Atmospheric and Climate Sciences

Volume 10, Issue 4 (October 2020)

ISSN Print: 2160-0414   ISSN Online: 2160-0422

Google-based Impact Factor: 0.68  Citations  h5-index & Ranking

Autonomous Changes in the Concentration of Water Vapor Drive Climate Change

HTML  XML Download Download as PDF (Size: 2834KB)  PP. 443-508  
DOI: 10.4236/acs.2020.104025    553 Downloads   2,685 Views  Citations

Affiliation(s)

ABSTRACT

When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide; 2) Instead, autonomous changes in the concentration of water vapor, ΔTPW, drive changes in water vapor heating, thus, the average global temperature, ΔTAvg, in accordance with this principle, ΔTAvg=0.4ΔTPW the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record; 3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO2; 4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop; 5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there; and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation.

Share and Cite:

Brunt, W. (2020) Autonomous Changes in the Concentration of Water Vapor Drive Climate Change. Atmospheric and Climate Sciences, 10, 443-508. doi: 10.4236/acs.2020.104025.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.