The Proof and Application of a Summation Formula

Abstract

In this paper, some conclusions related to the prime number theorem, such as the Mertens formula are improved by the improved Abelian summation formula, and some problems such as “Dirichlet” function and “W(n)” function are studied.

Share and Cite:

Wang, Y. (2022) The Proof and Application of a Summation Formula. Advances in Pure Mathematics, 12, 541-559. doi: 10.4236/apm.2022.129042.

1. The Main Conclusions to Be Used in This Paper

1.1. Theorem A (Be Summation Formula) [1]

b ( n ) ( n = 1 , 2 , ) is a plural column, The and function B ( n ) = n u b ( n ) , to set up 0 u 1 < u 2 , f(u) interval [ u 1 , u 2 ] continuous differentiable function of, so there are

u 1 < n u 2 b ( n ) f ( n ) = B ( u 2 ) f ( u 2 ) B ( u 1 ) f ( u 1 ) u 1 u 2 B ( u ) f ( u ) d u (1)

special: if u 1 = 1 , u 2 = u > 1 , Have a type:

1 n u b ( n ) f ( n ) = B ( u ) f ( u ) 1 u B ( t ) f ( t ) d t (2)

1.2. Theorem B (Prime Number Theorem) [2]

1) A. Walfsz the results of the:

θ ( x ) = x + O ( x exp ( c ( log x ) 3 5 ( log log x ) 1 5 ) )

π ( x ) = L i x + O ( x exp ( c ( log x ) 3 5 ( log log x ) 1 5 ) )

2) In “Riemann” The prime number theorem under the condition that the conjecture is true (Vonkock the results of the).

π ( x ) = L i x + O ( x 1 2 log x )

θ ( x ) = x + O ( x 1 2 log 2 x )

3) Theorem C (Siegel-Walfisz) [3]

Set l, k is suitable for ( l , k ) = 1 and 3 k ( log x ) k 0 . The natural Numbers, Among them, k 0 is any normal number, then:

π ( x , k , l ) = 1 φ ( k ) l i x + O ( x e a 0 log x ) ,

Here a 0 > 0 , And with the “O” the relevant constants depend only on k 0 .

4) Theorem D (Mertens 1874)

If L ( 1 , x ) 0 , for any model q Non-principal features hold, so for any of these ( a , q ) = 1 the a there are:

p x p a ( mod q ) 1 p = log log x φ ( q ) + c ( a , q ) + O ( 1 log x ) ( x ) ,

Among them c ( a , q ) = 1 φ ( q ) { γ p ( log ( 1 1 1 p ) 1 p ) + x x 0 x ¯ ( a ) p x ( p ) p } .

2. The Proof of Summation Formula

2.1. Theorem 1

Set α ( n ) , f ( n ) , for the real function, A ( x ) = n x a ( n ) = g ( x ) + O ( g 0 ( x ) ) ,

Meet the conditions:

1) g ( x ) , g 0 ( x ) , f ( x ) , f ( x ) is interval t [ y , ) , continuous function of;

2) For any small positive number ε , in t [ y , ) Satisfy condition on: | g 0 ( t ) f ( t ) | ( t ( log t ) 1 + ε ) 1 .

2.1.1. When 1 y 1 When

y < n x a ( n ) f ( n ) = g ( x ) f ( x ) y x g ( t ) f ( t ) d t A ( y ) f ( y ) y ( A ( t ) g ( t ) ) f ( t ) d t + O ( x | g 0 ( t ) f ( t ) | d t + | g 0 ( x ) f ( x ) | ) (3)

Among them A ( y ) f ( y ) + y ( A ( t ) g ( t ) ) f ( t ) d t , for only with “y” related constants.

2.1.2. When y Sufficiently Large

y < n x a ( n ) f ( n ) = g ( x ) f ( x ) y x g ( t ) f ( t ) d t g ( y ) f ( y ) + O ( y x | g 0 ( t ) f ( t ) | d t + | g 0 ( x ) f ( x ) | + | g 0 ( y ) f ( y ) | ) (4)

Prove:

1) When 1 < y 1 < x when, by “(1) type” available

y < n x a ( n ) f ( n ) = A ( x ) f ( x ) A ( y ) f ( y ) y x A ( t ) f ( t ) d t = g ( x ) f ( x ) + O ( | g 0 ( x ) f ( x ) | ) A ( y ) f ( y ) y x ( A ( t ) g ( t ) ) f ( t ) d t y x g ( t ) f ( t ) d t

