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Abstract 
Most of the current methods for solving linear fractional programming (LFP) 
problems depend on the simplex type method. In this paper, we present a new 
approach for solving linear fractional programming problem in which the ob-
jective function is a linear fractional function, while constraint functions are 
in the form of linear inequalities. This approach does not depend on the 
simplex type method. Here first we transform this LFP problem into linear 
programming (LP) problem and hence solve this problem algebraically using 
the concept of duality. Two simple examples to illustrate our algorithm are 
given. And also we compare this approach with other available methods for 
solving LFP problems. 
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1. Introduction 

The linear fractional programming (LFP) problem has attracted the interest of 
many researches due to its application in many important fields such as produc-
tion planning, financial and corporate planning, health care and hospital planning. 

Several methods were suggested for solving LFP problem such as the variable 
transformation method introduced by Charnes and Cooper [1] and the updated 
objective function method introduced by Bitran and Novaes [2]. The first me-
thod transforms the LFP problem into an equivalent linear programming prob-
lem and uses the variable transformation , 0y tx t= ≥  in such a way that  
dt β γ+ =  where 0γ ≠  is a specified number and transform LFP to an LP 
problem. And the second method solves a sequence of linear programming pro- 
blems depending on updating the local gradient of the fractional objective func-
tion at successive points. But to solve this sequence of problems, sometimes may 
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need much iteration. Also some aspects concerning duality and sensitivity anal-
ysis in linear fractional program were discussed by Bitran and Magnant [3] and 
Singh [4], in his paper made a useful study about the optimality condition in 
fractional programming. Assuming the positivity of denominator of the objec-
tive function of LFP over the feasible region, Swarup [5] extended the well- 
known simplex method to solve the LFP. This process cannot continue infinitely, 
since there is only a finite number of basis and in non-degenerate case, no basis 
can ever be repeated, since F is increased at every step and the same basis cannot 
yield two different values of F. While at the same time the maximum value of the 
objective function occurs at of the basic feasible solution. Recently, Tantawy [6] 
has suggested a feasible direction approach and the main idea behind this me-
thod for solving LFP problems is to move through the feasible region via a se-
quence of points in the direction that improves the objective function. Tantawy [7] 
also proposed a duality approach to solve a linear fractional programming prob-
lem. Tantawy [8] develops another technique for solving LFP which can be used 
for sensitivity analysis. Effati and Pakdaman [9] propose a method for solving in-
terval-valued linear fractional programming problem. A method for solving multi 
objective linear plus linear fractional programming problem based on Taylor se-
ries approximation is proposed by Pramanik et al. [10]. Tantawy and Sallam [11] 
also propose a new method for solving linear programming problems. 

In this paper, our main intent is to develop an approach for solving linear 
fractional programming problem which does not depend on the simplex type 
method because method based on vertex information may have difficulties as the 
problem size increases; this method may prove to be less sensitive to problem 
size. In this paper, first of all, a linear fractional programming problem is trans-
formed into linear programming problem by choosing an initial feasible point 
and hence solves this problem algebraically using the concept of duality. 

2. Definition and Method of Solving LFP 

A linear fractional programming problem occurs when a linear fractional func-
tion is to be maximized and the problem can be formulated mathematically as 
follows: 

Maximize ( )
T

.T

c xF x
d x

γ
β

+
=

+
 

Subject to,  
{ }: , 0x X x Ax b x∈ = ≤ ≥                     (1) 

where c, d and nx∈ , A is an ( )m n n+  matrix, m nb +∈  and γ  and β  
are scalars.  

We point out that the nonnegative conditions are included in the set of con-
straints and that T 0d x β+ >  has to be satisfied over the compact set X. 

To transform the LFP problem into LP problem, we choose a feasible point 
*x  of the compact set X. Then 

( )
T *

* *
T *

c xF F x
d x

γ
β

+
= =

+
                    (2) 
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is a given constant vector computed at a given feasible point *x . Thus the level 
curve of objective function for (1) can be written as  

( )T * T *c F d x Fβ γ− = −  

Hence the linear programming problem is as follows: 
Maximize ( ) ( )T * Tx c F d xϕ = −  
Subject to,  

{ }: , 0x X x Ax b x∈ = ≤ ≥                    (3) 

Proposition 

If *x  solves the LFP problem (1) with objective function values *F  then *x  
solves the LP problem defined by (3) with objective function value * *Fϕ β γ= − . 

Now rewrite the LP problem (3) in the form 
Maximize ( ) TH x C x=  
Subject to,  

{ }:x X x Ax b∈ = ≤                       (4) 

where, TC  is a matrix whose row is represented by ( )T * Tc F d−  and , nC x∈ , 
A  is a ( )m n n+ ×  matrix, .m nb +∈  we point out that the nonnegative con-

ditions are included in the set of constraints. 
Now consider the dual problem for the linear program (4) in the form 
Minimize Tw u b=  
Subject to,  

T T , 0u A C u= ≥                         (5) 

Since the set of constraints of this dual problem is written in the matrix form 
hence we can multiply both side by a matrix ( )1 2T T T= , where ( ) 1T

1T C C C
−

=  
and the columns of the matrix 2T  constitute the bases of { }T: 0x C x = . 

Thus this implies  
T

1 1u AT = , T
2 0u AT =  and 0u ≥ .                (6) 

If we define ( )l m n× +  matrix P  of nonnegative entries such that  

2 0PAT = , then (6) can be written as  
T 1, 0v G v= ≥                        (7) 

where 1G PAT=  and T Tv P u= , Equation (7) will play an important role for 
finding the optimal solution of the LP problem (4). Using the Equation (7) the 
equivalent LP problem of (5) can be written as 

Minimize Tw v g=  
Subject to,  

T 1,  0v G v= ≥                        (8) 

with T T
1, ,G PAT g Pb v P u= = = , the linear programming (8) has the dual pro-

gramming problem in just one unknown Z in the form. 
Maximize Z  
Subject to,  
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,  0GZ g Z≤ ≥                        (9) 

Note: The set of constraints of the above linear programming problem will 
give the maximum value *Z  and also will define only one active constraint for 
this optimal value. We have to note that from the complementary slackness 
theorem the corresponding dual variable will be positive and the remaining dual 
variables will be zeros for the corresponding non active constraints. 

3. Algorithm for Solving LFP Problems 

The method for solving LFP problems summarize as follows: 
 Step 1: Select a feasible point *x  and using Equation (2) to compute *F . 
 Step 2: Find the level curve of objective function  

( )T * T *c F d x Fβ γ− = −  

Hence find the LP problem (2) which can be rewritten as (3). 
 Step 3: Compute ( ) 1T

1T C C C
−

= , and the matrix 2T  as the bases of  

{ }T: 0x C x = . 
 Step 4: Find the matrix P  of nonnegative entries such that 2 0PAT =  and 

hence compute 1,  G PAT g Pb= = . 
 Step 5: Find the LP problem (8) and dual of this LP (9). Use the LP (9) to find 

the optimal value *Z  and also determine the corresponding active con-
straints and use the constraint of (8) to compute Tv . 

 Step 6: Find the dual variables T Tu v P= , for each positive variable  
, 1, 2, ,iu i m=   find the corresponding active set of constraint of the matrix 

A . 
 Step 7: Solve a n n×  system of linear equations for these set of active con-

straints (a subset from a m n+  constraints) to get the optimal solution of LP 
problem (4) and hence for the LFP problem (1). 

4. Computational Process 

Choose *x  in such a way that  

{ }* * *:x X x Ax b∈ = ≤  

( )
T *

* *
T *

c xF F x
d x

γ
β

+
← ←

+
 

T * 0.d x β+ >  

The level curve is ( )T * T *c F d x Fβ γ− = − . 
Then ( ) ( )T * Tx c F d xϕ ← −  or ( ) TH x C x← ; ( )T T * T ;C c F d← −  

( ) { }1T T
1 2;  : 0T C C C T x C x

−
← ← = ; 

Find P  such that 2 0PAT = . 
Compute 1,G PAT g Pb← ← ; 
Formulate, Maximize Z  
Subject to, ,   0.GZ g Z≤ ≥  
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Find *Z  and corresponding active constraint and compute Tv  for  
T 1v G = ; 
Then T Tu v P← ; hence find Tx  from corresponding n n×  active con-

straints satisfied by positive Tu ; 
Compute *H  and *F . 

5. Numerical Examples 

Here we illustrate two examples to demonstrate our method. 
Example 1: Consider the linear fractional programming (LFP) problem 

Maximize ( ) 2

1

1
3

xF x
x
+

=
+

 

Subject to,  

1 2 1x x− + ≤  

2 2x ≤  

1 22 1x x+ ≤  

1 5x ≤  

1 2, 0.x x ≥  

Solution: 

Step 1: Let * 1
1

x  
=  
 

, then * 1 1 1
1 3 2

F +
= =

+
 and hence we have 

( ) ( ) ( ) 1T * T
1 2

2

1 10 1 1 0
2 2

x
c F d x x x

x
 
  

 
− = − = − + 

 
 

Step 2: Therefore we have the following LP problem 

Maximize ( ) 1 2
1
2

H x x x= − +  

Subject to,  

1 2 1x x− + ≤  

2 2x ≤  

1 22 1x x+ ≤  

1 5x ≤  

1 0x− ≤  

2 0x− ≤  

Dual problem for this LP problem is 
Minimize ( ) 1 2 3 42 7 5w x u u u u= + + +  
Subject to,  

1 3 4 5
1
2

u u u u− + + − =  

1 2 3 62 1u u u u+ + − =  

1 2 3 4 5 6, , , , , 0u u u u u u ≥  
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Step 3: Compute 

1

1

21 1 1
1 4 512 2 2

42 51 1 1
5

T

−    −       − − −         = − = =                          

. 

