On the Pólya Enumeration Theorem

Abstract Full-Text HTML Download Download as PDF (Size:184KB) PP. 172-173
DOI: 10.4236/iim.2009.13025    6,952 Downloads   10,669 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Simple formulas for the number of different cyclic and dihedral necklaces containing nj beads of the j-th color, and , are derived, using the Pólya enumeration theorem.

Cite this paper

L. FEL, "On the Pólya Enumeration Theorem," Intelligent Information Management, Vol. 1 No. 3, 2009, pp. 172-173. doi: 10.4236/iim.2009.13025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Pólya, “Kombinatorische anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen,” Acta Math., Vol. 68, pp. 145–254, 1937.
[2] F. Harary and E. M. Palmer, “Graphical enumeration,” Academic Press, New York, 1973.
[3] J. J. Rotman, “An introduction to the theory of groups,” Boston, Mass., Allyn and Bacon, Chapter 3, 1984.
[4] G. Polya and R. C. Read, “Combinatorial enumeration of groups, graphs, and chemical compounds,” Springer, New York, 1987.
[5] F. Harary, “Graph theory,” Reading, Addison-Wesley, MA, 1994.
[6] A. Kerber, “Applied finite group actions,” 2nd Ed., Springer, Berlin, Chap. 3, 1999.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.