Weeds Associated to Habanero Pepper (Capsicum chinense Jacq.) in the Village of Muna, Yucatan, Mexico

Abstract

The objective of this study was to know the weed species associated with the cultivation of Habanero Pepper (HP) in the municipality of Muna Yucatan, Mexico that could help to define the best weeds management strategies for producers in the region. Weed collection was made in a lot where the HP was about to be grown. The weed species were identified one week before the establishment of the crop (Jaguar variety). For taxonomic identification of weeds, images of the adult plant with flowers, fruits and seeds were taken, supported with herbarium. The Importance Value Index (IVI) was calculated. Fourteen species predominated from which 85.7% were of the wide-leaf type and 14.3% were narrow ones. The most predominant species were: Euphorbia hyssopifolia (Euphorbiaceae), Megathyrsus maximus (Poaceae) and Parthenium hysterophorus (Asteraceae) with the highest IVI’s with 61.8%, 52.4%, 33.7% respectively. The appearance of weeds in lots of HP crop represents an important increase in the production costs. The identification of weed species represents a basic tool for an effective Weed Management Program.

Share and Cite:

Avilés-Baeza, W., Lozano-Contreras, M.G., Ramírez-Silva, J.H., Jasso-Argumedo, J. and Guerrero-Medina, R. (2022) Weeds Associated to Habanero Pepper (Capsicum chinense Jacq.) in the Village of Muna, Yucatan, Mexico. Open Access Library Journal, 9, 1-12. doi: 10.4236/oalib.1109235.

1. Introduction

The term weed is extended almost all over the world to nominate an undesirable harmful species at a certain time [1]. It is a special form of highly successful vegetation growing in environments disturbed by man without having been planted [2]. Weeds are able to adapt at any environmental condition According to the change of its rapid colonization at short and long distance due to an efficient seeds dispersal.

The appearance of weeds in crops, such as the Habanero Pepper (HP), represents a production cost between 20% to 25% of the total cost during a cycle of six cultivation months [3].

On the other hand, it exerts a strong competition for nutrients, water and space; making harvest difficult and behaving as a host of several Geminiviruses and their vector: the whitefly (Bemisia tabaci Genn.) [4].

To minimize the problems caused by weeds to farmers, it is important to implement, prior planting, a management program with four phases: 1) To identify the weeds and its life cycle, 2) To know the available weed management options, 3) To remove all kind of weeds from the lot prior planting the Habanero Pepper and 4) To implement a combination of different effective methods for prevention and control purposes [5]. Based on the foregoing, the objective of this study was to know the weed species associated to the Habanero Pepper (HP) in a farm located in the municipality of Muna in the state of Yucatan, Mexico.

2. Materials

2.1. Location

The research was carried out during September to October 202 in the “Leopoldo Arana Cabrera” Agricultural Unit, in the municipality of Muna, Yucatan, Mexico, located at coordinates 20˚24'52'' North latitude and 89˚44'31'' west longitude where the previous crop was peanut (Arachis hypogaea). The soils are classified as K’ankab lu’um in the Mayan terminology and Luvisol in the classification of the World Reference Base (WRB) [6].

A surface of 0.5 hectares was selected where HP Jaguar Variety was about to be cultivated and weeds were identified, one week before planting, in an area of 12 squares of 0.25 m2 each (50 × 50 cm) [7].

2.2. Taxonomic Identification

For the taxonomic identification of weeds, images and live adult plants with flowers, fruits and seeds were taken and compared with botanical information from different Mexican Institutions such as:

The National Commission for the Knowledge and Use of the Land, National Commission for the Knowledge and Use of Biodiversity (CONABIO, http://www.conabio.gob.mx/malezasdemexico/2inicio/paginas/lista-plantas.htm), the Scientific Research Center of Yucatan (CICY, http://www.cicy.mx/sitios/flora%20digital/index.php) and the National Herbarium of Mexico of the National Autonomous University of Mexico (MEXU, http://www.ib.unam.mx/botanica/herbario/).

3. Methods

Weed Collection

The, frequency of appearance, abundance and dominance of each species were recorded and the Importance Value Index (IVI) of each weed was calculated adapting the methodology described by Gámez López et al. (2011) [8].

The Importance Value Index (IVI) was developed by Curtis & McIntosh (1951) [9]. It is a synthetic structural index, developed mainly to rank the dominance of each species in mixed stands and was calculated as follows: IVI = Relative dominance + Relative density + Relative frequency [10] [11].

