
9 772162 536000 70





Open Journal of Soil Science, 2017, 7, 111-171 
http://www.scirp.org/journal/ojss  

ISSN Online: 2162-5379 
ISSN Print: 2162-5360 

 

 

 
 

Table of Contents 
Volume 7   Number 7                                       July 2017 
 
Fractal Kinetics Parameters Regulating Carbon Decomposition Rate under Contrasting  
Soil Management Systems 

L. E. Parent…………..…………………………………………………………………………………………………111 

Influence of Tillage Practices on Soil Physical Properties and Growth and Yield of Maize in  
Jabal al Akhdar, Libya 

G. O. Abagandura, G. Eld-Deen M. Nasr, N. M. Moumen…….……………………………………………………118 

Spatial Modeling of Soil Lime Requirements with Uncertainty Assessment Using Geostatistical  
Sequential Indicator Simulation 

J. O. de Ortiz, C. A. Felgueiras, E. C. G. Camargo, C. D. Rennó, M. J. Ortiz…..……………………………………133 

Relating Cone Penetration and Rutting Resistance to Variations in Forest Soil Properties and  
Daily Moisture Fluctuations 

M.-F. Jones, P. A. Arp…………………………………………………………………………………………………149 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://www.scirp.org/journal/ojss
http://www.scirp.org


Open Journal of Soil Science (OJSS) 
Journal Information  
 
SUBSCRIPTIONS  
 
The Open Journal of Soil Science (Online at Scientific Research Publishing, www.SciRP.org) is published monthly by Scientific 
Research Publishing, Inc., USA.  
 
Subscription rates:  
Print: $69 per issue. 
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org 
 

SERVICES  
 
Advertisements  
Advertisement Sales Department, E-mail: service@scirp.org 

Reprints (minimum quantity 100 copies)  
Reprints Co-Ordinator, Scientific Research Publishing, Inc., USA. 
E-mail: sub@scirp.org 
 

COPYRIGHT 
 
Copyright and reuse rights for the front matter of the journal: 
Copyright © 2017 by Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/  

Copyright for individual papers of the journal: 
Copyright © 2017 by author(s) and Scientific Research Publishing Inc. 

Reuse rights for individual papers: 
Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights. 

Disclaimer of liability 
Statements and opinions expressed in the articles and communications are those of the individual contributors and not the 
statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to 
persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim 
any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a 
competent professional person should be sought. 
 

PRODUCTION INFORMATION  
 
For manuscripts that have been accepted for publication, please contact:  
E-mail: ojss@scirp.org 

http://www.scirp.org/
mailto:sub@scirp.org
mailto:service@scirp.org
mailto:sub@scirp.org
http://creativecommons.org/licenses/by/4.0/
mailto:ojss@scirp.org


Open Journal of Soil Science, 2017, 7, 111-117 
http://www.scirp.org/journal/ojss 

ISSN Online: 2162-5379 
ISSN Print: 2162-5360 

DOI: 10.4236/ojss.2017.77009  July 7, 2017 

 
 
 

Fractal Kinetics Parameters Regulating Carbon 
Decomposition Rate under Contrasting Soil 
Management Systems 

Léon E. Parent 

Department of Soils and Agrifood Engineering, Université Laval, Québec, Canada 

 
 
 

Abstract 
Agricultural soils can sequester and release large amounts of carbon. Acces-
sibility of soil carbon to microbial attacks depends on biological, chemical, 
and physical protection mechanisms such as organic matter composition and 
particle size, soil aggregation, and chemical protection through the silt-clay- 
organic matter complex. While soil and organic matter are fractal objects 
controlling exposure of reactive surfaces to the environment, soil aggregation 
and biomass production and quality are regulated by agricultural practices. 
Organic matter decomposition in soil is generally described by the classical 
first-order kinetics equations fitted to define distinct carbon pools. By com-
parison, fractal kinetics assigns a coefficient to adjust time-dependent de-
composition rate of total soil carbon to protection mechanisms. Our objec-
tive was to relate fractal parameters of organic matter decomposition to soil 
management systems. Retrieving published data, the decomposition of or-
ganic matter was modeled in a silt loam soil maintained under pasture, an-
nual cropping or bare fallow during 11 years. The classical first-order kinet-
ics model returned quadratic relationships indicating that reactive carbon 
decreased with time. Fractal kinetics rectified the relationships successfully. 
Initial decomposition rate (k1 at t = 1) was 7 × 10−4 for pasture, 1 × 10−4 for 
annual cropping, and 0.5 × 10−4 for bare-soil fallow. Fractal coefficients h 
were 0.71, 0.45, and 0.25 for pasture, annual cropping and fallow, respectively. 
Due to aggregation, physical protection against microbial attacks was highest 
under pasture management, leading to higher carbon sequestration despite 
higher biomass production and “priming” effects. Parameters k1 and h proved 
to be useful indicators for soil quality classification integrating the opposite 
effects of labile carbon decomposition and carbon protection mechanisms that 
regulate the decomposition rate of organic matter with time as driven by soil 
management practices. 
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1. Introduction 

The soil is a huge reservoir of organic carbon approximately three times as large 
as the vegetation of terrestrial ecosystems and twice that of the atmosphere [1]. 
Properly managed soils can mitigate climate change through carbon sequestra-
tion and enhanced soil quality. Organic matter decomposition in soils is gener-
ally modeled by first-order kinetics that assigns rate coefficients to carbon pools 
defined by the model as labile to recalcitrant to decomposition [2] [3] [4] [5] [6]. 
The classical first-order kinetics equation assumes that each reaction rate is con-
stant and that the mixture is homogeneous and fully dispersed [7]. 

However, most reactions in nature are fractal because they occur on low-di- 
mensional heterogeneous surfaces where substrate accessibility, hence reaction 
rate, decreases with time [7] [8] [9]. Soil and organic matter are fractal objects 
[10] [11] that interact with each other [12]. Organic matter is a mixture of ob-
jects of various sizes and biochemical compositions [6] [13]. In batch reactions, 
surface area of particles and substrate reactivity per unit surface are enhanced by 
shredding and grinding, and by agitating the mixture [7]. Fractal kinetics [7] 
provides a means to regulate organic matter decomposition rate because carbon 
accessibility to microbial attacks changes with time due to “priming effect” of la-
bile carbon [14] [15] [16] and to biological, chemical and physical protection 
mechanisms in the soil in situ [12] [17]. Indeed, biochemical composition of or-
ganic particles, organic particle size, soil aggregation and the silt-clay-organic 
matter complex limit surface areas of labile and recalcitrant organic matter mate-
rials. Biomass production and quality and soil aggregation are regulated by agri-
cultural practices. 

A hierarchical soil aggregation model for physical protection of organic matter 
against microbial attacks in a fractal soil system has been conceptualized by [18], 
described numerically by fractal [10] and Euclidean [19] geometry, and illus-
trated by [20]. Plant residues and fungi decompose into fragments and various 
substances, providing a nucleus for the formation of micro-aggregates less than 
250 µm in diameter within macro-aggregates [21]. The micro-aggregates are 
mechanically strong while macro-aggregates may be destroyed by agricultural 
practices. By assigning a power coefficient to time to regulate the carbon de-
composition rate in soils [22] [23] [24] [25], fractal kinetics can quantify the ef-
fect of tillage and crop rotation practices on enhancing or decreasing protection 
mechanisms against organic matter decomposition. 

The aim of this paper was to relate fractal parameters of organic matter de-
composition to agricultural practices regulating carbon sequestration in soils. 



L. E. Parent 
 

113 

2. Material and Methods 
2.1. Fractal Kinetics 

First-order kinetics describes reactant disappearance as follows: 

[ ]A A k t−∂ = ∂                            (1) 

where A is concentration of the reactant remaining at time t and k is the first- 
order rate constant. The analytical solution of Equation (1) is as follows: 

ln
o

A kt
A

 
= − 

 
                           (2) 

where A concentration at time t is expressed as the proportion of initial reactant 
concentration Ao. 

The rate “constant” k for reactions in diffusion-limited heterogeneous systems 
such as fractal objects has been shown both phenomenologically and theoreti-
cally to decrease with time as follows [7]:  

( ) 1
hk t k t−=                             (3) 

where h is a fractal coefficient (0 ≤ h ≤ 1, t ≥ 1) and k1 is rate coefficient at t = 1. 
If 0h → , reaction rate is maximum and kinetics gets closer to classical first-or- 
der Equation (2). Otherwise, the reaction follows fractal kinetics. 

In organic matter decomposition studies, the fractal power coefficient p re-
duces reaction rate over time as follows [11] [22] [23] [24] [25]: 

( ) ( ) ( ) ( )ln ln ln p
o oA A k t t A kt= − = −                  (4) 

where p = 1 − h. The value of h is a measure of protection mechanisms against 
organic matter decomposition, and k1 is maximum reaction rate at t = 1. 

2.2. Computational Example 

A computational example was retrieved from literature [26]. Briefly, a silt loam 
soil maintained under pasture, annual cropping or bare fallow during 11 con-
secutive years was sieved to less than 4 mm, incubated in the laboratory for 98 
days, and monitored for CO2 production. The ( )2total CO totalC C C−  ratio, where 

totalC  is total carbon concentration and 
2COC  is cumulative CO2 released during 

the incubation period, was log-transformed, then related to t for classical fractal 
kinetics or to 1 ht −  for fractal first-order kinetics. The value of h was iterated 
between 0 and 1 using Microsoft Excel until maximum r2 value. 

3. Results and discussion 
3.1. Classical First-Order Kinetics 

The soil under pasture released the largest amount of CO2. The classical first- 
order kinetics showed significantly quadratic trends ( 2

adjustedR  = 0.997 - 0.999) 
across treatments (Figure 1). Therefore, the reaction rates decreased with time, 
indicating that reactive surfaces became less accessible [7]. Classical first-order 
kinetics addresses this problem by splitting the curve into carbon pools (Thuriès  
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Figure 1. First-order kinetics of organic matter decomposition in soil under 
different soil management practices (bold colored lines) showing quadratic re-
lationships (thin black lines). Data retrieved from [26]. 

 
et al., 2001). Because the clay-silt complex was similar across soils, microbial ac-
cess to carbon pools was regulated by organic matter composition and encapsu-
lation within aggregates. The soil under pasture that favored aggregation con-
tained the largest amount of easily decomposable polysaccharides from recent 
plant residues while that under fallow showed smaller carbon content with 
higher concentration of recalcitrant polyphenols [26]. The sand fraction con-
tained more easily biodegradable carbon forms compared to silt or clay. 

3.2. Fractal kinetics 

There were highly significant linear relationships between soil organic matter 
decomposition and 1 ht −  (Table 1). Initial decomposition rate k1 was 14 times 
larger in the soil under pasture compared to bare-soil fallow, indicating large dif-
ferences in labile carbon content due to higher biomass production under pas-
ture. However, the higher was the h value, the smaller was 1

1
hk t − . Soil carbon 

decomposing at reduced rate needs not to be classified into carbon pools because 
fractal coefficient h not only accounts for chemical and physical protection but 
also for the recalcitrance of residual carbon that increases with time. A single to-
tal C pool decomposing at rate 1

1
hk t −  sufficed to describe organic matter de-

composition in a fractal soil. Biochemical composition of organic matter materi-
als provided an explanation for reduced reaction rate. 

Despite “priming” effects by labile polysaccharides [14] [15] [16], carbon se-
questration was highest under pasture management due to high biomass produc-
tion by the sod and physical protection against microbial attacks through soil 
aggregation. In contrast, the h coefficient was lowest in the degraded bare-soil 
fallow where aggregation was low and biochemical carbon protection as poly-
phenols was high. The final result was carbon accumulation under pasture man-
agement compared to carbon depletion in the bare-soil fallow. As expected from 
the theory on carbon sequestration [18] [20] and in conformity with the fractal 
hypothesis [7], CO2 release during organic matter decomposition is accelerated  
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Table 1. Fractal first-order parameters of organic matter decomposition in soil (data re-
trieved from [26]. 