= g ( x ) f ( x ) y x g ( t ) f ( t ) d t A ( y ) f ( y ) y ( A ( t ) g ( t ) ) f ( t ) d t + x ( A ( t ) g ( t ) ) f ( t ) d t + O ( | g 0 ( x ) f ( x ) | ) = g ( x ) f ( x ) y x g ( t ) f ( t ) d t A ( y ) f ( y ) y ( A ( t ) g ( t ) ) f ( t ) d t + O ( x | g 0 ( t ) f ( t ) | d t + | g 0 ( x ) f ( x ) | )

Due to the 1 < y 1 , due to the

A ( y ) f ( y ) + y ( A ( t ) g ( t ) ) f ( t ) d t 1 + y | ( A ( t ) g ( t ) ) f ( t ) | d t 1 + y | g 0 ( t ) f ( t ) | d t 1 + y ( t ( log t ) 1 + ε ) 1 d t 1 + log ε y 1

Namely: A ( y ) f ( y ) + y ( A ( t ) g ( t ) ) f ( t ) d t For only with “y” Related constants.

2) When 1 < y < x , and y Sufficiently large, by “(1) type” known:

1 < y < n x a ( n ) f ( n ) = A ( x ) f ( x ) A ( y ) f ( y ) y x A ( t ) f ( t ) d t = g ( x ) f ( x ) g ( y ) f ( y ) y x g ( t ) f ( t ) d t y x ( A ( t ) g ( t ) ) f ( t ) d t + O ( | g 0 ( x ) f ( x ) | + | g 0 ( y ) f ( y ) | ) = g ( x ) f ( x ) g ( y ) f ( y ) y x g ( t ) f ( t ) d t + O ( y x | g 0 ( t ) f ( t ) | d t + | g 0 ( x ) f ( x ) | + | g 0 ( y ) f ( y ) | )

Notes: Set some strings attached, Such as when x t T (Among them: T > y ) when, | g 0 ( t ) f ( t ) | ( t ( log t ) 1 + ε ) 1 To set up, At this time “ A ( y ) f ( y ) + y ( A ( t ) g ( t ) ) f ( t ) d t ” As with the “y” “T” Related constants.

For not meeting the conditions | g 0 ( t ) f ( t ) | ( t ( log t ) 1 + ε ) 1 can be summed as follows:

2.2. Theorem1'

Set a ( n ) It’s an arithmetic function, A ( x ) = n x a ( n ) = g ( x ) + O ( g 0 ( x ) ) ,

Meet the conditions: g ( x ) , g 0 ( x ) , g 0 ( x ) , f ( x ) , f ( x ) interval [ y , ) .

Is a continuous function of, then

1 < y < n x a ( n ) f ( n ) = y x g ( t ) f ( t ) d t + O ( y x | g 0 ( t ) f ( t ) | d t + | g 0 ( x ) f ( x ) | + | g 0 ( y ) f ( y ) | ) (5)

Prove: by Abel the summation formula is easy to know:

1 < y < n x a ( n ) f ( n ) = y x f ( t ) d A ( t ) = y x f ( t ) d ( g ( t ) + O ( g 0 ( t ) ) )

conclusion.

3. The Proof of Several Common Conclusions about “Prime Number Theorem” [3]

Theorem 2 (Mertens Improvement of Prime Number Theorem) [4]

Verification: 1) p x log p p = log x + A 1 + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) ) ,

2) p x 1 p = log x + A 2 + O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) ) ,

3) p x ( 1 1 p ) = e Y log x + O ( exp ( c 3 log 3 5 x ( log log x ) 1 5 ) ) ,

Among them A1, A2. For constant, ci > 0 (i = 1, 2, 3), Y for Euler constant.

Prove: From the prime number theorem:

θ ( x ) = p x log p = x + O ( x exp ( c log 3 5 x ( log log x ) 1 5 ) ) ,

Make A ( x ) = θ ( x ) , g ( x ) = x , g 0 ( x ) = x exp ( c log 3 5 x ( log log x ) 1 5 ) , f ( x ) = 1 x , f ( x ) = 1 x 2 , Easy card with it.

The foot “(3) type” all conditions of, by “(3) type” available:

1 < p x log p p = 1 + 1 x 1 t d t + 1 θ ( t ) t t 2 d t + O ( x exp ( c log 3 5 t ( log log t ) 1 5 ) t d t + exp ( c log 3 5 x ( log log x ) 1 5 ) )

(when c > c 1 > 0 when, Easy card: exp ( c log 3 5 x ( log log x ) 1 5 ) log 2 x exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

= 1 + log x + 1 θ ( t ) t t 2 d t + O ( x exp ( c 1 log 3 5 t ( log log t ) 1 5 ) t log 2 t d t + exp ( c log 3 5 x ( log log x ) 1 5 ) )

= 1 + log x + 1 θ ( t ) t t 2 d t + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) x d t t log 2 t + exp ( c log 3 5 x ( log log x ) 1 5 ) )

= 1 + log x + 1 θ ( t ) t t 2 d t + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

= log x + ( 1 θ ( t ) t t 2 d t + 1 ) + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

If the:

A 1 = 1 θ ( t ) t t 2 d t + 1 ,

If the A 1 For constant.