According to Campo and Duval (2014) [12], these three parameters are calculated as follows:

Relative dominance = Dominance of each species Dominance of all species × 100

Relative Density = Number of individuals of each species Total Number of individuals × 100

Relative frecuency = Frecuency of each species Frecuency of all species × 100

4. Results

Weed Species Found and the Importance Value Index (IVI).

The 14 weed species found on the HP plot are described in Table 1 considering: common names according to different countries and regions, scientific names, botanical behaviors (A = Annual; B = Biannual; D = Dicot; M = Monocot; P = Perennial), geographical distribution and impact on agriculture crops.

The Importance Value Index (IVI) of each species are shown in Figure 1 and the results are showing the presence of fourteen species of weeds one week before planting HP: Amaranthus dubius, A. spinosus, Bidens pilosa, Boerthavia erecta, Crotalaria incana, Cyperus ligularis, Euphorbia hyssopifolia, Lonchocarpus rugosus, Megathyrsus maximus, Parthenium hysterophorus, Piscidia piscipula, Portulaca oleracea, Sida glabra and Waltheria americana.

Of the total species, 85.7% were broad-leaved and 14.3% narrow-leaved. The species Euphorbia hyssopifolia (Euphorbiaceae), Megathyrsus maximus (Poaceae) and Parthenium hysterophorus (Asteraceae) were the most predominant ones with the highest IVI’s with 61.8%, 52.4%, and 33.7% respectively.

They are species of considerable danger for HP because of their role as hosts of different diseases such as the Meloidogyne incognita nematode and the plague Bemisia tabaci Genn. (Hemiptera: Aleyrodidae), which efficiently transmits more than 100 viruses of the begomovirus group [13].

Table 1. Characteristics of the predominant weed species in the Habanero pepper lot.

*A = Annual; B = Binnual; D = Dicot; M = Monocot; P = Perennial.

Figure 1. Importance Value Index (IVI) of weeds associated with the Habanero pepper plot in Muna Yucatán, Mexico.

The nematode M. incognita can cause production losses of at least 100 billion dollars in the world [44]. In addition, the genus Meloidogyne spp. is the ten most important genera of parasitic nematodes in the world reducing yields significantly [45] [46].

On the other hand, Bemisia tabaci is one of the most serious pests in greenhouse and field horticultural crops throughout the world [47]. It has a wide range of hosts, high fertility and high virus transmission capacity [14]. This pest causes direct damage through phloem feeding and toxin injection [15]. Indirect damage occurs when transmitting the Begomovirus [16] causing production losses of at least 95% [17].

5. Discussion

The HP producers annually alternate the HP with other annual or perennial crops [48]; therefore, tillage plays an important role in the dispersal of invasive weeds such as those described in Table 1. The higher presence of four species with the highest IVI’s (E. hyssopifolia, M. maximus, P. hysterophorus, and C. ligularis) is of considerable importance due to their role as competitors or hosts of pests and diseases. The E. hyssopifolia is a natural reservoir of Begomovirus and the whitefly Bemisia tabaci (Gennadius), considered as the main disease and plague of HP. The whitefly-host-weed interaction triggers the transmission of viral diseases in the first month after transplanting [49].

On the other hand, M. maximus (Guinea grass), is an herbaceous species used for fodder purposes and can be converted from an invasive weed into a potential cattle grass food. Its high seed production, germination capacity, viability, vigor, weight and size of seeds favor its wind dispersion [50].

On the other hand, Guinea grass produces three to four million seeds per kilogram [51]; good enough amount to be dispersed to the field until invading vast areas of the Mexican tropical and subtropical regions. Due to its erect growth habit and efficient architecture, it is a more efficient light receptor than other creeping growth species, reason to be a dominant weed [50].

6. Conclusions

Fourteen species of weeds were found one week before planting HP: Amaranthus dubius, A. spinosus, Bidens pilosa, Boerthavia erecta, Crotalaria incana, Cyperus ligularis, Euphorbia hyssopifolia, Lonchocarpus rugosus, Megathyrsus maximus, Parthenium hysterophorus, Piscidia piscipula, Portulaca oleracea, Sida glabra and Waltheria americana.