Management practice k1 h r2 

Pasture 7 × 10−4 0.71 0.999 

Annual crop 1 × 10−4 0.45 0.999 

Bare-soil fallow 0.5 × 10−4 0.24 0.999 

 
under conventional tillage that destroys soil aggregates and increases the expo-
sure to microbial attacks of the formerly aggregate-protected organic matter [27]. 
As fractal coefficient decreased and soil particles were dispersed under fallow, 
the course of organic matter decomposition approached that of classical first- 
order kinetics. As fractal coefficient h increased due to soil aggregation, more 
carbon could be sequestered in the soil. The effect of conservation practices [28] 
and crop rotation [4] [29] on carbon sequestration can thus be compared using 
the h parameter. 

Fractal parameters k1 and h could also be used as soil quality indicators linked 
to soil functions like water regulation and partitioning, soil filtering and buffer-
ing, and nutrient storing and cycling [30]. High k1 values reflected high respira-
tion rate and microbial biomass, hence high biological activity. High h values re-
flected high organic carbon accumulation rate, content of particulate organic 
carbon, cation exchange capacity, and aggregation. As shown by k1 and h, bio-
logical activity and aggregation, hence soil quality, were highest in the soil under 
pasture management and lowest in the soil under fallow. 

4. Conclusion 

The classical first-order kinetics that describes the decomposition of carbon 
pools at specific rate constants assumes that the medium is homogeneous and 
agitated. However, the soil is heterogeneous and structured, often showing fractal 
geometry. Fractal kinetics described successfully the course of total carbon de-
composition in a fractal soil. Initial decomposition rate was highest in the pas-
ture soil, which was well supplied with polysaccharides, and lowest in the fallow 
soil enriched in polyphenols. The pasture soil showed the highest h value due to 
higher aggregation that protects organic matter against microbial attacks. The h 
value regulated reaction rate as 1

1
hk t − , allowing organic matter to accumulate in 

the pasture soil despite higher initial decomposition rate compared with annual 
cropping and bare-soil fallow. Fractal parameters reflected soil quality and the 
effect of agricultural practices on soil carbon sequestration and release rates. 
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Abstract 
Different tillage practices are used for maize cropping in Libya. Yet, the effects 
of these practices on soil physical properties and maize growth and yield are 
not known. The objective of this study was to evaluate the effect of different 
tillage practices on soil physical properties and maize growth and yield in 
Libya. A field experiment was conducted in 2009 and repeated in 2010 using 
three tillage practices (conventional tillage (CT), ridge tillage (RT) and zero 
tillage (ZT)). Data about soil physical properties (penetration resistance (PR), 
bulk density (BD), total porosity (TP) and saturated hydraulic conductivity 
(Ks)) across soil depths, maize growth components (plant height, number of 
leaves, leaf area index and dry root weight) at 60, 75 and 125 days after plant-
ing, and maize yield (grain and stover) at harvest were collected and statisti-
cally analyzed in both years. To evaluate the effects of the tillage practices 
economically, the tillage operation cost and production cost were calculated. 
The results showed that at the surface layer (0 - 20 cm), CT had lower PR and 
lower BD, but higher TP and Ks compared to RT and ZT. At 20 - 40 cm and 
40 - 60 cm depths, the lower PR and PD and higher TP and Ks were under ZT 
and RT compared to CT. All maize growth parameters at different times were 
highest for CT followed by RT and lowest for ZT. The CT practice presented 
the highest grain and stover yield followed by RT and ZT. However, harvest 
index was higher where ZT was applied. While tillage operation costs were the 
highest for CT followed by RT and ZT, the production costs were the highest 
for ZT followed by RT and CT. In general, the CT practice produced higher 
maize growth and yield, lower production cost, and higher tillage operation 
cost than those are planted using RT and ZT practices. 
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1. Introduction 

Maize is considered one of the most important cereal crops in Libya [1], due to 
its greater demands for consumption and industrial purposes. Low soil organic 
matter and pests decrease maize production worldwide [2] [3] and Libya is not 
exception [4]. For this reason, Libya imported between 450,000 to 650,000 metric 
tons (18 to 26 million bushels) of maize in 2010 and estimated to import 450,000 
tons (18 million bushels) in 2017 [5]. 

In addition, tillage management greatly affected maize growth in this country. 
Recent development in mechanization has differentially affected farmers in 
Africa including Libya. Many farmers use various tillage practices without being 
aware of the effect of these systems on soil physical properties and plant growth 
[6]. From the main author’s experience in Libya, the farmers usually use mol-
dered plow, chisel plow, and ridger before planting causing the formation of plow 
pans in some Libyan soils due to the pressure exerted by these machines [7]. 
Some Libyan farmers still plant without tillage to keep the organic matter from 
previous year on the surface to help hold the soil in place [6]. 

Soil tillage, as a necessary practice in crop production, can affect soil physical 
properties and affect plant growth as a result [8] [9] [10]. According to results of 
a 15 year experiment, zero tillage recorded higher bulk density and lower infil-
tration compared to conventional tillage [11]. Deep tillage had lower penetration 
resistance, lower soil bulk density but higher root length density on loam soil 
across depths compared to conventional tillage [12]. Conventional tillage 
achieved lower bulk density, higher water holding capacity and porosity that in-
creased root depth and yield of maize compared to zero tillage [13].  

However, there are other reports indicating that tillage practices did not affect 
soil physical properties and plant growth. No differences in bulk density, satu-
rated hydraulic conductivity and maize yield were recorded between zero tillage 
and conventional tillage for silty clay loam soil [14]. According to [15], tillage 
practices had no effect on soil bulk density of the sandy soil surface (eight-year 
experiment).  

Any tillage practice has to improve soil quality, which in turn improves the 
growth and yield of crops. Claims of different tillage practices can affect soil 
properties and plant growth are being promoted to Libyan farmers with minimal 
scientific support. To address this need, the objective of this study was to ex-
amine the influence of tillage practices on soil physical properties and maize 
growth and yield grown on clay loam soil in Libya. 

2. Materials and Methods 
2.1. Site Location 

For this investigation, a two-year field study was conducted at the Omar Almuk-
ter Univrsity Center in Albida, Al Jabel Alkder, Libya (Figure 1) (32˚76'272"N, 
21˚75'506"W, elevation 590 m) from July to November 2009 and repeated from 
June to September 2010. The topography was flat (<1% slope). The soil was a 
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Figure 1. Geographical position of the study area. 

 
mixed, superactive, calcareous, thermic Typic Xerorthents, Shedd Series (USDA 
classification), formed in residuum weathered from calcareous soft shale (mod-
erately drained and has slow permeability). This area of the country has a plateau 
type climate with great rainfall and low temperature and used mostly for range 
and some grain with alternate fallow. 

There was no crop growth and the field was left fallow two years prior to the 
start of the study. Prior to performing the tillage experiment, soil samples were 
collected from different locations at a depth of 0 - 20 cm. The soil texture was 
determined using hydrometer method [16]. Organic matter was determined by 
the modified Walkey-Black method as suggested by [17]. Available phosphorus 
(P) and potassium (K) were determined by the method of [18]. The soil in the 
experimental site was clay loam having an organic matter (6.25%), pH (7.30), 
available P (1.16 mg∙kg−1), available K (0.05 mg∙kg−1), and EC (0.38 dS∙m−1) (av-
erage of five soil samples).  

2.2. Tillage Implement Treatments 

Four machines include of moldboard, chisel, land leveler and ridger were used in 
this investigation. A description of each machine is given in Table 1. A tractor 
with 55.1 kw and a mass of 2800 kg was used in both years. The manufacturing 
company of all machines is Simba Tractors Ltd, Nairobi, Kenya. 

The experimental area was divided into three blocks 70 m long and 7 m wide 
(blocks separated by a 3 m spacing) used for each tillage practice. A small block 
(10 m long by 5 m wide) in the beginning of each tested block was used prior to 
the commencement of the actual test runs to enable the tractor and implement to 
reach the required speed. Three tillage practices were used to represent the stan-
dard primary tillage implements most commonly used for seedbed preparation 
in this region of the country. The tillage practices included conventional tillage 
(CT) performed using moldboard plow one pass followed by chisel plow one  
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Table 1. The machines description used in this study in 2009 and 2010. 

Name Width (m) Weight (kg) Specifications 

Moldboard plow 1.05 400 Three furrows 

Chisel plow 3.25 450 
Thirteen curved shanks, seven in the front, 

and six in the back row 

Lander leveler 1.02 200 Single plate 

Ridger 1.8 300 NA 

 
pass, lander leveler one pass and ridger one pass, ridge tillage (RT) performed 
using ridger one pass, and zero tillage (ZT). Treatments were replicated four 
times. The tillage speeds were as follow: 3.8 hr∙km−1 for moldboard plow, 3.6 
hr∙km−1 for chisel plow one pass, 4.4 hr∙km−1 for lander leveler, and 4.0 hr∙km−1 
for ridger. 

2.3. Crop Cultivation 

After the tillage practices, Zea mays L. cultivar (Arifiye) seeds were obtained 
from Agricultural Research Institute in Albida (Libya), planted by hand at a rate 
of 40 kg∙ha−1 in three rows in each block (each block was divided into three rows) 
in both years. Surface drip irrigation (common in the region) was applied. Ten-
siometers (Spectrum Technologies, Inc., USA), one in each block, placed at 10 
cm to 15 cm below the soil surface to indicate the soil water status. Before field 
installation, each tensiometer was calibrated. All blocks received the same man-
agement (planting, fertilizer, and weed control). 

2.4. Soil Physical Properties Measurements 

Soil physical properties (penetration resistance (PR) bulk density (BD), total po-
rosity (TP) and saturated hydraulic conductivity (Ks) were measured two times, 
before tillage (Table 2) and after tillage when the maize was at grain physiologi-
cal maturity, approximately four months from planting in both years [19]. The 
soil physical properties were determined from different locations in the field at 
20 cm intervals starting from the surface down to a depth of 60 cm. 

The PR were determined in the field at depths 0 - 20 cm and 20 - 40 cm and 
40 - 60 cm using a hand-pushing penetrometer having maximum measurement 
range 5000 kPa and 80 cm depth. Soil penetrometer measurements were made 
by pushing the penetrometer vertically into the soil at each depth. Undisturbed 
core samples were collected at 0 - 20 cm, 20 - 40 cm, and 40 - 60 cm depths to 
measure the BD and Ks [14]. The BD and the Ks were determined on separated 
samples. BD was calculated using the procedure outlined by [20], then these 
values were used to calculate the TP using the following equation:  

( )Soil total porosity 1 BD soil particle density= −             (1) 

the soil particle density assumed to be 2.65 g∙cm−3. The Ks was measured on 
soil cores in the laboratory using a constant head permeameter [15]. 



G. O. Abagandura et al. 
 

122 

Table 2. Soil characteristics of the experiment before tillage as an average of the 2009 and 
2010 experiments. 

Depth (cm) 
Penetration resistance 

(kg∙cm−2) 
Bulk density 

(g∙cm−3) 
Total porosity 

(%) 
Saturated hydraulic 

conductivity (cm∙h−1) 

0 - 20 2.75 1.27 52.07 0.161 

20 - 40 2.14 1.28 51.69 0.357 

40 - 60 2.44 1.30 50.94 0.231 

2.5. Growth and Yield Parameters Measurements 

Percentage of emerged seedlings (PE) was calculated [21] for each tillage practice 
as follow: 

( ) ( )PE total emerged seedlings number of seeds planted 100m m= ×     (2) 

five plants for each tillage practice were sampled randomly at 60, 75, and 120 
days after planting to measure plant height, number of leaves, leaf area index and 
root weight. Plant height was measured as the vertical distance between the 
ground and the highest living part of the plant with a ruler. Number of leaves per 
plant was determined by counting all the leaves on each plant. The leaf area in-
dex was calculated [22] using the following equation:  

( )Leaf Area Index 0.75 Leaf length Leaf width= ×            (3) 

for total dry shoot weight determination, the above ground samples were 
weighed and oven-dried at 80˚C and weighed again.  

The dry root mass at various times and depths were determined. Maize roots 
were sampled with a soil core (a diameter of 10 cm and a height of 10 cm). The 
soil cores were taken to a depth of 60 cm in each block at four different locations. 
The cores were then taken to the lab and the soil and the roots were soaked in a 
solution containing 40 g/liter sodium hexametaphosphate in a 1:5 soil solution 
ratio [23]. Roots floated to the surface and were skimmed from the surface with 
a fine wire strainer. By subsequent washing in tap water roots and organic debris 
were separated. The roots were oven-dried at 80˚C and weighed. 

