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Abstract 
In this paper, a new augmented Lagrangian penalty function for constrained 
optimization problems is studied. The dual properties of the augmented La-
grangian objective penalty function for constrained optimization problems are 
proved. Under some conditions, the saddle point of the augmented Lagran-
gian objective penalty function satisfies the first-order Karush-Kuhn-Tucker 
(KKT) condition. Especially, when the KKT condition holds for convex pro-
gramming its saddle point exists. Based on the augmented Lagrangian objec-
tive penalty function, an algorithm is developed for finding a global solution 
to an inequality constrained optimization problem and its global convergence 
is also proved under some conditions. 
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1. Introduction 

Augmented Lagrangian penalty functions are effective approaches to inequality 
constrained optimization. Their main idea is to transform a constrained optimi-
zation problem into a sequence of unconstrained optimization problems that are 
easier to solve. Theories on and algorithms of Lagrangian penalty function were 
introduced in Du’s et al. works [1]. Many researchers have tried to find alterna-
tive augmented Lagrangian functions. Many literatures on augmented Lagran-
gian (penalty) functions have been published from both theoretical and practical 
aspects (see [2]-[8]), whose key concerns cover zero gap of dual, existence of 
saddle point, exactness, algorithm and so on. 
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All augmented Lagrangian functions consist of two parts, a Lagrangian func-
tion with a Lagrangian parameter and a penalty function with a penalty parame-
ter (see [2]-[8]). Dual and saddle point is the key concerns of augmented La-
grangian function. Moreover, zero gap of Lagrangian function’s dual is true only 
for convex programming and augmented Lagrangian function. Therefore, aug-
mented Lagrangian function algorithms solve a sequence of constrained optimi-
zation problems by taking differential Lagrangian parameters and penalty para-
meters in [2] [3] [4] [5]. Lucidi [6] and Di Pillo et al. [7] obtained some results of 
exact augmented Lagrangian function, but numerical results were not given. R. 
S. Burachik and C. Y. Kaya gave an augmented Lagrangian scheme for a general 
optimization problem, and established for this update primal-dual convergence 
the augmented penalty method in [8]. However, when it comes to computation, 
to apply these methods, lots of Lagrangian parameters or penalty parameters 
need to be adjusted to solve some unconstrained optimization dual problems, 
which make it difficult to obtain an optimization solution to the original prob-
lem. Hence, it is meaningful to study a novel augmented Lagrangian function 
method. 

In recent years, the penalty function method with an objective penalty para-
meter has been discussed in [9]-[16]. Burke [12] considered a more general type. 
Fiacco and McCormick [13] gave a general introduction to sequential uncon-
strained minimization techniques. Mauricio and Maculan [14] discussed a Boo-
lean penalty method for zero-one nonlinear programming. Meng et al. [15] stu-
died a general objective penalty function method. Furthermore, Meng et al. stu-
died properties of dual and saddle points of the augmented Lagrangian objective 
penalty function in [16]. Here, a new augmented Lagrangian objective penalty 
function which differs from the one in [16] is studied. Some important results 
similar to those of the augmented Lagrangian objective penalty function in [16] 
are obtained. 

The main conclusions of this paper include that the optimal target value of the 
dual problem and the optimal target value of the original problem is zero gap, 
and saddle point is equivalent to the KKT condition of the original problem un-
der the convexity conditions. A global algorithm and its convergence are pre-
sented. The remainder of this paper is organized as follows. In Section 2, an 
augmented Lagrangian objective penalty function is defined, its dual properties 
are proved, and an algorithm to find a global solution to the original problem 
(P) with convergence is presented. In Section 3, conclusions are given. 

2. Augmented Lagrangian Objective Penalty Function 

In this paper the following mathematical programming of inequality constrained 
optimization problem is considered:  

( ) ( )
( )

P min

s.t. 0, 1, 2, , ,i

f x

g x i m≤ =   

where { }: , 1, 2, ,n
ig R R i I m→ ∈ =  . The feasible set of (P) is denoted by  
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( ){ }| 0, 1, 2, , .n
iX x R g x i m= ∈ ≤ = 

 
Let functions { }:Q R∪ +∞  be a monotonically increasing functions satisfy-

ing  

( )
( )
( ) ( )2 1 2 1

0 if 0,
0 if 0,

if 0,

Q t t
Q t t
Q t Q t t t

= ≤
 > >
 > > >  

respectively. For example, ( ) { }2max 0,Q t t=  meet the requirement. 
The augmented Lagrangian objective penalty function is defined as:  

( ) ( )( ) ( ) ( )T T, , , , , ,n m m
ML x u v Q f x M u G x v H x x R u R v intR+ += − + + ∈ ∈ ∈   (1) 

where M R∈  is the objective parameter, u is the Lagrangian parameter, 
mv intR+∈  is the penalty parameter, ( ) ( ) ( ) ( )( )T

1 2, , , mG x g x g x g x=   and 

( ) ( )( ) ( )( ) ( )( )( )T

1 2, , , mH x P g x P g x P g x=   with 1 1:P R R→  and  

( )( )
( ) ( )

( ) ( )

2

2

2

1 if > ,
2

) if .
2

i
i i

i
i

i i i
i i

i ii

ug x g x
v

P g x
u u ug x g x
v vv

 −
= 
− − ≤ −  

When ( )0 1,2, ,iv i m> =  , it is clear that ( )P t  is smooth. Define func-
tions:  

( ) ( ){ }, min , , | ,n
M Mu v L x u v x Rθ = ∈                (2) 

( ) ( ){ }sup , , | 0, 0 .M Mx L x u v u vφ = ≥ >                (3) 

Define the augmented Lagrangian dual problem:  

( ) ( )DP sup , ,
s.t. 0, 0.

