RETRACTED:Effect of Long-Term Inorganic Fertilization on Diversity and Abundance of Bacterial and Archaeal Communities at Tillage in Irrigated Rice Field
Donald Tchouomo Dondjou1,2,3,4,5,6,7,8*, Henri Fankem1, Abdala Gamby Diedhiou3,4,5,8, Marie-Thérèse Mofini2,3,4,5,6,7,8, Daouda Mbodj3,5,7,8,9, Sarah Pignoly4,5,6, Baboucarr Manneh9, Laurent Laplaze4,5,6,8, Aboubacry Kane3,4,5,7, Victor Désiré Taffouo1
1Department of Plant Biology, Faculty of Science, University of Douala (UDLA), Douala, Cameroon.
2Centre d’Etude Régional pour l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal.
3Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar Fann, Sénégal.
4Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal.
5Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel-Air, Dakar, Sénégal.
6DIADE, Université de Montpellier, Montpellier, France.
7Centre d’Excellence Africain en Agriculture Environnement, Santé et Sociétés (CEA-AGIR), UCAD, Dakar, Sénégal.
8Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal.
9Africa Rice Center (AfricaRice), Saint-Louis, Sénégal.
DOI: 10.4236/abb.2023.141002   PDF    HTML     106 Downloads   497 Views  

Abstract

Short Retraction Notice


The paper does not meet the standards of "Advances in Bioscience and Biotechnology".


This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB).


Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".

Share and Cite:

  

