RETRACTED: Validated UPLC-MS/MS Method for the Simultaneous Quantification of Vortioxetine and Fluoxetine in Plasma: Application to Their Pharmacokinetic Interaction Study in Wistar Rats

Abstract

Short Retraction Notice 

The paper does not meet the standards of "American Journal of Analytical Chemistry". The article has been retracted due to the conflicts of interests between all authors to straighten the academic record. Aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".

Share and Cite:

  

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Gibb, A. and Deeks, D. (2014) Vortioxetine: First Global Approval. Drugs, 74, 135-145.
https://doi.org/10.1007/s40265-013-0161-9
[2] Agostino, A., English, C. and Rey, J. (2015) Vortioxetine (Brintel-lix): A New Serotonergic Antidepressant. P & T, 40, 36-40.
[3] Areberg, J., Petersen, K., Chen, G. and Naik, H. (2014) Population Pharmacokinetic Meta-Analysis of Vortioxetine in Healthy Individuals. Basic & Clinical Pharmacology and Toxicology, 115, 552-559.
https://doi.org/10.1111/bcpt.12256
[4] Alam, M., Jacobsen, P., Chen, Y., Serenko, M. and Mahableshwarkar, A. (2014) Safety, Tolerability, and Efficacy of Vortioxetine (Lu AA21004) in Major Depressive Disorder: Results of an Open-Label, Flexible-Dose, 52-Week Extension Study. International Clinical Psychopharmacology, 29, 36-44.
https://doi.org/10.1097/YIC.0000000000000010
[5] Buchbjerg, J., Hojer, A., Jensen, K. and Sogaard, B. (2009) Assessment of the CYP2C19 Interaction Potential of Lu Aa21004. The Journal of Clinical Pharmacology, 49, 1119-1125.
[6] Chen, G., Zhang, W. and Serenko, M. (2015) Lack of Effect of Multiple Doses of Vortioxetine on the Pharmacokinetics and Pharmacodynamics of Aspirin and Warfarin. The Journal of Clinical Pharmacology, 55, 671-679.
https://doi.org/10.1002/jcph.456
[7] Chen, G., Wang, Y. and Nomikos, G. (2011) Effects of Multiple Doses of Lu AA21004 on the Single-Dose Pharmacokinetics and Pharmacodynamics of Diazepam. The Journal of Clinical Pharmacology, 51, 1350-1350.
[8] Chen, G., Lee, R., Hojer, A., Buchbjerg, J., Serenko, M. and Zhao, Z. (2013) Pharmacokinetic Drug Interactions Involving Vortioxetine (Lu AA21004), a Multimodal Antidepressant. Clinical Drug Investigation, 33, 727-736.
https://doi.org/10.1007/s40261-013-0117-6
[9] Kroeze, Y., Peeters, D., Boulle, F., Hove, D., Bokhoven, H., Zhou, H., et al. (2015) Long-Term Consequences of Chronic Fluoxetine Exposure on the Expression of Myelination-Related Genes in the Rat Hippocampus. Translational Psychiatry, 5, 642-663.
https://doi.org/10.1038/tp.2015.145
[10] Wenthur, C., Bennett, M. and Lindsley, C. (2014) Classics in Chemical Neuroscience: Fluoxetine (Prozac). ACS Chemical Neuroscience, 5, 14-23.
https://doi.org/10.1021/cn400186j
[11] Bibi, Z. (2014) Role of Cytochrome P450 in Drug Interactions. Nutrition & Metabolism, 11, 11-29.
https://doi.org/10.1186/1743-7075-11-11
[12] Donato, M. and Castell, J. (2003) Strategies and Molecular Probes to Investigate the Role of Cytochrome P450 in Drug Metabolism: Focus on in Vitro Studies. Clinical Pharmacokinetics, 42, 153-178.
https://doi.org/10.2165/00003088-200342020-00004
[13] Hisaka, A., Kusama, M., Ohno, Y., Sugiyama, Y. and Suzuki, H. (2009) A Proposal for a Pharmacokinetic Interaction Significance Classification System (PISCS) Based on Predicted Drug Exposure Changes and Its Potential Application to Alert Classifications in Product Labeling. Clinical Pharmacokinetics, 48, 653-666.
