Dosimetric Comparison of Integral Radiation Dose: Anisotropic Analytical Algorithm and Acuros XB in Breast Radiotherapy

HTML  XML Download Download as PDF (Size: 480KB)  PP. 57-67  
DOI: 10.4236/ijmpcero.2019.82006    1,012 Downloads   2,293 Views  Citations
Author(s)

ABSTRACT

The impact of the difference between Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) in breast radiotherapy is not clearly due to different uses and further research is required to explain this effect. The aim of this study is to investigate the contribution of calculation differences between AAA and AXB to the integral radiation dose (ID) on critical organs. Seven field intensity modulated radiotherapy (IMRT) plans were generated using with AAA and AXB algorithms for twenty patients with early stage left breast cancer after breast conserving surgery. Volumetric and dosimetric differences, as well as, the Dmean, V5, V20 doses of the left and right-sided lung, the Dmean, V10, V20, V30 doses of heart and the Dmean, V5, V10 doses of the contralateral breast were investigated. The mean dose (Dmean), V5, V20 doses of the left-sided lung, the Dmean, V5, V10 doses of right-sided lung, the Dmean, V10, V20, V30 doses of heart and the Dmean, V5, V10 doses of the contralateral breast were found to be significantly higher with AAA. In this research integral dose was also higher in the AAA recalculated plan and the AXB plan with the average dose as follows left lung 2%, heart 2%, contralateral breast 8%, contralateral lung 4% respectively. Our study revealed that the calculation differences between Acuros XB (AXB) and Anisotropic Analytical Algorithm (AAA) in breast radiotherapy caused serious differences on the stored integral doses on critical organs. In addition, AXB plans showed significantly dosimetric improvements in multiple dosimetric parameters.

Share and Cite:

Cakir, A. and Akgun, Z. (2019) Dosimetric Comparison of Integral Radiation Dose: Anisotropic Analytical Algorithm and Acuros XB in Breast Radiotherapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 8, 57-67. doi: 10.4236/ijmpcero.2019.82006.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.