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Arif, I., Batool, M. and Schenk, P.M. (2020) Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends in Biotechnology, 38, 1385-1396.
https://doi.org/10.1016/j.tibtech.2020.04.015
[2] FAO (2019) Food Outlook-Biannual Report on Global Food Markets. Food and Agricultural Organization, Rome.
[3] Ding, L.J., An, X.L., Li, S., Zhang, G.L. and Zhu, Y.G. (2014) Nitrogen Loss through Anaerobic Ammonium Oxidation Coupled to Iron Reduction from Paddy Soils in a Chronosequence. Environment Science and Technology, 48, 10641-10647.
https://doi.org/10.1021/es503113s
[4] Ge, T., Li, B., Zhu, Z., Hu, Y., Yuan, H., Dorodnikov, M., et al. (2017) Rice Rhizodeposition and Its Utilization by Microbial Groups Depends on N Fertilization. Biology and Fertility of Soils, 53, 37-48.
https://doi.org/10.1007/s00374-016-1155-z
[5] Kogel-Knabner, I., Amelung, W., Cao, Z.H., Fiedler, S., Frenzel, P., Jahn, R., et al. (2010) Biogeochemistry of Paddy Soils. Geoderma, 157, 1-14.
https://doi.org/10.1016/j.geoderma.2010.03.009
[6] Folefack, D.P. (2014) Booster la Production Locale du Riz pour le Renforcement de la Sécurité Alimentaire au Nord Cameroun. Journal of Applied Biosciences, 82, 7449-7459.
https://doi.org/10.4314/jab.v82i1.5
[7] FAO (2009) OECD-FAO Agricultural Outlook. Food and Agricultural Organization of the United Nations, Rome, 2011-2030.
[8] Sylla, M., Traore, K., Soro, D. and Yode, T.E.G. (2017) Evaluation des pratiques de gestion des adventices en riziculture irriguée dans la localité de Daloa, centre-ouest de la Cote d’Ivoire. Agronomie Africaine, 29, 49-64.
[9] Wang, J., Song, Y., Ma, T.F., Raza, W., Li, J., Howland, J.G., et al. (2017) Impacts of Inorganic and Organic Fertilization Treatments on Bacterial and Fungal Communities in a Paddy Soil. Applied Soil and Ecology, 112, 42-50.
https://doi.org/10.1016/j.apsoil.2017.01.005
[10] Yang, Y., Wang, P. and Zeng, Z. (2019) Dynamics of Bacterial Communities in a 30-Year Fertilized Paddy Field under Different Organic-Inorganic Fertilization Strategies. Agronomy, 9, Article 14.
https://doi.org/10.3390/agronomy9010014
[11] Li, C.H., Yan, K., Tang, L.S., Jia, Z.J. and Li, Y. (2014) Change in Deep Soil Microbial Communities Due to Long Term Fertilization. Soil Biology and Biochemistry, 75, 264-272.
https://doi.org/10.1016/j.soilbio.2014.04.023
[12] Balasooriya, W.K., Huygens, D., Rajapaksha, R.M.C.P. and Boeckx, P. (2016) Effect of Rice Variety and Fertilizer Type on the Active Microbial Community Structure in Tropical Paddy Fields in Sri Lanka. Geoderma, 265, 87-95.
https://doi.org/10.1016/j.geoderma.2015.11.007
[13] Chen, C., Zhang, J.N., Lu, M., Qin, C., Chen, Y.H., Yang, L., et al. (2016) Microbial Communities of an Arable Soil Treated for 8 Years with Organic and Inorganic Fertilizers. Biology Fertility Soils, 52, 455-467.
https://doi.org/10.1007/s00374-016-1089-5
[14] Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G. and Renella, G. (2003) Microbial Diversity and Soil Functions. European Journal Soil Science, 54, 655-670.
https://doi.org/10.1046/j.1351-0754.2003.0556.x
[15] Brussaard, L., De Ruiter, P.C. and Brown, G.G. (2007) Soil Biodiversity for Agricultural Sustainability. Agriculture Ecosystem and Environment, 121, 233-244.
https://doi.org/10.1016/j.agee.2006.12.013
[16] Lynn, T.M., Liu, Q., Hu, Y.J., Yuan, H.Z., Wu, X.H., Khai, A.A., et al. (2017) Influence of Land Use on Bacterial and Archaeal Diversity and Community Structures in Three Natural Ecosystems and One Agricultural Soil. Arch Microbiology, 199, 711-721.
https://doi.org/10.1007/s00203-017-1347-4
[17] Kennedy, A.C. and Smith, K.L. (1995) Soil Microbial Diversity and the Sustainability of Agricultural Soils. Plant Soil, 170, 75-86.
https://doi.org/10.1007/BF02183056
[18] Saleem, M. (2015) Microbiome Community Ecology: Fundamentals and Applications. Springer, Berlin.
https://doi.org/10.1007/978-3-319-11665-5
[19] Lei, Y.P., Xiao, Y.L., Li, L.F., Jiang, C.Q., Zu, C.L., Li, T., et al. (2017) Impact of Tillage Practices on Soil Bacterial Diversity and Composition under the Tobacco-Rice Rotation in China. Journal of Microbiology, 55, 349-356.
https://doi.org/10.1007/s12275-017-6242-9
[20] Djaman, K., Mel, V.C., Ametonou, F.Y., Namaky, R.E., Diallo, M.D. and Koudahe K. (2018) Effect of Nitrogen Fertilizer Dose and Application Timing on Yield and Nitrogen Use Efficiency of Irrigated Hybrid Rice under Semi-Arid Conditions. Journal Agriculture Science Food Research, 9, Article ID: 1000223.