https://doi.org/10.2165/11317220-000000000-00000
[14] Hieronymus, F., Nilsson, S. and Eriksson, E. (2018) Efficacy of Selective Serotonin Reuptake Inhibitors in the Absence of Side Effects: A Mega-Analysis of Citalopram and Paroxetine in Adult Depression. Molecular Psychiatry, 23, 1731-1736.
https://doi.org/10.1038/mp.2017.147
[15] Wroblewski, K., Perruczynik, A., Buszewski, B., Szultka, M., Karakula, H. and Waksmundzka, M. (2017) Determination of Vortioxetine in Human Serum and Saliva Samples by HPLC-DAD and HPLC-MS. Acta Chromatographica, 29, 325-344.
https://doi.org/10.1556/1326.2017.29.3.02
[16] Douša, M., Doubský, J. and Srbek, J. (2016) Utilization of Photochemically Induced Fluorescence Detection for HPLC Determination of Genotoxic Impurities in the Vortioxetine Manufacturing Process. Journal of Chromatographic Science, 54, 1625-1630.
https://doi.org/10.1093/chromsci/bmw116
[17] Liu, L., Cao, N., Ma, X., Xiong, K., Sun, L., Zou, Q., et al. (2016) Stability-Indicating Reversed-Phase HPLC Method Development and Characterization of Impurities in Vortioxetine Utilizing LC-MS, IR and NMR. Journal of Pharmaceutical and Biomedical Analysis, 117, 325-332.
https://doi.org/10.1016/j.jpba.2015.08.028
[18] Qin, M., Qiao, H., Yuan, Y. and Shao, Q. (2018) A Quantitative LC-MS/MS Method for Simultaneous Determination of Deuvortioxetine, Vortioxetine and Their Carboxylic Acid Metabolite in Rat Plasma, and Its Application to a Toxicokinetic Study. Analytical Methods, 9, 1-9.
https://doi.org/10.1039/C7AY02642K
[19] Huang, Y., Zheng, S., Pan, Y., Li, T., Xu, Z. and Shao, M. (2016) Simultaneous Quantification of Vortioxetine, Carvedilol and Its Active Metabolite 4-Hydroxyphenyl Carvedilol in Rat Plasma by UPLC-MS/MS: Application to Their Pharmacokinetic Interaction Study. Journal of Pharmaceutical and Biomedical Analysis, 128, 184-190.
https://doi.org/10.1016/j.jpba.2016.05.029
[20] Gu, E.M., et al. (2015) An UPLC-MS/MS Method for the Quantitation of Vortioxetine in Rat Plasma: Application to a Pharmacokinetic Study. Journal of Chromatography B, 997, 70-74.
https://doi.org/10.1016/j.jchromb.2015.05.010
[21] Kall, A., Rohde, M. and Jorgensen, M. (2015) Quantitative Determination of the Antidepressant Vortioxetine and Its Major Human Metabolite in Plasma. Bioanalysis, 7, 2881-2894.
https://doi.org/10.4155/bio.15.207
[22] Tuchila, C., Negrei, C., Stan, M., Vlasceanu, A. and Baconi, B. (2015) HPLC-FL Method for Fluoxetine Quantification in Human Plasma. Romanian Journal CBT and Hypnosis, 2, 19-30.
[23] Sabbioni, C., Bugamelli, F., Varani, G., Mercolini, L., Musenga, A., Saracino, M., et al. (2004) A Rapid HPLC-DAD Method for the Analysis of Fluoxetine and Norfluoxetine in Plasma from Overdose Patients. Journal of Pharmaceutical and Biomedical Analysis, 36, 351-356.
https://doi.org/10.1016/j.jpba.2004.06.008
[24] Raggi, M., Mandrioli, R., Casamenti, G., Volterra, V., Desiderio, C. and Fanali, S. (1999) Improved HPLC Determination of Fluoxetine and Norfluoxetine in Human Plasma. Chromatographia, 50, 423-427.
https://doi.org/10.1007/BF02490736
[25] Mishra, P., Gong, Z. and Kelly, B. (2017) Assessing Biological Effects of Fluoxetine in Developing Zebrafish Embryos Using Gas Chromatography-Mass Spectrometry Based Metabolomics. Chemosphere, 188, 157-167.
https://doi.org/10.1016/j.chemosphere.2017.08.149
