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Abstract 
One fundamental problem of modern physics is the search for a theory of everything able to ex-
plain the nature of space-time, what matter is and how matter interacts. There are various propo-
sitions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Superstring Theories, 
and M-Theory. However, none of them is able to consistently explain at the present and same time 
electromagnetism, relativity, gravitation, quantum physics and observed elementary particles. In 
this paper, one summarizes the content of a new book, published in English [2] and in French [3], 
in which it is suggested that Universe could be a massive elastic 3D-lattice, and that fundamental 
building blocks of Ordinary Matter could consist of topological singularities of this lattice, namely 
diverse dislocation loops and disclination loops. For an isotropic elastic lattice obeying Newton’s 
law, with specific assumptions on its elastic properties, one obtains the result that the behaviours 
of this lattice and of its topological defects display “all” known physics, unifying electromagnetism, 
relativity, gravitation and quantum physics, and resolving some longstanding questions of modern 
cosmology. Moreover, studying lattices with axial symmetries, represented by “colored” cubic 
3D-lattices, one has identified a lattice structure whose topological defect loops coincide with the 
complex zoology of elementary particles, which could open a very promising field of research. 
Here, only main steps and principal results of the new theory are presented and discussed, with-
out showing the mathematical concepts and developments contained in the book. 
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1. Introduction 
This paper presents a theory recently developed [1] and published in a book [2] [3], which shows that an Eule-
rian approach of the deformation of a Newtonian lattice in an absolute space can furnish an investigation frame 
extremely rich and interesting for physics, if judicious elastic and structural properties of the considered lattice 
are postulated. Indeed, it shows very strong and often perfect analogies with all the modern physics theories of 
the macrocosm and microcosm, as the Maxwell equations, the special relativity, the Newtonian gravitation, the 
general relativity, the modern cosmology, the quantum physics and the standard model of elementary particles. 

This book does not present a theory of everything which would be completely elaborated and usable, but it 
would and could be extremely fruitful to give simple explanations to the modern physics theories which are very 
difficult, if not impossible, to deeply understand. It could also and above all be useful to define close links and 
unifying bridges between the diverse theories of modern physics. 

In a first part, one summarizes autonomously a first book published in French during year 2013 [4] (also re-
cently translated in English [5]), which lays methodically the foundations of an original approach of the solid 
lattices deformation using the Euler coordinates, and which introduces in details the concept of tensor disloca-
tion charges and tensor disclination charges within a lattice. This new concept allows one to quantify the topo-
logical singularities, which can appear at the microscopic scale of a solid lattice. On the basis of this original 
approach of the solid lattices and their topological singularities, one can deduce a set of fundamental and phe-
nomenological equations allowing to treat rigorously the macroscopic spatiotemporal evolution of a Newtonian 
solid lattice which deforms in the absolute space of an external observer laboratory. 

In a second part, one introduces an imaginary lattice, named “cosmic lattice”, with quite special elastic and 
structural properties. The Newton equation of this lattice and its topological singularities present then a set of 
very surprising properties, which will be progressively developed in the course of the chapters. It will appear 
strong and amazing analogies with all modern physics theories: Maxwell equations, special relativity, Newto-
nian gravitation, general relativity, modern cosmology, quantum physics and standard model of elementary par-
ticles. 

2. The Problem of Unified Theories 
One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of 
space-time, what matter is and how matter interacts. Since the 19th century, physicists have attempted to develop 
unified field theories [6], which would consist of a single coherent theoretical framework able to account for 
several fundamental forces of nature. For instance: 
• Grand Unified Theory [7] merges electromagnetic, weak and strong interaction forces, 
• Quantum Gravity [8], Loop Quantum Gravity [9] and String Theories attempt to describe the quantum prop-

erties of gravity,  
• Super-symmetry [10]-[15] proposes an extension of the space-time symmetry relating the two classes of 

elementary particles, bosons and fermions, 
• String and Superstring Theories [16]-[23] are theoretical frameworks incorporating gravity in which point- 

like particles are replaced by one-dimensional strings, whose quantum states describe all types of observed 
elementary particles, 

• M-Theory [24]-[32] is a unifying theory of five different versions of string theories, with the surprising 
property that extra dimensions are required for its consistency. 

However, none of them is able to consistently explain at the present and same time electromagnetism, relativ-
ity, gravitation, quantum physics and observed elementary particles. Many physicists believe now that 
11-dimensional M-theory is the theory of everything. However, there is no widespread consensus on this issue 
and, at present, there is no candidate theory able to calculate the fine structure constant or the mass of the elec-
tron. Particle physicists expect that the outcome of the ongoing experiments-search for new particles at the large 
particle accelerators and search for dark matter-are needed to provide further input for a theory of everything. 

In the recent theoretical work presented in the book [2] [3], it is suggested that Universe could be a massive 
elastic 3D-lattice, and that fundamental building blocks of Ordinary Matter could consist of topological singu-
larities of this lattice, namely diverse dislocation loops and disclination loops. We find, for an isotropic elastic 
lattice obeying Newton’s law, with specific assumptions on its elastic properties, that the behaviors of this lattice 
and of its topological defects display “all” known physics, unifying electromagnetism, relativity, gravitation and 
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quantum physics, and resolving some longstanding questions of modern cosmology. Moreover, studying lattices 
with axial symmetries, represented by “colored” cubic 3D-lattices, one can identify a lattice structure whose to-
pological defect loops coincide with the complex zoology of elementary particles, which could open a promising 
field of research. 

In this paper, motivations, main steps and principal results of the new theories presented in the two parts of 
book [2] [3] are summarized as succinctly as possible, without showing the mathematical concepts and devel-
opments contained in the book. 

3. Motivation of the First Part: Searching for a New Description of the Lattice  
Deformation 

3.1. Eulerian Deformation Theory of Newtonian Lattices 
When one desires to study the solid deformation, one generally uses Lagrangian coordinates to describe the 
evolution of the deformations, and diverse differential geometries to describe the topological defects contained 
in the solid. 

The use of Lagrangian coordinates presents a number of inherent difficulties. From the mathematical point of 
view, the tensors describing the continuous solid deformation are always of order higher than one concerning the 
spatial derivatives of the displacement field components, which leads to a very complicated mathematical for-
malism when the solid presents strong distortions (deformations and rotations). To these mathematical difficul-
ties are added physical difficulties when one has to introduce some known properties of solids. Indeed, the La-
grangian coordinates become practically unusable, for example when one has to describe the temporal evolution 
of the microscopic structure of a solid lattice (phase transitions) and of its structural defects (point defects, dis-
locations, disclinations, boundaries, etc.), or when it is necessary to introduce some physical properties of the 
medium (thermal, electrical, magnetic or chemical properties) leading to scalar, vectorial or tensorial fields in 
the real space. 

The use of differential geometries in order to introduce topological defects as dislocations in a deformable 
continuous medium has been initiated by the work of Nye [33] (1953), who showed for the first time the link 
between the dislocation density tensor and the lattice curvature. On the other hand, Kondo [34] (1952) and Bilby 
[35] (1954) showed independently that the dislocations can be identified as a crystalline version of the Cartan’s 
concept [36] of torsion of a continuum. This approach was generalized in details by Kröner [37] (1960). How-
ever, the use of differential geometries in order to describe the deformable media leads very quickly to difficul-
ties similar to those of the Lagrangian coordinates system. A first difficulty arises from the complexity of the 
mathematical formalism which is similar to the formalism of general relativity, what makes very difficult to 
handle and to interpret the obtained general field equations. A second difficulty arises with the differential geo-
metries when one has to introduce topological defects other than dislocations. For example, Kröner [38] (1980) 
has proposed that the existence of extrinsic point defects could be considered as extra-matter and introduced in 
the same manner that matter in general relativity under the form of Einstein equations, which would lead to a 
pure Riemannian differential geometry in the absence of dislocations. He has also proposed that the intrinsic 
point defects (vacancies and interstitials) could be approached as a non-metric part of an affine connection. Fi-
nally, he has also envisaged introducing other topological defects, as disclinations for example, by using higher 
order geometries much more complex, as Finsler or Kawaguchi geometries. In fact, the introduction of differen-
tial geometries implies generally a heavy mathematical artillery (metric tensor and Christoffel symbols) in order 
to describe the spatiotemporal evolution in infinitesimal local referentials, as shown for example in the mathe-
matical theory of dislocations of Zorawski [39] (1967).  

In view of the complexity of calculations in the case of Lagrangian coordinates as well as in the case of diffe-
rential geometries, it seemed that it would be better to develop a much simpler approach of deformable solids, 
but at least equally rigorous, which has been finally published in a first book [4] during year 2013: la théorie 
eulérienne des milieux déformables. 

In the first part of book [2] [3], one presents a summary of this new and original Eulerian approach of the de-
formation of solids through several sections: 

The first section introduces the Eulerian deformation theory of Newtonian lattices. The deformation of a lat-
tice is characterized by distortions and contortions. A vectorial representation of the tensors, presenting undeni-
able advantages over purely tensorial representation thanks the possibility to use the powerful formalism of the 
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vectorial analysis, allows to obtain the geometro-compatibility equations of the lattice which insure its solidity, 
and the geometro-kinetics equations of the lattice, which allow one to describe the deformation kinetics. One in-
troduces then the physics in this topological context, namely the Newtonian dynamics and the Eulerian ther-
mo-kinetics (based on the first and second principles of thermodynamics). With all these ingredients, it becomes 
possible to describe the particular behaviors of a solid lattice, as the elasticity, the anelasticity, the plasticity and 
the self-diffusion. This first section ends with the establishment of the complete set of evolution equations of a 
lattice in the Euler coordinate system. 

The second section is dedicated to the applications of the Eulerian theory. It presents very succinctly some 
examples of phenomenologies of everyday solids. One shows how to obtain the functions and equations of state 
of an isotropic solid, what are the elastic and thermal properties which can appear, how waves propagate and 
why there exist thermoelastic relaxations, what are the mass transport phenomena and why it could appear iner-
tial relaxations, what are the common phenomenologies of anelasticity and plasticity, and finally how it can ap-
pear structural transitions of first and second order in a solid lattice. 

3.2. Dislocation and Disclination Charges in Eulerian Lattices 
Regarding the description of defects (topological singularities) which can appear within a solid, as dislocations 
and disclinations, it is a domain of physics initiated principally by the idea of macroscopic defects of Volterra 
[40] (1907). This domain experienced a fulgurant development during the twentieth century, as well illustrated 
by Hirth [41] (1985). The lattice dislocation theory started up in 1934, when Orowan [42], Polanyi [43] and 
Taylor [44] published independently papers describing the edge dislocation. In 1939, Burgers [45] described the 
screw and mixed dislocations. And finally in 1956, Hirsch, Horne et Whelan [46] and Bollmann [47] observed 
independently dislocations in metals by using electronic microscopes. Concerning the disclinations, it is in 1904 
that Lehmann [48] observed them in molecular crystals, and in 1922 that Friedel [49] gave them a physical ex-
planation. From the second part of the century, the physics of lattice defects has grown considerably. 

In the first part of the books [2] [3], the dislocations and the disclinations are approached by introducing intui-
tively the concept of dislocation charges by using the famous Volterra pipes [40] (1907) and an analogy with the 
electrical charges. With Euler coordinates, the concept of dislocation charge density appears then in an equation 
of geometro-compatibility of the solid, when the concept of flux of charges is introduced in an equation of geo-
metro-kinetics of the solid.  

The rigorous formulation of the charge concept in the solids makes the essential originality of this approach 
of the topological singularities. The detailed development of this concept leads to the appearance of tensorial 
charges of first order, the dislocation charges, associated with the plastic distortions of the solid (plastic defor-
mations and rotations), and of tensorial charges of second order, the disclination charges, associated with the 
plastic contortions of the solid (plastic flexions and torsions). It appears that these topological singularities are 
quantified in a solid lattice and that they have to appear as strings (thin tubes) which can be modelized as un-
idimensional lines of dislocation or disclination, or as membranes (thin sheets) which can be modelized as 
two-dimensional boundaries of flexion, torsion or accommodation. 

The concept of dislocation and disclination charges allows one to find rigorously the main results obtained by 
the classical dislocation theory. But it allows above all to define a tensor iΛ  of linear dislocation charge, from 
which one deduces a scalar Λ  of linear rotation charge, which is associated with the screw part of the disloca-
tion, and a vector Λ  of linear flexion charge, which is associated with the edge part of the dislocation. For a 
given dislocation, both charges Λ  and Λ  are perfectly defined without needing a convention at the contrary 
of the classical definition of a dislocation with its Burger vector! On the other hand, the description of the dislo-
cations in the Eulerian coordinate system by the concept of dislocation charges allows one to treat exactly the 
evolution of the charges and the deformations during very strong volumetric contractions and expansions of a 
solid medium. 

The description of this new approach of the topological defects of a lattice is presented in the two following 
sections of part one of the book: 

The third section is dedicated to the introduction of dislocation charges and disclination charges in the Eule-
rian lattices. After the analytical introduction of the concepts of density and flux of dislocation and disclination 
charges in the lattices, one presents a detailed review of the lattice macroscopic and microscopic topological 
singularities, which can be associated to the dislocation and disclination charges. Then one discusses the motion 
of dislocation charges within the lattice by introducing the dislocation charges flux and the Orowan relations. 
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Finally, one deduces the Peach and Koehler force, which acts on the dislocations, and one establishes the new 
set of evolution equations of a lattice in the Euler coordinate system, which takes into account the existence of 
topological singularities within the lattice. 

The fourth section is dedicated to the applications of the charge concept within the Eulerian solid lattice. It 
shows the elements of the dislocation theory in the everyday solids. One begins to show that, in the particular 
case of the deformation of isotropic lattices by pure shears, one can replace the shear strain tensor by the rotation 
vector, which allows one to find a set of equations, which corresponds strictly to all the Maxwell equations of 
electromagnetism! Then one shows how to calculate the fields and energies of the screw and edge dislocations 
in an isotropic lattice, just as the interactions, which can occur between dislocations. One finishes this section of 
applications by presenting the string model of dislocations, which is the fundamental model allowing one to ex-
plain most of the macroscopic behaviors of anelasticity and plasticity of crystalline solids. 

4. Motivation of the Second Part: Searching for a “Cosmic Lattice” 
In the first part of the book, it is shown that it is possible to calculate the resting energy 0E  of the dislocations, 
which corresponds to the elastic energy stored in the lattice by their presence, and their kinetic energy cinE , 
which corresponds to the kinetic energy of the lattice particles mobilized by their movement. This allows to as-
sign to the dislocations a virtual inertial mass 0M  which satisfies relations similar to the famous equation 

2
0 0E M c=  of the Einstein special relativity, but which is obtained here through purely classical calculations, 

without using relativity principles! Moreover, at high velocity, the dislocation dynamics satisfy also the special 
relativity principles and the Lorentz transformations. 

It is also shown in the first part that it appears, in the case of isotropic solid media presenting a constant and 
homogeneous volumetric expansion, a perfect and complete analogy with the Maxwell equations of electro-
magnetism when the shear stress tensor is replaced by the rotation vector. The existence of an analogy between 
the electromagnetism and the theory of incompressible continuous media has already been distinguished very 
long ago by several authors, as shown by Whittaker [50] (1951). However, this analogy is much more complete 
in the first book [4], because it is not restricted to one of the two Maxwell equation couples in the vacuum, but it 
is generalized to the two equation couples as well as to the diverse phenomenologies of dielectric polarization 
and magnetization of matter, just as to the electrical charges and the electrical currents! The analogy with the 
Maxwell equations is very surprising on account of the fact that it is initially postulated a solid lattice satisfying 
a simple and purely Newtonian dynamics in the absolute reference frame of the external observer laboratory, 
which is equipped with absolute orthonormal measuring rods and an absolute clock. At the contrary, the topo-
logical singularities within the lattice (dislocations and disclinations) with their respective charges, responsible 
for the plastic distortions and contortions of the lattice, are submitted to a relativistic dynamics within the lattice, 
due to the Maxwellian equation set governing the shear strains of the massive elastic lattice. From this point of 
view, the relativistic dynamics of the topological singularities is a direct consequence of the purely classical 
Newtonian dynamics of the elastic lattice in the absolute frame of the external observer!  

Finally, it also appears in the first part that the tensorial aspect of the distortion fields at short distances of a 
localized topological singularities cluster formed by one or more dislocation or disclination loops can be easily 
neglected at great distances of the cluster, because the distortion fields can then be completely described by only 
two vectorial fields, the vectorial field of rotation by torsion and the vectorial field of curvature by flexion, asso-
ciated respectively to the only two scalar charges of the cluster, its scalar rotation charge and its scalar curva-
ture charge. The rotation charge becomes the perfect analogue of the electrical charge in the Maxwell equations, 
when the curvature charge presents some analogy with the gravitational mass in the gravitation theory. 

The existence of analogies between the theories of continuum mechanics and solid defects and the theories of 
electromagnetism, special relativity and gravitation has already been the subject of several publications, from 
which the more famous are most certainly those of Kröner [37] [38]. Excellent reviews in this physics field have 
also been published, in particular by Whittaker [50] (1951) and Unzicker [51] (2000). But none of these publica-
tions has gone as far as the approach published in the first book [4] concerning these highlighted analogies. 

The numerous analogies which appear in the first part between the Eulerian theory of deformable media and 
the theories of electromagnetism, gravitation, special relativity, general relativity and even standard model of 
elementary particles, reinforced by the absence of particles analogue to magnetic monopoles, by a possible solu-
tion of the famous paradox of electron field energy and by the existence of a small asymmetry between curvature 
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charges of vacancy or interstitial type, were sufficiently surprising and remarkable to alert any open and curious 
scientific spirit! But it was also clear that these analogies were, by far, not perfect. It was then tantalizing to 
analyze much more carefully these analogies and to try to find how to perfect them. That is the reason of the 
second part of the book, which is entirely allotted to the deepening, the improvement and the understanding of 
these analogies.  

The second part of book [2] [3] is composed of five sections. Progressively, by introducing several judicious 
conjectures, one addresses the problem of the analogies existing between 1) the Eulerian theory of lattice defor-
mation described in the first part, and applied to a very particular lattice, the cosmic lattice, and 2) the modern 
physics theories of the macrocosm and the microcosm, as the Maxwell equations, the special relativity, the 
Newtonian gravitation, the general relativity, the modern cosmology, the quantum mechanics and the standard 
model of elementary particles. 

4.1. The “Cosmic Lattice” and Its Newton’s Equation 
The first section of part two is dedicated to the introduction of the “cosmic lattice”. By introducing an imaginary 
lattice with very original elastic properties concerning the volumetric expansion, the shear strain and especially 
the rotation field, and by expressing the distortion free energy per volume unit of this lattice, one obtains a lattice, 
which presents a very particular Newton equation. Indeed, it appears in particular a novel force term directly re-
lated to the distortion free energy due to the singularities contained in the lattice, which will play subsequently a 
very important role for the analogies with the gravitation and the quantum physics.  

Then one shows that the propagation of waves in this cosmic lattice presents interesting particularities: prop-
agation of linearly polarized transversal waves is always associated with longitudinal wavelets, and propagation 
of pure transversal waves can only be obtained with circularly polarized waves (which will be strongly linked 
with the photons). On the other hand, when the local value of the lattice volumetric expansion becomes less than 
a given critical value, propagation of longitudinal waves disappears for the benefit of the appearance of localized 
longitudinal vibrations modes (which will be strongly linked with the quantum physics). 

Afterwards, the calculation of the curvature of wave rays in the vicinity of a singularity of the lattice volume-
tric expansion allows one to find the conditions for which this expansion singularity becomes a real capturing 
trap for the waves, in other words a “black hole”! 

Finally, one shows that such a cosmic lattice, if finite in the absolute space, can present dynamical volumetric 
expansion and/or contraction if it contains some quantity of expansion kinetics energy. This phenomenon is 
perfectly similar to the cosmological expansion of the universe! Following the signs and the values of the lattice 
elastic modules, several cosmological behaviors of the lattice can appear, some of which presenting phenomena 
as big-bang, rapid inflation and acceleration of the expansion velocity, which can be sometimes followed by a 
re-contraction of the lattice driving to a big-bounce phenomenon! One deduces that it is the expansion elastic 
energy contained in the lattice which is responsible for these phenomena, and notably for an expansion velocity 
increase, a phenomenon which has been recently discovered by the astrophysicists in the case of the present un-
iverse, and which has been attributed to a hypothetical “black energy”. 

4.2. Maxwell’s Equations and Special Relativity 
The second section is dedicated to the Maxwell equations and the special relativity. One begins to show that the 
Newton equation of the cosmic lattice can be separated in a curl part and a divergent part, and that the curl part 
creates a set of equations for the macroscopic rotation field, which is perfectly identical to the set of the Maxwell 
equations of the electromagnetism. 

Then one shows that the Newton equation can also be separated in a different manner, in two partial Newton 
equations allowing to calculate on the one hand the distortion elastic fields associated with the topological sin-
gularities, and on the other hand the volumetric expansion perturbations associated with the distortion elastic 
energies of the topological singularities. By using the first partial Newton equation, on can calculate the fields 
and energies of elastic distortions generated by topological singularities within the cosmic lattice. One can then 
find conditions on the elastic modules of this lattice such as it is possible to attribute in a perfectly conventional 
manner an inertial mass to the topological singularities, which always satisfies the famous Einstein relation 

2
0 0E M c= . 
Then one demonstrates that the topological singularities satisfy a typically relativist dynamics when their 
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velocity inside the lattice becomes close to the celerity of the transversal waves. 
On these foundations, one finishes this section by discussing the analogy between this theory and the theory 

of special relativity. One notices that the cosmic lattice acts in fact as an aether, in which the topological singu-
larities satisfy exactly the same properties than those of the special relativity concerning the length contraction, 
the time dilatation, the Michelson-Morley experiment and the Doppler-Fizeau effect. The existence of the cos-
mic lattice allows then to explain very simply some obscure sides of the special relativity, as for example the 
twin paradox! 

4.3. Gravitation, General Relativity, Weak Interaction and Cosmology 
The third section is dedicated to the gravitation and the cosmology. Thanks to the second partial Newton equa-
tion, one begins with the calculation of the external expansion perturbations, that is to say the external scalar 
gravitation field, associated with a localized macroscopic topological singularity, knowing either its distortion 
elastic energy, or its curvature charge, or its rotation charge.  

Immediately afterwards, one describes also macroscopic vacancy singularities and macroscopic interstitial 
singularities, which can appear within the lattice in the form of a macroscopic hole in the lattice or an interstitial 
embedment of a piece of lattice. These singularities will become subsequently the ideal candidates to explain 
respectively the black holes and the pulsars of our universe. 

By applying the calculations of the external gravitation field of topological singularities to localized micro-
scopic topological singularities, in the form of loops of screw disclination, loops of edge dislocation or loops of 
mixed dislocation, one deduces the whole of the properties of these loops. It appears then the new concept of 
“curvature mass” of the edge dislocation loops, which corresponds to the equivalent mass associated to the gra-
vitational effects of the curvature charges of these loops, and which can be positive (in the case of loops of va-
cancy type) or negative (in the case of loops of interstitial type). In fact, the curvature charge and the equivalent 
curvature mass which is associated do not appear in any other physics theory, neither in general relativity, nor in 
quantum physics, nor in standard model of elementary particles. The appearance of this new curvature charge is 
certainly the most important finding of our theory, because it is precisely that curvature mass which is responsi-
ble for a small asymmetry between the particles (hypothetically containing edge dislocation loops of interstitial 
type) and the antiparticles (hypothetically containing edge dislocation loops of vacancy type), which will play a 
fundamental role concerning the weak interaction and the cosmological evolution of the topological singularities 
within the universe! 

By considering the gravitational interactions existing between the topological singularities composed essen-
tially of screw disclination loops, one can deduce the behaviors of the measuring rods and clocks of local ob-
servers as a function of the local expansion field, which takes place within the cosmic lattice. One shows that, 
for any local observer, and whatever is the value of the local volumetric expansion of the lattice, the Maxwell 
equations remain always perfectly invariant, so that, for this local observer, the transversal wave velocity is a 
perfect constant, when the transversal wave velocity measured by a hypothetical observer situated outside the 
lattice in the absolute space depends strongly on the local expansion of the lattice! 

One shows that these gravitational interactions present strong analogies with the Newton’s gravitation and 
with the general relativity, and one discusses in details the perfectly analogue points, as the perfect analogy with 
the Schwarzschild metric at great distances from massive objects and the curvature of wave rays by massive ob-
jects. 

But one shows that this Eulerian theory of the cosmic lattice provides also new elements to the gravitation 
theory, notably modifications of the Schwarzschild metric at very short distances from massive objects, and a 
better understanding of the critical radii associated with black holes: the radii of the photon perturbation sphere 
and of the point of no return become both equal to the Schwarzschild radius 2

Schwarzschild 2R GM c= , and the 
limit radius for which the time dilatation of a falling observer would stretch to an infinite value becomes zero, so 
that our theory is not limited beyond the Schwarzschild sphere for the description of a black hole. 

One establishes next a complete table of all the gravitational interactions existing between the diverse topo-
logical singularities of the cosmic lattice, and one finds that the gravitational interactions between screw discli-
nation loops is largely dominant. 

By considering now a topological singularity formed by coupling a screw disclination loop with an edge dis-
location loop, called a dispiration loop, it appears an interaction force between the rotation field of the screw 
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loop and the curvature field of the edge loop, which is perfectly similar to a catch potential with a very small 
range, and which presents an interaction between the two loops perfectly analog to the weak interaction between 
elementary particles of the standard model. 

On the basis of the cosmological behaviors of a lattice described in the first section, and the gravitational in-
teractions between topological singularities described in the third section, on can imagine a very plausible sce-
nario for the cosmological evolution of the topological singularities contained in a cosmic lattice, leading to the 
present structure of our universe. This scenario allows one to give a very simple explanation of several facts oc-
curring during the universe expansion and still poorly understood, as the formation of galaxies, the disappear-
ance of antimatter, the formation of gigantic black holes at the heart of the galaxies, and even the famous “dark 
matter” that the astrophysicists had to concoct for explaining the gravitational behavior of the galaxies. 

In our theory, the dark matter would be in fact a sea of repulsive neutrinos in which the galaxies would have 
precipitated and would be immersed. Indeed, in the case of the simplest edge dislocation loops, analogically 
similar to neutrinos, the “gravitational curvature mass” dominates the inertial mass, so that the neutrinos should 
be the only particles gravitationally repulsive, when the antineutrinos should be gravitationally attractive. It is 
this surprising peculiarity which could explain the formation of a repulsive neutrinos sea playing the role of dark 
matter for the galaxies, due to the compression force exerted by the repulsive neutrinos sea on the galaxies peri-
phery! 

Finally, one shows how can be treated the Hubble constant, the galaxy redshift and the evolution of the cos-
mic microwave background in the frame of our Eulerian theory of cosmic lattice. 

4.4. Quantum Physics, Particles Spin and Photons 
The fourth section is dedicated to the quantum physics and the standard model of particles. One begins by using 
the second partial Newton equation, in the dynamical case, to show that there exists also longitudinal gravita-
tional perturbations associated to moving topological singularities inside the lattice. By conjecturing operators 
similar to those of the quantum mechanics, one shows then that the second partial Newton equation allows one 
to deduce the gravitational fluctuations associated to a topological singularity moving quasi-freely with relati-
vistic velocities within the lattice. 

In the case of non-relativistic topological singularities bonded to a potential, one shows that the second partial 
Newton equation applied to the longitudinal gravitational fluctuations associated to these singularities leads to 
the Schrödinger equation of the quantum physics, which allows one for the first time to give a simple and realis-
tic physical interpretation to the Schrödinger equation and to the quantum wave function: the quantum wave 
function deduced from the Schrödinger equation represents the amplitude and the phase lag of longitudinal gra-
vitational vibrations associated to a topological singularity within the cosmic lattice! 

All the consequences of the Schrödinger equation appear now with a simple physical explanation, as for ex-
ample the stationary wave equation of a topological singularity placed inside a static potential, the Heisenberg 
uncertainty principle and the probability interpretation of the square of the wave function. 

In the case where the gravitational fluctuations of two topological singularities are coupled, it appears also 
very simply the concepts of bosons and fermions, as well as the Pauli exclusion principle. 

At the heart of a topological singularity loop, one shows that there cannot exist static solutions to the second 
partial Newton equation for the longitudinal gravitational fluctuations. It becomes then necessary to find a dy-
namical solution to this equation. The simplest dynamical solution is to imagine that the loop rotates around one 
of its diameter. By solving this rotation motion with the second partial Newton equation, which is nothing other 
than the Schrödinger equation, one obtains a quantified solution for the internal gravitational fluctuations of the 
loop. This solution is in fact nothing other than the quantic loop spin, which can take several different values 
(1/2, 1, 3/2, ∙∙∙) and which is perfectly similar to the spin of particles in the standard model! If the loop is com-
posed of a screw disclination loop, it appears also a magnetic moment of the loop, proportional to the famous 
Bohr magneton. The notorious argument of the quantum physics pioneers wherein the spin cannot be a real rota-
tion of the particle on itself because the equatorial velocity should become superior to light velocity, is swept out 
in our theory by the fact that the static expansion at the vicinity of the loop heart is so high that the light velocity 
becomes much higher than the equatorial rotation velocity of the loop! 

In this argumentation about the absolute necessity of a spin of the singularity loops for satisfying the second 
partial Newton equation, only the exact value of the spin of a loop, namely 1/2 or 1, does not find at the moment 



G. Gremaud 
 

 
1397 

a simple explanation! 
One finishes by showing how to construct a pure transversal wave packet with a circular polarization and why 

it appears a quantification of the energy of these fluctuations. These waves packets form quasi-particles which 
have properties perfectly similar to the quantum properties of photons: circular polarization, zero mass, non- 
zero momentum, non-locality, wave-particle duality, quantum entanglement and quantum decoherence. 

4.5. Standard Model of Elementary Particles and Strong Interaction 
In a second part of the fourth section, one searches for the ingredients, which have to be added to the cosmic lat-
tice in order to find an analogy between the loop singularities and the diverse particles of the standard model. 
One shows that, by introducing a cubic lattice with three families of planes (imaginary “colored” in red, green 
and blue), satisfying some simple rules concerning their successive arrangement and their mutual rotation, one 
can find topological loops perfectly analogous to all the particles, leptons and quarks, of the first family of ele-
mentary particles of the standard model. One finds also topological loops analogous to the W and Z bosons of 
the standard model. It appears spontaneously a strong force, in the sense that this force presents an asymptotical 
behavior, acting between the loops analogous to the quarks of the standard model, and which is due to the for-
mation of a tube of stacking fault linking these loops. This implies that these loops have to group together in 
triplets to form combinations of three loops analogous to the baryons, or in doublets to form combinations of 
loop-anti-loop analogous to the mesons. Furthermore, one finds topological bicolor loops which correspond per-
fectly to the gluons associated to the strong force in the standard model! 

In order to explain the existence of three families of quarks and leptons in the standard model, one shows that 
the introduction of more complicated topological structures of the edge dislocation loops, based on assembling 
of pairs of edge disclination loops replacing the edge dislocation loops, allows one to explain in a satisfactory 
way the existence of three, or even four, families of particles with very different energies. 

Finally, one discusses the interest of this strong analogy between the topological singularities of a cubic “co-
lored” lattice and the elementary particles of the standard model, as well as the numerous questions still pending 
concerning this analogy. 

4.6. Vacuum Quantum State Fluctuations  
The fifth section is dedicated to some very hypothetical consequences concerning the pure gravitational fluctua-
tions associated to the perfect cosmic lattice. One can imagine the existence of pure longitudinal fluctuations 
within the cosmic lattice, which are not correlated with the presence of topological singularities, and which can 
be treated either as random gravitational fluctuations that could present some analogy with the vacuum quantum 
state fluctuations, or as stable gravitational fluctuations that could lead at the macroscopic scale to a cosmolog-
ical theory of multiverse. At the microscopic scale, stable gravitational fluctuations could also lead to stable qu-
asiparticles which could be called gravitons, by analogy with the photons, but which have nothing common 
with the gravitons postulated in the frame of the general relativity. 

One finishes the book by a general conclusion in which one shows the central roles played by the Newton 
equation and by the microscopic structure of the cosmic lattice. One highlights also the numerous positive points, 
but also the still misunderstood points, which have appeared throughout this essay concerning the analogy be-
tween the Newtonian cosmic lattice and all the theories of modern physics. 

5. Conclusions 
It is remarkable that the description, using Euler’s coordinates in an absolute space-time frame, of a massive 
elastic “colored” cubic 3D-lattice containing loop topological singularities and having particular elastic proper-
ties allows one to find all observed natural phenomena. 

In fact, the theory described in the book [2] [3] and summarized here is not yet completed, as there remain 
several questions without answers, as for example the exact nature of the “colored” 3D-lattice and its relation 
with the Higgs field postulated in standard model, the detailed rotation mechanisms of the topological loops and 
the reason for spin values of 1/2 or 1, and still several other unsolved problems detailed in the book. 

However, it appears that this theory is the first and only 1) to combine all known physics in a very simple 
manner, unifying electromagnetism, relativity, gravitation and quantum physics, 2) to give a simple meaning to 
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the local space-time and the quantum behavior of topological singularities, 3) to find a new scalar curvature 
charge which allows very simple explanations of the weak asymmetry observed between matter and anti-matter, 
of the nuclear weak interaction, of the formation of galaxies, of the disappearance of antimatter, of the formation 
of gigantic black holes in the heart of the galaxies, and of the famous dark matter, 4) to propose simple explana-
tions to well-known problems of modern cosmology, as for example the universe expansion, the big-bang and 
the dark energy, and 5) to propose a model of “colored” cubic 3D-lattice whose diverse microscopic loop sin-
gularities correspond exactly to each of the elementary particles of the three families of particles of the standard 
model, and which allows to give a simple structural explanation to the strong force. 
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Abstract 
Plasma echo theory is revisited to apply it to a semi-bounded plasma. Spatial echoes associated 
with plasma surface wave propagating in a semi-bounded plasma are investigated by calculating 
the second order electric field produced by external charges and satisfying the boundary condi-
tions at the interface. The boundary conditions are two-fold: the specular reflection condition and 
the electric boundary condition. The echo spots are determined in terms of the perpendicular 
coordinate to the interface and the parallel coordinate along which the wave propagates. This im-
proves the earlier works in which only the perpendicular coordinate is determined. In contrast 
with the echo in an infinite medium, echoes in a bounded plasma can occur at various spots. The 
diversity of echo occurrence spots is due to the discontinuity of the electric field at the interface 
that satisfies the specular reflection boundary condition. Physically, the diversity appears to be 
owing to the reflections of the waves from the interface. 
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1. Introduction 
Plasma echoes in an infinite plasma have long been known theoretically [1] [2] as well as experimentally [3]. 
Spatial echoes were theoretically investigated in a static situation where the non-propagating electric field is 
directed perpendicular to the interface of a semi-bounded plasma [4] [5]. If the perpendicular direction is 
designated as the x direction, the electric field E as well as the distribution function f is spatially one- 
dimensional: ( ),E E x t=  and ( ), ,f f x v t= , where 0x >  ( 0x < ) is the plasma (vacuum) region. In this 
case, the corresponding Vlasov equation takes the form of a first order differential equation, and can be solved 
by satisfying the specular reflection boundary condition at the interface 0x = : ( ) ( ), 0 , 0f v f v= −  [6]. This 
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differential equation approach with the specular reflection boundary condition for a semi-bounded plasma has 
been shown to be entirely equivalent with the Fourier transform (with respect to x) under the recipe that the 
( )E x  is extended into the region 0x <  in an odd function manner, ( ) ( )E x E x= − −  [5]. This odd function 

extension of ( )E x  gives rise to a surface term in the Fourier transform of the Poisson equation, which plays a 
significant role in the determination of the echo spots. It appears that this surface term, which the earlier authors 
entirely neglected, gives rise to diversity of echo spots [5]. Physically, the surface term manifests the reflection 
of the electric field at the boundary. 

The echo phenomena is the result of a quadratic interaction of the two primary waves launched by two 
external charges at different locations (spatial echoes) or different times (temporal echoes). In response to the 
external charges, the plasma distribution function ( ), ,f x v t  is modulated with the exponential phase ( )eik x vt− , 
which is derived from the singularity at kvω =  of the linear response function. This term is called the free 
streaming term since x vt=  is the characteristic line of the Vlasov equation for a free particle. This rapidly 
modulating exponential phase makes the ( ), ,f x v t  more and more oscillatory as t or x increases, and con- 
sequently, df v∫  will become vanishingly small due to almost complete phase mixing. Therefore, in the first 
order, the phase mixing obliterates any appreciable effect on the macroscopic variable such as density pertur- 
bation. However, the second order distribution function which is a product of two first order distribution 
functions is not phase-mixed when or where the condition for a constructive interference is met, thereby the 
second order electric field does not vanish, resulting in an echo. It is evident from the expression for the product 
of two free-streaming exponentials ( ) ( )1 1 1 2 2 2e eik x vt ik x vt− −  that a constructive interference can result in at a certain 
time (temporal echo) or a certain spot (spatial echo) such that ( )1 1 2 2 1 1 2 2k x k x v k t k t+ = + . 

In this work, we investigate spatial echoes in a semi-bounded plasma, taking a full account of the boundary 
terms which originate from the oddly continuation of the electric field. This work is an extension of the earlier 
paper by Lee and Lee [5]; the distribution function and the electric field are now spatially two-dimensional, 
allowing for the z-dependance. Therefore, the echoes are associated with the surface wave which is propagating 
in the z-direction. The second order electric field endowed with the additional z-dependance can be Fourier- 
inverted by contour integration with unstraightforward analytic exercise, and delineating the echo condition 
requires extra complexity. The important boundary term is the discontinuity of the perpendicular electric field at 
the interface that is necessary to have the specular reflection boundary condition satisfied [5]. The diversity of 
echo occurrence spots has been experimentally reported [7] and can be explained by this boundary term. The 
identification of the echo spot associated with surface wave appears to be useful in experimental point of view 
[7].  

2. Formulation of the Problem  
We consider a plasma consisting of electrons and stationary ions, the latter forming the uniform background. 
The plasma is assumed to occupy the half-space 0x ≥ . The region 0x <  is assumed to be a vacuum. The 
perturbed electron distribution function ( ), ,f tr v  and the electric field ( ),E tr  will depend on x and z- 
coordinates with the y coordinate ignored since y direction has a translational invariance. We have the nonlinear 
Vlasov equation and the Poisson equation to describe the electrostatic perturbation:  

( ) ( ), , ,  0f e ff t t
t m
∂ ∂ ∂

+ ⋅ − ⋅ =
∂ ∂ ∂

v r v E r
r v

                            (1) 

with ˆ ˆ ˆˆ ˆ ˆ,  ,  x z x zx z v v E E= + = + = +r x z v x z E x z  

( )( )2
04π d ,x zE E e vf x t

x z
ρ

∂ ∂
∇ ⋅ = + = − +

∂ ∂ ∫E                           (2) 

where f is a two-dimensional distribution function, and 0ρ  represents the external charges:  

( ) ( ) ( )( )1
0 1 0 1 0 1, , e 1 2i tx z t k x L k z Sωρ ρ δ δ= − − + →                             (3) 

0k  is introduced to make the argument of the δ-function dimensionless, and 1 2→  means the replica of the 
preceding term with the subscript 1 replaced by subscript 2. We solve the simultaneous Equations (1) and (2) for 
a given ( )0 ,x tρ  as prescribed by Equation (3). In mathematical terms, we have an inhomogeneous system, 
driven by the source term in Equation (3). The responses f and E should be determined by 0ρ . 
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The kinetic equation is supplemented by the kinematic boundary condition which we assume to be the 
specular reflection condition  

( ) ( ), , 0, , , 0,x z x zf v v x z f v v x z= = − =                             (4) 

This specular reflection boundary condition is automatically satisfied by extending the electric field com- 
ponent ( )xE x  in odd function manner into the region 0x < , i.e., ( ) ( )x xE x E x− = − . Assuming that the 
external perturbation is small, we solve Equations (1) and (2) by successive approximation. First, the linear 
solution of Equation (1) will be obtained for f with the boundary condition (4). Substituting this solution in 
Equation (2) yields an integral equation for the electric field which is solved by Fourier transform. Then the 
linear solution will be used to obtain the higher order solutions. We work only up to the second order. The 
higher order distribution function should also satisfy the boundary condition (4). The electric field should satisfy 
the electric boundary conditions: the normal component of the electric displacement ( )xD x  and the tangential 
electric field zE  are continuous across the interface. In this work, the Fourier transform is defined by  

( ) ( ), d d , e ikx i tf k x t f x t ωω
∞ ∞ − +

−∞ −∞
= ∫ ∫  

( ) ( )d d, , e
2π 2π

ikx i tkf x t f k ωω ω
∞ ∞ −

−∞ −∞
= ∫ ∫  

Let us Fourier transform Equations (1)-(3) with respect to t and z to write  

( ) ( )
( )

( ) ( )
2

2
d d, , , , , 0
2π 2π

e ki f f
m

ωω ω ω ω ω
′ ′ ∂′ ′ ′ ′− − ⋅ − − − ⋅ =

∂∫ ∫k v v k E k k v k
v

            (5) 

( ) ( ) ( ) ( )2
0, , 4π , , d ,zi N k e f vω ω ω ρ ω ⋅ + = − + ∫k E k k v k                   (6) 

where  

( ) ( ) ( ), 0 , , 0 , ,z x z x zN k E k E kω ω ω− += −  

is derived from the discontinuity of xE  at 0x = . This N-term is characteristic of a semi-bounded plasma and 
responsible for the diversity of surface wave echoes, as compared with an infinite plasma. The external charges 
are Fourier transformed to  

( ) ( ) 1 1
0 1 12

0

2π, e e 1 2x zik L ik S

k
ρ ω ρ δ ω ω − − = + + → k                        (7) 

Equations (5) and (6) constitute a set of nonlinear simultaneous equations. We solve the set of equations by 
successive approximations in terms of perturbation series:  

( ) ( ) ( ) ( ) ( ) ( )1 2
0, , , , , ,f f f fω ω ω= + + +k v v k v k v   

( ) ( ) ( ) ( ) ( )1 2, , ,ω ω ω= + +E k E k E k   

Breaking down Equations (5) and (6) order by order, we have  

( ) ( ) ( ) ( ) ( )1 1 0d, ,  ,
d
fei f

m
ω ω ω− − ⋅ = ⋅k v k v E k

v
                        (8) 

( ) ( ) ( ) ( ) ( ) ( )1 1 2
0, , 4π , , d ,zi N k e f vω ω ω ρ ω ⋅ + = − + ∫k E k k v k                 (9) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

2 1 10

, ,
d d dd , , , ,
d 2π 2π 2π

x z

i f
f k ke e f

m m

ω ω

ωω ω ω ω
∞ ∞ ∞

−∞ −∞ −∞

− − ⋅

′ ′′ ∂′ ′ ′ ′= ⋅ + − − ⋅
∂∫ ∫ ∫

k v k v

E k E k k k v
v v

        (10) 

( ) ( ) ( ) ( )2 2 2, 4π , , di e f vω ω⋅ = − ∫k E k k v                           (11) 

The quantity ( ),zN k ω  in Equation (9) should be determined in terms of the vacuum field from the electric 
field boundary condition: electric displacement ( )xD x  is continuous across the interface 0x = ,  
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( ) ( ) ( ) ( )1 10 0x xD D+ −=                                    (12) 

where ( ) ( )1 0xD −  equals to the vacuum electric field 0E .  

3. Linear Solution  
Equations (8) and (9), and 0∇× =E  give  

( ) ( ) ( ) ( ) ( )1
02, , 4π ,

 , z
i N k

k
ω ω ρ ω

ε ω
= −  

kE k k
k

                       (13) 

( )
02

2
2

d
d, 1  d  p

f

v
k
ω

ε ω
ω

⋅
= +

− ⋅∫
k

vk
k v

                              (14) 

is the dielectric function ( pω  is the plasma frequency). N is determined from the electric boundary condition as 
shown in the following. We need the normal component of electric displacement, ( )xD x  to enforce the  

boundary condition (12). By definition, ( ) ( ) ( )4π, , ,x x x
iD E Jω ω ω

ω
= +k k k  where J is the current:  

( ) ( )2, d   , ,x xJ e v v fω ω= − ∫k k v . We calculate  

( )
0

2
2 24π 4π d d  

j
p j

x x x

fE
vi iJ e v f v vv

ω
ω ω ω ω

∂
∂

= − =
− ⋅∫ ∫ k v

 

where we used Equation (8). The above quantity equals to ( )1 xEε − . Thus we have x xD Eε= . This statement  

can be most easily proved by assuming 0f  a Maxwellian. Use 0
0j

j

f T v f
v m
∂

= −
∂

 and x

x

E
k

⋅ = ⋅E v k v  to write  

for the last term  
2

2
0

4π   dp x
x x

x

vi TJ E f v
m k

ω
ω ω ω

⋅
= −

− ⋅∫
k v

k v
 

Put 1 ω
ω ω

⋅
= − +

− ⋅ − ⋅
k v

k v k v
. Then, (−1)-term vanishes upon integration, and we have  

( )

0
2 2

2 20

022
2 20

2 2

4π d d

 d  d       . . .

p px x
x x x

x x

p
x p x

f
v f vi TJ E v E v

k m k
f

f vE E v q e d
k

ω ω
ω ω ω

ω
ω

ωω

∂
∂

= − =
− ⋅ − ⋅

∂
⋅
∂= − =

− ⋅− ⋅

∫ ∫

∫ ∫

k v k v

k
v

k vk v

 

Using the above result, we obtain  

( ) ( ) ( ) ( ) ( ) ( )1 1
02, ,  , 4π ,x

x x
ikD E N
k

ω ε ω ω ρ ω= = −  k k k k                    (15) 

To invert Equation (15), we write  

( ) ( ) ( )1 1
2

1
1 12 2

0

d 8π, ,  e   e e 1 2
2π

x x zik x ik L ik Sx x
x z

k ikD x k N
k k

ω ρ δ ω ω
∞ − −

−∞

 
= − + + → 

 
∫           (16) 

In the above integral, we take the limit 0x +→ . Evaluating the integral by residue theorem gives  

2 20

elim d  π
xik x

x
x

x x z

kk i
k k+

∞

−∞→
=

+∫  
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Note that we set up the contour encircling the upper half plane since 0x > . When  0zRe k >  (  0zRe k < ), 
the relevant pole located in the upper kx-plane is x zk ik=  ( x zk ik= − ). In either case, the integral is found to be 
πi . Then, Equation (16) takes the form  

( ) ( ) ( ) ( )11
1 1 12

0

4π0 , ,  e , 1 2
2

zik S
x z z

ND k iI L k
k

ω ρ δ ω ω−+ = − − + + →                 (17) 

where ( )
1

1
1 2 2

e, d  πe z
i L

k L
z

z

I L k i
k

ξξξ
ξ

−
∞ ±

−∞
= = −

+∫                       (18) 

where + (−) sign corresponds to  0zRe k <  (  0zRe k > ). The above equality can be easily proven by using the  

contour winding the lower half plane. Taking the limit 0zk →  gives the useful identity 
1ed  π

i L

i
ξ

ξ
ξ

−
∞

−∞
= −∫ ,  

independently of ( )1 0L > . Clearly, this integral manifests the nature of a step function. By equating the 
quantity on the right hand side of Equation (17) to the x-component of the vacuum electric field ( 0E≡ ), we 
obtain  

( ) ( )1
0 1 1 12

0

8π2 e ,  1 2zik S
zN E iI L k

k
ρ δ ω ω −= − − + + →                     (19) 

Using the above equation in Equation (13) gives  

( ) ( ) ( ) ( ) ( ) 11
2

1
0 1 1 12 2

0

8π, 2  e , e  1 2
π ,

xz ik Lik S
z

i iE I L k
k k

ω ρ δ ω ω
ε ω

−−  = − − + + + →  
  

kE k
k

      (20) 

For an infinite plasma without boundary, we have 0N =  in Equation (13), and the plasma electric field is 
given by  

( ) ( ) ( ) ( ) 11
2

1
1 12 2

0

8π, e e  1 2
 ,

xz ik Lik Si
k k

ω ρ δ ω ω
ε ω

−− 
= − + + → 

 

kE k
k

 

Note that in Equation (20), the 0E -term and ( )1, zI L k -term are the boundary terms which are non-existent 
in an infinite plasma. 

In the static situation where the electric field is nonpropagating, we put 0zk =  in Equation (20), and the 
electric field reduces to Equation (23) in Lee and Lee [5]:  

( ) ( ) ( ) ( ) ( )1
2

1
0 1 12

0

2 4π, 1 e  1 2
,

ikLiE k E
k k k

ω ρ δ ω ω
ε ω

− −
= + + + + → 

 
 

4. Second Order Solution and Echo Occurrence  
Next, we deal with the second order equations, Equations (10) and (11). Using Equation (10) in Equation (11) 
yields, owing to the electrostatic nature of ( )2E ,  

( ) ( ) ( ) ( )

2
2 2

2 2
4π,  d  

,
e v

m k
ω

ε ω ω
⋅

=
− ⋅∫

k k QE k
k k v

                      (21) 

where Q  stands for  

( ) ( ) ( ) ( ) ( )1 1d dd, , , , ,
2π 2π 2π

x zk k fωω ω ω ω
∞ ∞ ∞

−∞ −∞ −∞

′ ′′
′ ′ ′ ′= − −∫ ∫ ∫Q k v E k k k v              (22) 

Substituting the first order solutions [Equations (8) and (20)], into the above equations, we can write ( )2E  in 
the form,  

( ) ( )
( ) ( )

( )
( )( ) ( )( )

0
3 2

2
2 2 2 2 2 2

d
d d,   d d d   ,

2π , ,,
z x

f
e v k k AB

m k k
ω ω

ε ω ε ω ωω ε ω ω

′⋅′⋅ −
′ ′ ′= ×

′ ′ ′ ′ ′− ⋅′ ′ ′− ⋅ − − −
∫ ∫ ∫ ∫

kk k kk vE k
k k k vk v k k k k

(23) 
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( ) ( ) 11
2

0 1 1 12
0

8π2 e , e  1 2
π

xz ik Lik S
z

iA E I L k
k

ρ δ ω ω ′ ′−−  ′ ′= − − + + + → 
 

               (24) 

( ) ( ) ( ) ( ) 11
2

0 1 1 12
0

8π2 e , e  1 2
π

x xz z i k k Li k k S
z z

iB E I L k k
k

ρ δ ω ω ω ′′ − −− −  ′ ′= − − − + − + + → 
 

         (25) 

where I stands for the exponential function as given by Equation (18). Since we don’t know yet which sign 
should be chosen, we keep on using the symbol I. Equation (23) is to be used for investigation of echo 
occurrence. The various cross terms in the product (AB) are the candidates of echo resonances to see if the 
condition for vanishing phase can be met. 