[21] Haefele, S.M., Wopereis, M.C.S., Donovan, C. and Maubuisson, J. (2001) Improving the Productivity and Profitability of Irrigated Rice Production in Mauritania. European Journal of Agronomy, 14, 181-196.
https://doi.org/10.1016/S1161-0301(00)00094-0
[22] Haefele, S.M., Wopereis, M.C.S. and Wiechmann, H. (2002) Long-Term Fertility Experiments for Irrigated Rice in the West African Sahel: Agronomic Results. Field Crops Research, 78, 119-131.
https://doi.org/10.1016/S0378-4290(02)00117-X
[23] Mofini, M.-T., Diedhiou, A.G., Simonin, M., Dondjou, D.T., Pignoly, S., Ndiaye, C., et al. (2022) Cultivated and Wild Pearl Millet Display Contrasting Patterns of Abundance and Co-Occurrence in Their Root Mycobiome. Scientific Reports, 12, Article No. 207.
https://doi.org/10.1038/s41598-021-04097-8
[24] Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012) Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. The ISME Journal, 6, 1621-1624.
https://doi.org/10.1038/ismej.2012.8
[25] Takai, K. and Horikoshi, K. (2000) Rapid Detection and Quantification of Members of the Archaeal Community by Quantitative PCR Using Fluorogenic Probes. Applied Environment and Microbiology, 66, 5066-5072.
https://doi.org/10.1128/AEM.66.11.5066-5072.2000
[26] Edgar, R.C. (2013) UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nature Methods, 10, 996-998.
https://doi.org/10.1038/nmeth.2604
[27] Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. and Knight, R. (2011) UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics, 27, 2194-2200.
https://doi.org/10.1093/bioinformatics/btr381
[28] Reddy, T.B.K., Thomas, A.D., Stamatis, D., Bertsch, J., Isbandi, M., Jansson, J., et al. (2015) The Genomes OnLine Database (GOLD) v.5: A Metadata Management System Based on a Four Level (Meta) Genome Project Classification. Nucleic Acids Research, 43, D1099-D1106.
https://doi.org/10.1093/nar/gku950
[29] DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L, Keller, K., et al. (2006) Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072.
https://doi.org/10.1128/AEM.03006-05
[30] R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, Vienna.
[31] McMurdie, P.J. and Holmes, S. (2013) Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8, e61217.
https://doi.org/10.1371/journal.pone.0061217
[32] Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., et al. (2015) Vegan: Community Ecology Package.
https://cran.r-project.org/package=vegan
[33] Osman, J.N. (2016) Study of Bacterial Populations from Oligotrophic Soil Ecosystems Using High Throughput Sequencing Technologies. Ph.D. Thesis, Biodiversity and Ecology, Université Paris-Saclay, Paris.
[34] Nguyen, S.G., Guevarra, R.B., Kim, J., Ho, C.T., Trinh, M.V. and Unno, T. (2015) Impacts of Initial Fertilizers and Irrigation Systems on Paddy Methanogens and Methane Emission. Water Air Soil Pollution, 226, Article 309.
https://doi.org/10.1007/s11270-015-2501-8
[35] Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C. and Schlaeppi, K. (2018) Cropping Practices Manipulate Abundance Patterns of Root and Soil Microbiome Members Paving the Way to Smart Farming. Microbiome, 6, Article No. 14.
https://doi.org/10.1186/s40168-017-0389-9
[36] Edwards, J.A., Santos-Medellin C.M., Liechty, Z.S., Nguyen, B., Lurie, E., Eason, S., et al. (2018) Compositional Shifts in Root-Associated Bacterial and Archaeal Microbiota Track the Plant Life Cycle Field-Grown Rice. PLOS Biology, 16, e2003862.
https://doi.org/10.1371/journal.pbio.2003862
[37] Zhao, J., Ni, T., Li, Y., Xiong, W., Ran, W., Shen, B., et al. (2014) Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times. PLOS ONE, 9, e85301.
https://doi.org/10.1371/journal.pone.0085301
[38] Leff, J.W., Jones, S.E., Prober, S.M., Barberán, A., Borer, E.T., Firn, J.L., et al. (2015) Consistent Responses of Soil Microbial Communities to Elevated Nutrient Inputs in Grasslands across the Globe. Proceedings of the National Academy of Sciences of the United States of America, 112, 10967-10972.
https://doi.org/10.1073/pnas.1508382112
[39] Gu, Y., Wang, Y., Lu, S., Xiang, Q., Yu, X., Zhao, K., et al. (2017) Long-Term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil. Frontiers in Microbiology, 8, Article 1516.
https://doi.org/10.3389/fmicb.2017.01516