And the matrix 2

2
1

T  
=  
 

. 

Step 4: Compute nonnegative matrix P  such that 2 0PAT = , 

1 1 0 0 0 0
1 0 0 1 0 1
0 1 0 0 0 1
0 0 1 0 2 0
0 0 0 1 1 0
0 0 1 0 1 2

P

 
 
 
 

=  
 
 
  
 

. 

Also compute 1

1 1 0 0 0 0 1 1 2
1 0 0 1 0 1 0 1 0

10 1 0 0 0 1 1 2 0
,2

0 0 1 0 2 0 1 0 21
0 0 0 1 1 0 1 0 0
0 0 1 0 1 2 0 1 0

G PAT

−    
    
         − = = =               −
        −    

 

1 1 0 0 0 0 1 3
1 0 0 1 0 1 2 6
0 1 0 0 0 1 1 2
0 0 1 0 2 0 5 7
0 0 0 1 1 0 0 5
0 0 1 0 1 2 0 7

g Pb

    
    
    
    

= = =    
    
    
        
    

 

Step 5: We get the LP problem of the form 
Maximize Z  
Subject to, 

2 3Z ≤  

0 6Z ≤  

0 2Z ≤  

2 7Z ≤  

0 5Z ≤  

0 7Z ≤  

For this LP problem we get that the first constraint is the only active con-
straint and this active constraint shows that the maximum optimal value is  

* 3
2

Z = . Corresponding this active constraint of (8), we get the dual variables 

T 1 ,0,0,0,0,0 .
2

v  =  
 

 

Step 6: Compute T T 1 1, ,0,0,0,0
2 2

u v P  = =  
 

 with objective value * 3
2

w = .  
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This indicates that in the original set of constraints the first and the second con-
straints are the only active constraints. 

Step 7: Solve the system of linear equations 

1 2 1x x− + =  

2 2x =  

We get the optimal solution * 1
2

x  
=  
 

 of the LP problem with objective value 

* 3
2

H = . 

Finally we get our desired optimal solution of the given LFP problem is  

* 1
2

x  
=  
 

 with the optimal value * 3
4

F = . 

Example 2: Consider the linear fractional programming (LFP) problem 

Maximize ( ) 1 2

1 2

5 3
5 2 1

x xF x
x x

+
=

+ +
 

Subject to,  

1 23 5 15x x+ ≤  

1 25 2 10x x+ ≤  

1 2, 0x x ≥  

Solution: 

Step 1: Let * 1
1

x  
=  
 

, then * 5 3 1
5 2 1

F +
= =

+ +
 and hence we have 

( ) ( ) ( ) 1T * T
2

2

5 3 1* 5 2
x

c F d x x
x

 
− = − =    

 
 

Step 2: Therefore we have the following LP problem 
Maximize ( ) 2H x x=  
Subject to,  

1 23 5 15x x+ ≤  

1 25 2 10x x+ ≤  

1 0x− ≤  

2 0x− ≤  

Dual problem for this LP problem is 
Minimize ( ) 1 215 10w x u u= +  
Subject to,  

1 2 33 5 0u u u+ − =  

1 2 45 2 1u u u+ − =  

1 2 3 4, , , 0u u u u ≥  

Step 3: Compute ( )
1

1

0 0 0
0 1

1 1 1
T

−
      

= =      
      

. 
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And the matrix 2

1
0

T  
=  
 

. 

Step 4: Compute nonnegative matrix P  such that 2 0PAT = , 

1 0 3 0
0 1 5 0
0 1 6 1
0 0 1 1

P

 
 
 =
 
 
 

. 

Also compute 1

1 0 3 0 3 5 5
0 1 5 0 5 2 0 2

,
0 1 6 1 1 0 1 1
0 0 1 1 0 1 1

G PAT

    
         = = =     −      

− −    

 

1 0 3 0 15 15
0 1 5 0 10 10
0 1 6 1 0 10
0 0 1 1 0 0

g Pb

    
    
    = = =
    
    
    

 

Step 5: We get the LP problem of the form 
Maximize Z  
Subject to, 

5 15Z ≤  

2 10Z ≤  

10Z ≤  

0Z− ≤  

For this LP problem we get that the first constraint is the only active con-
straint and this active constraint shows that the maximum optimal value is 

* 3Z = . Corresponding to this active constraint of (8), we get the dual variables  
T 1 ,0,0,0,0,0 .

5
v  =  

 
 

Step 6: Compute T T 1 3,0, ,0,0,0
5 5

u v P  = =  
 

 with objective value * 3w = .  

This indicates that in the original set of constraints the first and the third con-
straints are the only active constraints. 

Step 7: Solve the system of linear equations 

1 23 5 15x x− + =  

1 0x =  

We get the optimal solution * 0
3

x  
=  
 

 of the LP problem with objective value 

* 3H = . 
Finally we get our desired optimal solution of the given LFP problem is 

* 0
3

x  
=  
 

 with the optimal value * 9
7

F = . 
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Table 1. Results of existing and our methods for Example 1 and Example 2. 

 Bitran and Novea Swarup Tantawy Our Method 

Example 1 
3 iterations with  

lots of calculations 
3 iterations with  

clumsy calculations 
2 iterations 

1 iterations with 
simple calculations 

Example 2 3 iterations 3 iterations 2 iterations 1 iterations 

 
Now different methods can be compared with our method and all the me-

thods give the same results for Example 1 and Example 2. Table 1 shows the re-
sults of number of iterations that are required for our method and the existing 
methods for these Examples. 

6. Comparison 

In this Section, we find that our method is better than any other available me-
thod. The reason can be given as follows: 
 Any type of LFP problem can be solved by this method. 
 The LFP problem can be transformed into LP problem easily with initial 

guess. 
 In this method, problems are solved by algebraically with duality concept. So 

that it’s computational steps are so easy from other methods. 
 The final result converges quickly in this method. 
 In some cases of numerator and denominator, other existing methods are 

failed but our method is able to solve any kind of problem easily.  

7. Conclusion 

In this paper, we give an approach for solving linear fractional programming 
problems. The proposed method differs from the earlier methods as it is based 
upon solving the problem algebraically using the concept of duality. This me-
thod does not depend on the simplex type method which searches along the 
boundary from one feasible vertex to an adjacent vertex until the optimal solu-
tion is found. In some certain problems, the number of vertices is quite large, 
hence the simplex method would be prohibitively expensive in computer time if 
any substantial fraction of the vertices had to be evaluated. But our proposed 
method appears simple to solve any linear fractional programming problem of 
any size. 
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Abstract 
The aim of this study is to present an alternative approach for solving the 
multi-objective posynomial geometric programming problems. The proposed 
approach minimizes the weighted objective function comes from multi-ob- 
jective geometric programming problem subject to constraints which con-
structed by using Kuhn-Tucker Conditions. A new nonlinear problem formed 
by this approach is solved iteratively. The solution of this approach gives the 
Pareto optimal solution for the multi-objective posynomial geometric pro-
gramming problem. To demonstrate the performance of this approach, a pro- 
blem which was solved with a weighted mean method by Ojha and Biswal 
(2010) is used. The comparison of solutions between two methods shows that 
similar results are obtained. In this manner, the proposed approach can be 
used as an alternative of weighted mean method. 
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1. Introduction 

Geometric Programming Problem (GPP) is a special type of nonlinear pro-
gramming that often used in the applications for production planning, personal 
allocation, distribution, risk managements, chemical process designs and other 
engineer design situations. GPP is a special technique that is developed in order 
to find the optimum values of posynomial and signomial functions. In the clas-
sical optimization technique, a system of nonlinear equations is generally faced 
after taking partial derivatives for each variable and equalizing them to zero. 
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Since the objective function and the constraints in the GPPs will be in posy-
nomial or signomial structures, the solution of the system of nonlinear equations 
obtained by the classic optimization technique will be very difficult. The solution 
to the GPP follows the opposite method with respect to the classical optimiza-
tion technique and it depends on the technique of first finding the weight values 
and calculating the optimum value for the objective function, then finding the 
values of the decision variables. 

GPP has been known and used in various fields since 1960. GPP started to be 
modeling as part of nonlinear optimization by Zener [1] in 1961 and Duffin, Pe-
terson and Zener [2] in 1967 and particular algorithms were used when trying to 
solve GPP. After that many important studies were done in various fields: com-
munication systems [3], engineering design [4] [5] [6], resource allocation [7], 
circuit design [8], project management [9] and inventory management [10]. 

When there are multiple objectives in the GPP, the problem is defined as the 
Multi-Objective Geometric Programming Problem (MOGPP). In general, there 
are two types (namely fuzzy GPP and weighted mean method) of solving ap-
proaches are exist in the literature. The studies deal with fuzzy GPP method can 
be given as Nasseri and Alizadeh [11], Islam [12], Liu [5], Biswal [13], Verma 
[14] and Yousef [23]. Besides, to solve the multi-objective optimization problem, 
another and the simplest way is using the weighted mean method. The weighted 
mean method is also used and applied for the solution of the MOGPP by Ojha 
and Biswall [15]. 