We choose to investigate a cross term which is 1-term in A multiplied by 2-term in B. With this term, the 
t-inversion of Equation (23) can be easily carried out by simply putting 1ω ω′→ −  and 3ω ω→ − :  

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )

3 2

2 1

21

2
2

2 2
3 3

0

2 2
1 12

1 2

d, e e d d  
,

d
d  e

,,

, e , e
π π

z

z

x xx

i t ik S
z x

ik S S

i k k Lik L
z z z

vt k k
k

f

k

i iI L k I L k k

ωβ
ε ω ω

ε ω ωε ω

−

′ −

′− −′−

′ ′=
− + ⋅

′ ⋅′⋅ −
×

′ ′ ′− + ⋅′ ′− − −

  ′ ′× + − +  
  

∫ ∫ ∫
kE k

k k v

kk k k v
k k vk k k k

           (26) 

where  
3

1 2
3 1 2 4 2

0

16π,  e
k m

ρ ρω ω ω β −
= + =                               (27) 

In the above equation, we can assume that the poles associated with the dielectric functions contribute 
negligibly in the dk∫ - or dk ′∫ -integral. [The dominant contribution comes from the free-streaming poles.] 
Also we assume 0f  to be a Maxwellian. Then we have  

0

1
0

1 1

d
d 1

f
m f
T

ω
ω ω

′⋅  
= − − ′ ′+ ⋅ + ⋅ 

k
v

k v k v
 

where 1 can be assumed to contribute nothing to the inversion integral in the following, due to phase mixing. 
Thus, Equation (26) can be further simplified as  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 2

22 1 1

2
2 01

2 2
3 3

2 2
2 1 1

1 2

d,  e e d d
,

 
, ,

e , e , e
π π

z

x xz x

i t ik S
z x

i k k Lik S S ik L
z z z

vfmt k k
T k

k
k

i iI L k I L k k

ωβ ω
ε ω ω

ε ω ε ω ω

−

′′ − −− ′−

′ ′=
− + ⋅

′⋅ −
×

′ ′ ′ ′ ′− − − − + ⋅

  ′ ′× + − +  
  

∫ ∫ ∫
kE k

k k v

k k
k k k k k k v

           (28) 

Let us write explicitly the inversion integral of Equation (28) with respect to k:  

( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )

23

2 1

21

2
2 01

2 2 2 2
3 3

2 2
2 1 1

1 2

d e, ,  e   d e d
4π ,

 d  e d  
, ,

 , e , e
π π

x
z

z

x xx

ik x
ik z Si t

z x
x z z

x
x

ik S S
z x

i k k Lik L
z z z

vfmt x z k k
T v k k vk

v

k k
k

i iI L k I L k k

ωβ ω
ε ω ω

ε ω ε ω ω

−

′ −

′− −′−

=
−  +

+ 
 
′⋅ −

′ ′×
′ ′ ′ ′ ′− − − − + ⋅

  ′ ′× + − +  
  

∫ ∫ ∫

∫ ∫

kE
k

k k k

k k k k k k v
       (29) 
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This equation will be examined in view of the possibility of the vanishing phase. 
(1) First, we shall consider the interference of two exponential terms in Equation (29):  

( ) ( )2 2 11 2e e e ex x xx xi k k L ik L Lik L ik L′ ′− − −′− −=  
The important singularities are: the double pole at ( )3x z z xk k v vω= − +  and the simple poles associated 

respectively with 2 0k =  and 2 0k ′ =  and 1 0x x z zk v k vω + + = . We shall consider only these four poles. 
Singularities at 0ε =  are not important. Therefore we can put  

( )
( )2

1
2

′⋅ −
=

′−

k k k
k k

 

and all the ε’s can be taken out of the integral. The residue at the double pole is obtained by taking xk∂ ∂   
2

3Integrand z z
x

x

k vk
v

ω  + × + 
   

 and substituting for ( )3x z z xk k v vω= − + . Here it is sufficient to differentiate  

only the exponential functions because they yield asymptotically dominant result. [Or integrate by parts with 
respect to xk .] Thus let us calculate  

( ) ( )
( )

( )
( ) ( )

( )

2
2

2 1 2 1

2
2

3

2
1

ed e d  

e ed  d  

x
z

z x

ik x L
ik z S

z x
x x z z x

ik S S ik L L

z x
x z z x

i x L
k k

v k k v vk

k k
k k v vk

ω

ω

−
−

′ ′− −

−
Φ =

+ +

′ ′×
′ ′′ + +

∫ ∫

∫ ∫

k

                   (30) 

Then ( )2E  is obtained by 3 2 2
0e di t

xv f vω Φ∫ , suppressing the unessential factor. 

Integral d xk ′∫  can be easily done by picking up the pole at  

1z z
x

x

k vk
v

ω′ +′ = −                                   (31) 

For definiteness we assume 2 1L L> . Then the contour in xk ′ -plane should encircle the upper half xk ′ -plane, 
and in order for the pole to lie in the upper xk ′ -plane, the imaginary part of ( )z z xk v v′  should be negative. 
Now 2k ′  is only a function of zk ′  per Equation (31), and we can write the second part of Equation (30) as  

( ) ( )

( )
( )

2 1 2 1

2 1 1

2
1

1

e ed  d  

π 1 1= e d e  

z x

x

ik S S ik L L

z x
x z z x

i L L v ix z
z z

z z z z x

J k k
k k v vk

v vk H Im k
k k k k v

ω θ

ω

ω

′ ′− −

− − ′

+ −

′ ′ ′≡
′ ′′ + +

  
′ ′− − −  ′ ′ ′ ′− −   

∫ ∫

∫
              (32) 

where  

( )1
2z z xk v iv

v
ω

±′ = − ±                                 (33) 

( )2 1 1 2
z

x

vS S L L
v

θ ′ = − + −                              (34) 

and ( )H x  is a step function; ( ) 1H x =  for 0x >  and ( ) 0H x =  for 0x < . 
The contour in d zk ′∫ -integral depends on the sign of θ ′ : when 0θ ′ >  ( 0θ ′ < ), the contour must wind the  

upper (lower) zk ′ -plane. The location of the poles depends upon the sign of xv . Sorting out the relevant cases, 
we carry out the integral for J ′ :  

( ) ( ) ( ) ( ) ( )1 2 1
2

1

2 π0 : e e ex z zi L L v i k i kx
z x z x

i vJ H v H v H v H vω θ θθ
ω

+ −− ′ ′ ′ ′−  ′ ′> = − − −            (35) 

( ) ( ) ( ) ( ) ( )1 2 1
2

1

2 π0 : e e ex z zi L L v i k i kx
z x z x

i vJ H v H v H v H vω θ θθ
ω

+ −− ′ ′ ′ ′ ′ ′< = − − −             (36) 
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Next, taking on the first part of the integral in Equation (30) ( )( )d zk∫  , we have two cases: 

1) 2x L<  
In this case, the xk  contour must encircle the lower half plane and the xk -integral does not vanish under the 

provision ( ) 0z z xIm k v v > . Then, the integral can be written as  

( )
( )

( )
( )

2
2

2 3

2
3

3

1

ed e d  

π 1 1 ˆˆe d e  

x
z

x

ik x L
ik z S

z x
x z z x

i x L v ix z zz
z z z

z z z z x x

k k
k k v vk

v k vvk H Im k k
k k k k v v

ω θ

ω

ω
ω

−
−

− −

+ −

≡
+ +

     +
= − − +    − −     

∫ ∫

∫

kJ

x z
        (37) 

where  

( )3
2z z xk v iv

v
ω

± = − ±                                  (38) 

( )2 2
z

x

vz S L x
v

θ = − + −                                (39) 

Analogously to the foregoing calculation in J ′ , the above integral depends on the sign of θ :  

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ − > = − − − J k k           (40) 

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ −

−  < = − − − J k k           (41) 

2) 2x L>  
Repeating a similar analysis, we obtain  

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ −

−  > = − − − J k k          (42) 

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ − < = − − − J k k           (43) 

where  

( )ˆ ˆz zk i± ±= +k x z                                  (44) 

Now, we have to multiply J  and J ′ . In doing it, note that ( ) ( ) ( )H x H x H x=  and ( ) ( ) 0H x H x− = . 
Nonzero results surviving the velocity integral are obtained in the following four cases: 

a) 2x L< , 0θ < , 0θ ′ > ; b) 2x L< , 0θ > , 0θ ′ < ; c) 2x L> , 0θ > , 0θ ′ > ; d) 2x L> , 0θ < , 
0θ ′ <  

Let us first consider case a). Using Equations (35) and (41), we obtain  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22
2

0
1 3

0

2π
exp

exp 

x
x z z z z

x

x z z z z

v i x L
H v H v k i i k i k

v

H v H v k i i k i k

θ θ θ
ωω

θ θ θ

+ + −

− − +

−
′ ′Φ = − + +

′ ′ + − + + 

               (45) 

where  

( ) ( )3 1
0 2 1 2

x x

L x L L
v v
ω ωθ = − + −                                (46) 

Using Equations (34), (39), and (46), we can obtain the exponential phases:  

0 z z r ii i k i k iθ θ θ ϕ ϕ− +′ ′ ′+ + = +                                (47) 
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0 z z r ii i k i k iθ θ θ ϕ ϕ+ −′ ′ ′+ + = − +                               (48) 

with  

( ) ( ) ( ) ( )3 2 1 2 1 3 2 1 1 22
1

r x x z zv S z v S S v x L v L L
v

ϕ ω ω ω ω′ = − + − + − + −                (49) 

( ) ( ) ( ) ( )3 2 1 1 2 3 2 1 1 22
1

i z z x xv S z v S S v L x v L L
v

ϕ ω ω ω ω= − + − + − + −                (50) 

Thus Equation (45) can be written in the form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22

2

1 3

2
e exp exp ix i

x z z r x z z r
x

v i x L
H v H v H v H v

v
ϕ

π
ϕ ϕ

ωω ′+ −

−
′ Φ = − − + − k k       (51) 

Therefore the velocity integrals in Equation (29) survive the phase mixing when 0iϕ = , that is,  

( ) ( ) ( ) ( )3 2 1 2 1 3 2 1 1 20,  0z S S S L x L Lω ω ω ω− + − = − + − =                   (52) 

or 1 1 2 2 1 1 2 2

1 2 1 2

,  L L S Sx zω ω ω ω
ω ω ω ω

+ +
= =

+ +
                         (53) 

where an echo is given rise to. The electric field ( )2E  can be obtained by velocity integral in the form (see 
Equation (29))  

( ) ( ) ( )0 02

0 0
, , d d e d d er r

x z z x z zt x z v v v v kϕ ϕ∞ ∞′ ′−
+ −−∞ −∞

 = +  ∫ ∫ ∫ ∫E k                   (54) 

where ( )  denotes the obvious integrand. 
Next, let us calculate case (b). Using Equations (36) and (40) gives  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22
2

0
1 3

0

2π
exp

exp

x
x z z z z

x

x z z z z

v i x L
H v H v i i k i k

v

H v H v i i k i k

θ θ θ
ωω

θ θ θ

+ + −

− − +

−
′ ′Φ = − − + +

′ ′ + + + 

k

k

             (55) 

This equation is identical with Equation (45) if ( )xH v  and ( )xH v−  are interchanged in the latter. Thus, 
this case can give rise to an echo at the same spot as predicted by Equation (53). The corresponding electric field 
is obtained by a similar velocity integral to Equation (54) but over different range of xv . 

The cases (a) and (b) predict the same echo spot because they yield the same imaginary phase iϕ . One more 
task: the various inequality conditions set forth to specify the contour in the contour integrations need to be 
checked against the echo coordinate found in Equation (54). Let us consider the inequalities 0θ <  and 0θ ′ >  
postulated in the case (a). Using Equation (52), the inequality 0θ <  can be written in the form  

( )1 2 2 1 0z

x

vS S L L
v

− + − <  

which is the condition 0θ ′ > . Therefore the conditions 0θ <  and 0θ ′ >  imply each other. Also we can 
ascertain that the echo x-coordinate is in accord with the condition 2x L< . So in cases (a) and (b), the premise 
and the result are consistent. For the cases of (c) and (d), we state without repeating a similar algebra that the 
imaginary part of the phase is still obtained by Equation (50) [the real part of the phase is different]. Although 
the echo spot is predicted by the same equation as Equation (53), these cases of (c) and (d) are not acceptable 
because the conditions 0θ >  and 0θ ′ >  or 0θ <  and 0θ ′ <  are contradictory to each other. We have the 
conclusion: an echo occurs where 2x L<  and the echo coordinates are predicted by Equation (53). 

(2) Next, we consider the product of two boundary terms, ( ) ( )1 2, ,z z zI L k I L k k′ ′−  in Equation (29):  

( ) ( ) ( ) [ ]
( )( )

( ) ( ) ( ) ( )

3

2 1

2
2 0

22 2 2
3

1 2 2
1

 expd, , e   d  exp d  

dd e , ,z

xi t
z z x

x x z z x

ik S S x
z z z z

ikvft x z C k ik z S k
v k k k v v

kk I L k I L k k
k

ω

ω

ω
′ −

= −  
+ +

′
′ ′ ′× −

′ ′+ ⋅

∫ ∫ ∫

∫ ∫

kE

k v

           (56) 
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where C is a nonessential constant factor. For definiteness, we assume 2 1 0S S− > . d xk ′∫ -integral and d xk∫ -  

integral can be done easily by picking up the relevant poles, and we can write  

( ) ( )

( ) ( ) ( )

3

2 1

2
2 0 3

23 2

1 22

d, ,  e  exp d  exp

d e , ,z

i t x
z z

x zx

ik S Sz
z z z

vf vt x z ix C ix k ik z S x
v vv k

k I L k I L k k
k

ω ω

′ −

    
= − − −   

    
′

′ ′× −
′

∫ ∫

∫

kE
             (57) 

where  

( )2
12 2 z z

z
x

k v
k k

v
ω ′+

′ ′= +                                   (58) 

3 z z
z

x

k vk x zk
v

ω+
= − +                                    (59) 

The contour of d zk ′∫ -integral should encircle the upper zk ′ -plane. Since the relevant singularity should be 

located in the upper zk ′ -plane, the residue is calculated from z zk k +′ ′=  for 0xv <  and z zk k −′ ′=  for 0xv > .  

zk ±′  are defined in Equation (33). Then the last integral ( d zk ′∫ ) in Equation (57) can be carried out in the form  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 1 2
1

2 1 1 2

πd exp , ,

exp , ,

x
z z z z z x

z z z z x z

vk ik S S I L k I L k k H v

ik S S I L k I L k k H v J k

ω + + +

− − −

− ′ ′ ′ ′= − − −  

′ ′ ′− − − ≡   

∫ 

             (60) 

where  

( ) [ ] ( ) [ ] ( )( )1 1 1, π exp expz z z z zI L k i L k H v L k H v± ± ±′ ′ ′= − + − −  (see Equation (18))         (61) 

To carry out ( )d zk∫   in Equation (59), let us assume that 2 0z

x

vz S x
v

ϑ− − ≡ < . 

Now we are ready to evaluate d zk∫ -integral in Equation (59):  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
3

3

e e ed d d  
2

π e e

z z z

z z

ik ik ik
x

z z z z z
z z z z

ik ikx
z z x z z x

ivk k J k k J k
k k k kk

v k J k H v k J k H v

ϑ ϑ ϑ

ϑ ϑ

ω

ω
+ −

+ −

+ + − −

 
= = − − − 

 = − − 

∫ ∫ ∫
k k

k k



             (62) 

Using Equation (60) in Equation (62) yields  

( ) ( ) [ ] ( ) ( ) ( ) ( )

( ) [ ] ( ) ( ) ( ) ( )

2 2

2 1 1 2
1 3

2 1 1 2

πd exp exp , ,

exp exp , ,

x
z z z z z z z x

z z z z z z x

vk k ik ik S S I L k I L k k H v

k ik ik S S I L k I L k k H v

ϑ
ωω

ϑ

+ + − − + −

− − + + − +

 ′ ′ ′= − −  

′ ′ ′+ − − −   

∫ k

k



        (63) 

where we have ( ) ( ) 2
2  z z z z zRe k k Re k k v

v
ω

+ − − +′ ′− = − = − . Therefore, we obtain  

( ) ( ) ( ) ( ) ( )( )2 2 2, π exp expz z z z z z z zI L k k i L k k H v L k k H v+ − + − + −′ ′ ′− = − − + − − −                 (64) 

( ) ( ) ( ) ( ) ( )( )2 2 2, π exp expz z z z z z z zI L k k i L k k H v L k k H v− + − + − +′ ′ ′− = − − + − − −                 (65) 

The above two equations and Equation (61) yield  

( ) ( ) ( ) ( ) ( ) ( )2
1 2 2 1 2 2 1 2, , π exp expz z z z z z z z zI L k I L k k L k L L k H v L k L L k H v− + − + − + − ′ ′ ′ ′− = − + − + − − − −          (66) 
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( ) ( ) ( ) ( ) ( ) ( )2
1 2 2 1 2 2 1 2, , π exp expz z z z z z z z zI L k I L k k L k L L k H v L k L L k H v+ − + − + − + ′ ′ ′ ′− = − + − + − − − −          (67) 

Now we are ready to carry out the velocity integral in Equation (59) by substituting Equation (63) into it. 
Because of the step functions ( )xH v  and ( )zH v , the velocity integral consists of four parts corresponding to 

( ) ( )x zH v H v± ± . Since we are interested in the echo spots, we pay attention only to the exponential phases:  

( ) ( ) ( ) ( ) ( ) ( ) ( )31 2 4e , e , ( ) e , ex z x z x z x zH v H v H v H v H v H v H v H vϕϕ ϕ ϕ− − − −             (68) 

Straightly we can identify:  

( ) ( )3
1 2 1 2 2 1z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ+ − + −′ ′= − + + − − + −                    (69) 

( ) ( )3
2 2 1 2 1 2z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ+ − + −′ ′= − + + − + + −                    (70) 

( ) ( )3
3 2 1 2 1 2z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ− + − +′ ′= − + + − + + −                    (71) 

( ) ( )3
4 2 1 2 2 1z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ− + − +′ ′= − + + − − + −                    (72) 

From above, the imaginary phases are obtained as  

( ) ( ) ( )1 3 1 1 2 3 2 2 1 3 1 1 32 2   xz vvIm Im S S z S L L x
v v

ϕ ϕ ω ω ω ω ω ω = = − − − + + − −                (73) 

2 4  Im Imϕ ϕ=  is obtained from 1 Imϕ  by replacing 1 1L L→ −  and 2 2L L→ − . Putting 1,2 0Imϕ = , we 
obtain the echo spots as  

1 1 2 2

3
echo

S Sz ω ω
ω
+

=                                   (74) 

( )2 1 2 1 1

3

2
echo

L L
x

ω ω ω
ω

± +
=



                              (75) 

In Equation (75), echox  corresponding to upper signs and echox  corresponding to lower signs are mutually 
exclusive because if one of them is inside the plasma the other is necessarily is outside the plasma. We add that  

the condition 0ϑ <  amounts to ( )1
1 2

3

z

x

vS S x
v

ω
ω

− < , which poses no problem in as much as we have ample  

liberty in choosing the sign of z xv v .  

5. Discussion  
In Section 3, the plasma electric field was determined in terms of the vacuum electric field. Judicious application 
of the boundary conditions at the interface enables one to determine the plasma electric field entirely in terms of 
the external charges without introducing the vacuum electric field 0E . Inverting Equation (13), we can write  

( ) ( ) ( )1
1 1 12

0

4π0, e ,
2

zik S
x z

ND i I k L
k

ω ρ δ ω ω −= − − +                       (76) 

( ) ( ) ( )1
1 1 12 2

0

d 4π0, e ,
2π

zik Sxz
z z

kkE iN i I k L
k k εω ρ δ ω ω
ε

−= − +∫                   (77) 

where ( ) 1
1 2

d, e xik Lz x
z

k kI k L
kε ε

−= ∫                            (78) 

Next, we turn to the vacuum solution.  

( ) 0, e ez zk x k x
x z zE x k B k E′= − ≡                             (79) 
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where 0E  is the vacuum electric field, the quantity designated by the same symbol 0E  in Equation (19).  

( ), e zk x
z z zE x k iB k′= −                                   (80) 

Continuity of zE  across the interface 0x =  gives that Equation (22) equals to ziB k′− . Also continuity of 
xD  across 0x =  yields that Equation (20) equals to zB k′− . Eliminating B′  between these two equations 

gives N in the form  

( ) ( ) ( )( )1
1 1 1 12

0

2

8π e , , 1 2

d1
π

zik S
z z

x z

I k L iI k L
kN k k

k

ερ δ ω ω

ε

−+ − + →
=

+ ∫
                   (81) 

Substituting the above equation into Equation (13) yields  

( ) ( ) ( ) 1
1

2
1

1 12 2
0

2

, π e8π, e d1
π

x
z

ik L
ik S z

x z

iI k Li
k kk k

k

ω ρ δ ω ω
ε

ε

−
− − −

= +
+ ∫

kE k                   (82) 

Equation (82) should be compared with Equation (20). Eliminating the vacuum field introduces the  

denominator 2
d1
π

x zk k
k ε

+ ∫  in Equation (82). In fact, the relation  

2
d1 0
π

x zk k
k ε

+ =∫                                      (83) 

is the electrostatic dispersion relation of the surface wave in a semi-bounded plasma [10]. 
In the investigation of echo occurrence, 0E  in Equation (20) can be discarded because echoes are given rise 

to by interference of influences of the external charges. This amounts to saying that the denominator  

2
d1
π

x zk k
k ε

 + 
 ∫  doesn’t play any role in the determination of echo locations. 

Equations (53) and (74) and (75) are the main results of this work in locating the echo spots associated with 
the surface wave in a semi-bounded plasma launched by the oscillating external charges at ( ) ( )1 1, ,x z L S=  and 
( )2 2,L S . In the static situation, the z-coordinate is irrelevant. The echo spot given by Equation (53) corresponds 
to echox  in Equation (45) in Lee and Lee [5]. The echo spot given by Equations (74) and (75) is surface 
wave-proper. Our search for the echo spots are not exhaustive; we put aside many other product terms in (AB) 
in Equations (24) and (25). It appears that we have diversity of echoes in a bounded plasma, which was also 
experimentally reported [7]. The diversity seems to be due to reflections of the wave at the interface. 

In reality, bounded plasmas are usual rather than exceptional. Important literatures to get acquainted with this 
field are References [8] and [9], among others. Surface wave dispersion relation in a plasma slab is derived in 
Ref. [10]. An exact nonlinear solution of a surface wave excited by external charges is obtained in Ref. [11]. 
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Abstract 
The studies of the influence of pico-second (4 × 10−13 sec.) pulse electron irradiation with energy 
of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown 
that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster 
type. The behavior of main carrier mobility depending on temperature and irradiation dose is 
analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point 
radiation defects with transition into cluster formation. Dose dependencies of electrical conduc-
tivity and carrier mobility for samples of various specific resistivities are given. 

 
Keywords 
Silicon Crystal, Electron Irradiation, Pico-Second Pulse Beam, Conductivity, Carriers’ Mobility 

 
 

1. Introduction 
There are numerous publications devoted to the influence of irradiations, in particular high energy electron ir-
radiation, on the properties of silicon crystal. One can present an extensive bibliography, however it is better to 
refer to reviews and monographs presenting more informative data about findings on this subject [1]-[5]. The ir-
radiation sources used in these works are conventional sources based on micro-second pulse beams (accelerators, 
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nuclear reactors and so on) allowing to accumulate a large amount of irradiation doses in a short time and, con-
sequently, quickly affect properties of irradiated materials. Not into details of discussing the type and energy of 
irradiation, it is important to note, though, that at the same irradiation dose, the irradiation intensity (amount of 
particles per 1 sec. on 1 cm2 cross-section of beam) was proved to play an important role in affecting the proper-
ties of semiconductors [6]-[8]. 

The case, when the irradiation source has a beam with a pulse shorter than “microsecond”, is important, be-
cause it is scientific and practice interest (pulse nuclear reactors, space particle interactions, atmospheric pro- 
cesses, etc.). For the first time very short pulses with pico-second duration (4 × 10−13 sec.) and electron beam 
with 3.5 MeV energy was applied which also has scientific meaning for the study of very fast processes in-situ, 
e.g. interaction of irradiation with material, different chemical and biological reactions. For understanding the 
pico-second pulse beam influence on the materials, it is better to describe known steps and time intervals of rad-
iation interactions which take place at common “microsecond” irradiation with materials.  

2. Problem Formulation and Time Characteristics of Radiation Interaction with  
Matter 

The processes which take place in materials under irradiation can be roughly presented as a raw of consequent 
stages. The precise duration of each stage depends on initial energy and mass of high energy particle or gam-
ma-quanta, potential of interaction between particles, and can vary an order of magnitude, hence, it is important 
to estimate the time intervals separating these steps.   

The first stage of radiation influence is ionization and excitation of atomic orbital electrons or elastic transfer 
of irradiation energy to the atoms; the collision time with atoms is estimated to be 10−16 - 10−15 second [2]. 
Atoms and electrons with excessive energy and impulse come into interaction with other atoms and electrons of 
matter, loosing energy through this action. This stage is called “energy exchange” from primary exciting particle 
and transition of the system to quasi-equilibrium state. The energy exchange corresponds to the value of coupl-
ing energy of atoms in matter, i.e. a few eV, and takes place very quickly. At the inter-atomic distances this time 
is about 10−14 - 10−13 second.   

The next process, relaxation of excessive energy received by atoms and electrons in crystal, takes place at 
time which is typical for the period of atomic oscillations, i.e., 10−13 - 10−12 second in solid states. In fact, at this 
stage relaxation leads the system to the initial state with minimum free energy and to formation of different me-
ta-stable primary radiation defects; the role of thermal movement of atoms in solids becomes significant.  

Further consideration relates to processes at average-statistic kinetic energy in order of kТ (k-Bolzman’s con-
stant, T-absolute temperature). The system which is excited by irradiation passes through different quasi-equili- 
brium states and reconstruction of primary radiation defects occur. The speed of the latter exponentially depends 
on temperature and can extend over time. Secondary radiation defects are formed which are stable at room tem-
peratures. In their formation both primary radiation defects (vacancies and interstitial atoms) and chemical im-
purities which were present in samples before irradiation, participate. Diffusion processes and distribution of the 
components of primary defects over distances play essential role at this stage; this relaxation time duration is es-
timated by seconds and hours. The formed secondary radiation defects can be “annealed” at high temperatures, 
but it is not within the scope of present work. Note, that at given pico-second pulse beam irradiation “radiation 
annealing” which is typical to conventional microsecond pulse beam irradiation, doesn’t take place, because the 
thermal processes (duration 10−6 - 10−7 second) don’t have enough time to develop.  

3. Experimental Procedure and Results 
Irradiation of samples was carried out at room temperatures in linear accelerator of САNDLE Synchrotron Rad-
iation Institute (Armenia) by electrons with 3.5 MeV energy, 4 × 10−13 second pulse duration, 12 Hz frequency, 
charge in impulse was 30 pico-Coulomb. The samples of n-Si were cut out in double-cross shape having 6 Oh-
mic contacts for electrical measurements, at 0.8 - 1.0 mm thickness, and 3 × 10 mm2 size. 

Irradiation dose was defined: 

12
2

el6.25 10
cm

ItD
S

= × × ,                                   (1) 

where I is the mean current in μA, t is exposition time in seconds and S is the cross-section of the beam in cm2. 
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The beam current was measured by accumulated charge in Faraday cup. Electrical conductivity and charge 
carriers’ mobility were measured applying known Hall effect method at different temperatures. Electrical con-
ductivity was calculated by σ = µne, where µ—charge carriers’ (Hall) mobility, n—concentration of main 
charge carriers’, e—charge of electron. The charge carriers” mobility was defined by Hall effect measurements: 

HU l
U b Bρ

µ
⋅

=
⋅ ⋅

,                                       (2) 

where HU  is the potential difference between Hall contacts, Uρ  is the potential difference between conduc-
tivity contacts, B—magnetic field induction, l—sample’s length, b—sample’s width. 

The measurement results are presented in Figures 1-7 as a graphics of dose and temperature dependencies of 
electrical conductivity and charge carriers’ mobility for samples of different specific resistivity. An obvious 
“critical dose” is seen on Figure 1, after which the electrical conductivity of samples smoothly decreases and 
then sharply falls down. This effect depends on their initial specific resistivity, i.e. when the specific resistivity 
is high the “critical dose” is reached rapidly, so the dependence is inverse to specific resistivity. The charge car-
rier mobility has similar dependence (Figure 2). Note that for samples with specific resistivity 100 Ω∙cm and 
700 Ω∙cm this dependence is almost the same; even in numerical values this dependence is only slightly differ-
ent, in spite of significant difference in initial carrier concentrations. For samples with specific resistivity 950 
Ω∙cm and 700 Ω∙cm the difference in carrier concentration is not so high but there is a significant difference in 
dose dependences. From comparison of Figure 1 and Figure 2 it is obvious that point radiation defects accu-
mulation kinetics has a marked influence on the mechanism of charge carriers scattering. Note that these mea-
surements were carried out at room temperatures. 

Temperature dependencies of electrical conductivity and carrier mobility were studied to clarify the physical 
nature of their variations after irradiation (Figures 3-7). The carrier mobility measurement results at the 120 - 
300 K temperatures for samples with specific resistivity100 Ω∙cm are presented in Figure 3. It is obvious that 
the behavior of carriers’ mobility temperature dependence before and after irradiation is almost the same up to 
maximum applied irradiation dose of 6 × 1013 el/cm2. 
 

 
Figure 1. Silicon crystal (n-Si) electrical conductivity dose dependence by elec-
tron pico-second beam irradiation (energy 3.5 MeV). Samples specific resistivity: 
1—100 Ω∙cm, 2—700 Ω∙cm, 3—950 Ω∙cm. Maximum irradiation dose was 6 × 
1013 el/cm2.                                                                               
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Figure 2. Silicon crystal (n-Si) charge carrier’s mobility dose dependence 
by electron pico-second beam irradiation (energy 3.5 MeV). Samples spe-
cific resistivity: 1—100 Ω∙cm, 2—700 Ω∙cm, 3—950 Ω∙cm. Maximum ir-
radiation dose was 6 × 1013 el/cm2.                                                     

 

 
Figure 3. Silicon crystal (n-Si) charge carriers’ mobility temperature de-
pendence after electron pico-second beam irradiation (energy 3.5 MeV). 
Sample specific resistivity100 Ω∙cm: 1—before irradiation, 2—after ir-
radiation by dose 6 × 1013 el/cm2.                                                     

 
However, detailed study of carriers’ mobility temperature dependence in log-log scale points to a difference 

between these dependences (Figure 4). Almost a straight line over entire temperature interval (line 1) before ir-
radiation indicates the existence of uniform mechanism for carriers’ scattering-scattering on the ionized impurity  
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Figure 4. Silicon crystal (n-Si) charge carriers’ mobility temperature de-
pendence after electron pico-second beam irradiation (energy 3.5 MeV). 
Sample specific resistivity 100 Ω∙cm: 1—before irradiation, 2—after ir-
radiation by dose 6 × 1013 el/cm2. The graphs are in log-log scale for better 
demonstration. The mathematical expression µ~Тα gives possibility to ex-
plain charge carriers scattering mechanism for α1 = −2.18 before irradia-
tion and α2 = −1.55; α3 = −1.35 after irradiation. Such behavior of carriers’ 
mobility (line 2) is explained by carriers’ scattering on the lattice defects.                           

 

 
Figure 5. Silicon crystal (n-Si) electrical conductivity temperature depen-
dence after electron pico-second beam irradiation (energy 3.5 MeV). Sam-
ple specific resistivity is 100 Ω∙cm,: 1—before irradiation, 2—after irradi-
ation by 6 × 1013 el/cm2 dose.                                                     
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Figure 6. Silicon crystal (n-Si) charge carriers’ mobility temperature de-
pendence after electron pico-second beam irradiation (energy 3.5 MeV). 
Samples specific resistivity: 100 Ω∙cm, 1—before irradiation, 4—after ir-
radiation by dose 6 × 1013 el/cm2; 700 Ω∙cm, 2—before irradiation, 
5—after irradiation by dose 6 × 1013 el/cm2; 950 Ω∙cm, 3—before irradia-
tion, 6—after irradiation by dose 1.2 × 1013 el/cm2.                                           

 

 
Figure 7. Silicon crystal (n-Si) electrical conductivity temperature depen-
dence after electron pico-second beam irradiation (energy 3.5 MeV). Sam-
ples specific resistivity: 100 Ω∙cm, 1—before irradiation, 4—after irradia-
tion by 6 × 1013 el/cm2 dose; 700 Ω∙cm, 2—before irradiation, 5—after ir-
radiation by dose 6 × 1013 el/cm2; 950 Ω∙cm, 3—before irradiation, 
6—after irradiation by 1.2 × 1013 el/cm2 dose.                                                      

 
of phosphorus in n-Si. After irradiation there are two mechanisms for carrier scattering (line 2). The mathemati-
cal expression for the mentioned cases is as follows: µ~Тα, α1 = −2.18 before irradiation and α2 = −1.55; α3 = 
−1.35 after irradiation. Such behavior of carriers’ mobility (line 2) is explained by carriers’ scattering on the lattice 
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defects [5]; in the given case, scattering on the radiation defects created by pico-second pulse irradiation with 
3.5 MeV energy. Evidence for this statement is temperature dependencies of electrical conductivity and carrier 
mobility for different samples with specific resistivity of 100 Ω∙cm, 700 Ω∙cm, 950 Ω∙cm (Figure 5 and Figure 6). 
Samples with specific resistivity of 700 Ω∙cm and 950 Ω∙cm (curves 5 and 6; Figure 6) have an interesting be-
havior: the constancy of mobility with temperature variation and different temperature dependence of electrical 
conductivity (Figure 7). This point requires additional comprehensive study. 

It is worth mentioning that the behavior of samples with low specific resistivity (i.e. having high impurity 
concentration) is significantly different from others at low temperatures, where the region of scattering on io-
nized impurities seen; whereas in samples with high specific resistivity, this region is not observed, although the 
measurements are difficult at these temperatures because the conductivity is near intrinsic (Figure 7). The pri-
mary defect capture by different centers, that were present in samples before irradiation play an important role 
during these processes [8]. However, at sufficiently high doses (“critical dose”) these channels may be ex-
hausted , i.e. the centers saturated, but, on the other hand, concurrent radiation defects are accumulated, acting as 
channels for new reactions, leading to the changes of secondary radiation defects spectrum with irradiation dose, 
other conditions being equal. Along with this, the charge state of formed radiation defects changes, consequently 
the electrical-physical properties of the crystal also change. 

4. Conclusions 
From the above given results, the following conclusions can be drawn: 

1) In spite of low intensity, pico-second electron irradiation has a significant effect on the electrical-physical 
properties of silicon crystal.  

2) The analysis of measurements shows that stable at room temperatures radiation defect formation in silicon 
crystal takes place in stages; at first phase defects are formed as vacancy and interstitial atoms which subse-
quently gather into clusters, although cluster formation is difficult in Si crystal at 3.5 MeV electron energy. 

3) Study of temperature dependence of charge carrier mobility helped to reveal their scattering mechanism: 
scattering on the ionized impurities and on the radiation defects. At the same time it became possible to observe 
formation of point defects, followed by their cluster formation. 

4) The influence of pico-second electron beam irradiation on the silicon crystal with different specific resis-
tivity was studied. It was shown that the “critical dose” corresponding to sharp changes of electrical-physical 
properties depends on specific resistivity. In these cases it is found to be more appropriate to use an expression 
“dose threshold” of cluster formation instead of the more commonly used “energy threshold”. 
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Abstract 
The work gives a natural explanation for the ordinary and dark energy density of the cosmos 
based on conventional quantum mechanical considerations which dates back as far as the early 
days of the quantum theory and specifically the work of Max Planck who seems to be the first to 
propose the possibility of a half quanta corresponding to the ground state, i.e. the energy zero 
point of the vacuum. Combining these old insights with the relatively new results of Hardy’s 
quantum entanglement and Witten’s topological quantum field theory as well as the fractal ver-
sion of M-theory, we find a remarkably simple general theory for dark energy and the Casimir ef-
fect. 
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1. Introduction 
The true nature and origin of dividing energy into two main categories namely ordinary energy which we are 
able to measure and dark energy which should be there but could not be found or measured in any direct way is 
one, if not the most puzzling questions of modern science [1]-[6]. In a large number of papers, this question was 
answered and we think satisfactorily solved by the Author and his associates using mainly advanced mathemat-
ics and novel theories about spacetime [7]-[14]. However, and in all fairness to the readers as well as to our-
selves, it seems that in the heat of the battle of resolving the mystery of dark energy which came upon all of us 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.712129
http://dx.doi.org/10.4236/jmp.2016.712129
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


M. S. El Naschie 
 

 
1421 

as a sudden shock, we seem to have overlooked more conventional elements which may have helped us and 
others in understanding the main problems within a more conventional framework. 

The present work sprang out of such a realization and our final result and explanation of Casimir energy 
[15]-[17], ordinary energy and dark energy [18]-[20] is basically a synthesis of an old well known proposal by 
Max Planck [21] [22], conventional quantum mechanics [23], Witten’s topological quantum field theory and 
M-theories [24]-[27] and last but not least, Hardy’s marvellous result of his gedanken experiment on quantum 
entanglement [28] [29]. How this is actually done will be shown in what follows. We should also add that we 
divided the references in the present paper into two parts where Refs. [1]-[76] are the main readings while Refs. 
[77]-[119] are additional readings which we think deepen and enhance understanding of the subject. 

2. Max Planck Half Quanta 
We know very well, at least since J. von Neumann’s pointless continuous geometry [30] [31] and A. Connes’ 
noncommutative geometry [32] [33] that the definition of a point in classical geometry is totally inadequate on 
both the philosophical and the pure mathematical level [34] [35]. Thus apart of the Heisenberg uncertainty prin-
ciple, the statement that energy could be zero within a theory based entirely on probability like quantum me-
chanics cannot be right [23]. Luckily we all know the quantization recipe in quantum mechanics whether found 
algebraically or using any other method leads to the following famous energy levels equation [23] 

( )1 2nE n w= +                                      (1) 

where   is the Planck reduced constant and w is the frequency. In the above formula n can take only integer 
values, namely 1, 2, 3, ∙∙∙ because there can be no half w  in quantum mechanics since a photon is an elemen-
tary particle, in fact the most fundamental elementary messenger particle of them all and w  has the same 
physical meaning as a photon [23]. The more surprizing it must be for the uninitiated to see that even when we 
have no photon at all, meaning when n = 0, then 0n oE E≡ ≠ , i.e. is not zero but a most recognized value given 
by [23] 

( )1 2oE w=                                        (2) 

The innocent conclusion of the above half quanta is that our postulate gained mainly from experiments that 
quanta are indivisible cannot be as straight forward as one could naively have thought and who knows, it may 
open the door to unsuspected connections related to fractional-Hall effects and similar things [119]. Historically 
speaking this (1/2) which ought to be quite famous because it gives a clear justification for the Casimir effect, 
goes back to the pioneering efforts of Max Planck to make sense out of his own discovery of the quantization of 
energy [21]-[23]. In the present work we hope that the reader will also see in the same way that this half is the 
first step on the road to understand ordinary energy and dark energy [15]-[20]. 

3. Hardy’s Amazing Quantum Entanglement Result 
As far as the present Author is concerned there are few modern results in quantum physics that can rival Hardy’s 
magnificent gedanken experiment regarding the maximal quantum entanglement probability for two quantum 
particles [28] [29]. The exact answer is found by Hardy using Dirac’s formalism to be [29]. 

( ) 5HardyP φ=                                      (3) 

where ( )5 1 2φ = −  in full agreement with experiments [4]-[6]. The implications and ramifications of this 
exact result for physics and quantum cosmology are tremendous and are amply documented by the hundreds of 
papers published in the last ten years on this subject by many authors all over the world [2]-[6]. In the next sec-
tion we will see how ( ) 5HardyP φ=  could be interpreted as a dimensionless, topological Planck constant and 
how it relates to the zero point energy. 

4. The Topological Quantum Field Theory and the Fractal Version of Witten’s  
M-Theory 

Quantum field theory is primarily concerned with investigating the topological invariants of a theory and is 
the result of pioneering efforts of Schwartz, Attaya, Donaldson and Witten [24]-[26] [36]. It is not possible to 
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overestimate the importance of the work done on this subject. It is equally impossible that the work of the 
present Author could have seen the light without the work of L. Hardy and Witten’s work, particularly his 
M-theory as well as his five D-branes in eleven dimensional spacetime model [37]. In fact looking at our own 
work in the last ten years it appears as if it was a realization of Koester’s sleep-waking hypothesis [38] where 
our mind was working almost subconsciously at night and consciously during the day on finding hidden connec-
tions and links between Witten’s theory, hardy’s result and our own efforts to formulate an exact non-classical 
spacetime theory guided by Ord-Nottale’s fractal spacetime theory [9]-[13]. At the end it becomes evident that 

5P φ=  may be seen as a topological Planck energy while the inverse 51 11P φ= +  is a topological cosmic 
distance also playing the role of the dimensionality of the fractal counterpart of Witten’s M-theory as developed 
by the present Author [27]. We discuss all of that in the next section. 

5. The Unifying Power of a Bird’s Eye Topological View 
We all have a pretty reasonable understanding and intuitive feel for what a topological dimension means. How-
ever what exactly is a Hausdorff dimension [39]? In nonlinear dynamics the word fractal dimension is used to 
mean more or less the same as the Hausdorff dimension [39]. Consequently we may see the Hausdorff-fractal 
dimension not as a normal dimension but as a measure for the irregularity of a fractal shape, its ruggedness or 
smoothness. This understanding of the Hausdorff dimension brings into it the meaning of entropy which meas-
ures the degree of disorder in a system [5] [54]. Proceeding in the same direction it is reasonable to associate the 
Hausdorff dimension via entropy with energy which is not a stretch [40]. Remembering that our random triadic 
Cantor set used to model space and time had a Hausdorff dimension equal φ  as per a theorem due to American 
mathematicians Mauldin and Williams [7] [41] and remembering also that the result ( ) 5HardyP φ=  was found 
using this “Cantorian” theory, then due to what we said earlier on 5P φ=  could be seen not only as a probabil-
ity but also as energy, albeit a “topological” energy [7] [14] [42]. Our reasoning is based on the following: First 
quantum entanglement may be loosely likened to a force acting instantly at a distance and second the probability 
of finding a point in a Cantor set was fixed not combinatorically because we have infinitely many points, nor 
geometrically because we have a zero measure [43] but topologically because the Hausdorff dimension is a fi-
nite positive value equal φ  so that we may write: 

( ) ( ) ( )1TP φ φ= =                                       (4) 

where the length of the unit interval within which the random Cantor set lives is unity. That way we see that 
5P φ=  may indeed be seen as a maximal topological energy unit similar to w  being our minimal Planck 

energy unit. By contrast smaller topological probabilities are possible so that for infinitely many entangled 
points we have [28] 

zeroP φ∞= →                                        (5) 

which is what we find in our classical world where we are dealing with almost infinitely many particles and that 
is why in classical mechanics we do not have measurable entanglement of any kind. From the preceding discus-
sion we see clearly that we could replace w  by 5φ  and we assure the reader that this is a sound and bold 
move which will pay off dividend as we will see in the next section. 

6. From Planck’s Half Quantum to Dark Energy via Ordinary and Casimir Energy 
Let us now synthesize and fuse together the preceding result and discussion into a single coherent unity. We 
start with stating the final result. This is first that the vacuum zero point energy is found from replacing w  by 

5φ  and is consequently equal to the ordinary energy density of the cosmos [44]-[57] 

( ) 52 2oE w Oγ φ= → =                                  (6) 

Second this energy is clearly the cause behind the Casimir effect which is observed via a change of the boun-
dary condition created by the two uncharged but conducting Casimir plates brought at nano distance of each 
other [15]-[17] [22]. Third, since the boundary condition is the crucial element in the Casimir effect experiment, 
it follows that at the hyperbolic horizon of our universe we have a one sided boundary condition akin to a one 
sided Möbius strip but in higher dimensions [65] converting the “local” Casimir effect “energy” into a global 
dark energy “effect” pushing the boundary of the holographic boundary of the universe and causing the ob-
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served accelerated expansion of the cosmos [58]-[62]. Seen that way we may rewrite oE  in terms of Einstein’s 
maximal energy density but using ( ) 5 2Oγ φ=  instead of ( )Einstein 1γ = . Proceeding this way one finds 
[1]-[3] [66]. 

( )2 52 2o oE w E mc φ= → =                               (7) 

This clearly means that Eo is in this case equivalent to the ordinary energy density of the cosmos E(O): 

( ) ( )2 5 2oE mc E Oφ= =                                 (8) 

Consequently it follows that the dark energy density is simply [1]-[3] [66] 

( ) ( ) ( )2 21 1 5 2oE D E E O mc φ= − = − =                           (9) 

Comparing these results with the actual cosmic measurements of WMAP, Planck and type 1a supernova 
[50]-[57] we find that they are in excellent agreement as well as being identical to the result obtained previously 
using many different methods and models [1]-[6]. 

7. Deriving Einstein’s E = mc2 from Quantum Mechanics and Planck’s Half Quanta 
The result that ( )2 5 2oE mc φ=  leads us to ponder if we could retrieve Einstein’s celebrated formula, namely 
E = mc2, from it [1]-[6]. That could be seen as a brand new derivation of E = mc2 using ironically quantum me-
chanics which Einstein was not able to bring himself to embrace without many reservations to say the least [67]. 
There are at least two ways to derive E = mc2 from the above. First we have to admit that E = mc2 is already in-
cluded in ( )2 5 2oE mc φ= . However Eo was not found by appealing to any spacetime. It is simply the vacuum 
energy density so that to find the entire energy density of our spacetime it should be multiplied with the topo-
logical “volume” of our spacetime [1]-[14]. We could argue now that a Hausdorff dimension is partially dimen-
sion and partially volume because it is based on a covering procedure. So we could multiple Eo with the Haus-
dorff dimension of our spacetime and expect to find a reasonable answer. However what is the Hausdorff di-
mension of our universe? One could be tempted to answer hastily that it is our 34 φ+  Cantorian spacetime ex-
pectation value for the Hausdorff dimension of spacetime. However this is not correct. The correct answer is to 
use the topological rectangular “volume” resulting from multiplying the “Bosonic” dimension 34 φ+  with the 
spin 1/2 fermionic dimension [7] [63] [64] 3 31 4 5φ φ+ + = +  and finding a practically super symmetric volume 
[52]-[62] 

( ) ( ) ( ) ( )3 3 54 5 22 2 11V kφ φ φ= + + = + = +                           (10) 

This is twice the dimension of the fractal version of Witten’s M-theory. Proceeding this way one finds [27] 

( ) ( ) ( ) ( ) ( )5 2 5 5 22 11 22 2 2 EinsteinoE mc mc Eφ φ φ+ = + = =                    (11) 

The second possibility is far more straight forward and is nothing more than adding Eo = E(O) and E(D) to-
gether and finding that [27] [35] [39] 

( ) ( ) ( ) ( )2 5 2 22 5 2E O E D mc mcφ φ + = + =                           (12) 

Either way we see that E = mc2 consists of two quasi quantum components well hidden inside the deceptively 
simple Einstein’s beauty E = mc2 [119]. We could touch upon trisecting E = mc2 not only into two parts E(O) 
and E(D) but into three parts making a distinction between dark matter energy E(DM) and pure dark energy 
D(DE) where ( ) ( ) ( )E DM E DE E D+ = . The situation in this case is not straight forward because E(DM) and 
E(DE) are at least mathematically coupled. To show what we mean we recall our earlier published results that 
[68] 

( ) ( ) ( )5 2 22 22E O mc mc kφ= = +                              (13) 

while 

( ) ( )2 2 2( ) 5 2 21 22E D mc mc k kφ= = + +                           (14) 

In the case of writing E in three parts, we cannot escape the coupling term ∆  which cancels out at the end in 
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the following fashion [68] 

2 1 5 16
22 22 22

kE mc
k k k

− ∆ + + ∆ = + + + + + 
                           (15) 

where 52k φ=  is ‘tHooft’s renormalon [118] and the coupling ∆  is given by 

( )28 100k∆ = +                                     (16) 

This coupling could be taken to be approximately ( )5 51ok φ φ= − . At the end ∆  cancels out and we find [68] 

( ) ( ) ( )2 2 2 25 16 21 5 2
22 22

k kE D mc mc mc
k k

φ− ∆ + + + ∆ + = = = + + 
               (17) 

exactly as should be. 

8. Conclusion 
We gave a derivation for the ordinary energy density and the dark energy density of the universe starting from 
and based upon conventional and generally accepted quantum mechanical principles. In particular we relied 
upon a fact introduced probably for the first time by Max Planck, which shows that even in the absence of any 
real photon, completely empty spacetime has a non-zero energy. From there we went on to show that using this 
half quanta of Planck which is in the meantime part of most text books on quantum mechanics, we can explain 
not only the Casimir effect but could also explain the division of energy into ordinary measurable energy as well 
as dark energy which we cannot measure directly. Thus unlike our previous publications, we did not need to in-
voke new advanced mathematics nor really any new concepts beyond what one is taught in an advanced course 
or two in a good university undergraduate program in physics. 
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Abstract 
We derive the differential equation, which is satisfied by the ITER scalings for the dynamic energy 
confinement time. We show that this differential equation can also be obtained from the differen-
tial equation for the energy confinement time, derived from the energy balance equation, when 
the plasma is near the steady state. We find that the values of the scaling parameters are linked to 
the second derivative of the power loss, estimated at the steady state. As an example of an applica-
tion, the solution of the differential equation for the energy confinement time is compared with 
the profile obtained by solving numerically the balance equations (closed by a transport model) 
for a concrete Tokamak-plasma. 

 
Keywords 
Fusion Reactors, Theory, Design, and Computerized Simulation 

 
 

1. Introduction 
Global scaling expressions for the energy confinement time, Eτ , or the stored energy, W, are powerful tools for 
predicting the confinement performance of burning plasmas [1]-[3]. The fusion performance of ITER is 
predicted using three different techniques: statistical analysis of the global energy confinement data in the 
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parameters (simple (multivariate) linear regression tools can be used to determine the parameters from a set of 
data) [4] [5], a dimensionless scaling analysis, based on dimensionless physics parameters [5]-[7], and theory- 
based on transport models and modelling the plasma profiles [8]-[10]. Although the three methods give 
overlapping predictions for the performance of ITER, the confidence interval of all of the techniques is still 
quite wide [11]. The Confinement Database and Modelling Expert Group recommended for ITER design the 
so-called ( )98 , 2ITERH P y−  confinement scaling [5] [12]:  

( )98 ,2 0.93 1.97 0.58 0.78 0.15 0.41 0.69 0.19
00.0562H y

E p eI R B n P Mφτ κ −=                        (1) 

Here, the parameters are the plasma current pI , the major radius R, the inverse aspect ratio a R=  (with a 
denoting the minor radius of the Tokamak), the elongation κ , the toroidal magnetic field (at the major radius R) 

0B φ , the central line averaged electron density en , the loss power P, and the ion mass number M, respectively. 
The expression (1) is valid for the ELMy H-mode thermal energy confinement time. The 2log-linear interval 
was determined to be 20%. By recent analyzing the enlarged . 3ITERH DB  dataset, the practical reliability of 
the ( )98 , 2ITERH y−  scaling was confirmed and 2log-linear interval was reduced to 14% [13]. Tables showing 
some of the most generally used sets of scaling parameters for the ELMy H-mode and L-mode can be found in 
Refs [5] [14]-[16]. 

For stellarators, a similar scaling has been obtained [17] [18]  
0.64 2.33 0.55 0.85 0.41 0.61

00.148E eR a n B Pφτ ι −=                              (2) 

where 2πι  is the rotational transform (or the field line pitch). 
The confinement time is defined as  

e e
E

tot e Q

W W
P W P

τ = =
− 

                                     (3) 

where eW , QP  and totP  are the internal energy, the power loss and the power source, respectively. From 
Equation (3) results that when the tokamak is not in the steady state the quantity Eτ  is a time dependent 
quantity. Hence, Eτ , given by Equations (1) and (2), is viewed as a time-dependent variable, which depends on 
a collection of variables dependent on time (e.g., n , P, etc.). The value of Eτ  at the steady state condition 

0Eτ = , attained at some time moment 0t , corresponds to the numerical value provided by the database. For 
example, the point prediction for the thermal energy confinement time in ITER is ( ) ( ), 3.6 sec,0E Eτ τ = . 

The main objective of this work is to estimate the energy confinement time, close to the steady state. Eτ  at 
the steady state condition is calculated by using the expression  

0 .

.

estat
E

Qstat

W
P

τ =                                         (4) 

where .estatW  and .QstatP  are obtained by solving the stationary balance equations. An example of calculation 
can be found in Ref. [19]. To estimate the dynamic confinement time we should solve the evolutive balance 
equations. However, this is a very complex task. An alternative strategy (which is the one that we shall adopt 
here) consists in deriving the time differential equation for the energy confinement time, with 0

Eτ , estimated by 
using Equation (4), playing the role of the initial condition. We show that Eτ  is the solution of a nonlinear 
differential equation of second order in time, obtained by combining Equation (3) with the (dynamic) balance 
equations. The critical fact which makes our approach useful is that in the vicinity of the stationary state, this 
differential equation depends only on one coefficient which varies very slowing in time  

( )2 2

0 .

.