2) A ( x ) = θ ( x ) , g ( x ) = x , g 0 ( x ) = x exp ( c log 3 5 x ( log log x ) 1 5 ) , f ( x ) = 1 x log x , f ( x ) = log x + 1 x 2 log 2 x ,

It is easy to prove that it satisfies “(3) type” all conditions of, by “(3) type” available:

1 < P x 1 p = 1 2 + 2 < p x 1 p = 1 2 + 1 log x + 2 x log t + 1 t log 2 t d t 1 2 + 2 ( θ ( t ) t ) ( log t + 1 ) t 2 log 2 t d t

O ( x ω exp ( c log 3 5 t ( log log t ) 1 5 ) ( log t + 1 ) t log 2 t d t + exp ( c log 3 5 x ( log log x ) 1 5 ) )

= log log x + ( 1 log 2 log log 2 + 2 ( θ ( t ) t ) ( log t + 1 ) t 2 log 2 t d t ) + O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) )

Among them: A 2 = 1 log 2 log log 2 + 2 ( θ ( t ) t ) ( log t + 1 ) t 2 log 2 t d t , for constant.

3) By “Mertens” Formula to know: P x 1 p = log log x + B 1 + O ( 1 log x ) , among them B 1 = Y + P ( log ( 1 1 p ) + 1 p ) .

Knowing from the evidence before:

p x 1 p = log log x + A 2 + O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) )

B 1 A 2 = O ( 1 log x ) = 0 ( x when)

constant A 2 = B 1 = Y + P ( log ( 1 1 p ) + 1 p )

p x 1 p = log log x + Y + p ( log ( 1 1 p ) + 1 p ) + O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) )

p x ( 1 1 p ) = exp ( p x ( log ( 1 1 p ) + 1 p ) p x 1 p )

p x ( 1 1 p ) = exp ( log log x Y p > x ( log ( 1 1 p ) + 1 p ) + O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) ) )

= e Y log x exp ( p > x O ( 1 p 2 ) + O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) ) )

= e Y log x exp ( O ( exp ( c 2 log 3 5 x ( log log x ) 1 5 ) ) )

= e Y log x + O ( exp ( c 3 log 3 5 x ( log log x ) 1 5 ) )

Inference 1:

Verification: 1) y < p x log p p = log ( x y ) + O ( exp ( c 1 log 3 5 y ( log log y ) 1 5 ) ) ,

2) y < p x 1 p = log ( log x log y ) + O ( exp ( c 2 log 3 5 y ( log log y ) 1 5 ) ) ,

3) y < p x ( 1 1 p ) = log y log x ( 1 + O ( c 3 log 3 5 y ( log log y ) 1 5 ) ) .

Prove: It can be derived directly from theorem two.

Inference 2: Two identity relations:

1) 2 θ ( t ) π ( t ) ( log t 1 ) t 2 d t = 0 ,

2) 2 θ ( t ) ( log t 1 ) π ( t ) log 2 t t 2 log 2 t d t = 0 .

Proof: if so

A ( x ) = π ( x ) = x log x + x log 2 x + O ( x log 3 x ) , g ( x ) = x log x + x log 2 x , g 0 ( x ) = x log 3 x

1) Take f ( x ) = log x x , using “(3) type” 1 p x log p p , available A 1 = 1 ( log t 1 ) π ( t ) t t 2 d t + 1 .

2) Take f ( x ) = 1 x , using “(3) type” 1 p x 1 p , available A 2 = 2 π ( t ) t log t t 2 d t log log 2 .

Take the above A1, A2 is compared with the corresponding value in “Therorem 2”.

Inference 3: A1, A2 other forms of values:

1) Take f ( x ) ,

A 1 = 1 θ ( t ) t t 2 d t + 1 = 1 ( log t 1 ) π ( t ) t t 2 d t + 1 = Y P log p p ( p 1 ) 1.332 ,

2) A 2 = 2 ( θ ( t ) t ) ( log t + 1 ) t 2 log 2 t d t + 1 log 2 log log 2 = 2 π ( t ) t log t t 2 d t log log 2 = Y + p ( log ( 1 1 p ) + 1 p ) 0.216

Proof: a little.

Note: For A1, A2, the various expressions of value are derived from different methods used to prove “Theorem two”, some of which we have proved, some of which we will prove later, but it is worth mentioning that many times we just need to know that it is a constant.