M u v
u v
θ
≥ >  

When ( )min
x X

f x M
∈

≥ , we have  

( ) ( )( ){ }arg min arg min | .
x X

f x Q f x M x X
∈

= − ∈
 

By (3), we have  

( ) ( )
0, 0

min sup , , min .
n nM M

x R x Ru v
L x u v xφ

∈ ∈≥ >
=                 (4) 

According to (1), we have ( ) ( )( ), ,ML x u v Q f x M≤ − , for 0, 0,u v x X∀ ≥ > ∈ . 
Let 0, 0,u v x X= > ∈ , then we have ( ) ( )( ), ,ML x u v Q f x M= − . So, 

( ) ( )( )M x Q f x Mφ = − . Hence,  

( ) ( ) ( )( )
0, 0

min sup , , min min .
n nM M x Xx R x Ru v

L x u v x Q f x Mφ
∈∈ ∈≥ >

= = −         (5) 

Theorem 1. Let x be a feasible solution to (P), and u,v be a feasible solution to 
(DP). Then  

( ) ( )( ) ( ), , , 0, 0.M Mx Q f x M u v x X u vφ θ= − ≥ ∀ ∈ ≥ >         (6) 

Proof. According to the assumption, we have  
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( ) ( )( ) ( ) ( ){ }
( )( ) ( ) ( ) ( )( )

T T

T T

, min |

,

n
M u v Q f x M u G x v H x x R

Q f x M u G x v H x Q f x M

θ = − + + ∈

≤ − + + ≤ −
 

and  

( ) ( ){ } ( ) ( )sup , , | 0, 0 , , , .M M M Mx L x u v u v L x u v u vφ θ= ≥ ≥ ≥ ≥
 

Corollary 2.1. Let ( )min
x X

f x M
∈

> . Let *x  be an optimal solution to (P), and 
( )* *,u v  be an optimal solution to (DP). Then  

( ) ( )( ) ( )* * * *, .M Mx Q f x M u vφ θ= − ≥                (7) 

By (5), if ( )* * *, ,x u v  is an optimal solution to ( )
0, 0

min sup , ,
n M

x R u v
L x u v

∈ ≥ >
, then 

*x  is an optimal solution to (P) for ( )min
x X

f x M
∈

> . We have  

( ) ( )
0, 0 , 0

sup min , , sup ,
n M M

x Ru v u v
L x u v u vθ

∈≥ > ≥
=                 (8) 

and know that ( )* *,u v  is an optimal solution to (DP) if ( )* * *, ,x u v  is an op-

timal solution to ( )
0, 0

sup min , ,
n M

x Ru v
L x u v

∈≥ >
. By Corollary 2.1 we have  

( ) ( )
0, 0 0, 0

min sup , , sup min , , .
n nM M

x R x Ru v u v
L x u v L x u v

∈ ∈≥ > ≥ >
≥             (9) 

A saddle point ( )* * *, ,x u v  of ( ), ,ML x u v  is defined by  

( ) ( ) ( )* * * * * *, , , , , , , , 0, 0.n
M M ML x u v L x u v L x u v x R u v≤ ≤ ∀ ∈ ≥ >    (10) 

By (10), the saddle point shows the connection between the dual problem and 
the original problem. The optimal solution to the original problem can be ob-
tained by the optimal solution to the dual problem and the zero gap exists in 
Theorem 2. The following Theorems 3 and Theorem 4 show that under the con-
dition of convexity, saddle points are equivalent to the optimality conditions of 
the original problem. By (10), we have  

( ) ( ) ( )* * * * * *, , , .M M ML x u v u v xθ φ= =
 

Hence, we have the following theorems. 
Theorem 2. Let ( )min

x X
f x M

∈
≥ . Then, ( )* * *, ,x u v  is a saddle point of  

( ), ,ML x u v  if and only if *x  is an optimal solution to (P) and ( )* *,u v  is an 
optimal solution to (DP) with ( )( ) ( )* * *,MQ f x M u vθ− = .  

Theorem 3. Let ( ), 1, 2, ,if g i m=   be differentiable and ( )min
x X

f x M
∈

> . 
Let ( )Q t′  for 0t ≤  and ( ) 0Q t′ >  for 0t > . If ( )* * *, ,x u v  is a saddle point 
of ( ), ,ML x u v , then, ( )* *,x u  satisfies the first-order Karush-Kuhn-Tucker 
(KKT) condition.  

Proof. According to the assumption, ( )* * *, ,x u v  is a saddle point of 
( ), ,ML x u v , then, for any 0ε >   

( ) ( ) ( )* * * * * *, , , , , , , , 0, ,n
M M ML x u v L x u v L x u v x R u v ε≤ ≤ ∀ ∈ ≥ ≥     (11) 

and  
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( ) ( )( ) ( ) ( )

( )( )

* * * * * * *

1

* *

=1

, ,

0,

m

x M i i
i

m

i i
i

L x u v Q f x M f x u g x

v P g x

=

′∇ = − ∇ + ∇

+ ∇ =

∑

∑
      (12) 

where  

( )( )
( ) ( ) ( )

( ) ( )

* * * * *

*
* * * *

if 0,

if 0.

i i i i i

i i
i i i i

i

g x g x v g x u
P g x u g x v g x u

v

 ∇ + >


∇ = −
∇ + ≤

  
And there are ( )1 1, , , mα α α  and ( )1 1, , , mβ β β  such that  

( ) ( )
* * *

*
, ,

0, 1, 2, , ,M
i i

i

L x u v
g x i m

u
α

∂
= − − = =

∂
            (13) 

( ) ( )( )
* * *

*
, ,

0, 1, 2, , ,M
i i

i

L x u v
P g x i m

v
β

∂
= − − = =

∂
         (14) 

* 0, 0, 1, 2, , ,i i iu i mα α= ≥ =                   (15) 

( )* 0, 0, 1, 2, , .i i iv i mβ ε β− = ≥ =                 (16) 

By (12)-(16), let 0ε → , then we have  

( ) ( )( ) ( ) ( )* * * * * * *

1
, , 0,

m

x M i i
i

L x u v Q f x M f x u g x
=

′∇ = − ∇ + ∇ =∑
 

( )* * *0, 0, 1, 2, , .i i iu g x u i m= ≥ = 

 
For , , ,n m mx R u R v intR+ +∈ ∈ ∈  it is clear that (1) is equivalent to the following  

( ) ( )( ) ( )
2 2

1
, , max ,0 .

2 2

m
i i i

M i
i i i

v u u
L x u v Q f x M g x

v v=

   = − + + −    
∑    (17) 

Clearly, if ( )( ) 0iP g x = , then ( ) 0ig x ≤ . We have that 
( ) ( )T T 0u G x v H x+ ≤  if x X∈ . 

Theorem 4. Let ( )min
x X

f x M
∈

> . ( ), 1, 2, ,if g i m=   are convex and diffe- 
rentiable. Let ( ) 0Q t′ =  for 0t ≤  and ( ) 0Q t′ >  for 0t > . If ( )* *,x u  satis-
fies the first-order Karush-Kuhn-Tucker (KKT) condition, then ( )* * *, ,x u v  is a 
saddle point of ( ), ,ML x u v  for any * 0v > .  

Proof. Let any * 0v > . According to the assumption, ( ), ,ML x u v  is convex 
and differentiable on x by (17). We have *x X∈ , ( )* * *, , 0x ML x u v∇ =  and  

( ) ( ) ( ) ( )
( )

* * * * * * * * *

* * *

, , , , , ,

, , , .