; 0

E E E E

estat
E E

Qstat

t
W
P

τ τ τ χ τ

τ τ

 − =

 = =


 



                                    (5) 

where ( ) ( )0 0t t tχ χ − , and 0χ  is a numerical coefficient estimated at the steady state. Hence, at the 
“leading order”, all of the dependence on the machine is reduced to just a number, 0χ , which can be determined. 
This is the real advantage of this approach. As an example of calculation, we have considered the simplest case 
of IGNITOR-plasmas. In this case, we solved the time differential equation for Eτ  where the parameters (i.e., 
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the initial condition as well as the coefficient appearing in the differential equation) have been estimated at the 
steady state. The solution of this equation is in agreement with the one obtained by solving numerically the 
dynamic balance equations, with the aid of a transport model [20]. 

In this work, we shall also justify the dynamic scaling laws, like  
31 2 4 ,a

E p eCI n P Mα α ατ =                                     (6) 

where C is a constant and M is the effective mass, respectively (note that when the plasma is a mixture, due to 
the dependence of particle transport properties on particle mass and charge, M is also time dependent). In 
particular, we shall prove that the dynamic expression for the energy confinement time, like Equation (6), is 
solution of the differential equation for Eτ , which can be obtained by combining Equation (3) with the energy 
balance equation. 

The paper is organized as follows. In Section (2), we show that Equation (6) satisfies a nonlinear differential 
equation of the second order in time, tacking into account the (experimentally established) slow variation in time 
of the coefficient entering in this equation. Successively, we show that this equation can also be derived from 
the energy balance equation, combined with definition (3). This will allow a linking of the scaling coefficients 
with the (measurable) second time derivatives of the heat power loss, which at the leading order may also be 
estimated at the stationary state. These tasks will be accomplished in the Section (3). As an example of an 
application, in the Section (4), we compare the solution obtained by solving the differential equation for the 
energy confinement time with the numerical simulations obtained using the code JETTO [20], for the specific 
case of IGNITOR-plasmas. Concluding remarks can be found in Section (5). 

2. Differential Equation Satisfied by the ITER Scalings  
The expression for the energy confinement time, obtained by scaling laws, raises several questions. Firstly, 
Equation (1) applies quite well to a large number of Tokamaks (ASDEX, JET, DIII-D, ALCATOR C-Mod, 
COMPASS, etc.) and it is currently used for predicting the energy confinement time for Tokamaks, which are 
presently in construction (ITER) or will be constructed in the future (DEMO). Hence, the first objective of this 
work is to understand the main reason for such a “universal” validity. Secondly, it is legitimate to ask “where 
does this expression originate from ?”. More concretely, “Is it possible to determine the (minimal) differential 
equation which is satisfied by expression (6)?”. In case of a positive answer, “Is it possible to re-obtain this 
(minimal) differential equation from the balance equations and, in particular, from the energy balance 
equations ?”. Finally, “How can we estimate the values of the scaling coefficients iα ?”. In this Section, we 
shall determine the (minimal) differential equation satisfied by Equation (6). In the next Section we shall prove 
that, near the stationary state, this differential equation can be re-obtained from the energy balance equation. 

The equations of one-dimensional plasma dynamics, in toroidal geometry, assuming the validity of the 
standard model, can be brought into the form (see, for example, [21])  

( )1 ee
r

n r
t r r

γ∂ ∂
= −

∂ ∂
 

( )

( )

1

2
0 0

gain-loss

3 1 5 1
2 2

4π

e
e i e r

p r q q Z T
t r r

E Bc r S
Rr r q r

φ

γ−∂ ∂   + + + +  ∂ ∂   
 ∂

= +  ∂  

                      (7) 

with r and ( )q r  denoting the radial coordinate and the safety factor, respectively. p, en , eT  and Z are the 
total plasma pressure, the electron density, the electron temperature and the ion charge number, respectively. 
Here,   denotes the surface-average operation. qζ  and e

rγ  are the averaged radial heat flux of 
species ζ  ( eζ =  for electrons and iζ =  for ions) and the averaged electron flux, respectively. c and 0E  
are light speed and the external electric field, respectively, and gain-lossS  is the source term, i.e. the loss and 
energy gain. Equation (7) must be completed with the transport equations, i.e. with the thermodynamic flux- 
force relations, in order to close the plasma dynamical equations. The 0 D−  power balance equation is now 
derived as follows. Equation (7) is integrated over the volume of the plasma and then divided by the plasma 
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volume V. We obtain  

e

e Q tot

N

W P P

 = −Γ


+ =





                                       (8) 

with  

( )

( )

( )

1 1

2
0 01 1

gain-loss

1 1

1d ; d

3 d ;
2 4π

1 5 1 d
2

e
e e r

e tot

e
Q e i e r

N V n V V r V
r r

E Bc rW V p V P V S dV
Rr r q r

P V r q q Z T V
r r

φ

γ

γ

− −

− −

− −

∂
≡ Γ ≡

∂
  ∂

≡ ≡ +   ∂   
 ∂   ≡ + + +   ∂    

∫ ∫

∫ ∫

∫

                (9) 

where the “dot” over the variables stands for the (total) time derivative ( d dt ). 
The energy confinement time is defined as  

e e
E

tot e Q

W W
P W P

τ = =
− 

                                   (10) 

From definition (10), we find  

0E Q E Q eP P Wτ τ+ − = 

                                   (11) 

Note that the stationary state is reached when Q totP P= . Hence, at the steady state (corresponding to 0t t= ) 
we have  

0

0 0e et t
W W

=
≡ =                                      (12) 

At the steady state, we find  

( )
0

0
0 0

0 0
d; 0
d

e E
E E E

t ttot

Wt
tP
ττ τ τ

=

≡ = ≡ =                            (13) 

where 0
eW  and 0

totP  indicate the values of eW  and totP , estimated at the steady state, respectively. 
Equation (6) may be re-written in the generic form:  

1 2
1 2

n
E nCX X X αα ατ =                                   (14) 

where 1 2, ,X X   are a positive and independent system of variables iX , and iα  the scaling parameters, 
respectively. For simplicity, we firstly suppose that in Equation (14) all the variables iX  are time-dependent. 
The case whereby iX  is a collection of variables dependent on time, as well as variables not-dependent on 
time, will be treated in the following sub-Section Analysis in the Physics Variables. Note that C is a (dimensional) 
constant satisfying the condition  

( ) ( ) ( )1 20
1 0 2 0 0

n
E nC X t X t X tα α ατ − − −=                            (15) 

Unless stated otherwise, in the sequel we shall adopt the summation convention on the repeated indexes. By 
taking the logarithm of Equation (14) we find  

1 1 2 2log n ny C α ξ α ξ α ξ= + + +                             (16) 

with log Ey τ≡  and logi iXξ ≡  (with 1, ,i n=  ). The first and the second derivatives of y, with respect to 
variable iξ , read respectively  

2

; 0i
i i j

y yα
ξ ξ ξ
∂ ∂

= =
∂ ∂ ∂

                               (17) 

In terms of variable Eτ , instead of y, we get  
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2

; 0E E E E
E i E

i i j i j

τ τ τ ττ α τ
ξ ξ ξ ξ ξ

∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂ ∂
                         (18) 

The differential equation with respect to time is easily obtained by tacking into account the identities  
2

;E E E
E i E i i i j E i E E i i

i i j i

τ τ ττ ξ τ α ξ ξ ξ τ ξ τ τ α ξ
ξ ξ ξ ξ

∂ ∂ ∂
= = = − = −
∂ ∂ ∂

     

                    (19) 

By multiplying the second equation of Equation (18) by i jξ ξ   and by summing over indexes, we finally 
obtain the differential equation satisfied by the ITER scaling laws  

( )2 2

1

n

E E E i i E
i

tτ τ τ α ξ τ
=

 − =  
 
∑ 

                                  (20) 

Equation (20) should be solved with the initial conditions (13):  

( )2 2

0
0 0

0 ; 0

E E E E

e
E E

tot

t

W
P

τ τ τ χ τ

τ τ

 − =



= =


 



                                  (21) 

with ( ) ( )( )1
n

i iit tχ α ξ
=

≡ ∑  . We have derived two differential equations for the time derivatives of τ , the first  

equation of Equation (19) which is first order and also Equation (20) which is second order. It may appear 
hopeless to solve these equations, as they depend on ( )i i tα ξ  and ( ) ( )i it tχ α ξ=   respectively, which in turn 
depend on the full dynamics of the system. The critical fact which makes our approach useful is that the second 
time derivatives of the logarithm of iX  are generally weakly dependent on time. As a result, one may 
approximate ( )tχ  to be a constant, 0χ . In this sense, all of the dependence on the machine is reduced to just a 
number, which can be determined. The evolution of Eτ  can then be obtained uniquely by integrating Equation 
(20) with the initial conditions (13). Such an approach would not work for the first equation of Equation (19) as 

( )i i tα ξ  depends strongly on time, indeed it vanishes at the initial stationary state and then becomes nonzero as 
the state evolves. 

It is not difficult to check that the nonlinear Equation (21) is the “minimal” differential equation, in the sense 
that Equation (21) admits one, and only one, solution (i.e., the nonlinear differential Equation (21) does not 
generate additional solutions). 

It may appear hopeless to solve Equation (21), as it depends on the coefficient 1

..
logn

i ii Xχ α
=

 =  
 
∑ , which in  

turn depend on the full dynamics of the system. The critical fact which makes our approach useful is that the 
second time derivatives of the logarithm of iX  are generally weakly time-dependent. In all the cases examined 
by the authors, ( )tχ  is very well approximated (numerically) by a linear function in time  

( ) ( ) ( )0 0 0 0
10

1with
n

i i
i

t t t t
t

χ χ χ α ξ
=

− = − ∑ 

                         (22) 

Hence, all of the dependence on the machine is reduced to just a number, 0χ , which can be estimated at the 
steady state. 

3. Differential Equation for the Energy Confinement Time  
The aim of this Section is to obtain the differential equation for the energy confinement time from the balance 
equations. In analogy with Equation (21), the coefficients of this differential equation should be expressed only 
in terms of the internal energy eW  and the total power totP . To this end, let us reconsider the energy balance 
equation Equation (8) and the definition of the energy confinement time, Equation (10). Taking the derivative of 
Equation (11) with respect to time, after a little algebra, we get  

( ) ( )2 2
E E E E E Ef t g tτ τ τ τ τ τ− = − −                                 (23) 

with  
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( ) ( )

( )

tot e e

tot e e

tot e e

tot e e

P W Wf t t
P W W

P W Wg t
P W W

χ−
≡ − = −

−

−
≡ +

−

  



  



                               (24) 

Note that the dimensions of ( )f t  and ( )g t  are [ ] 2t −  and [ ] 1t − , respectively. Finally, the differential 
equation for the energy confinement time reads  

( ) ( )2 2

0
0 0

0

0

; 0

E E E E E E

e
E E

tot

f t g t

W
P

τ τ τ τ τ τ

τ τ

 − + + =



= =


  



                            (25) 

We might object that the previous equation has the same degree of difficulty as the initial expression, 
Equation (10). However, as we shall see more in detail in the next Subsection, the coefficients ( )g t  and ( )f t  
possess special properties: close to the steady state ( )g t  tends to vanish and ( )f t  is a function varying very 
slowing in time. So, at the leading order, ( ) 0g t ≈  and ( )f t  may be estimated at the stationary state [see 
Equation (22) and the discussion after Equation (21)]. This is the real advantage of Equation (25) with respect to 
Equation (10): Equation (25) allows determining the dynamic behaviour of the energy confinement time when 
the system is close to the steady state, solely by the knowledge of one coefficient estimated at the stationary 
state. Moreover, from the previous Section we know that this equation admits one (and only one) solution 
corresponding to the ITER scalings. A concrete application of Equation (25) can be found in the Section (4). 
Note that Equation (25) may be re-written in the more convenient form  

( ) ( )

( ) ( )
0

0 00

0

; 0

E E

e
E

tot

y
y g t y f t

Wt y t
P

τ τ

τ

=
 + + =

 = =





                                (26) 

showing that the differential equation for the energy confinement time may be expressed as two quasi-decoupled 
differential equations of first order in time derivative. The general solution of Equations (26) may be brought 
into the form  

( ) ( )( ) ( ) ( )( )
0 0 0 0

0 exp d exp d d exp d
t x x x

E E t t t t
t x xg x x f x xg xτ τ

′′ ′′ ′   ′′ ′ ′= − −      ∫ ∫ ∫ ∫              (27) 

By taking into account that ( ) 1
n

i iif t α ξ
=

= −∑   (with logi iXξ = ), solution (27) generalizes the ITER scaling  
laws out of the steady state, reducing to Equation (14) close to the stationary state. Equation (27) shows that 
close to the steady state, the leading contribution to the mathematical expression for the energy confinement 
time is provided by the power laws. However, when we deviate from the steady state, supplementary con- 
tributions, which are different from the power ones, may modify the mathematical form of the power laws 
significantly. Generally, for ITER, these contributions tend to lower the numerical value of the energy con- 
finement time. This can be easily checked by setting in Equation (27) ( ) 1ˆg x α  , with 1  and α̂  denoting a 
very small parameter and a positive constant having dimension [ ] 1t − , respectively. By developing expression 
(27) up to the first order in 1 , we find the power laws at the leading order, corrected by a (small) negative 
expression at the first order in 1 . 
• Differential Equation for the Energy Confinement Time Near the Steady State  

The term totP  is specified as follows  

( ) ( ) ( ),tot b AuxP P T P T P r tα= − +                               (28) 

where ( )P Tα  is the alpha power, ( )bP T  is the power radiation loss (Bremsstrahlung) and auxP  is the 
external heating power density supplied to the system (e.g. ohmic heating power or external RF), respectively. 
The alpha power and the Bremsstrahlung power loss depend explicitly on the temperature of the plasma. The 
auxiliary heating power is operational during both the transient and steady states. This is the dominant source of 
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external heating power, and it is assumed to be deposited in the plasma with a known profile, independent of p 
and T. Hence, ( ),Aux AuxP P r t= . The time derivative of totP  reads  

b
tot Aux

P PP T T P
T T
α∂ ∂

= − +
∂ ∂

                                     (29) 

At the steady state ( )0 0T t =  and ( ) ( )0 0 0Q AuxP t P t= =  . Consequently, from the energy balance equation 
we find that also ( )0 0eW t = . By taking into account Equations (12) and (24), we get ( ) 0g t →  as the system 
approaches the steady state. Hence, near the stationary state, we find  

( )2 2

0
0 0

0 ; 0

E E E E

e
E E

tot

t

W
P

τ τ τ χ τ

τ τ

 −



= =


 




                                  (30) 

with  

( ) ( ) ( )0 0
1

n
tot e

i i
itot

P Wt t t t
P

χ α ξ χ
=

−
= − = −∑

 



                          (31) 

where Equation (22) has been used. As shown in the Section (2), Equation (30) admits one (and only one) 
solution, corresponding to the ITER scalings Equation (6). Note that Equation (31) provides the desired relation 
between the exponent coefficients iα  and the macroscopic quantities totP  and eW . If we have n free ex- 
ponent coefficients iα , we can set the following n relations  

( ) ( ) ( )
( )1

with 0,1, , 1
n

tot k e k
i i k

i tot k

P t W t
t k n

P t
α ξ

=

−
= − = −∑

 



                    (32) 

Equation (32) link the exponent coefficients with variables which, at least in principle, are under the control 
of the experimental physicist.  
• Analysis in the “Physics” Variables 

As mentioned, Equations (1) and (2) are composed by several variables independent of time (e.g., major and 
minor radii, elongation etc.). In this case, it is more convenient to express the energy confinement time only in 
terms of the time-dependent variables. Let us suppose that m variables are time-dependent and the remaining 
n m−  not. In this case, the energy confinement time takes the form [see Equation (15)]  

( ) ( ) ( )
1 2

1 2

0 1 2

1 0 2 0 0

m

m

n
E E

m

XX X
X t X t X t

αα α

α α ατ τ
   

=        
    

                         (33) 

where, now, the independent variables ( ) ( )0
i i

i iX t X tα α  are dimensionless. Note that in this case variables iξ  
are defined as ( )( )0logi i iX X tξ =  (no summation convention over the repeated indexes). Of course, this 
operation reduces the number of independent variables. However, this number may be reduced further if, instead 
of “engineering variables”, the confinement time is expressed in terms of “physics” parameters such as ρ   
(normalized Larmor radius), β  (normalized pressure), ν   (collisionality), etc. Indeed, according to the 
observation of Kadomtsev, the transport in the plasma core should be fundamentally governed by three physical 
dimensionless plasma parameters ρ  , β  and ν   [22]. In this respect, an interesting paper is Ref. [23]. In [23] 
the authors show that, due to the Kadomtsev constraint, the final expression for the ELMy H-mode thermal 
confinement time has only one free exponent coefficient, according to the law:  

( )6 8 153 12π 10 n nebest
E p eI n Pα ατ − +− −= ×                             (34) 

with P  denoting the density of the power loss (i.e., P P V≡ ). With the choice 1 2
enα = , in “physics” 

variables, scaling (34) goes as 1
ρ

α = −  (i.e. a gyro-Bohm-like scaling), 0.5βα = −  and 0
ν

α = . This choice 
may be tested by using Equation (32) which, in this particular case, reads  

( )
0

0
0 0 0

.. ..
15 log 6 8 log 15

e e
tot e

n e n
tot

P Wn P
P

α α −
− + = −

 

                       (35) 

where Equation (33) has been taken into account. We find  
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( )0
0 0 0

0
0 0

..

.. ..
6 log 15

15log 8log
e

tot tot e
n

tot e

P P P W

P n P
α

− −
=

 − 
 

 




                            (36) 

4. Comparison with the Numerical Simulation of the Balance Equations for an  
L-Mode Tokamak-Plasma  

As an example application, we consider in this Section the case of one of the simplest L-mode Tokamak-plasma 
where the evolution of the energy confinement time has been estimated by solving numerically the balance 
equations, completed with a transport model. In [20] we find the profile of Eτ  against time for Ignitor-plasma. 
The numerical solution has been obtained by using the code JETTO. To compare this profile with the numerical  

solution of Equation (21), we should firstly estimate 0t , 0
Eτ  and ( ) ( )0 0 0

0

1
Q totP t P t

t
χ =   [see Equation (22)  

and (24)]. In [19], we have estimated the values of these parameters for Ignitor subject to ICRH power (i.e., 
Aux ICRHP P= ). The scenario is considered where IGNITOR is led to operate in a slightly sub-critical regime by 

adding a small fraction of 3He to the nominal 50 - 50 Deuterium-Tritium mixture. The difference between power 
lost and alpha heating is compensated by an additional ICRH power equal to 1.46 MW, which should be able to 
increase the global plasma temperature via collisions between 3He minority and the background D T−  ions. 
The analytical expression for the ICRH power profiles inside the plasma has been deduced by fitting the 
numerical results giving an expression for ( )Aux ICRHP P r= , which is essentially independent of the bulk 
temperature. Denoting the ICRH power-density as ICRHP , we have  

( ) ( ) ( )2
0 2 0exp expICRH ICRH ICRH ICRHP r P B r B r rφα   = − − ∆   



                  (37) 

with 6 3
0 6.59126 10 MW mICRHP −= × , 2 15.3478α =  and 0.0477032∆ = , respectively. 

The value of 0
Eτ  has been estimated by the expression [19]  

0
2 2 1 2

12
4 4

e
E

e B e ICRHD T

n T
E n v C n T Pα

τ
σ

−

=
− +                          (38) 

with Eα  and BC  denoting the energy at which the alpha particles are created (3.5 MeV), and the Brems- 
strahlung constant, respectively. σ  is the reaction cross section giving a measure of the probability of a fusion 
reaction as a function of the relative velocity of the two reactant nuclei. D Tvσ

−
 provides an average over the dis- 

tributions of the product of cross section and velocity v. In the core of the plasma we found [19] 0 0.43 secEτ = , 
0 3.5 sect =  and 3

0 0.171429 secχ −= . Figure 1 reports on the energy confinement time, Eτ , against time for 
Ignitor-plasmas in the above mentioned conditions. The profiles have been obtained by solving (with the code 
JETTO) the balance equations and refer to the ITER scalings ITER97L (full dots), ITER97L  (open dots) and 
ITER97L [20]. Figure 2 shows the solutions of the differential equation for the ITER scalings, Equation (21), at 
the three values of ( 0

0 , Et τ ): ( ) ( )0
0 , 0.35 sec,0.43 secEt τ =  (ITER97L-blue line),  

( ) ( )0
0 , 0.35 sec,0.625 secEt τ =  ( ITER97L -green line) and ( ) ( )0

0 , 0.35 sec,0.825 secEt τ =  =  
(ITER97L(P_red)-brown line). 

Note that in [20] the authors evaluate the ITER scalings by using the reduced power red tot RadTotP P P= − , 
whereas in our work we use totP , which includes the Bremsstrahlung radiation loss. This may explain the little 
difference between the numerical [20] and the analytical slopes. 

5. Conclusions  
A large database on plasma energy confinement in Tokamaks can be summarized in single empirical value of 

Eτ , referred to as the ITER-scalings. These expressions are “Universal”, in the sense that they apply to a large 
number of Tokamaks. Scalings are expressed in terms of product of powers of independent variables [see 
Equation (14)] and correspond to the L-mode as well as the H-mode confinements. The recommended scaling 
for ITER operation remains the IPB98 scaling law, while this issue is further investigated. In this work we have 
shown that the ITER scalings satisfy a general non-linear differential equation of second order in time. The 
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value provided by the database for ITER scaling laws, coincides with 0
Eτ , estimated by Equation (4), with 

.estatW  and .QstatP  evaluated by solving the stationary balance equations. To estimate the dynamic confinement  
 

 

Figure 1. Solutions of Equation (21) at the three values of ( )0
0,E tτ . Blue line: ( )0

0 , Et τ =  (0.35 sec,                            

0.43 sec) (ITER97L), green line: ( ) ( )0
0 , 0.35 sec,0.625 secEt τ =  ( ITER97L ) and Brown line: 

( ) ( )0
0 , 0.35 sec,0.825 secEt τ =  = (ITER97L(P_red)).                                               

 

 
Figure 2. Energy confinement time evolution estimated in [20] by solving with JETTO the 
balance equations (completed with a transport model): ITER97L scaling (full dots-blue line), 
ITER97L  scaling (open dots-green line) and ITER97L(P_red) scaling (brown line).                                               
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time, we determined the differential equation for Eτ  by combining the energy balance equation with definition 
(3). We found Equations (25). We have solved this equation by taking into account that, in vicinity of the steady 
state, the coefficient ( )g t  tends to vanish and, at the leading order, ( )f t  is (almost) a constant independent 
of time, which may be evaluated at the stationary state. This is the real advantage of the proposed approach: 
close to the steady state, the differential equation for the energy confinement time Eτ  reduces to  

( )2 2

0
0

0 ; 0

E E E E

e
E E

tot

t

W
P

τ τ τ χ τ

τ τ

 − =



= =


 



 

where “at the leading order” ( )tχ  is a numerical constant, which may be estimated at the stationary state. As 
a result, one may approximate ( )tχ  to be a constant, 0χ  or better, by a linear function ( ) ( )0 0t t tχ χ= − . In 
this sense, all of the dependence on the machine is reduced to just a number, 0χ , which can be estimated at the 
steady state. Far from the stationary state the differential equation for Eτ  contains a nonlinear extra term, 
which behaves as ~ E Eτ τ . This extra term tends to modify the mathematical form of the power laws. For ITER, 
the main effect of this nonlinear extra term is to lower the numerical value of the energy confinement time. The 
general solution is given by Equation (27), which reduces to the one admitting the ITER scaling power laws as 
the system approaches the steady state. We have also seen that the scaling coefficients may be linked to the 
variables which, at least in principle, are under the control of the experimental physicist. The validity of our 
approach has been tested by analyzing a concrete example of Tokamak-plasma where the profile of the energy 
confinement time has been previously determined by solving the balance equations (with the auxilium of a 
transport model). The solution of the differential equation for the ITER scaling is in a fairly agreement with the 
numerical finding. 
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Abstract 
In the first step, the Joule-Lenz dissipation energy specified for the electron transitions between 
two neighbouring quantum levels in the hydrogen atom has been compared with the electromag-
netic energy of emission from a single level. Both the electric and magnetic vectors entering the 
Pointing vector of the electromagnetic field are referred to the one-electron motion performed 
along an orbit in the atom. In the next step, a similar comparison of emission rates is performed 
for the harmonic oscillator. Formally a full agreement of the Joule-Lenz and electromagnetic ex-
pressions for the energy emission rates has been attained. 

 
Keywords 
Joule-Lenz Energy, Quantum Electron Transitions, Hydrogen Atom,  
Electromagnetic Energy Emission 

 
 

1. Introduction 
Usually any calculation of the emission rate of energy in the atom has as its background a rather complicated 
statistical-and-probabilistic theory. This situation seems to be not changed much since the very end of the 
nineteenth and beginning of twenteeth century [1]-[3]. In practice an individual atomic system has been never 
considered, but instead of it an ensemble of the oscillating atoms known as the black body was examined. Rather 
automatically the temperature parameter—important for comparing the theoretical results with experiment—has 
been involved in such many-atomic calculations. Next the probabilistic approach to the emission intensity found 
its justification, and a rather extended though complicated application, in quantum mechanics [4] [5]. 

More recently an approach to the treatment of the energy emission in a single atomic object could be based on 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.712131
http://dx.doi.org/10.4236/jmp.2016.712131
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/
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the Joule-Lenz law [6]-[10]. For, when the Bohr theory of the hydrogen atom is taken as an example, any atom 
has its electron placed on a definite orbit which can be approximated by a circle. Electrically such a circular 
motion can be represented by a current having a known intensity. For example, for the quantum states n and 

1n +  the current intensity is respectively  

1
1

and ,n n
n n

e ei i
T T+

+

= =                                    (1) 

where nT  and 1nT +  are the time periods of the electron circulation about the proton nucleus. In the next step, 
the energy difference between levels 1n +  and n, namely  

1 ,n nE E E+∆ = −                                        (2) 

provides us with the electric potential  

.EV
e
∆

=                                           (3) 

This leads to the electric resistance  

1n n

V V VR
i i i +

= ≈ ≈                                        (4) 

where the approximate relations in (4) hold in virtue of  

1n ni i i +≈ ≈                                          (5) 

valid for large n. The validity of (5) becomes evident if we apply Formula (7) in (1). 
For such large n we have [11] the energy change  

( )
( )
( )

2 24 4 4

2 2 2 2 2 2 32

11 1 ;
2 21 1

n nme me meE
n nn n n

  + −
∆ = − − = ≈ 

+ +  � � �
                     (6) 

in the last step of (6) the approximation of large n is considered. 
Since [11]  

3 3

4
2π ,n

nT
e m

=
�                                         (7) 

we obtain  
4 3 3

2 2 3 2 4 2 2
1 2π 2π ;n

n n

ETV E me n hR
i ei e n e e m e e

∆∆
= = = ≈ = =

� �
�

                       (8) 

this is a constant independent of n. The same value of R can be calculated also for other quantum systems than 
the hydrogen atom, see [6] [7] [10]. A characteristic point is that R is equal to a well-known result of ex- 
periments done on the integer quantum Hall effect [12]. 

The Joule-Lenz law is represented by the well-known relation 
2E Ri

t
∆

=
∆

                                          (9) 

where t∆  is the time interval necessary to produce the emitted energy E∆ . In fact (9) implies that for ni i=  
we have  

224 2 4 2 3 3 3 3
3 4

2 2 3 2 3 2 4 4 4
1 2π 2π 2π 2π .n

n
n

TE me e me e n nt n T
h e h hRi n n e e m me me

 ∆  ∆ = = = = = =  
   

� �
�

� �
           (10) 

Moreover from (6) and (10) we obtain  
4 3 3

2 3 4
2π 2πme nE t h

n me
∆ ∆ = = =

�
�

�
                               (11) 

or  
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.ht
E

∆ =
∆

                                        (12) 

Therefore the ratio (9) becomes  

( ) 22 4 2 8

2 3 6 5
1 .

2π
EE me m e

t h hn n
∆  ∆

= = = ∆  � �
                            (13) 

Results similar to (10)-(12) can be obtained also for other quantum systems than the hydrogen atom [6] [7] 
[10]. 

The principal aim of the paper is, in the first step, to compare the ratio calculated in (13) with the rate of 
energy emission obtained in terms of the electromagnetic theory. Next, in order to compare the quantum emission 
with the classical emission rate, the properties of the harmonic oscillator emission are also studied. 

2. Fields Induced by the Electron Motion in the Hydrogen Atom  
The electric field value nE  acting on the electron in the Bohr atom is well known:  

5 2

2 4 4 .n
n

e e m
r n

= = =E E
�

                                  (14) 

The last step in (14) is attained because of the radius of the orbit n which is [11]  
2 2

2 .n
nr

me
=
�                                        (15) 

A less-known magnetic field omitted in the Bohr atomic model [10] is induced in the hydrogen atom due to 
the circular electron motion done with the frequency  

2π .n
nT

Ω =                                        (16) 

Because of the formula (see e.g. [13])  

,n
n

eH
mc

Ω =                                       (17) 

the identity between (16) and (17) combined with (7) gives  
3 2

3 3 .n n
e m cH

n
= =H

�
                                   (18) 

A characteristic point is that when expressions for nE  and nH  are substituted to the Lorentz force  

[ ],n n n n
ee
c

= + ×F E v H                                 (19) 

we obtain for the electric component of (19)  
2 2 2 6

2 4
2 4 4 4 4n

n

e e m ee m e
r n n

= = =E
� �

                            (20) 

and the same value is obtained for the magnetic component of (19)  
2 3 2 2 6

3 3 4 4 ,n n n n
e e e e e m c m ev H
c c c n n n

× = = =v H
� � �

                       (21) 

on condition the vector of the electron velocity having the value [11]  
2

n
ev
n

=
�

                                       (22) 

is normal to nH . 
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3. Field Values Specific for the One-Electron Current Present in the Atom and the  
Electromagnetic Rate of the Energy Emission  

Our aim is to construct the Poynting vector which provides us with the electromagnetic dispense of energy. The 
vectors E  and H  become slightly diffferent than in Section 2 because they refer to the current behaviour of 
the electron which is circulating along its orbit. With the potential V given in (3) and (6) and equal to  

3

2 3 ,meV
n

=
�

                                        (23) 

the electric field on the orbit having the length  
2πn nl r=                                          (24) 

attains the value [16]  
3 2 2 5

orbit 2 3 2 2 5 4
1 1 .

2π 2π 2πn
n

V me me m e
r n n n

= = =E
� � �

                         (25) 

This gives an electric vector directed along the current. 
On the other hand the magnetic field directed normally to the current attains the value [14] [16]  

4 2 3 2

orbit 3 3 2 3 3
2 2 2 .

2π π
n

n
e n e

i e e e m mc e m c
cr T cr n e n

= = = =H
� �

                       (26) 

This field differs from that given in (18) solely by the factor equal to 1 π . 
It should be noted that parameter er  entering (26) is the radius of the circular cross-section area of the orbit 

assumed to be equal to the cross-section of the electron microparticle considered as a sphere [15] [17]:  
2

2 .e
er

mc
≅                                         (27) 

The value of the Poynting vector emanating the energy from the orbit is calculated according to the formula 
[14]  

orbit orbit orbit orbit orbit orbit

2 5 3 2 2 2 2 2 8

5 4 3 3 2 2 6 5

4π 4π
1 1 2π 2π

4π π2π 2π

P
n n n n n

c cS S

c m e e m c n e m e
n n me mc n

= × =

= =

S E H E H

�
� � �

                    (28) 

where  
2

orbit 2π 2π 4πn e n eS r r r r= =                                  (29) 

is the toroidal surface of the orbit having the length (24) and the length of the cross-section circumference of the 
orbit is equal to  

2π .er                                           (30) 

In effect we obtain from (23), (26) and (28) the result precisely equal to Formula (13) calculated from the 
Joule-Lenz theory. Since (13) assumed the electron transitions solely between the levels  

1 ,n n+ →                                        (31) 

the identity between (13) and (28) implies that the limitation to transition (31) applies also to the electro- 
magnetic result calculated in (28). 

A problem may arise to what extent the energy rate (13), or (28), can be radiated as an electromagnetic wave. 
An altenative behaviour is that the energy E∆  is spent for a mechanical rearrangement of the electron position 
due to the transition process. An argument for that is the presence of the electric force  

2 6

orbit 5 4
1

2πn
m ee

n
=E

�
                                  (32) 
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along the orbit. The force (32) multiplied by the orbit length calculated in (24) gives  
2 2 2 6 4

orbit 2 5 4 2 3
12π

2πn n
n m e mel e
me n n

= =E �
� �

                          (33) 

which is precisely the energy E∆  of the electron transition obtained in (6). 

4. Quantum and Classical Emission Rate Calculated for the Harmonic Oscillator  
A natural tendency is to compare the quantum rate of the energy emission with the classical emission rate. To 
this purpose the one-dimensional harmonic oscillator has been chosen as a suitable object of examination. 

The classical energy of the oscillator is  
2

osc ,
2

=
kaE                                       (34) 

a is the oscillator amplitude; m is the oscillator mass which together with the force constant k refers to the 
circular frequency of the oscillator  

1 2 2π ;k
m T

ω  = = 
 

                                    (35) 

T is the oscillation period [18]. 
The quantum oscillator energy is  

1
2nE n nω ω = + ≅ 

 
� �                                  (36) 

(the last step holds for large n) and the change of energy due to transition between the levels 1n +  and n is  
.E ω∆ = �                                        (37) 

According to the Joule-Lenz approach to the quanta [6]-[10] the emission rate between the levels 1n +  and 
n is  

( ) ( )2 2

.
EE

t h h
ω∆∆

= =
∆

�
                                 (38) 

This gives  
1 1 ,E h
t h h h T

ω ν ν∆
= = = = =

∆
�                               (39) 

so  
,t T∆ =                                        (40) 

because the reference between ω  and ν  is  
2π .ω ν=                                       (41) 

The potential V connected with the energy change E∆  is  

.EV
e e

ω∆
= =

�                                     (42) 

If we note that a maximal distance travelled by the electron oscillator in one direction is  
2 ,l a=                                        (43) 

the electric field connected with the oscillator parallel to its motion is  

.
2 2

V V
l a ae

ω
= = =E �                                  (44) 

The electric current let be considered as remaining approximately constant in course of the oscillation. In this 
case the magnetic field which is normal to the current [see (26)] is  
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2

2
2 2 2 2 2 ,

e e

i e e mc mc mc
cr Tcr Tc Te ee

ν
= = = = =H                         (45) 

since the cross-section of the electron current is assumed to be identical with the cross-section area of the 
electron microparticle, see (27). 

The surface area of the sample containing the oscillator is  
2

22π 4π 4π ,e e
eS r l r a a

mc
= = =                              (46) 

on condition the contribution of the end areas of the sample surface equal to  
22 2

2
2 22π 2π 4πe

e er a
mc mc

 
=  

 
�                             (47) 

has been neglected because (47) is a small number in comparison with S in (46). 
In consequence, for the vector H  normal to vector E  the value of the Poynting vector becomes  

2

2
2 4π4π .

4π 4π 2 4π
P c c mc e ES a

ae Te T Tmc
ω ω ∆

= = = =S E H � �                  (48) 

This is a result identical with (38) on condition Formula (39) is taken into account. 
According to the classical electrodynamics [19] the emission rate of energy from a classical oscillator is  

44 2 2
2

3 3
d 2 2 2π
d 3 3
E e ap
t Tc c

ω  = =  
 

                           (49) 

since  
p ea=                                       (50) 

is the dipole moment of the classical harmonic oscillator. Formula (49) can be compared with the quantum 
approach to the Joule-Lenz emission rate of energy [see (38)]:  

( )2 2

2
1 .E h h

t h T h T
ω∆  = = = ∆  

�
                            (51) 

In the case of very small quantum systems the amplitude a in (49) can be close to its minimal length [10]  

a
mc

≅
�                                       (52) 

and the time period T can approach its minimal size [10]  

2 .T
mc

≅
�                                      (53) 

The equality required between (49) and (51) leads to the relation  
4 2 2

3 2
2 2π .
3

e a h
T c T

  = 
 

                                (54) 

When a and T are taken respectively from (52) and (53), Formula (54) becomes  

( ) ( ) ( )
2

2
4 4 42 2

2 3 2 3

2

2π 2π 2π2 2 2
3 3 3

e e emc h
cc c c

mc

−

 
 
 ⋅ = = =

 
 
 

�

�
                    (55) 

from which we have the relation  

( )3
2

2 12π 165 .
3

c
e α

≈ = =
�                               (56) 
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The result obtained in (56) differs by only 20 percent from the reciprocal value of the atomic constant equal to 
137. 

5. Ratio of the Classical and Quantum Emission Rate Defined by the Damping  
Coefficient of the Classical Radiation  

An attempt of this Section is to demonstrate that the classical emission can be considered as a damped quantum 
emission rate. The classical damping coefficient of the oscillator is [19]  

2
2

3
2 .
3

e
mc

γ ω=                                      (57) 

On the other hand, the classical emission rate given in (49) can be modified when the amplitude a entering 
(49) is expressed in terms of the oscillator energy E [18]:  

2
2 2

2 2 2 2 .E E n na
k mm m

ω
ωω ω

= = = =
� �                              (58) 

Here, at the end of (58), the energy E is replaced by the approximate quantum formula for the oscillator 
energy given in (36). In effect the classical emission rate in (49) becomes  

2 3
class 4 2 2 4 2

3 3 3
2 2 2 4= .

3 3 3
n ee a e n

m mc c c
ωη ω ω

ω
= =

�
�                        (59) 

Another transformation may concern the quantum emission rate in (51):  

( )

2 2
quant

2 2
2π .

2π2π
E h h
t TT

ωη ∆  = = = = ∆  
�                           (60) 

As a result of (59) and (60) we obtain the ratio  
class 2 3 2 2 2 2

quant 3 3 3
4 8π 2: 4π 4π 2
3 2π 3 3

e e e n nn n nT
m mc c c m

η ω ω ω ω γ γ
ω ωη

= = = = =
�

�               (61) 

which is proportional to γ  in (57). A multiple of the oscillation time period T is the proportionality coefficient 
representing (61) in terms of γ . Therefore another way to write (61) can be  

class quant2 .nTη γη=                                    (62) 

Let us note that nE  entering (36) and (58) is proportional to n. 
It is worth to note that the Einstein coefficient n

nA α−  of the emission probability can be coupled with γ  by 
the relation [20]  

,
n
n n nA h f hα

αν γ ν−
−=                                   (63) 

so  

, .n
n n nA fα

αγ−
−=                                     (64) 

According to Heisenberg [20] [21] we have  

( ) ( ) ( )2
, 12

0

, 1 , 1 , 1
π 8π n n

nh ha n n n n n n f
m m

ν ν
ω −− − = − =                    (65) 

where a is the quantum-theoretical amplitude of the expansion of the coordinate ( )x x t=  of an anharmonic 
oscillator; 0ω  is the circular frequency of the harmonic oscillator. 

For small peturbation λ  of the oscillator we have [21]  
( ) 02π , 1 ,n nω ν ω= − ≈                                 (66) 

so Formula (65) gives  

0
, 12 2 2 2

0 02π 2π 2π 8π n n
nhnh nh h f

m m m m
ωω

ω ω −≅ = =                          (67) 
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or  

, 14 .n nn f −=                                        (68) 

In effect for 1α =  taken in (63) we obtain from (64) and (68):  
1

, 1 4 .n
n n nA f nγ γ−

−= =                                    (69) 

If γ  is presented, according to (61), in terms of the ratio of classη  and quantη , we obtain  
class class

1
quant quant

4 2 ,
2

n
n

nA
nT T

η η
η η

− = =                                (70) 

where T is the oscillation time period of the harmonic oscillator. 

6. Reciprocal Value of the Atomic Constant and the Electron Spin  
The reciprocal value 1α−  of the atomic constant (~137) approached in (56) is important in the treatment of the 
electron spin [10] [22] [23]. We show below that the magnetic field intensity necessary to produce the electron 
spin can be obtained approximately as a result of a coupling of 2α−  with the radius er  of the electron 
microparticle, see (27). 

According to the classical electrodynamics [14] the magnetic field H at a distant r from the center of the linear 
wire carrying a current i is coupled with i and r by the formula  

2 .iH
cr

=                                         (71) 

If the current i is flowing on a surface of the conductor which is the electron orbit, we can assume that er r=  
which is both the radius of the electron microparticle and cross-section of the orbit. The field H becomes in this 
case [14]  

4 2 3 2

3 2 3
2 2 ,

2π πe

e e e m mc e m cH
Tcr c e

= = =
� �

                            (72) 

where the time period T of the electron circulation along the orbit is taken from Formula (7) for 1n = :  
3

1 4
2πT T
e m

= =
�                                     (73) 

The essence of the spin effect is that the path of the spinning electron circumvents the electron orbit about  
2

2
2 2

1 137c
eα

 = ≅ 
 
�                                  (74) 

times during the time period T indicated in (73). In classical electrodynamics this means that the magnetic field 
produced in this way is 2α−  times stronger than that obtained in (72):  

2 2 3 2 2 3

spin 2 4 3
1 .

ππ
c e m c m cH H

eeα
= = =

�
��

                          (75) 

The result in (75) differs solely by the factor of 1
π

 from the magnetic field assumed to produce a spinning  

electron particle in [10] [22] [23]:  
2 3

spin .m cH
e

=
�

                                   (76) 

A discrepancy between (75) and (76) can be ascribed to some uncertainty connected with the calculation of 
the radius er , see [24]. 

7. Conclusions  
The aim of the paper was to get more insight into a non-probabilistic description of the transfer of energy 
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between two quantum levels. A suitable situation for discussion is the case when the levels are neighbouring in 
their mutual position of the energy states. Then the energy change ( E∆ ) between the levels, and the time 
interval t∆  necessary to attain E∆ , satisfy a very simple formula  

;E t h∆ ∆ =                                       (77) 

see [6]-[10]. 
In the paper, Formula (77) finds its counterparts supplied by the electromagnetic theory of emission. Two 

physical objects, namely the hydrogen atom and electron harmonic oscillator, were studied. The case of the 
electron oscillator allowed us to perform a more direct comparison of the quantum approach to the emission rate 
with the classical electromagnetic theory. It occurs that the classical rate is equal to the quantum rate multiplied 
by the Born damping coefficient and an interval of time, see (62). 
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Abstract 
Orthodox quantum mechanics is a highly successful theory despite its serious conceptual flaws. It 
renounces realism, implies a kind of action-at-a-distance and is incompatible with determinism. 
Orthodox quantum mechanics states that Schrödinger’s equation (a deterministic law) governs 
spontaneous processes while measurement processes are ruled by probability laws. It is well es-
tablished that time dependent perturbation theory must be used for solving problems involving 
time. In order to account for spontaneous processes, this last theory makes use of laws valid only 
when measurements are performed. This incoherence seems absent from the literature. 

 
Keywords 
Quantum Measurements—Time Dependent Perturbation Theory 

 
 

1. Introduction 
The first formulation of quantum mechanics is due to P. A. M. Dirac from 1930 [1]. J. von Neumann asserted 
that Dirac’s formalism could scarcely be surpassed in brevity and elegance, but it was deficient in mathematical 
rigor ([2], p. 7). A couple of years later von Neumann published his Mathematische Grundlagen der Quanten-
mechanik [3]. Many other versions of the theory followed these pioneer contributions, most of them motivated 
by the desire to solve the measurement problem. Von Neumann’s formulation continues, however, to be pre-
ferred to other approaches and, at present, it is frequently the only one taught at the academy. It is known as or-
thodox (ordinary or standard) quantum mechanics (OQM), although it is sometime referred to as the Copenha-
gen interpretation. 

OQM refers to individual systems and consists of five axioms, two of them concerning measurements ([2], p. 
5). One is a generalization of Born’s postulate and fixes the possible results of a measurement and their corres-
ponding probabilities. The other is the projection postulate. It determines the final state to which the initial state 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.712132
http://dx.doi.org/10.4236/jmp.2016.712132
http://www.scirp.org
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collapses (is projected, is reduced, jumps) as a result of measurement. 
Since the beginning OQM, and in particular its projection postulate, was the target of merciless criticism. 

Many and very conspicuous scientists denounced what they considered its flaws. For instance, A. Einstein 
pointed out that 

1) There is a conflict between determinism and OQM. He stressed this issue frequently, as evidenced in his 
letters to M. Born of December 12, 1926, and of September 7, 1944 [4].  

2) OQM implies a kind of action-at-a-distance. In 1927, during the Fifth Solvay Congress, he showed that a 
peculiar kind of action-at-a-distance is inherent to the hypothesis that the state vector |ψ〉 completely describes 
the state of an individual system (as established in OQM) ([2], p. 116) [5] [6].  

3) OQM introduces a subjective element into the theory through the projection postulate. This is an unac-
ceptable procedure to account for processes happening in a world which objectively exists. Einstein insisted on 
this point repeatedly. For instance, referring to Maxwell’s influence on the evolution of the idea of physical real-
ity he asserted: “The belief in an external world independent of the perceiving subject is the basis of all natural 
science” [7]. 

In addition to these issues, OQM presents a conflict with conservation laws which has been largely ignored. 
We dealt with this subject some years ago and concluded that in the framework of OQM conservation laws are 
strictly valid in spontaneous processes (in fact they are theorems which can be derived from the axioms) but 
have only a statistical sense in measurement processes [8]-[12]. 

Another source of problems is that OQM imposes two laws of change of the state vector |ψ〉 [13]. Since it 
seems there is no way to reduce to one another, it would be desirable for OQM to unambiguously determine the 
precise conditions under which each of these laws would apply. Unfortunately this is not the case. J. S. Bell 
complains: “during ‘measurement’ the linear Schrödinger evolution is suspended and an ill-defined ‘wave- 
function collapse’ takes over. There is nothing in the mathematics to tell what is ‘system’ and what is ‘appara-
tus’, nothing to tell which natural processes have the special status of ‘measurements’. Discretion and good 
taste, born from experience, allows us to use quantum theory with marvelous success, despite the ambiguity of 
the concepts named above in quotation marks. But it seems clear that in a serious fundamental formulation such 
concepts must be excluded” ([14], p. 160). 

The absence of a rule to determine which law must be applied is the worst flaw that OQM confronts [12] [15]. 

2. Orthodox Quantum Mechanics: A Very Successful Theory  
Quoting M. Jammer [2], M. Bunge says that “there can be no doubt that quantum theory is a good approxima-
tion to the truth-which is not to say that it is perfect. Thousands upon thousands of observations and experiments 
have confirmed its predictions in an amazing range of fields, from particle and atomic physics to solid state 
physics and astrophysics, usually with an astounding accuracy” ([16], p. 167). While J. S. Bell emphatically as-
serts: “ORDINARY QUANTUM MECHANICS (as far as I know) IS JUST FINE FOR ALL PRACTICAL 
PURPOSES” (capital letters in the original) [17]. 

M. Tegmar and J. A. Wheeler detail: “The Copenhagen interpretation [in the present paper named OQM] 
provided a strikingly successful recipe for doing calculations that accurately described the outcomes of experi-
ments, but the suspicion lingered that some equation ought to describe when and how this collapse occurred. 
Many physicists took this lack of an equation to mean that something was intrinsically wrong with quantum 
mechanics and that it would soon be replaced by a more fundamental theory that would provide such an equa-
tion. So rather than dwell on ontological implications of the equations, most physicists forged ahead to work out 
their many exciting applications…” [18]. 

They continue: “This pragmatic approach proved stunningly successful. Quantum mechanics was instrumen-
tal in predicting antimatter, understanding radioactivity (leading to nuclear power), accounting for the behavior 
of materials such as semiconductors, explaining superconductivity and describing interactions such as those be-
tween light and matter (leading to the invention of the laser) and of radio waves and nuclei (leading to magnetic 
resonance imaging). Many successes of quantum mechanics involve its extension, quantum field theory, which 
forms the foundations of elementary particle physics…” [18]. 

At this point we should perhaps listen to R. P. Feynman declaring: “I can safely say that nobody understands 
quantum mechanics” [19]. So, even if everybody recognizes that quantum mechanics is fine for all practical 
purposes, nobody understands it. What strange a situation! 
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The majority of processes involved in the phenomena mentioned by Tegmar and Wheeler are not measure-
ment but spontaneous processes. On the one hand, OQM ensures that the Schrödinger equation gives an account 
for them. On the other hand, most of these processes depend on time. According to Dirac, their analyses require 
the application of the method provided by time dependent perturbation theory (TDPT). In his words, “[this] me-
thod must… be used for solving all problems involving a consideration of time… or more generally problems in 
which the perturbation varies with the time in any way…” ([1], p. 168; emphases added). A similar idea is ex-
pressed by W. Heitler in his study of radiation problems ([20], p. 137-138). 

In the next section we shall see that TDPT involves not only the Schrödinger equation (a deterministic law 
governing spontaneous processes) but also laws which are valid only when measurements are performed.  

3. A Critical Review of Time Dependent Perturbation Theory  
In the following we sketch the essential features of TDPT. For more details see for instance: D. R. Bes ([21], 
Chapter IX); C. Cohen-Tannoudji et al. ([22], Chapter XIII); P. A. M. Dirac ([1], Chapter VII); W. Heitler ([20], 
Chapter IV); E. Merzbacher ([23], Chapter XIX); and/or A. Messiah ([24], Chapitre XVII). Note: Symbols used 
by these authors may have been changed for homogeneity.  

The aim of TDPT is to calculate the transition probability between stationary states (i.e. eigenstates of a Ha-
miltonian E which does not depend explicitly on time) induced by a time dependent perturbation W(t). The 
theory deals with processes having two clearly different stages. The first governed by the Schrödinger equation. 
The second ruled by probability laws. According to OQM formalism, Schrödinger equation governs spontane-
ous processes; Born’s postulate and/or the projection postulate apply only when measurements are performed. 
The fact that TDPT requires the application of postulates concerning measurements to give an account for 
processes supposedly spontaneous is at the very heart of OQM incoherence.  

Let us work out separately the two stages mentioned. We start with a physical system with Hamiltonian E, 
called the non-perturbed Hamiltonian. Its eigenvalue equations are  

n n nEϕ ϕ=E                                     (1) 

where En ( 1, 2, ,n N= � ) are the eigenvalues of E and |ϕn〉 the corresponding eigenvectors. For the sake of sim-
plicity we shall consider E spectrum to be entirely discrete and non-degenerate. All the En and |ϕn〉 are supposed 
to be known. 

First stage: Let |ψ(t)〉 be the system’s state at time t. We assume that at the initial time t = 0, the system is in 
the stationary state |ϕi〉, which is the eigenvector of the non-perturbed Hamiltonian E corresponding to the ei-
genvalue Ei. At this instant the time dependent perturbation W(t) is applied. So for t ≥ 0 the total, perturbed Ha-
miltonian is 

( ) ( )t t= +H E W                                      (2) 

As long as no measurements are performed, the process is spontaneous and ruled by the Schrödinger equation 

( ) ( ) ( )d di t t t tψ ψ=� H                                 (3) 

where ħ is Planck’s constant divided by 2π and i is the imaginary unity. The solution |ψ(t)〉 of this equation 
which corresponds to the initial condition |ψ(0)〉 = |ϕi〉 is unique. This means that |ψ(t)〉 is completely determined 
by the initial state |ψ(0)〉 and the total Hamiltonian H(t), which includes the perturbation W(t). The state |ψ(t)〉 
can be written  

( ) ( ) ( ) ( ), 0 0 ,0 it t tψ ψ ϕ= =H HU U                            (4) 

where ( ), 0tHU  is the evolution operator corresponding to the total Hamiltonian H(t) which acts during the 
time interval 0 → t. To stress that |ψ(t)〉 depends on the initial state |ϕi〉 and on the total Hamiltonian H(t), or if 
preferred on the perturbation W(t), we write  

( ) ( ) ( ), , 0i it t tψ ψ ϕ≡ =H HU                               (5) 

Second stage: At tf the system’s state is ( ),i ftψ H . Then, it is said, the probability the system has to be 
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found in the state |ϕf〉 is ( )
2

,f i ftϕ ψ H .  