Numerical approximations are widely used to solve the Multi-objective pro-
gramming problems. One of the numerical approximations is the Taylor series 
expansion which is also given as a solution method in this study. Toksarı [16] 
and Güzel and Sivri [17] have used Taylor series to solve the multi-objective li-
near fractional programming problem and have given examples. 

In this study, a numerical approach to solve the multi-objective posynomial 
geometric programming problems is proposed. This numerical approach mini-
mizes the weighted objective function subject to Kuhn-Tucker Conditions ex-
panded the first order Taylor series expansion about any arbitrary initial feasible 
solution. The same process is continued iteratively until the desired accuracy is 
achieved. The solution obtained at the end of the iterative processing gives the 
pareto optimal solution to solve the multi-objective posynomial geometric pro-
gramming problem. When the results obtained are compared to the results of 
the weighted mean method [15] used to solve the multi-objective posynomial 
geometric programming problems, the same results are found.  

In the next section of this study, MOGPP, weighted method for MOGPP and 
dual form of MOGPP are respectively mathematically explained. In the third 
section, the model that we suggest depending on the Kuhn-Tucker Conditions 
and first order Taylor Series expansion will be clarified. Then, the results ob-
tained by weighted mean method and the results obtained by the approach that 
we suggest will be compared for a numeric example. In the last section, conclu-
sion and comments will be included. 
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2. Multi-Objective Geometric Programming Problem 
2.1. Standard Geometric Programming Problem  

Let 1 2, , , nx x x  show n  real positive variables and ( )1 2, , , nX x x x=   a vec-
tor with components ix . A real valued function f  of x , with the form, 

( ) 1 2
1 2

naa a
nf x Cx x x= 

                      (1) 

where 0C >  and ia R∈ . The function is named a monomial function. A sum 
of one or more monomial functions is named a posynomial function. The term 
“posynomial” is meant to suggest a combination of “positive” and “polynomial”. 
A posynomial function of the term, 

( ) 1 2
1 2

1

k k nk
K

a a a
k n

k
f x C x x x

=

= ∑                     (2) 

where 0kC >  and ika R∈ . 
GPP is a problem with generalized posynomial objective and inequality con-

straints, and monomial equality constraints. Standard form of a GPP can be 
written as 

( )

( )
( )

min

subject to
1,     1, ,

1,     1, ,

ox

i

j

f x

f x i m

h x j p






≤ = 
= = 





                    (3) 

where 0 1, , , mf f f  are posynomials and 0 1, , , ph h h
 are monomials. 

GPP in standard form is not a convex optimization problem. GP is a nonli-
near, nonconvex optimization problem that can be logarithmic transformed into 
a nonlinear, convex problem. 

Assuming for simplicity that the generalized posynomials involved are ordi-
nary posynomials, it can express a GPP clearly, in the so-called standard form: 

0
0

0
1

1

min

1,      1, ,

su

1,          1

bject to

, ,

i
ki

j

K
a

kx k

K
a

ki
k

f
j

c x

c x i m

g x j p

=

=






≤ =



= = 

∑

∑ 



                  (4) 

where 0 1, , , ma a a  and 0 1, , , mc c c  are vectors in nR  and  
0,  1, 2, , ,  0ic i m g> = >  are vectors with positive components.  

Most of these posynomial type GPP’s have zero or positive degrees of difficul-
ty. Parameters of GPP, except for exponents, are all positive and called posy-
nomial problems. GPP’s with some negative parameters are also called signomial 
problems.  

The degree of difficulty is defined as the number of terms minus the number 
of variables minus one, and is equal to the dimension of the dual problem. If the 
degree of difficulty is zero, the problem can be solved analytically. If the degree 
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of difficulty is positive, then the dual feasible region must be searched to max-
imize the dual objective, and if the degree of difficulty is negative, the dual con-
straints may be inconsistent [15]. 

GPP in standard form is not a convex optimization problem. GPP is a nonli-
near, nonconvex optimization problem that can be logarithmic transformed into 
a nonlinear, convex problem. 

2.2. Multi-Objective Geometric Programming Problem 

General form of multi objective GPP, where p is the number of objective func-
tions which are minimized and n is the number of positive decision variables, is 
defined as: 

( )

( )

0

0 0
11

11

min ,   1, 2, ,

subject to

1,          1, 2, ,

0,                                         1, 2, ,

k
kotj

i
itj

T n a
k k t j

jt

T n d
i it j

jt

j

g x C x k p

g x C x i m

x j n

==

==


= ∏ = 




= ∏ ≤ =

> = 

∑

∑







             (5) 

where itjd  and 0k tja  are real numbers for all i, k, t, j and 0k tC  for all k and t 
are positive real numbers, , nx X x R∈ ∈  and 0 : ,  1, 2, ,n

kg R R k p→ =  . The 
number of terms in the thk  objective function is 0kT , and the number of terms 
in the tki  constraint is iT . X  is the set of constraints, considered as non- 
empty compact feasible region. When all of the C constants are positive, the 
function is called a posynomial. When at least one of them is negative, it is called 
a signomial [18] [25]. The model in this study consists only of posynomials. The 
degree of difficulty is found by subtracting the number of variables in the primal 
problem plus one from the number of terms in the primal problem. If the degree 
of difficulty is zero, only one solution will be achieved since the number of equa-
tions given under the normality and orthagonality conditions will be equal to the 
number of unknown terms. When the degree of difficulty is below zero, the dual 
constraints may be inconsistent. And when the degree of difficulty is above zero, 
in order to maximize the dual objective, the dual feasible region must be searched 
[18] [25]. 

Definition 1 x X∗ ∈  is a pare to optimal solution of MOGPP (5) if there 
does not exist another feasible solution x X∈  such that  

( ) ( )0 0 , 1, 2, ,k kg x g x k p∗≤ =   and ( ) ( )0 0j jg x g x∗<  at least one j . 
Definition 2 x X∗ ∈  is a weakly pare to optimal solution of MOGPP (5) if 

there does not exist another feasible solution x X∈  such that  
( ) ( )0 0 , 1, 2, ,k kg x g x k p∗< =  .  

3. The Weighting Method to the Multi-Objective  
Geometric Programming Problem 

General form of multi objective optimization problem can be mathematically 
stated as: 



E. Öz et al. 
 

15 

( ) ( ) ( ){ }1 2Minimize , , , 2

subject to
,

pf x f x f x p

x X

≥


∈ 



             (6) 

where nx R∈  and : ,  1, 2, ,n
if R R i p→ = 

. X  is the set of constraints, 
considered as non-empty compact feasible region.  

A multi-objective problem is often solved by combining its multiple objectives 
into one single-objective scalar function. This approach is in general known as 
the weighted-sum or scalarization method. In more detail, the weighted-sum 
method minimizes a positively weighted convex sum of the objectives, that is, 

( )
1

1

Min

1,

0,  1, 2, ,

p

i i
i

p

i
i

i

w f x

w

w i p
x X

=

=






= 

> =


∈ 

∑

∑


                     (7) 

that represents a new optimization problem with a single objective function. We 
denote the above minimization problem with ( )XP w . 

The following result by Geoffrion [19] states a necessary and sufficient condi-
tion in the case of convexity as follows: If the solution set x X∈  is convex and 
the p  objectives ( )if x  are convex on X , x∗  is a strict Pareto optimum if 
and only if it exists nw R∈ , such that x∗  is an optimal solution of problem 

( )XP w . If the convexity hypothesis does not hold, then only the necessary con-
dition remains valid, i.e., the optimal solutions of ( )XP w  are strict Pareto op-
timal [20]. 

In order to the above MOGPP defined in problem (5) consider the following 
procedure of the weighting method, a new minimization type objective function 
( )Z µ  may be defined as: 

( ) ( )
0 0

0 0
0 0

1 11 1 1 1 1

11

1

min

subject to

1,      1, 2, ,

0,                      1, 2, ,

where

1, 0,     1, 2,

k k
k tj k tj

i
itj

T Tp p pn na a
k ko k k t j k k t j

j jk k t k t

T n d
it i

jt

j

p

k k
k

Z x g x C x C x

C x i m

x j n

k

µ µ µ µ

µ µ

= == = = = =

==

=

 
= = ∏ = ∏ 

 

∏ ≤ =

> =

= > =

∑ ∑ ∑ ∑∑

∑

∑





, p
















 (8) 

4. The Kuhn-Tucker Theorem 

The basic mathematical programming problem is that of choosing values of va-
riables so as to minimize a function of those variables subject to m  inequality 
constraints: 
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( )

( )

0

0,              1, 2, ,

min
subject to

0,      1,2, ,

j

i

x j m

g x

g x i m






> = 

≤ =




                  (9) 

This problem is a generalization of the classical optimization problem, since 
equality constraints are a special case of inequality constraints. By m  additional 
variables, called slack variables, ( )1, 2, ,iy i m=  , the mathematical program-
ming problem (9) can be rewritten as a classical optimization problem: 

( )

( )

0

2

0,                       1, 2, ,

min
subject to

0,      1,2, ,

j

i i

x j m

g x

g x y i m






> = 

+ = =




              (10) 

The solution to problem (10) is then analogous to the Lagrange theorem for 
classical optimization problems. The Lagrange theory for a classical optimization 
problem can be extended to problem (10) by the following theorem. 