M M x M

n
M

L x u v L x u v x x L x u v

L x u v x R

≥ + − ∇

= ∀ ∈
 

On the other hand, when ( )* *,x u  satisfies the first-order Karush-Kuhn- 
Tucker (KKT) condition, then *x X∈ , ( )*T * 0u G x =  and  

( ) ( )T * T * 0u G x v H x+ ≤ . By the definition of ( )H x , we know that 

( )*T * 0v H x ≥  for * 0v > . So, for any , 0u v ≥  and * 0v > , we have  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

* * * * T * T * *T * *T *

T * T * *T *

, , , ,

0.

M ML x u v L x u v u G x v H x u G x v H x

u G x v H x v H x

− = + − −

= + − ≤
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Example 2.1 Consider the problem:  

( )( ) ( )P 2.1 min

s.t. 0.

f x x

x

= −

≤  
When ( ) { }2max 0,Q t t= , the augmented Lagrangian objective penalty func-

tion is given by  

( ) { }
2 2

2, , max ,0 max ,0 .
2 2M
v u uL x u v x M x

v v
 = − − + + − 
   

The optimal solution to ( )min , ,Mx R
L x u v

∈
 is * 0x =  for 0, 0M v< >  and 

2u M= − . For * 0x = , some * * *0, 2M u M< = −  and * 0v > , it is clear that  

( ) ( ) ( )* * * * * *, , , , , , , , ,n m
M M ML x u v L x u v L x u v x R u v R+≤ ≤ ∀ ∈ ∈

 

holds. Then ( )* *0, 2 ,M v−  is a saddle point of ( ), ,ML x u v .  
Example 2.1 shows that the augmented Lagrangian objective penalty function 

can be as good in terms of the exactness as the traditional exact penalty function. 
For any given ( ), ,M u v , define the following problem as  

( )( ) ( )P , , min , ,

s.t. .
M

n

M u v L x u v

x R∈  

In Example 2.1, ( )* 2, ,
2

u Mx M u v
v

+
= −

+
 is an optimal solution to (P(M,u,v)). 

When v → +∞ , ( )* , , 0x M u v = . 

Now, a generic algorithm is developed to compute a globally optimal solution 
to (P) which is similar to the algorithm in [15]. The algorithm solves the prob-
lem (P(M,u,v)) sequentially and is called Augmented Lagrangian Objective Pe-
nalty Function Algorithm (ALOPFA Algorithm for short).  

ALOPFA Algorithm: 
Step 1: Choose 0 nx R∈ , 1 1, 1u v > , 0 1, 1a b< < > , 1k = , and 1 0M < . 
Step 2: Solve ( )min , ,

kn

k k
M

x R
L x u v

∈
. Let kx  be a global minimizer. 

Step 3:  If kx  is not feasible to (P), let ( ){ }1 min , k
k kM M f x+ = , 

1k ku au+ = , 1k kv bv+ = , : 1k k= +  and go to Step 2. 
Otherwise, stop and kx  is an approximate solution to (P). 
The convergence of the ALOPFA algorithm is proved in the following theo-

rem. Let  

( ) ( )( ){ }, | , 1, 2, ,k k
kS L f x L Q f x M k= ≥ − =            (18) 

which is called a Q-level set. We say that ( ),S L f  is bounded if, for any given 
0L >  and a convergent sequence *kM M→ , ( ),S L f  is bounded. 

Theorem 5. Let ( )min
x X

f x
∈

 exist. Suppose that Q and ( ) ( ), ,i jf g i I h j J∈ ∈  
are continuous, and the Q-level set ( ),S L f  is bounded. Let { }kx  be the se-
quence generated by the ALOPFA Algorithm. If { }kx  is an infinite sequence 
with 0x X∈ , then { }kx  is bounded and any limit point of it is an optimal so-
lution to (P).  
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Proof. The sequence { }kx  is bounded is shown first. Since kx  is an optimal 
solution to ( )min , ,

kn

k k
M

x R
L x u v

∈
,  

( ) ( ) ( )( )0 0, , , , ,  1, 2, ,
k k

k k k k k
M M kL x u v L x u v Q f x M k≤ ≤ − = 

 
because ( ) ( )T 0 T 0 0k ku G x v H x+ ≤  for 0x X∈ . We have  

( )1 1, 2,k kM M k+ ≤ =  , then there is a bound of sequence { }kM , because 

( )min
x X

f x
∈

 has the optimal solution. Therefore, there a k ′  such that 

( )k
kM f x<  for k k ′> , *

kM a→  and 
2

0
2

i

i

u
v
→  as k → +∞ , and it is con-

cluded that there is some 0A >  such that  

( ) ( )( )
2

1
, , ,  .

2k

km
k k k k i

M k k
i i

uA L x u v Q f x M k k
v=

′> ≥ − − >∑
 

Since the Q-level set ( ),S L f  is bounded, the sequence { }kx  is bounded. 
Without loss of generality, we assume *kx x→ . Let x  be an optimal solu-

tion to (P). Note that  

( )( ) ( )

( )
( )( )

2

1
, ,

2

, ,

,  .

k

k

km
k k k ki

k Mk
i i

k k
M

k

u
Q f x M L x u v

v

L x u v

Q f x M k k

=

− − ≤

≤

′≤ − >

∑

 

Letting k → +∞  in the above inequality, we obtain that  

( )( ) ( )( )* * * ,Q f x a Q f x a− ≤ −
 

which implies ( ) ( )*f x f x= . Therefore, *x  is an optimal solution to (P). 
Theorem 5 means that the ALOPFA Algorithm has global convergence in 

theory. When v is taken big enough, an approximate solution to (P) by the 
ALOPFA Algorithm is obtained. 