Inference 4: An improvement on theorem D,

Make f ( t ) = 1 t , g ( t ) = l i t φ ( q ) , g 0 ( t ) = t e a 0 log t ,

Easy card: | g 0 ( t ) f ( t ) | ( t ( log t ) 1 + ε ) 1 ( ε > 0 when),

If the conditions of “Theorem 1” are met, the following can be obtained from “Theorem 1” and “Theorem C”:

p x p a ( mod q ) 1 p = 2 < p x p a ( mod q ) 1 p + π ( 2 , q , a ) 2

= l i x φ ( q ) 1 x 2 x l i t φ ( q ) ( 1 t 2 ) d t 2 ( π ( t , q , a ) l i t φ ( q ) ) ( 1 t 2 ) d t + O ( x | t e a 0 log t 1 t 2 | d t + | x e a 0 log t 1 x | )

= log log x φ ( q ) + l i 2 2 φ ( q ) log log 2 φ ( q ) + 2 π ( t , q , a ) l i t φ ( q ) t 2 d t + O ( e a 0 log x ) ( a 0 > 0 )

It is easy to know from the above formula and “Theorem D”:

c ( a , q ) = l i 2 2 φ ( q ) log log 2 φ ( q ) + 2 π ( t , q , a ) l i t φ ( q ) t 2 d t ,

Namely:

p x p a ( mod q ) 1 p = log log x φ ( q ) + c ( a , q ) + O ( e a 0 log x ) ( a 0 > 0 ) .

Theorem 2': if “Riemann” If the guess is true, then:

1) p x log p p = log x + A 1 + O ( x 1 2 log 2 x ) ,

2) p x 1 p = log log x + A 2 + O ( x 1 2 log x ) ,

3) p x ( 1 1 p ) = e Y log x + O ( x 1 2 ) .

Prove: using “Riemann” If the guess is true, then “ θ ( x ) = x + O ( x 1 2 log 2 x ) ”. This conclusion, the proof process is the same as “Theorem 2”, so it is omitted.

Theorem 3: 1) p x ( n ) n = log x Y + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) ) ,

2) p x log p p 1 = log x Y + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) ) .

Prove: 1) The first A 1 = Y p log p p ( p 1 ) ,

1 n x log n = 1 p x [ x p ] log p + 1 p x ( [ x p 2 ] + [ x p 3 ] + + [ x p [ log p x ] ] ) log p

= 1 p x [ x p ] log p + 1 p x ( x p 2 + x p 3 + + x p [ log p x ] + O ( log p x ) ) log p

= 1 p x [ x p ] log p + 1 p x ( x p ( p 1 ) log p + O ( log x ) )

= 1 p x [ x p ] log p + 1 p x x log p p ( p 1 ) + O ( x ) (6)

= 1 p x [ x p ] log p + 1 n x ( θ ( x n ) θ ( x ) ) + 1 p x x log p p ( p 1 ) + O ( x )

= x 1 p x log p p + 1 n x θ ( x n ) x θ ( x ) + x p log p p ( p 1 ) + O ( x )

A prime number theorem:

θ ( x ) = x + O ( x θ ) = x + O ( x exp ( c log 3 5 x ( log log x ) 1 5 ) )

1 n x log x = x 1 p x log p p + x 1 n x 1 n x + x p log p p ( p 1 ) + O ( x + x 1 + θ 2 + 1 n x ( x n ) θ )

= x 1 p x log p p + x ( log x + Y + O ( 1 x ) ) x + x p log p p ( p 1 ) + O ( x exp ( c 4 log 3 5 x ( log log x ) 1 5 ) )

= x 1 p x log p p + x ( 1 2 log x + Y 1 ) + x p log p p ( p 1 ) + O ( x exp ( c 4 log 3 5 x ( log log x ) 1 5 ) )

1 n x log n = x log x x + O ( log x )

1 p x log p p = 1 2 log x Y p log p p ( p 1 ) + O ( exp ( c 4 log 3 5 x ( log log x ) 1 5 ) )

1 p x log p p = log x Y p log p p ( p 1 ) + O ( exp ( c 4 log 3 5 x ( log log x ) 1 5 ) )

Theorem 2

A 1 = Y p log p p ( p 1 )

2) 1 p x ( n ) n = 1 p x log p p + 1 < p x ( 1 p 2 + 1 p 3 + + 1 p [ log p x ] ) log p

= 1 p x log p p + 1 p x ( log p p ( p 1 ) + O ( log p x ) )

= 1 p x log p p + 1 p x log p p ( p 1 ) + O ( 1 x )

Theorem 2

1 p x ( n ) n = log x Y p log p p ( p 1 ) + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) ) + 1 < p x log p p ( p 1 ) + O ( 1 x )

= log x Y p > x log p p ( p 1 ) + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

= log x Y + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

3) 1 p x log p p 1 = 1 p x log p p + 1 p x log p p ( p 1 )

Theorem 2

1 p x log p p 1 = log x Y p log p p ( p 1 ) + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) ) + 1 < p x log p p ( p 1 )

= log x Y p > x log p p ( p 1 ) + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

= log x Y + O ( exp ( c 1 log 3 5 x ( log log x ) 1 5 ) )

Note: The paper proves “ A 1 = Y p log p p ( p 1 ) ”. In fact, it is another proof method of theorem 2.