We sum up: In the first stage the system, initially in the stationary state ( )0 iψ ϕ= , follows a Schrödinger 
evolution which leads it to the state ( ) ( ), , 0i f f it tψ ϕ=H HU ; note that, in general, the state ( ),i ftψ H  does 
not coincide with any stationary state |ϕn〉 ( 1, 2, ,n N= � ). In the second stage the system jumps from 

( ),i ftψ H  to one of the stationary states |ϕn〉. The whole process leads the system from the stationary state |ϕi〉 
to the stationary |ϕf〉 (in particular it can result |ϕf〉 = |ϕi〉). 

The evolution during the first stage is an automatic change; at time tf the system state cannot be different from 
( ) ( ), , 0i f f it tψ ϕ=H HU . By contrast, the jump from ( ),i ftψ H  to one of the stationary states |ϕn〉 is ruled 

by probability laws. The associated probability ( )if ftP  is by definition the transition probability between the 
initial stationary state |ϕi〉 and the final stationary state |ϕf〉 induced by the perturbation W(t) during the time in-
terval 0 → tf and has the expression  

( ) ( ) ( )
2 2

, , 0if f f i f f f it t tϕ ψ ϕ ϕ= =H HP U                          (6) 

In the following diagram we show the complete process leading the system from the initial |ϕi〉 to one of the 
possible final states |ϕf〉. 

 
TDPT Processes 

( )0 iψ ϕ=  ————————————————> ( ) ( ), , 0i f f it tψ ϕ=H HU  ——> fϕ  

First stage 
Schrödinger equation is valid 
during the time interval 0 → tf 

Second stage 
At time tf the state |ψ(tf)〉 jumps to |ϕf〉  

= |ϕ1〉, or |ϕ2〉, � , or |ϕN〉 

 
Everything happens as if at time tf a measurement of the non-perturbed energy, represented by the operator E, 

has been performed. According to Born’s postulate the possible results are the eigenvalues En ( 1, 2, ,n N= � )  

with probabilities given by ( )
2

,f i ftϕ ψ H . If the measurement yields the result Ef, the projection postulate  

ensures that the system jumps from the state ( ),i ftψ H  to the eigenstate |ϕf〉. 

Messiah expresses this idea in the following terms: “Supposons qu’à l’instant initial t = 0 le système se trouve 
dans l’un des états propres de E, l’état |ϕi〉 par exemple. Nous nous proposons de calculer la probabilité de le 
trouver à l’instant tf dans un autre état propre de E, l’état |ϕf〉 par exemple, dans l’éventualité d’une mesure à cet 
instant. Soit ( )if ftP  cette quantité, c’est par définition la probabilité de transition de |ϕi〉 en |ϕf〉” ([24], p. 621; 
emphases added).  

Assuming that the initial state is |ψ(0)〉 = |ϕi〉, Dirac asserts:“If there were no perturbation, i.e. if the Hamilto-
nian were E, [the state |ψ(t)〉] would be stationary. The perturbation causes the state to change” ([1], p.  
172). Supposing the deterministic law valid, the state ( ) ( ), , 0i f f it tψ ϕ=H HU  results ([1], p. 109). Then,  

he says: “ ( )if ftP  is the probability of a transition taking place from state |ϕi〉 to state |ϕf〉 during the time in-
terval 0 → tf…” ([1], p. 172). Even though Dirac does not mention measurements, it is quite clear that he applies 
here a law valid only when measurements are performed.  

Other authors proceed in a similar way. When introducing TDPT they do not mention measurements. Instead 
they make assertions such as: “Our objective is to calculate transition amplitudes between the relevant unper-
turbed eigenstates, owing to the presence of the perturbation…” ([23], p. 483); or “We want to study the transi-
tions which can be induced by the perturbation…” ([22], p. 1285); or “The transition probability between the in-
itial state |ϕi〉 and the final state |ϕf〉 is induced by the perturbation…” ([21], p. 142); etc.  

There is a difference between Messiah’s and other authors’ statement of the problem worth mentioning. Ac-
cording to Messiah transitions to particular outcomes (either |ϕ1〉, or |ϕ2〉, �  or |ϕN〉) are the result of a mea-
surement of the unperturbed Hamiltonian E. Other authors suggest that these transitions are not the result of a 
measurement of E, but of a perturbation of E. A perturbation of E is completely different from a measurement 
of E. When the perturbation W(t) is applied, the Hamiltonian changes from E to E + W(t), but the Schrödinger 
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evolution is not suspended. By contrast, a measurement does suspend the Schrödinger evolution. 
Paraphrasing Bell, even if nothing has been measured, discretion and good taste allow us to assume that a 

(virtual?) measurement of the physical quantity represented by the non-perturbed Hamiltonian E is performed at 
time tf. “There is a long tradition of using the textbooks postulate of wave-function collapse as a pragmatic ‘shut 
up and calculate’ recipe” [18]. We have just shown how it works!  

4. Conclusions 
OQM marvelous success in the area of experimental predictions is mostly based on TDPT. It is agreed that the 
method provided by this last theory must be used for solving all problems involving a consideration of time, in-
cluding spontaneous time dependent processes. This is, for instance, the case of absorption and emission of light 
and of processes occurring in semiconductors. To give an account for such spontaneous processes, however, 
TDPT requires the application of a law which is not valid in spontaneous processes. This is a flagrant incohe-
rence we have not noticed in the literature. 

Quantum weirdness has been traditionally associated with the measurement problem. To solve it, different 
authors have suggested several strategies. Among them are Statistical interpretation of quantum mechanics [25], 
Many worlds interpretation [26], Decoherence [18] and Continuous spontaneous localization theory [27]. We 
have addressed these and other proposed solutions of the measurement problem in previous papers [6] [9] [12]. 
Even if valuable, these contributions do not solve the measurement problem, let alone OQM incoherence 
pointed out in the present study. 

We maintain that OQM weirdness is not limited to the measurement problem. It is much more serious and 
justifies a radical revision of the theory. 
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Abstract 
In a preceding publication a fundamentally oriented and irreversible world was shown to be de-
rivable from the important principle of least action. A consequence of such a paradigm change is 
avoidance of paradoxes within a “dynamic” quantum physics. This becomes essentially possible 
because fundamental irreversibility allows consideration of the “entropy” concept in elementary 
processes. For this reason, and for a compensation of entropy in the spread out energy of the wave, 
the duality of particle and wave has to be mediated via an information self-image of matter. In this 
publication considerations are extended to irreversible thermodynamics, to gravitation and cos-
mology with its dependence on quantum interpretations. The information self-image of matter 
around particles could be identified with gravitation. Because information can also impose an al-
ways constant light velocity there is no need any more to attribute such a property to empty space, 
as done in relativity theory. In addition, the possibility is recognized to consider entropy genera-
tion by expanding photon fields in the universe. Via a continuous activation of information on 
matter photons can generate entropy and release small energy packages without interacting with 
matter. This facilitates a new interpretation of galactic redshift, emphasizes an information link 
between quantum- and cosmological phenomena, and evidences an information-triggered origin 
of the universe. Self-organized processes approach maximum entropy production within their 
constraints. In a far from equilibrium world also information, with its energy content, can self- 
organize to a higher hierarchy of computation. It is here identified with consciousness. This ap-
pears to explain evolution of spirit and intelligence on a materialistic basis. Also gravitation, here 
identified as information on matter, could, under special conditions, self-organize to act as a su-
per-gravitation, offering an alternative to dark matter. Time is not an illusion, but has to be un-
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derstood as flux of action, which is the ultimate reality of change. The concept of an irreversible 
physical world opens a route towards a rational understanding of complex contexts in nature. 

 
Keywords 
Fundamental Irreversibility, Gravitation as Information, Redshift as Entropy Phenomenon, 
Constancy of Light Velocity, Time, Information Driven Universe 

 
 

1. Introduction 
Conventional physics is based on time invertible natural laws. A recent re-examination of the important and 
much applied principle of least action however led to the conclusion that the world is fundamentally oriented 
and irreversible [1]: 

“Free energy aims at decreasing its presence per state, within the constraints of the system concerned”   (1) 
Action, energy times time, is thereby produced and minimized. This is the relevant phenomenon linked to the 

passage of time. Entropy generation is a fundamental, rate controlling process and has also to be considered in 
elementary mechanisms. One consequence is that the particle-wave duality had to be formulated differently. 
Particle (energy Ep) and wave are not equivalent, but the energy in the distributed wave (Ew) is less valuable, 
because it is highly diluted. Its energy has inferior working ability and is partially present in form of entropy, as 
non-useful energy (Ee). As a consequence, when a particle is converted into a wave, information (energy En) has 
to be simultaneously provided for the back conversion of the wave into the particle [1]: 

p w e n
w

h E E E Eν = ↔ + +∑                              (2) 

The particle-wave duality thus becomes a dynamic process, which involves information on matter (symboli-
cally depicted in the center of Figure 1, where arrows indicate energy in form of entropy and the dot pattern 
energy in form of information on matter, besides of energy in form of the wave). 

It could be shown that this concept gives rational explanations for quantization, the double slit experiment, 
and for quantum correlation. Quantization of electron orbits around a nucleus arises because the energy for in-
formation also minimizes and selects the simplest patterns (schematically shown in Figure 1, bottom left)). The 
recognition of a second slit by a particle proceeding through the first slit works, because the particle dynamically 
changes into the wave and the information on matter brings this information back to the particle after the slits. 
Quantum correlation can simply be understood as a consequence of splitting up the information self-image of 
matter, when particles split up. When information is present, which remains relevant for both separating par-
ticles (e.g. conservation of spin), this information cannot split up and remains linking the two separating par-
ticles (schematically shown in Figure 1, top left). 

Since information on matter (dot pattern in Figure 1 center) has an energy content and should always be 
around elementary particles with the program to decrease energy per state, it must be detectable and measurable. 
It could be identified with the phenomenon of gravitation. Obviously this would then be the link between ele-
mentary processes and cosmology (indicated in Figure 1, top). Since a fundamentally oriented and irreversible 
world, with energy tending to decrease its presence per state, also explains the second law of thermodynamics, 
this is sufficient motivation to explore additional important phenomena in physics. Here the role of entropy for 
radiation, the law governing self-organization processes, the meaning of time, of gravitation, the interpretation 
of relativity, and cosmological phenomena will be considered in the light of the proposed paradigm change. 

2. Results 
2.1. Entropy in Quantum Processes and Cosmology 
The new proposed particle wave duality (Figure 1, center) involves a fundamental consideration of the entropy 
concept due to spreading of energy into space. This is a nano-scale concession for what is macroscopically 
known as entropy and dealt with in thermodynamics. Traditional quantum physics has a long history of conflict  
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Figure 1. The particle-wave duality in “dynamic” quantum physics (shown in center) considers a fundamen-
tal generation of entropy due to spreading energy into space, but needs information on matter (dot pattern in 
center) to recover the particle. This information self-image of matter is found to be gravitation and to be the 
key for rationally understanding quantum physics, the always constant light velocity, the link to cosmology 
and diverse additional natural phenomena. 

 
with thermodynamic interpretations. This was not yet the case at the start of quantum physics. Einstein, for ex-
ample, used Wien’s considerations and his law to argue that the entropy change ΔS of a radiation field, when its 
volume is expanded (Figure 2(b)), acts like known for an ideal gas with E/hv as particle number n [2]. The for-
mula he dealt with reads (E = radiation energy, ν = frequency, β = constant, V0 = original volume, V = expanded 
volume): 

log
o

E VS
Vβν

∆ =                                       (3) 

as compared to the well known formula for entropy generation by an expanding ideal gas (n = mole number, R = 
gas constant): 
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(a) 

 
(b) 

Figure 2. (a) By stating a dualism of particle and wave (energy concentrated 
and distributed respectively) classical quantum physics has eliminated the re-
levance of space for energy (compare the proposed new interpretation in Fig-
ure 1 centre); (b) From classical physics it is however known that when radia-
tion expands from a hot black body, less valuable energy in the form of en-
tropy is generated. A shift of frequency and radiation temperature is the con-
sequence (b). 

 

ln 2,302 log
o o

V VS nR nR
V V

∆ = =                              (4) 

The formulas show, that, when radiation or a gas is spreading into an infinite volume, the entropy gain also 
tends towards infinity. This means that all energy involved in a radiation field (or a compressed gas) should fi-
nally be dissipated and converted into non useful, small, chaotic energy quantities of TΔS. Einstein wrote: “this 
Equation (3) shows, that the entropy of monochromatic radiation of sufficiently low density varies according to 
the same law as the entropy of an ideal gas (Equation (4)) or that a diluted solution”. 

It is well known that Einstein was awarded the Nobel prize for this finding on the particle nature of photons 
and its application to electron emission from solids. It is a remarkable science philosophical circumstance that he 
used an irreversible phenomenon of spreading radiation, entropy generation, to establish a quantum property 
(later called photon) which then turned out not to tolerate irreversibility and entropy production during its exis-
tence. Indeed, in conventional quantum mechanics photons, once emitted into space and spreading cannot gen-
erate entropy along their long way by changing frequency and radiation temperature, until they finally interact 
with matter. During this latter process photon energy is still fully available, as immediately after generation of 
the photon. In contrast, relation (3) requires, that radiation spreading into space gradually converts its energy in-
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to “chaotic”, non useful energy in the form of entropy, radiation of much lower frequency. 
An energy loss, observed as a redshift of frequency, is actually observed when photons from characteristic 

light emission (e.g. from hydrogen) are arriving from deep space. Since a photon without impact can quantum 
mechanically not lose energy this phenomenon is actually not attributed to entropy turnover, but to a claimed 
cosmological expansion of free space itself. This (invented) expansion of empty space, as an alternative to not 
considered and quantum mechanically not tolerated entropy generation by single photons, is expected to stretch 
the wavelength and is matched to explain the observed redshift. 

Here it is stated that fundamental irreversibility requires that photons lose energy during the process of 
spreading into space. A mechanism must consequently exist, that allows that. 

The fundamental irreversibility of radiation processes became already established during a discussion be-
tween Planck and Boltzmann from 1897 [3]. The involved thermodynamics of radiation has since been inten-
sively assessed (for a review see e.g. [4]). 

For an adiabatic expansion of radiation the following relation is known to be applicable (ν = frequency, V = 
volume): 

ν3V = constant                                     (5) 
The frequency of radiation is changing with the volume (a property finally not tolerated for photons in free 

space by quantum theory). Using Wien’s law which states how the frequency ν in the maximum of black body 
radiation is changing with temperature (T/ν = constant) one obtains the complementary relation 

VT3 = constant                                    (6) 
Expansion of radiation into space thus changes radiation temperature (6) and radiation frequency (5). Relation 

(5) has actually been used to interpret the origin of the 2.72˚K microwave background radiation from space as a 
relic of Big Bang explosion, when the universe was assumed to be much smaller. But radiation itself was not 
understood to expand adiabatically in a given static space to produce entropy (for which the formula was origi-
nally calculated), changing radiation’s temperature and frequency, and giving rise to microwave radiation as en-
tropy product. In contrast empty space itself was assumed to expand to a large volume, respecting adiabatic 
conditions, and stretching the wavelength of photons to microwave dimensions [5]. 

In order to respect quantum theory, which does not allow a photon to generate entropy without collision with 
matter, and which claims to be complete and not improvable, entropy phenomena are obviously ignored. The 
observed or expected frequency shift is presently explained via a new and daring theory: that of an exploding 
universe, which stretches and expands its void [6]. How can a void, originally defined to contain nothing, de-
velop such properties, and where does the abandoned photon energy go? 

The problem with conventional quantum theory is fundamental. It cannot deal properly with the role of space 
for energy and especially with radiation energy spreading out in space (Figure 2(b)). A photon in an expanding 
radiation field around a light emitting star cannot engage in energy loss through entropy generation. 

After emission it simply maintains its energy and can only change it when interacting with matter or with gra-
vitation fields. This already should have indicated that conventional quantum theory is not complete. Such a 
conclusion is however, as well known, severely contradicted by quantum physicists [7] [8]. The author is con-
vinced that a theory can never be proved to be correct and complete within one and the same system (such as a 
time-invertible world) (compare the considerations of the mathematician Kurt Gödel [9]). For a discussion of 
this claim of completeness of quantum theory from a hierarchy above, the choice between a time-invertible and 
a fundamentally oriented “dynamic” world, compare [10]. 

The claim, that quantum physics cannot be improved or extended, has thus crucially shaped the present un-
derstanding of cosmological processes. In actual cosmology the increasing redshift of starlight from increasingly 
distant stars is now mostly attributed to the postulated expansion of empty space (and to a smaller extent to the 
Doppler effect). Doing this astrophysicists essentially ignore entropy generation as described by relation (3). 
This relation requires that entropy generation by radiation fields expanding into a vast universe exists and is not 
limited by distance and only restricted by the final turnover and consumption of the available radiation energy. 
The consequences for the interpretation of the universe are, of course, dramatically different for the two ap-
proaches. 

Let us use macroscopic, empirical thermodynamics as an approximation to understand photons in a funda-
mentally irreversible universe. We look at the energy TΔS turned over in entropy related processes for individual 
photons by multiplying relations (3) and (4) with the temperature T and substituting R for k, the Boltzmann con-
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stant, in (4). Then kT is the appropriate scaling factor for energy which is relevant for entropy formation. For a 
typical temperature in space of 2.72˚K it can be calculated to amount to 0.240 × 10−3 eV. This is microwave 
radiation. When one takes the maximum from the microwave background radiation in space one determines a 
microwave energy of 0.6 × 10−3 eV. A first conclusion is that in an irreversible universe the actually observed 
background radiation is simply entropy dumped by spreading radiation (what relation (3) requires). A black 
body distribution of this radiation is actually to be expected when thermodynamic mechanisms of entropy gen-
eration are involved. And entropy generation by starlight over billions of years should actually make microwave 
radiation the dominant radiation in space [11]. 

In astrophysics the ratio between the frequency of emitted and observed light is described via z, a dimension-
less constant. For the microwave background radiation a z-value of z = 1089 has been determined. This means 
that the change in frequency (energy) from the original photon is 1089 times bigger than the energy of the mi-
crowave photon. The highest confirmed redshift of a very distant galaxy appears to be z = 8.55. This means that 
the arriving photon has only conserved 11.6% of its original energy. This is entirely consistent with a thermo-
dynamic interpretation of an expanding radiation field. Radiation is emitted and generating entropy according to 
relation (3). A frequency shift is occurring (relation (5)). But since very far galaxies are still visible only part of 
their radiation energy has been converted into microwave radiation in form of entropy. Or alternatively: they are 
still visible, but red-shifted, because not all visible radiation has been converted for entropy. 

However in the present picture of an increasingly expanding universe the concerned galaxy is seen to flee at 
an extremely high speed. There already seems to be a serious problem with transgression of the speed of light, 
especially when considering galaxies at opposite ends of an exploding universe. However the well known (but 
not easily comprehensible) explanation of present cosmological physics is that this is not the case since the 
empty space itself is being stretched and expanding so fast so that the galaxies are just (passively) moved that 
way. 

The here discussed “dynamic” quantum physics derived for a fundamentally oriented world can consider 
energy turnover for entropy production, when radiation is expanding into space. This is possible for two reasons. 
First because “a system tends to decrease its energy per state”, a conclusion drawn from the principle of least ac-
tion (statement (1)). And second it is possible, because the information self-image of matter is continuously me-
diating the interchange between the particle and the wave (En in relation (2)). Thereby it already considers the 
entropy of the expanded energy of the wave and may also consider the entropy requirements of a photon in an 
expanding radiation field. 

The photon is consistently reassembled from the wave state and thermodynamic law may be imposed via in-
formation, which could then release not any more available, entropic energy in form of low energy radiation. 
This is graphically shown in Figure 1, center, where the equivalence between particle and wave within “dy-
namic” quantum physics is explained. Information on matter is mediating between a wave plus the entropy in-
volved in spreading energy out into space. This information on matter could be programed in such a way as to 
consider thermodynamic law, which demands that the radiation itself, when spreading into space, generates en-
tropy. How could this happen? How could distribution into space be monitored by a photon? It could happen via 
gravitation, because information on matter, as involved in the dynamic particle-wave duality, can be identified 
with gravitation (see Figure 1, center and top, and later in more detail) and because this gravitation is equally a 
determining cosmological factor. 

In “dynamic” quantum processes photons can consequently lose energy via generation of entropy. They are 
behaving as required by thermodynamics and expressed by relation (3), which Einstein used to argue for the ex-
istence of photons [2]. This way, in principle, Einstein also pointed at an irreversible nature of photons. The 
emitted, not any more useful energy for entropy is, as above estimated, very low (lower approximately by a fac-
tor of 1089). Because of the fundamentally claimed minimization of free energy content for the photon (1), be-
cause of the small amount of energy for entropy turned over, and because of conservation of momentum, an (en-
tropic) energy release without change of photon direction is to be expected. This way the here proposed ther-
modynamic process of entropy generation has nothing to do with the already long ago rejected idea on “tired” 
light, caused by hypothetic collisions of photons with dust in space [12] [13]. No blurring of starlight would be 
seen and the light particles from the outmost detected galaxies would already have lost 88,4% of their energy for 
entropy production, for the liberation of low-energy microwave quanta. This is compatible with thermodynamic 
law for entropy production of spreading radiation (3) which allows in principle all radiation energy finally con-
verted into non useful, chaotic energy, TΔS, if the space covered by spreading radiation approaches very large 
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values (since the logarithm in (3) tends to infinity). 
The irreversibility of expanding radiation is here a very important argument. It should therefore also be de-

rived from additional evidence. It is well known that from an expanding gas energy can be recovered via a pis-
ton in a gas motor. The same can be imagined to occur with an expanding radiation field, if energy is harvested 
via a sun sail (Figure 3). This also characterizes the expansion of light into empty space as an irreversible, en-
tropy producing process. Part of the energy of expanding photons (the energy which could have been harvested 
by the solar sail) is not any more available. 

The information on matter, dealing with the dynamic particle-wave duality (En in (2)) considers and deals 
with the entropy production due to the expanded wave. And it could also consider entropy generation due to 
radiation expansion from a star or a galaxy. A key for this is the identity of gravitation, information on matter, 
on quantum level and cosmological level. An interaction of a photon’s information on matter (identified with 
gravitation) with gravitation in space towards implementing a fundamental empirically confirmed law is to be 
expected. The increasing redshift of starlight from increasingly distant light sources in space may thus be consi-
dered to be essentially the result of entropy loss and the microwave background is simply the expected entropy 
dump. Unexplained redshift patterns, such as different redshifts from quasars within galaxies, or periodical red-
shifts, have now to be considered to be essentially a problem of information handling in nature. In this context 
also the question, whether light from individual galactic objects is beamed in certain directions or evenly distri-
buted will have to be considered (it affects V in relation (5) and may explain why light sources in similar posi-
tion show different redshifts). Significant research efforts will, of course, be needed to learn much more about 
this natural information technology. In conclusion: before speaking about an exploding universe, an inflating 
space by stretching the void, and a dramatic flight movement of galaxies, entropy loss by spreading photons has 
to be understood and considered. 

Basing on such conclusions we should interpret Hubble’s empirical law accordingly and differently. Mathe-
matically, this law describes the supposed increase of the escape velocity of galaxies (in kilometers per second) 
with respect to our earth and is presently the key for describing the dynamics of the universe including the 
so-called dark energy. It describes the galaxy velocity v via the Hubble constant Ho times the distance D of the 
galaxy from earth in light years (Ho expressed in kilometers per second per megaparsec, which is 3.26 million 
light years. Its value is estimated to be between 50 and 100, mostly at 70): 

Galaxy velocity: ν = HoD                                  (7) 
 

 
Figure 3. When starlight spreads into empty space, entropy is generated. A solar sail accele-
rated by starlight could harvest part of this spread-out energy. But when this energy is not 
harvested, it is converted into a non-useful, “entropic” form. “Dynamic” quantum physics al-
lows interpretation of entropy generation as red-shift, conventional quantum physics adopts an 
inflation process of empty space as alternative explanation. 
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This empirical formula can, just by mathematical transformation, be converted into a formula expressing the 
new interpretation of the redshift. If we divide the formula left and right by a distance (kilometers), which is 
mathematically allowed, we arrive at a statement on the frequency ν (1 divided by seconds) of light from galax-
ies in dependence on their distance from earth D. This way the formula is still valid but allows an entirely dif-
ferent interpretation. The new proportionality factor should now be named Fo and has the dimension of fre-
quency shift per mega-parsec (3.26 million light years): 

Photon frequency: ν = FoD                                (8) 
The energy contained in a photon is proportional to the frequency ν and a frequency shift per distance (in 

mega-parsec) consequently reflects energy loss via entropy turnover ΔS. The proportionality factor would be re-
lated to the entropy turnover: Fo ≈ ΔS. This means that the frequency shift of light from galaxies changes with 
their distance D from earth and is dependent on the rate of photon energy loss Fo via entropy production. 

The latter, entropy production, is not a constant but would be expected to change logarithmically with the 
distance from the light source and would also be affected by the geometry of light spreading. This simple 
adapted formula explains, without assuming an inflation of space, why our earth appears to be the center of 
space. In fact it is of course not the center, but we are seeing from all directions incoming light, which has lost 
valuable energy on the long journey from galaxies in space for entropy production. We are seeing entropic 
energy loss corresponding to the distance covered. And we understand why the microwave background radiation 
is quantitatively the most important radiation source in the universe. It accumulated over billions of years (in 
contrast to being considered a short snapshot of Big Bangs optical echo). 

2.2. Are Uncertainty and Zero Point Energy Fundamental? 
There is an important quantum phenomenon, which has changed the present way of recognizing and under-
standing nature, since it is now accepted as fundamental. It is described by the uncertainty relation, which was 
first proposed by Werner Heisenberg. It cannot directly be derived from fundamental principles but results from 
the empirically grown considerations on quantum physics. The uncertainty relation states that position and mo-
mentum as well as energy and time of a quantum object cannot be measured exactly, but only with an uncer-
tainty, which is proportional to Planck’s constant of action (h). Concerning the energy-time uncertainty an inter-
pretation is that when the time interval is too short, energy cannot exactly be determined. For a measurement of 
frequency (energy) several cycles have to pass. The average energy of an outgoing photon shows a certain dis-
tribution, a line width. Fast decaying states have a broad line width, slow decaying states have a sharp line width. 
Since energy and mass is related, the mass of the photon is accordingly more or less accurately defined. Why 
can the mass (energy) of a photon, Ep, vary? 

It turned out that the uncertainty is not merely a simple observer effect, but a fundamental property of quan-
tum systems. Uncertainty became a mysterious basis of quantum theory, which thus adopted an element of un-
predictability. Not the reality of particles is described in quantum mechanics, but our statistical observation and 
measurement of these particles. It is known that Einstein was not amused by such a perspective and is known to 
have commented: “God does not play dice”. But the uncertainty relation has influenced our present view of the 
universe: The zero point energy and the possibility that energy and particles are popping out from nothing are 
consequences drawn from the uncertainty principle. Such concepts have been applied to Big Bang scenarios and 
to Black Hole interpretations. 

How can a game with dice be understood within the “dynamic” quantum understanding? Does this empirical-
ly deduced quantum phenomenon really mean a departure from causality and rationality? Let us start with the 
“dynamic” interpretation of the particle-wave duality from (2) and find out whether we can rearrange the rela-
tion to understand uncertainty. One can bring the time from the frequency ν = 1/t to the right side and multiply 
the result with the particle energy Ep in the numerator and denominator to get a relation with the formal structure 
of the energy-time uncertainty: 
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E = Ep, the total energy of a photon, multiplied by t, the time of its existence in a given state, is proportional to 
h, the Planck constant of action. What is interesting now is the proportionality constant, which shows up on the 



H. Tributsch 
 

 
1463 

right side of Equation (9). It is the ratio between the energy of the particle and the energy of the wave (made up 
here of distributed energy, entropic energy, energy of information). Considering the dynamic nature of the par-
ticle-wave duality in a fundamentally oriented world this is not really a constant equally to one. The magnitude 
of the proportionality constant will simply vary and depend on whether, during the instance of measurement, the 
energy is more present in the particle or in the wave. This suggests that the uncertainty is related to the interme-
diate presence of energy in form of a wave (which also conventional quantum theory assumes) and more specif-
ically, in the form of information on matter for the reconstruction of the particle from the wave. It may be that, 
depending on the snapshot of inter-conversion between particle and wave captured during the measurement act 
and related to the presence of information, fluctuating and partial particle properties are reconstructed from a 
wave. Here, the information self-image of the particle (En) enters and plays an important role. Under given con-
ditions of measurement only part of the photon mass may be reconstructed. Ep in relation (9) is simply affected 
by the ratio between wave and particle state. An uncertainty is to be expected. But there is no reason at all to as-
sume a fundamental origin of uncertainty and unpredictability. There is a complex mechanism involved, which 
is determining quantum phenomena. The origin of uncertainty is here entirely understandable. It is linked to the 
structure of the dynamic particle-wave duality. The proposed process of inter-conversion between particle and 
wave is responsible for a statistically determined reconstruction of the particle’s properties. It is true that a de-
tailed theory for our interpretation of the particle-wave dualism still has to be developed. A deterministic statis-
tical chaotic mechanism as a reason for the observed uncertainty is to be expected, since matter in an irreversible 
world is interpreted as self-organized energy (see below and [10]). Self-organized energy and matter can be 
subject to deterministic chaos, especially when given structures are decaying or being transformed. And, which 
is most important, deterministic chaotic statistics cannot, when experimentally observed, be distinguished from 
arbitrary statistics [14]. 

Within a “dynamic” quantum physics there is consequently no reason to assume a deviation from causality 
and determinism. The uncertainty phenomenon is merely shaped by a complex natural process including infor-
mation turnover. With its complexity it is veiling a logical physics behind. 

It is well known that the uncertainty relation predicted that a zero-point energy remains when all other energy 
is removed from the system. An absurdly large amount of such zero-point energy should consequently be avail-
able all over the universe. 

The particle-wave duality introduced for a time-oriented physics (2) has shown the information self-image of 
matter En to be the relevant factor for eliminating paradoxes from quantum physics. The difference in lowest 
energy between quantum and classical system, which zero point energy appears to be, should therefore also be 
related to the information self-image of matter. And indeed, when the energy of the wave (Ew and Ee in (9), 
middle) is set zero, the information self-image remains in the formula. The zero-point energy or vacuum energy 
(in quantum field theory) may not be pure energy itself, but information on energy (and matter). It can be identi-
fied with gravitation (see later for more details), which indeed has a cosmological significance. The zero point 
energy has actually been related to the cosmological constant [15]. Information on matter (gravitation) appears 
to be the key for understanding the interrelation between (here deterministic) quantum uncertainty behavior and 
cosmological parameters. 

2.3. The Law Governing Irreversible Thermodynamics 
It has already been mentioned, that the second law of thermodynamics, the observation that entropy maximizes 
in a closed system, can directly be derived from the basic statement of irreversibility (1) [1]. Traditional physics, 
basing on time-invertible fundamental processes, cannot do that, which is a significant drawback. 

Far from equilibrium self-organization occurs, which requires the involvement of feedback processes, which 
need a “before” and an “after”. In a fundamentally irreversible, time oriented world self-organization is a 
straightforward phenomenon. It is the domain where life or hurricanes are functioning. Here, a maximum entro-
py production is to be expected. Such energy systems, powered by a through-flux of energy, will transform all 
available energy by decreasing its presence per state (relation (1)) and generating entropy. Entropy production 
will be rate controlling and only be limited by the constraints of the system. 

On the basis of empirical observations a similar result, maximum entropy production for self-organized sys-
tems, was already obtained by other scientists. But they could not derive it from more fundamental considera-
tions and prove it. A maximum entropy production rate in the atmosphere, as a state determining the climate, has 
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been proposed by Paltridge [16] and later others [17]. Pioneering work on maximization of the entropy produc-
tion rate in relation to human ecology came also from Swenson starting from 1988 [18]. 

This principle of maximum entropy production, derivable from empirical observations, and following here 
from the “dynamic” energy postulate, has, however, found strong opposition. It was argued by John Ross from 
Stanford University that the rates of chemical reactions are controlled by (non-vectorial, non-oriented) thermo-
dynamic quantities such as Gibbs free energy and activation energy and not by the rate of entropy production 
[19]. And in consequence, he speaks of the “invalidity of the principle of maximum entropy production”. The 
criticism expressed by John Ross is perfectly reasonable, but it is reasonable only on the basis of reversible 
thermodynamics, its non-dynamic quantities of state and its traditional understanding of kinetic mechanisms. 
This situation is entirely changed with the here advanced proposal to introduce a dynamic property of energy via 
a paradigm change (relation (1)). When energy is given the property or tendency to decrease and minimize its 
presence per state, then it simultaneously drives the rate of entropy production and controls it. This leads directly 
to maximum entropy production far from equilibrium within the constraints of a given system. The criticism 
forwarded by J. Ross [19] no longer applies and, in fact, the requirement mentioned by him exactly matches the 
introduced paradigm change. The free, available energy no longer “sleeps” but drives entropy production. The 
law: 

“Self-organized processes develop maximum entropy production within the constraints of the system involved” 
(10) 

for the non-linear range of irreversible thermodynamics is a straightforward consequence of the “dynamic” 
energy proposal. It is supported by a great deal of empirical evidence [16]-[18]. It explains, for example, the de-
structive potential of atmospheric storms, which can rise to dramatic proportions of hurricanes within one day or 
two. Since biological systems and societies are self-organized, this finding has also significant consequences for 
understanding biological evolution and the future of human civilization (for a more detailed discussion of this 
complex subject see [10]). 

2.4. Gravitation: Information Self-Image of Matter 
Within the here presented new understanding of the particle-wave dualism (relation (1) and Figure 1, center) 
energy in the form of particles tends to dilute itself in space, forming a wave and generating some entropy. But 
information (with energy En) is activated to keep this process in balance. All together should have the ability to 
act towards a decrease of energy per state. Compared with the classical picture of matter, there is a difference. 
To understand matter rationally, it is now not sufficient to describe matter, particle or wave. One also has to 
consider information on this matter. And this information should be real and somehow present and observable. 
What is it? This information self-image has an energy value and should therefore somehow be measurable 
around matter. What energy-related phenomenon is found around matter, increases with matter and penetrates 
matter? The answer is obvious. It must be gravitation. Can macroscopic gravitational energy indeed be related to 
this information-mediated balance between concentrated and diluted energy within a dynamic particle-wave 
duality? 

There is an obvious analogy to be seen in our information system, based on television, cell phones and navi-
gation systems. Here the information is contained in the electromagnetic waves, which are transmitted to be 
present in the environment and to function via digital signals. As with gravitation, the distribution is not even. 
The communication-mediating electromagnetic waves provide energy, and transmit information. The informa-
tion, which is considered as mediating activity between the particle and wave nature of matter must also be 
measurable via the energy, which it involves. Gravitation, the mysterious force around matter, indeed involves 
energy, gravitational energy. It is therefore concluded that it is actually gravity, which is equivalent to the ener-
gy of information En (Figure 1, top). 

The dynamic energy initiative has yielded a new interpretation of gravitation! It is not a force in the classical 
sense, but information with a well-determined aim, namely the aim of decreasing the energy per state. But it acts 
like a force, but unlike other forces (electrostatic, magnetic) only in direction of attraction (and a decrease of 
energy per state). This deserves being explored more in detail, since gravitation is known to be something very 
special and a very weak “force”. It also offers an interpretation of gravitation, alternative to that generated by the 
four dimensional space-time in the general theory of relativity. 

When the information self-image of matter, besides of reconstructing the particle from the wave, aims at de-
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creasing the presence of energy per state, what happens when one attempts the opposite, to increase the energy 
per state, for example via acceleration of the same mass? One would expect a “counterforce”, a force that at-
tempts to prevent an increase of energy per state. It can only be inertia. Gravity and inertial forces are deter-
mined to be proportional to the same mass or energy. They are forces active towards a decrease of energy per 
state or are activated in the case of violation of such a situation. The equivalence principle, the observation that 
inertial and gravitational mass are identical, appears to follow in a straightforward way. The information 
self-image of matter, interacting with mass and energy, is doing the job. It is gravitation and acts on the particle 
while the particle decreases its energy per state. It is equally gravitation, which should matter, when the par-
ticle’s energy per state is forced to increase during acceleration and thereby generates inertia, a counterforce. 
This conclusion results from the identification of the information self-image of matter with gravitation. The gra-
vitation on the location concerned should, in fact, be the collective gravitation from the mass of the universe. It 
is also responsible for inertia. This supports quite a vague idea by Ernst Mach on the origin of inertia, which was 
later discussed by Einstein, but only partially applied in the general relativity theory. 

In the general theory of relativity the phenomenon of gravitation is explained differently and is much more 
complicated. The mass of a body generates a curvature of space-time. When moving along such a curved 
space-time, gravity and inertia are expected to become identical for a mass. The experimentally verified equiva-
lence principle is a basic claim, which had been introduced into the general relativity theory. Space was adapted 
to act in such a way that the equivalence principle is fulfilled. 

What is, in fact, gravitation and what speaks for its identification with the information self-image of matter in 
the model presented here? In science today gravitation is still a poorly understood phenomenon and is discussed 
in a conflicting way, both physically and philosophically [20]. The “Grand Unifying Theory”, GUT, for ele-
mentary particles cannot adequately assign it, because it seems to be something special [21]. It will therefore be 
all the more interesting to find out what the dynamic energy theory has to say in particular about gravitation as 
an information self-image of matter. 

Gravitation works for large masses of matter, but equally for elementary particles. But the difference in mag-
nitude is large. Between two neutrons and between two weights of one kilogram the ratio of attractive gravita-
tional forces is estimated to be of the order of 1054. Gravitation is nevertheless present everywhere. Gravity in-
deed supports the tendency to decrease the energy per state (relation (1)). It attracts matter and thereby decreases 
its potential energy and generates non-useful, chaotic energy, for example, heat. When a rocket accelerates at 
9.81 meters per square second, an astronaut feels gravitation like on the earth’s surface. He feels inertia, the re-
sistance against an increase of energy per state. He feels it like a person on the earth’s surface feels gravitation, 
the pressure to decrease energy´s presence per state. When the rocket engine stops, the inertial force disappears. 
The energy per state does not increase any more. But if this pressure towards a reduction of energy per state ex-
ists why are atoms then not totally compressed? Why are the negatively charged electrons and the positively 
charged cores of atoms maintaining a large empty space between them? There is an obvious reason why gravita-
tion does not compress atoms and eliminate the enclosed empty space [1]. Quantization results from this attempt, 
since also energy for information (gravitation) gets minimized. This way electrons are forced into well-defined 
diffuse orbits of standing waves, which correspond to minimum energy-information conditions. Equation (2), by 
the way, would then describe the relation of gravity to quantum theory (it occurs via En, the energy involved in 
information). It would describe a straightforward interrelation between the gravitation phenomena in space and 
the function of atoms and elementary particles (compare Figure 1). Such a relation has been intensively 
searched for in conventional physics but has never been found. The field of quantum gravity deals with that 
problem, aiming at a “theory of everything”. String theory is an example of approaches, which have been fol-
lowed. They seem to have basically failed up to now, and from my point of view the reasons are obvious: quan-
tum theory has to be modified to become “dynamic” and the gravitation concept of the general theory of relativ-
ity has to be challenged (see later). This appears to be a harsh statement, but is a necessary consequence of the 
paradigm change discussed here. 

Within the model analyzed here the unification of gravitation with quantum physics is a side product, howev-
er with an important new insight: the energy of information, En, identified with the energy contained in gravity 
causes quantization to occur [1], but is itself not quantized. Also the mysterious phenomenon of quantum corre-
lation would be related to properties of gravitation and would suddenly become more transparent. Since the par-
ticle-wave duality involves an information self-image, this self-image has to be dealt with when the particle is 
split up (Figure 1, top left). Due to conservation laws only part of the original self-image can be split up and the 
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rest will maintain joint information for the separating particles. Lacking a detailed theory it can presently, how-
ever, not be said up to which distance such information contact will be supported. However, for energetic rea-
sons, I predict the reach of quantum correlation will not be infinite, as quantum physicists today claim, for 
quantum theoretical reasons. All together the interpretation given here for quantum correlation would not con-
tradict logics. Correlated particles are acting like couples which maintain a reasonable contact via a cellular 
phone even when temporarily separated locally. One just has to be prepared to accept that information on matter 
is part of quantum reality, and information (gravitation) also involves the possibility of communication between 
separating particles. 

The fact that this very special phenomenon of quantum correlation can readily be explained is considered to 
be strong support for the discussed dynamic energy approach. Indeed, the very circumstance that quantum cor-
relation exists also justifies the existence of an information self-image of matter for the original, undivided par-
ticle (Figure 1, center). And this information on matter is exactly what makes up the hitherto mysterious gravi-
tation phenomenon. 

In contrast to other forces in nature gravitation penetrates all matter. A material body can also not be extracted 
from a gravitational field nor can it be shielded from it and gravity cannot be neutralized. It can, however, be 
partially or totally overcome by inertia. A high flying airplane in a sharp curve downwards leaves its passengers 
temporarily without gravitation. Within the model presented here this means that the drive to decrease the ener-
gy per state, and to give by to the attraction of gravitation, is just compensated by the drive resisting against an 
increase of energy per state, within the phenomenon of inertia. These two opposite drives are felt as forces, 
which in the described situation just compensate. In fact, however, these are two different communications of 
information, which are just compensating and neutralizing each other. 

Gravitation itself is caused by mass. Gravitation is, therefore, not the consequence of interaction of masses 
and it could until now not be explained on a more fundamental basis, which however the present effort claims. 
Gravitation needs mass, but it is not a consequence of action. Since action is the consequence of a cause, which 
requires time, gravitation should not be exposed to the flow of time. This is, in fact, also in agreement with the 
new model provided, which identifies gravitation with information. During the information-mediated particle- 
wave interchange no energy is converted and consequently no action is generated. Therefore, no time flows. In 
contrast, matter and energy themselves are exposed to changes and time. It is information and the energetic as-
pect of information which aims at decreasing the energy per state. In a gravitation field this is equivalent to an 
attracting force and explains why there is no repulsive counterpart of gravitation. It gives weight to objects, at-
tracts them and causes them to fall towards the ground. From the time of Newton we know that when two par-
ticles with the mass m interact, the gravitational force between is proportional to the square of the mass divided 
by the square of their distance. According to Newton it is a force at a distance, but nobody understands how 
such a far-reaching force may fundamentally work. 

For Einstein, in his theory of relativity, gravity is not a typical force, but the consequence of the movement of 
objects through a curved space-time. It is an interaction at close distances. In fact, within such a picture, accele-
ration arises from a “curved” time. This is a time, which changes its flow in such a way as to simulate accelera-
tion. One should reflect here for a moment and try to imagine how a void with nothing in it can have such an 
elaborate property of manipulating time, which not even the most sophisticated technology can do. Nevertheless, 
the reasons for planets cycling around the sun are consequently not attractive forces, but a curved space-time 
structure around the sun and the planets. The energetically permitted orbit for a planet is then its essentially el-
liptical planetary orbit. Photons, light particles, are also characterized by a mass and momentum and conse-
quently deviated by gravitation. Einstein has simply transformed all the mystery about gravitation into a sophis-
ticated four-dimensional space-time. All moving objects should be exposed to the same natural laws, including a 
constant light velocity. But Einstein’s theory of general relativity cannot explain the fundamental character and 
mechanism of gravitation. Empty space is just manipulated to impose the phenomenon of gravitation when 
masses are present. However, nobody can explain why and how empty space can implement such very special 
properties and this is a significant weakness. From the point of view of understanding nature, it is a clear setback. 
No detailed rational theory is imaginable that can explain such complicated behavior of empty space. As men-
tioned, it is so complicated that Einstein himself, years after publication of the general relativity theory, was 
again speaking of an “ether” with special properties that should be able to do the job [22]. 

The dynamic energy approach discussed here which has already helped to eliminate diverse paradoxes and ir-
rationalities offers a much simpler alternative theory for gravitation: the energy related to information, En, in-
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volved in the interplay between particle and wave with the aim of decreasing energy per state. Information tells 
masses how to act. They act like systems guided by remote control. The mechanism is not action at a distance 
like Newton’s gravitation, and not action at a close distance like Einstein’s gravitation. It works as long as in-
formation is around and this means here gravitation. The technology works as when information is used to oper-
ate a system via remote control. An information signal (gravitation) must reach the moving object. Planets 
around the sun or satellites around the earth would thus follow the natural “remote control” mechanism operat-
ing via gravitation, forcing them to always fulfill the condition of minimum energy per state or, equivalent, of 
least action. They are exposed to gravitation and, accordingly, select their specific orbit. Wherever a planet or a 
satellite goes, the condition of a minimum of energy per state is fulfilled. It is ultimately the “dynamic nature” of 
energy, and its implementation, which is the secret of gravitation. Gravitation is neither a force, nor an interac-
tion. It is information implementing a fundamental natural law, which dictates a decrease of energy per state. 
Looking at the example of a stone rolling down a hill, it can be said that gravitation forces the stone to always 
fulfill the condition of minimizing the presence of energy per state via its information content. We know now 
that we can also say that the stone follows the principle of least action in a dynamic way. The same happens 
with a satellite circulating around a star or a planet. 

Since understanding gravitation is so important let us use an additional check-list of properties of gravitation 
to verify in more detail whether these can reasonably support the claim raised that we are dealing with an infor-
mation self-image of matter. 

1) “Matter and gravity cannot be separated”. This is evident from relation (2) since energy of information me-
diates between particle and wave form of matter 

2) “Shielding matter from gravity is not possible. It penetrates all matter”. There is no contradiction to be ex-
pected to this finding. 

3) “Gravity effects can accumulate to large phenomena”. There is no reason why energy of information 
should not accumulate in the presence of large quantities of matter. Information is additive or, if oriented into 
the opposite direction, subtractive. 

4) “Gravity only attracts, it does not repel”. This is evident since only attraction of matter can lead to a de-
crease of energy per state (relation (1)). Such a property makes gravity different from typical forces. 

5) Gravity and inertial forces correspond to each other, but are opposite in direction. They reflect the action of 
masses from the universe. A mass feels all the gravitational forces of the universe. If a mass is accelerated, it 
acts against the gravitational forces of the universe. This is what the Mach principle claims and thereby rejects 
an absolute, empty space. In our picture, the following phenomenon would happen: when matter accelerates, the 
energy per state would increase, so that the energy of information, En, would counteract. This would be expe-
rienced as inertia. The effect would be supported by all masses from the universe felt via gravitation. Inertia 
would thus simply be a counteraction to a violation of gravity, which (here) implements the claimed tendency of 
energy to decrease its presence per state (relation (1)). 

6) If gravitation is not the consequence of a cause, then it is not exposed to a flow of time. Indeed, the dy-
namic particle-wave duality expressed in (2) does not involve a time flux, since energy only spreads and con-
tracts in space, but is not turned over. It is an on-going, eternal phenomenon and will be present as long as mat-
ter exists. As a consequence, there cannot be a spreading of gravitation when mass is localized, since spreading 
would involve time. 

7) The general theory of relativity predicts gravitational waves. Lately scientists claim to have detected them 
[23]. The identification of gravity with information mediating the particle wave duality allows a clear conclusion: 
information, and the energy related to it, is not expected to be able to generate waves itself. However, self-or- 
ganized information, expected in a region of exceptionally high gravity and additional energy, could, in prin-
ciple, induce oscillating phenomena (see next subchapter). But also bursts of information on matter could be li-
berated via nonlinear mechanisms from cosmic areas with intense gravitation and energy. It should be empha-
sized here that in order to really confirm an oscillation of space-time according to the general theory of relativity, 
a parallel oscillation of “time” should be observed. It should actually be detectable since, according to Einstein, 
time is what the watch shows. 

8) In a given gravitation field all bodies, whether as light as a feather or as heavy as a hammer, are exposed to 
the same acceleration (“g” on the earth surface). They approach the ground at identical speed if air is not present 
to exert different friction. One can rationally understand that the information self-image imposes such behavior, 
an identical acceleration. The information given in the same gravitation field towards a decrease of energy per 
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state is simply identical for different mass objects. The force experienced (and the weight of a body) is, of 
course, different because acceleration has to be multiplied by the mass, which is accelerated, to obtain the force. 
The acceleration due to gravity on the surface of the moon is only 0.16 g. Correspondingly less information on 
matter is active there towards a decrease of energy per state. The acceleration towards a decrease of energy per 
state is apparently changing proportional to the density of information. 

The information self-image of matter could thus indeed be the origin of what is called gravity. It is not a force 
and not an interaction. It is information on the state and dynamics of matter, energy, and implements a funda-
mental dynamic law. This turns simultaneously out to be a reasonable and interesting explanation of gravitation. 
One understands why it had to become a relevant property of nature. 

If we, for example, want to understand the deviation of light in a gravity field we would have to explore inte-
raction possibilities of the particle-wave relation (2) with the perturbing systems. Tentatively I would say that, 
when gravitation (information) from a photon superposes gravitation (information) from a larger mass, a cor-
responding additive superposition of information should be expected. Light will consequently react in response 
to external gravitation (information on matter). A quantitative theory remains to be developed. 

Gravitation also plays a fundamental role in determining the dynamics of the universe. It may consequently be 
expected that the information involved in gravitation acts in a similar way in large scale dimensions. It is infor-
mation, which should consequently control generation, evolution and fate of the universe. Within some kind of 
fractal similarity, which could be assumed, there should consequently also exist an information self-image of the 
universe (Figure 4). It is information, an information self-image of the primordial world, which activates useful 
energy at the start of a re-born universe, which then again aims at generating non-useful, chaotic energy in the 
form of entropy, by allowing energy to decrease its presence per state. 

A fractal link between quantum processes and cosmic events (Figure 4) implies a joint fundamental (mathe-
matical) basis, which may also help explaining how spreading photons can adequately consider space for entro-
py generation. This way it is possible to confront the Big Bang theory, which is characterized by extreme and 
partially irrational assumptions and many contradictions [24], with a fractal model for the evolution of the un-
iverse, which emphasizes the role of information. This SI-universe (Self-Image universe) is based on a (periodi-
cal) recreation of the primordial universe through an information self-image (Figure 4) (for more discussion of 
this subject compare [10]). The idea that information should be active at the beginning of cosmic development is 
not alien to the human intellect and human imagination. The Bible, for example, says: “In the beginning was the 
word” [25]. And such an information induced start of a free energy rich universe with subsequent increase of 
entropy and local growth of order at the expense of entropy production is entirely in agreement with our under-
standing of thermodynamic laws. And from the impressive function of 3D printers we understand how informa-
tion can indeed create structural and dynamic reality. The information based self-image universe is a high-tech 
scenario compatible with presently recognized and understandable natural laws and with working information 
technology. 

This is in marked contrast to the Big Bang scenario where the universe starts from nothing to chaos and 
maximum disorder. Here a creation of energy and time-flow from nothing has to be postulated, as well as an ex-
plosively fast expanding, inflating void. The latter incredible postulate is in fact needed to explain the reasona-
bly high uniformity in space. But it is also needed to increase the potential for additional disorder (for the pur-
pose of allowing entropy formation during energy conversion processes) via a huge added abstract volume 
(created through inflation of the void, the empty space). This should enable the energy conversion processes that 
generate the observed structures and function. The Big Bang theory describes a low-tech model, on the basis of 
very speculative additional assumptions. 

2.5. Consciousness, Spirit and Super-Gravitation 
Natural science has recently been criticized for not being able to explain evolution and function of conscious-
ness and human spirit. Philosopher Thomas Nagel [26] claimed, that the preconditions for evolution of spirit, in 
terms of physical laws, must have been there in nature before humans developed. His argument has to be taken 
seriously. Humans have developed consciousness and there may be innumerable living beings in the universe 
with similar abilities. 

In a fundamentally oriented and irreversible world there is a straightforward answer to this important question: 
consciousness can be explained on purely materialistic, scientific basis. It can be understood in the following way: 
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(a) 

 
(b) 

Figure 4. Within a fundamentally oriented reality the universe has apparently a fractal, self- 
similar structure and function: the gigantic space seems to work as a “Self-Image Universe” 
(b), essentially analogue to the proposed sub-microscopic “dynamic” particle-wave dynamics 
(a). In both cases information is set aside for the final recovery of the worn-out or spread-out 
product of energy activity. 