3. Conclusion 

This paper discusses dual properties and algorithm of an augmented Lagrangian 
penalty function for constrained optimization problems. The zero gap of the 
dual problem based on the augmented Lagrangian objective penalty function for 
constrained optimization problems is proved. Under some conditions, the sad-
dle point of the augmented Lagrangian objective penalty function i.e. equivalent 
to the first-order Karush-Kuhn-Tucker (KKT) condition. Based on the aug-
mented Lagrangian objective penalty function, an algorithm is presented for 
finding a global solution to (P) and its global convergence is also proved under 
some conditions. There are still some problems that need further study for the 
augmented Lagrangian objective penalty function, for example, the local algo-
rithm, exactness, and so on. 
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Abstract 
A novel approach to optimizing any given mathematical function, called the 
MOdified REinforcement Learning Algorithm (MORELA), is proposed. Al-
though Reinforcement Learning (RL) is primarily developed for solving Mar-
kov decision problems, it can be used with some improvements to optimize 
mathematical functions. At the core of MORELA, a sub-environment is gen-
erated around the best solution found in the feasible solution space and com-
pared with the original environment. Thus, MORELA makes it possible to 
discover global optimum for a mathematical function because it is sought 
around the best solution achieved in the previous learning episode using the 
sub-environment. The performance of MORELA has been tested with the re-
sults obtained from other optimization methods described in the literature. 
Results exposed that MORELA improved the performance of RL and per-
formed better than many of the optimization methods to which it was com-
pared in terms of the robustness measures adopted. 
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1. Introduction 

If ( )f x  is a function of decision variables, where x S∈ , S is the feasible 
search space and nS R⊆ , an optimization problem can be defined as finding 
the value of bestx  in S that makes ( )f x  optimal for all x values. Despite the 
fact that different meta-heuristic algorithms have been improved especially in 
last two decades, the contributions of Reinforcement Learning (RL) to this area 
are still limited comparing to others. Numerous studies such as genetic algo-
rithm based methods [1] [2], ant colony based algorithms [3] [4], harmony 
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search approach [5], modified firefly algorithm [6] and hybrid heuristic methods 
[7] [8] [9] have been proposed to optimize any given mathematical function. 
Apart from these applications, there are some attempts for solving engineering 
problems in different fields using RL based algorithms in the relevant literature. 
Hsieh and Su [10] developed Q-learning based optimization algorithm for solv-
ing economic dispatch problem after they tested their proposed algorithm for 
optimizing standard mathematical test functions. Their results showed that the 
proposed algorithm outperformed many existing optimization algorithms. Simi-
larly, Samma et al. [11] tested newly developed RL based Memetic Particle Swarm 
Optimization algorithm on mathematical functions and real-world benchmark 
problems. Numerical examples applied indicated that the proposed algorithm is 
able to produce better results than those did by other optimization algorithms 
given in the literature. Walraven et al. [12] proposed a new algorithm to minim-
ize traffic flow using RL algorithm. They formulated traffic flow optimization 
problem as Markov Decision Process and used Q-learning method to reduce 
traffic congestion. Another application of the RL algorithm has been proposed 
by Tozer et al. [13]. They developed a new RL algorithm that is able to find op-
timal solution with several conflicting objectives. The proposed algorithm has 
been tested on multi-objectives path finding problems with deterministic and 
stochastic environments. 

Although most of the methods described in the literature are able to discover 
global optimum of any given optimization problem, the performance of newly 
developed algorithms should be investigated. Therefore, we present a MOdified 
REinforcement Learning Algorithm (MORELA) approach which differs from 
RL based approaches by means of generating a sub-environment based on the 
best solution obtained so far which is saved to prevent the search being trapped 
at local optimums. And then, all of the function values with corresponding deci-
sion variables in MORELA are ranked from best to worst. In this way, the 
sub-environment is compared with the original environment. If one of the 
members of the sub-environment produces better functional value, it is added to 
the original environment and the worst solution is omitted. This makes the 
searching process more effective because the global optimum is sought around 
the best solution achieved so far, with the assistance of the sub-environment and 
the original environment.  

RL has been attracted a lot of attention from scientific community for solving 
different class of problems especially in last decades [14]. In RL, there is a re-
markable interaction between agent and environment which contains everything 
apart from the agent. The agent receives information from the environment 
through cooperating with each other. Depending on the information obtained, 
the agent changes the environment by means of implementing an action. This 
modification is transferred to the agent by means of a signal. The environment 
generates numerical values called rewards and the agent efforts to maximize 
them. The agent and environment affect each other at each time t  in which the 
agent gets information about the environment’s state ts S∈ , where S  consists 
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of states. To this respect, the agent performs an action ( )t ta A s∈ , where 
( )tA s  includes actions in state ts  and gains a reward 1tr R+ ∈ , and it is lo-

cated in a new state 1ts + . Figure 1 represents this cooperation [15]. 
There are three primary types of RL based methods, each with its advantages 

and disadvantages. The Monte Carlo and Temporal difference learning methods 
are able to learn only from experience whereas the other one, called Dynamic 
programming, requires a model of the environment. Therefore, because of not 
need to have a model, they are superior to Dynamic programming. Indeed, 
temporal difference learning methods are at the core of RL [16]. On the other 
hand, Q-learning, one of the temporal difference methods, evaluates Q values, 
which represent quality of a given state-action pair [17]. It benefits experience to 
update members of Q table [14]. Q table has elements as ( ),Q s a  for each 
state-action pair. The Q-learning determines the Q value, which reflects an ac-
tion a performed in a state s, and selects the best actions [18]. The Q table is 
created as shown in Table 1 [19].  

Q learning algorithm includes in a sequence of learning episodes (i.e. itera-
tion). At each learning episode, the agent chooses an action in accordance with 
information provided from a state s. The agent deserves to receive a reward con-
sidering its Q value and observes the next state, s′ . The agent replaces its Q 
value with that provided according to Equation (1): 

( ) ( ) ( ) ( ) ( )
1

next state 

, 1 , , ,
t

best
t t t

s

Q s a Q s a r s a Q s aα α γ
−

′

 ← − × + × + × 



       (1) 

 

 
Figure 1. The cooperation between agent and environment. 

 
Table 1. Q learning process. 

Initialize Q values 

Repeat t times (t = number of learning episodes) 

Select a random state s 

Repeat until the end of the learning episode 

Select an action a 

Receive an immediate reward r 

Observe the next state s′  

Update the Q table according to the update rule 

Set s s′=  
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where ( ),tQ s a  is the updated Q value, ( )1 ,tQ s a−  is the Q-value saved in the 
Q table, ( ),tr s a  is the reward for state-action pair, α  is the learning rate, and 
γ  is the discounting parameter [18].  

This paper proposes a new and robust approach, called MORELA, to optimize 
any given mathematical function. MORELA approach varies from other RL 
based approaches through generating a sub-environment. In this way, developed 
MORELA approach has ability to find global optimum for any given mathemat-
ical optimization because it is sought both around the best solution achieved so 
far with the assistance of the sub-environment and the original environment. 
The rest of this paper is organized as follows. The definition of fundamental 
principles of MORELA is provided in Section 2. Section 3, which also contains 
comparison of MORELA and RL, various contrastive analyses of MORELA such 
as robustness analysis, comparisons with other related methods, explanation of 
evolving strategy of MORELA and investigation of the effect of high dimensio-
nality, presents numerical experiments and the last section is conclusions. 