Of the total species, 85.7% were broad-leaved and 14.3% narrow-leaved. The species Euphorbia hyssopifolia (Euphorbiaceae), Megathyrsus maximus (Poaceae) and Parthenium hysterophorus (Asteraceae) were the predominant ones with the highest IVI’s with 61.8%, 52.4%, and 33.7% respectively.

Human activity, in many cases, plays an important role on weeds dispersal. The identification, description and specific forms of adaptation to the environment can contribute to devise a better weed control management in crop fields such as the HP.

Acknowledgements

We thank the National Institute for Forestry, Agricultural and Livestock Research (INIFAP) for financing this work, as part of the project: Alternatives to the use of Glyphosate for weed control in Mexico.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Guzmán, M. and Martínez-Ovalle, M.J. (2019) Las malezas, plantas incomprendidas. Ciencia, Tecnología y Salud, 6, 68-76. https://doi.org/10.36829/63CTS.v6i1.485
[2] Rodríguez, J. (2007) Las malezas y el Agroecosistema. Departamento de protección vegetal, Facultad de Agronomía. Universidad de la Republica Oriental de Uruguay, 1-26. https://acortar.link/ePWygg
[3] Avilés Baeza, W.I. and Dzib, E.R. (2008) Validación de tecnología para la producción de chile habanero en suelos mecanizables. Informe Técnico Annual. Campo Experi-mental Mococha. CIRSE. INIFAP. Sp. 17-26.
[4] Díaz, P.R. (2003) Distribución de geminivirus en la Península de Yucatán y estrategias moleculares para su control. Tesis de Doctorado. CINVESTAV-IPN. Unidad Irapuato. Irapuato, Gto. México. 118 p.
[5] Neal, J.C. and Warren, S.L. (1998) Weed Management in Annual Color Beds. North Carolina Cooperative Extension Service.
[6] Bautista, F., Maldonado, D. and Zinck, A. (2012) Clasificación maya de los suelos. Ciencia y Desarrollo, 260, 65-70. https://www.cyd.conacyt.gob.mx/archivo/260/articulos/clasificacion-maya-suelos.html
[7] López Martínez, N. (2009) Malezas asociadas a plantas ornamentales. Fitosanidad, 13, 233-235. https://www.redalyc.org/articulo.oa?id=209114853002
[8] Gámez López, A., Hernández, M., Díaz, R. and Vargas, J. (2011) Caracterización de la flora arvense asociada a un cultivo de maíz bajo riego para producción de jojotos. Agronomía Tropical, 61, 133-140. http://ve.scielo.org/pdf/at/v61n2/art04.pdf
[9] Curtis, J.T. and McIntosh, R.P. (1951) An Upland Forest Continuum in the Pari-ré-Forest Border Region of Wisconsin. Ecology, 32, 476-496. https://www.jstor.org/stable/1931725
https://doi.org/10.2307/1931725
[10] Zarco-Espinoza, V.M., Valdez-Hernández, J.I., ángeles-Pérez, G. and Castillo-Acosta, O. (2010) Estructura y diversidad de la vegetación arbórea del parque estatal Agua Blanca, Macuspana, Tabasco. Universidad y Ciencia, 26, 1-17. https://www.scielo.org.mx/scielo.php?pid=S0186-29792010000100001andscript=sci_arttext
[11] Soler, P.E., Berroterán, J.L., Gil, J.L. and Acosta, R.A. (2012) índice valor de im-portancia, diversidad y similaridad florística de especies leñosas en tres ecosistemas de los llanos centrales de Venezuela. Agronomía Tropical, 62, 25-37. https://dialnet.unirioja.es/servlet/articulo?codigo=5254691
[12] Campo, A.M. and Duval, V.S. (2014) Diversidad y valor de importancia para la con-servación de la vegetación natural. Parque Nacional Lihué Calel (Argentina). Anales de Geografia, 34, 25-42. https://ri.conicet.gov.ar/handle/11336/77965 https://doi.org/10.5209/rev_AGUC.2014.v34.n2.47071