 
In a fundamentally irreversible world in which time is proceeding (via a flow of action) there is a “before” 

and an “after”. Feedback processes are possible. Therefore self-organization of matter will be a straightforward 
consequence, as long as energy is flowing through the system, and the system is pushed sufficiently far from 
equilibrium. 

When looking at biological life-forms, one, of course, recognizes that self-organization, SO, can occur with 
matter. Self organization of matter is consequently a function of matter mt. which can be formulated as follows: 

( )tSO f m=                                     (11a) 

Mathematically, matter can consequently be handled in such a nonlinear way that self-organization works and 
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can be calculated and demonstrated. Matter is something that occupies space and has mass. Matter is conse-
quently a function of mass m. Self organization, SO, therefore proceeds with mass: 

( )( )tSO f m m=                                    (11b) 

Mass is, as well known, mathematically linked to energy via E = mc2. Consequently, energy can, in a funda-
mentally irreversible world, also self-organize, when appropriate conditions exist. 

( )( )( )tSO f m m E=                                  (11c) 

What can be the consequence of self-organization of energy? It is proposed, that the large family of elemen-
tary particles is the product of self organization of energy (in more detail discussed in [10]). Their formation and 
interaction, in nature, and their generation, during high energy experiments, would have to be described and 
discussed accordingly. Mechanisms and properties of self-organized processes would have to be considered. The 
conversion of structure and function of one particle into other particles or from a photon particle into a wave 
could, for example, be triggered just by a small parameter change. 

How can now information be considered for self-organization? 
Since information, I, has an energy content and is a function of energy, energy can be expressed as a function 

of information. This can be considered in (11c), so that information should also be able to self-organize, when 
appropriate conditions prevail: 

( )( )( )( )tSO f m m E I=                               (11d) 

Therefore information itself will also be able to self-organize, provided the system supplies essential material 
properties and is pushed sufficiently far from equilibrium. In addition adequate structures must exist and ade-
quate feedback processes between information modes have to occur. This important conclusion follows from 
these simple mathematical considerations. They show, that from the fact, that self-organization of matter exists, 
self-organization of information can be deduced mathematically. 

As matter (energy), which brought about life, can self-organize, information, which is also based on energy 
turnover, can, in principle, do the same (Figure 5). The preconditions only are that some degree of order in in-
formation structures has to evolve before and that the information system has to be pushed sufficiently far away  
 

 
Figure 5. The diagram shows the influence of the distance from equilibrium for information 
systems, which is controlled by the through-flow of energy. During evolution more and more 
energy became available to the brain and shifted information activity from mere computation 
to self-organized computation, which initially corresponded to more primitive forms of sub- 
consciousness, and finally yielded consciousness. 
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from equilibrium. Also a flexible, variable hardware seems to be required. The information storage elements in-
volved in self-organization could be chemical, as implemented in the genetic code, or electrochemical, as func-
tioning in our brain. The result would be a much higher hierarchy of computation. This higher hierarchy of con-
sciousness is a fact. In addition it is clear that we are actually dealing with an information system, and that con-
sciousness has gone through evolutionary steps (sub-consciousness, collective consciousness, personal con-
sciousness). Furthermore it is known that there is high energy consumption going on in the brain. An additional 
evidence for such an interpretation of consciousness is the above calculated relation between information and 
self-organization (11d). All this speaks for a really functioning mechanism of self-organization of information. 
A science based on equilibrium, time-invertible laws and a time-neutral energy phenomenon could not support 
such a process, and has for that reason been criticized [26]. The implementation, within the dynamic energy 
concept in an oriented world, of a fundamental energy-time drive is decisive for the shift of a system away from 
equilibrium and for the necessary feedback processes. 

Consciousness, as humans evolved it, is a very sophisticated information program. It gives a person a perso-
nality and active control over his situation. The theory that consciousness controls our computing brain via 
self-organization of information is also supported by additional arguments: Kurt Gödel [9] developed a theorem 
in 1931, the incompleteness theorem, which became one of the most important statements of modern logic. It 
can be interpreted to state that a machine controlling another one has to be associated with a more superior hie-
rarchy. The comparison of self-organization of information in relation to information itself with a living bacte-
rium and its chemical components in water gives the adequate answer: a living bacterium functioning via its 
self-organization structure represents a hierarchy clearly above that of an aqueous solution of all chemical sub-
stances, which make up the bacterium. Its living activities also clearly demonstrate that it can control chemical 
activities. 

Self-organized information could therefore in principle well control pure information. It is hierarchically defi-
nitively placed above pure computation. It can, therefore, be understood as the mechanism of consciousness. It 
makes man conscious and helps him to organize his life in a complex environment in a more creative and com-
petent way. It also shapes his intentions and determination. The “dynamic energy” approach allows a purely 
materialistic interpretation of consciousness. 

An interesting additional subject for further thinking on self-organization of information is also gravitation. In 
present physics gravitation is, as above mentioned, still a mystery and has been discussed as a very strange force. 
But in this study gravitation is found to be information, mediating the particle-wave duality (relation (2)) and 
implementing a decrease of free energy per state. This kind of information, gravitation, should also be able to 
self-organize, provided enough energy is turned over to push the gravitation system far from equilibrium and 
feedback processes can develop. A significantly higher and more elaborated gravitation, a kind of super-gravi- 
tation may be the consequence (indicated in Figure 1, right, bottom). And super-gravitation should also have the 
potential to become spatially structured like living organisms. This phenomenon may, for example, take place in 
the center of galaxies where high concentrations of matter and energy are present and interact. But it may also 
occur more widely distributed over the space, structuring it via gravitation patterns. Astrophysicists know a 
phenomenon called “great attractor”. It attracts galaxies, including our own. This may be the result of self-or- 
ganization and structuring of gravitation. The resulting super-gravitation will have much more sophisticated 
properties with respect to the interaction of matter than ordinary gravitation. Above all it is to be expected that 
the capacity to decrease the energy per state, which this information—gravitation—should implement, will be 
much more effective. There should be a much higher attraction between matter, and it is perfectly understanda-
ble why light can penetrate a super-gravitation zone, though with deviations due to the mirage effect, which is 
actually observed. This happens like an ordinary mirage on earth develops under a special weather condition, a 
condition of the atmosphere, which itself is a self-organized phenomenon. Self-organized gravitation in space 
could indeed be compared to special weather conditions on earth. Both self-organization phenomena may gener-
ate optical mirages. 

Obviously self-organized gravitation is an alternative theory to dark matter since it would explain a high and 
spatially structured gravitation, which is not balanced by sufficient visible matter. But no additional matter 
would be needed in this case. There would not be a need to search for invisible new particles, but there must be 
sources for energy turnover in the environment to push the gravitation system far from equilibrium for self-or- 
ganization. It is obvious that such an explanation, together with the above, alternative interpretation of galactic 
redshift as entropy phenomenon, requires a corresponding new evaluation of cosmologic dynamics. 
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2.6. Relativity Theory and Four-Dimensional Space-Time: Do We Need Them? 
The information self-image of matter (En in (2) and dot pattern in Figure 1, center) provides a straightforward 
and rational explanation for gravitation on quantum and cosmological level in an irreversible natural environ-
ment (see above). The same information self-image of matter could also guarantee an always constant light ve-
locity in any reference system. The generation of a constant light velocity of a photon particle could simply be 
part of the program executed for recreating the particle from the wave. The program should be the same for 
every reference system. That this is indeed possible regardless of varying velocities of different reference frames 
is visualized in Figure 6. Imagine an airplane in full flight receiving digital information from a distant television 
station. A perfect television picture would be seen. In fact, if a corresponding information would be transmitted 
to the plane for driving a three dimensional printer, this would also be possible irrespective the relative velocity. 
The printer could produce a toy-car, which is able to drive at a constant velocity. In the same way information 
could also be used to regenerate a photon from the wave (relation (2)) with always the same constant light ve-
locity in the given reference frame. Information would have been used to produce an object able to propagate  
 

 
Figure 6. Why can the information self-image of matter reconstruct light particles with an always iden-
tical velocity? It is like transmitting a television program or the information for a three-dimensional 
printer to a flying airplane. The printer could produce a toy car, which then drives with a given velocity. 
The outcome is fixed and will be identical irrespective of the airplane’s flight direction and speed. In-
formation transfer is the key for rationally understanding constant light velocity. 
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with constant velocity, regardless the flight direction and velocity of the plane or a reference system. This would 
be a rationally understandable, working mechanism for the fundamental implementation of an always constant 
light velocity. 

The information self-image of matter can indeed explain both gravitation itself (as shown above) and the al-
ways constant light velocity (indicated in Figure 1 right and top). Can this route of explanations replace relativ-
ity theory? 

The special and general theory of relativity has originally been designed to explain these two natural pheno-
mena: the always constant light velocity and the strange force, called gravitation. The empty space was mathe-
matically manipulated in such a way that gravitation, inertia and the always constant light velocity are adjusted 
and function as experimentally observed. A complicated four dimensional space-time resulted which around 
matter shows a dramatic curving of space and time. The general relativity theory has, even though it is based on 
time invertible basic laws and does not consider energy conservation, become the standard for explaining highly 
dynamic space phenomena, ranging from the assumed Big Bang event to space inflation and black holes. Why 
has the general theory of relativity become so important in explaining gravitation and the dynamics of our un-
iverse? First, nobody had an idea of how to explain an always constant light velocity differently, besides of sug-
gesting a special “ether”, which was the model preceding Einstein’s special relativity theory [27]. In addition, 
the mathematics of general relativity turned out to be so complex, that it was only gradually understood [28]. 

Many of its solutions turned out to be irrelevant, others difficult to interpret. Then new circumstances entered. 
Since the availability of modern computers, physicists can more easily play with the complicated formula for 
general relativity and space-time involving ten parameters [29]. Via these many parameters and the singularities, 
which the general theory of relativity yields, such as extreme peaks and deep valleys, an incredible amount of 
possible scenarios can be described. Only few solutions seem to make sense. There is presently no indication as 
to why the relatively inaccurate predictions of the general theory of relativity cannot be explained by other, less 
farfetched and less complex theories. But what about the famous relation E = mc2 derived by Einstein from the 
relativity theory, which describes the energy of a mass m at zero velocity. It may be necessary to say here that it 
has been shown that the derivation of this formula was not really based on logic reasoning but already presup-
posed in the derivation of the result [30]. Classical derivations of analogue formulas have also been cited [31]. 
Einstein speculated that the energy formula he derived for light (and which included arbitrary choices) may also 
be valid for any energy in general. Two years before Einstein an Italian geologist, Olinto de Pretto, published the 
same relation between energy and mass deriving it from other non-relativistic considerations [32]. 

The point here is that we want to understand what this formula actually means within the relativity theory. In 
fact the formula E = mc2 has nothing to do with relativity. It would be still valid if the four-dimensional space 
did not exist. Einstein had neglected relativistic considerations prior to obtaining the famous energy-mass for-
mula. It can be derived with classic arguments only. The energy-mass relation can therefore not be used in sup-
port of the four-dimensional space-time concept. This is here an important argument. 

In addition, the reasoning developed here within a time-oriented physics, requires that mass is self-organized 
energy (see dicussion above and relation (11c)). When this is accepted to be true, then mass is accordingly also 
in this picture proportional to energy. The proportionality constant (1/c2) is, however, not evident and is ex-
pected to be much more complicated. The fact that the energy-mass relation also follows from the dynamic 
energy approach via the interpretation of mass as selforganized energy is an additional support for its consisten-
cy. 

The concept of a fundamentally irreversible world has thus yielded an entirely new and unexpected explana-
tion for gravitation and the always constant light velocity. Explaining gravitation, inertia and constant light ve-
locity via information is rational, in contrast to giving such properties to a manipulated empty space itself. What 
incredible properties of empty space must be imagined to control constant light velocity or to adjust the time 
flow around masses to mimic inertial movements! Relativistic changes in length and time, which are predicted 
by the relativity theory, can be considered to be simply measurement phenomena caused because of the finite 
light velocity. Measurements from different orientations and velocity frames would produce different values of 
length and time. A really shrinking rocket would simple dismantle, but theory predicts it could later land re-
gaining its full dimension. 

Also the energy measured from different orientations and velocity frames would produce different values. 
Can an individual energy system simultaneously have different energy values? What about experimental “proofs” 
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for relativity theory? Presumed gravitation waves measurements and gyroscopic measurements involve tiny ex-
perimental effects (stretching the space by one part in 1021, or by the width of an atomic nucleus for detection of 
gravitation waves; gyroscope spinning angle change of 1.8 thousands of one degree per year). The here dis-
cussed physics of a fundamentally irreversible world could provide alternative explanations. The focus of atten-
tion should be the action of information on matter (and gravitation respectively). It explains light velocity, gra-
vitation and inertia in a different way and could consequently also explain phenomena attributed to them diffe-
rently and rationally. 

The here advanced concept of information involved in elementary particle properties and gravitation has the 
potential to make quantitative predictions, provided a more detailed quantitative theory is elaborated along the 
line of thoughts presented here. To give an example: In the case of photons deviated by gravitation it is the in-
formation self-image of matter, which interacts with information in form of gravitation from other sources, 
while reassembling of the photon from the wave occurs. This superposition of information on matter will gener-
ate the observed change in the flight trajectory of the photon. It is expected that a four-dimensional space-time is 
not needed for explaining the phenomena observed. Information could much better interpret them than claimed 
irrational properties of free space (for a short summary of presently favored concepts on space, time and gravita-
tion see for example [33]). And it would be intuitive understanding, like we understand e remote controlled de-
vice responding to an external signal. 

2.7. The Flow of Action and the Phenomenon of Time 
For science today time is an illusion. What time should one take, if time flow for systems in relative movement 
is variable? Historically numerous personalities have reflected about the meaning of time and contributed inter-
esting information and ideas without really fully answering the question: what is time? [34]-[41]. On the basis of 
an analysis of the principle of least action it was found that this principle describes a fundamentally oriented 
world and a fundamental, rate controlling flow of action during energy turnover [1]. This required a paradigm 
change from a time invertible world to an irreversible one. It means that the free energy of physical systems 
tends to decrease its presence per state. Consequently production of action, energy times time, is the essential 
basis of changes. Around us many flows of action are proceeding wherever energy is being converted. This is 
what causes the observed “time flow” in nature. It is what we see happening in the environment and this is what 
occurs in our brain. But time itself, as described by “t”, is only an ordering parameter. It has no material or 
energetic substance at all and can therefore not directly be measured. Clocks determine it nevertheless by mea-
suring the flow of action resulting from an energy converting mechanism. They basically divide it by the energy 
turned over and calibrate it with a selected periodical astronomical event in days, hours, minutes and seconds. 

Time flow, as determined by action, energy times time, itself is not an illusion. When action is transferred to 
frames with different velocity it stays actually invariant, even within the theory of relativity. In order to deter-
mine real time flow in an irreversible world, action has to be transformed to another frame in relative motion, 
and the time (t), the ordering parameter, has to be determined there by dividing action by the energy turned over 
locally. Since action stays invariant during transformation, time for energy converting systems would then be the 
same in frames with different velocities. 

This is of course different with time in the theory of relativity. It is separated from energy and transformed 
independently like energy itself. Here time is relative in frames with different velocities and special phenomena 
such as time dilation and time travel become possible, which can lead to well known irrational contradictions 
with physical laws and with thermodynamics. The time “t” in the theory of relativity, which is already separated 
from substance and energy, is thus a theoretically manipulated time and refers to systems, which do not turn 
over energy, such as quantum states and elementary particles in such situations. Time delays in systems at dif-
ferent velocities are actually measured (such as with muons) and can be considered real, since they are actually 
determined. But my interpretation is that it is the measurement process, it is the finite light velocity, which is 
signaling a distortion of reality. This can be recognized, when several observers at different positions and veloc-
ities are measuring the time on an identical reference object. It will be different for each one and only be seen in 
direction of the relative movement. An observed object cannot simultaneously have different times. Another 
example is the change of length of an object seen on frames with different velocity. If it would be real and if the 
object would be a rocket, it would be dismantled during the change of dimension. However, when the rocket is 
landing, its original size appears re-established. The relativistic phenomenon here is just an illusion of measure-
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ment, based on transmission of information by light. Time in its naked form, t, time which the clock shows (ac-
cording to Einstein) and which is not characterized by substance, matter or energy, is just an ordering parameter 
in combination with the constant light velocity. In this combination, with the dimension of distance, it evidences 
the distance across which action can travel in time. But itself this naked time “t” is not able to express action, 
energy times time, which is the origin of real time flow, as it is expected to drive real phenomena like the Big 
Bang or Black Holes, which are calculated, using the general theory of relativity. Already for this reason the 
predictions of the general theory of relativity therefore appear not to express the reality of an energy converting 
universe. But they can, of course, support imaginative theories due to extreme singularities and many adjustable 
parameters. 

In conclusion: the flow of action, as considered in the principle of least action, is the real, energetic basis of 
time flow. If we select a machine (e.g. an hourglass), which is providing a constant flow of action, a flow of 
“least” action in the form of trickling sand, and if we calibrate this flow with an astronomical flow of action (e.g. 
the movement of the earth around the sun) then we get a “time”, which is not an illusion. But the basis of time 
flow is always the flow of action, and only action, energy times time, should be transformed to another reference 
with different velocity, if “time” should stay relevant for energy converting systems. However, for exactly such 
reasons time travel, which is predicted by the theory of relativity, will remain an illusion. “Time” in form of a 
flow of action is not an illusion and existed and will exist as long as energy conversion occurred and will oc-
cur. 

2.8. Black Holes and Quasars: Understanding Space Objects in an Irreversible Universe 
A fundamentally oriented and irreversible world will follow its special laws. Since a time arrow, based on the 
flow of action, exists, self organization processes will proceed and systems will develop and compete towards 
maximum entropy production. 

Here, an example should be discussed to understand such behavior in relation to the expected dynamics of 
black holes, in contrast to traditional understanding. 

Within the general theory of relativity contracted masses can drastically deform space-time to generate a 
black hole with an event horizon, beyond which there is no escape for matter and energy. But close to the event 
horizon virtual fluctuations may cause particle-antiparticle matter to appear and liberate a radiation called 
“Hawking radiation”, which can gradually lower the mass of the black hole [42]. Time invertible physics of re-
lativity and quantum theory are thus presently used to “understand” the dramatic dynamics of black holes [43]. 

The approach of fundamental irreversibility draws a different picture since self-organization of matter and 
energy, as well as maximization of entropy production will become corner stones of understanding. Black holes 
themselves, which compact and convert large masses through gravitation (here information towards decreasing 
the presence of energy per state) run gradually into a problem. On one hand they develop to become self-orga- 
nized systems, but because of the high gravitation, they cannot get easily rid of entropy in the form of chaotic 
waste energy. The black hole will temporarily serve as a grave for entropy, because gravitation is too high. It 
would be like if a vegetarian dinosaur could not get rid of digested food any more. How can a black hole deal 
with such a situation? In this context quasars are especially interesting objects and are typically found associated 
with a black hole in the center of galaxies with a bulge. This combination could explain how a black hole finally 
gets rid of its entropy, which becomes confined by massive gravitation. The black holes collect matter and star 
fragments and rotate them in a so-called accretion disc (Figure 7). From there matter can fall into the black hole 
or be radiated away with total intensity amounting to between one million to one billion times our solar radiation. 
In fact, radiation intensities equivalent to that of one hundred Milky Way galaxies have been estimated [44]. 

Such radiation emitting systems are called quasars. They belong to the most brilliant objects in the universe. 
In our view quasars somehow originate from black holes, which have drifted further and further away from 

equilibrium because of the problem they have in getting rid of entropy due to high gravitation. The quasar black 
hole assemblies seem to have reached an evolution state where maximum energy turnover and, correspondingly, 
maximum entropy turnover is approached by a self-organized inorganic system. A black hole alone would, be-
cause of extremely high gravity, have difficulties in emitting radiation and matter. But evolution within an irre-
versible universe has facilitated a way out by modifying the self-organized system while increasing its distance 
from equilibrium. This way it is probing new “bifurcations” and gradually changing the black hole into a sys-
tem, which can be understood to be an association with a quasar. The result, a self-organized system with much  
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Figure 7. Association of black hole and quasar facilitating maximum entropy production. Both are dy-
namically self-organized systems, which, depending on the energy turned over, vary their distance from 
equilibrium and their parameter constellations. Maximum entropy emission occurs through the accretion 
disc, which appears to serve as a kind of logistic platform for the collection of useful matter and emission 
of waste energy. Self-organized and spatially structured gravitation (information) may be part of the me-
chanism. 

 
improved ability for entropy production and emission, is convincing. Also self-organization of gravitation (in-
formation, as discussed above) may occur leading to structural patterns with gravitation-free channels for entro-
py emission into space. Jets of electromagnetic waves are actually seen to leave quasars as well as gases. 

Quasar-black hole associations change in light intensity within weeks or months. They are inorganic systems 
essentially behaving like living animals. I compared them with vegetarian dinosaurs. Their activities depend on 
the existing constraints. Dinosaurs also generated less entropy when finding and digesting less food. 

In this way quasars appear to be associated with black holes to which they donate matter and from which they 
subtract “degraded, chaotic” energy in the form of radiation and dust. The association between a black hole and 
a quasar thus testifies for maximum entropy production during conversion of solid matter into liberated waste 
energy. 

The “evaporation” of matter from quasar-black hole aggregates via nuclear processes aims at generating a 
maximum distribution of “chaotic” energy in space and time. They are basically executing, to a maximum per-
formance, because of optimized constraints, what I claim to be a fundamental law: energy’s tendency to de-
crease its presence per state in space and time (relation (1)). 
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In conventional cosmology the role of the quasar is interpreted differently: it is just a secondary phenomenon. 
Its enormous light emission is expected to result from the accretion disc, where matter rotates while waiting to 
be accepted by the black hole. Energy is essentially thought to be liberated through friction. In contrast, our in-
terpretation here is that evolution of an inorganic self-organized quasar-black hole system has optimized energy 
turnover for maximum entropy production within the constraints of the system. It is more or less behaving like a 
storm that grows into a super-hurricane, distributing its entropy over a wide area. Energy and matter is simply 
following a natural law, maximum entropy production far from equilibrium (statement (10)). And there is an 
evolution of energy conversion activity: The developing self-organized black hole system dynamically restruc-
tures and “searches” for a way to get rid of entropy. This search is simply the consequence of the recognized 
fundamental energy property. Entropy confined into a limited space has a higher value of energy per state so that 
black holes grow. Larger black holes finally find a way to get rid of energy in the form of entropy, chaotic waste 
energy. They do it by restructuring in such a way that entropy, non-useful energy, can be ejected. This appar-
ently happens via the so-called accretion disc, which forms around the black hole and handles the transport of 
matter-energy to the black hole and of entropy, non-useful matter and energy, from the black hole (Figure 7). 

That the accretion disc is a product of dynamic self-organization is not only evident from its spiral structure, 
but also from quasi-periodic oscillations, which have been observed to occur in these. 

Processes far from equilibrium are expected to control many aspects of space structures, ranging from galax-
ies of different shapes to aggregations of them showing complex order in form of clusters and lines, but also 
respecting voids. Gravitation has long been recognized to be a very important parameter for structure and func-
tion of space. Here identified to represent information on matter and able to self-organize it plays an even more 
important role in determining evolution, structure and dynamics of the universe. A remarkable result is that one 
is dealing with information, which is not only responsible for quantum phenomena, but also for cosmological 
contexts (Figure 1). This opens new ways for asking questions and reflecting about the origin and destination of 
the universe and its structures. An information based alternative to the presently favored Big Bang scenario of 
cosmic evolution becomes evident, as discussed in context with gravitation (subchapter 2.4, for more details see 
[10]). 

3. Discussion 
This effort to explore natural phenomena from the viewpoint of a fundamentally oriented, irreversible world, 
motivated by a re-evaluation of the meaning of the principle of least action [1], has yielded quite remarkable re-
sults. Without additional assumptions, besides of the claim that free energy decreases its presence per state (rela-
tion (1)), which led to a dynamic interpretation of the particle-wave dualism, rational explanations for relevant 
natural phenomena could be obtained. Important is the finding that perturbing counterintuitive assumptions, pa-
radoxes and consequences of presently favored theories based on time-invertible physics, can essentially be 
avoided. This may be not only because the world is really irreversible, but also because the introduced paradigm 
change opens the opportunity to consider entropy formation on a fundamental basis. It is possible in form of a 
reduced energy value when energy is diluted in space. It is for this reason that a wave is not equivalent to a par-
ticle within the particle-wave dualism, but information has to be provided to concentrate the energy again in a 
particle (Figure 1, center). The particle-wave duality is therefore mediated by information on matter. This in-
formation has an energy value, is located around matter and penetrates matter. It was identified to be the phe-
nomenon of gravitation. This concept not only allows avoiding quantum paradoxes [1], but also facilitates new 
quantum interpretations when applied to cosmic contexts. While conventional quantum theory does not allow 
photons in a spreading radiation field to lose energy for entropy without interaction with matter, this is possible 
within the dynamic quantum interpretation. The information self-image of matter continuously reassembles the 
photon from the wave and may adjust the energy balance for entropy generation fulfilling a fundamental law. 
Since a fractal interrelation is seen between information handling in quantum processes and in cosmological 
context (Figure 4), a joint functional (mathematical) basis may be assumed, which enables a photon to “sense” 
the space for considering the entropy law (3). A Hubble-type of equation for the galactic redshift is provided 
(relation (8)), which explains the redshift phenomenon via entropy production, avoiding the presently favored 
assumption of a universe inflated by an expanding void. The microwave background is interpreted as entropy 
dump. Because entropy turnover is a thermodynamic necessity for expanding radiation fields, a quantum physics 
that can comply with it brings a definitive advantage compared with the established theory postulating an ex-
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pansion of empty space and a stretching of wavelengths as explanation for a cosmological redshift. 
Another aspect is thermodynamics itself. The second law of thermodynamics, which claims attainment of a 

maximum entropy situation in a closed system, immediately follows from the dynamic energy claim (statement 
(1)) or, equivalent, from the identified meaning of the principle of least action [1]. Since entropy production is 
rate controlling, and feedback processes are facilitated in a time oriented world, self-organized systems far from 
equilibrium will aim at maximum entropy production within the restraints of the systems. This is the reason why 
quasars, in association with black holes, are reaching such a high energy turnover. Terrestrial examples are hur-
ricanes, which, under appropriate conditions, can also approach maximum entropy production and can grow 
from simple storms to super-hurricanes within days. Since living systems are also self-organized, biological 
evolution and evolution of human civilization have to be looked at in an unconventional new way (this subject is 
discussed in some detail in [10]). 

A remarkable additional finding is that the information self-image of matter, needed for the dynamic par-
ticle-wave duality, can be identified with gravitation. In this way quantum phenomena and cosmological phe-
nomena are linked in a straightforward way. It became clear why gravitation is a special “force”. It is actually 
not a force, but information, aimed at decreasing energy’s presence per state. 

Because information has an energy content and energy is related to mass and matter, information can also 
self-organize under appropriate conditions and create a higher hierarchy of information handling. Information, 
associated with life, when sufficiently pushed away from equilibrium, may therefore self-organize to yield con-
sciousness and spirit on purely materialistic foundation. Consciousness within human personality actually exists. 
But a time-invertible physics, which defines the flow of time via statistical probability, could never explain such 
a phenomenon. When information can self-organize, gravitation can also do it, since it is understood as informa-
tion on matter within the dynamic energy approach. A precondition is that additional energy is turned over and 
the system is shifted sufficiently far from equilibrium. This may yield a kind of super-gravitation, a gravitation, 
which is occupying a hierarchy above normal gravitation. It could explain, what is now attributed to black mat-
ter, much more intensive and also structurally patterned gravitation, without the need to postulate invisible mat-
ter. 

An intriguing possibility is the straightforward explanation of an always constant light velocity via the infor-
mation self-image of matter. Such an explanation is entirely rational, as Figure 6 visualizes. Information could 
control photons towards always constant light velocity. On the other hand imagining how empty space around a 
moving object could adjust light velocity of an arriving photon for constancy within the general theory of rela-
tivity is nearly impossible. Since information on matter is simultaneously identified as the phenomenon of gra-
vitation this opens obviously an alternative to the theory of relativity. In fact, when searching for an explanation 
for an always constant light velocity more than one century ago, a natural information technology should have 
been taken in consideration. Information can communicate a constant velocity (Figure 6). However, at that time 
the foundations of information were still unclear with the consequence that they practically do not enter into our 
understanding of physical laws. Today however the benefits and achievements of artificial information technol-
ogy are dramatically expanding, and they are working on the basis of existing natural laws. Why should nature 
itself not use information technology on the basis of gravitation? Of course much has still to be learned and the 
concept of an information self-image of matter with its consequences, introduced here, may make a beginning. 

Even though general relativity theory is now entirely established the author claims that the here suggested ap-
proach, to understand gravitation and constant light velocity via the information self-image of matter is much 
simpler, entirely logic and intuitively understandable. Relativity theory will remain an admirable product of hu-
man creativity, but with two significant drawbacks: 1) all crucial physical properties, constant light velocity, 
gravitation and inertia are designed to be properties of space. However nobody can explain how this works in an 
environment, the space, originally claimed to contain nothing. The adopted counterintuitive four-dimensional 
space-time is the consequence; 2) the time in its “crude” form, as the clock shows (in the words of Einstein), is 
used to describe space-time and its impressive phenomena. It is however only a parameter for monitoring 
change without energy or substance as basis for measurement. The crude parameter time cannot be used to de-
scribe action. In fact, action has to be activated to measure time on the reference system. Properties of energy 
converting systems have actually to be described by the flow of action, energy times time, as the principle of 
least action requires. If this is done, if action is transformed and time then locally extracted from action, time di-
lation and time travel however simply disappear. Action is invariant against transformation. 

Gravitation has been recognized as information on matter. Since gravitation is decisive for the dynamics of 
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the universe, it may be concluded that it is information, which determines its origin and fate. New cosmological 
concepts are imaginable, such as the Self-Image universe (Figure 4(b)), which is proposed as a counterpart to 
the Big Bang scenario (compare also a discussion in [10]). It avoids irrationalities such as creation of energy and 
time from nothing in a tiny seed, inflation of empty space, an accelerated expansion of the universe and its final 
end in darkness. 

The self-image universe (Figure 4(b)) is created like an object in a 3D printer, energy is conserved, time flow, 
which here has to be deduced from action, is not interrupted, and the age of the present universe may remain the 
same when counted from its information mediated recreation. 

A remarkable consequence of the proposed paradigm change towards irreversibility in fundamental physics is 
that many areas of our present physical understanding are affected. A simplified picture of changes, which the 
irreversibility approach to physical understanding would introduce, is given with the scheme shown in Figure 8. 
In the center of this figure it is indicated how a study of the meaning of the principle of least action (area with 
dotted border) led to the concept of a fundamentally dynamic energy and, considering the role of space for 
energy as a necessary concession for entropy formation, to the consideration of the information self-image of 
matter for the dynamic particle-wave dualism. They (three darker areas in Figure 8) became the new “symbolic 
form” (intellectual aid or logical tool), for understanding physical contexts, according to philosopher Ernst Cas-
sirer [45]. 

As already shown [1] quantization, the double slit experiment and quantum correlation can rationally be un-
derstood with the help of the information self-image of matter (left side of Figure 8). In addition it explains gra-
vitation and the constant light velocity with consequences in eliminating relativistic paradoxes and emphasizing 
the role of information for understanding cosmology (right side and bottom of Figure 8). 

With the new understanding of gravitation as a natural form of information another quantum phenomenon can 
rationally be understood, the tunneling phenomenon (left side of Figure 8). Gravitation is known to penetrate 
matter and it corresponds to the information self-image of matter in relation (2). It should therefore be able to 
penetrate barriers with the possibility of resynthesizing the particle with certain probability again on the opposite 
site. The identification of information on matter with gravitation thus rationally explains the tunneling effect. 

In Figure 8, top left, it is indicated how dynamic energy and thus dynamic time allows self-organization of 
matter, energy and information. Also the information self-image of matter, gravitation, can self-organize under 
appropriate conditions. The resulting super-gravitation could replace the hypothetical dark matter without need 
to identify non-visible matter. On the right side of Figure 8 it is visualized that in a dynamic energy world pho-
tons can tolerate entropy generation while spreading out in space and generating the microwave background. 
The Big Bang concept, inflation, the redshift via space expansion, and dark energy concepts are consequently 
challenged. This concerns also relativity theory, which has been adapted to describe part of these phenomena. 
The here proposed alternative explanation, deducible for a fundamentally oriented world, basically involves in-
formation, a natural phenomenon of information. It is information on matter, which is around matter and could 
be identified with gravitation. 

Up to the present time information is not handled on the basis of recognized fundamental physical laws. 
However science has learned to deal with information mathematically and in the field of applications we are 
now witnessing a real revolution of information technology. Since we are using natural laws when dealing with 
modern information technology, it is claimed here that nature can deal with information and applies it herself 
because of its incredibly elegant possibilities. The paradigm change towards a fundamentally irreversible world 
has automatically conduced us to a natural environment controlled and dominated by information, information 
on matter. This is credible because we are presently learning about the amazing practical possibilities of infor-
mation for technology. 

Science philosopher Karl Popper [46] insisted that a new hypothesis has to suggest the conditions, under 
which it can be falsified, proven to be incorrect, before being named a new theory. Three falsification conditions 
can immediately be named for the here advanced arguments for a fundamentally irreversible world: The here 
proposed concept of a fundamentally irreversible world is incorrect, 

1) if it can be shown that a natural process, how simple it may be, can entirely be reversed in time; 
2) if it can be shown that significantly diluted energy maintains an identical working ability as concentrated 

energy; 
3) if the presently used statistical time arrow can be derived from time invertible physics without mathemati-

cally throwing away information (energy). 
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Figure 8. The new “symbolic form”, the intellectual program for understanding physics is a 
fundamentally dynamic energy-time world, a world of action. It is respecting the role of 
space for energy and considering an information self-image of matter (three basic claims on 
dark background in diagram). It is shown how from these derived three basic postulates es-
sential conclusions could be deduced for quantum and space phenomena and contexts. 

 
Under such conditions one can talk of a new theory, the theory of a fundamental oriented and irreversible 

world. In turn, when above conditions 1) to 3) cannot be fulfilled, this is strong evidence against a fundamental-
ly time-invertible world, as it is presently sustained in physics. 

The fact that essentially one single paradigm change, the claim of fundamental orientation and irreversibility 
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in nature, even derivable from the principle of least action [1], can eliminate well known and perturbing para-
doxes of physics, deserves attention. And the finding that such a small (but significant) change can yield a re-
markably different view of the universe should induce modesty with respect to our present scientific under-
standing of nature. It is anyway remarkable that the concept of a fundamentally time invertible physics with all 
its resulting paradoxes and irrationalities could become so powerful over such a long time, even though every-
thing is changing in the universe and nothing actually proved to be entirely time invertible. 

After all, it is well known that the Franciscan friar William of Ockham from the 14th century suggested that 
“one should not admit more causes of natural things than is sufficient to explain them”. This rule of thumb for 
scientists, also known as Ockham’s razor, would clearly favour the “dynamic” energy approach presented here 
since it is essentially based on a single paradigm change with the consequence that essential paradoxes, irratio-
nalities and deficiencies can be eliminated or questioned (quantum paradoxes, action without cause, fundamental 
uncertainty, four-dimensional space-time concept, time travel, inflation of empty space, dark matter, dark energy, 
inability to explain consciousness and spirit materialistically). Also entropy laws for reversible and irreversible 
thermodynamics can be logically derived. The inability to do that is a significant drawback for present physical 
understanding within a time–invertible fundamental physical nature. 

The concept proposed here is a working frame, which, of course, has to be deepened in nearly every respect. 
Only time (flow of action) can facilitate that. It promises a drastically simplified and rational understanding of 
nature, though with significant new challenges. The natural matter-related information system, looked upon as 
gravitation, which links quantum processes with cosmological phenomena, needs to be deciphered and self-or- 
ganization of information explored. We may learn, that also nature around us has grown via a revolution of in-
formation technology and that an information based, much more logic and intelligent universe, the Self-Image 
universe”, may replace the Big Bang scenario (compare also [10]). 

And we may finally answer a question, which, beginning with Heraklitus of Ephesus in the 6th century BC, 
ancient natural philosophers have already been asking. They saw that everything in their environment was 
changing and were wondered what may be conserved (and still be related to the observed changes) [47] [48]. 
Now we could answer saying: it is energy with its tendency to decrease its presence per state (relation (1)). 
Energy is conserved but simultaneously deeply involved in changes. In contrast, the conventional, presently ap-
plied energy concept, energy as a scalar quantity, with the ability but no interest to do work, did not conserve an 
obvious relation to change. It somehow forgot the point of departure, from where the search for the energy con-
cept originally started. It became therefore, in some way, a dead end road, facing more and more paradoxes and 
irrationalities. The here presented concept of a fundamentally oriented world offers an alternative open road to 
be explored. 
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Abstract 
The spacetime lattice model involves time lattice (static lattice) model and space lattice (dynamic 
lattice) model, both of which have the same lattices’ domains and the same fractal structures. The 
behaviors of the space field obey the uncertainty relations, which gauge invariance shows the 
space field is a gauge field, making the electromagnetic field, gravitowagnetic field and the fer-
mion field be gauged, and the Lorentz condition and Lorentz gauge are the intrinsic attributes of 
the spacetime. The quantization of the classical space field produces S bosons of spin-1, which 
stimulated states by charges and masses are respectively photons and gravitons. The S bosons in 
thermal excitation are immeasurable and their energies may be dark. The principle of partition of 
independent freedom degrees regularizes the degrees for all particles including neutrino, which 
must have mass. By the S bosons, we interpret newly the virtual photons. Using the spacetime lat-
tice model, we investigate the breaking of the symmetry of the gradient fields and the symmetry of 
the curl fields for the potential functions of the space field, and the creations and the annihilations 
of the dark photons and the dark gravitons. The complexity requires us to rename the electroweak 
phase transition as electro-gravito-weak phase transition. Finally, antiparticles are discussed. Our 
approach for the lattice models is a kind of renormalization group theory, signifying the breaking 
of symmetries can be renormalized. 

 
Keywords 
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1. Introduction 
In February 2016 scientists announced that they detected gravitational waves by observation of a binary black 
hole merger [1]. Einstein general relativistic theory and the quantization of the waves become once more hot 
topic. How should we think about the geometry of spacetime? In our opinion, the framework of Newton’s me-
chanics refers two basic concepts: 1) Absolute space and absolute time; 2) For an object, we can know it’s ac-
curate mechanical parameters such as position, momentum, and moment by solving motion equation, i.e., any 
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one metric space can provide us infinitely accurate observed information about these parameters. Einstein’s spe-
cial relativistic theory denied Newton’s first concept: there is no such thing as either absolute space or absolute 
time, and there exists only the mixture of the space and the time. However, his general relativistic theory coin-
cides exactly with Newton’s second concept. He imagined that if two persons fell downward freely, they 
wouldn’t feel their own weights, and couldn’t discern whether they were falling together toward, as if they were 
in a stationary state, and their freely falling reference frame was in a universe without gravity. Such equivalence 
description neglects the interaction of the individualities, thus all quantum effects of particles have been aban-
doned as the mass of a person is far greater than a particle’s. There is now a logical paradox: on one hand, the 
interaction between particles arising from their masses is absolutely eliminated by theorists; on the other hand 
the gravitons as a type of particle relating to the masses and coming from the quantization of the general relati-
vistic theory are invariably examined by experiments. Yet, on contrary to Einstein’ theory, Maxwell theory can 
represent the electromagnetic field produced by charged particles, in favor of its quantization. 

Weak interaction doesn’t mean no interaction. To omit weak gravity will thwart our investigation of the inte-
racting forms originated from masses. Einstein argued that spacetime should be warped out of gravity before the 
establishment of Maxwell laws of electromagnetism, and he spent most of his last 25 years to unify vainly his 
theory with Maxwell’s. It can be understood that the evolution of universe was not well enough known in the 
1900s and early 1905s. According to the standard model of today [2]-[5], mass has no priority to determine the 
property of spacetime, which is also proved in this paper. We may treat the spacetime as flat like what Maxwell 
did. To accept this point of view doesn’t say we must turn back to the framework of Newton’s mechanics. We 
notice that there exists unique space field together with unique spacetime. No matter whether for electromagnet-
ic force or for gravity, their corresponding ground states are commonly the ground states of the space field. In 
this sense, the electromagnetic field and the gravitational field all are the stimulated states of the space field. 
Furthermore, mass not only evokes gravitational field, but also generates wagnetic field. A moving object with 
mass will be exerted by Lorentz-force-like in the wagnetic field [6].  

The discovery of 3 K microwave background radiation makes us realize there was an early universe as ex-
plained by the standard model [7] [8]. The model indicates that the universe has undergone a thermal equili-
brium state, which allows us to determine a list of elements. In fact, no one was able by himself to watch such 
natural scene of the early universe. It is impossible that there is an ideal model to illustrate completely universe, 
and applicable simplification should be done. For this reason, the standard model has been believed to be an ex-
cellent approach to nature so far. 

Based on the model, we set up time lattice model and studied on time phase transition, the quanta of the time 
field are just Higgs with masses, they and the net charges occur simultaneously after the time phase transition 
[9]. There are two kinds of spacetime, one is mathematical, including nothing. Another is of physics, having its 
dual space: momentum-energy. We cannot mention the time phase transition for the mathematical one, where 
time direction is globally and locally allowed to be symmetry. Born out of the universe expansion, a physical 
space itself, even more than the mathematical one, have to be full of energies, heat diffusion, and temperature 
distribution. We proved the uncertainty relations are the intrinsic attributes of the spacetime [10]. The relations 
arise from the duality of the natural bases of the relevant spaces. In terms of mathematics, the inner product of 
the dual bases is always constant, no matter for which coordinate system.  

A stable physical space should have a constant density of energies. This is in fact a dynamic stability as the 
energies fluctuations, which were proved by the detection of microwave radiation background [11]-[13]. Consi-
dering this situation, we construct a physical space lattice model making up of infinite minimal spaces with 
nonzero volumes due to the uncertainty principle. We put a lattice in each minimal space to represent it. The al-
ternation of the energies can be thought of as the change in the space volume keeping constant density. Such 
change is equivalent to that the fluctuation force drives the lattices to wiggle around their equilibrium positions, 
while the space is rigid. Namely, all of the minimal spaces have the identical volumes, and the lattices are suc-
cessively oscillating. Their equilibrium sites can serve as the coordinate lattices, which determine the fractal 
structure of the spacetime [14]. When time is in global ordered state, the lattices states cooperate to form har-
monic waves, called space fields, and its quantization gives massless bosons, called S bosons. There are four 
types of S bosons, corresponding respectively to the four types of Higgs particles [9]. The formula  

2 2 2 2 2d d d d 0c t x y z− − − =  itself shows the spacetime gauge property, and the light speed c should be essential 
attributes for the physical spacetime, which can be understood from two hands: On one hand, the motion trail of 
a stationary spacetime point in the general relativistic theory is the world line with ct. On the other hand, the re-
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levant space point is just the equilibrium position of the lattices of the space lattice model. The two descriptions 
should be equivalent. This implies that if there is no photon, the real moving objector is the waves of the space 
field, producing the S bosons that propagate at light speed. In other word, the velocity of the S bosons is the 
light speed. Furthermore, the wave rate does be the rate with respect to the lattice equilibrium sites, which are 
also the coordinate positions for all inertial reference frames, such that the space field waves velocity, i.e. the 
light speed, is constant for all inertial system. 

In Section 2, we prove at first that the Lorentz transformation can’t change the uncertainty relations, then in-
troduce classical space field, which quantization leads to S bosons. By the S bosons, we explain newly the vir-
tual photons of the quantum electromagnetics. In Section 3, we propose the principle of partition of independent 
freedom degrees, it regularizes the degrees for all particles. We reveal the space field makes the conventional 
electromagnetic field and the fermion field be gauged, and the Lorentz condition and the Lorentz gauge are the 
intrinsic attributes of the spcetime. Combining the time field, we discuss the creations and the annihilations of 
some quantum fields, there exists dark photons and dark gravitons. Finally, antiparticles are discussed. Section 4 
is conclusion remark. 

The parameters applied in this paper have the same meanings and definitions as that of the conventional 
quantum field theory, if there is no particular expatiation. 

2. Theory 
2.1. The Gauge Invariance of Uncertainty Relations 
Suppose: 1. The Cartesian coordinate systems used by the observes K and K’ are such that the axes of one are to 
parallel to the relevant axes of the others, and 2. Their relative motion is confined in the direction of one of the 
axes, notate the x-(or x'-)axis, the velocity of K’ with respect to K being equal u. By Lorentz transformation  

( ) 2 21x x ut u c′ ′= + − , ( )2 2 21t t u c x u c ′ ′= + −  , and 

operators’ transformation ( ) ( )d d d dx x x x t t x′ ′ ′ ′∂ ∂ = ∂ ∂ + ∂ ∂ , we get differential expressions 

( )
2 2

1d d d
1

x x u t
u c

′ ′= +
−

, 22 2

1
1

u
x x tcu c
∂ ∂ ∂ = − ′ ′∂ ∂ ∂ −

                    (1) 

Similarly,  

22 2

1d d d
1

ut t x
cu c

 ′ ′= + 
 −

, 
2 2

1
1

u
t t xu c
∂ ∂ ∂ = − ′ ′∂ ∂ ∂ −

                   (2) 

From (1) and (2), we have 
2

2 2 2 2
1d d d d d

1
u ux x x u t t

x x t x tu c c c
 ∂ ∂ ∂ ∂ ∂′ ′ ′ ′= − + − ′ ′ ′ ′∂ ∂ ∂ ∂ ∂−  

                    (3) 

In terms of mathematics, the duality and the orthogonality of the natural bases are 

d d 1x t
x t
∂ ∂′ ′= =
′ ′∂ ∂

, d d 0t x
x t
∂ ∂′ ′= =
′ ′∂ ∂

                             (4) 

By Equation (4), Equation (3) turns into 

( )2 2
2 2

1d 1 1
1

x u c
x u c
∂

= − =
∂ −

                                 (5) 

Namely, 

d d 1x x
x x
∂ ∂ ′= =

′∂ ∂
                                       (6) 

With the same reason, we obtain 

d d 1t t
t t
∂ ∂ ′= =

′∂ ∂
                                       (7) 
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We can also get the same proof, exchanging u, x', and t' for −u, x, and t, respectively in the above equations 
due to the relativity. According to reference [10], the uncertainty relation depends on the duality of the natural 
bases, Equations (6) and (7) show that Lorentz transformation can’t change the uncertainty relations, i.e., the 
behavior of the space field obeys the same law in different inertial reference frames. In a word, Lorentz gauge is 
the intrinsic attribute of the spacetime. 

2.2. Classical Space Field 
The gradient fields of the potential functions of the space field are symmetric, tϕ± ± ∂ ∂A ; the curl fields are 
also symmetric, ±∇× A ; where ϕ  is the scalar potential, and A  the vector potential. It seems as if there 
were symmetric potential functions ϕ±  and ±A  [6], that is not true at all! The potential functions are unique, 
ϕ  and A . The total intensity of each kind of the fields is zero because of the symmetry. As the following ex-
pressed, the potential functions satisfy wave equations, which solutions are traveling waves at light speed. Let 

1 2= +Ω Ω Ω  denote the gradient field, 1 2= +Θ Θ Θ  the curl field. The symmetric fields are successively 

1 2
1 1,
c t c t

ϕ ϕ∂ ∂
= −∇ − = ∇ +

∂ ∂
A A

Ω Ω                             (8) 

1
1 1 1

1 4π,
c t c
∂

= ∇× ∇× = +
∂

A j
Ω

Θ Θ                             (9) 

2
2 2 2

1 4π,
c t c
∂

= −∇× ∇× = +
∂

A j
Ω

Θ Θ                           (10) 

1 2
1 2

1 1,
c t c t
∂ ∂

∇× = − ∇× = −
∂ ∂
Θ Θ

Ω Ω                           (11) 

1 2 0∇ ⋅ = ∇ ⋅ =Ω Ω  (passive fields)                           (12) 

Since there is neither charge nor mass, so 1 2 0= =j j . By (8) and (12), we get 
2

2
2 2

1 1 1 0
c t c tc t

ϕ ϕϕ ∂ ∂ ∂ ∇ − + ∇ ⋅ + = ∂ ∂∂  
A                          (13.1) 

For the space field 
2

2
2 2

1 0
c t

ϕϕ ∂
∇ − =

∂
                                   (13.2) 

Equation (13.2) is a hyperbolic differential equation, describing the wave of the space field. Equations (13.1) 
and (13.2) result in Lorentz condition 

1 0
c t

ϕ∂
∇ ⋅ + =

∂
A                                      (14) 

Equation (14) manifests the Lorentz condition is the intrinsic attribute of the spacetime. From (9) 

( ) 11
c t
∂

∇× ∇× =
∂

A
Ω

                                   (15) 

Using the algebraic transformation, the left hand of (15) becomes ( )2−∇ +∇ ∇ ⋅A A , combining (10), we 
change (8) into 

2
2

2 2
1 1 0

c tc t
ϕ∂ ∂ −∇ + +∇ ∇ ⋅ + = ∂∂  

AA A                          (16.1) 

Using (14) and (16.1), we obtain 
2

2
2 2

1 0
c t

∂
∇ − =

∂
AA                                    (16.2) 

The meaning of (16.2) is analogue to that of (13.2). For 2Ω  and 2Θ , we can derive the same consequences 
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as (13.2) and (16.2). 

2.3. The Quantization of the Space Field 
There is no current since there is neither electricity charge nor mass such that the equation of the space field be-
haves as 

0Aµ
µ ν∂ ∂ =                                         (17) 

where the derivative operator ( )0 ,x xµ
µ∂ = ∂ ∂ = ∂ ∂ ∇ , 1c= =� , 0

0E P P= = , P i xµ
µ = ∂ ∂ , ( ),Aµ ϕ= A , 

0,1, 2,3µ = , corresponding to t, x, y, z, respectively. Since the wave propagates at light speed there is no inertial 
mass, the equation is like in form Klein-Gorden (K-G) field equation with mass m = 0. Applying mechanically 
the solution of the K-G equation, we express Aµ  as 

( )
( ) ( )3

3

1d e e
2π 2

ikx ikxA k a a
k

µ µ µ
− + = + ∫ k k                         (18) 

where the wave vector is 0 kk kω= = . The commutation relations for the creators and the annihilators are 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) [ ]

3

3
0 0

0

, ,

, ,

, , , 0

j j jj

j

a a

a a

a a a a a a

δ δ

δ

+
′ ′

+

+ + +

 ′ ′= − 
 ′ ′= − − 
   ′ = = =   

k k k k

k k k k

k k

                            (19) 

Adjusting the coordinates, we introduce new operators: ( ) ( ) ( ), ,a aµ µε λ λ=k k k , ( )0,1, 2,3λ = , where
( ),µε λk  is unit vector, k  is parallel to the z-axis and perpendicular to the x-, y-axes. Since the Lorentz con-

dition and the field action are invariant for the special relativistic theory, we have 

( ) ( ) ( )
( ) ( ) ( )

3

3

, , , , 1, 2,3

,0 , , 0

a j a j j

a a

δ

δ

+

+

 ′ ′= − = 
 ′ ′= − − 

k k k k

k k k k
                         (20) 

Other commuting operators go away. Equation (18) then translates into 

( ) ( )
( )

( ) ( ) ( )3

3

1d , , e , e
2π 2

ikx ikxA x A x k a a
k

λ
µ µ µ

λ λ
ε λ λ λ− + = = + ∑ ∑∫ k k k             (21) 

If 1λ =  or 2, ( )A xλ
µ  obeys Lorentz condition, 0Aµ λ

µ∂ = , and ( ), 0k µ
µε λ =k . If 0λ =  or 3, ( )A xλ

µ  
violates the condition, so the S bosons are transversal particles of spin-1. 