2. The MORELA Approach 

There are several studies related to RL combined with different heuristic me-
thods for solving different types of optimization problems. Liu and Zeng [20] 
developed genetic algorithm based method with assistance of reinforcement 
mutation to tackle the problem of travelling salesman. Integrating RL with dif-
ferent algorithms has been used to address the problem of robot control with 
unrecognized obstacles [21]. The experimental results revealed that the hybrid 
approach is superior to RL for planning robot motion whereas RL faced some 
difficulties. Chen et al. [22] proposed genetic network programming with RL for 
stock trading. The comparison of the results with those obtained from other 
methods shows the noticeable performance of their method. Similarly, Wu et al. 
[23] improved a RL based method considering multi-agent for tackling job 
scheduling problems. Their results showed that the method is comparable to 
that of some centralized scheduling algorithms.  

From a different viewpoint, Derhami et al. [24] applied RL based algorithms 
for ranking most relevant web pages to user’s search. The algorithms are tested 
by using well-known benchmark datasets. Their results showed that the use of 
RL makes noticeable improvements in ranking of web pages. Khamis and Go-
maa [25] used an adaptive RL approach to tackle traffic signal control at junc-
tions by considering multi-objective. Recently, Ozan et al. [26] developed RL 
based algorithm in determining optimal signal settings for area traffic control. 
Results revealed that the proposed algorithm outperforms genetic algorithm and 
hill climbing methods even if there is a heavy demand condition. 

Hybridizing RL algorithms with other optimization methods is a powerful 
technique to tackle different types of optimization problems arising in different 
fields. Thus, in the context of this paper, we focus on applicability of RL based 
algorithms to discover global optimum for any mathematical function. The 
proposed algorithm called MORELA is on the basis of Q-learning, which is a 
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model-free RL approach. In addition, a sub-environment is generated in 
MORELA so that the environment consists of original and sub-environment 
differently from other RL based approaches as shown in Equation (2) [26]. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

11 12 1

121 22 2

2

1 2

1 1 1 2 1

2 1 2 2 2
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, , ,
, , ,

, , ,

, , ,

, , ,

, , ,
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t t t
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t t t
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t t t

m m m n

m m m n
t t t

m m m n
t t t

Q s a Q s a Q s a f
Q s a Q s a Q s a f

Q s a Q s a Q s a

Q s a Q s a Q s a

Q s a Q s a Q s a

Q s a Q s a Q s a

− − −
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 
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 
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 
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 
 
 
 
 
 
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      (2) 

where m is the size of the original environment, n is the number of decision va-
riables, and f is fitness value at the tth learning episode. As shown in Equation 
(2), ( ),Q s a  value achieved in the previous learning episode is kept in the (m + 
1)th row. At the tth learning episode, a sub-environment is generated as given in 
Equation (3) and located between rows (m + 2) and (2m + 1). Thus, a global op-
timum is explored around the best solution with assistance of sub-environment 
with vector of β  which must be decreased during algorithm process in order to 
make searching more effectively in a reduced environment. The limits of β  can 
be selected by considering upper and lower constraints of a given problem [3].  

( ) ( )( )1 1, ; ,best best
t trnd Q s a Q s a− −− +β β                 (3) 

After generating the sub-environment, the solution vectors located in both 
environments are ranked from best to worst according to their fitness values. 
With assistance of this sorting, the worst solution vector is excluded from envi-
ronment whereas the solution vector provided a better functional value is included. 
Thus, MORELA may gain the ability to solve any given optimization problem 
without prematurely converging. Figure 2 shows the process of MORELA. 

 

 
Figure 2. The process of MORELA. 
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In MORELA, each action a in state s is rewarded as shown in Equation (4) 
[26]. 

( ) ( ) ( )
( )

, ,
,

,

best
t t

t
t

Q s a Q s a
r s a

Q s a
−

=                   (4) 

where ( ),tr s a  is the reward function, ( ),tQ s a  is the Q value and ( ),best
tQ s a  

is the best Q value obtained in the tth learning episode. In MORELA, the reward 
value is determined for each member of the solution vector by considering its Q 
value and the best Q value provided so far. The reward values come to close to 
the value “0” at the end of the solution process because of the structure of the 
reward function. In fact, a solution receives less reward when it is located closer 
to global optimum than the others. On the other hand, the probability of global 
optimum finding for further located solutions may be increased by means of 
providing them bigger rewards. Thus, the reward function developed may be re-
ferred to as penalty contrary to reward.  

3. Numerical Experiments 

An application of MORELA was carried out by solving several mathematical 
functions taken from the literature. However, before solving these functions, it 
may be essential to demonstrate the effectiveness of MORELA over RL. For this 
purpose, a performance comparison was conducted by solving a mathematical 
function. MORELA was encoded in the MATLAB for all test functions, using a 
computer with Intel Core i7 2.70 GHz and 8 GB of RAM. The related solution 
parameters for MORELA were set as follows: the environment size is taken as 20, 
the discounting parameter γ  and the learning rate α  were taken as 0.2 and 
0.8, respectively. The search space parameter β  was chosen according to the 
search domain for all test functions. The solution process was terminated when a 
pre-determined stopping criterion was met. The stopping criterion was properly 
selected for each function, and it theoretically guarantees that global optimum 
will be found eventually.  

3.1. Comparison of MORELA and RL 

The test function used to compare MORELA and RL is given in Equation (5). It 
has a global optimum solution of ( )1 2, 10f x x = −  when ( ) ( )1 2, 10,0x x = − . A 
graph of the objective function is given in Figure 3. The convergence behaviors 
of MORELA and RL are illustrated in Figure 4.  

( ) 1
1 2

2

,
1

xf x x
x

=
+

                       (5) 

As seen in Figure 4, same initial solutions were used for both algorithms to 
compare them realistically. Simulation results reveal that MORELA requires 
many fewer learning episodes than RL although both algorithms are capable of 
finding globally optimal solution for this function. MORELA needs only 1176 
learning episodes to find optimal solution whereas RL requires 7337. 
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Figure 3. Objective function within the range (−10, 10). 

 

 
Figure 4. Performance comparisons of MORELA and RL. 