At harvest (120 days after planting), grain and stover (above-ground biomass 
minus grain) yield were measured. Both the mass of grain and mass of stover 
were calculated after drying and converted to a per hectare basis at 14% moisture 
content [24]. Harvest index (%) was calculated on percentage basis by using the 
following formula: 

Harvest index economic yield biological yield=             (4) 

climate data during the two growing seasons was collected from a weather sta-
tion located approximately 500 m from the field. 

2.6. Costs of Tillage Operation and Production Measurements 

To estimate tillage operation cost, the cost associated with each tillage practice 
include machinery, fuel and labor was calculated totally as $ ha−1 in both years. 
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Machinery costs were based on the data provided by Agricultural Research In-
stitute in Albida, Libya. They were calculated according to the hours of use in-
cluding costs for insurance, tax, and average repair costs. Fuel consumption was 
measured by using a secondary tank with a level marked tube and bulb with vo-
lume 140 cm3 [25]. Labor was measured with a stopwatch for each tillage practice. 
No land costs included since land costs were the same across tillage practices 
[26]. Production cost ($∙ton−1 for grain + stover) include all variable costs for 
seed, lime, fertilizer, herbicides, and insecticides for each tillage practices were 
calculated. 

2.7. Experimental Design and Data Analysis 

A completely randomized block design was used in this study. Tillage was ran-
domized within blocks. Data across the two years was assessed (residuals were 
homogeneous across years (Levene’s test) and normal distributed (Shapiro-Wilk 
test), and then was statistically analyzed using the analysis of variance (ANOVA) 
to test the effects of tillage practices on the soil physical properties and maize 
growth and yield. All calculations were performed using SAS (SAS Institute Inc., 
North Carolina, USA). Year was first tested as a factor and found not significant 
for all metrics. Therefore, year was considered as a random factor in the model. 
Differences between the three tillage practices were compared by the Fisher LSD 
test. Differences between the means were considered to be statistically significant 
at P < 0.05.  

3. Results and Discussion 
3.1. Climate Conditions 

Mean monthly temperature, precipitation and relative humidity during the study 
period in 2009 and 2010 are shown in Figure 2. The accumulated precipitation 
during the growing seasons was 7.4 cm in 2009 and 10.7 cm in 2011. The mean 
temperature during the growing season was 22.9˚C and 24˚C and the highest 
relative humidity was 72% and 71% in 2009 and 2010, respectively. 

3.2. Soil Physical Properties 
3.2.1. Penetration Resistance and Bulk Density 
The PR and BD had similar trend to some extent at all depths which was ex-
pected because high BD produces high PR [27] [28]. At all depths, both parame-
ters were significantly different among tillage practices (Figure 3(a), Figure 3(b)). 

As expected, the PR and the BD for the soil surface (0 - 20 cm) were the high-
est for ZT followed by RT, and the least was for CT (Figure 3(a), Figure 3(b)), 
indicating that lack or minimum of disturbance produces an increase in both 
parameters measured at the soil surface. The lower PR and BD under CT com-
pared to other tillage practices were probably due to tillage operations breaking 
the soil surface and producing loose soil [28] [29] [30]. Several studies docu-
mented that zero tillage recorded higher PR for the soil surface compared to 
tilled soil [31] [32] [33] [34] [35].  
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Figure 2. Mean monthly temperature, precipitation and hu-
midity during the study period in 2009 and 2010. 

 
For 20 - 40 cm and 40 - 60 cm depths, the lowest PR and PD were under ZT 

followed by RT and CT due to machinery weights used in CT (Figure 3(a), Fig-
ure 3(b)). These results agree with [36] and [37] who reported that zero tillage 
led to higher PR and BD in the soil surface, but lower in both parameters in the 
deeper soil depths as compared to excessive tillage.  

3.2.2. Total Porosity and Saturated Hydraulic Conductivity 
The TP and Ks were found to have some similarity trend due to the fact that in-
creasing soil TP enhances Ks and visa verse [38] [39]. Both parameters were in-
fluenced by the different tillage practices (Figure 4(a), Figure 4(b)) at the three 
soil depths. 

At 0 - 20 cm soil depth, while the highest TP and Ks were recorded under CT, 
the lowest were under ZT (Figure 4(a), Figure 4(b)). [40] also found higher TP 
and Ks at the soil surface under conventional tillage compared to zero tillage. 
Similar to BD and RP, the trend of TP and Ks at the subsurface depths (20 - 40 
cm, 40 - 60 cm) was reversed. The highest TP and Ks were recorded under ZT 
and the lowest were under CT (Figure 4(a), Figure 4(b)). This result is probably 
due to machinery weights causing an increase in BD of the deeper depths under 
CT compared to ZT (Figure 3(b)) resulting decrease in TP and Ks under this 
practice. The relationship of BD and TP is reciprocal. As one increases, the other 
decreases.  
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                                       (a) 

 
                                       (b) 

Figure 3. Penetration resistance (a) and bulk density (b) at different 
depths for the three tillage practices. Means are labelled with letters 
to denote statistical significance, a (largest), b (middle) and c (smal-
lest). Within each column, means followed by the same letter are not 
significantly different at significant level = 0.05. The error bars 
represent the standard deviation. CT = moldboard plow, chisel plow, 
lander leveler and ridger, RT = ridger, ZT = no tillage. 

3.3. Maize Growth and Yield 

The PE differed among tillage practices (p = 0.0206). The highest PE was re-
coded under CT followed by RT and the lowest under ZT (Figure 5). The topsoil 
TP of the CT was higher compared to ZT (Figure 4(a)) which facilities free 
movement of air and moisture in the soil and thus increases the PE under CT. 
Similarly, [41] [42] found that zero tillage reduce the PE of maize compared to 
conventional tillage. 

The tillage practices showed also significant difference in the maize growth. 
Plant height, number of leaves, leaf area index and dry weight of shoot at 60, 75, 
and 120 days after planting were the highest for CT and the lowest for ZT (Table 3). 

The positive effect of tillage compared to zero tillage was observed in other 
maize growth studies. Taller plant [43] [44], higher number of leaves per plant 
and higher leaf area index [22] [45] of maize were found in tilled soil compared to 
zero tillage.  
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                                       (a) 

 
                                       (b) 

Figure 4. Total porosity (a) and saturated hydraulic conductivity (b) at 
different depths for the three tillage practices. Means are labelled with 
letters to denote statistical significance, a (largest), b (middle) and c 
(smallest). Within each column, means followed by the same letter are 
not significantly different at significant level = 0.05. The error bars 
represent the standard deviation. CT = moldboard plow, chisel plow, 
lander leveler and ridger, RT = ridger, ZT = no tillage. 

 

 
Figure 5. Percentage of emerged seedlings of maize for the three tillage 
practices. Means are labelled with letters to denote statistical significance, 
a (largest), b (middle) and c (smallest).Within each column, means fol-
lowed by the same letter are not significantly different at significant lev-
el= 0.05. The error bars represent the standard deviation. CT = mold-
board plow, chisel plow, lander leveler and ridger, RT = ridger, ZT = no 
tillage. 
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Table 3. Effect of tillage practices on maize growth at different times during the season. 

Tillage Days after planting 

 
60 75 120 

Plant height (cm) 

CT 250.00 a 245.33 a 250.00 a 

RT 160.00 b 200.33 b 204.91 b 

ZT 150.33 c 192.00 c 200.33 c 

P-value 0.0107 0.00839 0.0054 

 Number of leaves 

CT 14.50 a CT 14.50 a 

RT 13.00 b RT 13.00 b 

ZT 12.33 c ZT 12.33 c 

P-value 0.0079 P-value 0.0079 

 Leaf area index (cm−2) 

CT 1230.66 a CT 1230.66 a 

RT 1002.00 b RT 1002.00 b 

ZT 751.06 c ZT 751.06 c 

P-value 0.0116 P-value 0.0116 

 Dry weight of shoot (g) 

CT 272.63 a CT 272.63 a 

RT 180.32 b RT 180.32 b 

ZT 157.53 c ZT 157.53 c 

P-value 0.0400 P-value 0.0400 

 
Although the highest root dry mass across all depths at all times was found 

under CT and the lowest under ZT, these differences were not significant (data 
not shown). These results are similar to that of [46] who reported higher dry 
matter of root in conventional tillage compared to zero tillage in sandy loam soil.  

The effect of tillage practices on grain and stover at harvest are shown in Fig-
ure 6. The ZT presented the lowest grain and stover yield in comparison with the 
other tillage practices (Figure 6). These results may be due to the lack of soil 
loosening for providing conditions favorable to crop growth and yield under ZT 
practice. [47] [22] also reported higher maize yield under CT compared to ZT 
practice. Soil tillage has a great influence upon the harvest index of maize re-
cording lower harvest index (32%) when CT was applied compared to ZT (62%) 
and RT (53%). In other words, the physiological effectiveness of maize crop to 
partition the dry matter into its cost effective (grain) yield than generation of 
whole-plant biomass increased under ZT and RT compared to CT. These results 
are not in line with the findings of [48] who stated that higher harvest index was 
observed where conventional tillage was applied compared to minimum tillage. 
In other study [49], disking determined higher values of the harvest index than 
plowing. 
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Figure 6. Maize grain and stover yield (ton∙ha−1) at harvest for the three tillage 
practices. Means are labelled with letters to denote statistical significance, a 
(largest), b (middle) and c (smallest). Within each column, means followed by 
the same letter are not significantly different at significant level = 0.05. The er-
ror bars represent the standard deviation. CT = moldboard plow, chisel plow, 
lander leveler and ridger, RT = ridger, ZT = no tillage. 

3.4. Tillage Operation and Production Costs 

Operation and production costs for each tillage practice are shown in Table 4. 
Estimates of total machinery, fuel and labor cost were the least for ZT practice 
compared to RT and CT (Table 4). 

The operation tillage costs for CT were approximately $ 76.50 greater than for 
the RT (Table 4). On the other hand, the production costs were the highest for 
ZT compared to other practices. Although seed, fertilizer, lime and insecticide 
expenses were slightly similar among tillage practices, herbicide costs were high-
er in ZT and RT compared to CT (data not shown), probably due to the fact that 
zero or minimum tillage production rely exclusively on herbicides for weed con-
trol [50] [51]. 

4. Conclusions 

Inappropriate tillage practices are considered a major constraint to maize pro-
duction in Jabal al Akhdar, Libya. Based on the observed results: 
• The three tillage practices had significant effects on the measured soil physi-

cal properties.  
• Growth and development of maize were highly correlated with the type and 

degree of plowing. 
• Harvest index was significantly affected by tillage practices and maximum 

harvest index was recorded where ZT was applied.  
• The cost for seed preparation increased with increasing the usage of ma-

chines.  
• The cost of the maize yield increased when soil left without tillage. 

Long term tillage experiment (> two seasons) would be required to detect 
changes in soil physical properties and maize growth as a result of the tillage 
practices. 
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Table 4. Tillage operation and production costs for each tillage practice. 

Tillage Tillage cost ($∙ha−1) Production cost ($∙ton−1) 

CT 93.75 a 2.26 c 

RT 17.24 b 4.32 b 

ZT * 5.25 a 

P-value 0.0217 0.0380 
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Abstract 
This work presents and analyses a geostatistical methodology for spatial mod-
elling of Soil Lime Requirements (SLR) considering punctual samples of Ca-
tion Exchange Capacity (CEC) and Base Saturation (BS) soil properties. Geosta-
tistical Sequential Indicator Simulation is used to draw realizations from the 
joint uncertainty distributions of the CEC and the BS input variables. The 
joint distributions are accomplished applying the Principal Component Ana-
lyses (PCA) approach. The Monte Carlo method for handling error propaga-
tions is used to obtain realization values of the SLR model which are consi-
dered to compute and store statistics from the output uncertainty model. 
From these statistics, it is obtained predictions and uncertainty maps that 
represent the spatial variation of the output variable and the propagated un-
certainty respectively. Therefore, the prediction map of the output model is 
qualified with uncertainty information that should be used on decision mak-
ing activities related to the planning and management of environmental phe-
nomena. The proposed methodology for SLR modelling presented in this ar-
ticle is illustrated using CEC and BS input sample sets obtained in a farm lo-
cated in Ponta Grossa city, Paraná state, Brazil. 
 