2.4. Stimulated States and Virtual Photons 
The properties of the stimulated fields are described by reference [6]: Electricity charges stimulate the space 
field to produce electromagnetic field, which quanta are photons carrying electromagnetic forces. Masses evoke 
gravitowagnetic field, which quanta are gravitons carrying the gravitowagnetic forces. Besides the charges and 
masses, heat also can make S bosons be in the states of higher energies than the ground states’. The intensities of 
the total gradient field and the total curl field of the potential functions vanish still, if there is only the thermal 
excitation. The S bosons, except photons and gravitons, therefore, even though being the thermal stimulated 
states, don’t observably carry force such as the electromagnetic force or the gravitowagnetic force. In this sense, 
the S bosons can’t be directly measured, and their energies maybe dark. The total energy E of the field is 

( )1 2E nω
ω

ω= +∑ �                                    (22) 

where �  is Plank constant, ω  angle frequency, nω  the number of S bosons with frequency ω , ( )1 2 ω�  
the ground state energy. The average number of the nω , nω , is determined by Plank distribution function 

( )1 exp 1Bn k Tω ω= −  �                                 (23) 

Introducing the concept of S bosons, the interaction between electrons can be newly interpreted as the fol-
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lowing: The first electron 1e  stimulates a S boson making it become the first photon 1q , the 1e  then loses its 
partial energy, denoted by ( )1e −  

( )1 1 1e S q e+ → + −                                   (24) 

Similarly, for the second electron 2e  and the second photon 2q , 

( )2 2 2e S q e+ → + −                                  (25) 

The ( )1e −  and the 2q  exchange energy, the 2q  loses energy and turns back to be S boson again. The 
( )1e −  obtains energy to become 1e′ , 

( )1 2 1e q S e′− + → +                                   (26) 

For the ( )2e − , the same process is 

( )2 1 2e q S e′− + → +                                   (27) 

where the 1q  and 2q  are just the virtual photons. 

3. Discussion 
3.1. The Principle of Partition of Independent Freedom Degrees 
The world we are living in is a global ordered-time spacetime after the electroweak phase transition, while the 
fractal structures disappear. Different from those spaces of extra dimensions [15] [16], the fractal structures of 
higher dimensions can return to the 4-dimensional spacetime by the scaling law [14]. The fractal dimensions 
used in the lattice models are called box-counting dimensions, generally defined as [17] 

( )
0

log
lim

log
N F

D δ

δ δ→
=

−
                                  (28) 

where F is any non-empty bounded subset of nR  and ( )N Fδ  is the smallest number of sets of diameter at 
most δ , which can cover F. For a lattice model the ( )N Fδ  is the total number of the lattices’ domains in a 
sub-block [14]. For the self-similar transformations the D is just the similarity dimension. The scaling law regu-
larizes a lattice domain to be an open set of one unit length diameter. These regularities are still effective after 
the electroweak phase transition. There are two types of lattices in each domain: dynamic lattice and static lat-
tice, the latter positions at the former equilibrium site. The static lattice model is insisted of the static lattices, the 
dynamic lattice model is made up of the dynamic lattices. The dynamic lattice model can draw the space field, 
which acts as a background field for the other fields being applicable to the static lattice model. For this reason, 
we also call the dynamic lattice model as the space lattice model. The two kinds of models correspond to the 
same spacetime because of the dimension definition. Let coordinates x' denote the dynamic lattices, x do the 
static lattices. When there is not any other field, the potential functions ( )A x′  and ( )A x  are identical for the 
space field (see subsection 2.2). 

The principle of partition of independent freedom degrees is that there are (D + 2) freedom degrees to be par-
titioned in the (D + 1)-dimensional spacetime: D’s space’s, one time’s, one spin’s, (D + 1) of which each par-
ticle must own. The Higgs particle always occupies independently the time’s degree. After the electroweak 
phase transition the spacetime becomes 4-dimensions (D = 3), the Higgs has three spatial degrees for the propa-
gation of its waves. Hence, the Higgs is a scalar boson. The space field lies in the dynamical lattice model dif-
ferent from the static lattice model, in which the time field is set. Because of this, a S boson is independent of 
the time’s degree and has one spin’s degree, besides three spatial degrees. Other particles are accommodated to 
the static lattice model, and each of them has three spatial degrees and one spin degree. Each of them is forced to 
couple with the Higss particles to share (not independently) the time’s degree, which causes masses. According 
to this principle a neutrino or an antineutrino must have mass, no matter how weak their coupling with the Higgs 
may be. Photons and gravitons as the stimulated states of the S bosons have the same degrees as the S bosons’. 

3.2. The Nature of the Lorentz Gauge 
The so-called conventional electromagnetic field is the field stimulated by charges, which can be describe by 
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Maxwell theory. When the space field isn’t omitted the potential function of the electromagnetic field is as-
signed as ( )A xµ ′ , and the potential function of the conventional electromagnetic field as ( )A xµ , while the 
thermal stimulated state of space field is neglected. It should be emphasized that only the ( )A xµ  relates to the 
electricity current. As the field stimulated by charge is far stronger than the thermal stimulated space field, we 
expand the ( )A xµ ′  in a series around the x, taking its linear term, 

( ) ( ) ( ) ( )
x x

A x A x A x x xµ
µ µ µ ′=

 ′ ′ ′= + ∂ ⋅ −                           (29) 

Only the second expansion term relates to the thermal stimulated space field independent of the current. Re-
call the definition of the derivative of function ( )f x  at the x 

( ) ( ) ( )
0

d
lim

d x

f x f x x f x
x x∆ →

+ ∆ −
=

∆
                             (30) 

Clearly, the points x x+ ∆  and x are in the same domain if 0x∆ →  but zero. This admits  
( ) ( )

x x
A x A xµ µ
µ µ′=

 ′∂ = ∂  . Since the scaling law defines the distance of nearest neighbors as one unit length  

[14], thus 0 1 2x x′< − < . We make the domain be so small that the following approximate expression holds 

( ) ( ) ( ) ( ) ( )A x A x A x A x A xµ µ
µ µ µ µ µα α′  ≅ + ∂ ⋅ = + ∂ ⋅                    (31) 

where α  is constant and 0 1 2α< < . For the conventional electromagnetic field, the Lorentz gauge trans-
formation is 

( ) ( ) ( )A x A x xµ
µ µ θ′ = + ∂                                 (32) 

Equations (31) and (32) say the same field, hence, we have 

( ) ( )A x A xµ µ′ ′=                                    (33) 

Here ( )A xµ′  is the potential function including the conventional electromagnetic field and the thermal sti-
mulated space field. Moreover, from (31) and (32):  

( ) ( ) ( )x A x A xµ µ µ
µ µθ α α ∂ = ∂ ⋅ = ⋅ ∂                            (34) 

where ( )A xµ
µ∂  is the derivative of the ( )A xµ ′  with respective to the x' at the point x' = x. The second deriv-

ative of the ( )A xµ ′  at the x is 

( ) ( )
x x

A x A xµ µ
µ µ µ µ′=

 ′∂ ∂ = ∂ ∂                               (35) 

Since only the ( )A xµ  of the first term of Equation (32), which is the potential function of the conventional 
electromagnetic field, refers to the current, the ( )A xµ  in this derivative term should be regarded as the poten-
tial function of the thermal stimulated space field (the x is the equilibrium position of the x', so the x can be 
viewed as a special point of the x' system; inversely, the x' can’t belong to the x system relating only to the equi-
librium sites), so Equation (35) is the wave equation of the space field similar to Equations (13.2) and (16.2). 
From Equations (34) and (35), we get 

( ) 0xµ
µ θ∂ ∂ =                                      (36) 

This is just the Lorentz gauge transformation for the conventional electromagnetic field. Equations (32) and 
(36) result in the Lorentz condition 

( ) ( ) 0A x A xµ µ
µ µ′∂ = ∂ =                                 (37) 

We understand now that the Lorentz gauge is just the intrinsic attribute of the spacetime rather than an artifi-
cial additional condition. In addition, the ( )xθ  can also describe the space field because of its linear relation 
with the ( )A xµ . 

The space field behaves in the way of the symmetry U(1), and its action on a fermion field Ψ  is represented 
as 

( )e iQe xθ−′Ψ = Ψ                                     (38) 
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where Qe is the electricity charge of the fermion, Equation (38) is called the gauge transformation of the fermion 
field. The space field guarantees that the interaction form remains the same when the fermion field takes differ-
ent phase factors at different spacetime positions. Hence, we should consider the space field as Lorentz gauge 
field. It is the space field that makes the conventional electromagnetic field and the fermion field become gauge 
fields. With the same reason, the gravitowagnetic field is also a gauge field. 

3.3. Dark Photons and Dark Gravitons 
The critical temperature cT  of the time phase transition is given by reference [9], which shows if the tempera-
ture T is higher than cT , the particles number equals the antiparticles number, the total charge is neutral, so 
there is no stimulated field by the charges. When time becomes global ordered, in the temperature region 

ew cT T T< ≤ , ewT  is the turning point of the electroweak phase transition, the particles number attains ascen-
dant and four types of time fields (Higgs particles) emerge, accompanying four types of space fields with the 
same fractal structures as the time fields’. Thus, the symmetry of the gradient fields and the symmetry of the curl 
fields are together broken, the net charges and the masses stimulate simultaneously and separately four types 
electromagnetic fields and four types of gravitowagnetic fields [6]. The photons born in the inner space of a 
sub-block or a block, concern only short-range interactions, they may be the dark photons [18] [19]. The gravi-
tons produced in the same inner spaces have only limited interacting range, and may be called dark gravitons. 
The D-dimensional ( 2 3D< < ) inner space of a sub-block and the D4-dimensional ( 416 81D< < ) inner space 
of a block defer from the 4-dimensional spacetime, corresponding separately to the spacetime of ( )1D +  di-
mensions and the spacetime of ( )4 1D +  dimensions, while the Lorentz gauge aren’t available. The subsequent 
symmetries may acquire new gauge fields bring about new particles. At the same time, the symmetry SU(2) in 
the fractal structures generates particles W + , W − , and Z. All fields are of localities due to the sizes of the 
sub-blocks and the blocks are confined. We don’t exclude the dark photons and the dark gravitons participate in 
the interactions among the particles such as W + , W − , Z, e+ , and e−

, or other unknown particles. When 
ewT T≤  there are no fractal structures with the disappearing of the sub-blocks and the blocks, the correlation 

lengths of the lattices states become infinity. Three types of Hggis particles, three types of photons (dark pho-
tons), and three types of gravitons (dark gravitons) are annihilated, the rest, the fourth types of them become 
new types: the Higgs particles lead to masses [9], the gravitowagnetic field together with the electromagnetic 
field form in the 4-dimensional spacetime. Their quanta, the gravitons and the photons, possess infinite forces 
ranges, the dark photons and the dark gravitons turn possibly into electrons and positrons in their annihilation 
process. In this sense, we may rename the transition as electro-gravito-weak phase transition. 

3.4. Antiparticles 
For the time field, the p-time state relates to particles, the n-time state to antiparticles [9]. Since the space field is 
independent of the time field, a S boson is just its antiparticle, so do the photon and the graviton. Conversely, an 
antineutrino and a neutrino can be distinguishable from one another as they rely on the time field. 

4. Conclusion 
We persist that the solutions for all of phenomena can be found in the spacetime. The quantization of the space-
time gives rise to the Higgs particles and the S bosons, which excitation states relate to dark photons, photons, 
dark gravitons, and gravitons. The symmetric characteristics of the spacetime lead to a series of gauge fields, il-
lustrating the intrinsic attributes of the spacetime. The spacetime lattice model contains the time lattice model 
and the space lattice model, and its fractal structures provide us a chance to discover new symmetries, introduc-
ing new gauge fields and chasing new particles. 
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Abstract 
General relativity (GR) and gravitation in flat space-time (GFST) are covariant theories to describe 
gravitation. The metric of GR is given by the form of proper-time and the metric of GFST is the flat 
space-time form different from that of proper-time. GR has as source the matter tensor and the 
Einstein tensor describes the gravitational field whereas the source of GFST is the total energy- 
momentum including gravitation and the field is described by a non-linear differential operator of 
order two in divergence form. The results of the two theories agree for weak gravitational fields to 
the order of measurable accuracy. It is well-known that homogeneous, isotropic, cosmological 
models of GR start from a point singularity of the universe, the so called big bang. The density of 
matter is infinite. Therefore, our observable universe implies an expansion of space, in particular 
an inflationary expansion in the beginning. This is the presently most accepted model of the uni-
verse although doubts exist because infinities don’t exist in physics. GFST starts in the beginning 
from a homogeneous, isotropic universe with uniformly distributed energy and no matter. In the 
course of time, matter is created out of energy where the total energy is conserved. There is no 
singularity. The space is flat and the space may be non-expanding. 

 
Keywords 
Gravitation, Cosmology, Flat Space, No Singularity, Non-Expanding Universe 

 
 

1. Introduction 
Einstein’s general theory of relativity is at present the most accepted theory of gravitation. The theory gives for 
weak gravitational fields’ agreement with the corresponding experimental results. But the results for homoge-
neous, isotropic, cosmological models imply difficulties. So, the universe starts from a point singularity, i.e. the 
universe starts from a point with infinite density of matter. The observed universe is very big. Hence, the space 
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of the universe must expand very quickly which implies the introduction of an inflationary universe in the be-
ginning.  

GFST has a pseudo-Euclidean geometry and the proper time is defined similar to that of general relativity, i.e. 
space-time and proper time are different from one another. GFST starts from an invariant Lagrangian which 
gives by standard methods the field equations of gravitation. The source is the total energy-momentum tensor 
including gravitation. The energy-momentum of gravitation is a tensor. The field is described by non-linear dif-
ferential equations of order two in divergence form. The theory is generally covariant. The gravitational equa-
tions together with the conservation law of the total energy-momentum give the equations of motion for matter. 
The application of the theory implies for weak gravitational fields the same results as GR to experimental accu-
racy, e.g. gravitational redshift, deflection of light, perihelion precession, radar time delay, post-Newtonian ap-
proximation, gravitational radiation of a two-body system and the precession of the spin axis of a gyroscope in 
the orbit of a rotation body. But there are also differences of the results of these two theories. GFST gives non- 
singular, cosmological models and Birkhoff’s theorem doesn’t hold. GFST may e.g. be found in the book [1] 
and in the cited references. Additionally, non-singular, cosmological models are e.g. given in the articles [2]-[6]. 

Subsequently, homogeneous, isotropic, cosmological models will be summarized. Let us use the pseudo- 
Euclidean geometry. The received universe is non-singular under the assumption that the sum of the density pa-
rameters is greater than one, e.g. a little bit greater than one. This implies that the universe may become hot in 
the course of time. It starts without matter and without radiation and all the energy is gravitational energy. Mat-
ter and radiation emerge from this energy by virtue of the conservation of the total energy. The space is flat and 
the interpretation of a non-expanding space is natural. But it is also possible to state an expansion of space by a 
suitable transformation as consequence of general covariance of the equations. For a zero cosmological constant 
matter increases for all times whereas radiation increases and the universe becomes hot. After that radiation de-
creases to zero as time goes to infinity. Short time after the universe has reached the maximal temperature the 
production of matter is finished, i.e. the universe appears nearly stationary. Under the assumption of a positive 
cosmological constant, a certain time after the beginning, matter goes to zero and the universe converges to dark 
energy as time goes to infinity. Hence, a universe given by GFST appears more natural than that received by GR 
which gives singular solution with infinite densities. The universe starts from a point and therefore space must 
expand to be in agreement with the observed big universe. The geometry is in general non-Euclidean but the 
observed universe implies a flat space.  

Section 2 contains GFST; Section 3 contains cosmological models and Section 4 contains the comparison of 
GFST and GR. 

2. GFST 
The theory of GFST is shortly summarized. The metric is the flat space-time given by 

( )2d d i
ijs xη= −                                       (1) 

where ( )ijη  is a symmetric tensor. Pseudo-Euclidean geometry has the form 

( ) ( )1,1,1, 1 .ijη = −                                      (2) 

Here, ( ) ( )1 2 3, ,ix x x x=  are the Cartesian coordinates and 4x ct= . Let 

( )det .ijη η=                                       (3) 

The gravitational field is described by a symmetric tensor ( )ijg . Let ( )ijg  be defined by 
kj j

ik ig g δ=                                        (4) 

and put similar to (3)   

( )det ijG g= .                                       (5) 

The proper time τ  is defined by 

( )2d d di j
ijc g x xτ = − .                                   (6) 
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The Lagrangian of the gravitational field is given by 

( )
1 2

/ / / /
1
2

mn ik jl ij kl
ij kl m n m n

GL G g g g g g g g
η

 −  = − −  −   
                        (7) 

where the bar/denotes the covariant derivative relative to the flat space-time metric (1). 
The Lagrangian of dark energy (given by the cosmological constant Λ ) has the form 

( )
1 2

Λ 8Λ GL
η

 −
= −  − 

.                                    (8)     

Let 
44πk cκ =                                          (9) 

where κ is the gravitational constant. Then, the mixed energy-momentum tensor of gravitation, of dark energy 
and of matter of a perfect fluid are 

( ) ( )
1 2

ln
/ / / /

1 1 1
8 2 2

i ir km kl mn i
kl mn j r j r jj

GT G g g g g g g g L Gδ
κ η

  −  = − +   −     
              (10a) 

( ) ( )1Λ Λ
16

i i
jjT Lδ

κ
=                                   (10b) 

( ) ( ) 2.i k i i
jk jjT M p g u u pcρ δ= + +                              (10c) 

Here, ρ, p and ui denote density, pressure and four-velocity of matter. It holds by (6) 
2 i j

ijc g u u= − .                                       (11) 

Define the covariant differential operator 
1

/

2

/
i kl mi
j jm l

k

GD g g g
η

  −
=   −   

                                 (12) 

of order two. Then, the field equations for the potentials (gij) have the form 
1 4
2

i i k i
j j k jD D Tδ κ− =                                     (13) 

where 

( ) ( ) ( )Λi i ii
j j j jT T G T M T= + + .                               (14) 

Define the symmetric energy-momentum tensor 

( ) ( )ij jik
kT M g T M=                                     (15) 

Then the equations of motion in covariant form are 

( ) ( )//

1
2

k kl
kl ii kT M g T M= .                                  (16) 

In addition to the field Equation (13) and the equations of motion (16) the conservation law of the total ener-
gy-momentum holds, i.e. 

/ 0.k
i kT =                                     (17) 

The field equations of gravitation are formally similar to those of GR where i
jT  is the energy-momentum 

without that of gravitation since the energy-momentum of gravitation is not a tensor for GR. Therefore, the dif-
ferential operator is the Einstein tensor which may give a non-Euclidean geometry 

The results of this chapter may be found in the book [1] and in many other articles of the author, as e.g. in [5]. 
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3. Homogeneous, Isotropic, Cosmological Models 
In this chapter GFST is applied to homogeneous, isotropic, cosmological models. The pseudo-Euclidean geome-
try (1) with (2) is used. The matter tensor is given by perfect fluid with velocity 

( )0 1, 2,3iu i= =                                      (18) 

and pressure p and density ρ  with 
,m r m rp p p ρ ρ ρ= + = +                                   (19) 

where the indices m and r denote matter and radiation. The equations of state for matter (dust) and radiation are 
10,
3m r rp p ρ= = .                                    (20) 

The potential are by virtue of (18) and the homogeneity and isotropy 

( ) ( )
( ) ( )

( )

2 1, 2,3

1 4 .

0
ij

a t i j

g h t i j

i j

 = =
= − = =
 ≠

                               (21) 

The four-velocity is by Equation (18) and Equation (6) 

( ) ( )1 20,0,0,iu ch= .                                   (22) 

Let 0 0t =  be the present time and assume as initial conditions at present 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 00 0 1, 0 ,0 0 0,, m m r ra h a H h h ρ ρ ρ ρ= = = = = =� ��                  (23) 

where the dot denotes the time derivative; 0H  is the Hubble constant and 0h�  is a further constant; 0mρ  and 
0rρ  denote the present densities of matter and radiation. It follows from (16) under the assumption that matter 

and radiation do not interact 

( )0
1 1

0
2 23 .,m m r r rh p ahρ ρ ρ ρ= = =                            (24) 

The field Equation (13) implies by the use of (21) the two nonlinear differential equations 

1 2
1 2

3
3 4

2
d 1 1 Λ2
d 2 3 2m r

a aa h c
t a c h

κ ρ ρ
κ

   = + +  
   

�
,                       (25a) 

( )1 2
1 2

3
3 4

2 2
d 1 1 Λ4
d 2 8 2m r

h aa h c L G
t h c c h

κ ρ ρ
κ κ

   
= + + −   

  

�
                   (25b) 

where 

( )
22

3 1 2
2

1 16 6 .
2

a a h hL G a h
a a h hc

    = − + +        

� �� �                          (26) 

The expression ( )1
16

L G
κ

 is the density of gravitation. The conservation law of the total energy is 

( ) ( ) 1
2 2

2

31 Λ
16 2m r

ac L G c
h

ρ ρ λ
κ κ

+ + + =                             (27) 

where λ  is a constant of integration. The Equations (25), (26) and (27) give by the use of the initial conditions 
(23) 

4
0

4 2
0

46 2
2 1

c th a
h a c t t

κ λ ϕ
κ λ ϕ

+
= − +

+ +

� �                                 (28) 

with 
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0
0 0

0

13 1 .
6

hH
H

ϕ
 

= + 
 

�
                                  (29) 

Integration of (28) yields  
1

3 4 22
02 1.a h c t tκ λ ϕ= + +                                  (30) 

Equation (27) gives for the present time 0 0t =  by the use of the initial conditions (23) 

( )
2

4 2 2
0 0 0 0

1 88 4 π
3 3 8πm r

cc k H
k

κ λ ϕ ρ ρ
  Λ

− = + + −  
  

.                      (31) 

It follows from (27) by the use of the standard definition of the density parameters of matter, radiation and the 
cosmological constant with the abbreviation  

( )0 m r mK Λ= Ω +Ω +Ω Ω                                  (32) 

the differential equation 

( )
2 2

2 3 60
024 2

02 1
m r m

Ha K a a a
a c t tκ λ ϕ

Λ
   = −Ω +Ω +Ω +Ω     + +

�
.               (33a) 

The initial condition is by (23) 

( )0 1a = .                                        (33b) 

The solution of (33) with (30) describes a homogeneous, isotropic, cosmological model by GFST. 
Relation (31) can be rewritten in the form 

24
0

02
00

8 12Ω .m
c K

HH
ϕκ λ  

− = 
 

                                 (34) 

A necessary and sufficient condition to avoid singular solutions of (33) is 

0 0K >                                           (35) 

which yields 
4 2

02 1 0c t tκ λ ϕ+ + >                                     (36) 

for all .t∈  Hence, condition (35) implies a non-singular solution for all ,t∈  i.e. we get a non-singular 
cosmological model. It exists a 1 0 0t t< =  such that  

( )1 0.a t =�                                          (37) 

Put ( )1 1a a t=  then it follows from (33a) with 1t t=  

2 3 6
1 1 1 0Ω Ω Ω Ω .r m m ma a a K+ + =                                 (38) 

It holds for all t∈  

( ) 1 0.a t a≥ >                                        (39) 

Subsequently assume 

( )1 0 1.a a =�                                       (40) 

Then we get by virtue of (38) 

0 1.K �                                          (41) 

It follows from (32) by virtue of (41) 

01r m mKΛΩ + Ω +Ω = +Ω ,                                (42) 
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i.e. the sum of the density parameters is a little bit greater than one. Hence, ( )a t  starts from a positive value, 
decreases to a small positive value, and then increases for all .t∈  

The proper time from the beginning of the universe till time t is 

( ) ( )1 21 d
t

t h t tτ
−∞

= ∫� .                                (43) 

The differential Equation (33a) is rewritten by the use of (30) in the form 
2

2 0
0 6 4 3

1 .m mrKa H
a h a a a Λ

Ω ΩΩ   = − + + + Ω      

�                         (44) 

Hence, the differential equation for the function a by the use of the proper time is 
2

2 0
0 6 4 3

1 d .
d

m mrKa H
a a a aτ Λ

Ω ΩΩ   = − + + + Ω      �
                        (45) 

This differential equation is by virtue of (41) and a not too small function ( )a t  identical with that of GR for 
a flat homogeneous, isotropic universe. Therefore, away from the beginning of the universe, the result for the 
universe agrees for GFST with that of GR.  

These results may be found in the book [1] and in the article [5]. 
The subsequent considerations can be found in the book [1]. 
We introduce in addition to the proper time τ�  the absolute time t′  by 

( ) ( ) ( )1 2
1 1d d d .t t

a ta t h t
τ′ = = �                               (46) 

This gives for the proper time in the universe 

( ) ( ) ( )22 2 2d d dc a t x ctτ  ′= − −                               (47) 

where dx  denotes the Euclidean norm of the vector ( )1 2 3d d ,d ,dx x x x= .  
Relation (47) implies that the absolute value of the light-velocity is equal to vacuum light-velocity c for all 

times t′ . 
The introduction of the absolute time t′  in the differential Equation (45) gives 

( )
2 2

2 3 60
02

d
d m r m

Ha K a a a
t a Λ

  = −Ω +Ω +Ω +Ω ′ 
.                       (48) 

Assume that a light ray is emitted at distance r at time et′  resp. at time de et t′ ′+  and it is received by the ob-
server at time t′  resp. at time dt t′ ′+ . Then, it follows 

( ) ( )d

d
d , d d d .

e e e

t t t
e e et t t

r c t c t t r c t c t t t t
′ ′ ′+

′ ′ ′+
′ ′ ′ ′ ′ ′ ′ ′= = − = = + − −∫ ∫  

These two equations imply 
d d et t′ ′= . 

The age of the universe since the minimal value of ( )a t  measured with absolute time t′  till now  

( )

( )( )

0

1 1 1

1

1 2

1 2

1 1 2 3 6
0

0

1 2
0

0 0

d 1d 1 d d
d

1 1d .

t
m r mt a a

m r ma

at t a a a K a a a
t H

a a K a
H H

′

Λ′

Λ

 ′ ′∆ = = = −Ω +Ω +Ω +Ω ′ 

≥ −Ω + Ω +Ω +Ω ≈

∫ ∫ ∫

∫
 

Therefore, the age of the universe measured with absolute time is greater than 
0

1
H

 independent of the den-  

sity parameters, i.e. there is no age problem. 
We will now calculate the redshift of light emitted from a distant object at rest and received by the observer at 

present time. It is useful to introduce the absolute time. Assume that an atom at a distant object emits a photon at 
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time et′ . It follows from relation (46) 

( )d dea t tτ ′ ′=� .                                    (49) 

Therefore, the energy of the emitted photon is 

( )44 0
d~ ~
d e

tE g a t E
τ
′

′− . 

The energy of the photon moving to the observer in the universe is constant by virtue of (47), i.e. by the con-
stant light velocity. Then, the corresponding received frequency is  

( ) 0ea tν ν′=                                       (50) 

where 0ν  is the frequency emitted at the observer from the same atom. The redshift is given by 

( )0 1 1 1.ez a tν ν ′= − = −                                                           (51)  

Light emitted at distance r at time et′  and received at 0r =  at time 0t′  has by the constant velocity of light 
the relation 

( )0 er c t t′ ′= − . 

This gives by Taylor expansion of ( )ea t′  in relation (51) 

( ) 22
0

0 02 2
0 0

d1 11
2 d

a tr rz H H
c cH t

 ′  = + −   ′   
 

Differentiation of Equation (48) yields by neglecting small expressions 

( )2
2
02

d 11
2d

e
m

e

a t
H

t Λ

′  ≈ − Ω +Ω ′  
. 

This gives the redshift formula  
2

0 0
3
4 m

r rz H H
c c

 = + Ω  
 

.                                (52) 

The detailed calculations of Formula (52) can be found in the book [1]. 
Higher order Taylor expansion gives higher order redshift approximations. 

4. Differences of Theory and Results of GFST and GR 
1) It is worth to mention that the space of the universe by GFST is also flat by the use of (6) with (21). This is 

important because the experiment implying flatness of space of GR uses Formula (6). This is the result of the 
flat space-time geometry of GFRS. The results for the universe of GFST and GR away from the beginning of the 
universe agree for a flat space. 

2) The metric of GFST is a flat space-time and the space of GFST is flat by the use of (1) and (2). The gravi-
tational field is a tensor of rank two and it is described in flat space-time. The left hand side is a non-linear dif-
ferential operator of order two and the right hand side is the total energy-momentum tensor including that of 
gravitation which is a tensor in GFST. Proper time is defined by the use of the gravitational field. The metric of 
GR is identical with the definition of the proper time which is formally identical with that of GFST. The ener-
gy-momentum of gravitation by GR is not a tensor. The left hand side of the field equations is a linear combina-
tion of the Ricci tensor and the right hand side of the differential equations is the matter tensor. Both gravita-
tional theories are covariant. The theory of GR implies in general a non-Euclidean geometry. Experimental re-
sults indicate that our universe is flat 

3) The space of the universe by GFST is by (1) and (2) non-expanding. Experimental results of Lerner [7] al-
so yield a non-expanding universe. The space of the universe by GR is singular in the beginning, i.e. it starts 
from a point. The observed universe is very big. Therefore, the space must expand and perhaps it implies an in-
flationary universe. 
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4) The universe received by GFST is non-singular, i.e. all the physical quantities are defined in contrast to 
those of GR where the universe starts with a singularity in the beginning, i.e. the space consists of a point with 
infinite density of matter. 

5) The redshift is an intrinsic gravitational effect by GFST whereas GR explains the redshift as Doppler effect 
of an expanding universe. 

6) Linear perturbation theory of cosmological models by GFST can give in the matter dominated universe a 
quick increase of the inhomogeneity (see [1], chapter 9.4) which may explain the galaxies whereas by the use of 
GR the increase of the inhomogeneity is much too slow. 

7) The theory of GFST gives non-expanding, cosmological models. Hence, gravitational waves cannot be 
generated in the beginning. In the beginning of the universe by GR, it can imply gravitational waves by virtue of 
inflation. Signals from the birth of the universe were measured by BICEP2. But shortly after this announcement 
the result was retracted. 

8) Studies of supernovae are used to measure distances in space. It seems that the ancient supernovae aren’t as 
distant as believed. This means that the cosmological constant is smaller than till now assumed. A vanishing 
cosmological constant (no dark energy) is perhaps not excluded if a modified Hubble law is used where it is as-
sumed that every object is surrounded by a medium (see [1] chapter 12.4 and article [8]). This gives a new red-
shift formula. 

9) A non-singular, non-expanding universe with vanishing cosmological constant is already studied in article 
[9]. 
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Abstract 
Nuclear chain reactions are, by now, commonly used in the nuclear reactors, and thus it seems that 
there is no basic problem in fission processes from the scientific point of view. However, the criti-
cality accident that occurred in JCO in 1999 suggests that one should carefully examine this acci-
dent from the nuclear physics point of view. Indeed the chain nuclear reactions should have taken 
place in the small area of space with 45 cm diameter disk times 30 cm height tank. In fact, when 
people carry the uranium nitrate solution into sedimentation tank, then this solution with ura-
nium should get into the critical state at the 45 of uranium nitrate solution. The root cause of the 
accident should not be very simple from the nuclear physics point, and it should be quite impor-
tant to examine why the uranium nitrate solution with 45 could have become critical. 

 
Keywords 
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1. Introduction 
The criticality accident that occurred in JCO in 1999 must be most serious, and it should not be very easy to 
understand why the nuclear chain reactions could proceed in a small area of space for a finite period of time. In 
this sense, it should be quite important to carry out the careful examination of criticality accidents from the 
nuclear physics point of view. It should be, of course, difficult to claim that the JCO accident can be a target of 
the scientific study since one cannot make the experimental study of the JCO type accidents. However, we 
believe that the basic mechanism of the criticality accident should be clarified why it could naturally occur in the 
small area of space. 

This criticality accident occurred when workers in JCO company were carrying the uranium nitrate solution 
(18.8% enriched uranium) into sedimentation tank [1]-[3]. Here, we should explain the working procedure 
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which is taken by the workers in JCO. First, they make the uranium nitrate solution which is composed of 2.4 kg 
U3O8 with the nitric acid of 1.7 in the stainless vessel. In addition, they add water to the uranium nitrate 
solution until the total volume becomes 6.5. Then, they carry the 6.5 solution into the sedimentation tank, and 
this working procedure is called one batch. 

The criticality accident should have occurred in the middle of the seventh batch since the workers noticed 
blue lights that should be due to the Cherenkov radiation. In fact, two of the workers suffered from the neutron 
radiation. 

A question should arise as to how the nuclear chain reactions could proceed within the small sedimentation 
tank (45 cm diameter, 60 cm high). There are, of course, some analysises of this criticality accident [4] [5]. 
However, these studies are mainly carried out for the computer simulation such that the total energy emitted via 
radiations can be reproduced in some way or the other. These investigations are, of course, very important in 
order to understand the accident cause. However, it is also important to carry out the study of the criticality 
accident from the nuclear physics point of view. 

In this paper, we carry out careful calculations of the criticality accident in terms of the multiple scattering 
theory. Here, we want to understand why the nuclear chain reactions can proceed in the small area of space. In 
particular, we trace the nuclear fission reactions (nucleon-nucleon collision together with nuclear fission) each 
by each, and we clarify the microscopic processes why and how the criticality accident occurred. As a result, we 
should understand some specific reasons why the chain reactions can proceed, and this can be done by making 
use of the mean free path which is the result of the nuclear multiple scattering theory. 

However, when we clarify how the criticality accident occurs, we face to the most difficult question as to why 
the criticality could stop. In this study, we find an answer for this question, though not necessarily sufficient. 
This mechanism of stopping criticality may be related to the quick settle of the uranium compound. 

As a result of our calculation, we find a possible dangerous situation which was thought to be due to the 8th 
batch, if it were carried into the sedimentation tank. We see that the estimated energy release after the virtual 8th 
batch should become the same order of magnitude as the Chernobyl nuclear accident. 

2. Nuclear Chain Reactions  
Nuclear fission reaction by incident neutrons can be written as [6]  

( )235
1 2U 2 ~ 3n A A n+ → + +                                (1) 

where 1A , 2A  are new nuclei which are produced in the reactions. In this reaction, there are two important 
points. The first one is concerned with two or three neutrons which are produced in the reactions. The second 
point is that the probability of this nuclear reactions is strongly based on the incident neutron energy, and the 
biggest cross section is for the incident neutron with almost zero energy (thermal energy). 

The chain reactions indicate that the produced neutrons should be absorbed by another 235U such that the 
nuclear fission can proceed further on. In addition, if the chain reactions continue to proceed without the aid of 
other external neutron sources, then this situation is called a criticality stage. In reactors, this criticality must be 
kept by controlling the number of neutrons involved in the chain reactions. 

In normal reactors, a few % enriched uranium should be commonly used, but in this JCO accident, 18.8% 
enriched uranium were used, and this high enrichment should be one of the strong reasons why the nuclear 
reactions run wild. 

3. Why Criticality?  
Now, a question is as to why the criticality is realized in the small area of the sedimentation tank with 50 of the 
uranium nitrate solution. That is, why nuclear chain reactions continue to occur in this small area. Here we 
clarify the basic mechanism of the criticality accident. 

3.1. Neutron Source  
The nuclear chain reactions should require thermal neutrons to start for the initial fission reactions. Since 
neutrons should decay within 15 minutes, they do not exist as a natural source. Neutrons should be produced in 
some way or the other. Here in this accident, the neutron source should be the decay of 238U spontaneous 
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fissions. The life time of 238U is about 4.5 billion years and, in addition, the rate of the spontaneous fission to the 
total width is around 75.45 10−× . Therefore, 1 g of 238U make the spontaneous fission of 0.01 times per second. 
Since one batch contains 1.6 kg of 238U, we should find about 20 neutrons per second in the one batch solution. 

3.2. Mean Free Path of n-235U Fission (Fast Neutrons)  
The probability of nuclear fission of 235U induced by neutrons should be evaluated in terms of mean free path of 
λ  inside the uranium nitrate solution. This mean free path of nuclear reactions can be obtained from the 
multiple scattering theory as  

1

f

λ
ρσ

=                                         (2) 

This derivation of the mean free path (2) is based on the Glauber theory [7], and this theoretical frame work is 
well examined in atomic and nuclear reactions [8] [9]. Here, ρ  denotes the number density of 235U in solution 
and fσ  corresponds to the nuclear fission cross section of 235U induced by neutrons. In fact, the number 
density of 235U in one batch solution is 20 31.5 10 cmρ −×  which is a constant. On the other hand, the nuclear 
fission cross section fσ  of 235U induced by neutrons crucially depends on the incident energy of neutrons. The 
incident energy dependence of the observed cross sections fσ  can be written as [10]  

585 b : 0.025 eV
1 b : 1 MeV

n
f

n

E
E

σ










                                (3) 

where 24 21 b 10 cm−= . 

Mean Free Path of Prompt neutrons in Nuclear Fission 
In fission process, the average energy of prompt neutrons is around 1 MeV, and therefore the average mean free 
path of the prompt neutrons after fissions becomes  

1 67 m.f
f

λ
ρσ

=                                      (4) 

This is quite long in comparison with the scale of the tank, and therefore this prompt neutrons by themselves 
cannot induce subsequent fissions in corresponding solution in the tank. In this respect, we ask a question as to 
why the criticality should take place within the small sedimentation tank. 

4. Collision between Neutrons and Water Molecule  
In reality, the prompt neutrons may collide with protons in water molecule, and they should lose their energy by 
nucleon-nucleon collisions. Since the nuclear fission cross sections become largest for the thermal neutrons, the 
fission processes should start in case the prompt neutrons lose most of their energy inside the uranium nitrate 
solution. 

4.1. Energy Loss after the Collision of Prompt Neutrons with Protons in Water 
When the prompt neutron scatters with protons in water, this neutron should lose a half of its energy. This can 
be easily understood in the following way. First, we denote the incident momentum and energy of the neutron  

by , nEp  with 
2

2nE
M

=
p , and the final momentum and energy by , nE′k  with 

2

2nE
M

′ =
k . In this case, we  

find an equation from the conservation law of momentum and energy as  

( )22 2

2 2 2M M M
−

= +
p kp k                                   (5) 

which can be solved and its solution becomes  
cos .k p θ=                                       (6) 

Since the observed scattering cross section does not depend on the scattering angles, we can make an average 
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over the angles, and we obtain the average energy after the scattering  
2 2π π 2

0 0

1 1 1d cos d .
π 2 π 2 2n n

k pE E
M M

θ θ θ′ = = =∫ ∫                         (7) 

This means that a neutron should lose a half of its energy in each scattering process. 

4.2. The Mean Free Path of Neutrons Inside Water 
Now we calculate the mean free path of neutrons after the scattering with protons in one batch solution. The 
number density of protons in one batch solution is 22 34.9 10 cmpρ

−× . The neutron-proton cross section at 
low energy is observed as 20 bnpσ 

 [11], and thus the mean free path of neutron in one batch solution 
becomes  

1 1 cm.p
p np

λ
ρ σ

=                                     (8) 

Therefore, a prompt neutron with 1 MeV energy should have its energy after it travels around 25 cm,  
2511 MeV 0.03 eV.

2nE  ′ = ×  
 

                              (9) 

This neutron does not have to travel linearly, but in any case, it should become a thermal neutron.  

4.3. Mean Free Path of Thermal Neutron in the n-235U Fission Process  
We can easily calculate the mean free path of the thermal neutron before the nuclear fission in one batch 
solution. Since 585 bfσ = , we find  

1 11 cmf
f

λ
ρσ

=                                   (10) 

From these considerations, we see that prompt neutrons with 1 MeV should travel around 25 cm, and then 
they become thermal neutrons. Further, after they travel 11 cm, they can induce nuclear fissions. Thus, if one 
carries 50 of the uranium nitrate solution into the sedimentation tank with 45 cm diameter and 25 cm height, 
then nuclear chain reactions may well start quickly and proceed further on.  

4.4. Reaction Time of Neutrons  
Now we see that when prompt neutrons travel 36 cm, then they can induce nuclear fissions. Therefore, we 
should estimate the duration time that is necessary to travel this 36 cm. Since the nuclear reaction time must be 
smaller than 1510−  second, we can ignore this time duration. Since the prompt neutron with 1 MeV should 
spend 10

0 7.6 10τ −×  second to proceed 1 cm, its energy becomes a half of the previous energy after 1 cm 
walk. Therefore, the time to proceed the next 1 cm becomes larger by a factor of 2 . In this way, if the prompt 
neutron proceed 25 cm, then the total time to spend must be  

( )25 2
0 01 2 2 15 s.T τ= + + + µ                            (11) 

After that, this neutron becomes thermal, and it should proceed 11 cm before the nuclear fission. Since the 
thermal neutron may have the energy of 0.03 MeV, it should take 46 sthτ µ . Thus, the total time that is 
necessary for the prompt neutron to induce a fission reaction should be 61 stotT µ .  

5. Total Energy of Fission with Criticality  
Here, we should estimate the total amount of energy which is released from this accident. This evaluation must 
be very difficult, but we want to calculate it in an approximate way and obtain an order of magnitude of the total 
energy. 

First, the number of neutrons which is required for the criticality reactions should be taken as 1.001rn = , 
which is assumed to be consistent with the total energy released as calculated from the computer simulation. In 
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nuclear reactors, one should make use of all the possible techniques to keep the number as 1rn = . 
In addition, we assume that the number of nuclear fissions should be 40000N = . This number is chosen so 

that the total nuclear energy release should be consistent with the computer simulation which can reproduce all 
the observed radiation energies. In this case, the total reaction time of fission becomes 2.4 sfT 

, and the total 
number of fissions becomes  

40000 171.001 2.3 10 .totN = ×                                 (12) 

Further, we evaluate the neutron number at the beginning, and this neutron should come from the spontaneous 
fission of 238U. The number of neutrons in one batch solution must be around 20, and we take a half of this 
number. The energy release from the nuclear fission must be around 200 MeV in each reaction, and therefore 
the total energy becomes  

264.6 10 eVtotE ×                                    (13) 

which is just similar to the result of the computer simulation.  

6. Why Does the Criticality Stop?  
It is true that the criticality accident produced a huge amount of energy by the nuclear chain reactions, and the 
accident is indeed quite serious. In this sense, we here clarify as to how the chain reactions started and continued 
by reaching the critical stage. However, we face to the more serious problem at this point. That is, why the 
criticality accident could stop? We should understand any reason why the criticality could stop, namely there 
were only one burst and not any more burst, but why?  

6.1. Nuclear Fission in the Seventh Batch  
Here, we try to answer for this question, though it should be extremely difficult. In order to find a possible 
mechanism for the stopping of the criticality, we assume that the uranium compound should settle faster than 
any other compounds in the solution. Further, we assume that uranium should be settled within 20% height from 
the bottom of the sedimentation tank. 

In this case, after the sixth batch, the uranium should be settled up to the 4.9 cm from the bottom. Thus, water 
should be found for 19.7 cm long in the sedimentation tank. By taking into account this fact, we can calculate 
the total energy release by nuclear fission as  

26 74.6 10 eV 7.4 10 J.totE × ×                                (14) 

The duration time of this nuclear reactions can be estimated and should be around 2.4 sfT 
, which should 

correspond to the time that the uranium compound is coming down to the bottom.  

6.2. Nuclear Fission in the Sixth Batch  
The same calculation can be carried out for the sixth batch case. In this case, we see that the total energy must be 
1000 times smaller than that of the seventh batch case. This is not very large, but at the sixth batch, the nuclear 
chain reactions already started, and indeed there were a small burst. 

From this calculation, we now understand the reason why the criticality stopped. In case the uranium were 
settled at the bottom of the tank, then the nuclear chain reaction cannot proceed further since the prompt 
neutrons cannot lose their energy because of the lack of water.  

6.3. Nuclear Fission in the Eighth Batch  
From now on, we only present a possible scenario of nuclear accident, if the 8th batch were carried into the tank. 
In this case, the number of uranium involved in the nuclear fission must be proportional to the height of water, 

and thus it should be 22.9
19.7

 more than the seventh batch. Thus, the number becomes  

22.940000 46500.
19.7

N = ×                                  (15) 
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This means that the number of nuclear fissions should be also increased and the total number becomes  
46500 201.001 1.5 10 .totN = ×                                (16) 

Therefore, the total energy becomes  
29 103 10 eV 4.8 10 J.totE × ×                               (17) 

This energy 104.8 10 J×  corresponds to 11 ton of TNT powder which is quite a serious explosion. The 
accident of Chernobyl nuclear power plant is believed to correspond to around 100 ton of TNT powder, and 
therefore, if the 8th batch were thrown away, then the accident would have been more than serious.  

7. Summary  
We have discussed the basic mechanism of the JCO accident in terms of the nuclear multiple scattering theory. 
In this paper, we have clarified how the nuclear chain reactions could proceed in the small area of the 
sedimentation tank. The JCO accident should be studied from the point of view science, even though there must 
be no serious technical problems in nuclear reactors. In this respect, one may say that the JCO accident is rather 
similar to scientific phenomena, and it is essentially different from problems found in the nuclear power plants. 
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Abstract 
The main experimental characteristics (multiplicity characteristics) of secondary particles have 
been investigated in interactions of 28Si with emulsion at 4.5 GeV/c per nucleon at rest of emulsion, 
nuclei. The complete destruction of the heavy target nuclei (Ag, Br) has been studied. The average 
of shower particles <ns> is weakly dependent on the target mass whereas the average multiplicity 
of grey particles <ng> is strongly dependent on it. The correlations between the multiplicities of 
the charged secondaries at different mass number of the projectile and center-of-mass-available 
energy are investigated. 

 
Keywords 
Multiplicity Characteristics, Probability and Energy Available 

 
 

1. Introduction 
The study of the phenomena of complete destruction of heavy target nuclei is very interesting. This interest 
stems from the fact that most of these interactions are due to central collisions. The central collisions provide a 
unique opportunity to investigate the consequences of nuclear compression, such as hydrodynamic effects 
[1]-[4]. In addition, there is a good possibility to obtain valuable information on the excitation and consequent 
decay of residual target nucleus. A detailed and systematic study of this phenomenon was carried out in [5]. In 
this work the criterion nh ≥ 28, since [nh = (ng + nb) gray particles and black particles] was used to select events 
of complete destruction of (Ag, Br) nuclei. Nowadays, there are huge amounts of data concerning the study of 
this phenomenon. Different beam nuclei at various energies have been used in the experiments. There are two 
main directions for the interpretation of the experimental results of complete destructions. The first direction 
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considers such events as a tail in the multiplicity distribution which can be accounted for by the cascade evapo-
ration process inside the target nucleus. The second one implies a one-step like process which occurs due to the 
collectivity of the target nucleons together. In the present work, we study complete destruction nh ≥ 28 of (Ag, 
Br) emulsion nuclei induced by 4.5 A GeV/c 28Si nuclei. The average multiplicities of the different emitted 
charged particles have been compared with the corresponding experimental values obtained from the interac-
tions of different types of nuclei with emulsion at the same incident momentum per nucleon. The energy availa-
ble in the centre of mass system for the complete destruction of the target nucleus has been studied for different 
projectiles. The multiplicity correlations between the charged secondaries produced in these interactions and 
both the mass number of the projectile and the available energy have also been analyzed. The previous detailed 
analysis [6] has shown that the selection criterion nh ≥ 28 corresponds to the complete destruction of the target 
nucleus, nearly, into individual nucleons and light fragments leaving no measurable residual nucleus.  

2. Experimental Techniques  
Nuclear emulsions of the type BR-2 were exposed to 4.5 A GeV/c 28Si beams at the Dubnasynchrophasotron. 
The pellicles of emulsion have the dimensions of 20 cm × 10 cm × 600 µm (undeveloped emulsion). The inten-
sity of the beam was ~104 particles/cm2 and the beam diameter was approximately 1 cm. Along the track, a 
double scanning has been carried out fast in the forward direction and slow in the backward one. In the meas-
ured interactions, all the charged secondary particles have been classified according to the range L in the emul-
sion and the relative ionization g* = g/g0, where g is the particle track ionization and g0 is the ionization of a rela-
tivistic shower track in the narrow forward cone of an polar angle θ ≤ 3˚, (the polar angle θ of each track, i.e. the 
space angle between the direction of the beam and that of the given tracks) into the following groups: 

1) Shower tracks of produced particles, “s-particles”; have a relative ionization g* ≤ 1.4; these tracks have an 
emission angle θ ≤ 3˚; they have been further subjected to multiple scattering measurements for momentum de-
termination in order to separate the produced pions from the single charged projectile fragments. 2) Grey tracks 
of produced particles, “g-particles”, having a relative ionization (1.4 ≤ g* < 10) and L > 3 mm. 3) Black tracks of 
produced particles, “b-particles”, having L ≤ 3 mm. 4) The b and g tracks, taking together, are both called heav-
ily ionizing particles, “h-particles”.  

3. The Multiplicity Characteristics  
To investigate the dependence of the average multiplicity <ns> and <ng> on the mass number of the beam nuc-
leus Ap, we consider the reactions listed in Table 1. 

In these reactions, the momentum per incident nucleon is constant and it equals 4.5 GeV/c. The experiments 
were carried out under the same conditions. Figure 1(a) and Figure 1(b) show the dependence of the average 
multiplicities <ns> and <ng> on the mass number of the beam nucleus Ap. The points are the experimental data 
while the continuous lines are the result of fitting by the relation  

i
i i pn a Aα=                                         (1) 

where i = s or g. The values of the coefficients αi are 0.39 ± 0.05 and 0.18 ± 0.01 and ai are 2.21 ± 0.66 and  
 
Table 1. The average multiplicities <ns> and <ng> of shower and grey tracks produced in the reactions of different projec-
tiles with emulsion at 4.5 A GeV/c.                                                                                 

Projectile <ns> <ng> Ref 
1H 1.6 ± 0.1 2.8 ± 0.1 [7] 
2H 2.5 ± 0.1 3.9 ± 0.1 [8] 
3H 3.6 ± 0.1 3.1 ± 0.1 [9] 

4He 3.8 ± 0.1 4.4 ± 0.1 [7] 
12C 7.6 ± 0.2 5.9 ± 0.3 [7] 
16O 10.5 ± 0.6 7.6 ± 0.6 [10] 
28Si 11.9 ± 0.5 7.3 ± 0.3 Present work 
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Figure 1. Projectile mass number for different elements at 4.5 GeV/c 
per Nucleon: (a) versus <ns> and (b) versus <ng> plots.                                         

 
3.11 ± 0.06 for shower and grey particles respectively. This result agrees with the fact that the interaction cross 
section is proportional to 2 3

pA  and is proportional to 1 3
pA  from <ns> and <ng>. 

4. Probability of Complete Destruction of Target Nuclei 
In the present work, the probability of complete destruction of (Ag, Br) emulsion nuclei p is defined as the ratio 
between the number of events of nh ≥ 28 to the total number of inelastic interactions of the incident particle with 
(Ag, Br) nuclei. Figure 2 illustrates the dependence of the probability p on Ap for various projectile nuclei, all at 
4.5 A GeV/c. It is seen that the probability p increases linearly with 2 3

pA  up to the carbon nucleus. The values 
of the probability p, predicted by the cascade evaporation model [8], are larger than the corresponding experi-
mental values. Moreover, the behavior of probability p versus Ap in the present experiment does not agree with 
the calculations of the cascade evaporation model. 

5. Energy Available  
For the events having nh ≥ 28, and implying the complete destruction of the target nuclei, the relation between 
<ns> and the energy available Eav in the centre of mass system is shown in Figure 3. The value of Eav is given 
by: 

( ) ( )
1

2 2 22av p t t p t pE M M M E M M= + + − + ,                          (2) 

where Mp, is the projectile rest mass in GeV and ( )
1

2 2 2
0p pE p M= +  where p0 is the projectile momentum in  

GeV/c. The effective target mass Mt is equal to 
2 1
3 33

2 p tA A m
 
  
 

, where m = 0.931 GeV. The relation between <ns>  
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Figure 2. The probability, p, of complete destruction of (Ag, Br) nuclei due 
to the interactions of different projectile at 4.5 GeV/c per nucleon.                                         

 

 
Figure 3. The average multiplicity of shower particles <ns> versus the energy 
in available c.m.s. for different projectile mass numbers having momentum 
4.5 GeV/c per nucleon . for the collisions characterized by nh ≥ 28.                                         

 
and the energy available in the centre of mass system, Eav, for different projectiles at the same incident momen-
tum, which shows that as the projectile mass number increases, Eav increases and consequently <ns> increases. 
The dependence of <ns> on Eav, shown in Figure 3, can be fitted by the universal relation:  

( )lns avn A B E= +                                     (3) 

with A = −13.09 and B = 11.46. 

