Importance of Developing Photovoltaics-Powered Vehicles

Abstract

The development of photovoltaics (PV)-powered vehicles are expected to contribute to reduce CO2 emission of vehicles and create a clean energy society. This paper presents the impact of high-efficiency solar cell modules on reduction in CO2 emission, charging cost reduction for electric vehicles, and reducing storage capacity of PV-powered electric vehicles. In this paper, the effects of solar cell module efficiency upon driving distance of PV-powered vehicles are also shown. Especially, the potential of Si tandem solar cells for PV-powered vehicle applications is discussed. This paper presents that the III-V/Si 3-junction solar cell modules with an efficiency of more than 37% have the potential of longer driving distance of 30 km/day average and more than 50 km/day on a clear day compared to an average 16 km/day driving by vehicles powered by 20% efficiency Si solar cell modules.

Share and Cite:

Yamaguchi, M. , Masuda, T. , Nakado, T. , Zushi, Y. , Araki, K. , Takamoto, T. , Okumura, K. , Satou, A. , Yamada, K. , Ota, Y. , Nishioka, K. , Tanimoto, T. , Nakamura, K. , Ozaki, R. , Kojima, N. and Ohshita, Y. (2021) Importance of Developing Photovoltaics-Powered Vehicles. Energy and Power Engineering, 13, 147-162. doi: 10.4236/epe.2021.135010.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Yamaguchi, M., Araki, K., Lee, K.H., Kojima, N., Masuda, T., Kimura, K., Satou, A. and Yamada, H. (2017) Towards Creation of Mobility Society Using Solar Energy. Proceedings of the 5th IEEE International Conference on Smart Energy Grid Engineering, Oshawa, 14-17 August 2017, 394.
https://doi.org/10.1109/SEGE.2017.8052832
[2] NEDO (2018) Interim Report “PV-Powered Vehicle Strategy Committee”.
http://www.nedo.go.jp/english/index.html
[3] Rodriguez, A.S., Santana, T., MacGill, I., Ekins-Daukes, N.J. and Reinders, A. (2019) A Feasibility Study of Solar PV-Powered Electric Cars Using Aninterdisciplinary Modeling Approach for the Electricity Balance, CO2 Emissions, and Economic Aspects: The Cases of the Netherlands, Norway, Brazil, and Australia. Progress in Photovoltaics, 28, 517.
https://doi.org/10.1002/pip.3202
[4] Yamaguchi, M., Masuda, T., Araki, K., Sato, D., Lee, K.-H., Kojima, N., Takamoto, T., Okumura, K., Satou, A., Yamada, K., Nakado, T., Zushi, Y., Yamazaki, M. and Yamada, H. (2020) Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars. Energy and Power Engineering, 12, 375-395.
https://doi.org/10.4236/epe.2020.126023
[5] Yamaguchi, M., Masuda, T., Araki, K., Sato, D., Lee, K.-H., Kojima, N., Takamoto, T., Okumura, K., Satou, A., Yamada, K., Nakado, T., Zushi, Y., Ohshita, Y. and Yamazaki, M. (2020) Development of High-Efficiency and Low-Cost Solar Cells for PV-Powered Vehicles Application. Progress in Photovoltaics.
https://doi.org/10.1002/pip.3343
[6] Yamaguchi, M., Lee, K.H., Araki, K. and Kojima, N. (2018) A Review of Recent Progress in Heterogeneous Silicon Tandem Solar Cells. Journal of Physics D: Applied Physics, 51, Article ID: 133002.
https://doi.org/10.1088/1361-6463/aaaf08
[7] Essig, S., Allebé, C., Remo, T., Geisz, J.F., Steiner, M.A., Horowitz, K., Barraud, L., Ward, J.S., Schnabel, M., Descoeudres, A., Young, D.L., Woodhouse, M., Despeisse, M., Ballif, C. and Tamboli, A. (2017) Raising the One-Sun Conversion Efficiency of III-V/Si Solar Cells to 32.8% for Two Junctions and 35.9% for Three Junctions. Nature Energy, 2, Article No. 17144.
https://doi.org/10.1038/nenergy.2017.144
[8] Müller, R., Schygulla, P., Lackner, D., Höhn, O., Hauser, H., Richter, A., Fell, A., Bläsi, B., Predan, F., Benick, J., Hermle, M., Dimroth, F. and Glunz, S.W. (2020) Silicon-Based Monolithic Triple-Junction Solar Cells with Conversion Efficiency > 34%. Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition, Munich, 7-11 September 2020, 574.
[9] Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J.A., Morales Vilches, A.B., Kasparavicius, E., Smith, J.A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jošt, M., Matič, G., Rech, B., Schlatmann, R., Topič, M., Korte, L., Abate, A., Stannowski, B., Neher, D., Stolterfoht, M., Unold, T., Getautis, V. and Albrecht, S. (2020) Monolithic Perovskite/Silicon Tandem Solar Cell with > 29% Efficiency by Enhanced Hole Extraction. Science, 370, 1300-1309.
https://doi.org/10.1126/science.abd4016
[10] Japanese Ministry of Land, Infrastructure, Transport, and Tourism (2015) Road Traffic Census. (In Japanese)
http://www.mlit.go.jp/road/ir/ir-data/ir-data.html