Theorem 4.1 Assume that ( ) ( ), 1, 2, ,kg x k m=   are all differentiable. If the 

function ( )0g x  attains at point 0x  a local minimum subject to the set  

( ){ }0, 1, 2, ,iK x g x i m= ≤ = 
, then there exists a vector of Lagrange multip-

liers 0u such that the following conditions are satisfied: 

( ) ( )

( )
( )

0 0
0 0

1

0

0 0

0

0,      1, 2, ,

0,                                   1, 2, ,

0,                               1, 2, ,

0,                                           1, 2, ,

m i
i

ij j

i

i i

i

g x g x
u j n

x x

g x i m

u g x i m

u i m

=

∂ ∂
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≥ =

∑ 
















          (11) 

The conditions (11) are necessary conditions for a local minimum of problem. 
The conditions (11) are called the Kuhn-Tucker conditions. 

For proof of theorem, the Lagrange function can be defined as: 

( ) ( ) ( )( )2
0 0

1
, , 0

m

i i
i

L x y u g x u g x y
=

= + + =∑             (12) 

The necessary conditions for its local minimum are   

( ) ( ) ( )( )( )0 20
0 0

1

, ,
0,  1, 2, ,

m i i

i
ij j j

g x yg xL x y u
u j n

x x x=

∂ +∂∂
= + = =

∂ ∂ ∂∑ 
    (13) 

( ) 0 0, ,
2 0,    1, 2, ,i i

i

L x y u
u y i m

y
∂

= = =
∂

              (14) 

( ) ( ) ( )20 0, ,
0,    1, 2, ,i i

j

L x y u
g x y i m

u
∂

= + = =
∂


          (15) 

The conditions (11) are obtained from the conditions (12)-(15) [24].  
When there are inequalities constraints in nonlinear optimization problems, 
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Kuhn-Tucker Conditions can be used which are based on Lagrange multipliers. 
The Kuhn-Tucker Conditions satisfy the necessary and sufficient conditions for 
a local optimum point to be a global optimum point [21] [22]. 

5. Proposed Method to Solve MOGPP 

The multi-objective geometric problem (5) as a single objective function using 
the weighting method can be rewritten as follows: 

( )

( )

0
0

0
1 1 1

11

1
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subject to
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0                                         1, 2, ,
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          (16) 

The above problem (16) may be slightly modified by introducing new va-
riables iy , whose values is transformed into single objective GPP as: 

( )
0

0

11 1

2
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min

subject to
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k
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i
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            (17) 

Assume that ( )Z xµ  and ( )2

1 1
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i
itj
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+ =− =∑ ∏   are all dif- 

ferentiable. The new function is formed by introducing m  multipliers iu  for 
( )1, 2, ,i m=   to problem (17) according to theorem 4.1 can be defined as 
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  (18) 

where at the point 0x , the objective function ( )0Z xµ  attaints a local mini-
mum according to theorem (4.1). The optimization problem to minimize the 
objective function ( )0Z xµ  subject to conditions (18) can be rewritten as fol-
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lows: 
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     (19) 

Since the necessary conditions (17) are also the sufficient conditions for a 
minimum problem if the objective function of the geometric programming pro- 
blem (19) is convex. Therefore, optimal solution of the problem (19) gives the 
solution of the problem (16). 

The above problem (19) is nonlinear problem since both the objective func-
tion and the constraints are nonlinear. We will use the Taylor theorem for the 
linearization to the problem (19). Let be both the objective function and the 
constraints have differentiable. Then they are expanded using the Taylor theo-
rem about any arbitrary initial feasible solution 0 nx R∈  and any arbitrary ini-
tial feasible values 0 mu R∈  to problem (19). Thus, the problem (19) as the li-
near approximation problem can be rewritten as follows: 
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 (20) 

The linear approximation problem is solved, giving an optimal solution 1x  
and 1u , a new linear programming problem is derived from the solution 1x  
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and 1u . Linear approximation problem is solved, giving an optimal solution 2x  
and 2u . The following steps are involved from the initial step till reaching the 
desired optimal solution or until 1i ix x+ −  is as close to zero as possible itera-
tively. The optimal solution 1ix +  is taken as the pare to optimal solution for 
MOGPP since solution 1ix +  is better than ix . 

The steps for the proposed solution algorithm are given below:  
Step 1: Formulate the given MOGPP is as a single objective GP using the 

weighting method. 
Step 2: Construct the constraints for the new problem from Kuhn-Tucker 

conditions.  
Step 3: Set the nonlinear model taking the single objective function in step 1 

and the constraints in step 2 to MOGPP. 
Step 4: t  value denotes the iteration or step number of the proposed itera-

tive approach and tx  and tu  denote the vector parameter assigned to the vec-
tor of objective function and constraints in step 1. Take the initial solution 0t = , 

0x  and 0u , arbitrarily.  
Step 5: Expanded both the objective function and constraints of the problem 

obtained in step 3 using first order Taylor polynomial series about tx  and tu   
in the feasible region of problem. Reduced the problem obtained in step 3 to a 
linear programming problem. 

Step 6: Solve the problem in step 5. Calculate to the approximate solution 
1tx +  and 1tu +   
Step 7: For eps > 0 and eps as close to 0 as possible, if 1t tx x eps+ − <  is tak-

en as the pareto optimal solution to MOGPP and the values for the objective 
functions are calculated. Else, take 1 11,  ;  t t t tt t x x u u+ += + = = , go back to step 5. 

Numerical example  
To illustrate the proposed model we consider the following problem which is 

also used in [15]. 
Find 1 2 3 4, , ,x x x x  

( )10 1 2 3 4min 4 10 4 2g x x x x x= + + +  

( )20 1 2 3max g x x x x=  

subject to 
2 2
1 2
2 2
4 4

1x x
x x

+ ≤  

1 2 3

100 1
x x x

≤  

1 2 3 4, , , 0x x x x >  

The primal problem above can be written as below: 

( )10 1 2 3 4min 4 10 4 2g x x x x x= + + +  

( ) 1 1 1
20 1 2 3min g x x x x− − −′ =  

subject to 
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2 2 2 2
1 4 2 4 1x x x x− −+ ≤  

1 1 1
1 2 3100 1x x x− − − ≤  

1 2 3 4, , , 0x x x x >  

Using the weights 1w  and 2w , the primal problem is written as below: 

( ) ( ) ( )1 1 1
1 1 2 3 4 2 1 2 34 10 4 2Z x w x x x x w x x x− − −= + + + +  

subject to 
2 2 2 2
1 4 2 4 1x x x x− −+ ≤  

1 1 1
1 2 3100 1x x x− − − ≤  

1 2 3 4, , , 0x x x x >  

where 1 2 1 21, , 0w w w w+ = >  
In this problem, the primal term number is 8, primal variable number is 4 and 

thus the degree of difficulty is 3. 
The dual problem corresponding to the last primal problem is given below: 

( )

( )( )

01 02 03 04 05 11

12
11 12 21

1 1 1 1 2

01 02 03 04 05 11

11 12
12

4 10

   

4 2 1max

1 1         0          0 

w w w w w w

w

w
w w w

w w w w wV w
w w w w w w

w w
w

+

           
=            

          

 
+ 

 

 

subject to 

01 02 03 04 05 1w w w w w+ + + + =  

01 05 11 212 0w w w w− + − =  

02 05 12 212 0w w w w− − − =  

03 05 21 0w w w− − =  

04 11 122 2 0w w w− − =  

1 2 1w w+ =  

01 02 03 04 05 11 12 21, , , , , , , 0w w w w w w w w ≥  

1 2, 0w w >  

10 87.98776g =  and 20 0.01g =  

Problem 1 will now be solved using the proposed model. The value interval 
for 1w  and 2w  will be between 0.1 and 0.9. For the weights 1 0.5w = ,  

2 0.5w =  the given geometric problem from the Problem 1 is written as 

( ) 1 2 3 4
1 2 3

1min 2 5 2
2wZ x x x x x

x x x
= + + + + , 

subject to 
2 2 2 2 2
1 4 2 4 11 0x x x x y− −− − − =  

1 1 1 2
1 2 3 21 100 0x x x y− − −− − =  

1 2 3 4, , , 0x x x x >  

1 2 1 21, , 0w w w w+ = > . 
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Then, the above problem according to the Kuhn-Tucker Conditions can be 
formulated as in Model 1 as follows: 

( )

( ) ( )
1 2 3 4 1 2 1 2 3 4

1 2 3

2 2 2 2 2 1 1 1 2
1 1 4 2 4 1 2 1 2 3 2

1, , , , , 2 5 2
2

1 1 100

wh x x x x x x x x
x x x

x x x x y x x x y

γ γ

γ γ− − − − −

= + + + +

− − − − − − −
         (21) 

From Equation (21) the problem is written as follows: 

( ) 1 2 3 4
1 2 3

1min 2 5 2
2wZ x x x x x

x x x
= + + + +  

subject to 

1 1 2
2 2 2
1 2 3 4 1 2 3

2 1000.9 0.4 0,x
x x x x x x x

γ γ
− + − + =  

1 1 2
2 2 2

1 2 3 4 1 2 3

2 1000.9 0.1 0,x
x x x x x x x

γ γ
− + − + =  

2
2 2

1 2 3 1 2 3

1000.9 0.4 0,
x x x x x x

γ
− − + =  

2 2
1 2

1 3 3
4 4

2 2 0.2 0,x x
x x

γ
 

− + + = 
 

 