Keywords 
Spatial Modeling of Soil Attributes, Indicator Geostatistics, Joint Simulation,  
Principal Component Analyses, Spatial Uncertainty Analyses 

 

1. Introduction 

Soil acidity is one of the factors that limits crop yields in various places of the 
world. Brazilian soils are mostly acids, mainly for the tropical Savanna regions, 
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known in Brazil as Cerrado. Such soils are characterized by low concentrations 
of calcium and magnesium, elements directly involved in the development of the 
plant [1]. 

The appropriate correction of soil acidity, or liming, is considered an effective 
practice for the use of soil nutrients by plants [2], which promoting increased 
soil fertility and hence productivity. For this purpose, the limestone is an agri-
cultural input with efficient response to correct soil acidity. It is relatively cheap 
in Brazil and it is of simple application. The literature shows a limestone relation 
to the increase in production, involving the raising of productivity of grain 
crops, mainly soybeans, wheat and corn, with proper fertilization, or replace-
ment of nutrients in the soil [3] [4] [5] [6]. 

However, any application of high or insufficient doses of inputs in the soil will 
reflect in plant nutrition so that, if not corrected by cover fertilizations, will in-
crease or decrease the productivity. Therefore, the recommendation of the amount 
of limestone, like any other fertilizer, must comply with a soil analysis, which 
should avoid unnecessary applications that would lead to super liming. Accord-
ing to some authors [7] [8], super liming would be as damaging as high acidity 
and it would be difficult to correct. 

To obtain higher yields and to apply inputs in the soil with no waste, there is a 
tendency to use methods of input estimates based on spatial variability of soil 
properties. These estimates lead to application of inputs, by variable rates in the 
geographic space, with the purpose of optimizing profit, productivity and envi-
ronmental sustainability. These practices, known as Precision Agriculture (PA), 
implement the process of agricultural automation, dosing fertilizers and pesti-
cides for the soil of a geographical area of interest. This set of agriculture tools 
involves the use of Geodesic Positioning Systems (GPS), Geographic Information 
Systems (GIS) with integrated statistics methods, and instruments with sensors 
for measurement or detection of parameters on targets of interest in the agro- 
ecosystem (soil, plant, insects and diseases). 

Several authors have adopted the geostatistical procedures in PA to estimate 
and evaluate the spatial variability of soil properties [9] [10] [11] [12] [13]. Spe-
cifically, indicator geostatistical procedures have been widely used because they 
are non-parametric methods, i.e., they do not require the definition of a priori 
probability model [14] [15] [16]. In addition, predictions maps (mean, median 
or mode value), and uncertainty maps (based on deviation values or probability 
of default quantiles) are extracted by inference and simulation methods. So, the 
predictions are accompanied with their respective uncertainties, which are also 
spatially distributed in the study area. Take into account the uncertainty infor-
mation during the modeling process is important, because it allows to qualify the 
result of the used model, which should be considering for planning and decision 
making related to the investigated properties [17] [18] [19]. 

In this context, this work applies and analyses indicator geostatistical proce-
dures for spatial modelling of Soil Lime Requirements (SLR), derived from a 
model proposed by [20]. The SLR model is based on the relationship between 
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Cation Exchange Capacity (CEC) and Base Saturation (BS) properties. These soil 
chemical properties affect soil acidity, and subsequently soil fertility and yield. 
So, the idea of the SLR modelling is to show the soil regions that need correction, 
raising the saturation of the bases to a value that provides maximum economic 
efficiency of the limestone application.  

This work is organized in 6 sections. Besides the Section 1, presenting the in-
troduction, the Section 2 addresses the main necessary theoretical concepts. Sec-
tion 3 synthesizes the proposed methodology. The Section 4 explores a case study 
of SLR modeling with real data. Section 5 presents the results, followed of ana-
lyses and discussions. Finally, the Section 6 reports important conclusions with 
suggestions for future works involving research aspects of this work. 

2. Concepts 
2.1. The Spatial SLR Model 

Liming depends on the decision to apply or not the limestone and the definition 
of its quantities, if it is required. This is done through some formulated mathe-
matically methods and they are related to the soil characteristics of each geo-
graphic region. 

Among the several methods for liming recommendation, the base saturation 
method, presented by [20] was defined as the most suitable for the study region. 
It is based on the relationship between BS and CEC. The model parameters are 
considered for the soil, soil amendment and the crop. The method consists in 
raising the saturation of the bases to a value that provides maximum economic 
efficiency of the of limestone application. 

The neutralizing power, the granulometry and reactivity of the limestone are 
important factors for the correct choice of it. The neutralizing power is deter-
mined by comparison with the power of neutralization of pure calcium carbo-
nate (CaCO3), with the maximum value equal 100. For this reason, it is called the 
Relative Power of Total Neutralization (RPTN) or calcium carbonate equivalent, 
and the knowledge of this parameter is relevant to determine the SLR. The mod-
el to determine SLR, in tons/hectare (t/ha), according to recommendations 
about soils presented in [6] is expressed as: 

( )
( )( ) ( )2 1BS BS CEC

SLR
RPTN

− ⋅
=

u u
u                   (1) 

where: u is a vector of the geographic coordinates where the input variables are 
sampled inside of the study area; BS1(u) is the base saturation value of the origi-
nal soil, given in percentage, before correction. They are sampled directly from 
the ground, analyzed in the laboratory and should be elevated to the level consi-
dered suitable for the crop and soil studied; BS2 is the base saturation value that 
you want to achieve; there is a default value for each crop; CEC(u) is the sum of 
the bases with the values of potential acidity; RPTN: is the Relative Power of the 
Total Neutralization in relation to the limestone adopted and it is, generally, less 
than 100 (the total neutralization). 
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According to [21] the BS2 is variable for each State or region and, as defined 
before, at Parana State this value is 70% and RPTN is the Relative Power of the 
Total Neutralization in relation to the limestone adopted and it is, generally, less 
than 100%, that is the total neutralization; The limestone that has been used at 
the study farm presents a RPTN equivalent to 85%. So, the model to calculate 
Limestone Requirement is: 

( )
( )( ) ( )70
850

BS CEC
SLR

− ∗
=

u u
u                        (2) 

The spatial modeling applied to the investigation of a phenomenon of interest 
requires mathematical models that work on estimate values of the input va-
riables and their uncertainties. The output estimates only depend on the input 
variables while the output uncertainties are propagated from the uncertainties of 
the input variables. The output uncertainties are used to qualify the spatial mod-
el output. Knowing the quality of the model results is important, especially when 
they are used in decision making activities associated to the planning and man-
agement of the investigated phenomena [22]. 

When management planning requires local estimates and mathematical mod-
els are considered, the uncertainty propagated in the predictions might be eva-
luated. Knowing the quality of the model results is fundamental, especially when 
they are used in spatial decision making [22], with GIS operations. 

Some uncertainty propagation techniques were presented by [23]. The first 
order Taylor series and the Monte Carlo simulation can be stand out. 

The Monte Carlo simulations were considered in this work. Let U(.) be the 
output of a GIS operation g(.) on m input attributes  

( ) ( ) ( ) ( )( )1. : . , . , , .i mA U g A A=  . The idea of the method is to compute the re-
sult on ( )1, , mg a a  repeatedly, with input values ai that are randomly sampled 
from their joint distribution.  

Application of the Monte Carlo method to uncertainty propagation with 
non-point operations requires the simultaneous generation of realizations from 
Ai(.). This implies that spatial correlation will have to be accounted for. The 
technique adopted in this paper for stochastic spatial simulation, was the joint 
sequential Indicator simulation algorithm [14] with principal component analy-
sis, as presented in the next item. 

The idea of the Taylor series method is to approximate g(.) by a truncated 
Taylor series centred at ( )1, , mb b b=   [23]. 

The first order Taylor series of g(.) around b  is given by:  

( ) ( ) ( )i iiU g bAb b g ′= + −∑                      (3) 

where ( ).ig′  is the first derivative of g(.) with respect to its i-th argument. The 
variance 2σ  is given as:  

( ) ( )2
ij i j i jg gb bσ ρ σ σ ′ ′= ∑∑                     (4) 

where: σi and σj are the standard deviation of the i and j variables respectively 
and ρij is the correlation between them.  
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As the SLR model considers only two variables, the Equation (4) will be as 
bellow: 

( ) ( )2 22
1 1 i jij i ji j g gb bσ ρ σ σ
= =

′ ′= ∑ ∑                    (5) 

i represents the variable BS and j represents the variable CEC. 
And when Equation (5) is applied on the model as,  

( )70
850
BS CEC

SLRg
− ∗

==                       (6) 

the derivatives are as bellow: 

850
g CEC

BS
∂ −

=
∂

 and 70
850

g BS
CEC
∂ −

=
∂

                 (7) 

2.2. Principal Component Transformation 

Many spatial models that make use of the several input variables required the 
determination of joint probability distributions of these variables for generation 
of the new information and for uncertainty evaluation, that usually are built via 
simulation methods.  

When the input variables are correlated, their distributions should not be si-
mulated independently. The direct approach is to use a joint simulation of the 
dependent variables, but it requires the inference and modeling of direct and 
cross covariance matrices that are computational costly to determine [14].  

An alternative mode is first to decorrelate the input variables using Principal 
Component Analysis-PCA [24] [25] and, after apply the geostatistical simulation 
procedure. So, the M interdependent input variables, denoted by  

( ) ( ) ( ) ( ){ }1 2, , ,M mZ Z Z Z= u u u u , 1, ,m M= 
, are transformed in M inde-

pendent variables, denoted by ( ) ( ) ( ) ( ){ }1 2, , ,M mY Y Y Y= u u u u , as follows:  

( ) ( )( )M MY Zϕ=u u                           (8) 

where ϕ  is the transformation function of the PCA.  
To recover the interdependent variables ( )MZ u  applies the inverse trans-

form function, as follows: 

( ) ( )( )1
M MZ Yϕ−=u u                          (9) 

where 1ϕ−  is the inverse transformation of the PCA.  

2.3. Indicator Geostatistical Approach 

The indicator geostatistical approach for continuous variables, for example for 
the ( )MY u  variables, allows to estimate a set of values at non sampled location, 
that represent a discretized approximation of the conditional cumulative distri-
bution function (ccdf) [15] [26]. 

Initially the variables ( )MY u  are transformed into indicator variables, con-
sidering c

My  cutoffs values, 1, ,c n= 
 cutoffs. These transformations are de-

fined by the relation: 

( ) ( )
( )

1 se
;

0 se

c
M Mc

M M c
M M

Y y
I y

Y y

 ≤= 
>

u
u

u
                  (10) 
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The transformation expressed in Equation (8) is equivalent to associate prob-
ability 1 (100%) for ( )MY u  values which are smaller than or equal to the cutoff 

c
My  and 0 otherwise. So, for each cutoff value indicator fields are generated, 

with 0 and 1 values, of the indicator variable ( ); c
M MI yu . 

Next, empirical indicator semivariograms are determined for each one of the 
indicator fields to estimated their spatial correlation structures:  

 ( ) ( ) ( ) ( )
( ) 2

1

1ˆ , ; ;
2

N
c c c

M M M M
j

y i y i y
N

γ
=

 = − + ∑
h

h u u h
h

                 (11) 

where ( ); c
Mi yu  and ( ); c

Mi y+u h  are values of the indicator variable  
( ); c

M MI yu  separated by the distance vector h, and N(h) is the number of the 
pairs points that are separated by the distance vector h.  

The indicator fields associated with their respective cutoff values and theoret-
ical semivariograms are used by Indicator Kriging (IK) and Conditional Sequen-
tial Indicator Simulation (SIS) procedures for estimating probabilities values at 
non-sampled location. Thus, this set of estimated probabilities, at non sampled 
location, is used to create a discretized approximation of the ccdf [15] [27]) and 
it represents the uncertainty model of the variable. 

2.4. Conditional Sequential Indicator Simulation 

A stochastic simulation is a process of drawing equally likely realizations of val-
ues that are obtained from the probability distribution of a Random Variable (RV). 