Theorem 3': If “Riemann” conjecture is true, then

1) 1 n x ( n ) n = log x Y + O ( x 1 2 log 2 x ) .

2) 1 n x log p p 1 = log x Y + O ( x 1 2 log 2 x ) .

Proof: using the “(1)” process in “Theorem 2” is the same as the proof of “Theorem 3”.

Corollary 1: Let N be even,

ω ( p ) = P P 1 , ( P , N ) = 1 ,

the

ω p < z ω ( p ) log p p = { log ( z ω ) + O ( log log N ) ; when ω log N log log N log ( z ω ) + O ( log N ω ) ; when log N log log N < ω log N exp ( c 1 ( log 2 5 ω ( log log ω ) 1 5 ) ) log ( z ω ) + O ( exp ( c 1 log 1 5 ω ( log log ω ) 1 5 ) ) ; when log N < ω exp ( c 1 log 3 5 ω ( log log ω ) 1 5 )

Prove: Club meets the condition 1 < ω p < z , p | N In the “p” If the number of is k0, then we know:

N = p 1 l 1 p 2 l 2 p k 0 l k 0 k 0 k = m = 1 k 0 l m

ω k N k log N log ω ,

ω p < Z p | N log p p 1 ω p < z p | N log ω ω k log ω ω ,

ω p < z p | N log p p 1 log N ω .

Easy to prove:

ω p < z p | N log p p 1 log log N ω p < z p | N log P p 1 min ( log N ω ; log log N ) ,

ω p < z ω ( p ) log p P = ω P < z log P P 1 ω p < z p | N log p p 1 .

Theorem 3

Conclusion.

Note: The result we have obtained is actually an improvement on an important result cited in the screening method to prove goldbach’s conjecture. Of course, there are several related formulas that can also be improved, which will not be described here.

4. The Application of Summation Formula in “Dirichlet” Function [5] [6]

Theorem 4: If the k x d ( k ) = x ( log x + 2 y 1 ) + O ( x θ ) ( 1 4 θ < 1 3 ) , the

1) k x d ( k ) k = 1 2 log 2 x + 2 Y log x + c 4 + O ( x θ 1 ) (c4 For a constant),

2) k x { x k } = ( 1 Y ) x + O ( x θ ) .

Prove: 1) make A ( x ) = n x d ( n ) , g ( x ) = x ( log x + 2 Y 1 ) , g 0 ( x ) = x θ , f ( x ) = 1 x , f ( x ) = 1 x 2 , It is easy to prove that it satisfies “(3) type” All conditions of, by “(3) type” Have to:

1 k x d ( k ) k = 1 + 1 < k x d ( k ) k = 1 + ( log x + 2 Y 1 ) + 1 x log t + 2 Y 1 t d t 1 + 1 1 k t d ( k ) t ( log t + 2 Y 1 ) t 2 d t + O ( x t θ 2 d t + x θ 1 )

= 1 2 log 2 x + 2 Y log x 1 + 2 Y + 1 1 k t d ( k ) t ( log t + 2 Y 1 ) t 2 d t + O ( x θ 1 )

= 1 2 log 2 x + 2 Y log x + ( 1 1 k t d ( k ) t ( log t + 2 Y 1 ) t 2 d t + 2 Y 1 ) + O ( x θ 1 )

The constant c 4 = 1 1 k t d ( k ) t ( log t + 2 Y 1 ) t 2 d t + 2 Y 1 .

2) k x { x k } = x k x 1 k k x d ( k )

= x ( log x + Y + O ( 1 x ) ) ( x ( log x + 2 Y 1 ) + O ( x θ ) )

= ( 1 Y ) x + O ( x θ )

Theorem 5:

If the k x d ( k ) = x ( log x + 2 Y 1 ) + Δ ( x ) , the:

1) k = 1 n d ( k ) k = 1 2 log 2 n + 2 Y log n + ( Y 2 2 1 ( log [ t ] [ t ] log t t ) d t ) + k = 1 n 1 2 { n k } n + O ( log n n ) ,

The constant c 4 = Y 2 2 1 ( log [ t ] [ t ] log t t ) d t .