2 2
1 2

1 2 2
4 4

1 0,x x
x x

γ
 
− − + ≥ 
 

 

2
1 2 3

100 1 0
x x x

γ
 
− + ≥ 
 

, 

1 2 3 4 1 2, , , , , 0.x x x x γ γ >  

To linearize the nonlinear objective function with the nonlinear constraints in 
the above problem, we use the first order Taylor polynomial series at any initial 
feasible point  

( ) ( )1 2 3 4 1 20 5, 3, 7, 6, 2, 10X x x x x γ γ= = = = = = =   

as follows: 

( ) 1 2 3 4min 1.999047619 4.998413 1.99932 0.01905wZ x x x x x≈ + + + + , 

subject to 

1 2 3 4 1 20.8734 0.63524 0.272245 0.1852 0.277778 0.1905 5.0683 0,x x x x γ γ+ + − + − − =  

1 2 3 4 1

2

0.63524 2.2286 0.45374 0.11111 0.166667
0.11376 7.37302 0,

x x x x γ
γ
+ + − +

− − =
 

1 2 3 20.272245 0.453742 0.3889 0.1361 3.4456 0x x x γ+ + − − = , 

1 2 4 10.1852 0.11111 0.3148 0.3148 0.37037 0x x x γ− − + − + = , 

1 2 4 1
5 1 17 1 0,
9 3 27 18

x x x γ− − + + ≥  

1 2 3 2
40 200 200 1 200 0,
21 63 147 21 7

x x x γ+ + + − ≥  
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1 2 3 4 1 2, , , , , 0.x x x x γ γ >  

The solution of the above problem is  
( ) (

)
1 2 3

4 1 2

1 5.14076376, 2.4703573, 7.523979,

              5.5904741, 2.8711, 14.7081

X x x x

x γ γ

= = = =

= = =
, 

( )( )min 1 43.27685778wZ X =  and 10 86.5435g =  and 20 0.0104656g = . 

When the same procedure is applied to point ( )1X , the solution ( )2X  is 
obtained. If the same iteration continues for the weights 1 0.5w = , 2 0.5w = , 
the calculated solution points ( ) ( ) ( ) ( ) ( )2 , 3 , 4 , 5 , 6X X X X X  and the corres-
ponding objective function values 10g  and 20g  are given in Table 1. As seen 
in Table 1, the absolute value of the difference between the points X(5) and X(5) 
is reduced enough to a smaller value, and the iteration is terminated. One of the 
points ( )5X  or ( )6X  can be assumed the par to optimal solution point of the 
given MOGPP for the weights 1 0.5w = , 2 0.5w = . 

By considering different values of 1w  and 2w , the corresponding solutions 
of the problem applying the taylor approach in each iteration are given in Table 2. 

6. Result and Conclusion 

In this study, we proposed an alternative approach to the approximate pare to 
solution of MOGPP based on the weighting method. In this model, MOGPP has 
been reduced to a sequential linear programming problem and the Pareto op-
timal solution of MOGPP has been calculated approximately in an easier and 
more speedy way. Besides in GP problems and MOGPP the solution becomes 
more difficult when the degree of difficulty is a positive number whereas such a 
difficulty does not exist in the developed model. The solution for the problem 
given in the example by the weighted mean method is shown in Table 3 and the  
 
Table 1. The corresponding iteration solution for 1 0.5w =  and 2 0.5w = , using the 
Taylor series approach. 

Variables 

s  1x  2x  3x  4x  1γ  2γ  10g  20g  

0 5 3 7 6 2 10 88 0.009524 

1 5.140764 2.470357 7.523979 5.590474 2.871 14.708 86.543491 0.010466 

2 5.091219 2.661165 7.349591 5.737520 2.8738 14.686 87.849933 0.010043 

3 5.084131 2.682310 7.332497 5.748260 2.874 14.65986 87.986130 0.010001 

4 5.084056 2.682555 7.332314 5.748367 2.874 14.65962 87.987763 0.010000 

5 5.084056 2.682555 7.332314 5.748367 2.874 14.65962 87.987464 0.010000 

6 5.084056 2.682555 7.332314 5.748367 2.874 14.65962 87.987764 0.010000 
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Table 2. The solution from the numerical approach method. 

Variables 

1w  2w  1x  2x  3x  4x  10g  20g  s  

0.1 0.9 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.2 0.8 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.3 0.7 5.084056 2.682555 7.332314 5.748367 87.987762 0.01000 5 

0.4 0.6 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.5 0.5 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 6 

0.6 0.4 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 4 

0.7 0.3 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.8 0.2 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

0.9 0.1 5.084056 2.682555 7.332314 5.748367 87.987764 0.01000 5 

 
Table 3. Primal solutions [15]. 

Variables 

1w  2w  1x  2x  3x  4x  Z  

0.1 0.9 5.084055 2.682555 7.332315 5.748367 8.08776 

0.2 0.8 5.084055 2.682555 7.332315 5.748367 8.08776 

0.3 0.7 5.084055 2.682555 7.332315 5.748367 8.08776 

0.4 0.6 5.084055 2.682555 7.332315 5.748367 8.08776 

0.5 0.5 5.084055 2.682555 7.332315 5.748367 8.08776 

 
solution by the model that we developed is shown in Table 2 and the results are 
almost the same. For this reason, proposed method can be used as an alternative 
of weighted mean method. 
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Abstract 
The problems of optimal control (OCPs) related to PDEs are a very active area 
of research. These problems deal with the processes of mechanical engineer-
ing, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma 
and other real life problems. In this paper, we deal with a class of the con-
strained OCP for parabolic systems. It is converted to new unconstrained 
OCP by adding a penalty function to the cost functional. The existence solu-
tion of the considering system of parabolic optimal control problem (POCP) 
is introduced. In this way, the uniqueness theorem for the solving POCP is 
introduced. Therefore, a theorem for the sufficient differentiability conditions 
has been proved. 
 

Keywords 
Constrained Optimal Control Problems, Necessary Optimality  
Conditions Parabolic System, Adjoint Problem, Exterior Penalty  
Function Method, Existence and Uniqueness Theorems 

 

1. Introduction 

Many researches in recent years have been devoted to the studies of optimal 
control problems for a distributed parameter system. Optimal control is widely 
applied in aerospace, physics, chemistry, biology, engineering, economics and 
other areas of science and has received considerable attention of researchers. 

The optimal boundary control problem for parabolic systems is relevant in 
mathematical description of several physical processes including chemical reac-
tions, semiconductor theory, nuclear reactor dynamics, population dynamics [1] 
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and [2]. The partial differential equations involved in these problems include el-
liptic equations, parabolic equations and hyperbolic equations [3] [4].  

Optimization can be of constrained or unconstrained problems. The presence 
of constraints in a nonlinear programming creates more problems while finding 
the minimum as compared to unconstrained ones. Several situations can be 
identified depending on the effect of constraints on the objective function. The 
simplest situation is when the constraints do not have any influence on the 
minimum point. Here the constrained minimum of the problem is the same as 
the unconstrained minimum, i.e., the constraints do not have any influence on 
the objective function. For simple optimization problems it may be possible to 
determine, beforehand, whether or not the constraints have any influence on the 
minimum point. However, in most of the practical problems, it will be extremely 
difficult to identify it. Thus one has to proceed with general assumption that the 
constraints will have some influence on the optimum point. The minimum of a 
nonlinear programming problem will not be, in general, an extreme point of the 
feasible region and may not even be on the boundary. Also the problem may 
have local minima even if the corresponding unconstrained problem is not hav-
ing local minima. Furthermore, none of the local minima may correspond to the 
global minimum of the unconstrained problem. All these characteristics are di-
rect consequences of the introduction of constraints and hence we should to 
have general algorithms to overcome these kinds of minimization problems [5] 
[6] [7] [8] [9].  

The algorithms for minimization are iterative procedures that require starting 
values of the design variable x. If the objective function has several local minima, 
the initial choice of x determines which of these will be computed. There is no 
guaranteed way of finding the global optimal point. One suggested procedure is 
to make several computer runs using different starting points and pick the best 
Rao [10]. The majority of available methods are designed for unconstrained op-
timization, where no restrictions are placed on the de-sign variables. In these 
problems the minima, if they exist are stationary points (points where gradient 
vector of the objective function vanishes). There are also special algorithms for 
constrained optimization problems, but they are not easily accessible due to their 
complexity and specialization.  