[40] Wei, S., Cui, H., Zhang, Y., Su, X., Dong, H., Chen, F., et al.(2019) Comparative Evaluation of Three Archaeal Primer Pairs for Exploring Archaeal Communities in Deep-Sea Sediments and Permafrost Soils. Extremophiles, 23, 747-757.
https://doi.org/10.1007/s00792-019-01128-1
[41] Dong, W.Y., Zhang, X.Y., Dai, X.Q., Fu, X.L., Yang, F.T., Liu, X.Y., et al. (2014) Changes in Soil Microbial Community Composition in Response to Fertilization of Paddy Soils in Subtropical China. Applied Soil and Ecology, 84, 140-147.
https://doi.org/10.1016/j.apsoil.2014.06.007
[42] Zhou, J., Guan, D., Zhou, B., Zhao, B., Ma, M., Qin, J., et al. (2015) Influence of 34-Year of Fertilization on Bacterial Communities in an Intensively Cultivated Black Soil in Northeast China. Soil Biology and Biochemistry, 90, 42-51.
https://doi.org/10.1016/j.soilbio.2015.07.005
[43] Fan, F., Yin, C., Tang, Y., Li, Z., Song, A., Wakelin, S.A., et al. (2014) Probing Potential Microbial Coupling of Carbon and Nitrogen Cycling during Decomposition of Maize Residue by 13C-DNA-SIP. Soil Biology and Biochemistry, 70, 12-21.
https://doi.org/10.1016/j.soilbio.2013.12.002
[44] Fierer, N., Bradford, M.A. and Jackson, R.B. (2007) Toward an Ecological Classification of Soil Bacteria. Ecology, 88, 1354-1364.
https://doi.org/10.1890/05-1839
[45] Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S. and Wernars, K. (2001) Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Applied Environment and Microbiology, 67, 2284-2291.
https://doi.org/10.1128/AEM.67.5.2284-2291.2001
[46] Torsvik, V. and Øvreås, L. (2002) Microbial Diversity and Function in Soil: From Genes to Ecosystems. Current Opinion in Microbiology, 5, 240-245.
https://doi.org/10.1016/S1369-5274(02)00324-7
[47] Hug, L.A., Cindy J.C., Wrighton, K.C., Thomas, B.C., Sharon, I., Frischkorn, K.R., et al. (2013) Community Genomic Analyses Constrain the Distribution of Metabolic Traits across the Chloroflexi Phylum and Indicate Roles in Sediment Carbon Cycling. Microbiome, 1, Article No. 22.
https://doi.org/10.1186/2049-2618-1-22
[48] King, G.M. (2014) Urban Microbiomes and Urban Ecology: How Do Microbes in the Built Environment Affect Human Sustainability in Cities? Journal of Microbiology, 52, 721-728.
https://doi.org/10.1007/s12275-014-4364-x
[49] DeSchrijver, A. and De Mot, R. (1999) Degradation of Pesticides by Actinomycetes. Critical Review in Microbiology, 25, 85-119.
https://doi.org/10.1080/10408419991299194
[50] Sathya A., Vijayabharathi, R. and Gopalakrishnan, S. (2017) Plant Growth-Promoting Actinobacteria: A New Strategy for Enhancing Sustainable Production and Protection of Grain Legumes. 3 Biotech, 7, Article No. 102.
https://doi.org/10.1007/s13205-017-0736-3
[51] Hamdi, C., Arous, F. and Jaouani, A. (2020) Actinobacteria: A Promising Source of Enzymes Involved in Lignocellulosic Biomass Conversion. Advances in Biotechnologyand Microbiology, 13, Article ID: 555874.
[52] Ezeokoli, O.T., Nuaila, V.N.A., Obieze, C.C., Muetanene, B.A., Fraga, I., Tesinde, M.N., et al. (2021) Assessing the Impact of Rice Cultivation and Off-Season Period on Dynamics of Soil Enzyme Activities and Bacterial Communities in Two Agro-Ecological Regions of Mozambique. Agronomy, 11, Article 694.
https://doi.org/10.3390/agronomy11040694
[53] Ahn, J.H., Song, J., Kim, B.Y., Kim, M.S., Joa, J.H. and Weon, H.Y. (2012) Characterization of the Bacterial and Archaeal Communities in Rice Field Soils Subjected to Long-Term Fertilization Practices. The Journal of Microbiology, 50, 754-765.
https://doi.org/10.1007/s12275-012-2409-6
[54] Lv, X., Yu, J., Fu, Y., Ma, B., Qu, F., Ning, K., et al. (2014) A Meta-Analysis of the Bacterial and Archaeal Diversity Observed in Wetland Soils. Hindawi Publishing Corporation. The Scientific World Journal, 2014, Article ID: 437684.
https://doi.org/10.1155/2014/437684
[55] Li, B., Chen, H., Li, N., Wu, Z., Wen, Z., Xie, S., et al. (2017) Spatiotemporal Shifts in the Archaeal Community of a Constructed Wetland Treating River Water. Science Total Environment, 605, 269-275.
https://doi.org/10.1016/j.scitotenv.2017.06.221
[56] Zhang, J., Jiao, S. and Lu, Y.H. (2018) Biogeographic Distribution of Bacterial, Archaeal and Methanogenic Communities and Their Associations with Methanogenic Capacity in Chinese Wetlands. Science Total Environment, 622, 664-675.
https://doi.org/10.1016/j.scitotenv.2017.11.279

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.