[13] Khatun, M.F., Hwang, H.S., Shim, J.K., Kil, E.J., Lee, S. and Lee, K.Y. (2020) Identi-fication of Begomoviruses from Different Cryptic Species of Bemisia tabaci in Bang-ladesh. Microbial Pathogenesis, 142, Article ID: 104069. https://doi.org/10.1016/j.micpath.2020.104069
[14] Islam, W., Akutse, K.S., Qasim, M., Khan, K.A., Ghramh, H.A., Idrees, A. and Latif, S. (2018) Bemisia Tabaci-Mediated Facilitation in Diversity of Begomoviruses: Evi-dence from Recent Molecular Studies. Microbial Pathogenesis, 123, 162-168. https://doi.org/10.1016/j.micpath.2018.07.008
[15] Barbosa, F.R., Quintela, E.D., Bleicher, E. and Silva, P.H.S. (2004) Manejo da mos-ca-branca Bemisia tabaci biotipo B na cultura do feijao. In: Haji, N.P. and Bleicher, E., Eds., Avanços no manejo da mosca-branca Bemisia tabaci Biotipo B (Hemíptera: Aleyrodidae), Embrapa Semi-Arido, Petrolina, 131-154.
[16] Stansly, P.A. and Natwick, E.T. (2010) Integrated Systems for Managing Bemisia tabaci in Protected on Open Field Agriculture. In: Stansly, P.A. and Naranjo, S.E., Eds., Bemisia: Bionomics and Management of a Global Pest, Springer, Amsterdam, 467-489. https://doi.org/10.1007/978-90-481-2460-2_17
[17] García, M., Trejo, D. and Rivera, R. (2010) Veinte años de investigación con Gemini-virus en vegetales en Guanajuato. Acta Universitaria, 3, 84-92. https://doi.org/10.15174/au.2010.64
[18] Ferrarotto, M.S. (1998) Arquitectura foliar de Amaranthus dubius Mart. y Amaranthus cruentus L. (Amaranthaceae). Acta Botánica Venezuélica, 21, 75-85. https://www.jstor.org/stable/41740560
[19] Carmona Pinto, W. and Orsini Velázquez, G. (2010) Sinopsis del subgénero amaran-thus (Amaranthus, Amaranthaceae) en Venezuela. Acta Botánica Venezuelica, 33, 329-355. https://core.ac.uk/download/pdf/276546261.pdf
[20] Vidal Jaimes, E. and Ruiz Seguismunda, Y. (2017) Identificación de malezas dico-tiledóneas prevalentes en cultivos de interés agrícola en el valle de Huánuco. Investi-gación Valdizana, 7, 80-83. https://revistas.unheval.edu.pe/index.php/riv/article/view/317/299
[21] Más, E.G. and Lugo-Torres, M.L. (2013) Malezas Comunes en Puerto Rico and Islas Vírgenes Americanas/Common Weeds in Puerto Rico and U.S. Virgin Islands. Uni-versidad de Puerto Rico, University of Puerto Rico, Recinto Universitario de Maya-güez/Mayagüez Campus. USDA Servicio de Conservación de Recursos Naturales. Natural Resources Conservation Service. área del Caribe/Caribbean Area. 90-275. https://acortar.link/qaPZbA
[22] Singh, S., Khurma, U. and Lockhart, P. (2010) Weed Hosts of Root-Knot Nematodes and Their Distribution in Fiji. Weed Technology, 24, 607-612. https://doi.org/10.1614/WT-D-09-00071.1
[23] Soa Paing, O., Zaw Lin, M.H., Swe Swe M. and Htay Htay, H. (2016) Hojas volantes para agricultores Amaranthus spinosus. Bulletin. Plantwise, 1 p. https://factsheetadmin.plantwise.org/Uploads/PDFs/20177800538.pdf
[24] Gilbert, B., Ferreira Alves, L. and Favoreto, R. (2013) Bidens pilosa L. Asteraceae (Compositae; subfamília Heliantheae). Revista Fitos, 8, 1-72. https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/194/174 https://doi.org/10.32712/2446-4775.2013.194
[25] Laizer, H.C., Chacha, M.N. and Ndakidemi, P.A. (2019) Farmers’ Knowledge, Percep-tions and Practices in Managing Weeds and Insect Pests of Common Bean in Northern Tanzania. Sustainability, 11, Article No. 4076. https://doi.org/10.3390/su11154076
[26] Lastra Valdés, H.A. and Ponce de León Rego, H. (2001) Bidens pilosa Linné. Revista Cubana de Plantas Medicinales, 6, 28-33. http://scielo.sld.cu/scielo.php?pid=S1028-47962001000100007&script=sci_arttext&tlng=en