All of the many methods available for the solution of a constrained nonlinear 
programming problem can be classified into two broad categories, namely, the 
direct methods and the indirect methods approach. In the direct methods the 
constraints are handled in an explicit manner whereas in the most of the indirect 
methods, the constrained problem is solved as a sequence of unconstrained mi-
nimization problems or as a single unconstrained minimization problem. Here 
we are concerned on the indirect methods of solving constrained optimization 
problems. A large number of methods and their variations are available in the 
literature for solving constrained optimization problems using indirect methods. 
As is frequently the case with nonlinear problems, there is no single method that 
is clearly better than the others. Each method has its own strengths and weak-
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nesses. The quest for a general method that works effectively for all types of 
problems continues. Sequential transformation methods are the oldest methods 
also known as Sequential Un-Constrained Minimization Techniques (SUMT) 
based upon the work of Fiacco and McCormick, 1968. They are still among the 
most popular ones for some cases of problems, although there are some modifi-
cations that are more often used. These methods help us to remove a set of com-
plicating constraints of an optimization problem and give us a frame work to 
exploit any available methods for unconstrained optimization problems to solve, 
perhaps, approximately. [5] [6] [7] [8] [9]. However, this is not without a cost. 
In fact, this transforms the problem into a problem of non-smooth (in most cas-
es) optimization which has to be solved iteratively. The sequential transforma-
tion method is also called the classical approach and is perhaps the simplest to 
implement. Basically, there are two alternative approaches. The first is called the 
exterior penalty function method (commonly called penalty method), in which a 
penalty term is added to the objective function for any violation of constraints. 
This method generates a sequence of infeasible points, hence its name, whose 
limit is an optimal solution to the original problem. The second method is called 
interior penalty function method (commonly called barrier method), in which a 
barrier term that prevents the points generated from leaving the feasible region 
is added to the objective function. The method generates a sequence of feasible 
points whose limit is an optimal solution to the original problem. Luenberger 
[11] illustrated that penalty and barrier function methods are procedures for 
approximating constrained optimization problems by unconstrained prob-
lems.  

In the meanings of constrained conditions, these optimal control problems 
can be divided into control con-strained problems and state constrained prob-
lems. In each of the branches referred above, there are many excellent works and 
also many difficulties to be solved. 

The rest of this paper is organized as follows. In Section 2, the proposed sys-
tem of optimal control problem with respect to a parabolic equation is offered. 
Section 3 describes the analysis of existence and uniqueness of the solution of the 
POCP. In Section 4, the variation of the functional and its gradient is presented. 
Section 5 describes Lipschitz continuity of the gradient cost functional. Finally, 
conclusions are presented in Section 6. 

2. Problem Statement 

Consider the following POCP process be described in:  

( ){ }, : 0 , 0T x t x t TθΩ = < < < < : 

( ) ( ) ( ) ( )
, ,

, ,
x t x t

x v x t
t x x ο

ϕ ϕ
µ

∂ ∂ ∂
= + 

∂ ∂ ∂ 
              (1) 

with the initial and the boundary conditions: 

( ) ( )1, ,     0 , 0x t v x x tϕ θ= < < =                   (2) 
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( )

( ) ( ) ( ) ( )2

,
0,    0,0 ,

,
, ,     ,0

x t
x t T

x
x t

x v t x t x t T
x

ϕ

ϕ
µ τ ϕ θ

∂
= = < ≤

∂

∂
= − = < ≤  ∂

          (3) 

where the solution of the problem (1-3) is ( ),x tϕ , since,  
( ) ( ) [ ]0,    0,x x Lµ µ θ∞> ∈ , the coefficient of convection τ  is positive con-

stant-sometimes τ  is called coefficient of heat transfer. The admissible con-
trols is a set 1 2V V V V°= × ×  defined as  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 2 1 2 2 2, , , : , , 0, , 0, .TV v v x t v x v t v x t L v x L v t L Tο ο θ= = ∈ Ω ∈ ∈  

Many physical and engineering settings have the mathematical model (1-3), in 
particular in hydrology, material sciences, heat transfer and transport problems 
[12]. In the case of heat transfer, the Robin condition physically is realized as 
follows. Let the surface x θ=  of the rod be exposed to air or other fluid with 
temperature. Then ( ) ( )2, t v tϕ θ −  is the temperature difference at x θ=  be-
tween the rod and its surroundings. According to Newton’s law of cooling, the 
rate at which heat is transferred from the rod to the fluid is proportional to the 
difference in the temperature between the rod and the fluid, i.e. 

( ) ( ) ( ) ( )2

,
,

t
v t t

x
ϕ θ

µ θ τ ϕ θ
∂

= − −  ∂
               (4) 

The purpose is to find the optimal control ( ),x tϕ  that minimizes the fol-
lowing cost functional: 

( ) ( ) ( ) ( ) ( )2 2
20 0

, d d
T

J v q x x T x v t w t t
θ

α γ ϕ α= − + −      ∫ ∫       (5) 

and  

( )1 2,r x t rϕ≤ ≤                         (6) 

where ,γ α  are given positive numbers, ( )q x  is given function from  
[ ]2 0,L θ , ( )w t  is given function from [ ]2 0,L T  with T  is a fixed time. Pe-

nalty function methods are the most popular constraint handling methods 
among users. Two main branches of penalty method have been proposed in the 
literature: Exterior and Interior which is also called the barrier method. The ba-
sic idea in penalty method is to eliminate some or all constraints and add to the 
objective function a penalty term which prescribes a high cost to infeasible 
points. Associated with this method is a parameter Aτ , which determines the 
severity of penalty and as a consequence the extent to which the resulting un-
constrained problem approximates the original constrained problem. We restrict 
attention to the polynomial order-even penalty function. The constrained op-
timal control problem (5-6) is converted to unconstrained optimal control pro- 
blem by adding a penalty function [13] to the cost functional (5), yielding the 
modified function: 

( )
( ) ( ) ( ) ( )

,

,

, :

                    , ,

v q

v q v J v P v
α τ τ

α τ τ α τ

ψ

ψ ψ≡ = +
         (7) 
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where ( ) ( ) ( )( )1 2
0 0

d d
T

P v A s s x t
θ

τ τ ϕ ϕ = + ∫ ∫ , ( ) ( ){ } 2

1 1max , ; ;0s r x t wϕ ϕ = −  ,  

( ) ( ){ } 2

2 2max , ; ;0s x t w rϕ ϕ = −   and 0Aτ > , 0,1,2,τ =  , lim Aττ→∞
= +∞ . 

3. Well-Posedness of System  

This section present the concept of the weak solution of the system (1-3) and the 
existence solution. Let a function ( )2 TLϕ ∈ Ω  of the weak solution of the 
problem, and satisfies the following integral, for all ( ) ( )2, Tx t Lκ ∈ Ω :  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 20 0 0

0

, , ,
d d , d d

( , ) , d ,0 d , , d

, , d d ,

T T

T

T

x t x t x t
x x t x t x t

x x t

x T x T x v x x x t v t t t

v x t x t x t

θ θ

κ ϕ κ
µ ϕ

ϕ κ κ τ ϕ θ κ θ

κ

Ω Ω

Ω

∂ ∂ ∂
−

∂ ∂ ∂

+ − − −  

=

∫∫ ∫∫

∫ ∫ ∫
∫∫

  (8) 

The weak solution ( )2 TLϕ∈ Ω  of the direct problem exists and unique un-
der the above conditions with respect to the given data [14] [15]. According to 
[12], the solution of the optimal control problem can be defined as a solution of 
the minimization problem for the cost functional ( )J vα  under condition (6), 
given by (5): 

( ) ( )inf
v V

v vα αψ ψ∗ ∈
=                       (9) 

Theorem 1:  
Under the above conditions, the optimal control problem has an optimal so-

lution ( ),vϕ  in ( )2 TL VΩ × . 
Proof: when ( ) 0vαψ ∗ = , the solution v V∗ ∈  is a strict solution of systems 

(1-3) and (5-6), where v V∗ ∈  satisfies the equation of functional,  
( ) ( ) ( ), ; ,  0,x t T v q x xϕ θ= = ∈ . In parabolic problems and according to the 

theory of weak solution, can prove that the sequence ( ){ }nv V⊂  weakly con- 

verges to the function v V∈ , so that the traces sequence ( )( ){ }, ; nx T vϕ  of cor-

responding solutions of system (1-3) converges to the solution ( ){ }, ;x T vϕ  in 

( )2 TL Ω , hence, when n→∞ then ( )( ) ( )nv vα αψ ψ→  [16]. Therefore the func- 

tional ( )vαψ  is weakly continuous on V, and the non-empty set of solutions 
( ) ( ) ( ){ }: infV v V v vα α αψ ψ ψ∗ ∗ ∗

= ∈ = =  for the minimization problem (5-6) 
[17]. 

4. The Variation of the Functional and Its Gradient 

The main objective here, the proof of Theorem 2 (found in tail of this section) 
which requires the following two lemmas; lemma 1 and lemma 2. Let the first 
variation of the cost functional ( )vαψ  of the cost functional (7) as follows:  

( ) ( ) ( )v v v vα α αψ ψ ψ∆ = + ∆ −                (10) 

therefore,  
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )

0

2

0

2
2 2 20 0

1 2

2 , ; , ; d

 , ; d

 2 d

 , ; d d
T

T T

v x T v q x x T v x

x T v x

v t w t v t dt v t t

A s s x t v x t

θ
α

θ

τ

ψ γ ϕ ϕ

γ ϕ

α α

ϕ ϕ ϕ
Ω

∆ = − ∆  

+ ∆  

+ − ∆ + ∆      

 ′ ′+ + ∆ 

∫

∫

∫ ∫
∫∫

   (11) 

where 

( ) ( ) ( ) ( )2, ; , , , , Tx t v x t v v x t v Lϕ ϕ ϕ∆ = + ∆ − ∈ Ω , 

( ) ( ) ( )( )1 1 , , , ,s s x t v v x t vϕ ϕ ϕ∆ = + ∆ − ,  

( ) ( ) ( )( )2 2 , , , ,s s x t v v x t vϕ ϕ ϕ∆ = + ∆ − , 

( ) ( ) ( ) ( ) ( ) ( ){ }0 0 1 1 2 2, , , ,v v v x t v x t v x v x v t v t V+ ∆ = + ∆ + ∆ + ∆ ∈ . 