Consider the M independent factors YM(u). Then, a set of the realizations 
equally likely are generated by geostatistical simulation, denoted by ( )L

MY αu , 
where L is the simulation number; αu  = 1, ⋅⋅⋅, gridsize (nlines x ncolumns), are 
locations regularly distributed in the geographic space, determining a regular 
grid representation structure. For example, to the Y2(u) independent variable, 

( ) ( ){ }2 2
L lY yα α=u u , where 1, ,l L=  ; ( )2

ly αu  is the l-th simulated value at 

αu ; and the set { ( )}l
2y αu represent the l-th random field generated by simula-

tion of the Y2(u). In that case, the SIS procedures makes use of the ccdf, condi-
tioned to the n nearest of RV Y2(u) and also to the pre-simulated values, inside 
the αu  neighborhood, to get ( )2

ly αu  values.  
The SIS procedure has the following steps [15]: 
1) Sets up randomly one αu  location. Then simulates a value of the ( )2

ly αu  
from the univariate ccdf of ( )2Y αu , ( ) ( )2 2Prob |Y y nα α ≤ u u , conditioned to 
the n nearest sample data Y2(u); 

2) Once simulated, ( )2
ly αu  becomes a conditioning data for subsequent si-

mulation steps. The conditioning data is updated to  
( ) ( ) ( ) ( ){ }2 21 ln n Y y α+ = = u u ; 

3) Sets up randomly another location α α′ ≠u u . Simulated a new value of the 
( )2

ly α′u  from the univariate ccdf of ( )2Y α′u ,  
( ) ( ) ( )2 2Prob | 1Y y nα α′ ′ ≤ + u u , conditioned to the information set (n + 1); 

4) Update the information set (n + 1) to a new information set  
( ) ( ) ( ) ( ){ }2 22 1  n n Y y α′+ = + = u u ; 
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5) Repeat the two previous steps until all the locations αu  of the spatial grid 
have been simulated. At this time was produced a random field of the Y2(u); 

6) Repeat all steps for generating new random fields of the Y2(u). Stop when 
you reach the desired number of simulations.  

3. Methodology 

The proposed methodology for SLR modelling is illustrated in the Figure 1, us-
ing BS(u) and CEC(u) input sample sets obtained in a farm located in Ponta 
Grossa city of Paraná State, Brazil. The variables BS(u) and CEC(u), hereafter  
 

 
Figure 1. Methodological sequence applied to CEC(u) and BS(u) soil attributes to model SLR. 
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are named in this Section as Z1(u) and Z2(u), respectively. 
Initially, the input variables Z1(u) and Z2(u) are decorrelated via PCA trans-

formation in order to get two uncorrelated sample sets named Y1(u) and Y2(u) 
variables. Following, Y1(u) and Y2(u) are independently spatialized applying SIS 
procedure. The result is a set of the realizations equally likely, ( )1

LY αu  and 
( )2

LY αu . Since the simulation values were obtained from the independent va-
riables distributions [Y1(u) and Y2(u)], it is necessary to apply to them PCA−1, 
the inverse transformation of PCA, in order to obtain a set of dependent realiza-
tions, ( )1

LZ αu  and ( )2
LZ αu . From theses realizations, prediction and uncertainty 

maps can be generated. These maps are intermediate results that help the analyst 
to better understand the spatial distribution of the variables involved in the SLR 
model and their respective uncertainties. So, the simulated fields ( )1

LZ αu  and 
( )2

LZ αu  are selected randomly several times, via Monte Carlo method and after 
applied in the spatial SLR model. From the resulting SLR fields, prediction and 
uncertainty maps are generated. These maps represent the spatial variation of 
the output variable and the propagated uncertainty, respectively. Therefore, the 
prediction map generated by spatial SRL model is qualified with uncertainty in-
formation 

Given a spatial region of interest, the methodology applied has the following 
steps: 

1) In a set of spatial correlated sample points of the CEC and BS soil 
attributes, hereafter named in this text Z1 and Z2 variables, apply the PCA trans-
formation in order to get two uncorrelated variables Y1 and Y2;  

2) Apply the indicator sequential simulation on the Y1 and Y2 variables in or-
der to get independent grids representing fields of draw values of these variables; 

3) The draw values of Y1 and Y2 are back transformed using a PCA−1 approach 
resulting on a set of dependent grids representing fields of draw values of the Z1 
and Z2 variables; 

4) Extract statistic properties of the CEC and BS draw values: prediction maps 
of mean or median values, for example, and uncertainty maps based in confi-
dence interval of standard deviations or quantiles. This is important to observe the 
individual spatial distribution of the estimated and uncertainty values of the in-
put variables; 

5) Obtain draw values, randomly chosen, from the SLR model applied to the 
dependent draw values of the Z1 and Z2 variables; 

6) Extract statistic properties of the SLR draw values: prediction maps of mean 
or median values, for example, and uncertainty maps based in confidence inter-
val of standard deviations or quantiles. 

In this article the final resulting maps of predictions and uncertainties are 
analyzed and. Figure 1 illustrates the applied methodology. 

4. A Case Study 
4.1. The Study Area and Input Data 

The study region, Figueira farm, is located in the city of Carambeí, PR, Brazil, 
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and comprises an area of 392 ha. The farm has been adopted a precision agri-
culture system and the main cultures are soy, wheat and corn. In order to illu-
strate the methodology of this work, it was used as information a set of points of 
soil chemical properties (BS and CEC). These data were sampled at field by a 
Brazilian company that works with precision agriculture [28]. The geographical 
positioning of the samples was gathered by Global Positioning System, GPS, 
which ensures accurate georeferencing, as shown in the Figure 2. 

5. Results and Discussion 

The results presented below were obtained from simulated fields of input va-
riables of CEC and BS. These fields were produced using specific functions from 
geostatistical software called GSLIB [14]. As mentioned before the soil attributes, 
CEC and BS are interdependent and the correct spatial modeling requires the 
joint simulation of these variables.  

In this study an alternative to joint simulation was implemented, and it was 
possible to simulate separately a set of independent factors from which the orig-
inal variables can be reconstituted [14] [15]. The factors were obtained from 
Principal Component Analysis and the interdependence was guaranteed by the 
common inverse transform. The indicator simulation was performed over the  
 

 
Figure 2. Study area Figueira farm in Paraná state. 
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independent sample set and simulated fields were generated. These independent 
simulated fields were back transformed into simulated values/fields for the orig-
inal variables and they represent their stochastic uncertainty models.  

In this case study, for each input variable, the number of realizations was fixed 
to 400 and they were represented in regular grid structures with 200 lines by 200 
columns. That number of runs is considered sufficiently large to reach high ac-
curacies. From those simulated values it could be generated the prediction and 
uncertainties maps. Thus, the mean estimates map was calculated by arithmetic 
average of the simulated values at each spatial position. Similarly, an uncertainty 
map was based on calculating the standard deviation of those same simulated 
values. 

The resulting data were organized in a geographic database using the GIS SPRING 
[29]. This GIS enabled the visualization of spatial input information and the re-
sults of the spatial model explored. 

Figure 3 shows the predicted values, grid of mean values, obtained from the 
uncertainty models of CEC and BS soil properties. From these maps that represent 
the outline of the study area, it can be observed the spatial distribution of each 
attribute, along with their minimum and maximum values.  

Figure 4 depicts the uncertainty maps with confidence intervals based on 
standard deviation values of the uncertainty models of CEC and BS soil proper-
ties.  

The maps of the Figure 4 indicate that the highest uncertainties, red areas, 
appear in regions where higher local variations of the predicted values occur. 
This is an expected result since the uncertainties of the indicator simulation ap-
proach are proportional to the local density of the samples and to their local 
value variations. These maps represent the spatial distribution of the uncertain-
ties where one can get, for instance, the general idea of the areas with the most  

 

 
Figure 3. Map of predicted mean values from simulated fields of 
(a) CEC and (b) BS. 
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Figure 4. Map of uncertainty values, based on standard deviation con-
fidence intervals, from simulated fields of (a) CEC and (b) BS soil 
properties. 

 
reliable estimates. These uncertainty values are propagated to the resulting un-
certainty maps of any spatial modelling that integrate these variables. 

6. Modeling Results and Uncertainty Propagation 

In the Figueira Farm the correction of soil acidity was modeled by estimating 
soil lime requirement, as a function of the CEC and BS that are the input va-
riables of the model, SLR, presented in Equation (2). Those variables were simu-
lated previously (Figure 3) and their uncertainty values (Figure 4) will propa-
gate through these model, leading to uncertain response values of the SLR. Fig-
ure 5 presents the predicted and uncertain maps resulting of the SLR spatial 
modelling. These maps were generated from the application of the Monte Carlo 
approach on the back transformed fields, or the correlated simulated fields, of 
the CEC and BS variables. In this procedure 400 fields were generated from the 
final model obtained by applying Equation (2) in the simulated values of the in-
put variables, randomly drawn. The simulated values from those fields, at each 
spatial location, were used to generate the maps presented in the Figure 5(a), 
mean of SLR and Figure 5(b) standard deviation of the SLR. 

In the Figure 5(a) the map of means presents the spatial distribution of the 
mean values estimated of the SLR. That map shows that regions with high SLR 
values, in red, are those in which the CEC values are higher and BS is lower. The 
map of standard deviation, Figure 5(b), shows the spatial distribution of the 
uncertainty values propagated to final modeling result. As expected, at this un-
certainty map are observed high uncertainty areas in red, where there is a greater 
spatial variability in the values inferred by the model. 
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Figure 5. SLR results of (a) predicted mean (b) uncertainty values from 
joint simulation process. 

7. Discussion 

Figure 6(a) presents uncertainty map resulting from the SLR spatial modelling 
regarding to correlation between the variables CEC and BS to perform the joint 
simulation, and Figure 6(b) shows the uncertainty map considering indepen-
dence between them. The maps are plotted in a same color scale (0 to 6.44) in 
order to be compared. Comparing the uncertainty maps of Figure 6, it can be 
observed that the uncertainty gets smaller for the SLR results when the correla-
tion between the input variables is considered. In this case this correlation is 
positive and the final propagated result of the SLR model agrees with the con-
cepts explained in the Section 2.5. 

When the Taylor expression (Equation (6)) is applied on the model SLR (Eq-
uation (2)), replacing the first derivatives as presented in Equation (7), it is 
possible to evaluate that as higher correlation between the input variables as 
lower the uncertainty propagation in the final results. So this information can be 
associated with the results analysis. 

Although most users are aware with uncertainty in GIS operations, they have 
not paid attention to the problem of correlated variables in spatial modelling. To 
emphasize this important issue we have considered three different correlations 
levels, including the measured, to apply the Taylor series: one of them is higher 
than the original measured correlation ρ = 0.8; the true correlation of the data, 
ρ = 0.51 and a lower correlation ρ = 0.2. The results, presented in the Figure 7, 
show that the propagated uncertainty decreased when the correlation increased. 

The uncertainty maps are used to qualify the inferences. So, in decision-making 
processes, it can be considered just uncertainties values above or below of a set-
tled threshold, giving priority to areas that are best suited to the problem that is  
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Figure 6. Uncertainty maps: (a) Joint simulation; (b) Independence be-
tween CEC and BS. 

 

 
Figure 7. Uncertainty maps with Taylor series: (a) Correlation 0.8; (b) Correlation 0.5; 
and (c) Correlation 0.2. 
 
being addressed. In this work, which is modeling the need for limestone, the de-
cision maker can evaluate the available resources and define important thre-
sholds, upper and lower, for the implementation of necessary agricultural inputs. 
It is important to consider that the excess of limestone can be as or more harm-
ful than the lack of it for a particular crop. So, incorporate uncertainty maps to a 
precision farming system adds quality to the agricultural planning that requires 
information with spatial representation. 
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8. Conclusions 

In order to make good decisions in precision agriculture, considering a field with 
acid soil, as this study case, the determination of the best liming practice de-
pends on the uncertainty analysis. Spatial modelling as presented in this paper 
has to consider the level of uncertainty about the input parameters of the model, 
soil properties, and their propagation. Specifically, when those parameters are 
correlated their distributions cannot be sampled independently. So, this study 
was concerned about it and replaces the joint distribution to the principal com-
ponent analysis.  