[11] Agency for Natural Resources and Energy (Japanese Ministry of Economy, Trade, and Industry) (2014) Outline of the 2014 Annual Report on Energy (Energy White Paper). 141.
[12] Hara, T., Shiga, T., Kimura, K. and Sato, A. (2016) SAE Technical Paper. Techno-Economic Analysis of Solar Hybrid Vehicles Part 2: Comparative Analysis of Economic, Environmental, and Usability Benefits.
[13] Masuda, T., Araki, K., Okumura, K., Urabe, S., Kudo, Y., Kimura, K., Nakado, T., Sato, A. and Yamaguchi, M. (2017) Static Concentrator Photovoltaics for Automotive Applications. Solar Energy, 146, 523-531.
https://doi.org/10.1016/j.solener.2017.03.028
[14] Miyoshi, T. (2017) Solar Charging System for Prius PHV. Journal of the Japan Society of Applied Electromagnetics and Mechanics, 25, 379-382. (In Japanese)
https://doi.org/10.14243/jsaem.25.379
[15] Sono Motors.
https://sonomotors.com
[16] Ministry of the Environment.
http://www.env.go.jp/press/files/jp/114277.pdf
[17] Kanz, O., Reinders, A., May, J. and Ding, K. (2020) Environmental Impacts of Integrated Photovoltaic Module in Light Utility Electric Vehicles. Energies, 13, 5120.
https://doi.org/10.3390/en13195120
[18] Japan Electricity Prices, June 2020. GlobalPetrolPrices.com.
[19] Heinrich, M., Kutter, C., Bsler, F., Mittage, M., Alanis, E.L., Eberlein, D., Schmid, A., Reise, C., Kroyer, T., Neuhaus, D.H. and Wirth, H. (2020) Potential and Challenges of Vehicle Integrated Photovoltaics for Passenger Cars. Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition, Munich, 7-11 September 2020, 1695.
[20] Bloomberg New Energy Finance.
https://cleantechnica.com/2020/02/19/bloombergnef-lithium-ion-battery-cell-densities-have-almost-tripled-since-2010/
[21] Kimura, K., Kudo, Y. and Sato, A. (2016) Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions. SAE Technical Paper, 2016-01-1287.
https://doi.org/10.4271/2016-01-1287
[22] Yamaguchi, M., Warabisako, T. and Sugiura, H. (1994) Chemical Beam Epitaxy as a Breakthrough Technology for Photovoltaic Solar Energy Application. Journal of Crystal Growth, 136, 85.
https://doi.org/10.1016/0022-0248(94)90379-4
[23] Horowitz, K.A.W., Remo, T., Smith, B. and Ptak, A. (2018) Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cell. NREL Technical Report, NREL/TP-6A20-72103.
https://www.nrel.gov/docs/fy19osti/72103.pdf
[24] Nikkei Business.
https://business.nikkei.com/atx/report/15/110879/021500677
[25] Yamaguchi, M., Yamada, H., Katsumata, Y., Lee, K.H., Araki, K. and Kojima, N. (2017) Efficiency Potential and Recent Activities of High-Efficiency Solar Cells. Journal of Materials Research, 32, 3445.
https://doi.org/10.1557/jmr.2017.335
[26] Yamaguchi, M., Lee, K.H., Araki, K., Kojima, N., Yamada, H. and Katsumata, Y. (2018) Analysis for Efficiency Potential of High-Efficiency and Next Generation Solar Cells. Progress in Photovoltaics, 26, 543-552.
https://doi.org/10.1002/pip.2955
[27] Yamaguchi, M., Zhu, L., Akiyama, A., Kanemitsu, Y., Tampo, H., Shibata, H., Lee, K.H., Araki, K. and Kojima, N. (2018) Analysis of Future Generation Solar Cells and Materials. Japanese Journal of Applied Physics, 57, Article ID: 04FS03.
https://doi.org/10.7567/JJAP.57.04FS03
[28] Yamaguchi, M., Lee, K.H., Araki, K., Nakamura, K., Kojima, N. and Ohshita, Y. (2016) Recent Activities of III-V/Si Tandem Solar Cells. The 20th International Conference on Ternary and Multinary Compounds, Halle, 5-9 September 2016.
https://ictmc20.uni-halle.de//page_id=499
[29] Yamaguchi, M., Lee, K.H., Araki, K., Kojima, N. and Ohshita, Y. (2016) Potential and Activities of III-V/Si Tandem Solar Cells. ECS Journal of Solid State Science and Technology, 5, Q68-Q73.
https://doi.org/10.1149/2.0311602jss
[30] Takamoto, T., Washio, H., Yamaguchi, H., Ijichi, R., Suzuki, Y., Shimada, K., Takahashi, N. and Ooka, S. (2017) IMM Triple-Junction Solar Cells and Module Optimized for Space and Terrestrial Conditions. The 44th IEEE Photovoltaic Specialist Conference, Washington DC, 25-30 June 2017.
https://doi.org/10.1109/PVSC.2017.8366097
[31] Carmody, M., Mallick, S., Margetis, J., Kodama, R., Biegala, T., Xu, D., Bechmann, P., Garland, J.W. and Sivananthan, S. (2010) Single-Crystal II-VI on Si Single-Junction and Tandem Solar Cell. Applied Physics Letters, 96, Article ID: 153502.
https://doi.org/10.1063/1.3386529
[32] Sasaki, K., Agui, T., Nakaido, K., Takahashi, N., Onitsuka, R. and Takamoto, T. (2013) Development of InGaP/GaAs/InGaAs Inverted Triple Junction Concentrator Solar Cell. AIP Conference Proceedings, 1556, 22.
https://doi.org/10.1063/1.4822190

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.