[27] Wen-Chin, Y. (2014) Botanical, Pharmacological, Phytochemical, and Toxicological Aspects of the Antidiabetic Plant Bidens pilosa L. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 698617. https://doi.org/10.1155/2014/698617
[28] Pacheco, D., Sthormes, G., Petit, Y., Quirós, M., Poleo, N. and Dorado, I. (2009) Reconocimiento de malezas presentes en el huerto de guayabo (Psidium guajava L.) tipo Criolla Roja, del Centro Frutícola del Zulia, Municipio Mara, Venezuela. Revista Científica UDO Agrícola, 9, 141-147. http://www.bioline.org.br/pdf?cg09020
[29] Piloto Ferrer, J., Ramos Ruiz, A., Vizoso Parra, A., García López, A., Guerra, M. and Rivero, R. (2006) Evaluación del potencial genotóxico de Boerhavia erecta L. Revista Cubana de Plantas Medicinales, 11, 1-6. https://web.archive.org/web/20180428114733id_/http://scielo.sld.cu/pdf/pla/v11n1/pla04106.pdf
[30] Planchuelo, A.M. and Carreras, M.E. (2011) Evaluación de la diversidad morfológica en Crotalaria incana L. (Fabaceae, Faboideae), una leguminosa silvestre de valor forrajero. Agriscientia, 28, 39-49. http://www.scielo.org.ar/pdf/agrisc/v28n1/v28n1a05.pdf
https://doi.org/10.31047/1668.298x.v28.n1.2783
[31] Ohdan, H. and Daimon, H. (1998) Evaluation of Amount of Nitrogen Fixed in Crot-alaria spp. and Nitrogen Turnover to the Succeeding Wheat. Japanese Journal of Crop Science, 67, 193-199. https://doi.org/10.1626/jcs.67.193
[32] Comisión Nacional para el Conocimiento y Uso de la Tierra. Nacional para el Conoci-miento y Uso de la Biodiversidad (CONABIO) (s.f.) Cyperus rotundus L. Coquillo rojo.
[33] Vilches, R.A. (2015) Euphorbia hyssopifolia, neófito para la flora ibérica. Flora Montiberica, 59, 69-71. http://www.floramontiberica.org/FM/059/Flora_Montib_059_069-071_2015.pdf
[34] Vaca-Vaca, J.C., Corredor-Sáenz, V.C., Jara-Tejada, F., Betancourt-Andrade, D. and López-López, K. (2019) Nuevos hospederos alternativos de Begomovirus asociados con el cultivo de ají en el Valle del Cauca, Colombia. Acta Agronómica, 68, 56-60. https://doi.org/10.15446/acag.v68n1.77487
[35] Sousa, S.M. (2008) Las subespecies de Lonchocarpus rugosus Benth. (Leguminosae, Papilionoideae: Millettieae). Ceiba, 49, 119-132. https://doi.org/10.5377/ceiba.v49i1.302
[36] Munari Escarela, C., Pietroski, M., de Mello Prado, R., Silva Campos, C.N. and Caione, G. (2017) Effect of Nitrogen Fertilization on Productivity and Quality of Mombasa Forage (Megathyrsus maximum cv. Mombasa). Acta Agronómica, 66, 42-48. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/53420 https://doi.org/10.15446/acag.v66n1.53420
[37] López, M.F. (2021) Eficacia de alternativas fisio nutricionales sobre la capacidad de re-brote y rendimiento del Pasto Guinea (Megathyrsus maximus (Jacq.) B.K. Simon and S.W.L. Jacobs.) en secano. Título de Ingeniero Agrícola. Escuela Superior Politécnica Agropecuaria de Manabí. 10-33.
[38] Del Toro Rivera, J.O., Vargas Batis, B., Rizo Mustelier, M. and Candó González, L. (2018) Composición, estructura y distribución de la vegetación arvense existente en fincas de la agricultura suburbana en Santiago de Cuba. Revista Científica Agroeco-sistemas, 6, 68-81. https://aes.ucf.edu.cu/index.php/aes/article/view/166
[39] Chaila, S. and Sobrero, M.T. (2009) Principales malezas en el cultivo de caña de azúcar. IV Congreso Nacional y III Congreso Internacional de Enseñanza de las Ciencias Ag-ropecuarias. Tomo II. Santiago del Estero, Argentina. 9-10.