In this work, we used the geostatistical simulation procedure for nomination 
to represent soil properties that are correlated. Applied an approach based on 
the analysis of principal components to obtain the achievements, with depen-
dencies, these simulations. These achievements have been integrated via Monte 
Carlo method to obtain limestone need values according to a predefined spatial 
model. 

The methodology for modeling the liming requirements was proved easy to 
implement and the results showed consistency with the spatial model and its 
input variables. In this modeling were obtained, besides the prediction maps, 
maps the uncertainties of the input variables and the final model that reflects the 
propagated uncertainty. He showed up at work, the propagated uncertainty is 
overrated if you do not consider different correlations of zero between model 
input variables. It is able to highlight areas with higher lime requirements and it 
is possible to identify areas with higher uncertainties in relation to the predic-
tions. With those results the decision maker can, for instance, choose the first 
areas candidate for liming if there are financial problems. To reduce uncertain-
ties is a very important point to policy makers who, many times, have to decide 
and to assess the consequences of different decisions, even decide for no action if 
the uncertainties are big. 
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Abstract 
Soil resistance to penetration and rutting depends on variations in soil texture, 
density and weather-affected changes in moisture content. It is therefore dif-
ficult to know when and where off-road traffic could lead to rutting-induced 
soil disturbances. To establish some of the empirical means needed to enable 
the “when” and “where” determinations, an effort was made to model the soil 
resistance to penetration over time for three contrasting forest locations in 
Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, 
and a sandy loam on alluvium. Measurements were taken manually with a soil 
moisture probe and a cone penetrometer from spring to fall at weekly inter-
vals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 
45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone 
penetration in the form of the cone index (CI) was determined at the same 
depths. These determinations were not only correlated with measured soil 
moisture but were also affected by soil density (or pore space), texture, and 
coarse fragment and organic matter content (R2 = 0.54; all locations and soil 
depths). The resulting regression-derived CI model was used to emulate how 
CI would generally change at each of the three locations based on daily 
weather records for rain, snow, and air temperature. This was done through 
location-initialized and calibrated hydrological and geospatial modelling. For 
practical interpretation purposes, the resulting CI projections were trans-
formed into rut-depth estimates regarding multi-pass off-road all-terrain ve-
hicle traffic. 
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1. Introduction 

The soil cone index (CI), a measure of a soil’s resistance to penetration (MPa), is 
a commonly used soil mechanical property to determine soil strength [1] [2]. 
This strength generally increases with increasing clay, coarse fragment (CF), and 
soil density (Db), or reduced pore space (PS), but decreases with increasing soil 
moisture (MC) and organic matter content (OM, %) [3] [4] [5] [6]. Hence, 
non-cohesive soils such as sands and sandy loams are more easily penetrated 
than clay soils [3] [7] [8], wet soils have low penetration resistances and the re-
sistance to penetration is low for organically enriched soils but high for stony 
and frozen soils [9] [10] [11]. 

In practice, off-road traffic may increase soil compaction and CI, which ne-
gatively affects the growth of crops by way of reduced root development [8] 
[12] [13] [14] [15]. In urban developments, increased CI due to soil compac-
tion decreases soil infiltration of water and tree root growth [16] [17]. Howev-
er, sufficient CI-index soil strength is needed to allow on- and off-road traffic 
in agriculture and forestry operations [18] [19], while off-road recreational 
traffic needs to be controlled to avoid soil rutting. In this, the resistance of 
soils to rutting is directly proportional to the ratio between tire footprint 
pressure and CI [20] [21] [22]. The former increases with increasing vehicle 
weight and load and decreasing tire footprint, which—in turn—decreases with 
increasing tire width, wheel diameter, and decreasing tire pressure. In the field, 
rut depths further increase from single to multiple passes, and with slope-in- 
duced tire spinning [23].  

Efforts to minimize soil rutting require reliable forecasting of off-road soil 
trafficability. Doing this, however, is challenging because soil and machine-use 
conditions may vary daily from location to location. By location, low CI condi-
tions do not last as long for sandy soils than for loams and clays. In addition, soil 
trafficability varies with the extent of soil freezing and thawing, especially when 
traffic turns thawing soils into mud [24]. 

The objective of this article is determining how manually derived soil CI 
determinations change in response to weekly spring-to-winter changes in 
soil moisture and temperature for three contrasting soil conditions. The data 
so generated allowed for: 1) quantifying the relationship between CI and soil 
MC; 2) emulating and interpreting the changes in soil moisture, CI, and rut-
ting depth; 3) daily year-round modelling of soil trafficability by soil texture 
and soil depth. While machine-based cone penetration testing (CPT [25]) 
would be more accurate and precise, manual CI determinations have the 
greater portability and affordability advantage for assessing how soil traffi-
cability conditions vary from location to location across landscapes and sea-
sons. 

2. Materials and Methods 
2.1. Location Description 

Three forest sites in Fredericton, New Brunswick, were chosen for this study 
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(Figure 1, Table 1):  
1) A mixed-wood stand on sandy clay loam in a wooded section on the Uni-

versity of New Brunswick campus (UNB);  
2) A hemlock (Tsuga canadensis) stand on a rich loam in Odell Park (OP);  
3) A silver maple site (Acer saccharinum) on an alluvial sandy loam next to a 

fresh-water marsh within the floodplain of the Nashwaaksis stream (SM). 
The two non-alluvial soils developed on grey sandstone ablation / basal till. 

Elevation for the three sites ranges from 6 to 70 m [26]. The topography varies 
from undulating to hilly. The upland forest vegetation is representative of the 
Acadian forest species, i.e., sugar maple (Acer saccharum), red maple (Acre ru-
brum), white birch (Betula papyrifera), balsam fir (Abies balsamea), black spruce 
(Picea mariana), and hemlock (Tsuga canadensis). The 1950-2017 Fredericton 
weather record has a mean annual temperature of 6.6˚C, with monthly means of 
−1.8 and 14.9˚C for January and July, respectively. Mean annual precipitation 
amounts to 1100 mm, including 250 mm of snow [27]. 

2.2. Field Experiment 

Soil layers were described and samples were taken from two freshly dug soil pits 
at each of the three locations. Five soil volumetric moisture content (MCy) and 
CI readings were taken manually each week from May 29, 2015 to November 2, 
2015 within two circular plots (1.5 m radius) near the soil pits at each location. 
This was done using a Delta T HH2 moisture meter and a Humboldt digital 
cone penetrometer (cone are at base = 1.5 cm2; cone angle 60˚). The MCv read-
ings were taken at 7.5-cm mineral soil depth. The CI readings were obtained at 
15, 30, 45, and 60 cm depths, but were not recorded where obstructed by logs, 
coarse roots, and surface-accumulated rocks. 
 

 
Figure 1. Overview depicting of the three Fredericton (New Brunswick) locations (left), 
and site-specific plot locations for SM (top), OP (middle), UNB (bottom) (Imagery 
Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, 
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community). 
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Table 1. Location descriptions used for initializing ForHyM. 

Location Parameters UNB SM OP 

Latitude (N) 45˚56'40" 45˚57'28" 45˚58'46" 

Longitude (W) 66˚38'34" 66˚40'17" 66˚39'44" 

Elevation (m) 70 8 29 

Slope (%) 4.45 2.46 2.71 

Aspect (°) 30 132 24 

Canopy Coverage 
Deciduous: Coniferous 

20:40 70:0 30:30 

Rooting habit Shallow Deep Shallow 

Forest floor 
thickness (cm) 

8 2 5 

Soil Series Sunbury / Till 
Riverbank / Glaciofluvial 

Deposits 
Sunbury / Till 

Soil Classification 
Gleyed Sombric 

Brunisol 
Gleyed Humic Regosol 

Orthic Humo-Ferric 
Podzol 

Mineral soil texture Sandy loam 
Loamy sand– Sandy 

loam 
Silty loam– Sandy 

loam 

Subsoil texture Sandy loam Loamy sand Silty loam 

 
The soil samples were placed into labeled freezer bags for storage. Prior to 

analysis, the samples were dried in a forced-air oven 75˚C for 24 hours, crushed 
with a mortar and pestle, and passed through a 2-mm sieve to remove and to 
determine the CF. The fine-earth fraction was used to determine its sand, silt, 
and clay content using the hydrometer method [28]. The soil carbon content (C) 
of this fraction was determined using a LECO CNS-2000 analyzer. Soil OM con-
tent was estimated by weight by setting OMg% = 1.72 × C%. The pore-space 
filled moisture content (MCps) was inferred by assuming that soil gravimetric 
moisture content (MCg), soil bulk density (Db) and the PS percentage would be 
affected by depth and OM content as follows [3]: 

( ) ( )1.23 1.23 1 exp 0.0106

1 6.83
p

b
W

D DEPTH
D

OM

+ − × − − ×  =
+ ×

              (1) 

g v bMC MC D= ×                            (2) 

v
ps

MC
MC

PS
=                             (3) 

where Dp is particle density (2.65 g/cm3), and PS is the pore space fraction of the 
fine earth. 

2.3. Hydrological Modelling 

The forest hydrology model (ForHyM) [29] [30] [31] was used to emulate the 
changes in daily soil moisture, soil temperature and snowpack conditions for 
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each of the three locations from 2006 to 2017. Doing this involved compiling the 
daily Fredericton weather records for air temperature, precipitation (rain, snow), 
stream discharge, and open-ground snow depth [27] [32]. Also specified were 
elevation, slope, aspect, and extent of forest cover (Table 1). The model-internal 
water and heat flow parameters pertaining to soil permeability, thermal conduc-
tivity, and heat capacity were plot-adjusted by texture, OM and CF content 
(Table 2), and by comparing actual with modeled soil moisture content. This 
was done through manually resetting the default values for: 1) the air-to-snow- 
pack heat-transfer coefficient; 2) the initial snowpack density of freshly fallen 
snow to reflect the open-ground conditions at the weather station [33]; and 3) 
the lateral soil permeability to account for lateral flow tortuosity [34] [35]. These 
adjustments ensured that the model output conformed to actual snowpack depth 
and stream discharge records.  

2.4. Data Analysis and Model Projections (MCv, CI, Rut Depth) 

The data and ForHyM estimates for MCv, CI, texture, CF, OM, Db, and PS were 
entered into a spreadsheet by location, date, and soil depth. This compilation 
served 1) to generate basic statistical summaries, 2) to analyze the measured and 
modelled time-series plots for MCv and CI, and 3) to determine the best-fitted 
linear and multiple regression models with CI as dependent variable, and with 
MCv (measured, modelled), soil texture, OM, CF, PS, and soil depth as indepen-
dent variables. A linear regression model served to relate measured CI at 15, 30, 
45 and 60 cm soil depth to measured and ForHyM-modelled MCv. A multiple re-
gression model served to relate CI to MCv, PS, and CF as follows: 

10log psCI a bPS cMC dCF= + + +                   (4) 

where MCps is the water-filled portion of the PS, in percent. The best-fitted mod-
el so generated was incorporated into the ForHyM model to determine how MCy, 
CI and rutting depths pertaining to all-terrain vehicle (ATV) traffic would vary 
over time at each of the three locations. The equations adopted for rut modelling 
were as follows [4] [36]:  
Potential rut depths for n passes: 

1
21656

nRD n
NCI

 =  
 

                           (5) 

with NCI (the nominal cone index) given by: 

1000 δ 1
1 2

CI bdNCI
W h d

=
+

                    (6) 

where b is tire width (m), d is tire diameter (m), h is section height (m), δ is tire 
deflection (m) given by 0.008 + 0.001 (0.365 +170 / p ), p is tire inflation pres-
sure (kPa), W is vehicle weight + load (kN) per wheel, and n is number of vehi-
cle passes along the same track. Potential rutting depths for all-terrain recrea-
tional vehicle (ATV) traffic were determined using the following machine speci-
fications: number of wheels = 4; W per wheel = 3.1 kN; b = 0.254 m; d = 0.62 m; 
h = 0.3 m; p = 34.4 kPa; n = 10 passes. 
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Table 2. ForHyM initialization requirements by soil layer per plot and location. 