[26] Fernandes, C., Van Hoeck, E., Sandra, P. and Lanças, F. (2008) Determination of Fluoxetine in Plasma by Gas Chromatography-Mass Spectrometry Using Stir Bar Sorptive Extraction. Analytica Chimica Acta, 714, 201-207.
https://doi.org/10.1016/j.aca.2008.03.036
[27] Silva, A., Raasch, J., Vargas, T., Peteffi, G., Hahn, R., Antunes, M., et al. (2017) Simultaneous Determination of Fluoxetine and Norfluoxetine in Dried Blood Spots Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Clinical Biochemistry, 52, 85-93.
https://doi.org/10.1016/j.clinbiochem.2017.10.002
[28] Ezzeldin, E., Abo-Tlib, N. and Tammam, M. (2017) UPLC-Tandem Mass Spectrometry Method for Simultaneous Determination of Fluoxetine, Risperidone, and Its Active Metabolite 9-Hydroxyrisperidone in Plasma: Application to Pharmacokinetics Study in Rats. Journal of Analytical Methods in Chemistry, 2017, Article ID: 5187084.
https://doi.org/10.1155/2017/5187084
[29] Pan, P., Wang, S., Wan, J., Luo, J., Geng, P., Zhou, Y., et al. (2016) Simultaneous Determination of Methadone, Fluoxetine, Venlafaxine and Their Metabolites in Rat Plasma by UPLC-MS/MS for Drug Interaction Study. Chromatographia, 79, 601-608.
https://doi.org/10.1007/s10337-016-3062-8
[30] Qiu, X., Wang, H., Yuan, Y., Wang, Y., Sun, M. and Huang, X. (2015) An UPLC-MS/MS Method for the Analysis of Glimepiride and Fluoxetine in Human Plasma. Journal of Chromatography B, 980, 16-19.
https://doi.org/10.1016/j.jchromb.2014.12.023
[31] Alegete, P., Kancherla, P., Albaseer, S. and Boodida, S. (2014) A Fast and Reliable LC-MS/MS Method for Simultaneous Quantitation of Fluoxetine and Mirtazapine in Human Plasma. Analytical Methods, 18, 7407-7414.
https://doi.org/10.1039/C4AY01057D
[32] Bonde, S.L., Bhadane, R.P., Gaikwad, A., Gavali, S.R., Katale, D.U. and Narendiran, A.S. (2014) Simultaneous Determination of Olanzapine and Fluoxetine in Human Plasma by LC-MS/MS and Its Application to Pharmacokinetic Study. Journal of Pharmaceutical and Biomedical Analysis, 90, 64-71.
https://doi.org/10.1016/j.jpba.2013.10.033
[33] Polson, C., Sarkar, P., Incledon, B., Raguvaran, V. and Grant, R. (2003) Optimization of Protein Precipitation Based upon Effectiveness of Protein Removal and Ionization Effect in Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 785, 263-275.
https://doi.org/10.1016/S1570-0232(02)00914-5
[34] Committee for the Purpose of Control and Supervision on Experiments on Animals (2003) CPCSEA Guidelines for Laboratory Animal Facility. Indian Journal of Pharmacology, 35, 257-274.
[35] National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20892.
https://www.nih.gov/health-information/nih-clinical-research-trials-you/basics
[36] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2001) Guidance for Industry-Bioanalytical Method Validation. Department of Health and Human Services, Rockville.
[37] Hvenegaard, M., Bang-Andersen, B., Pedersen, H., Jorgensen, M., Puschl, A. and Dalgaard, L. (2012) Identification of the Cytochrome P450 and Other Enzymes Involved in the in Vitro Oxidative Metabolism of a Novel Antidepressant, Lu AA21004. Drug Metabolism and Disposition, 40, 1357-1365.
https://doi.org/10.1124/dmd.112.044610
[38] Spina, E., Santoro, V. and Arrigo, C. (2008) Clinically Relevant Pharmacokinetic Drug Interactions with Second-Generation Antidepressants: An Update. Clinical Therapeutics, 30, 1206-1207.
https://doi.org/10.1016/S0149-2918(08)80047-1