2) 1 x Δ ( t ) t 2 d t = ( 1 Y ) 2 2 1 ( log [ t ] [ t ] log t t ) d t + O ( log x x ) ,

3) 1 x Δ ( t ) d t = O ( x log x ) ,

Prove:

1) k = 1 n d ( k ) k = k = 1 n 1 k ( 1 + 1 2 + 1 3 + + 1 [ n k ] )

= 2 k = 1 n 1 k ( 1 + 1 2 + 1 3 + + 1 [ n k ] ) k = 1 n 1 k ( 1 + 1 2 + 1 3 + + 1 [ n ] )

= 2 k = 1 n 1 k ( log [ n k ] + Y + 1 2 [ n k ] + O ( k 2 n 2 ) ) ( k = 1 n 1 k ) 2

= 2 k = 1 n 1 k ( log ( n k ) + Y { n k } n k + 1 2 ( n / k ) + O ( k 2 n 2 ) ) ( k = 1 n 1 k ) 2

= ( 2 log n + 2 Y k = 1 n 1 k ) k = 1 n 1 k 2 k = 1 n log k k + k = 1 n 1 2 { n k } n + O ( 1 n )

= ( 3 2 log n + Y + { n } 1 2 n + O ( 1 n ) ) ( 1 2 log n { n } 1 2 n + Y + O ( 1 n ) ) 2 k = 1 n log k k + k = 1 n 1 2 { n k } n + O ( 1 n )

= ( 3 2 log n + Y + { n } 1 2 n ) ( 1 2 log n + Y { n } 1 2 n ) 2 k = 1 n log k k + k = 1 n 1 2 { n k } n + O ( log n n )

= 3 4 log 2 n + 2 Y log n + Y 2 ( { n } 1 2 ) log n n + k = 1 n 1 2 { n k } n 2 k = 1 n log k k + O ( log k n ) (7)

while

k = 1 n log k k = 1 [ n ] + 1 ( log [ t ] [ t ] log t t ) d t + 1 [ n ] + 1 log t t d t

= 1 2 log 2 ( [ n ] + 1 ) + 1 [ n ] + 1 ( log [ t ] [ t ] log t t ) d t

= 1 2 log 2 ( [ n ] + 1 ) + 1 ( log [ t ] [ t ] log t t ) d t [ n ] + 1 ( log [ t ] [ t ] log t t ) d t (8)

1) 1 2 log 2 ( [ n ] + 1 ) = 1 2 ( log n + 1 { n } n + O ( 1 n ) ) 2

= 1 8 log 2 n + ( 1 { n } ) log n n + O ( log n n )

2) 1 ( log [ t ] [ t ] log t t ) d t 1 ( log t [ t ] log t t ) d t < 1 log t [ t ] t d t 1 log t t 2 d t 1

1 ( log [ t ] [ t ] log t t ) d t

For constant

3) { n } + 1 ( log [ t ] [ t ] log t t ) d t = { n } + 1 ( log t { t } t + O ( 1 t 2 ) [ t ] log t t ) d t

= { n } + 1 ( { t } ( log t 1 ) [ t ] t + O ( 1 t 3 ) ) d t

= n { t } ( log t 1 ) [ t ] t d t + O ( log n n )

= n { t } ( log t 1 ) t 2 d t + O ( log n n )

= 1 2 n log t 1 t 2 d t + O ( log n n )

= log n 2 n + O ( log n n )

will (1), (2), (3) Can be substituted into Equation (8), available:

k = 1 n log k k = 1 8 log 2 n + 1 ( log [ t ] [ t ] log t t ) d t + ( 1 2 { n } ) log n n + O ( log n n )

Then substitute the above formula into “Formula (7)” and sort it out

k = 1 n d ( k ) k = 1 2 log 2 n + 2 Y log n + ( Y 2 2 1 ( log [ t ] [ t ] log t t ) d t ) + k = 1 n 1 2 { n k } n + O ( log n n ) (9)

2) By

k = 1 n d ( k ) = n ( log n + 2 Y 1 ) + n 2 1 k n { x n } + O ( 1 )

= n ( log n + 2 Y 1 ) + 1 k n ( 1 2 { x n } ) + O ( 1 )

= k = 1 n d ( k ) n = log n + 2 Y 1 + 1 k n 1 2 { n k } n + O ( 1 n ) (10)

From “Formula (2)” in “Theorem A” k = 1 n d ( k ) k k = 1 n d ( k ) n = 1 n 1 k t d ( k ) t 2 d t .

