consejo Nacional Consultivo Fito- sanitario. Editorial Fondo de Cultura Económica. 25-32.
[61] Martínez, M. (1979) Catálogo de nombres vulgares y científicos de plantas mexicanas. Fondo de Cultura Económica, 24-45.
[62] Remy, V.A., Cáceres, O., García-Trujillo, R. and Esperance, M. (2014) Hierba Bermuda (Cynodon dactylon L. Pers). Pastos y Forrajes, 2, 1-6. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1737
[63] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Ipomoea nil (L.) Roth. http://www.conabio.gob.mx/malezasdemexico/convolvulaceae/ipomoea-hederacea/fichas/ficha.htm
[64] Sobrero, M.T., Fioretti, M.N., Chaila, S., Avila, O.B. and Ochoa, M.D.C. (2003) Factores que influyen sobre la germinación de Ipomoea nil (L.) Roth. Agrosur, 31, 60-68. https://doi.org/10.4206/agrosur.2003.v31n2-06
[65] Dávalos, C.M. and Vucko, A. (2020) Comportamiento germinativo de semillas de Ipomoea nil (L.) Roth. Agrotecnia, 30, 112-116. https://revistas.unne.edu.ar/index.php/agr/article/view/4664 https://doi.org/10.30972/agr.0304664
[66] Vidalh. R.A., Raineroa, H.P., Kalsingm, A. and Trezzi, M.M. (2010) Prospección de las combinaciones de herbicidas para prevenir malezas tolerantes y resistentes al glifosato. Planta Daninha, 28, 159-165. https://doi.org/10.1590/S0100-83582010000100019
[67] Centro de Investigación Científica de Yucatán (CICY) (2023) Flora de la Península de Yucatán. Tragia yucatanensis. https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=1414
[68] Flores, J.S., Gladiz, C., Canto-Aviles, O. and Flores-Serrano, A.G. (2001) Plantas de la flora yucatanense que provocan alguna toxicidad en el humano. Revista Biomedica, 12, 86-96. https://doi.org/10.32776/revbiomed.v12i2.261 https://revistabiomedica.mx/index.php/revbiomed/article/view/261/273
[69] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Euphorbia cyathophora Murr. http://www.conabio.gob.mx/malezasdemexico/euphorbiaceae/euphorbia-cyathophora/fichas/pagina1.htm
[70] Muhialdin, B.J., Sukor, R., Ismail, N., Ahmad, S.W., Che Me, N. and Meor Hussin, A.S. (2018) The Effects of Fermentation Process on the Chemical Composition and Biological Activity of Spider Flower (Gynandropsis gynandra). Journal of Pure and Applied Microbiology, 12, 497-504. https://doi.org/10.22207/JPAM.12.2.08
[71] Sabir, S. and Aziz, S. (2015) Demographic Study of Gynandropsis gynandra—A Desert Annual. Pakistan Journal of Botany, 47, 533-535. http://www.pakbs.org/pjbot/archives2.php?vol=47&iss=2&yea=2015
[72] Patil, V.S. (2014) Isoaltion, Characterization and Identification of Rhizospheric Bacteria with the Potential for Biological Control of Sida acuta. Journal of Environmental Research and Development, 8, 411-417. http://www.ajindex.com/dosyalar/makale/acarindex-1423906166.pdf
[73] Siripong, P., Duangporn, P., Takata, E. and Tsutsumi, Y. (2016) Phosphoric Acid Pretreatment of Achyranthes aspera and Sida acuta Weed Biomass to Improve Enzymatic Hydrolysis. Bioresource Technology, 203, 303-308. https://doi.org/10.1016/j.biortech.2015.12.037
[74] Hernández-Zepeda, C., Idris, A.M., Carnevali, G., Brown, J.K. and Moreno-Valenzuela, O.A. (2007) Molecular Characterization and Phylogenetic Relationships of Two New Bipartite Begomovirus Infecting Malvaceous Plants in Yucatan, Mexico. Virus Genes, 35, 369-377. https://doi.org/10.1007/s11262-007-0080-5
[75] Colmenero-Robles, J.A., Gual-Díaz, M. and Fernández-Nava, R. (2010) El género Corchorus (Tiliaceae) en México. Polibotánica, 29, 29-65. https://www.redalyc.org/pdf/621/62112471002.pdf http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-27682010000100002&lng=es
[76] Centro de Investigación Científica de Yucatán (CICY) (2023) Flora de la Península de Yucatán. Distimake aegyptius (L.). https://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=1241
[77] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (2023) Especie Heliotropium curassavicum L. http://www.conabio.gob.mx/malezasdemexico/boraginaceae/heliotropium-curassavicum/fichas/pagina1.htm
[78] Agnese, M., Mellina, S. and Cabrera, J.L. (1995) Alcaloides pirrolizidínicos en plantas medicinales que se expenden en la Ciudad de Córdoba (Argentina): Heliotropium curassavicum L. Acta Farmacéutica Bonaerense, 14, 273-276. http://www.latamjpharm.org/trabajos/14/4/LAJOP_14_4_1_6_SO0750N4KB.pdf
[79] Avilés-Baeza, W., Lozano-Contreras, M.G., Ramírez-Silva, J.H., Jasso-Argumedo, J. and Guerrero-Medina, R. (2022) Weeds Associated to Habanero Pepper (Capsicum chinense Jacq.) in the Village of Muna, Yucatan, Mexico. Open Access Library Journal, 9, 1-12. https://www.scirp.org/journal/paperinformation.aspx?paperid=120270
[80] Guzmán, M. and Martínez-Ovalle, M.J. (2019) Las malezas, plantas incomprendidas. Ciencia, Tecnología Y Salud, 6, 68-76. https://doi.org/10.36829/63CTS.v6i1.485

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.