[39] Chen, G., Lee, R., Højer, A., Buchbjerg, J., Serenko, M. and Zhao, Z. (2013) Pharmacokinetic Drug Interactions Involving Vortioxetine (Lu AA21004), a Multimodal Antidepressant. Clinical Drug Investigation, 33, 727-736.
https://doi.org/10.1007/s40261-013-0117-6
[40] Lutz, J., Vanden Brink, B., Babu, K., Nelson, W., Kunze, K. and Isoherranen, N. (2013) Stereoselective Inhibition of CYP2C19 and CYP3A4 by Fluoxetine and Its Metabolite: Implications for Risk Assessment of Multiple Time-Dependent Inhibitor Systems. Drug Metabolism and Disposition, 41, 2056-2065.
https://doi.org/10.1124/dmd.113.052639
[41] Hemeryck, A. and Belpaire, F. (2002) Selective Serotonin Reuptake Inhibitors and Cytochrome P-450 Mediated Drug-Drug Interactions: An Update. Current Drug Metabolism, 3, 13-37.
https://doi.org/10.2174/1389200023338017
[42] Mandrioli, R., Forti, G. and Raggi, M. (2006) Fluoxetine Metabolism and Pharmacological Interactions: The Role of Cytochrome p450. Current Drug Metabolism, 7, 127-133.
https://doi.org/10.2174/138920006775541561
[43] Sager, J., Lutz, J., Foti, R., Davis, C., Kunze, K. and Isoherranen, N. (2014) Fluoxetine and Norfluoxetine Mediated Complex Drug-Drug Interactions: In Vitro to in Vivo Correlation of Effects on CYP2D6, CYP2C19 and CYP3A4. Clinical Pharmacology, 95, 653-662.
https://doi.org/10.1038/clpt.2014.50
[44] Chen, G., Hojer, A., Areberg, A. and Nomikos, G. (2018) Vortioxetine: Clinical Pharmacokinetics and Drug Interactions. Clinical Pharmacokinetics, 57, 673-686.
https://doi.org/10.1007/s40262-017-0612-7
[45] Findling, R., Robb, A., DelBello, M., Huss, M., McNamara, N., Sarkis, E., et al. (2017) Pharmacokinetics and Safety of Vortioxetine in Pediatric Patients. Journal of Child and Adolescent Psychopharmacology, 27, 526-534.
https://doi.org/10.1089/cap.2016.0155
[46] Chen, G., Nomikos, G., Affinito, J. and Zhao, Z. (2016) Lack of Effect of Vortioxetine on the Pharmacokinetics and Pharmacodynamics of Ethanol, Diazepam, and Lithium. Clinical Pharmacokinetics, 55, 1115-1127.
https://doi.org/10.1007/s40262-016-0389-0
[47] Sawyera, E. and Howell, L. (2011) Pharmacokinetics of Fluoxetine in Rhesus Macaques Following Multiple Routes of Administration. Pharmacology, 88, 44-49.
https://doi.org/10.1159/000329417
[48] Hodes, G., Hill-Smith, T., Suckow, R., Cooper, T. and Lucki, I. (2010) Sex-Specific Effects of Chronic Fluoxetine Treatment on Neuroplasticity and Pharmacokinetics in Mice. Journal of Pharmacology and Experimental Therapeutics, 332, 266-273.
https://doi.org/10.1124/jpet.109.158717
[49] Qu, Y., Aluisio, L., Lord, B., Boggs, J., Hoey, K. and Mazur, C. (2009) Pharmacokinetics and Pharmacodynamics of Norfluoxetine in Rats: Increasing Extracellular Serotonin Level in the Frontal Cortex. Pharmacology Biochemistry and Behavior, 92, 469-473.
https://doi.org/10.1016/j.pbb.2009.01.023
[50] Haduch, A., Wojcikowski, J. and Daniel, W. (2008) Effect of Selected Antidepressant Drugs on Cytochrome p450 2b (cyp2b) in Rat Liver: An in Vitro and in Vivo Study. Pharmacological Reports, 60, 957-965.
[51] Martin, K., Michael, K., Igor, O., Igor, H., Ingrid, T. and Juraj, M. (2020) Simultaneous Determination of Fluoxetine, Venlafaxine, Vortioxetine and Their Active Metabolites in Human Plasma by LC-MS/MS Using One-Step Sample Preparation Procedure. Journal of Pharmaceutical and Biomedical Analysis, 181, Article ID: 113098.
https://doi.org/10.1016/j.jpba.2020.113098

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.