(9)

(10)

1 n 1 k t d ( k ) t 2 = ( 1 2 log 2 n + 2 Y log n + Y 2 2 1 ( log [ t ] [ t ] log t t ) d t + k = 1 n 1 2 { n k } n + O ( log n n ) ) ( log n + 2 Y 1 + k = 1 n 1 2 { n k } n + O ( 1 n ) )

1 n 1 k t d ( k ) t 2 d t = 1 2 log 2 n + ( 2 Y 1 ) log n + ( 1 Y ) 2 2 1 ( log [ t ] [ t ] log t t ) d t + O ( log n n )

1 n Δ ( t ) t 2 d t = 1 n 1 k t d ( k ) t ( log t + 2 Y 1 ) t 2 d t

= ( 1 Y ) 2 2 1 ( log [ t ] [ t ] log t t ) d t + O ( log n n ) .

namely,

1 n Δ ( t ) t 2 d t = ( 1 Y ) 2 2 1 ( log [ t ] [ t ] log t t ) d t + O ( log n n ) (11)

3) (1) by

1 t x Δ ( t ) t 2 1 x Δ ( t ) t 2 d t = 1 ( Δ ( [ t ] ) [ t ] 2 Δ ( t ) t 2 ) d t x ( Δ ( [ t ] ) [ t ] 2 Δ ( t ) t 2 ) d t + O ( 1 x )

= 1 ( Δ ( [ t ] ) [ t ] 2 Δ ( t ) t 2 ) d t x ( ( 1 [ t ] 2 1 t 2 ) k t d ( k ) ( [ t ] ( log [ t ] + 2 Y 1 ) [ t ] 2 t ( log t + 2 Y 1 ) t 2 ) ) d t + O ( 1 x )

= 1 ( Δ ( [ t ] ) [ t ] 2 Δ ( t ) t 2 ) d t + O ( x ( t log t 1 t 3 + log t t 2 ) d t ) + O ( 1 x )

= 1 ( Δ ( [ t ] ) [ t ] 2 Δ ( t ) t 2 ) d t + O ( log x x )

1 t x Δ ( t ) t 2 = 1 x Δ ( t ) t 2 d t + 1 ( Δ ( [ t ] ) [ t ] 2 Δ ( t ) t 2 ) d t + O ( log x x ) (12)

2) 1 t x Δ ( t ) 1 x Δ ( t ) d t = 1 x ( Δ ( [ t ] ) Δ ( t ) ) d t + O ( Δ ( x ) )

= 1 x ( t ( log t + 2 Y 1 ) [ t ] ( log [ t ] + 2 Y 1 ) ) d t + O ( x ) x log x

1 x Δ ( t ) d t = 1 t x Δ ( t ) + O ( x log x )

= 1 x t 2 d ( 1 m t Δ ( m ) m 2 ) + O ( x log x ) .

(12)

1 x Δ ( t ) d t = 1 x t 2 d ( 1 t Δ ( m ) m 2 d m + 1 ( Δ ( [ m ] ) [ m ] 2 Δ ( m ) m 2 ) d m + O ( log t t ) ) + O ( x log x )

= 1 x t 2 d ( 1 t Δ ( m ) m 2 d m + O ( log t t ) ) + O ( x log x ) .

(11)

1 x Δ ( t ) d t = 1 x t 2 d ( ( 1 Y ) 2 2 1 ( log [ t ] [ t ] log t t ) d t + O ( log t t ) ) + O ( x log x )

= 1 x t 2 d ( O ( log t t ) ) + O ( x log x ) .

x log x

Type 1 x Δ ( t ) d t = O ( x log x ) .

Note: 1) This paper proves that 1 x Δ ( t ) = O ( x log x ) , while 1 x Δ 2 ( t ) d t = c x 3 2 + O ( x log 5 x ) (Dong Guangchang, 1956) [7], if you combine these two equations, you can understand it better “ Δ ( t ) ”. Some variation rules of.

2) We can further prove this in other ways, 1 t x Δ ( t ) = 1 2 x log x + O ( x ) , and then get 1 x Δ ( t ) d t = O ( x ) , I won’t go into details here for lack of space.

Theorem 6: The function w(n) (or Ω(n)) improvement of relevant conclusions [8] [9]:

1) n x w ( n ) = x log log + A 2 x ( 1 Y ) x log x + O ( x log 2 x ) .

2) n x w 2 ( n ) = x ( log log x ) 2 + ( 1 + 2 A 2 ) x log log x + O ( x ) .

3) n x ( w ( n ) log log x ) 2 = x log log x + O ( x ) .