Location Plot Layers Depth (cm) Sand (%) Clay (%) Silt (%) OM (%) CF (%) Rooting 

UNB 1 LF −8 - 0 Organic 100 0 Plentiful fine 

  Ah 0 - 15 43 14 43 25 1 Plentiful fine 

  Bmg 15 - 40 66 10 24 5 10 Abundant med-fine 

  Cxg1 40 - 70 66 10 24 1 20 Few coarse 

  Cxg2 70+ 66 10 24 0 70  

 2 LF −8 - 0 Organic 1 0 Plentiful fine 

  Ah 0 - 15 43 17 40 7 1 Plentiful fine 

  Bmg 15 - 40 66 10 24 2 10 Abundant med-fine 

  Cxg1 40 - 70 66 10 24 1 20 Few coarse 

  Cxg2 70+ 66 10 24 0 50  

SM 1 L −2 - 0 Organic 100 0  

  Ah 0 - 15 48 17 35 10 0 Abundant fine 

  Cg1 15 - 65 44 17 39 5 10 Few coarse 

  Cg2 65 - 105 35 18 47 0 15 Few coarse 

  Cg3 105+ 35 18 47 0 15  

 2 L −2 - 0 Organic 100 0  

  Ah 0 - 15 48 17 35 20 0 Abundant fine 

  Cg1 15 - 45 44 17 39 10 5 Few coarse 

  Cg2 45 - 95 35 18 47 0 10 Few coarse 

  Cg3 95+ 35 18 47 0 15  

OP 1 LFH −5 - 0 Organic 1 0 Plentiful fine 

  Ahe 0 - 15 58 18 24 10 1 Plentiful fine to med 

  Bf 15 - 40 54 20 26 5 5 Abundant med 

  BC 40 - 90 54 20 26 1 10 Few coarse 

  C 90+ 56 12 32 0 10  

 2 LFH −5 - 0 Organic 1 0 Plentiful fine 

  Ahe 0 - 15 58 18 24 10 1 Plentiful fine to med 

  Bf 15 - 35 54 20 26 5 15 Abundant med 

  BC 35 - 70 54 20 26 1 15 Few coarse 

  C 70+ 56 12 32 0 15  

 
To visually represent the temporal changes in MC topographically and over 

seasons, MCps was spatially related to the depth-to-water index (DTW). This as 
index was generated from a 1-m resolution bare-earth digital elevation model 
(DEM) for the Fredericton area [37]. This index determines the elevation rise 
along the least slope path from each cell across the landscape to its nearest 
open-water cell corresponding to streams, lakes, rivers and open shores [38] [39]. 
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Changing the upslope flow-accumulation area by channel flow initiation (FI), 
i.e., changing the amount of upstream area needed to initiate streamflow, allows 
for indexing DTW by season. For example, FI = 4 ha generally represents per-
manent stream flow at the end of summer, FI = 0.25 ha represents the extent of 
ephemeral stream flow during and after snowmelt, and FI = 1 ha represents 
channel flow during the transitional periods from fall to winter. The resulting 
DTW rasters with FI = 4, 1 and 0.25 ha were used to determine how the soil 
moisture conditions and rutting depths would vary across the terrain associated 
for the three sampling locations by season. This was done by applying Equation 
(7) and Equation (8) [3], i.e. [40]:  

( ) ( )
( )

1 exp
1 1

1 exp

p

PS PS ridge
ridge

k DTW
MC MC DTW

k DTW

 − − ∗   = − − ∗  − − ∗  
       (7) 
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( ), , , 0
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1 expexp

p

n n ridge n ridge n DTW
ridge

k DTW
RD RD RD RD

k DTW=

 − − ∗
   = − − ∗  − − ∗  

   (8) 

with p = 2, p as soil-specific parameter ranging from 0.2 to 2 and), and DTWridge 
(in m) RDn,ridge and RDn,DTW=0 (in mm) determined for driest and wettest parts of 
each.  

3. Results  
3.1. Soil Moisture and CI Measurements 

Each of the three locations showed distinct variations in soil properties, strength, 
and moisture readings over the course of 23 weeks. Given the plot-by-plot soil 
property differences—and tracking the changes in soil moisture over time—re- 
vealed that the OP plots drained quickly. In contrast, the UNB plots varied the 
most from wet to dry and back again to wet from spring to fall (Figure 2). In di-
rect correspondence, resistance to cone penetration varied the least for the two 
SM plots, and the most for the UNB plots. These differences arose from the 
compacted and poorly drained sandy loam for the UNB plots, the well-drained 
loamy sand with low CF content for the OP plots, and seasonally recurring 
flooding of the SM plots (Table 1 and Table 2). The high springtime levels for 
MCv within the top 15-cm soil at the UNB and SM locations are due to high 
Ah-layer OM content, which—according to Equation (1)—lowers Db and en-
hances the soil-filled PS between the coarse fragments.  

Plotting the CI measurements at 15 cm depth to the MCv measurements re-
vealed that the log-transformed CI and MCv values are linearly related to one 
another as shown in Figure 3 (left), as follows: 

( ) ( ) ( )10 15 10log 0.62 0.07 0.52 0.05 log 0.20 0.03cm vCI MC UNB= ± − ± + ±     (9) 

R2 = 0.60, RSME = 0.13, MAE = 0.10, with the UNB location coded 1 and 0 
otherwise. Similarly similar strong correlations between MC and CI have been 
reported elsewhere [5] [41] [42]. With respect to increasing soil depth—and as 
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Figure 2. Left: Measured MCv for the top 15 cm of soil. Right: Measured CI at 15, 30, 45, and 60 cm depth for Plots 1 and 2 at the 
OP, UNB, and SM locations. 

 

 
Figure 3. Scatterplots of measured log10CI versus measured log10MCv (left), and weekly of CI / CImax averages for the OP, UNB, 
and SM locations (right). 

 
shown in Figure 3 (right)—CI increases, by plotting the ratio of the weekly av-
erages of CI over CImax per plot by location. A similar trend has also been re-
ported elsewhere [43] [44] [45]. 

3.2. Soil Moisture and CI through Hydrological Modelling 

The modelling of the year-round soil moisture conditions required plot-specific 
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ForHyM initializations and calibrations. These included the Fredericton-specific 
calibrations for snowpack depth and stream discharge required using daily Fre-
dericton Airport weather records for rain, snow and air temperature, and ad-
justing the ForHyM-default settings for lateral and downward water flow, as 
listed in Table 3. The plot initializations in Table 1 and Table 2 refer to entering 
the plot- and/or layer-specific values for slope, aspect, vegetation type and cover, 
forest floor depth, percentages for sand, silt, clay, CF, OM, and layer depth.  

Shown in Figure 4 are the resulting time-series plots for daily air temperature 
and precipitation (input), snowpack depth, stream discharge, top 15-cm soil 
MCv (actual and modelled), and frost depth (modelled). The resulting scatter 
plots in Figure 5 for actual and best-fitted ForHyM snowpack depth and top 
15-cm MCv (top 15 cm) demonstrate a reasonable good fit, with R2 = 0.81 for 
snowpack depth, 0.62 for stream discharge, and 0.76 for MCv (Table 4). 

For the purpose of predicting how CI would vary across time by soil texture, 
Db and CF content (Table 2), it was necessary to use the ForHyM-generated 
depth- and time-dependent MCv output for the 0 - 15, 15 - 30, 30 - 45 and 45 - 
60 cm soil layers as predictor variable. Doing this involved estimating how much 
of the infiltrating and percolating water would be retained at any time within the 
fine-earth fraction between the coarse fragments of each layer. For example, the 
space available for water retention would decrease with increasing CF content. 
Consequently, there would be less PS to fill between the coarse fragments during 
wet weather conditions, and there would also be less water available for root up-
take during warm summer weather [46]. This being so, The ForHyM-generated 
projections in Figure 6 by location and soil layer show greater MCv and MCps 
variations for the stony UNB location, followed by the less stony SM and the 
more sandy OP locations. In combination, the ForHyM projections in Figure 6 
capture the plot-by-plot MCps variations such that OPMC > SMMC > UNBMC. 

Figure 7 and the correlation coefficients in Table 5 show how CI varies with 
varying soil texture (Sand), CF, OM, PS and MCps. In general, CI decreases with 

 
Table 3. ForHyM calibrations for the Fredericton area: default multipliers. 

Parameters  Multiplier 

Snowpack 
Snow-to-air temperature gradient 0.16 

Density of fresh snow 0.20 

Saturated soil 
permeability 

Surface runoff 1 

Forest floor infiltration 1 

Forest floor interflow 0.05 

A&B horizon infiltration 1 

A&B horizon interflow 0.1 

C horizon infiltration 1 

C horizon interflow 0.1 

Deep water percolation 1 
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Figure 4. ForHyM time-series plots for daily air temperature and precipitation 
(ForHyM input), actual and modelled output for stream discharge and snow-
pack depth, and location-specific modelled frost depth (modelled). 

 
increasing PS and sand content due decreasing particle-to-particle contacts. 
Increased OM content decreases CI by way of soil aggregation, i.e. by further 
loosening the point of contact among the aggregated soil particles. The 
CF-induced increase on CI refers to the increasing strength needed to displace 
the coarser particles away from cone penetration path [47]. Together, Sand, 
OM, CF and PS affect the daily variations in CI and soil moisture retention 
through their combined effect on soil pore space, texture, structure and drai-
nage [33] [48] [49]. 

Subjecting the correlation matrix in Table 6 to factor analysis revealed that 
the CI variations can be grouped into three CI-determining factors. Factor 1 is 
the Location Factor, which relates a component of the CI variations to the loca-
tion- and layer-specific CF and PS determinations. Factor 2 is the Soil Moisture 
Factor, which relates some of the CI variations to MCps. Factor 3 is strongly 
related to Sand, but—in this formulation—has no salient effect on CI. 
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(a) 

 
(b)                                       (c) 

Figure 5. Actual versus ForHyM best-fitted scatter plots for MCv (top 15 cm) (left), 
monthly stream discharge (middle), and daily snowpack depth (right). 
 
Table 4. Best-fitted regression model for measured (actual) versus modelled top 15-cm 
soil MCv by location (UNB, SM, OP) and overall. 

Parameter n 
Intercept Coefficient 

t-value p-value Adj. R2 RMSE MAE 
Estimate SE Estimate SE 

UNB 37 13.884 1.690 0.676 0.039 17.308 <0.001 0.90 5.47 4.50 

SM 41 20.541 1.816 0.384 0.041 9.173 <0.001 0.67 4.77 3.91 

OP 41 11.694 1.748 0.415 0.073 5.717 <0.001 0.44 4.01 3.06 

All Sites 118 11.527 1.191 0.611 0.032 19.365 <0.001 0.76 6.57 5.48 

 
Using PS, MCps, and CF as independent variables produced the following 

best-fitted multiple regression result for all soil layers and locations combined: 

10log 0.26 0.29 0.41 1.04PSCI PS MC CF= − − +                (10) 

R2 = 0.54, RMSE = 0.36, MAE = 0.29. This result is illustrated in Figure 8 by way 
of the 3D plots, which reveal moderate CI increase with decreasing MCps, and a 
rapid CI increase with increasing CF. In reality, CI and soil strength should de-
crease again as MCps drop towards zero as the soil becomes more brittle due to 
reduced particle-to-particle hydrogen-bonding at low MC [50]. 
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Figure 6. ForHyM-generated MCv and MCps projection for the 0 - 15, 25 - 30, 30 
- 45 and 45 - 60 cm soil layers by plot and location. 

 

 
Figure 7. Plotting plot-by-plot measured CI vs. OM, Sand, PS, MCps, and CF, 
showing PS, MCps, and CF as stronger CI predictor variables than OM and Sand. 
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Table 5. Correlation matrix for plot- and layer-determined CI, OM, Sand, CF and 
ForHyM-estimated Db, MCv, MCps. 

Variables CI MCps MCv SP CF Sand Db OM 

CI 1.00        

MCps −0.26 1.00       

MCv −0.52 0.72 1.00      

SP −0.39 −0.37 0.32 1.00     

CF 0.55 0.35 −0.18 −0.74 1.00    

Sand −0.16 −0.30 −0.20 0.21 −0.42 1.00   

Db 0.39 0.37 −0.32 −1.00 0.73 −0.20 1.00  

OM −0.31 −0.31 0.36 0.97 −0.59 0.07 −0.97 1.00 

 
Table 6. Factor analysis of Table 5. 