3.2. Robustness Analysis 

A robustness analysis for MORELA was carried out by using succeed ratio (SR) 
given in Equation (6).  
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100 s

T

N
SR

N
∗

=                          (6) 

where Ns is the number of successful runs which indicates that the algorithm 
produces the best solution at the required accuracy and NT is the total number of 
runs which is set to 50 to make a fair comparison. For this experiment, a run is 
accepted as successful when its objective function value is around 3.5% of global 
optimum. The robustness analysis for MORELA, PSACO [7] and other methods 
[27] are given in Table 2. As shown, MORELA is able to find global optimum 
with very high success in comparison with other algorithms, except PSACO. Al-
though PSACO produces higher success ratios than MORELA for functions F12 
and F13, for given total numbers of runs, MORELA and PSACO yield same re-
sults for functions F2, F7, F9 and F16. CPSO, PSO and GA in particular yield 
worse results than MORELA and PSACO.  

3.3. Further Comparisons of MORELA with Other Methods 

To gauge the performance of MORELA against the performance of some other 
methods described in the literature, sixteen well-known benchmark problems 
were used which are given in Appendix A. Functions 6, 7, 9, 13 and 16 are taken 
from Shelokar et al. [7]. Functions 8 and 14 are adopted from Sun and Dong 
[28] and Chen et al. [29], respectively. The rest of the functions are from Baskan 
et al. [3]. Table 3 lists algorithms compared with MORELA. 

To assess the ability of MORELA, its performance was compared with 12 al-
gorithms listed in Table 3. For this purpose, sixteen test functions were used 
based on 100 runs. The results are shown in Table 4 in terms of the best func-
tion value, the number of learning episodes, the best solution time, the success 
ratio, the average number of learning episodes and the average error. The best 
function value is the value obtained for all runs at the required accuracy that in-
dicates that the algorithm reached to the global optimum. The required accuracy 
is determined as the absolute difference between the best function value and the 
theoretical global optimum. For this experiment, a value of “0” was chosen as 
required accuracy for all test functions. The number of learning episodes and the 
best solution time are the number of runs and the time required to obtain the 
best function value, respectively. The average number of learning episodes is de- 

 
Table 2. Results of robustness analysis. 

Function 
The values of SR 

MORELA PSACO CPSO PSO GA 

F2 100 100 98 100 84 

F7 100 100 100 98 98 

F9 100 100 100 98 98 

F12 98 100 90 96 16 

F13 96 98 96 26 94 

F16 100 100 100 94 92 
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Table 3. The algorithms compared with MORELA. 

Functions Algorithm Reference 

F4-F7 SZGA Successive zooming genetic algorithm [1] 

F1-F2-F3-F4 IGARSET Improving GA [2] 

F7-F12-F13 ACO Ant colony optimization [30] 

F4-F5-F11-F12-F13-F15-F16 PSACO Particle swarm and ant colony algorithm [7] 

F5 ECTS Enhanced continuous tabu search [31] 

F10 ACORSES Ant colony optimization [3] 

F8 SA Simulated annealing [28] 

F14 RW-PSO+BOF Random walking particle swarm optimization [29] 

F5-F6-F7-F9-F11-F12-F13 GA-PSO Genetic algorithm particle swarm optimization [8] 

F4-F7-F9 GAWLS Genetic algorithm [32] 

F1-F3 HAP Hybrid ant particle optimization algorithm [4] 

F1-F4-F10 ACO-NPU Ant colony optimization [9] 

All problems MORELA Modified reinforcement learning algorithm (This study) 

 
Table 4. The results of MORELA and compared algorithms. 

Function Method 
Best function  

value 
Number of learning  

episodes* 
Best solution  

time (sec) 
Success  

ratio 
Average number of 
learning episodes* 

Average 
error 

F1 IGARSET 0 2174 0.0568 NA 2375 NA 

 ACO-NPU 0 20,000 0.0590 NA NA NA 

 
HAP 

MORELA 
2.4893e−8 

0 
100 

68,760 
NA 

0.8688 
NA 
100 

NA 
71,000 

NA 
0 

F2 IGARSET −2 2400 0.0614 NA 3111 NA 

 MORELA −2 34,920 1.1790 97 36,200 0 

F3 IGARSET 2.08e−27 1821 0.0666 NA 2156 NA 

 
HAP 

MORELA 
2.56e−39 
9.71e−40 

100 
31,620 

NA 
0.9584 

NA 
98 

NA 
31,740 

NA 
9.33e−34 

F4 SZGA 2.9e−8 4000 NA NA NA NA 

 IGARSET 0 1004 0.0485 NA 1065 NA 

 GAWLS 0 2572 NA NA NA NA 

 PSACO NA NA NA 100 370 5.55e−17 

 
ACO-NPU 
MORELA 

0 
0 

1000 
34,340 

0.0556 
0.5660 

NA 
99 

NA 
35,700 

NA 
1.11e−18 

F5 ECTS NA NA NA NA 338 3e−08 

 PSACO NA NA NA 100 190 7.69e−29 

 GA-PSO NA NA NA 100 206 0.00004 

 MORELA 0 36,955 21.1367 100 36,980 0 

F6 GA-PSO NA NA NA 100 8254 0.00009 

 MORELA −1 40,680 0.6722 100 40,960 0 
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Continued 

F7 SZGA 3 9000 NA NA NA NA 

 ACO NA NA 0.11a NA 264a NA 

 GAWLS 3 2573 NA NA NA NA 

 GA-PSO NA NA NA 100 25,706 0.00012 

 MORELA 3 33,920 0.5344 100 37,120 0 

F8 SA −9.999994e−01 16,801 NA NA NA NA 

 MORELA −1 35,640 0.5365 100 38,380 0 

F9 GAWLS −186.7309 2568 NA NA NA NA 

 GA-PSO NA NA NA 100 96,211 0.00007 

 MORELA −186.7309b 16,740 0.3516 100 17,460 0 

F10 ACORSES −837.9658 1176 0.0690 NA NA NA 

 
ACO-NPU 
MORELA 

−837.9658 
−837.9658b 

750 
14,880 

0.0289 
0.2722 

NA 
100 

NA 
17,500 

NA 
0 

F11 PSACO NA NA NA 100 167 5.7061e−27 

 GA-PSO NA NA NA 100 95 0.00005 

 MORELA 0 37,016 23.3041 100 37,856 0 

F12 PSACO NA NA NA 100 592 2.0755e−11 

 ACO NA NA 0.74a NA 528a NA 

 GA-PSO NA NA NA 100 2117 0.00020 

 MORELA −3.8628b 13,840 0.4053 96 15,700 1.015e−13 

F13 PSACO NA NA NA 96 529 4.4789e−11 

 GA-PSO NA NA NA 100 12,568 0.00024 

 ACO NA NA 4.10a NA 1344a NA 

 MORELA −3.32c 30,400 0.7804 96 32,200 2.3413e−16 

F14 RW-PSO+BOF NA NA NA NA NA 0d 

 MORELA 0 33,500 0.5254 100 34,440 0 

F15 PSACO NA NA NA 100 1081 6.23e−22 

 MORELA 0 37,010 19.8856 100 38,896 0 

F16 PSACO NA NA NA 100 209 2.6185e−13 

 MORELA 0.3979b 7680 0.1413 100 7900 0 

NA: Not available; aThe average number of function evaluations of four runs and running time in units of standard time. bThe theoretical minimum value 
was considered to be four digits. cThe theoretical minimum value was considered to be two digits. dMean results of more than 30 independent trials. 
 

termined based on the number of successful runs in which algorithm generates 
the best solution for the required accuracy. Average error is defined as the aver-
age of the difference between best function value and theoretical global opti-
mum. 