Prove: 1)

n x w ( n ) = p x [ x p ] = [ x 2 ] + 2 < p x [ x p ]

= [ x 2 ] + 2 x 1 log t d ( p t [ x p ] log p )

= [ x 2 ] + p t [ x p ] log p log t | 2 x + 2 x p t [ x p ] log p t log 2 t d t

= p x [ x p ] log p log x + 2 x p t x p log p + O ( p t log p ) t log 2 t d t

= x 2 x log t + A 1 t log 2 t d t + x 2 p t log p p ( log t + A 1 ) t log 2 t d t

x x p t log p p ( log t + A 1 ) t log 2 t d t + p x [ x p ] log p log x + O ( x log 2 x ) (13)

1) Theorem two is easy to prove:

2 p t log p p ( log t + A 1 ) t log 2 t d t ,

For constant

x p t log p p ( log t + A 1 ) t log 2 t d t = O ( 1 log 2 x ) .

2) By “(6) type” Easy card:

p x [ x p ] log p = x log x ( 1 + p log p p ( p 1 ) ) x + O ( x ) .

3) Theorem two: A 1 = Y p log p p ( p 1 ) .

4) By

p x [ x p ] = x p x 1 p + O ( π ( x ) ) .

Theorem 2

p x w ( n ) = x log log x + A 2 X + O ( x log x ) .

Will (1), (2), (3) (4) Can be substituted into equation (13), available:

Will

n x w ( n ) = x log log x + A 2 x + ( Y 1 ) x log x + O ( x log 2 x ) (14)

2) w ( n ) ( w ( n ) 1 ) = p q | n 1 p 2 | n 1

n x w 2 ( n ) n x w ( n ) = p q x [ x p q ] p 2 x [ x p 2 ]

= p q x x p q + O ( x )

= 2 x p q x p x 1 p q x ( p x q x 1 p ) + O ( x )

= 2 x p x 1 p q x p 1 q x ( p x 1 p ) 2 + O ( x )

Theorem 2

n x w 2 ( n ) n x w ( n ) = 2 x p x log log x p p x ( log log x ) 2 + 2 log 2 ( x log log x ) + O ( x )

log log x p p x = log log x + log ( 1 log p log x ) = log log x + O ( log p log x )

Theorem 2

(14)

n x w 2 ( n ) = x ( log log x ) 2 + ( 1 + 2 A 1 ) x log log x + O ( x )

3) By (1), (2) The conclusions obtained are easy to prove:

n x ( w ( n ) log log x ) 2 = x log log x + O ( x )

Note: 1) The derivation process of “Ω(n)” function related conclusion is similar to “W(n)”.

2) In this paper, “ n x ( w ( n ) log log x ) 2 = x log log x + O ( x ) ” slightly better than “Hardy-Ramanujan”, the results in.

3) With the o “ n x w 2 ( n ) ” The similarity method of values will be easy “Selber The formula” expressed in the following form:

θ ( x ) log x + p x θ ( x p ) log p = 2 x log x + ( 2 A 1 1 ) x + O ( x exp ( c log 3 5 x ( log log x ) 1 5 ) )

Theorem of seven: if φ ( n ) Is euler function, then:

1) lim inf n φ ( n ) = n e Y log log n + O ( n exp ( c 5 ( log log n ) 3 5 ( log log log n ) 1 5 ) ) ,

Among them “ c 5 ” For the normal number.

2) If “Riemnn” If the guess is true, then

lim inf n φ ( n ) = n e Y log log n + O ( n log 1 2 n ) .

Prove: This conclusion mainly uses “theorem 2 (Theorem 2’)”, the proof process is relatively simple, so skip [10].

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Hua, L.G. (2010) Collected Works of Hua Luogeng. Science Press, Beijing.
[2] Wang, Y. (2011) On Prime Numbers. Harbin University of Technology Press, Harbin.
[3] Pan, C.D. (1981) Goldbach Conjecture. Science Press, Beijing.
[4] Pan, C.D. (2016) Fundamentals of Analytic Number Theory. Harbin University of Technology Press, Harbin.
[5] Wang, Y. (1999) Hua Luogeng. Jiangxi Education Press, Nanchang.
[6] Wang, Y.M. (2020) Preliminary Discussion on Several Problems Related to the Divisor Function. International Journal of Mathematical Physics, 3, 24-41.
https://doi.org/10.18063/ijmp.v3i1.1154
[7] Jia, C.H. (1987) A Generalization of Prime Theorem. Progress in Mathematics, No. 4, 419-426.
[8] Fei, D.H. (1980) Mathematical Analysis Problem Set. Shandong Science and Technology Press Co., Ltd., Jinan.
[9] Huang, Y.S. (1987) Introduction to Basic Mathematics. Peking University Press, Beijing.
[10] East China Normal University (2001) Mathematical Analysis. Higher Education Press, Beijing.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.