6. Multiplicity Correlation in Complete Destruction of 28Si Ions 
In the present work, we studied the correlation of complete destruction (nh ≥ 28) of (Ag, Br) emulsion nuclei in-
duced by 4.5 A GeV/c 28Si nuclei. The probability of complete destruction of AgBr nuclei different projectile at 
various energies is shown in [11]. The correlation in complete destruction dependencies between the charge par-
ticle multiplicities allows us to discuss the mechanism of nucleus-nucleus interactions. The dependencies <ng> = f 
(ns) and <ns> = f (ng) for the event with nh ≥ 28 accompanied by total target disintegration are presented in Fig-
ure 4 and Table 2. In this case there is no strong dependence of <ng> on the value of ns or of <ns> on the value 
of ng. This can be seen from the value of χ2 for each type of particle. This means that the degree of  
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Figure 4. The correlations between the secondary particles multiplicities 
for complete destructions (events with nh > 28) in Si28 interactions with 
emulsions.                                                                                 
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Table 2. Results of approximate fit of the experimental data for the multiplicity correlation from complete destruction in 28Si 
ions interactions with emulsion using the dependence <ni> = a + knj.                                                               

 sn  2x  gn  2x  bn  2x  hn  2x  

sn  … … 14.02 ± 0.23 0.87 −15.60 ± 0.07 0.56 29.65 ± 0.16 0.95 

gn  10.42 ± 0.76 0.96 … … 19.60 ± 0.25 0.65 20.30 ± 0.69 0.95 

bn  −33.10 ± 0.54 0.94 14.02 ± 0.23 0.84 … … 27.09 ± 0.58 0.87 

 
disintegration of the target does not depend strongly on the number of shower particles. One can observe the 
correlation between the fast and the slow stages of the inelastic interactions of tow nuclei by studying the de-
pendencies <nb> = f (ns), <nb> = f (ng) and (ns), (ng) on the (nb). From Figure 4, one can see that the correlations 
have a different character. This can be seen from the fast that the <nb> dependencies on ns and ng have negative 
slopes. Also, from the correlation dependencies of <ns>, <ng> and <nh> on nb, one can see that the slope of <nh> 
is positive while the slopes of others are negative. From the above results, one can see that <nb> has a negative 
correlation with ns and ng and the correlation of <ns> and <ng> with the nb is negative. This may be due to in-
crease the number of interacting projectile nucleons as the impact parameter decreases. 

7. Conclusion 
From the present study, one may concluded that the average number of the shower particles is proportional to 

2 3
pA  and the average number of grey particles is proportional to 1 3

pA . While that the probability of the com-
plete destruction increases with increasing projectile mass number Ap, and the average multiplicity of the emit-
ted shower particles depends strongly on the projectile mass number, while does not for the grey and black can 
be particles. A good correlation between the energy available at the center of mass system, Eav, and the average 
multiplicity of the shower particles emitted in the complete destruction is found. 
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Abstract 
Optimal condition for 13N radioisotope production through 12C (d,n) 13N within plasma focus de-
vice is investigated. As the deuteron spectrum follows the empirical power law of the form E−m, it is 
shown that the activity decreases by increasing the value of m. Unlike the fact that the repetition 
rate increases the activity, it is possible to achieve higher activities by increasing the bombard-
ment time at a fixed repetition rate. 

 
Keywords 
Positron Emission Tomography (PET), Plasma Focus, Deuteron Spectrum, Activation,  
Repetition Rate 

 
 

1. Introduction 
Short-lived radioisotopes (SLR) such as 11C, 13N, 15O, 18F usually have medical applications, particularly in 
positron emission tomography (PET). These radioisotopes are obtained through bombarding appropriate targets 
by ion beams produced in accelerators. Due to the short half-life of such radioisotopes, which is one of the 
advantages of this method over others, they must be produced in a place where they are expected to be used. To 
this end, accelerators have to be used in hospitals. PET radioisotopes production by means of cyclotron is an 
expensive method, therefore it is suitable to consider pulsed plasma devices to produce PET radioisotope. 

Plasma focus devices are one of the appropriate systems in producing short lived radioisotopes because they 
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are low cost and easy to use and maintain. 
As a switch is closed in a plasma focus device, a voltage of several tens kV is quickly applied to the 

electrodes. Due to gas electrical breakdown, free electrons move toward the insulation surface, afterward a 
current layer is formed. Because of the effect of Lorentz force (J × B) on the current layer, the layer is ac- 
celerated towards the end of electrodes at a high speed. By the radial Lorentz force, a part of the current layer 
symmetrically moves towards the center of anode and a very short-lived, dense, hot plasma column is formed 
which is the source of ion, electron, X-ray and neutron production. 

The voltage of capacitor bank for a plasma focus device is usually 10 - 30 kV, but the results of a lot of 
experiments [1] have shown that deuteron beams emitted from the pinch have a wide range of energy (up to 
several MeV). Ion acceleration with such high energy is one of the most unexpected aspects of the plasma focus 
device. Several models have been suggested for acceleration of ions [1] such as instabilities, anomalous 
resistivity, plasma wave, and shock wave. However, the ion acceleration mechanism in the plasma focus pinch 
is not understood well. The most important factor in ions acceleration is the m = 0 instability (sausage 
instability). This instability is often attributed to the acceleration of ions at high energy. The growth of such 
instabilities is due to radially symmetric disturbances in certain points. At these points, the cross sectional area is 
reduced, and then azimuthal magnetic field strength at the surface of the plasma will be extended. The magnetic 
pressure will be increased. As a result, the plasma column at these points compared to other pointsconstricts at a 
faster rate. Rapid changes of magnetic field at each constriction induce a large longitudinal electric field that 
accelerates ions within the plasma column at higher energies [2]. 

A good candidate for studying radioisotope production within the plasma focus is the nuclear reaction of 12C 
(d,n) 13N. The advantages of this reaction are high cross section, low threshold energy, short half-life, and the 
availability of target materials [3]. 

Through bombarding the graphite target by high energy deuterons, Nitrogen-13 is produced via the following 
reaction: 

12 13C d N n Q+ → + +  

The threshold energy of this reaction is 328 keV. Nitrogen13 is a SLR and it decays with the half-life of 9.96 
minutes and produces a positron (β+). The positrons are stopped in the graphite (positron speed is slowed down) 
and is annihilated with an electron. Two oppositely directed 511 keV gamma-rays are produced by the annihi- 
lation of every electron- positron pair. 

Radioisotope production within plasma focus has been taken into consideration for a long time. Brzosko 
group [4] in the U.S., Angeli [5] in Italy, Roshan [6] in Singapore can be named. The amount of activity 
produced in Singapore group has remarkably increased. Roshan et al. [6] have carried out their experiments on a 
plasma focus device NX2. They placed the target graphite ( )15 15 0.7× ×  to a distance of 100 mm in front of 
deuteron beam within NX2 device so that the solid angle between deuterons and target graphite was 

1.26 srO = . 
The activity reported by Roshan et al. within NX2 device with repetition rate of 1 Hz after 30 seconds of 

graphite bombardment was equal to 5.2 kBq [6]. This amount in this small device (1.7 kJ) is better than the 
reported activity of bigger devices. However, it is not very important for medical applications. 

In this study, first the activity of a set of experimental spectra of deuteron produced by NX2 plasma focus 
device which has been measured by magnetic spectrometer [7] is calculated and then the optimizing conditions 
of 13N production is investigated. 

2. 13N Activity Calculation Phases 
Thick target yield shows the reaction probability or reaction rate [6]:  

( )
0

d
d d

dE
tt

E
y N E

E x
σ

= ∫                                    (1) 

where N is the number of nitrogen 13 nuclei per cubic centimeter; ( )Eσ  is the cross section of reaction 12C  

(d,n) 13N; d
d
E
x

 is stopping power of deuterons on graphite target, and dE  is the incident energy of deuterons. 

The data of cross section of the reaction 12C (d,n) 13N is obtained from EXFOR data base [8] and SRIM code 
[9] is used to calculate reaction stopping power (Figure 1). In Figure 1, the blue points are experimental data  
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Figure 1. Deuteron stopping power in the graphite target.                    

 
(by means SRIM code) and the red curve is the fitted diagram on experimental data. 

The total number of activated nitrogen 13 nuclei in the target estimated from [6]:  
max

min
13 d

E m
N ttE

N K E y E−= ×∫                                 (2) 

According to the conducted experiments, deuteron spectrum follows the empirical power law of the form [6] 
[10] [11]:  

d
d

mdN KE
E

−=                                       (3) 

In this paper, we fit the generated deuteron spectra in plasma focus device NX2 (1.7 kJ energy) by Equation 
(3). One of deuteron spectra has been given as an instance in Figure 2. We have fitted this deuteron spectrum by 
the exponential function in Equation (3) and it fits with Equation (4) spectrum. In Figure 2, the blue points are 
experimental data and the red curve is the fitted diagram according to Equation (4) on experimental data.  

11 3.802d 10
d
N E
E

−= ×                                    (4) 

The number of 13N nuclei can be calculated by replacing Equation (4) in Formula 2. Then, the activity is 
calculated. 

13N activity, resulting from deuteron collision (Figure 2) to graphite target has been calculated, A = 0.616 
kBq. 

3. The Investigation Capability of Plasma Focus Device for 13N Radioisotope  
Production 

13N radioisotope is achieved based on 12C(d,n) 13N process. The amount of 13N activity is dependent on the 
whole deuteron spectrum descended upon 12C solid target. As illustrated in Figure 2, deuteron energy spectrum  

follows the power law 
d
d

mdN E
E

− ∝ 
 

, with the investigations conducted on three sets of deuteron spectra  

(within pressures of 4, 6, 8 mbar [7]), we realized that the number of incident deuterons and the energy of these  

deuterons will be reduced with an increase of the amount of m in the exponential function 
d
d

mdN E
E

− ∝ 
 

.  

Figure 3 depicts m changes based on maximum energy of deuterons spectra. As it is clear in the figure, the 
energy of these deuterons will be reduced with an increase of the amount of m and with the calculation of 13N 
activity (as a consequence of the collision of these deuteron spectra with 12C target) it was found that in the 
spectra with higher m, we would have less activity. 

Moreover, the investigation of experimental spectra [7] shows that as the number of incident deuterons 
increase, the value of m decreases and the activity increases. 

For a better description of deuterons dependence on 13N activity, we have calculated the number of 13N nuclei  
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Figure 2. Spectrum of deuteron produced in NX2 plasma focus 
device [7].                                                                   

 

 
Figure 3. Maximum energy of experimental spectra of deuteron and 
its corresponding m.                                                                               

 
for three series of deuteron spectra [11]. 

The relationship between m and A is obtained from the following formula [12].  

max

min
13 1 1

max min

1 d
E m

N d ttm m E

mN N E y E
E E

α −
− −

−
= × × ×

Ω− ∫                          (5) 

where dN  is the number of deuterons ejected from the pinch in a solid angle Ω . In order to consider the 
probability of collision between all deuterons and graphite target, the value of the angle was chosen to be 80o 
[10]-[12], α  is the solid angle subtended by the target of graphite. 

In order to calculate α  the same laboratory conditions [6], (a graphite target with dimensions (15 × 15 × 
0.7) 100 mm away from the pinch) are considered. Figure 4 shows activity changes in terms of m (exponential 
function power in Equation (3)). As is apparent from Figure 4 and it was mentioned earlier, deuteron spectra 
with less m value as a consequence of the collision with 12C target would have produced more 13N nuclei. 
Therefore, the activity will increase. 

Device energy [13] [14] and repetition rate are factors affecting the rate of activity. As the device energy and 
the repetition rate increases, the number of incident deuterons will increase as well. Consequently, the rate of  
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Figure 4. Relationship between m and A.                                                                               

 
activity will increase remarkably. 

In this research, for optimizing Nitrogen 13 radioisotope, the repetition rate is selected as an influential factor 
in increasing activity. 

The activity after k successive shot [15]:  

( )
( )
( )0

1 e

1 e

kT

T
A k A

λ

λ

−

−

−
=

−
                                   (6) 

The effect of repetition rate on the amount of activity at frequencies of 1 Hz, 5 Hz, 10 Hz and 16 Hz during 
the bombardment time of 30 s (the time considered in the lab [6]), 300 s (1/2 of radioisotope half-life), 600 s (1 
half-life), 1200 s (2 half-life) 1800 s (3 half-life) is investigated and its diagram is drawn. 

As shown in Figure 5, as the repetition rate increases, the activity will also increase in such a way that at 
repetition rate of 1 Hz after one half-life (600 s), target bombardment is 0.2 MBq, while at the same bom- 
bardment time (one half-life) the activity at repetition rate of 16 Hz is 4 MBq. As a result, repetition rate is a 
very effective factor in increasing the activity. 

The required activity for PET is more than 1 GBq. The calculated activity for one of the experimental spectra 
of deuteron at repetition rate of 16 Hz and bombardment time of 600 s (Acal = 8 MBq) is less than the required 
activity for imaging. In order to investigate the ability of plasma focus device for producing the required activity 
for imaging, by increasing the repetition rate, the activity is calculated at higher frequencies. Therefore, activity 
at frequencies of 50 Hz, 100 Hz, 500 Hz, and 1 kHz was examined. As shown in Figure 5, activity at repetition 
rate of 1 kHz after 1800 s is 0.9 GBq. Due to technical restrictions within the available plasma focus devices, 
achieving such a high repetition rate is difficult. For this reason, instead of increasing the repetition rate, we can 
increase the bombardment time at a fixed repetition rate. Figure 6 shows the activity at a fixed repetition rate 
with different bombardment time. 

The activity could be increased by increasing the device energy, too [13]. It was shown that there is a linear 
relationship between device energy and the activity. In order to reach to the required activity for PET imaging, 
the plasma focus energy should be in the order of kilo joules. 

4. Conclusions 
A series of experimental deuteron spectra was used to show that the activity is highly dependent on the power of 
m in the empirical power law distribution of the deuterons. By decreasing the value of m, the energy and the 
number of incident deuterons will increase which will lead to the increment of the activity. Since the repetition 
rate of the device is a straight forward factor for increasing the number of incident deuterons, the activity is 
optimized by repetition rate. 

In order to produce the practical activity for PET imaging, the repetition rate should be around 1 kHz which is  
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Figure 5. Activity in terms of repetition rate.                                        

 

 
Figure 6. Activity in terms of bombardment time.                                        

 
technically difficult to achieve. Therefore, the bombardment time is increased at a fixed repetition rate. 
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Abstract 
We study the controversy about the proper determination of the electromagnetic energy-flux field 
in anisotropic materials, which has been revived due to the relatively recent experiments on 
negative refraction in metamaterials. Rather than analyzing energy-balance arguments, we use a 
pragmatic approach inspired by geometrical optics, and compare the predictions on angles of 
refraction at a flat interface of two possible choices on the energy flux: ×E H  and ×E B 0µ . We 
carry out this comparison for a monochromatic Gaussian beam propagating in an anisotropic non- 
dissipative anisotropic metamaterial, in which the spatial localization of the electromagnetic field 
allows a more natural assignment of directions, in contrast to the usual study of plane waves. We 
compare our approach with the formalism of geometrical optics, which we generalize and analyze 
numerically the consequences of either choice. 

 
Keywords 
Poynting Vector, Eikonal, Electromagnetic-Energy Flux, Anisotropic Metamaterials,  
Geometrical Optics 

 
 

1. Introduction 
The location of electromagnetic energy is an elusive subject that has been under discussion since the beginning 
of electrodynamics [1]. Even in the case of electrostatics, one can write at least two different expressions for the 
energy density of a fixed distribution of charges ([2], p. 21). In one of them, the energy density is proportional to 
the charge density itself, thus located wherever the charge density is different from zero; in the other one, it is 
proportional to the square of the electric field generated by the charge distribution, thus located in all space, both 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.712139
http://dx.doi.org/10.4236/jmp.2016.712139
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


C. Prieto-López, R. G. Barrera 
 

 
1520 

inside and outside the volume occupied by the charge distribution. On the side of electrodynamics, the am- 
biguity is even greater. The energy-balance equation in vacuum involves the time derivative of energy density of 
the electromagnetic field, given in terms of the squares of the electric and magnetic fields and the divergence of 
the Poynting vector; this vector is defined as proportional to the cross product of the electric and magnetic field 
and it gives the magnitude and direction of the energy flux ([3], sec. 61). Since the balance equation for energy 
conservation requires only the divergence of the Poynting vector, this vector field is not uniquely defined and it 
is always possible to add to it an arbitrary vector field with zero divergence. Furthermore, it is also possible to 
redefine both the Poynting vector and the expression for the energy density, in such a way as to fulfill correctly 
the balance equation [4]-[10] ([11], ch. 27.5). This freedom leads to an unsurmountable ambiguity about the 
location of electromagnetic energy and direction of the electromagnetic-energy flux. Nevertheless, it has been 
argued that the law of conservation of energy does not stand by itself, that there are also conservation laws for 
linear and angular momentum, and they have to be examined together. For example, in vacuum, the relationship 
between the Poynting vector (energy-flux field) and the electromagnetic linear-momentum density, together 
with the conservation of angular momentum, restricts the freedom of choice for the mathematical expression of 
the Poynting vector, and it has been even claimed that these restrictions remove the ambiguity altogether [12] 
[13]. 

The problem of the location of energy and the correct expression for the energy flux in the presence of 
materials acquires additional intricate subtleties related to the description of the energy-exchange mechanism 
between fields and matter [14] [15]. First, let us recall that the formulation of macroscopic electromagnetic 
phenomena is commonly achieved by the introduction, besides the macroscopic electric field E  and magnetic 
induction field B , of two other fields: the displacement field D  and the magnetic intensity H , or, equi- 
valently, the polarization and magnetization fields: P  and M . In relation to the physical interpretation of 
these fields, a problem arises about an issue that has been discussed for more than a century: how to establish if 
B  or H  represents the “real” magnetic field, that is, the one that comes after an averaging process of the 
magnetic field generated by the microscopic components of a given material. There are even carefully argued 
assertions by W. Thomson that the magnetic field inside the material is not even properly defined ([16] and 
references therein). The choice in this issue has definite consequences in the energy-balance equation—also 
known as Poynting’s theorem—when extended to the case where materials are present. As we will discuss 
briefly in Section 2, this is specially important if we want to separate the total energy density into a component 
stored in the fields and a component stored or dissipated within the material. 

Furthermore, in the more general case when the electromagnetic response is linear but not instantaneous, it 
necessarily depends on frequency and it is dissipative. In this case it is not possible to separate the energy 
density into material, field and absorption contributions. But even in low-dissipation frequency bands, the 
correct expression for the Poynting vector (energy flux) depends on the explicit form of the energy-balance 
equation. Also, in relation to the freedom of choice of Poynting’s vector and the restrictions imposed by other 
conservation laws: linear and angular momentum, one has to recall that unlike in vacuum, in the presence of 
material media the relation between Poyting’s vector and the linear-momentum density of the electromagnetic 
field is still controversial [17]. There have been at least two proposals for the correct mathematical expression 
for the linear-momentum density: one given originally by M. Abraham ( ×E H ) [18] and the other one given 
originally by H. Minkowski ( ×D B ) [19], being these two choices the source of a persisting debate about either 
their correctness or their physical interpretation ([20], and references therein). There are also more drastic claims 
assuring that the macroscopic electromagnetic field within a material is actually a non-physical quantity, and 
that real measurement devices do not really measure the energy flux given by the Poynting vector [21]. 

Here we will not analyze all different aspects of these longstanding and sometimes subtle questions. We will 
rather concentrate only in two different proposals for the mathematical expression of the Poynting vector S , 
whose choice has created controversy even in recent years [22]-[30]. One given by = ×S E H , which is the 
commonly used in literature and the one that appears in most textbooks and the other by 0µ= ×S E B , where 
we use SI units and 0µ  is the so-called magnetic permeability of vacuum. On the one hand, the first expression 
is proposed by arguing that with this choice the boundary conditions on E  and H  assure no accumulation of 
energy at any interface between two materials ([3], sec. 61). On the other hand, some authors state that a correct 
analysis of the energy-balance equation in materials should lead to an expression for the energy flux given, not 
by ×E H , but rather by 0µ×E B , and that the accumulation of energy at the interface causes no conceptual 
problem because in magnetic materials the source of energy dissipation at the interface are the induced surface 
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currents [22] [28] [31]. It is appropriate to recall that these proposals have been recently re-examined, due 
somewhat to the current work done around the phenomenon of negative refraction in metamaterials [32]-[38]. 

In this paper, rather than discussing the energetic balance in the material, we propose to look at the con- 
troversy from the perspective of geometrical optics in an extremely pragmatic approach, based on the fact that 
the energy flux is not only used to calculate energy balances, but also to quantify light intensity and its direction 
of propagation. To watch the refraction of a laser beam on a transparent prism is a very common and intuitive 
experience, in which one could very naturally speak about the “location” of the energy and the direction and 
“bending” of the energy flux. In contrast, in the idealized case of a plane wave the energy is on the average 
evenly distributed over all space, and it is therefore unlocalized, making it impossible to use such “intuitive” 
arguments as above. 

For the two fields H = ×S E H  and 0B µ= ×S E B  in discussion, however, a comparison in these terms is 
not illuminating in usual isotropic materials, since their directions coincide. But for anisotropic materials, their 
directions need not to coincide, and this effect can be particularly important in anisotropic metamaterials, that 
can exhibit negative refraction, in which this difference becomes critical. Although negative refraction can be 
obtained also in isotropic metamaterials, anisotropic metamaterials have an important advantage: the conditions 
for obtaining negative refraction in them are much less restrictive. 

Having all this in mind, we tackle the problem by constructing a “ray” of light in order to see how does it 
refract at an interface between vacuum and an anisotropic metamaterial. One can find different definitions of ray 
in geometrical optics, for example, one, as a line in the direction of the gradient of the eikonal [3] [39], another, 
simply as a continuous line along the direction of the energy flow [40], and still another one that defines ray 
merely as a beam [41]. Here we will adopt a rather intuitive picture of a ray by regarding it as a very narrow 
beam. Then we use continuum electrodynamics to calculate the spatial location of the reflected and refracted 
beams, together with the energy flow according to the two proposals in question. Then we compare—among 
other things—their directions with the direction of the beam. 

The structure of the paper is as follows: in Section 2 we compare, for each energy-flux proposal, possible 
interpretations of the energy-balance equations and the terms involved in them; then in Section 3 we present a 
brief introduction of the electromagnetic properties of anisotropic uniaxial metamaterials with emphasis on the 
refraction of plane waves at a flat interface; we later state in Section 4 some basic properties of 2D mono- 
chromatic electromagnetic fields, on which we build our analysis, and make a comparison with the formalism of 
geometrical optics, which we extend in Section 5. In Section 5.1 we particularize the results and concepts of 
these two previous sections to a Gaussian beam; we study some its main characteristics, and sketch how to 
calculate its refraction, to finally display and analyze the corresponding results of the numerical simulations. 
Section 6 is devoted to our conclusions.  

2. Poynting’s Theorem  
In this section we present briefly the energy-balance equations for the two energy-flux proposals to establish the 
differences in interpretation of the terms appearing in them. We start with the macroscopic Maxwell’s equations 
and regard the presence of the material as given by the charge and current densities induced by an external 
electromagnetic field produced by external sources. Maxwell’s equations, in SI units, can be then written as  

0 ext indρ ρ∇ ⋅ = +E                                      (1) 

0∇ ⋅ =B                                          (2) 

t
∂

∇× = −
∂
BE                                        (3) 

0
0

ext ind tµ
∂

∇× = + +
∂

B EJ J                                   (4) 

where extρ  and extJ  are the charge and current densities that are sources of the external field that excites the 
material, while indρ  and indJ  denote the macroscopic averages of the charge and current densities that are 
induced within the material. Here E  denotes the macroscopic electric field while B  denotes the macroscopic 
magnetic field obtained as the macroscopic average of the microscopic magnetic field. Let us recall that 
regrettably B  is also called magnetic induction. Then we divide indJ  into two terms,  
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ind P M t
∂

= + = +∇×
∂
PJ J J M                                  (5) 

where 1) PJ  denotes the induced conduction (“free”) plus polarization current densities and 2) MJ  denotes a 
divergence-free current density that behaves as the source of magnetization. Here P  and M  are the usual 
polarization and magnetization material fields. Induced-charge conservation is also assumed, that is,  

0ind
ind t

ρ∂
∇ ⋅ + =

∂
J                                       (6) 

By substituting Equation (5) into Ampère-Maxwell’s law (4) and using the induced charge conservation (6), 
one can write Equations (1) and (4) as  

extρ∇ ⋅ =D                                          (7) 

ext t
∂

∇× = +
∂
DH J                                       (8) 

which together with Equations (2) and (3) form the complete set of the four macroscopic Maxwell’s equations. 
Here  

0= +D E P                                          (9) 

is called the displacement field, while  

0µ
= −

BH M                                        (10) 

is called the magnetic intensity or simply the H field. 
If one now calculates ( )∇ ⋅ ×E H  and uses the macroscopic Maxwell’s equations together with the defini- 

tions of D  and H , as given by Equations (9) and (10), one can write  

( )
2

2
0

0

1 ,
2 ext

BE
t t tµ
∂ ∂ ∂ ∇ ⋅ × + + = − ⋅ − ⋅ − ⋅ ∂ ∂ ∂ 

P BE H E J E M                  (11) 

that takes the mathematical form of a conservation law for the energy, and one can interpret ×E H  as an 
energy flux and ( ) 2 2

0 01 2 E B µ+  as the energy density stored in the electromagnetic field. Notice that we 
write the expression of the energy density in terms of E  and B , because we regard then as the fundamental 
“bare” fields. Nevertheless, since in our calculations below we deal with time averages of monochromatic fields 
in lossless materials, this choice will have no consequences in the final result. Here ext⋅E J  denotes the power 
supplied by the external current, while the last term in the right hand side should correspond to the temporal rate 
of change of the electric and magnetic energy density either stored or dissipated within the material. It is appro-
priate to point out that in the presence of dissipation the stored energy density within a material is not a well-de- 
fined concept since it cannot be written as a time derivative ([3], sec. 61). 

Following the same procedure as above, one can also write the following equation: 

 
2

2
0

0 0

1 .
2 ext

BE
t tµ µ

   ∂ ∂ ∇ ⋅ × + + = − ⋅ − ⋅ + ∇×     ∂ ∂    

B PE E J E M                 (12) 

In this expression one identifies 0µ×E B  as the energy flux, and although the last term in the right hand side 
can be written as ind− ⋅E J , and it could be naturally identified as the power dissipated by the induced currents, 
such identification contradicts the one given in Equation (11). Furthermore, the difference between ×E H  and 

0µ×E B  is − ×E M , and let us recall that 2c− ×E M  has been identified in certain circumstances, as a 
“hidden” momentum, that is, a mechanical momentum conveyed by and within the magnetic material. Here c 
denotes the speed of light. 

We will not discuss further the physical interpretation of the terms that appear in the energy-conservation 
laws given in Equations (11) and (12); we now rather construct the conceptual and mathematical framework to 
analyze the energy transport in the refraction of a beam of light at the interface between vacuum and an 
anisotropic metamaterial. The advantage of dealing with anisotropic metamaterials rather than with crystals, is 
that in crystals the anisotropy of the electromagnetic response is fixed by the crystalline structure and cannot be 
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changed, while in metamaterials this degree of anisotropy, as well as the signs of the response, can be tailored 
through the fabrication process.  

3. Uniaxial Metamaterials  
As discussed above, we will be dealing with anisotropic uniaxial metamaterials. These are characterized by 
electric and magnetic response tensors   and µ , respectively. We will assume that they have a common 
anisotropy axis (the z-axis) thus they are simultaneously diagonalizable, with components xx yy= = �   , 

zz ⊥=  , and analogously with the components of µ . We also assume that we will be working on a frequency 
band in which the material is transparent, that is, at frequencies where all the components of these response 
tensors can be regarded as real (i.e., negligible absorption). Furthermore, the premise that we are dealing with 
metamaterials allows us to choose not only over a wide spread of values for the tensorial components, but also 
their sign. 

We will now introduce notation and summarize some of the properties that we will use in this paper; their 
derivation can be found, for example, in [42]. First we recall that an uniaxial metamaterial sustains two elec- 
tromagnetic plane-wave modes, which we will call e and m, and refer to them generically as γ . Each mode is 
characterized by a given frequency ω  and a corresponding wavevector k . In the m -mode, the electric field 
E  es orthogonal to k  while in the e-mode the H  field is orthogonal to k . We will also refer generically 
to the diagonal components of either µ  or   as γ �  and γ ⊥ , when referring to the m or to the e mode, 
respectively; and in terms of these we define the anisotropy factor aγ γ γ ⊥= � , that is, ma µ µ⊥= �  and 

ea ⊥= �  . The anisotropy factor quantifies the degree of anisotropy of the response; its deviation from unity 
gives us an idea of how anisotropic the response of the medium is. 

The dispersion relations of these modes can be put in terms of 0 0n ε µ ε µ=� � � , the magnitude of the 
wavevector of γ  mode, kγ , and the wavenumber in vacuum 0k cω= . Assuming the wavevector lies in the 
xz plane, these can be written as  

( )2 2 2 2
0 1 .xk k n a kγ γ= + −�                                (13) 

Note that n�  would be the index of refraction of the system in the absence of anisotropy ( 1aγ = ). 
Finally, it is important to say that, in this medium, the field H = ×S E H  is not, in general, parallel to k  

for a monochromatic plane wave. Let us call Fγ  the amplitude of the H  field for eγ =  and the amplitude 
of the electric field for mγ = , and the subscripts i, r and t will denote the incident, reflected and transmitted 
fields, respectively. Then, the field HS  is, in average,  

2

, 0, ,
2

x zF k kγ
γ γ ω γ γ⊥

 
× =   

 
E H

�

                             (14) 

so both vectors will only be parallel when there is no anisotropy of the corresponding mode ( 1aγ = ).  

Refraction of Plane Waves  
Let us consider a plane interface between vacuum and the uniaxial metamaterial, set this interface perpendicular 
to the optical axis of the metamaterial and fix the z-axis along this direction. Then assume that a plane wave, 
with its wavevector in the xz plane, impinges from vacuum into the metamaterial. One can immediately see that 
if the incident wave is p-polarized ( H  perpendicular to k ) only the e mode is excited, while if it is s-polarized 
( E  perpendicular to k ) only the m mode is excited; while k  remains in the xz plane, and thus, there are 
separate “refraction laws” for HS  and k . 

Now we look at the reflection and transmission of plane waves in the presence of uniaxial metamaterials, 
defined as 

t i
t F Fγ γ γ=  and 

r i
r F Fγ γ γ= ; 0γ  as 0µ  for eγ =  (p-polarization) and 0 0γ =   for mγ =  

(s-polarization); and using boundary conditions at the interface, we can write  

2
1

1
,

1

t

r

γ
γ

γ
γ

γ

δ

δ
δ

=
+

−
=

+

                                       (15) 
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where 0 t iz zk kγδ γ γ= � . 
In terms of these definitions and basic concepts, we now summarize some interesting features of the refraction 

of plane waves on uniaxial metamaterials. A derivation of all these results can be found in [42]  
1) The angle γΘ  formed by k  and ˆze , in terms of the incidence angle iθ , is  

( ) ( )
( ) ( )2 2

sin
sin

1 sin
i

in a
γ

γ

θ

θ
Θ =

+ −�

                               (16) 

2) The angle γθ  formed by HS  and ˆze , again in terms of the incidence angle iθ , is given by  

( ) ( )
( ) ( )2 2

sin
sin ,

1 sin
i

in a a
γ

γ γ

γ θ
θ

γ θ
⊥=

+ −� �

                            (17) 

and we call this the refraction angle.  
3) The refraction of γk  is towards the interface if 0γ <�  and away the interface if 0γ >� . The projection 

of Hγ
S  over γk  also has the sign of γ � .  

4) The sign of refraction is determined by the sign of γ ⊥ .  
5) The refraction angle, as a function of the incidence angle, is an increasing function if 2 0n >�  and 

decreasing if 2 0n <� .  
6) Whenever 2a nγ ≥ � , there exists a critical angle (equal for γθ  and γΘ ), given by ( )arcsin rn a� . 

7) The critical angle has an inverse behavior in the case 2 0n <� , in the sense that, for angles lower than the 
critical, there is no propagating wave transmitted, but for all angles higher that the critical, there is propagating 
transmission. 

8) There exist critical angles for both polarizations. 
9) There is low variation of the refraction angle for 0aγ � . 
10) In the particular case when 2a nγ = � , the reflectance is constant for all angles. 
Note especially, on relation with negative refraction, some less restrictive features of these materials due to 

their anisotropy, for example, the sign of the projection of S  over k  is no longer tied to the sign of the re-
fraction angle, since it is determined by only one parameter; also, there can be propagating transmitted waves 
even if the “refractive index” is purely imaginary. 

With respect to point 3, it is important to note that this refraction problem has a mathematical ambiguity aris-
ing from the fact that the dispersion relation (13) is quadratic, and thus two possibilities for zk  are admitted 
(while xk  is fixed by boundary conditions). This is solved by noting that, independently of the physical inter-
pretation of the field HS , the continuity of the parallel components of E  and H  lead to the continuity of its 
normal (z) component across the interface. Besides, since ˆH ze⋅S  is, by construction, positive on the incidence 
medium, it has to be positive on the refraction medium, which together with Equation (14), tells us that zk  and 
γ �  should have the same sign. Here ˆze  is a unit vector along the z axis. 

4. 2D Monochromatic Fields 
In this work we will be dealing, for simplicity, with the refraction of monochromatic two-dimensional beams, 
that nevertheless keep most of the physics behind the phenomenon of refraction of actual three-dimensional 
beams. We consider first an arbitrary two-dimensional monochromatic electric field, defined as a superposition 
of plane waves in the xz plane, 

( ) ( ) ( ), re e d ,x zi k x k z t
x xx z k kω∞ + −

−∞
 =   ∫E A                            (18) 

where re denotes real part. In a given medium, this will be a solution to Maxwell's equations if zk  as a function 
of xk  is given by the dispersion relation of the electromagnetic waves in this medium. For example, for an 
isotropic medium with refractive index n, this relation is: 2 2 2 2

0x zk k k n+ = . As it can be seen, this field does not 
depend on the y coordinate implying translational invariance along this direction. A plot of the magnitude of this 
field in the xz plane will mimic a projection of a three-dimensional monochromatic field. 

We can view this superposition as a series of plane waves traveling along different directions and with 
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different amplitudes, these determined by the function ( )xkA . In general, this superposition includes not only 
propagating waves, but also inhomogeneous waves, that is, plane waves with a complex wavevector i′ ′′= +k k k  
whose amplitudes decay along ′′k  and propagate with its planes of constant phase perpendicular to ′k . 

Recalling now that the magnetic, displacement, and H  fields linked to the electric field ( )i
0re e tω⋅ − =  

k rE E   

of a plane wave of wavevector k  and frequency ω , can be written as  

( )

( )

( )

i
0

i
0

i1
0

re e

re e

re e ,

t

t

t

ω

ω

ω

ω

µ
ω

⋅ −

⋅ −

⋅ −−

 = ×  
 = ⋅ 
 = ⋅ ×  

k r

k r

k r

kB E

D E

kH E

                                (19) 

it is immediate to write the corresponding monochromatic fields associated to the electric field given in 
Equation (18), as  

( ) ( )

( ) ( )

( ) ( )

i

i

i1

re e d

re e d

re e d .

x z

x z

x z

k x k z t
x x

k x k z t
x x

k x k z t
x x

k k

k k

k k

ω

ω

ω

ω

µ
ω

∞ + −

−∞

∞ + −

−∞

∞ + −−

−∞

 = ×  
 = ⋅  
 = ⋅ ×  

∫

∫

∫

kB A

D A

kH A

                           (20) 

For s-polarization, the amplitudes ( )xkA  in (18) can be written as ( ) ( ) ˆx e x yk A k e=A . It is then convenient 
to define  

( ) ( ) ( )i, e d ,x zk x k z
e x xx z A k kα

∞ +

−∞
≡ ∫                                (21) 

thus in terms of α  the electric field in (18) becomes  

( ) ( ) i ˆ, re e .t
yt eωα − =  E r r                                  (22) 

Note that if we denote x xα α≡ ∂ ∂ , z zα α≡ ∂ ∂ , then  

( ) ( )ie d i ,x zk x k z
e x x x xA k k k α

∞ +

−∞
= −∫                               (23) 

and the same is valid for zα  replacing xk  with zk  in the integrand. Now, since ( ), 0,x zk k=k  and 
( )ˆ , 0,y z xe k k× = −k  one can write, for s-polarization, the magnetic, displacement, and H  fields in Equation 

(20) in a most convenient and succinct way:  

( ) i

i

i

re i , 0, e

ˆre e

ire ,0, e .

t
z x

t
y

txz

e

ω

ω

ω

α α ω

α

αα
ω µ µ

−

−

−

⊥

 = − − 
 =  
  −−

=       

B

D

H

�

�

                              (24) 

For p polarization, one can write an expression for the H  field, analogous to the one for the electric field in 
Equation (18), as  

( ) ( ) i ˆ, re e ,t
yt eωβ − =  H r r                                (25) 

where  

( ) ( ) ( )i, e d ,x zk x k z
m x xx z A k kβ

∞ +

−∞
≡ ∫                              (26) 

with the following corresponding expressions for the displacement, electric and magnetic fields,  
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( ) i

i

i

re i , 0, e

ire ,0, e

ˆre e .

t
z x

txz

t
ye

ω

ω

ω

β β ω

ββ
ω

µ β

−

−

⊥

−

 = − − 
  −−

=       
 =  

D

E

B

�

�

 
                                   (27) 

It is important to note that the linear superposition of plane waves, as the one given in Equation (18) can be  

also written as ( )i ire e e dt
x xk kω ∞− ⋅

−∞
 
  ∫ k rA , where the exponent ie tω−  has been pulled out of the integral leaving  

a factor that is a function only of position. Since in the calculation of the energy densities and energy flux we 
will be dealing with bilinear products of the form ( ) ( )i ire e re et tf gω ω− −      r r  it is convenient to introduce 
time averages of these bilinear quantities, because the measuring devices cannot simply follow time variations 
of the order of 2π ω . Since the factor multiplying ie tω−  is only a function of the position, we will frequently 
deal with products of this type. If we denote with a ' the real part of a complex numbers and with '' its imaginary 
part, the product above is written as ( ) ( )( ) ( ) ( )( )cos sin cos sintf tf tg tgω ω ω ω′ ′′ ′ ′′+ +r r r r . Now, if one takes 
the time average over periods much longer than 2π ω  one gets,  

( ) ( ) ( ) ( )i i *1re e re e re ,
2

t tf g f gω ω− −     =     r r r r                            (28) 

where we have used ...  to indicate time average and the * denotes complex conjugate. 
For example, using Equations (22) and (28), the time average of 2E  for s-polarization is  

22 *1 1re .
2 2

E αα α = ⋅ = = E E                                 (29) 

Also, from Equations (22) and (24) one can easily calculate BS , and its time average by using again equation 
(28). One gets, for s-polarization,  

( )* *

0 0

1 1re i , 0, im .
2 2B x zα α α α α
µ ω µ ω

   = − = ∇   S                          (30) 

Note that this result is general and does not depend on the constitutive relations. On the other hand, for HS  
we do not have any such general expression, but we can calculate one for the special case of anisotropic 
metamaterials; using Equations (22) and (24), one gets, again for s-polarization,  

*1 im ,0, ,
2

x z
H

α α
α

ω µ µ⊥

  
=       

S
�

                                  (31) 

which clearly differs in direction from BS . 
Finally, regarding to the energetic consequences of the choice of energy flux, note that, taking the divergence 

of BS  and calling xxα  to the second partial derivatives of α , we get  

( )

* * * *

0

*

0

1 im
2

1 im .
2

B x x xx z z zz

xx zz

α α α α α α α α
µ ω

α α α
µ ω

 ∇ ⋅ = + + + 

 = + 

S
                         (32) 

Since ( ) ( )2 2 ie dxx zz x x z xA k k k kα α
∞ ⋅

−∞
+ = − +∫ k r , in isotropic media with real refractive index n, this quantity  

has the value 2 2
0k n α−  and, therefore, the divergence will be zero. But in a medium with a different dispersion 

relation-for instance, an anisotropic one-this will be nonzero. Since we don’t have a general expression in terms 
of α  for HS , it is not possible to calculate its divergence in an arbitrary case, but it is possible to do it in the 
special case of the anisotropic metamaterials, for which we get, with analogous calculations in s-polarization,  

*1 im
2

xx zz
H

α αα
ω µ µ⊥

  
∇ ⋅ = +      

S
�

                              (33) 
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which, in view of the dispersion relation (13), and following the same reasoning as before with BS , is identi- 
cally zero in mediums where 2n�  is real. Thus, in the cases of isotropic and anisotropic media for an s-polarized 
monochromatic field, we have that H∇ ⋅ S  does not predict any local loss or gain of energy within the material, 
while B∇ ⋅ S  does predict it in the anisotropic metamaterial. 

5. Geometrical Optics and Light Beams  
As we already mentioned in the introduction and in the section concerning the refraction of plane waves, the 
energy-flux vector (Poynting’s vector) is used, besides the calculation of electromagnetic-energy transport, in 
determining the “detectable” direction of refraction of plane waves, over the direction given by the angle of 
refraction of the wavevector. Although in many cases they do coincide, their difference in direction is specially 
critical in the phenomenon of negative refraction. In our pragmatic approach we will look at the refraction of 
rays—defined as narrow beams—and then calculate the two expressions for the energy flux: 0µ×E B  and 

×E H , and compare their direction with the actual direction of the beam. 
The first question is how to define the location of the beam in order to visualize it. The first idea could be 

perhaps to identify it with the transmitted energy flux and visualize it by plotting the transmittance, which is 
what one usually associates as the measurable quantity in optics experiments. The problem with such definition 
is that the value of the transmittance depends on the definition of the energy flux, which would lead us to a 
circular argument. Also, let us recall that the transmittance is proportional to the energy flux perpendicular to the 
interface, as if the detection of the transmitted power would be accomplished only along the perpendicular 
direction and not along the direction of the beam. Thus, we choose to look instead at the energy density, which 
in the absence of dissipation is proportional to 2E , and then take the direction of the beam as the direction of 
the energy flux. 

In the search of a criterion to determine how a monochromatic field refracts, one may require to define the 
direction of propagation of the field. At this respect, we derived the following result which we find interesting, 
and, to our knowledge, unnoticed yet. Let us start considering the simplest case of an isotropic, homogeneous, 
non-magnetic medium in which 0B µ= ×S E B  ( = ×E H ), and assume that the monochromatic field is s- 
polarized. Note that the average of this field given in (30) is proportional to *im α α α α α α  ′ ′′ ′′ ′∇ = ∇ − ∇  , and 
also that  

( )

*

2 2 2

im1arctan .
1

α αα α α α α
α αα α α

 ∇′′ ′ ′′ ′′ ′∇ − ∇   ∇ = = ′ ′′′ ′  +
                 (34) 

We recognize in ( )arctan α α′′ ′  the phase αφ  of the complex function ie αφα α= ; therefore, by com- 
bining Equations (34), (30) and (29), one can write  

2

0

.B

E
αφµ ω

= ∇S                                    (35) 

Since the electric field in Equation (22) can be also written as ( )iˆre e t
ye αφ ωα − =  E , we conclude that in a  

homogeneous, isotropic, non-magnetic medium, the time average of the field BS  of a monochromatic, 
s-polarized field, points in the direction of the maximum change of the phase of the electric field. This exact 
result establishes a connection between the propagation of an arbitrary monochromatic field (which can be, in 
particular, a localized one) and the formalism of geometrical optics, by generalizing the concept of eikonal to 
such field, in the sense of a function whose gradient yields the direction of the “ray”. Notice that the concept of 
eikonal is usually introduced when there is slow spatial variation of the amplitude function of the electric field 
([3], sec. 85), ([39], ch. 8), but here we impose no restriction on the spatial part. 

Going a little bit further, note that the dependence on the material in the expressions for the electric field E  
in Equation (22) and the magnetic field B  in Equation (24) comes only through the specific form of α , that 
requires the dispersion relation of the specific material in the performance of the integral in Equation (21). 
Therefore, Equation (35) is valid regardless the optical properties of the material, simply because its derivation 
is independent of the particular structure of α  (see Equations (30) and (34)). This means that in any material, 
the field 0µ×E B  of an arbitrary s-polarized monochromatic field, points in the direction of the gradient of 
phase of the corresponding electric field. 
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This same result does not hold for all materials while regarding the energy flux as given by H = ×S E H . For 
instance, for an uniaxial magnetic medium excited with s-polarized light, the average of HS  is given by (31) 
which differs markedly from the expression for the average of BS  given in Equation (30). But even if the 
material is isotropic but has magnetic absorption, BS  and HS  will also differ in direction: one can see 
this by replacing µ�  and µ⊥  in Equation (31) by iµ µ µ′ ′′= +  and recalling that 2*1 µ µ µ= ,  

* *
* *

2 2

im re1 im .
2 2

H

µ α α µ α α
µ α α

ω µ ω µ

   ′ ′′∇ + ∇    = ∇ = S                  (36) 

The real part of *α α∇  is α α α α′ ′ ′′ ′′∇ + ∇ , which can be expressed as ( ) 22 21 1
2 2

α α α′ ′′∇ + = ∇ , so one  

can write  
2 2

2

2
.

2
H

E Eαµ φ µ

ω µ

′ ′′∇ + ∇
=S                              (37) 

One can see that the first term in the right hand side points along the direction of the gradient of phase of the 
electric field as in the case of a homogeneous nonmagnetic material, but now, due to absorption, the field HS  
acquires a component in the direction of the maximum change of intensity. One can see this result as a 
generalization to arbitrary monochromatic fields in s-polarization, of the characteristics of propagation of 
inhomogeneous plane waves in absorbing media. In this latter case the inhomogeneous wave is proportional to 

( )exp i tω′ ′′⋅ − − ⋅  k r k r  where the planes of constant phase travel along ′k  while the planes of constant 
amplitude decay along ′′k . 

Nevertheless, the very general result that for any monochromatic electromagnetic field and for any material 
the direction of BS  coincides with the gradient of the phase of the electric field, makes 0µ×E B  a very 
tempting choice for the energy flux. Note that the result is true even for absorbing media. 

The analogous result for p polarized light might not be as obvious, but is also quite interesting. Using the 
expressions for the fields given in Equations (25) and (27) one can write,  

0

1im ,0,
2

1im ,0, .
2

x z
B

x z
H

µ β ββ
µ ω

β ββ
ω

∗
∗

⊥

∗

⊥

  
=       

  
=       

S

S

�

�

�

 

 

                          (38) 

Without magnetic absorption, both fields are parallel, even in anisotropic media. Moreover, none of them has 
the property of pointing in the direction of maximum change of the phase of H . The field that has this property 
for p-polarization is the field 0 ×D H :  

( )* 2

0 0 0

1 1im ,0,
2 2x z H ββ β β φ
ω

 
× = = ∇ 

 

D H
  

                   (39) 

where we have written ( )i ˆre e t
yeβφ ωβ − =   

H . These results may be in principle unexpected, but perhaps it can  

be mathematically clarified by the fact that Maxwell's equations in regions free of external sources together with 
the constitutive relations are invariant under the interchange of ↔D B  and ↔ −E H  and µ↔ − . One 
might think that this third field should be added to the other two options under consideration, however, in view 
of the equivalence of the 0µ×E B  in s-polarization and 0 ×D H  in p-polarization, we only need to take 
care of the two first-mentioned cases, fortunately. In the next subsection we adopt our definition of ray as a 
narrow Gaussian beam.  

Gaussian Beam  
We now use the results for 2D monochromatic fields to construct a localized beam. We start by regarding an 
s-polarized beam localized along the z-axis, and impose a boundary condition over the magnitude E of the 
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electric field at 0t = , that defines its shape. This boundary condition requests that in the plane 0z = , E has a 
Gaussian profile of width w, that is,  

( )
2

22
0, , 0 e .

x
wE x y E

−
=                                    (40) 

From Equation (22) we get that ( ) ( ) i, , 0 re e dxk x
x xE x y A k k

∞

−∞
 =   ∫ . This means that ( )xA k  can be iden-  

tified as the spatial Fourier transform of ( ), , 0E x y , and the condition of E being real only means that 
( ) ( )*

x xA k A k= − . Then  

( )
2 2 2

2 i 02 2
0

1 e e d e .
2π 2π

x
x

x w k
k xw

x
E wA k E x

− −∞

−∞
= =∫                          (41) 

Thus, the electric field in any point at any time is given by  

( )
2 2

i0 2ˆre e e d .
2π

x
x z

w k
k x k z t

y x
E w e kω−∞ + −

−∞

 
 =
  

∫E                            (42) 

This is a 2D Gaussian beam, confined in the x direction and extended along the z direction. Regarding its 
composition as a superposition of plane waves, note that the plane wave corresponding to wavevector ( )00,0, k  
has the dominant amplitude; we call this wave the main mode, and its corresponding vector the main wavevector. 
Now, given any other plain-wave component with wavevector ( ), 0,x zk k , there is a corresponding plane wave 
component with the same amplitude and opposite x component, and therefore a wavevector ( ), 0,x zk k− ; their 
sum always “points” in the direction of the main wavevector. This gives the z axis a special geometrical role of 
symmetry, and thus we find natural to call it the axis of the beam and to say that the beam is propagating in the z 
direction. Naturally, the profile of 2E  is also Gaussian, and in it this symmetry is traduced on an invariance 
under the change of z by z−  or x by x− . This also gives the point ( ) ( ), 0, 0x z =  a special geometrical 
location (exactly at the center of the beam’s waist), and we call it the center of the beam. 

We will be plotting 2E , which is given exclusively in terms of the function α  defined in Equation (45), so, 
from now on, we will abuse lightly from the notation and refer to the function α  as “the beam”. 

We are interested in the refraction of an incident beam from vacuum to an anisotropic metamaterial, but with 
an arbitrary angle of incidence iθ , We assume the interface is located at the plane 0z =  and then we write 
down the expression of the beam in Equation (42), in a rotated system of coordinates ( ), ,i ix y z  that we will 
call the incidence system, in which the i ix z  plane is rotated an angle iθ  with respect to the xz plane, leaving y 
invariant. Then  

( ) ( )
2 2

i0 2, e e d ,
2π

xi
x i z ii i

i

w k
k x k z

i i x
E wx z kα

−∞ +

−∞
= ∫                           (43) 

and the relationship between these two coordinate systems is given by  
cos sin
cos sin .

i i i

i i i

z z x
x x z

θ θ
θ θ

= +

= −
                                 (44) 

Replacing these rotated variables in Equation (43) we get the following expression for the incident beam on 
the ( ),x z  system,  

( ) ( ) ( )
2 2

i cos sin i cos sin0 2, e e e d ,
2π

xi
x i z i z i x ii i i i

i

w k
k k x k k z

i x
E wx z kθ θ θ θα

−∞ + −

−∞
= ∫                  (45) 

where the axis of the beam lies along the line tan ix z θ= . We can recognize xk  and zk  as the quantities in 
the exponent, that are in parenthesis multiplying x and z, respectively. So we can think of this Gaussian beam as 
a superposition of plane waves with wavevectors ( ),0,x zk k  (on the unrotated system)—where zk  and xk   

are related through the dispersion relation—and amplitudes given by 
2 2 2

e xi
w k−

 (given in the rotated system).  
Note that the center of the beam remains in the same position. 
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Given the incident field in Equation (45) and setting the location of the uniaxial metamaterial in 0z > , we 
now describe the computation of the electric field of the refracted and reflected beams. The axis of the incident 
beam subtends an angle iθ  with the z axis. We then refract the beam by refracting mode by mode, under- 
standing that by refraction of the mode we only mean using Maxwell’s equations to propagate the plane-wave 
mode towards the anisotropic metamaterial, without any consideration about the direction of energy flow. This 
means that a transmitted mode with wave vector k , obeys the dispersion relation in the metamaterial keeping 
its x component continuous at the interface. 