The findings indicate that the MORELA showed remarkable performance for 
all of the test functions except F3, for which theoretical global optimum could 
not be found with the required accuracy, namely, 0. Although MORELA was not 
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able to solve this function, it produces better functional value than those pro-
vided by other compared algorithms, as shown in Table 4. MORELA also pro-
duces less average error for all test functions than the other methods considered. 
At the same time, most of these errors are equal to 0. This means that MORELA 
was able to find the global optimum for each run. Therefore, MORELA may be 
considered to be a robust algorithm for finding global optimum for any given 
mathematical function. As Table 4 shows, MORELA requires a greater number 
of learning episodes than the other algorithms for many of the test functions, 
due to accuracy required of it. Although the required number of learning epi-
sodes was found to be higher than the other algorithms, it can be ignored be-
cause of the required accuracy chosen (a value of 0) for all test functions consi-
dered in this comparison. The best solution times for the functions achieved by 
the algorithms considered are also given in Table 4. In the meantime, investiga-
tion of the effect of environment size and corresponding algorithm parameters is 
the beyond the scope of this study.  

3.4. Explanation of Evolving Strategy Provided  
by Sub-Environment 

In addition, we have used Bohachevsky function (F4) in order to better explain 
how the evolving population is diversified by the sub-environment in MORELA. 
The function of F4 has a global optimum solution of ( )1 2, 0f x x =  when 
( )1 2, 0x x =  for the case of 2 variables and the required accuracy was chosen to 
be 1e−15 units for this experiment. As it can be realized from Figure 5(a) and 
Figure 5(b), the sub-environment is firstly generated at 2nd learning episode us-
ing Equation (3), depending on the best solution found in the previous learning 
episode and β  value. 

When the main difference between Figure 5(a) and Figure 5(b) is observed, 
it can be clearly seen that the solution points are stably distributed in the original 
environment whereas the points in the sub-environment explore global opti-
mum near the boundaries of the solution space given as 1 2100 , 100x x− ≤ ≤  for 
this function. Although the solution points located in the original environment 
have a tendency to reach global optimum at the 10th learning episode as shown 
in Figure 5(c) and Figure 5(d), the others located in the sub-environment still 
continue to search global optimum near the boundaries of the solution space. 
This property provides to diversify the population of MORELA at each learning 
episode, and thus the probability of being trapped in local optimum is decreased. 
At 25th learning episode, the solution points in the original environment are al-
most close to global optimum, but the other points in the sub-environment are 
still dispersed in the solution space as can be seen in Figure 5(e) and Figure 
5(f). Similarly, this tendency continues until MORELA reached to about 200th 
learning episode. After 250th learning episode, the solution points in the original 
environment are too close to global optimum whereas the others in the 
sub-environment still continues to explore new solution points around global 
optimum although they have a tendency to reach global optimum. Finally, at  
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Figure 5. An illustration of diversify mechanism of MORELA. 

 
1000th learning episode, all solution points populated in the original and 
sub-environment reached to global optimum as seen in Figure 5(k) and Figure 
5(l). 

3.5. Effect of High Dimensions 

The Ackley function given in Equation (7) was chosen to explore the effect of 
high dimensions on the search capability of MORELA. The global minimum of 
this function is given as ( ) 0f x =  at 0x = . The algorithm was repeated 10 
times to decrease the effect of randomness. The average number of learning epi-
sodes and average objective function values were recorded with different dimen-
sions. For this experiment, the required accuracy was chosen to be 1e−10 units.  

( ) ( ) ( )2

1 1

1 120exp 0.2 exp cos 2π 20
n n

i in
i i

AK x x x e
n n= =

   = − − ∗ − + +       
∑ ∑    (7) 

• 32.768 32.768; 1,2, , ; the number of the variablesix i n n− ≤ ≤ = =  
• ( ) ( )0, ,0 , 0nx AK x= =  

Figure 6 represents the variation of the average objective function value ac-
cording to different dimensions.  

As Figure 6 shows, the MORELA shows acceptable performance even for high 
dimensions of the Ackley function. Average objective function values of 
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9.74e−11 and 9.89e−11 were obtained when the dimensions were equal to 10 and 
10,000, respectively. These values are very close to each other, considering dif-
ferences in dimensions. Results show that MORELA may be considered as an ef-
ficient way for finding global optimum based on required accuracy of a given 
mathematical function even if dimension of the problem became increased. 
Figure 7 illustrates the variation in the average number of learning episodes as a 
function of dimension for the Ackley function. 

Although the average number of learning episodes increased notably with in-
creasing dimension up to 1000, the average number of learning episodes in-
creased very little within the dimension range from 1000 to 10,000. This experi-
ment clearly demonstrates that the number of learning episodes required by 
MORELA is not apparently affected by high dimensionality.  

4. Conclusions 

A powerful and robust algorithm called MORELA is proposed to find global op- 
 

 
Figure 6. Average objective function values with different dimensions. 

 

 
Figure 7. Average number of learning episodes with different dimensions. 
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timum for any given mathematical function. MORELA differs from RL based 
approaches by means of generating a sub-environment. Thus, this approach 
makes it possible to find global optimum, because it is sought both around the 
best solution achieved so far with the assistance of the sub-environment and the 
original environment.  

The performance of MORELA was examined in several experiments, namely, 
a comparison of MORELA and RL, a robustness analysis, comparisons with 
other methods, explanation of evolving strategy of MORELA, and an investiga-
tion of the effect of high dimensionality. The comparison of MORELA and RL 
showed that MORELA requires many fewer learning episodes than RL to find 
global optimum for a given function. The robustness analysis revealed that 
MORELA is able to find global optimum with high success. MORELA was also 
tested on sixteen different test functions that are difficult to optimize, and its 
performance was compared with that of other available methods. MORELA has 
found global optimum for all of the test functions except F3, based on the re-
quired accuracy. Besides, the last experiment clearly shows that MORELA is not 
significantly affected by high dimensionality. 