[40] Cabrera, D.C., Sobrero, M.T., Chaila, S. and Pece, M. (2015) Germination and Emer-gence of Megathyrsus maximus var. maximus. Planta Daninha, Viçosa-MG, 33, 663-670. https://awsjournal.org/wp-content/uploads/articles_xml/0100-8358-PD-S0100-83582015000400663/0100-8358-PD-S0100-83582015000400663.pdf
[41] Abdulkerim-Ute, J. and Legesse, B. (2016) Parthenium hysterophorus L: Distribution, Impact, and Possible Mitigation Measures in Ethiopia. Tropical and Subtropical Agroecosystems, 19, 61-72. https://www.redalyc.org/pdf/939/93945700001.pdf
[42] Armín, J., Ayala Burgos, C.M., Capetillo Leal, R.H., Cetina Góngora, C., Zapata Campos, C.A. and Sandoval Castro, C. (2006) Composición química-nutricional de árboles forrajeros. Universidad Autónoma de Yucatán, Facultad de Medicina Veteri-naria y Zootecnia. 45 p.
[43] Rodríguez Alcalá, C. (2014) Estudio comparativo de la propagación y el efecto de la ra-diación lumínica, en una variedad comercial y una población natural de Portulaca oleracea L. Investigativa. Sevilla, España, Universidad de Sevilla. 61 p. https://idus.us.es/handle/11441/72586
[44] Bartlem, D.G., Jones, M.G.K. and Hammes, U.Z. (2014) Vascularization and Nutrient Delivery at Root-Knot Nematodes Feeding Sites in Host Roots. Journal of Experi-mental Botany, 65, 1789-1798.
[45] Wang, Q., Li, Y., Klassen, W. and Handoo, Z. (2007) Influence of Cover Crops and Soil Amendments on Okra (Abelmoschus esculentus L.) Production and Soil Nema-todes. Renewable Agriculture and Food Systems, 22, 41-53. https://www.jstor.org/stable/44491429
[46] Ayvar-Serna, S., Díaz Nájera, J.F., Alvarado Gómez, O.G., Velázquez Millán, I., Pe-láez Arroyo, A. and Tejeda Reyes, M.A. (2018) Actividad nematicida de extractos bo-tánicos contra Meloidogyne incognita (Kofoid y White) en okra (Hibiscus esculentus L. Moench). Biotecnia, 20, 13-19.
[47] Soon-Il, K., Song-Hwa, C., Hee-Sung, Y., Seong-Hum, Y. and Young-Joon, A. (2011) Contact and Fumigant Toxicity of Plant Essential Oils and Efficacy of Spray Formulations Containing the Oils against B- and Q-Biotypes of Bemisia tabaci. Pest Management Science, 67, 1093-1099. https://doi.org/10.1002/ps.2152
https://onlinelibrary.wiley.com/doi/10.1002/ps.2152
[48] apata-Aguilar, J.A., Pérez-Akaki, P. and Moo-Novelo, C.A. (2020) Análisis de la ca-dena de comercialización del chile habanero de Yucatán y su denominación de origen. Revista CEA, 6, 109-125.
[49] Castillo-Aguilar, C.C., Quej-Ch, V., Coh-Méndez, D., Carrillo-ávila, E. and Monsal-vo-Espinosa, A. (2018) Producción de planta de chile habanero (Capsicum chinense Jacq.). Agro Productividad, 8, 73-78. https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/676
[50] Enríquez Quiroz, J.F., Esqueda Esquivel, V.A., Nicolás, N.F. and Cab Jiménez, F.E. (2013) Especies tropicales. In: Quero Carrillo, A.R., Ed., Gramíneas Introducidas: Importancia e impacto en ecosistemas ganaderos, Editorial del Colegio de Postgradu-ados. Colegio de Postgraduados. Universidad Autónoma Chapingo. Montecillo, Tex-coco, Estado de México, 135-140. https://acortar.link/OAvPGF
[51] Enríquez, Q.J.F. and Quero, C.A.R. (2006) Producción de semillas de gramíneas y le-guminosas forrajeras tropicales. Libro Técnico Núm. 11. Instituto de Investigaciones Forestales, Agrícolas y Pecuarias. Centro de investigación Regional Golfo Centro. Campo Experimental Cotaxtla. Veracruz, México. 5-17.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.