Energy and Power Engineering

Volume 9, Issue 4 (April 2017)

ISSN Print: 1949-243X   ISSN Online: 1947-3818

Google-based Impact Factor: 0.66  Citations  

Research on Multi-Scale Modeling of Grid-Connected Distributed Photovoltaic Power Generation

HTML  XML Download Download as PDF (Size: 460KB)  PP. 127-140  
DOI: 10.4236/epe.2017.94B016    2,660 Downloads   3,641 Views  

ABSTRACT

The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network.

Share and Cite:

Lv, C. , Sheng, W. , Liu, K. and Dong, X. (2017) Research on Multi-Scale Modeling of Grid-Connected Distributed Photovoltaic Power Generation. Energy and Power Engineering, 9, 127-140. doi: 10.4236/epe.2017.94B016.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.