Journal of Electromagnetic Analysis and Applications

Volume 13, Issue 8 (August 2021)

ISSN Print: 1942-0730   ISSN Online: 1942-0749

Google-based Impact Factor: 0.55  Citations  h5-index & Ranking

Prediction of Water Content of Eucalyptus Leaves Using 2.4 GHz Radio Wave

HTML  XML Download Download as PDF (Size: 612KB)  PP. 111-122  
DOI: 10.4236/jemaa.2021.138008    179 Downloads   1,003 Views  

ABSTRACT

Assessing plant water status is important for monitoring plant physiology. Previous studies showed that radio waves are attenuated when passing through vegetation such as trees. The degree of radio frequency (RF) loss has previously been measured for various tree types but the relationship between water content and RF loss has not been quantified. In this study, the amount of water inside leaves was expressed as an effective water path (EWP), the thickness of a hypothetical sheet of 100% water with the same mass. A 2.4331 GHz radio wave was transmitted through a wooden frame covered on both sides with 5 mm clear acrylic sheets and filled with Eucalyptus laevopinea leaves. The RF loss through the leaves was measured for different stages of drying. The results showed that there is a nonlinear relationship between effective water path (EWP) in mm and RF loss in dB. It can be concluded that 2.4 GHz frequency radio waves can be used to predict the water content inside eucalyptus leaves (0 < EWP < 14 mm; RMSE ± 0.87 mm) and demonstrates the potential to measure the water content of whole trees.

Share and Cite:

Peden, S. , Bradbury, R. , Lamb, D. and Hedley, M. (2021) Prediction of Water Content of Eucalyptus Leaves Using 2.4 GHz Radio Wave. Journal of Electromagnetic Analysis and Applications, 13, 111-122. doi: 10.4236/jemaa.2021.138008.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.