Parameters Factor 1 Factor 2 Factor 3 

CI 0.72 0.75 −0.02 

MCps 0.18 −0.88 −0.26 

SP −0.92 0.11 −0.09 

CF 0.86 0.03 −0.23 

Sand 0.00 0.15 1.00 

 

 
(a)                                         (b) 

Figure 8. Modelled CI (Equation (10)) in relation (a) to MCps and PS at CF = 20%; and 
(b) to CF and MCps at SP = 20%.  

 

While Sand and OM are important water retention and porosity predictor va-
riables [51] [52], including them as part of the multiple regression process did 
not significantly improve the best-fitted results, likely due to the significant cor-
relations between OM and PS and between Sand and CF in Table 5. However, 
adding sampling location to the predictor variables (each location coded 1 where 
applicable, else 0) improved the best-fitted result as follows: 

10log 0.44 0.50 0.39 0.69 0.09PSCI PS MC CF SM= − − + −         (11) 

R2 = 0.60, RMSE = 0.33, MAE = 0.27. This means that the CI values at the SM 
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plots are, on average, slightly lower than at the other locations. This difference 
may be related to unaccounted differences pertaining to, e.g., CF size (generally 
smaller at SM than at the other two locations), and differences in rooting pat-
tern. 

Repeating this analysis by location and by soil depth produced the best-fitted 
results listed in Table 7. From this, it can be noted that R2 remained about the 
same by location, varying from 0.41 (SM) to 0.66 (UNB), but decreased with in-
creasing soil depth from 0.68 at the top to 0.10 at 60 cm soil depth. This decrease 
would mostly be due to the location-by-location Db, MC and CF differences. 
This is because 1) the ForHyM-generated MC estimates already take the effect of 
CF on MCps into account, and 2) the CI readings become increasingly erratic 
when pushed through soils with increasing CF content.  

The dependency of CI data on soil PS, MC and CF content was further evalu-
ated through multiple regression analysis based on literature-generated CI for-
mulations (Table 8). The result of so doing indicated that: 1) Equation (10) pro-
vides the best data representation overall, 2) the linear formulations for CI are 
somewhat weaker than the logarithmic formulations. Also, 3) soil porosity (or 
density) and MC are the more persistent and significant CI predictor variables 
than either Sand or CF alone. 

3.3. Predicting Potential ATV-Caused Soil Rutting Depth  

ForHyM was used to transform the MCps and CI projections over time into likely 
ATV-generated rut depths over time from April 2013 to April 2017, using the 
average top 15-cm PS and CF values and Equation (7), Equation (8), and Equa-
tion (10) the two plots at the three sampling locations. The results are represented 
by the time-series plot in Figure 9. As to be expected, deepest ruts would be in-
curred during spring and fall, with minor blips during summer. Ruts could also 
be incurred during winter when some of the frozen soils would thaw due to in-
terim warm weather and upward geothermal heat flow underneath the 
heat–insulating snow accumulations [53]. While trafficability advisories exist 
from fall to spring due to wet soil conditions, such advisories apply regionally, 
and therefore fall short in terms of local “when” and “where” decisions. 

 
Table 7. Linear regression results for measured vs. modelled CI by depth and location. 

 n 
Intercept Coefficient 

t-value p-value Adj. R2 RMSE MAE 
Estimate SE Estimate SE 

All depths 380 0.010 0.051 1.040 0.044 23.13 <0.001 0.58 0.34 0.27 

15 cm 119 0.039 0.083 1.047 0.092 11.358 <0.001 0.52 0.29 0.24 

30 cm 114 −0.057 0.093 1.047 0.075 13.921 <0.001 0.63 0.34 0.28 

45 cm 90 −0.206 0.124 1.254 0.098 12.751 <0.001 0.64 0.35 0.28 

60 cm 58 0.528 0.187 0.5610 0.163 3.451 0.001 0.16 0.32 0.27 

SM 167 0.232 0.068 0.772 0.072 10.722 <0.001 0.41 0.27 0.23 

OP 145 −0.472 0.133 1.506 0.118 12.758 <0.001 0.53 0.35 0.27 

UNB 69 0.010 0.135 1.022 0.088 11.588 <0.001 0.66 0.38 0.31 



M.-F. Jones, P. A. Arp 
 

163 

Table 8. Review of functional relationship between CI and soil properties. 

Study Equation 
Coefficient Parameters 

Adj. R2 RMSE MAE 
a b c d e f 

1 10log psCI a bPS cMC cCF= + + +  0.26 
(±0.05) 

−0.29 
(±0.07) 

−0.40 
(±0.03) 

1.04 
(±0.10) 

  0.52 0.36 0.29 

2 10log  psCI a bPS cMC dS= + + +  0.74 
(±0.05) 

−0.78 
(±0.06) 

−0.40 
(±0.03) 

−0.31 
(±0.09) 

  0.36 0.42 0.34 

3 10log  psCI a bPS cMC= + +  0.62 
(±0.04) 

−0.80 
(±0.06) 

−0.37 
(±0.03) 

   0.33 0.43 0.34 

4  bCI a bMC cS dD= + + +  2.26 
(±0.13) 

−2.21 
(±0.17) 

−1.50 
(±0.24) 

−0.001 
(±0.01) 

  0.33 0.42 0.34 

5 10log  v bCI a bMC cD= + +  0.04 
(±0.04) 

−0.73 
(±0.07) 

0.12 
(±0.02) 

   0.35 0.21 0.16 

6 
2 2

b g g g bCI a bM C cD dMC eD fMC D= + + + + + +

 
0.92 

(±0.43) 
−3.44 

(±1.62) 
1.20 

(±0.46) 
3.89 

(±1.47) 
−0.26 

(±0.14) 
−0.85 

(±0.64) 
0.39 0.42 0.33 

1: This study; 2: [4]; 3: [45]; 4: [8]; 5: [54]; 6: [55]. 
 

The extent to which soil rutting would be seasonally affected across the gener-
al neighbourhood of each of the three location was ascertained through digitally 
generating the elevation-derived cartographic depth-to-water index (DTW) as-
sociated with the 4, 1 and 0.25 ha upslope areas for streamflow initiation [40] 
(Figure 10). Using these patterns in combination with Equations (7) and Equa-
tions (8) produced the spatial MCps and potential ATV-related rut-depth maps 
in Figure 11, intended to be representative of the off-road soil trafficability con-
ditions during spring, end of summer and the fall to winter transition. As shown, 
the UNB location has the potential to be the most trafficable among the three 
locations in summer, but would be worst during spring and fall. In contrast, the 
OP location would have the least traffic impact across the area and seasons based 
on texture-facilitated soil drainage. However, moderate soil rutting could occur 
within the 4-ha DTW < 1 m zone at OP. Overall, the soil rutting conditions fol-
low these sequences: dry weather: UNB < OP < SM; wet weather: OP < SM < UNB 
(Figure 9). 

4. Discussion 

This article describes ways and means by which the resistance of soils to cone 
penetration can be analyzed and modeled at the daily level year-round, over 
many years, and for the varying soil conditions by select locations. The results so 
obtained are—apart from study-specific biases—generally consistent with what 
has been reported in the literature. These biases would inter alia refer to differ-
ences in CI methodology by, e.g., cone dimensions, speed of cone penetration, 
and field versus laboratory testing [4]. 

While the plot-by-plot determinations of this study are limited to three con-
trasting forest locations, they are at least representative of how soil moisture, CI, 
and rutting depth vary by soil properties, season and topographic position, as 
demonstrated through daily and spatial modelling. The extent to which this  
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Figure 9. ForHyM-generated unfrozen MCps, CI, and rut depths from April 2013 to April 
2017 for the topsoil (top 15 cm of soil) for plot 1 (top) and plot 2 (bottom) at UNB, OP, 
and SM. 

 
approach can be generalized requires additional research. For example, the spa-
tial and DTW-dependent soil trafficability formulation for CI and rut depth 
should be tested across a wider range of glaciated and non-glaciated landforms. 
Doing so would involve extending the above regression analyses across a wider 
range of independently varying soil types and properties. For example, where 
soils are cemented because of pedogenic Fe and Ca accumulations, the approach  
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Figure 10. Cartographic depth-to-water index (DTW ≤ 1 m), overlain on the hill-shaded 
LiDAR-derived bare-earth digital elevation model for the UNB, OP, and SM locations for 
end-of-summer (top), spring-to-summer as well as fall-to-winter (middle), and early- 
spring, as emulated using upslope stream-flow initiation areas amounting to 4, 1 and 0.25 
ha, respectively. 
 
would need a cementation predictor variable. In some cases, the mix of the 
best-fitting regression variable and regression coefficients may also differ, as 
demonstrated above in Table 8.  
Key to applying the approach across time and landscapes is the ability to esti-
mate how soil trafficability changes in direct response to the spatially and tem-
porally varying topo-pedo-hydrological conditions, meter-by-meter. Traditional 
soil survey maps can be helpful in this regard but only if the individual map 
units and borders conform to actual soil drainage contours. To this extent, fur-
ther progress can be made by:  

1) refining and adjusting each unit to its landform- and DEM-defining drain-
age position;  

2) exploring how the trafficability affecting soil properties (MC, texture, CF, 
OM, Db, depth) vary across the landscape of interest from the highest to the 
lowest elevation points; 

3) determining the point of streamflow initiation inside each flow channel ei-
ther through field observations or through DEM-based flow-initiation algorithms. 
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Figure 11. Soil moisture content per pore space [MCps (%)] and all-terrain rut depth after 
10 passes along same track (RD10, mm), generated from the season–representative DTW 
patterns in Figure 10 using Equation (7) and Equation (8). Top: end-of summer. Middle: 
spring-to-summer and fall-to-winter transitions. Bottom: after snowmelt. 

 
Together, these refinements would add further precision to the soil moisture 

and rut depth maps in Figure 11. For example, there would be a noticeable dif-
ference between DTW, MCps and ATV rut depth projections within and outside 
the floodplain associated with the SM location.  

Some progress towards these refinements has already been made in terms of 
checking existing trail conditions in terms of ATV-induced rutting extent, and 
by correlating this extent to the ridge-to-valley of the cartographic depth-to- 
water index (DTW [40]). The multi-pass implications on wood-forwarding rut-
ting depth have been reported by [56], and were further evaluated by [4] by way 
of Equation (7) and Equation (8). However, much more work needs to be done 
by not only addressing the DTW-emulated variations in soil wetness but also by 
addressing the changes in Db, texture, CF and OM content as these would vary 
from ridge tops to valleys in a systematic manner. For example, upslope soils 
would generally be thinner and coarser with less OM than downslope soils. The 
reverse would occur in severely eroded medium-textured soils, with the more 
cohesive soil remains upslope and the more easily eroding sand and silt fractions 
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accumulating downslope. 
Since the above analysis is restricted to bare ground conditions and mineral 

soil layers, rut-reducing surface accumulations of snow, ice, forest litter, peat, 
and roots are not addressed. Bare-ground conditions, however, exist across for-
ested landscapes along non-paved roads, after ground-exposing operations such 
as root extractions, mounding and plowing, and underneath forest cover where 
litter accumulations are low or absent due to fast litter decomposition rates. The 
latter condition is more prevalent under hardwood and pine forests than under 
fir and spruce forests. Repeated recreational traffic in such areas under moist to 
wet weather conditions would induce significant rut-induced damage through 
trail braiding, soil erosion, gulley formation, and stream and lake sedimentation 
[45].  

Also not addressed are the effects of snow and ice build-up on top of soils 
during winter, which would increase the resistance to soil penetration, compac-
tion, and rutting through increased load-bearing capacities. Since not all the wa-
ter is frozen in sub-zero clay- and OM-enriched soils, there could be problems 
associated winter-based soil rutting followed by instantaneous flash freezing. In 
summary, the above soil rutting assessment is only applicable for bare ground 
conditions. Soils covered by forest litter, slash, snow, and ice would obviously 
reduce rutting.  

5. Concluding Remarks 

The above soil rutting assessment via manual testing of the temporal changes in 
the soil resistance to penetration is limited to the immediate area at and around 
the three sampling locations of this study. More research is needed to extend and 
test this research regarding general applicability. As shown, the approach taken 
would allow this by way of hydrological and digital elevation modelling, and 
further procurement of CI-relevant soil information. 
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