Therefore the function ( ), ;x t vϕ ϕ∆ = ∆  is the solution of the following sys-
tem: 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

1

2

, ,
, ;   ,

,
0;    0

, ;    0,0

,
, ;    ,0

T

x t x t
x v x t x t

t x x

x t
x

x
x t v x t x

x t
x v t x t x t T

x

ο

ϕ ϕ
µ

ϕ

ϕ θ

ϕ
µ τ ϕ θ

∂∆ ∂∆ ∂
= + ∆ ∈Ω  

∂ ∂ ∂ 
∂∆ = =

∂
∆ = ∆ = < <
 ∂∆
 = ∆ −∆ = < ≤  ∂

   (12) 

Lemma 1: 
If the direct system (1-3) have the corresponding solution ( ) ( )2, ; Tx t v Lϕ ϕ= ∈ Ω  

and ( ) ( )2, ; Tx t v Lρ ∈ Ω  is the solution of the adjoint parabolic problem [18]: 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 2

, ,
,   ,

,
0, 0

, 2 , ; ,   ,0

,
, ,    ,0

T

x t x t
x A s s x t

t x x

x t
x

x
x t x t v q x t T x

x t
x x t x t T

x

τ

ρ ρ
µ ϕ ϕ

ρ

ρ γ ϕ θ

ρ
µ τ ρ θ

∂ ∂ ∂  ′ ′=− − + ∈Ω    ∂ ∂ ∂ 
∂ = = ∂
 = − = < <  
 ∂− = = < ≤
 ∂

 (13) 

then the following integral identity holds for all elements  
( ) ( ) ( ){ }0 1 2, , ,v v x t v x v x=  and  

( ) ( ) ( ) ( ) ( ) ( ){ }0 0 1 1 2 2, , , ,v v v x t v x t v x v x v t v t V+ ∆ = + ∆ + ∆ + ∆ ∈ : 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )( ) ( )

00

10

20

1 2

2 , ; , ; d , ; , d d

 ,0; d

 , ; d

 , ; d d

T

T

T

x T v q x x T v x x t v v x t x t

x v v x x

t v v t t

A s s x t v x t

θ

θ

τ

γ ϕ ϕ ρ

ρ

τ ρ θ

ϕ ϕ ϕ

Ω

Ω

− ∆ = ∆  

+ ∆

+ ∆

 ′ ′− + ∆ 

∫ ∫∫

∫

∫
∫∫

 (14) 
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Proof: At t T=  with the condition in (13) to transform the left-hand side of 
(14) as follows: 

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

0

0

0 1 2

2 , ; , ; d

, ; , ; d

, ; , ; d d

, ; , ; , ; , ; d d

, ; , ; d d , ; , ; d d

, , ; d d

T

T

T T

T

t

t t

x xx x

x T v q x x T v x

x T v x T v x

x t v x t v x t

x t v x t v x t v x t v x t

x t v x x t v x t x x t v x t v x t

v x t x t v x t A s s

θ

θ

τ

γ ϕ ϕ

ρ ϕ

ρ ϕ

ρ ϕ ρ ϕ

ρ µ ϕ µ ρ ϕ

ρ ϕ ϕ

Ω

Ω

Ω Ω

Ω

− ∆  

= ∆

= ∆  

= ∆ + ∆  

= ∆ − ∆

′ ′+ ∆ − +

∫

∫
∫∫

∫∫

∫∫ ∫∫

∫∫ ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

00

0 1 2

, ; d d

, ; , ; , ; , ; d

, , ; d d , ; d d

T

T T

T x
x x x

x t v x t

x t v x x t v x x t v x t v t

v x t x t v x t A s s x t v x t

θ

τ

ϕ

ρ µ ϕ µ ρ ϕ

ρ ϕ ϕ φ

Ω

=

=

Ω Ω

  ∆ 

= ∆ − ∆  

 ′ ′+ ∆ − + ∆ 

∫∫

∫
∫∫ ∫∫

 

At the boundary conditions in (13) and (14) for the functions ( ), ;x t vρ  and
( ), ;x t vϕ∆ ; we obtain (14). Corresponding to the inverse problem in system 

(1-3) and (5-6), the parabolic problem (13) define as an adjoint problem. By 
backward one of the Equation (13), the “final condition” at t T=  it is a well- 
posed initial boundary-value problem under a time reversal. The first variation 
of the cost functional ( )vαψ  obtain by using integral identity in (14) on the 
right-hand side of Equation (11): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0 20

1 2 20 0

2 2
20 0

, , ; d d , ; d

 ,0; d 2 d

 d , ; d

T

T

T

T

v v x t x t v x t t v v t t

x v v x x v t w t v t t

v t t x T v x

α

θ

θ

ψ ρ τ ρ θ

ρ α

α γ ϕ

Ω

∆ = ∆ + ∆

+ ∆ + − ∆  

+ ∆ + ∆      

∫∫ ∫

∫ ∫

∫ ∫

  (15) 

Using the definition of the Fréchet-differential and the above the scalar prod-
uct definition in V, transform the right-hand side of (15) need into the following 
expression: 

( ) ( ) ( ) ( )2 2/
20 0

, d , ; d
T

V
v v v v t t x T v x

θ
α αψ ψ α γ ϕ∆ = ∆ + ∆ + ∆      ∫ ∫  (16) 

Now we need to show that the last two terms on the right-hand side of (15) 
are of order ( )p

VO v , with 1p ≥ .  
Lemma 2: 
If the parabolic problem (12) have the solution ( ) ( )2, ; Tx t v Lϕ ϕ∆ = ∆ ∈ Ω , 

v V∈ , then the following inequality holds: 

( ) 2 2
00

, ; d ,   Vx T v x c v v V
θ

ϕ∆ ≤ ∆ ∀∆ ∈  ∫            (17) 

where 
Vv∆  is the norm ( )2 normTL Ω −  of the function v V∆ ∈ ,  

( ) ( ) ( )
1 2

2 2 2
0 1 20 0

, d d d d
T

T

Vv v x t x t v x x v t t
θ

Ω

 
∆ = ∆ + ∆ + ∆ 

  
∫∫ ∫ ∫  is the norm  
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( )2 TL Ω  of the function v V∆ ∈ , and the constants 0c , 0>  are defined as 
follows: 

{ } ( )

( ){ }
0 0

2

max 1, 0, min 0,

min , 2 2 0
x

c x
θ

τ µ µ

µ θ τ τ θ

∗ ≤ ≤

∗

= > = >

= + >

            (18) 

Proof:  
Multiplying the Equation (12) by ϕ∆ , then integrating the result on TΩ , 

( )( ) ( )( ) ( ) ( )2
x x xx x

x x xµ φ ϕ µ ϕ ϕ µ ϕ∆ ∆ = ∆ ∆ − ∆ , 
2

2t t
ϕ ϕφϕ ∂∆ ∂∆

∆ =
∂ ∂

. 

We obtain energy identity after applying the initial and boundary conditions 
as the following:  

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

2 2 2

0 0

2

0 2 10 0

, ; d 2 , ; d 2 d d

2 , , ; d d 2 , ; d d

T

T

T
x

T

x T v x t v t x x t

v x t x t v x t t v v t t v x x

θ

θ

ϕ τ ϕ θ µ ϕ

ϕ τ ϕ θ

Ω

Ω

∆ + ∆ + ∆      

= ∆ ∆ + ∆ ∆ + ∆  

∫ ∫ ∫∫

∫∫ ∫ ∫
 (19) 

We use the  -inequality ( ) ( )2 2( 2 2 , , , 0Rαγ α γ α γ≤ + ∀ ∈ ∀ >    for the 
solution ( ), ;x t vϕ ϕ∆ = ∆  of the parabolic problem (19). Then for all 0> we 
have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

0 2 10 0

2 2 2
0 0

22
2 10 0

2 , , ; d d 2 , ; d d

1, ; d d , d d , ; d

  d d

T

T T

T

T

T

v x t x t v x t t v v t t v x x

x t v x t v x t x t t v t

v t t v x x

θ

θ

ϕ τ ϕ θ

ϕ τ ϕ θ

τ

Ω

Ω Ω

∆ ∆ + ∆ ∆ + ∆  

≤ ∆ + ∆ + ∆          

+ ∆ + ∆      

∫∫ ∫ ∫

∫∫ ∫∫ ∫

∫ ∫

 





  (20) 

Applying the Cauchy inequality to estimate the term ( ) 2
,x tϕ∆   : 

( ) ( ) ( )

( )( ) ( )( )

( ) ( )( )

22

2 2

2 2

0

, , ; d , ;

2 , ; d 2 , ;

2 , ; d 2 , ;

x

x

x

x t t v t v

t v t v

x t v x t v

θ
κ

θ
κ

θ

ϕ ϕ κ κ ϕ θ

ϕ κ κ ϕ θ

θ ϕ ϕ θ

 ∆ = ∆ − ∆     

≤ ∆ + ∆

≤ ∆ + ∆  

∫

∫

∫

 

By integrating the both sides of above inequality on TΩ , we obtain: 