Finally, all numerical experiments indicate that MORELA performed well in 
finding global optimum of mathematical functions considered, compared to 
other methods. Based on the results of this study, it is expected that in future re-
search, optimization methods based on RL will be found to possess great poten-
tial for solving various optimization problems. 
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Appendix A 

F1: 
Rosenbrock (2 variables) 

( ) ( )( ) ( )
2 22

1 2 1 2 1, 100 1f x x x x x= ∗ − + −  

• global minimum: ( ) ( )1 2 1 2, 1, , 0x x f x x= =  
F2: 
(2 variables) 

( ) ( ) ( )2 2
1 2 1 2 1 2, cos 18 cos 18f x x x x x x= + − −  

• 1 21 , 1x x− ≤ ≤  
• global minimum: ( ) ( ) ( )1 2 1 2, 0,0 , , 2x x f x x= = −  

F3:  
(2 variables) 

( ) ( )
( )

( )
( )

8 4
1 2

1 2 8 4
1 2

3 3
,

1 3 1 3

x x
f x x

x x

− −
= +

+ − + −
 

• global minimum: ( ) ( )1 2 1 2, 3, , 0x x f x x= =  
F4:  
Bohachevsky (2 variables) 

( ) ( ) ( )2 2
1 2 1 2 1 2, 2 0.3cos 3π 0.4cos 4π 0.7f x x x x x x= + − − +  

• 1 2100 , 100x x− ≤ ≤  
• global minimum: ( ) ( )1 2 1 2, 0, , 0x x f x x= =  

F5:  
De Jong (3 variables) 

( ) 2

1

n

i
i

f x x
=

= ∑  

• 5.12 5.12; 1,2, ,ix i n− ≤ ≤ =   
• global minimum: ( ) ( )0,0, ,0 , 0x f x= =  

F6:  
Easom (2 variables) 

( ) ( ) ( ) ( ) ( )( )2 2
1 2 1 2 1 2, cos cos exp π πf x x x x x x= − − − − −  

• 1 2100 , 100x x− ≤ ≤  
• global minimum: ( ) ( ) ( )1 2 1 2, π, π , , 1x x f x x= = −  

F7:  
Goldstein-Price (2 variables) 

( ) ( ) ( )
( ) ( )

2 2 2
1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

, 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

f x y x x x x x x x x

x x x x x x x x

 = + + + − + − + + 
 ∗ + − − + + − + 

 

• 1 22 , 2x x− ≤ ≤  
• global minimum: ( ) ( ) ( )1 2 1 2, 0, 1 , , 3x x f x x= − =  
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F8:  
Drop wave (2 variables) 

( )
( )

( )

2 2
1 2

1 2
2 2
1 2

1 cos 12
, 1 2

2

x x
f x x

x x

+ +
= −

+ +
 

• 1 25.12 , 5.12x x− ≤ ≤  
• global minimum: ( ) ( ) ( )1 2 1 2, 0,0 , , 1x x x x= = −  

F9:  
Shubert (2 variables) 

( ) ( )( ) ( )( )
5 5

1 2 1 2
1 1

, cos 1 1 cos 1 1
i i

f x x i i x i i x
= =

= ⋅ + + ∗ ⋅ + +∑ ∑  

• 1 210 , 10x x− ≤ ≤  
• 18 global minima ( )1 2, 186.7309f x x = −  

F10:  
Schwefel (2 variables) 

( )
1

sin
n

i i
i

f x x x
=

= − ∗∑  

• 1 2500 , 500x x− ≤ ≤  
• global minimum: ( ) ( ) ( )1 2 1 2, 420.9687,420.9687 , , 418.9829x x f x x n= = − ∗  

F11: 
Zakharov (2 variables) 

( )
2 4

2

1 1 1
0.5 0.5

n n n

i i i
i i i

f x x ix ix
= = =

   = + +   
   

∑ ∑ ∑  

• 5 10, 1,2, ,ix i n− ≤ ≤ =   
• global minimum: ( ) ( )0,0, ,0 , 0x f x= =  

F12: 
Hartman (3 variables) 

( ) ( )
4 2

1 1
exp

n

i ij j ij
i j

f x c x pα
= =

 
= − − − 

 
∑ ∑  

• 0 1, 1, ,3jx j≤ ≤ =   
• global minimum: ( ) ( )0.11,0.555,0.855 , 3.8628x f x= = −  

 
i 1iα  2iα  3iα  ic  1ip  2ip  3ip  

1 3 10 30 1 0.3689 0.1170 0.2673 

2 0.1 10 35 1.2 0.4699 0.4387 0.7470 

3 3 10 30 3 0.1091 0.8742 0.5547 

4 0.1 10 35 3.2 0.03815 0.5743 0.8828 

 
F13: 
Hartman (6 variables) 
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( ) ( )
4 2

1 1
exp

n

i ij j ij
i j

f x c x pα
= =

 
= − − − 

 
∑ ∑  

•  0 1, 1,2, ,6jx j≤ ≤ =   
• global minimum: ( ) ( )0.201,0.150,0.477,0.275,0.311,0.657 , 3.32x f x= = −  

 
i 1iα  2iα  3iα  4iα  5iα  6iα  ic  

1 10 3 17 3.5 1.7 8 1 

2 0.05 10 17 0.1 8 14 1.2 

3 3 3.5 1.7 10 17 8 3 

4 17 8 0.05 10 0.1 14 3.2 

i 1ip  2ip  3ip  4ip  5ip  6ip  

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

 
F14: 
Rastrigin (2 variables) 

( ) ( )2

1
10 10cos 2π

n

i i
i

f x n x x
=

 = + − ∑  

• 5.12 5.12, 1,2, ,ix i n− ≤ ≤ =   
• global minimum: ( ) ( ) ( )1 2, 0,0 , 0x x f x= =  

F15: 
Griewank (8 variables) 

( ) 2

1 1
4000 cos 1

nn
i

i
i i

xf x x
i= =

 
= − + 

 
∑ ∏  

• 300 600, 1,2, ,ix i n− ≤ ≤ =   
• global minimum: ( ) ( )0, ,0 , 0x f x= =  

 
F16: 
Branin (2 variables) 

( ) ( )
2

2
2 1 1 12

5.1 5 16 10 1 cos 10
π 8π4π

f x x x x x   = − + − + − +   
   

 

• 1 25 10,0 15x x− ≤ ≤ ≤ ≤  
• three global minimum: ( ) ( ) ( ) ( ) 5π,12.275 , π,2.275 , 3π,2.475 ,

4π
f x− =  
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