( ) ( ) ( )2 2 22
0

, ; d d 2 , ; d d 2 , ; d
T T

T
xx t v x t x t v x t t v tϕ θ ϕ θ ϕ θ

Ω Ω

∆ ≤ ∆ + ∆          ∫∫ ∫∫ ∫  (21) 

and use this estimate on the right-hand side of (20): 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

0 2 10 0

2 22
0

22 2
0 2 10 0

2 , , ; d d 2 , ; d d

2 , ; d d ( 2 ) , ; d

1  , d d d d

T

T

T

T

T
x

T

v x t x t v x t t v v t t v x x

x t v x t t v t

v x t x t v t t v x x

θ

θ

ϕ τ ϕ θ

θ ϕ θ τ ϕ θ

τ

Ω

Ω

Ω

∆ ∆ + ∆ ∆ + ∆  

≤ ∆ + + ∆      

+ ∆ + ∆ + ∆          

∫∫ ∫ ∫

∫∫ ∫

∫∫ ∫ ∫

  

 

 

From (19) with above inequality, we obtain: 



M. A. El-Sayed et al. 
 

34 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 2 0 0

22 2
0 2 10 0

, ; d d , ; d , ; d

1 , d d d d

T

T

T
x

T

c x t v x t c t v t x T v x

v x t x t v t t v x x

θ

θ

ϕ ϕ θ ϕ

τ
Ω

Ω

∆ + ∆ + ∆          

≤ ∆ + ∆ + ∆          

∫∫ ∫ ∫

∫∫ ∫ ∫
 

 (22) 

where ( )2
1 2c µ θ∗= −   and 2 2 2c τ θ τ= − −  , we get bound (18) with 0>  

for estimate (22): 

( ) ( ) ( ) ( )
22 2 2

0 2 10 0 0

1, ; d , d d d d
T

T
x T v x v x t x t v t t v x x

θ θτϕ
Ω

∆ ≤ ∆ + ∆ + ∆              ∫ ∫∫ ∫ ∫
 

 

Hence, the last integral (15) is bounded by ( )2

VO v∆  and using Fréchet- 
differential definition at v V∈ . 

( ) ( ) ( ) ( )2 2/
20 0

, d , ; d
T

V
v v v v t t x T v x

θ
α αψ ψ α γ ϕ∆ = ∆ + ∆ + ∆      ∫ ∫  

we obtain the following theorem: 
Theorem 2: 
The cost functional ( ) ( )1,1v C Vαψ ∈  is Fréchet-differentiable in the consi-

dered problem hold, and Fréchet derivative at v V∈  of ( )vαψ can be defined 
by the solution ( )1,0

2 TWρ ∈ Ω  of the adjoint problem (13) as follows: 

( ) ( ) ( ) ( ){ }/ , ; , ,0; ; , ;v x t v x v t vαψ ρ ρ τ ρ θ=          (23) 

5. The Continuity of Gradient Functional 

In this section, by helping the gradient of cost functional ( )vαψ  we prove the 
Lipschitz continuity of ( )/ vαψ . The minimization problem (9) need an estima-
tion of the iteration parameter 0τα >  beginning with the initial iteration  

( )0v V∈ :  
( ) ( ) ( )( )1 / ,    0,1, 2,n n n

nv v v nαα ψ+ = − =             (24) 

In many situation estimations of determine the parameter τα  in various 
gradient methods is a difficult problem [19]. However, for arbitrary parameters 

0 1, 0δ δ > , the parameter nα  can be estimated via the Lipschitz constant in the 
case of Lipschitz continuity of the gradient ( )/ vαψ  as follows: 

( )0 10 2 2 ,n Lδ α δ< ≤ ≤ +                   (25) 

Lemma 3: 
The functional ( )vαψ  is of Hölder class ( )1,1C V  under the conditions of 

Theorem 2 and 

( ) ( ) ( ) ( )( )
1 2

/ /
4 1 22 d d

T
VV

v v v L v c A s s x tα α τψ ψ ϕ ϕ
Ω

 
 ′ ′+ ∆ − ≤ ∆ + ∆ + ∆  

  
∫∫  (26) 

where 

( ) ( ) ( )( ) ( )( )

( )( )

2 2 2/ / 2
0

2
4 0

, ; d d , ; d

                                     ,0; d

T

T

V
v v v x t v x t t v t

c x v x

α α

θ

ψ ψ ρ τ ρ θ

ρ

Ω

+ ∆ − = ∆ + ∆

+ ∆

∫∫ ∫

∫
    (27) 
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where 2
4 * 2c θ µ θ τ τ= + +  and for parameters 0c , 0> , the Lipschitz con-

stant is defined in (22) as follows: 

0 42 0L c cγ= >                      (28) 

Proof: Let the following backward parabolic problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ]

1 2

, ,
, ,

, 2 , ;     0,

0, ,
0, , , 0,

T

x t x t
x A s s x t

t x x

x T x T v x

t t
t t T

x x

τ

ρ ρ
µ ϕ ϕ

ρ γ ϕ θ

ρ ρ θ
µ θ τ ρ θ

∂∆ ∂∆ ∂ ′ ′=− − ∆ + ∆ ∈Ω     ∂ ∂ ∂ 
∆ = ∆ ∈
∂∆ ∂∆ = − = ∆ ∈ ∂ ∂

 (29) 

has the solution ( ) ( ) ( ) ( )1,0
2, ; , ; , ; Tx t v x t v v x t v Wρ ρ ρ∆ = + ∆ − ∈ Ω . Therefore, 

using the initial and boundary conditions after multiplying both sides of Equa-
tion (29) by ( ), ;x t vρ∆ , and integrating on TΩ  as in the proof of Lemma 2, we 
can get the following energy identity: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 2

0 0

2
1 20

1, ; d d , ; d ,0; d
2

2 , ; d d d

T

T

T
xx x t v x t t v t x v x

x T v x A s s x t

θ

θ
τ

µ ρ τ ρ θ ρ

γ ϕ ϕ ϕ

Ω

Ω

∆ + ∆ + ∆          

 ′ ′= ∆ + ∆ + ∆    

∫∫ ∫ ∫

∫ ∫∫
 (30) 

implies the following two inequalities: 

( ) ( )

( ) ( ) ( )( )

2 2

0

2
1 20

1, ; d d ,0; d
2

2 , ; d d d

T

T

x x t v x t x v x

x T v x A s s x t

θ

θ
τ

µ ρ ρ

γ ϕ ϕ ϕ

∗
Ω

Ω

∆ + ∆      

 ′ ′≤ ∆ + ∆ + ∆    

∫∫ ∫

∫ ∫∫
      (31) 

and 

( ) ( )

( ) ( ) ( )( )

2 2

0 0

2
1 20

1, ; d ,0; d
2

2 , ; d d d
T

T
t v t x v x

x T v x A s s x t

θ

θ
τ

τ ρ θ ρ

γ ϕ ϕ ϕ
Ω

∆ + ∆      

 ′ ′≤ ∆ + ∆ + ∆    

∫ ∫

∫ ∫∫
      (32) 

Multiplying the first and the second inequality by *
2 /2 µθ  and τθ /2 , cor-

respondingly, summing up them, and then using the inequality (20) we obtain: 

( ) ( ) ( )

( ) ( ) ( )( )

2 22
* 0

2 2
22

1 20
* *

, ; d d ,0; d

4 , ; d 2 d d

T

T

x t v x t x v x

x T v x A s s x t

θ

θ
τ

ρ θ µ θ τ ρ

θ θ θ θγ ϕ ϕ ϕ
µ τ µ τ

Ω

Ω

∆ + + ∆      

   
 ′ ′≤ + ∆ + + ∆ + ∆       

   

∫∫ ∫

∫ ∫∫
 (33) 

Computing of the second integral on the right-hand side of (26) by the same 
term. From the energy identity (30) we can obtain the following: 

( ) ( )

( ) ( ) ( )( )

2 22
0 0

22
1 20

, ; d ,0; d
2

2 , ; d d d
T

T
t v t x v x

x T v x A s s x t

θ

θ
τ

ττ ρ θ ρ

γ τ ϕ ϕ ϕ
Ω

∆ + ∆      

 ′ ′≤ ∆ + ∆ + ∆    

∫ ∫

∫ ∫∫
    (34) 

This, with the last estimate, concludes 
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( ) ( ) ( )

( ) ( ) ( )( )

22 2 2

0 0
4 4

22
1 20

1 , ; d d , ; d ,0; d

4 , ; d 2 d d

T

T

T
x t v x t t v t x v x

c c

x T v x A s s x t

θ

θ
τ

τρ ρ θ ρ

γ ϕ ϕ ϕ

Ω

Ω

∆ + ∆ + ∆          

 ′ ′≤ ∆ + ∆ + ∆    

∫∫ ∫ ∫

∫ ∫∫
 (35) 

where 2
4 * 2c θ µ θ τ τ= + + , using this in (27) and taking into account Lemma 

2 we obtain (26) with the Lipschitz constant L  in (28). 

6. Conclusion 

In this paper, we studied a class of the constrained OCP for parabolic systems. 
The existence and uniqueness of the system is introduced. In this way, the uni-
queness theorem for the solving POCP is introduced. Therefore, a theorem for 
the sufficient differentiability conditions has been proved. By using the exterior 
penalty function method, the constrained problem is converted to new uncon-
strained OCP. The common techniques of constructing the gradient of the cost 
functional using the solving of the adjoint problem is investigated. 
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