To this purpose, we follow the next steps to refract and reflect a given mode of the incident beam:  
1) For a given mode-characterized in the integral by 

ixk -calculate the corresponding zi
k  component using 

the dispersion relation in vacuum: 2 2
0i iz xk k k= − .  

2) From the resultant wave vector ( )( ),0,
i i ix z xk k k , obtain its component parallel to the interface 0z =  by  

rotating it as required in Equation (44).  
3) Calculate the z-component of this mode by using the dispersion relation in the corresponding medium 

(vacuum or metamaterial), and assigning  
a) a negative sign for the reflected mode.  
b) the sign of µ�  ( )( )sgn µ�  for the transmitted mode, as explained above.  

4) Multiply the amplitude of this mode by the transmission or reflection coefficient in Equation (15), as a 
function of the parallel (x-component) of the wavevector.  

To summarize this, we have, in terms of  

( )
( ) ( )
( ) ( )
( ) ( )

2 2
0

2 2
0

22 2
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θ θ

= −
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= −

= −�

i i i

i i i i
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t i i

z x x

x x x i z x i

z x x x

z x x x

k k k k

k k k k k

k k k k k

k k k n k k

                                  (46) 

the expressions for the reflected and transmitted fields:  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 2

2 2

i0 2

i sgn0 2

, e e d
2π

, e e d .
2π

xi
x x z xi r i

i i

xi
x x z xi t i

i i

w k
k k x k k z

r x x x

w k
k k x k k z

t x x x

E w
x z r k k k

E w
x z t k k k

µ

α

α

 −∞ − 
−∞

 −∞ + 
−∞

=

=

∫

∫ �

                     (47) 

It is worth to note that the reflected and transmitted beams are—due to the presence of the transmission and 
reflection amplitudes inside these integrals—not Gaussian beams any more. This makes them no longer have the 
symmetries of the incident beam. Thus, we need a criterion to define the direction of propagation of the 
transmitted and reflected beams. It seems plausible to define this direction tracing a circle of radius r from the 
center of the beam, and, for each r, look for the local maximum of 2α . The curve formed of all this points will 
serve for terms of this specific beam as the “geometrical ray”. Perhaps this will be more clear when we show the 
beam in the following subsection. 

It is convenient for both, calculations and analysis, to express the above relations regarding the composition 
of the beam in terms of dimensionless quantities. For this, we define 0w k w=�  which is a measure of the waist 
of the beam relative to the wavelength of the modes in vacuum; ( ) ( ) 0, ,x z x zk k k k k=� � , a dimensionless version 
of the wave vector, relative to the wavenumber in vacuum; ( ) ( ), ,x z x z w=� � , a measure of the position in units 
of the waist of the beam; and 02π Eα α=� , the dimensionless complex amplitude. 

In terms of these quantities, Equation (43) can be expressed equivalently as,  

( ) ( )2 2 2 i, e e d .x zxi
i

w k w k x k z
xx z kα

−∞ +

−∞
= ∫

� � �� � � � �� � �                                  (48) 

Naturally, there are analogous dimensionless quantities for the reflected and transmitted beams (47). In terms 
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of α�  and of the dimensionless version of the components of µ : 0µ µ µ=� ��  and 0µ µ µ⊥ ⊥=�  relative to 
vacuum, we also define  

( )
( )

im ,0,

im ,0, ,

h x z

b x z

α µ α µ

α α

⊥ =  
 =  

s

s

� � �

� �

� �� �

� �
                                 (49) 

which are dimensionless measures of the averages of HS  and BS , respectively. 
We will now take a look at the results of numerical simulations of the refraction of the Gaussian beam. These 

computations were obtained through a custom c program and plotted in gnuplot with a little help of bash. The 
source code can be freely downloaded from our page1. For the plotting, we present here some numerical results 
with effective-medium anisotropic parameters from actual metamaterial experimental reports [43] and [44]. 

The first material is a laminate metamaterial (LM) made up of a succession of sheets of silver and silica. We 
took the effective properties at 400 nm of the seven-layered version. This material does not respond mag- 
netically but has an electrical anisotropic permittivity. Its parallel component for this wavelength is 03= −�   
while the orthogonal component is 017⊥ = −  . We ignored the imaginary components of the tensor in agree- 
ment with the main assumptions presented above. The results should be presented for p-polarization, but, in 
order to make a more straight comparison with the second material described below, we switch to s polarization 
and interchange   for µ . 

The second metamaterial is a split ring resonator (SRR). SRR’s were the first constructed metamaterials in 
which negative refraction was observed. In order to obtain an isotropic response they were built by placing equal 
resonators on the cells of a cubic lattice. This SSR omitted the isotropization process, placing the resonators in 
parallel sheets, thus obtaining an uniaxal anisotropic metamaterial. At a microwave frequency of 1.8 GHz the 
effective properties (again, ignoring the imaginary part) are 0µ µ=�  and 02.1µ µ⊥ = , while at 2.0 GHz we 
have 0µ µ=�  and 0µ µ⊥ = − . Note that for both, the SRR and the LM we have 1n =� . 

Some points to take into account when looking at the results of the simulations are:  
1) Due to the dimensionless representation we are using, the units of length in the plots are the width of the 

beam. Therefore, a same plot with larger larger units of length is equivalent to a thinner beam and vice-versa. In 
all the figures presented here, we use a parameter 0 300= =�w k w . This means that the actual beam waist 
depends on the beam frequency; for example, for yellow light with a wavelength of 600 nm  in vacuum, the 
waist would be of approximately 28 µm, a really slim beam. Of course, we suppose that assume the beam is 
sufficiently wide with respect to the metamaterial components so as to retain the validity of the effective- 
medium theory and—of course—macroscopic electrodynamics.  

2) The fields bs  and hs  are scaled differently. The use of large values of µ��  implies very different sizes 
of hs  and bs , which makes it difficult to visualize them, so, for each given plot, they are rescaled in a way 
such that their maximum sizes are equal.  

First of all and in order to clarify the idea we have been discussing about the refraction of a light beam, we 
show in Figure 1 the plot of a beam seen from “far away”. This is the picture of a beam impinging from vacuum 
at an angle 5π 16iθ =  over an isotropic material with the refractive index of diamond (2.4). We can see the 
incident, reflected and transmitted beams. And, as we said, the concentration of the field in this beam allows a 
natural definition of a direction.  

The symmetry of the beam described in the preceding section makes us expect that in some approximation the 
propagation of the beam is represented by the propagation of the main mode. Thus, we also indicate the 
direction of bs  and hs  for the main mode; since for a plane wave this directions are constant, we plot lines in 
such directions passing through the center of the beam. 

We present the results for the refraction of the beam at a vacuum-LM interface in Figure 2 and Figure 4; and 
at a vacuum-SRR interface in Figure 5 and Figure 6. The plots include the energy-density patterns, the field 
lines of hs  and bs  and the directions of these two fields for the main mode. For the same setup as in Figure 2 
we display in Figure 3 the divergence of bs  given by Equation (32); we omitted to show the divergence of hs  
since, as proved before, it is identically zero, and decided not to include the divergence corresponding to the 
other figures since they turn out to be very similar to Figure 4.  

There are some features of these results that we would like to remark:  
1) Unlike Figure 1, all the figures show an interference pattern between the incident and the reflected beam.  

 

 

1http://www.fisica.unam.mx/personales/rbarrera/gaussian-beam. 

http://www.fisica.unam.mx/personales/rbarrera/gaussian-beam
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Figure 1. Gaussian beam refraction and reflection from vacuum into 
diamond, when viewed from far away.                                           

 

 
Figure 2. Refraction of the Gaussian beam from vacuum towards the LM 
for 0 400 nmλ =  and 4π 16iθ = . We plot a measure of the energy 
density (in the color map), the bs  and hs  fields (as vector fields), and 
the direction of the hs  and bs  for the main mode of the beam (as lines).                                                

 
A stationary field is established by this interference, just as it happens in the interference between incident and 
reflected plane waves on an interface, case in which the interference term is a function exclusively of z. This 
characteristic is somewhat preserved in the beam although it is highly localized (these plots are just windows of 
10 10×  widths of the beam).  

2) Away from the interference zone, the direction of both hs  and bs  fields does not vary appreciably . In 
particular in the transmitted beam, both fields seem to preserve their direction over all the plotted region. In the 
interference zone they bend continuously from the direction of incidence to the direction of reflection. When  
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Figure 3. Divergence of bs  for the Gaussian beam of Figure 2.                                                

 

 
Figure 4. Refraction of the Gaussian beam from vacuum towards the LM for 

0 400 nmλ =  and 6π 16iθ = . We plot a measure of the energy density (in the 
color map), the bs  and hs  fields (as vector fields), and the direction of the 

hs  and bs  for the main mode of the beam (as lines).                                                
 
viewed from far away, we would only notice an abrupt change in direction from the incidence to the refraction 
angle.  

3) As expected, both hs  and bs  coincide in direction in vacuum. Their size is numerically the same, but, as 
explained before, we used a different scale for the magnitude of each field.  

4) The “rays” of main
hs  and main

bs  are—with the exception of the interference zone—parallel to the hs  and 
bs  fields, respectively. If there is any deviation, it cannot be appreciated by only looking at the figure.  
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5) In all the simulations that we displayed, the line traced by the local maxima of 2α�  described before 
coincided—without noticeable difference—with the line corresponding to main

hs .  
6) The magnitude of both bs  and hs  is larger on the more “intense” parts of the beam, and decreases when 

getting away from it.  
7) In Figure 2 and Figure 4 the transmitted beam seems more intense than the incident beam. 
And last, perhaps the most important observations:  
8) For all cases, bs  has a small but quantifiable divergence along the transmitted beam. In all cases, it is 

negative in some regions and positive in others . A plot of this is displayed in Figure 3. This means that if bs  is 
interpreted as an energy flux, there is energy flowing out in some regions of the beam, and energy flowing in in 
other regions of the beam , which requires a justification in physical terms.  

9) Some of the basic refraction properties of the propagation of plane waves in uniaxial metamaterials re- 
ferred in Section 3 are preserved in the case of the beam: a) Negative refraction is obtained when µ⊥�  is nega- 
tive, as in Figure 2, Figure 4 and Figure 6. b) The projection of hs  over bs  (the analogous of the projection 
of S  over k  for a plane wave) has the sign of µ�� —positive only for Figure 5—and is not tied to the sign of 
refraction.  

10) In the metamaterial, the field bs  is not parallel with hs  in any of the cases presented here. And while 
hs  follows the direction of the beam (whether in visual terms, or more quantitatively in terms of the line of 

maxima), bs  clearly and distinctively does not point in the direction of the beam. It can even point in directions 
towards the interface, as in Figure 2, Figure 4 and Figure 6. 

This results reveal that for this beam the main wave represents an astonishingly good approximation to the 
beam in geometrical terms. In general, it is important to remark that such agreement is by no means obvious, 
since the energy and energy flux are not linear quantities; in fact, it does not happen in other less symmetrical 
beams, which we do not treat here for the sake of brevity. 

The point labeled 6 about bs  and hs  having a larger magnitude within the beam is important, since in 
optics the intensity is defined as the magnitude of the energy flux. It could be thought that the choice of plotting  

21
2ui α= �  was in some way biased and that another choice would have lead to different results about the  

 

 
Figure 5. Refraction of the Gaussian beam from vacuum towards the SRR for 

0 1.8 GHzω =  and 4π 16iθ = . We plot a measure of the energy density (in the color 
map), the bs  and hs  fields (as vector fields), and the direction of the hs  and bs  
for the main mode of the beam (as lines).                                                
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Figure 6. Refraction of the Gaussian beam from vacuum towards the SRR for 

0 2.0 GHzω =  and 2π 16iθ = . We plot a measure of the energy density (in the color 
map), the bs  and hs  fields (as vector fields), and the direction of the hs  and bs  
for the main mode of the beam (as lines).                                                

 
direction of bs . But actually this is not the case, and we wish to quantify and elaborate briefly on this. 

Let us define b bi = s  and h hi = s . An important question is, taken this as intensities, how would the 
beam profile vary from the one obtained with the mean energy density ui ? It should be clear that the quotient 

b si i  is exactly 1 on vacuum; on the other side, within the metamaterial we calculated it numerically for the 
same setups presented in Figure 2, Figures 4-6; it is practically constant, with a slow variation in the x  
direction. For example, for the SRR and parameter values as in Figure 6, this ratio is about 1.2. The slow spatial 
variation in this proportion can be understood in terms of Equation (49), which allows us to write  

( ) ( )
( )

2 * 2 2 * 2

2 *

2 2 2 2

im im

im1 1 1 .

b b

s x z

z

b

i i
i

i

α α µ α α µ

α α

µ µ µ

⊥

⊥ ⊥

=
+

  
 = + −     

�

�

                           (50) 

Written in this way, we can recognize the term ( )2 * 2im z biα α  as the square cosine of the angle formed 
between bs  and the z axis. As we observed in point 6b of the list above, this directions do not seem to vary 
along space. All this tells us that the beam profiles (the “shapes”) predicted by si  and bi  are essentially the 
same, that they only vary in the prediction of the intensity of the transmitted beam. 

On the other hand, note, from Equation (35) that the essential difference between ui  and bi  (or hi , in view 
of the former conclusion) is the magnitude of the gradient of the phase of the electric field αφ∇  (which is 
clearly not constant). In Figure 7 we can see the quotient u hi i . This is essentially the magnitude of the 
gradient of phase, and, as it can be seen, except in the interference zone, it seems “constant”. The quotes here are 
because the value of that constant is one in the vacuum side and a different one on the metamaterial side.  

The numerical analysis of these two quantities h bi i  and u hi i  show two important things: first, that the 
profile given by ui , bi  and si  are essentially the same (and thus there is no bias with respect to this two fields 
in the choice of plotting 2E ); and second, that there is a difference with respect to the predictions of the 
intensities of the transmitted beams, which manifest in the abrupt change of h bi i  when passing from vacuum 
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to the metamaterial. This last observation is expected, since, for the polarization we are analyzing, 2E  is 
continuous, while H  is not. The effect of this discontinuity is—at least for the cases we analyze—desirable 
from the point of view of experience, because, as Figure 8 and Figure 9 show, the profiles of hi  no longer 
have a more intense transmitted beam than the incident one, as it does happen in the corresponding Figure 2 and 
Figure 4.  

 

 

Figure 7. Proportion between 2α�  and hs  for the SRR at 2 GHz and an 

incidence angle of 4π 16iθ = . This plot corresponds to the same parameters 
as Figure 5.                                                                     

 

 
Figure 8. Magnitude of hs  for the same parameters of Figure 2.                       
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Figure 9. Magnitude of hs  for the same parameters of Figure 4.                          

 
The discussion of the intensity predictions of the two choices of the Poynting vector also leads to an intere- 

sting question: Since we define intensity as proportional to the energy density, one could ask if there exists a 
device capable of responding to this quantity. Consider an idealized “intensity detector” consisting of a small 
plane screen, whose detection result is the integration of the intensity over such surface. Center this detector in a 
point along the axis of the Gaussian beam. First, put the screen aligned with the axis and take a measure with 
this device. Afterwards, put the screen in the orthogonal position (remember this is a 2D beam) and take a 
second measure. Since in the first case the axis coincides with the line of maxima of intensity, the measure is 
necessarily greater than in the second. But our experience with detectors tells us this is not the case; in fact, it is 
exactly opposite. This is important because, since bi  and hi  produce the same intensity profiles, one could 
think that there is no practical difference if the flux comes from one or the other, because it is the profile what 
we measure. But if we accept that the detector in some way reacts to the energy flux (as a vector quantity) 
through the surface integral of its projection over the screen's normal, the maximum value would be obtained, 
with hs , when the screen is orthogonal to the axis, while for bs  it would be obtained in different directions, as 
it can be seen in Figure 2, Figures 4-6. With this assumption, to measure the intensity at a given point one has 
to either know the direction of flow a priori, or rotate the detector (with normal n̂ ) in all possible directions, 
obtaining a measure of n̂⋅s  for each direction; when this quantity is the greatest of all ( n̂⋅s , with n̂  parallel 
to s ), one gets the intensity and the direction of the energy flow in that point. 

It is also important to stress that the results we show here make evident that in general the ray directions in the 
formalism of geometrical optics and the notion of a ray as an idealized narrow beam (characterized by its 
intensity) are not equivalent.  

6. Conclusions  
We discussed the choice between two possible expressions for the Poynting vector: 1) 0B µ= ×S E B  and 2) 

H = ×S E H , in order to discriminate which of them truly represents the direction of energy flow within 
anisotropic media. We construct a 2D monochromatic beam and calculate how this beam refracts at an interface 
between vacuum and an uniaxial anisotropic metamaterial, at frequency bands in which dissipation is negligible 
and with optical parameters unrestricted with respect to sign. The results obtained make us conclude that:  

1) For any monochromatic 2D field and in any medium (even absorbing ones) there is a “ray” formalism 
which extends the eikonal formalism. The directions of those “rays” are given, in s polarization, by 0µ×E B , 
and in p polarization by 0×D H  .  
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2) The directions of the rays, defined in this work as idealized narrow beams, coincide within the simulations 
presented here with the Poynting vector if we define it as ×E H  rather than 0µ×E B . Thus:  

a) The “ray” formalism described in conclusion 1 (and therefore the eikonal formalism) is not equivalent to 
the “intuitive” notion of light ray given by idealized narrow beams.  

b) Following the geometrical criterion proposed here, the field ×E H  is more suitable as a definition of the 
energy flux compared to 0µ×E B .  

c) The definition of light ray as an idealized narrow beam and the results obtained here allow us to associate 
the light rays with the field lines of the ×E H  vector.  
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Abstract 
This paper presents an innovative solution regarding complex systems to scientists, and prepares 
a novel system simulator for complex systems. A complex system in nature is not a black box but a 
solvable systematic problem. The solution is not derived from conventional physics based on re-
ductionism, but rather from engineering sciences such as the feedback systems analysis method 
and engineering principles. Furthermore, this paper presents the conception of the solution to 
scientists for solving the problem. Moreover, nobody can doubt this research based on simulator. 
Complex systems are not mysterious science and not black box. 

 
Keywords 
Complex Systems, Feedback System, System Simulator, System Analysis Theory 

 
 

1. Introduction 
This paper presents an incredible scientific solution for complex systems based on multidisciplinary physics and 
engineering to scientists engaged in those fields. Complex systems represent unsolvable problems in science, 
such as black holes, sun magnetism, nuclear fusion, nuclear theory, super conductor, plasma, turbulence, climate 
change, and the subconscious in human. Many scientists have said that these phenomena are mysterious science 
that can be solved by God alone and not by humans. Many geniuses in the field of physics have attempted to 
find answers to these questions over the last century, but nobody has succeeded yet.  

In addition, famous research organizations, such as the Santa Fe Institute (SFI) in the United States, have worked 
to study the complexity originating from complex systems. The SFI was established by Dr. Murray Gell-Mann 
(1929) and other scientists based on their mission of statement (http://www.santafe.edu/about/mission-and-vision/). 
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However, they have not yet succeeded in spite of the money, time, and effort expended by many scientists. This 
leaves us to wonder: Does science have a solution to these problems?  

The answer is here. If someone discovered a solution for the algorithm of complex systems in other sciences, the 
other approximately ten million physicists in the world might say that it is an unbelievable miracle in science, or 
a trick. However, the author would like to present a report on complex systems to these scientists for careful reading. 
The report was previously published in this journal in October 2015 [1]; it contains an incredible scientific result, 
which is as follows. Natural systems, such as the stock market system, ecological systems, or thermodynamic sys-
tems, are not black boxes; rather they are solvable systematic problems such as a closed-loop system with a neg-
ative feedback property based on energy conservation (https://en.wikipedia.org/wiki/Conservation_of_energy), 
as shown in Figure 1. This is the basic concept in the solution. 

This can analyzed by the feedback systems analysis method (https://en.wikipedia.org/wiki/Control_theory) 
based on the automatic control theory [2] in engineering. Nevertheless, this is a serious problem for physicists. 
Most physicists do not use the analysis method in conventional physics, based on reductionism. Accordingly, 
most physicists cannot read the report written by the method and they cannot accept the research result. Why do 
not they use the method? There is a hidden serious and important thing in physical science. It is involved with 
the principal rule of physics (https://en.wikipedia.org/wiki/Physics), according to which, most physical pheno-
mena in nature must be “quantitative and qualitative”, and “measureable and reversible”; physicists deal it with 
the physical science. (It is a keyword in this paper.) The other hand, the external behavior of complex systems 
such as the stock market or ecosystems is not measureable and reversible within quantitative and qualitative. In-
stead, it must be solved by a time series function in real time, similar to the systems analysis method in engi-
neering. Refer to Section 3 for more details. Despite of, no argument to physicists; because most physicists have 
good mathematical capabilities, they begin to study the principle immediately. This is a good idea for physicists 
and can be vital for the cooperation between physicists and engineers. 

In addition, the author proudly provides a system simulator (shown in Figure 2), designed using an electro-
type for scientists to proving the research. It is a novel design, which can simulate the behavior of dynamic sys-
tems for any type of system in nature; moreover, it can be demonstrated by anyone, at any time, and anywhere. 
If anyone has a doubt about this research, the author will support a simulator to him/her freely. Finally, com-
plexity is not a mysterious science; this research provides a revolutionary scientific result in modern science. 
Therefore, if the solution is sufficient, it represents an incredible scientific success and a great discovery, similar 
to the Copernican theory. Maybe a human is the winner. 

Nevertheless, there is another serious issue to consider. Most scientists will not welcome the new solution 
presented in this report. The following are the possible reasons for this response. Many scientists have a fixed 
idea, and so it is possible that they absolutely believe that complexity is an unsolvable problem, and they cannot 
visualize anything that contradicts this belief and is beyond their assertions. Indeed, the report may be shocking 
and unbelievable for them. Therefore, they may fall into a dilemma, because they cannot contradict against the 
experimental results. Apart from these concerns, the author would like to stress that the solution is not dangerous  

 

 
Figure 1. Mechanism of a complex system.                                                                                
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Figure 2. Electrotype complex systems simulator (50% size) and the system simulator prototype 
(available eBay).                                                                                                                 

 
to anyone, and that no damage can occur to anybody in case of failure.  

2. Experiment and Result  
2.1. Experiment 
However, the author would like to explain the experiment again using the complex system simulator developed 
for this, because, many scientists do not believe this research yet. The author has additionally prepared a video 
to supplement this report (https://youtu.be/-EnU4L5uH5o), the experiment was performed in a sequence of two 
steps, as shown below.  

In step one, the characteristics of all systems can be tested by their response to a unit step function u(t). We 
add a constant value as a unit step function u(t) to the simulator using a function generator  
(https://en.wikipedia.org/wiki/Function_generator), and we can then observe the output y(t) as displayed on an 
oscilloscope (https://en.wikipedia.org/wiki/Oscilloscope) as shown in Figure 3, where the blue line represents 
the input U(s) and the yellow curve represents the output Y(s). In addition, the original function y(t) is given by 
Equation (1) 

( ) ( )1 e sin ,Bty t A W t ϕ−= − ⋅ ⋅ ⋅ +                                 (1) 

where A, B, W, φ are constant, and t is time. 
We can find that the output y(t) increases gradually by the input u(t) with a sine wave. This is a well-known 

characteristic of feedback systems, such as the mechanism as shown in Figure 1, and is similar to a transient 
phenomenon in electronics. (Further details are provided in [2].) Nevertheless, we can observe the characteris-
tics of complexity though the yellow curve shown in Figure 3, which is described by Equation (1). For example, 
the curve displays an initial phenomenon in Figure 3 that is similar to the butterfly effect, whereas the periodic 
decreasing curve in Figure 3 is similar to the self-organization or fractal. Moreover, the output and input in 
Figure 3 are not reversible because they have chaotic properties. This is a basic property in complex systems, as 
shown in Equation (1). For further details about complexity, refer to [4] and other reference books. 

In step two, we consider many other cases, where the source of a complex system, such as stock market sys-
tems or thermodynamic systems, is not constantly static but is variably dynamic. We add an irregular value as a 
random function r(t) into U(S). The response to the random function r(t) can be observed in Figure 4; the yel-
low curve in the figure displays a time-varying output y(t), and we cannot determine anything. Nevertheless, we 
can make the following observations throughout this simulation, as shown in Figure 3: The four kinds of beha-
vior as mentioned previously overlap as chaotic, fractal, self-organization, butterfly-effect  
(https://en.wikipedia.org/wiki/Complex_systems), and other phenomena. Similar to the dynamic daily stock price, 
dynamic daily climate, or dynamic individuals in ecosystems; in addition, we have found important properties: 
The input and output are not measurable and reversible, or quantitative and qualitative; and if the input source of 
a complex system disappears, the output product converges to zero with time. Incidentally, we wonder why  

https://youtu.be/-EnU4L5uH5o
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Figure 3. Response of a unit step function. The lower blue curve shows the unit step function, whereas the upper yellow 
curve shows the output of the complex system.                                                                                       
 

 
Figure 4. Response of a random function. The blue curve shows the random function, and the yellow curve shows the output 
of the complex system.                                                                                                                 
 
Equation (1) is not reversible between input and output, and further, stock prices cannot be forecast easily and 
completely. 

2.2. Results 
We can confirm many characteristics of complex systems through the experiment described above. For instance, 
complex systems never overflow, never run away to destruction, and are certainly not dangerous, but safe, be-
cause once the entropy of the input disappears, the output converges to zero based on the law of conservation of 
energy. Moreover, complex systems can be externally controlled by humans, but not completely as daily stock 
prices in the market. Therefore, complex systems are solvable systematic problems and are not black boxes. In 
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people cannot forecast stock prices; if we could, we would be rich. Why cannot we forecast the prices? Because 
addition, the most important aspects of this study are the dynamic characteristics of the input source and the 
output products of complex systems. These properties are non-quantitative, non-qualitative, non-measureable, 
and non-reversible, as illustrated by the many verified complex systems in nature, including economic systems, 
thermodynamic systems, or ecosystems.  

3. Discussion  
3.1. Conception 
This paper contains a revolutionary solution for complexity in the science of the complex. This solution is not 
dangerous and no damage to anyone. Moreover, it is easily applicable to science. Therefore, the author would 
like to share with scientists (including those of the SFI) the origin of the concept. The concept of the solution 
was discovered in 2008 when the author was cultivating an interest in another science, namely economics, and 
was surveying complexity in physics. Previously, the author had already studied a course in electrical power and 
control engineering.  

One day, the author discovered strange properties from the stock market while analyzing the pricing of stocks. 
One of these properties was that the relationship between the transaction volume of a stock and the variations in 
the stock price are multiplied. Another property is that the equation describing the relationship between a seller  

and a buyer, ( ) ( ){ }1d 0
d

limt P t P t D
t

−
→∞ + − = , [where P(t); stock price in real time, D; time delay, t; time], is  

based on the law of conservation of energy. Therefore, the relationship between a seller and a buyer in the mar-
ket is an inverse relationship, and they always counterbalance each other with negative feedback that is related 
to the “law of supply and demand” in economics. Indirectly, this provided the insight that that the stock market 
is a feedback system and not a black box, as shown in Figure 1. For more details, refer to [1].  

Furthermore, the author observed a similar phenomenon in other sciences as well. For example, non-linear 
dynamic systems in a variety of fields exhibit this phenomenon, including representative social economics, nuc-
lear reactor systems in engineering, thermodynamic systems, and ecological systems in nature. Thus, the author 
discovered that it is possible to solve complex systems using the systems analysis method. Therefore, the author 
started reporting this discovery to many physical journals. Unfortunately, the author is aware that most scientists 
in conventional physics do not use or understand systems analysis theory. Consequently, the author decided to 
design a system simulator that could be used to demonstrate the concept, as shown in Figure 2, based on the ba-
sic model system shown in Figure 1. The system simulator can be manufactured at a cost under U.S. $100; fur-
ther details on this topic are omitted for now.  

3.2. Simulator Designing 
(Simulator) The design concept for the system simulator is as follows. The basic system feedback model and an 
equivalent electronic circuit are shown in Figure 5, and are published here for use by scientists. It cleverly 
comprises an operational amplifier that acts as a comparator, integrator, and differentiator. 

The corresponding system transfer function F(s) is 

( ) ( )
( ) ( ) 21

G S BF s
G s H s s As B

= =
+ + +

.                            (2) 

Next, the electronic circuit transfer function F(s) is 

( ) 2
2

1

1
BRCF s

rc s As Bs s
RC RC

 
 
 = =

+ +   + +   
   

.                         (3) 

In Equation (3), the elements [R] and [r] are adjustable via the embedded controller in the simulator. This im-
plies that anyone can experimentally test any system at any time. 
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Figure 5. Basic feedback system and the equivalent electronic circuit [3].                                                                                                                 

4. Conclusion  
Complex systems in nature are not black boxes; rather they are solvable systematic problems. If anyone has a 
doubt about this research, the author is willing to provide a simulator for him/her. If this paper is acceptable, it 
provides a revolutionary scientific solution for science, similar to relativity. Furthermore, the scientists (or SFI) 
can review this report with honor. The author concludes that no more research for complexity and chaos will be 
disappeared in future. 
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Abstract 
A quantum statistical theory of the superconductivity in MgB2 is developed regarding it as a 
member of the graphite intercalation compound. The superconducting temperature Tc for MgB2, 
C8K ≡ KC8, CaC6, are 39 K, 0.6 K, 11.5 K, respectively. The differences arise from the lattice 
structures. In the plane perpendicular to the c-axis, B’s form a honeycomb lattice with the nearest 
neighbour distance a0  while Mg’s form a base-hexagonal lattice with the nearest neighbour 

distance a03  above and below the B-plane distanced by c0 . The more compact B-plane becomes 
superconducting due to the electron-phonon attraction. Starting with the generalized Bardeen- 
Cooper-Schrieffer (BCS) Hamiltonian and solving the generalized Cooper equation, we obtain a 
linear dispersion relation cp=ε  for moving Cooper pairs. The superconducting temperature Tc 
identified as the Bose-Einstein condensation temperature of the Cooper pairs in two dimensions is 
given by T cn k1 2 1

c 0 B1.954 −= � , where n0  is the Cooper pair density, kB  the Boltzmann constant. 
The lattices of KC8 and CaC6 are clearly specified. 

 
Keywords 
Crystal Structure, BCS Hamiltonian, Electron-Phonon Interaction, Cooper Pairs,  
Bose-Einstein Condensation, Superconductivity 

 
 

1. Introduction 
Nagamatsu et al. [1] reported in 2001 superconductivity at 39 K in magnesium diboride MgB2. MgB2 forms a lattice 
closely related to that of a graphite intercalation compound (GIC). It is similar to NaC2 composition- wise, but the 
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lattice structures are distinct as shown below. The superconducting temperatures cT  of MgB2 and NaC2 are 39 K 
and 5 K, respectively. This difference arises from the lattice structures. Canfield and Crabtree [2] wrote a 
comprehensive review in Physics Today (2003). From the isotope effect study [2] [3] they concluded that the 
B-plane contains a honeycomb lattice which becomes superconducting at 0 K, while the Mg-plane is base-hexagonal 
and is metallic. Their conjectured lattice structure of MgB2 is shown in Ref. 2, Figure 3. The superconducting state 
occurs at 0 K, where the entropy of an electron-phonon system vanishes. The third law of the thermodynamics 
applies. The crystal must be specified with the location of all atoms. Ref. 2, Figure 3 contains only the B-lattice and 
Mg-lattice with unspecifyed lattice constants. We must specify lattice systems with basic lattice units with the lattice 
constants. A currently presumed lattice for MgB2 [4] is a fully intercalated graphite compound similar to that in 
NaC2. We propose a different lattice. The two lattices have the same first neighbour configurations but different 
second nearest neighbours. Our proposed lattice has a lower Coulomb energy and should be realized in practice. 

We shall develop a quantum statistical theory of the superconductivity in MgB2, starting with a generalized 
Bardeen-Cooper-Schrieffer (BCS) Hamiltonian [5] and calculateing everything using the standard quantum 
statistical methods. Canfield-Crabtree’s and our lattices have nearly the same energies if the first neighbour 
configurations are examined. The second neighbour confi- gurations are different. Each B+ in our lattice is 
surrounded by six Mg+’s while each B+ in Canfield-Crabtree’s lattice is surrounded by three Mg+. Hence our 
lattice is more stable. In the course of the development, we clearly specify the lattices of C8K ≡ KC8 and 
CaC6.  

2. Electron Dynamics  
Following Ashcroft and Mermin (AM) [6], we assume that “electrons” and “holes” in solids run as wave packets 
(not point-particles). We adopt the semiclassical model of electron dynamics in solids [6]. It is necessary to 
introduce a k-vector:  

ˆ ˆ ˆ ,x x y y z zk k k= + +k e e e                                    (1) 

where ˆxe , ˆye , ˆze  are the orthonormal vectors, since the k-vectors are involved in the semiclassical equation 
of motion:  

( )d ,
d

q
t

≡ = + ×
kk E v B�� �                                  (2) 

where q e= −  is the electron charge, and E  and B  are the electric and magnetic fields, respectively. The 
vector  

1 ε∂
≡

∂
v

k�
                                        (3) 

is the electron velocity, where ( )ε ε= k  is the energy. 
If the electron is in a continuous energy range (energy band), then it will be accelerated by the electric force qE , 

and the material is a conductor. If the electron’s energy is in a forbidden band (energy gap), it does not move under 
a small electric force, and the material is insulator. If the acceleration occurs only for a mean free time (inverse of 
scattering frequency) τ , the conductivity σ  for a simple metal is given by Drude’s formula [6]:  

2 ,q n mσ τ ∗=                                       (4) 

where n is the electron density and m∗  the effective mass. 
We consider a graphene which forms a 2D honeycomb lattice. The Wigner-Seitz (WS) unit cell, a rhombus, 

contains two C’s. We showed in our earlier work [7] [8] that graphene has “electrons” and “holes” based on the 
rectangular unit cell. We briefly review our calculations below. We assume that the “electron” (“hole”) wave 
packet has the charge e−  ( e+ ) and a size of the rectangular unit cell, generated above (below) the Fermi energy 

Fε . We showed [7] earlier that a) the “electron” and “hole” have different charge distributions and different 
effective masses; b) that the “electrons” and “holes” move in different easy channels; c) that the “electrons” and 
“holes” are thermally excited with different activation energies ( )1 2,ε ε , and d) that the “electron” activation 
energy 1ε  is smaller than the “hole” activation energy 2ε :  

1 2.ε ε<                                           (5) 

Hence, “electrons” are the majority carriers in graphene. The thermally activated electron densities are given by  
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( ) Be , constant,j k T
j j jn T n nε−= =                               (6) 

where 1j =  and 2 represent the “electron” and “hole”, respectively.  

3. Lattice Structures in C8K = KC8, CaC6 and MgB2  
Graphite is composed of graphene layers stacked in the manner ABAB∙∙∙ along the c-axis. We may choose an 
orthogonal unit cell shown in Figure 1.  

The carbons (circles) in the A (B) planes are shown in dark (light) gray circles. 
The unit cell contains 16 C’s. The two rectangles (white solid lines) are stacked vertically with the interlayer 

separation, 0 3.35c =  Å, much greater than the nearest neighbour distance between two C’s, 0 1.42a =  Å:  

0 0.c a�                                          (7) 

The unit cell has three side-lengths:  

1 0 2 0 3 03 , 2 3 , 2 .b a b a b c= = =                                (8) 

Clearly, the system is periodic along the orthogonal directions with the three periods ( )1 2 3, ,b b b  given in 
Equation (8). Hence, the system can be considered as orthorhombic with the sides ( )1 2 3, ,b b b , 1 2b b≠ , 1 3b b≠ , 

2 3b b≠ . 
The negatively charged “electron” (with the charge e− ) in graphite are welcomed by the positively charged 

C+ when moving vertically up or down in the plane. Then, the easy direction for the “electrons” is vertical. The 
easy direction for the “holes” is horizontal. There are no hindering hills for “holes” moving horizontally. Hence, 
the “electron” in graphite has the lower activation energy ε  than the “hole”: 1 2ε ε< . Then, “electrons” are the 
majority carriers in graphite. The thermoelectric power (Seebeck coefficient) measurements by Kang et al. [9] 
show that the majority carriers in graphite are “electrons” in agreement with our theory. 

We now consider GIC. Let us first take C8K. The K+ ions should enter as interstitials and occupy the sites 
away from the positive ions C+. We see in Figure 1 that the center of the unit cell is empty. Each K+ should 
occupy the midpoint between two graphene layers. The 3D unit cell contains 16 C’s and 2 K’s. Alkali metal 
GIC, including C8Li, C8Rb, should form similar lattices. Next we condier C6Ca. Carbons (C) in graphite form a 
honeycomb lattice in the A plane as shown in Figure 1. There are eight (8) C’s and four (4) hexagon centers, 
(two full circles, two half-circles and four quarter-circles). If we fill the hexagon centers with C’s, then we 
obtain twelve (12) C’s in the 2D unit cell. Similarly the configuration of the B-plane and that one below is 
prescribed. There are 2 × 12 C’s in the planes A and B, and 2 × 2 Ca’s between the planes for C6Ca. The 
composition ratio 6:1 is correct. After the C-filling, the C-plane becomes primitive (base)-hexagonal and has a 
60˚ rotation symmetry. The primitive unit cell contains six (6) C’s. Two Ca’s are likely to occupy below the 
centers of the primitive cells located at the two-light gray circles in Figure 1. A real 3D C6Ca is obtained by 
stacking the C6Ca sheets in the manner ABAB… We note that the structure of C6Ca is significantly more 
compact than that of C8K. C6Yb should have a similar lattice structure. GIC C4Na (C3K, C2Na) should have the 
same 12 C-sheets and 3 Na (4 K, 6 Na) intersheets. 

 

 
Figure 1. An orthogonal unit cell (white solid lines) viewed from the 
top for graphite. The carbons (circles) in the A (B) planes are shown 
in dark (light) gray circles.                                              
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Consider now MgB2. It is only natural to start with the B-plane since this plane becomes superconducting at 0 
K. Let us look at the top sheet in Figure 1. Within the white rectangle, there are eight (8) balls and four (4) 
vacant hexagons. If B’s occupy the ball sites and Mg’s occupy the hexagon-centers sites in the neighbour sheet 
above (or below), then we obtain the most likely lattice. The composition ratio 2:1 is correct. The B-plane 
contains a honeycomb lattice with a nearest neighbour distance 0a  with a 120˚ rotation symmetry. The 
Mg-plane contains a base-hexagonal lattice with the nearest neighbour distance 03a . Crystals Mg and B are 
known divalent and trivalent hexagonal metals [6]. Since the B-plane in MgB2 is more compact with the smaller 
lattice constant, the B-plane is likely to become superconducting at the lowest temperatures. Note that all ions 
position are specified. Ions Mg+ and B+ are positively charged so that they tend to stay away among and between 
them. 

Our lattice and Canfield-Crabtree’s are different in the second nearest neighbour configuration. Each B+ in 
our lattice is surrounded by six Mg+ while each B+ in Canfield-Crabtree’s lattice is surrounded by three Mg+. 
Hence our lattice is more stable. The B-plane contains a honeycomb lattice of B's for both. Our Mg-plane 
contains a base-hexagonal lattice of the nearest neighbour distance 03a . In summary we found that a) the 
B-honeycomb lattice has smaller nearest neighbour distance 0a  than the Mg hexagonal lattice with the nearest 
neighbour distance 03a . The more compact means the higher conduction electron density; b) The centers of 
mass (CM) of hexagons are displaced upward by a short distance 0 2a  to take advantage of the smaller 
repulsive Coulomb energy. There is a mismatch between the B-plane and the Mg-plane centers, a unique feature 
for MgB2.  

4. The Hamiltonian  
The countability and statistics of the fluxons (magnetic flux quanta) are the fundamental particle properties. We 
postulate that the fluxon is a half-spin fermion with zero mass and zero charge. 

We assume that the magnetic field B  is applied perpendicular to the graphene plane. The 2D Landau level 
energy,  

*
c L c

1 , ,
2

N eB mε ω ω = + ≡ 
 

�                                (9) 

with the states ( )L , yN k , L 0,1, 2,N = � , have a great degeneracy (no yk -dependence). The *m  is the 
effective mass of an “electron”. Following Zhang, Hansson and Kivelson [10], we introduce composite (c-) 
particles. The Center-of-Mass (CM) of any c-particle moves as a fermion or a boson. That is, the eigenvalues of 
the CM momentum are limited to 0 or 1 (unlimited) if the composite contains an odd (even) number of 
elementary fermions. This rule is known as the Ehrenfest-Oppenheimer-Bethe’s (EOB’s) rule [11]. Hence the 
CM motion of the composite containing an electron and Q fluxons is bosonic (fermionic) if Q is odd (even). The 
system of the c-bosons condenses below some critical temperature cT  and exhibits a superconducting state 
while the system of c-fermions shows a Fermi liquid behavior. 

A longitudinal phonon, acoustic or optical, generates a charge density wave, which affects the electron 
(fluxon) motion through the charge displacement (current). Let us first consider the case of superconductivity. 
The phonon exchange between two electrons shown in Figure 2 generates a transition in the electron states with 
the effective interaction  

( ) ( )
2

eff 2 2
,

k

V
ω

ε ε ω+

=
− −

q
q

qk q

�

�
                               (10) 

where kε  is the electron energy, ωq�  the phonon energy, and Vq  the electron-phonon interaction strength.  
An electric current ( )J  loop generates a magnetic field (flux) B  while a magnetic flux B  is surrounded 

by diamagnetic currents J . Thus the currents J  and the magnetic field B  are coupled. The exchange of a 
phonon between an electron and a fluxon also generates a transition in the electron states with the effective 
interaction:  

( ) ( )2 2
,

k

V V
ω

ε ε ω+

′
− −

q
q q

qk q

�

�
                                (11) 
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Figure 2. Electron’s (phonon’s) motions are represented by solid (dotted) lines, 
and the time is measured upwards. Two phonon exchange processes (a) and (b) 
generate the momenta change from the initial pair state ( ), ′−k k  to the final 

states ( ), ′+ − −k q k q .                                                                 

 
where V ′q  ( )Vq  is the fluxon-phonon (electron-phonon) interaction constant. The Landau oscillator quantum 
number LN  is omitted; the bold k  denotes the momentum ( )yk  and the italic ( )k = k  the magnitude. 
There are two processes, one with the absorption of a phonon with momentum q  and the other with the 
emission of a phonon with momentum −q , see Figure 3(a) and Figure 3(b), which contribute to the effective  

interaction with the energy denominators ( ) 1

kε ε ω
−

+ − − qk q �  and ( ) 1

kε ε ω
−

+ − + qk q � , generating Equation  

(11). The interaction is attractive (negative) and most effective when the states before and after the exchange 
have the same energy ( )0kε ε+ − =k q  as for the degenerate 2D LL. 

BCS [5] assumed the existence of Cooper pairs [12] in a superconductor, and wrote down a Hamiltonian 
containing the “electron” and “hole” kinetic energies and the pairing interaction Hamiltonian with the phonon 
variables eliminated. We start with a BCS-like Hamiltonian   for the QHE: [13]  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3

1 1 1 2 2 1 2 2
0 ,

k s k s k s
s s s

s s s s s s s s
s

n n n

v B B B B B B B B

ε ε ε

′ ′ ′ ′
′

′ ′ ′= + +

′ ′ ′  − + + + 

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

k k k
k k k

k q kq k q kq k q kq k q kq
q k k



† † † †
              (12) 

where ( ) ( ) ( )†j j j
s s sn c c≡k k k  is the number operator for the “electron” (1) (“hole” (2), fluxon (3)) at momentum k  

and spin s with the energy ( )j
ksε , with annihilation (creation) operators c ( †c ) satisfying the Fermi anti- 

commutation rules:  

( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }† † †( )
, , ,, , , 0.i j j j i i ji

s s s s s s s s i j s sc c c c c c c cδ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′≡ + = =k k k k k k k k k k                  (13) 

The fluxon number operator ( )3
snk  is represented by †

s sa ak k  with a ( †a ) satisfying the anti-commutation 
rules:  

{ } { }†
, ,, , , 0.s s s s s sa a a aδ δ′ ′ ′ ′ ′ ′= =k k k k k k                            (14) 

The phonon exchange can create electron-fluxon composites, bosonic or fermionic, depending on the number 
of fluxons. The CM of any composite moves as a fermion (boson) if it contains an odd (even) numbers of 
elementary fermions. The electron (hole)-type c-particles carry negative (positive) charge. Electron (hole)-type 
Cooper-pair-like c-bosons are generated by the phonon-exchange attraction from a pair of electron (hole)-type 
c-fermions. The pair operators B are defined by  

( ) ( ) ( ) ( )1 1 2 2†
, 2, 2, , 2, 2,, .s s s s s sB c a B a c+ − − + − − + − + −≡ ≡kq k q k q kq k q k q
† †                      (15) 

The prime on the summation in Equation (12) means the restriction:  
( )0 , Debye frequency.j
ks D Dε ω ω< < =�                         (16) 
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Figure 3. Fluxon’s motion is represented by dot-dashed lines. The phonon exchange 
processes (a) and (b) generate the momenta change from the initial (electron, fluxon) 
state ( ), ′−k k  to the final states ( ), ′+ − −k q k q .                                 

 
The pairing interaction terms in Equation (12) conserve the charge. The term ( ) ( )1 1

0 s sv B B′− k q kq
† , where 0v  is the  

pairing strength, generates a transition in electron-type c-particle states. Similarly, the exchange of a phonon  
generates a transition between hole-type c-particle states, represented by ( ) ( )2 2

0 s sv B B′− k q kq
† † . The phonon exchange  

can also pair-create (pair-annihilate) electron (hole)-type c-boson pairs, and the effects of these processes are  
represented by ( ) ( )1 2

0 s sv B B′− k q kq
† †  ( ) ( )( )1 2

0 s sv B B− kq kq . 

The Cooper pair, also called the pairon, is formed from two “electrons” (or “holes”). The pairons move as 
bosons, which are shown in Appendix. Likewise the c-bosons may be formed by the phonon-exchange attraction 
from two like-charge c-fermions. If the density of the c-bosons is high enough, then the c-bosons will be Bose- 
condensed and exhibit a superconductivity. 

The pairing interaction terms in Equation (12) are formally identical with those in the generalized BCS 
Hamiltonian [13]. Only we deal here with c-fermions instead of conduction electrons. 

The c-bosons, having the linear dispersion relation, can move in all directions in the plane with the constant 
speed ( ) ( )

F2 π jv  [13]. For completeness we show the linear dispersion relation in Appendix. The supercurrent 
is generated by ∓  c-bosons monochromatically condensed, running along the sample length. The supercurrent 
density (magnitude) j, calculated by the rule:  

( ) ( ) ( )*
0 d: carrier charge : carrier density : carrier drift velocityj e n v= × ×              (17) 

is given by  

( ) ( )1 2* *
0 d 0 F F

2 ,
π

j e n v e n v v≡ = −                               (18) 

where *e  is the effective charge of carriers. The induced Hall field (magnitude) HE  equals dv B . The 
magnetic flux is quantized:  

0 ,B n n N Aφ φ φ= Φ =                                  (19) 

where Nφ  is the fluxon number, and  

0 .h eΦ ≡                                       (20) 

Hence we obtain the Hall resistivity as  

dH
H 0* * *

0 d 0 0

1 .
nv BE hn

j ee n v e n e n
φ

φρ  ≡ = = Φ =  
 

                        (21) 

For the integer QHE at 1ν = , we have *e e= , 0n nφ = . Hence, we obtain 2
H h eρ = , the plateau value 

observed. 
The supercurrent generated by equal numbers of ± c-bosons condensed monochromatically is neutral. This is 

reflected in our calculations in Equation (18). The supercondensate whose motion generates a supercurrent must 
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be neutral. If it has a charge, it would then be accelerated indefinitely by any external electric field because the 
impurities and phonons cannot stop the supercurrent to grow. That is, the circuit containing a superconducting 
sample and a battery must be burnt out if the supercondensate is not neutral. In the calculation of Hρ  in  
Equation (21), we used the unaveraged drift velocity ( ) ( ) ( )1 2

d F F2 πv v v= − , which is significant. Only the un-  

averaged drift velocity cancels out dv  exactly from numerator/denominator, leading to an exceedingly accurate 
plateau value. 

We now extend our theory to include elementary fermions (electron, fluxon) as members of the c-fermion set. 
We can then treat the 2D superconductivity and the QHE in a unified manner. The c-boson containing one 
electron and one fluxon can be used to describe the principal QHE. Important pairings and effects are listed 
below: a) a pair of conduction electrons, superconductivity; b) c-fermions and fluxon, QHE; c) a pair of like- 
charge conduction electrons with two fluxons, QHE in graphene. 

5. Superconductivity in C8K, CaC6 and MgB2 
5.1. Preliminaries  
5.1.1. “Electrons”, “Holes” and “Phonons” 
The conduction electrons (“electrons”, “holes”) are excited based on the orthogonal unit cells. As mentioned 
earlier the “electrons” are the majority carriers in both graphene and graphite. The excitation energy for the 
“electrons” is smaller than for the “holes”. Phonons are generated based on the same orthogonal unit cells. 
Phonons are bosons, and hence can be generated with no activation energies. The phonons are distributed, 
following the Planck distribution function:  

( ) ( ) 1
P Bexp 1 ,f k Tε ε

−
= −                               (22) 

which is a sole function of the Kelvin temperature T. 
As an example consider acoustic phonons with a linear dispersion relation:  

,spε =                                       (23) 

where s is the sound speed. The phonon size may be characterized by the average wave length:  
.s kλ =                                      (24) 

The average size of phonons at the room temperature is greater by a few orders of magnitudes than the 
electron size.  

5.1.2. The Ground-State Cooper Pair (Pairon) Energy 
Cooper solved the Cooper equation [Ref. 12, Equation (1)] with a negative interaction energy constant, 0v− , 
and obtained the ground-state pairon energy:  

( )
D

0
0

2 ,
exp 2 0 1

w
v
ω−

=
−  

�


                              (25) 

where Dω  = Deby frequency, ( ) ( )F0 0ε= =   = density of states at the Fermi energy. The energy 0w  is 
singular at 0 0v = . Hence, this bound-state energy 0w  cannot be obtained by a perturbation theory. For 
illustration, consider a hydrogen atom levels problem with a negative Coulomb interaction  . The bound states 
and energies are obtained by directly solving the Schrödinger equation with the full Hamiltonian containing the 
kinetic energy and the interaction energy  . The Cooper pair is formed from two “electrons” (or “holes”). 
Likewise the c-bosons may be formed by the phonon-exchange attraction from c-fermions and fluxons. If the 
density of the c-bosons is high enough, then the c-bosons will be Bose-condensed and exhibit a supercon- 
ductivity. 

5.2. The Superconductivity in GIC and MgB2  
The superconductivity occurs only in regular crystals. That is, it occurs only in crystals and not in liquids. C8K 
and graphene have a 120˚ rotation symmetry. C6Ca has a base-hexagonal (60˚ rotation) symmetry. 
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C8K has graphene sheets, and each sheet is likely to become superconducting below the critical temperatures 
cT . The numbers of “electrons” and “holes” depend on the environments arising from the lattice structures. 

Since the lattice structures are very different in C8K and C6Ca, the critical temperatures should be different 
significantly. 

BCS [5] used the fermionic pair operator equation.  
2 0,B B B≡ =k k k0 0 0                                    (26) 

constructed a ground-state vector and obtained a ground-state energy of an electron-phonon system:  

0 02 ,W Nw=                                      (27) 

where N is the pairon number per spin and 0w  the ground-state energy of the pairon, see Equation (17). The 
center-of-mass (CM) of the pairons move as bosons. That is, the eigenvalues of the pairon number operator nq  
are unlimited:  

0,1, 2, ,n′ =q �                                     (28) 

which is shown below. 
The number operator in the k-q representation  

† ,n B B≡kq kq kq                                     (29) 

has eigenvalues 0 or 1: [13]  

0 or 1.n′ =kq                                      (30) 

The total number of a system of pairons, N, is represented by  

,N n n≡ =∑∑ ∑kq q
k q q

                                 (31) 

where  
†n n B B≡ −∑ ∑q kq kq kq

k k
                                 (32) 

represents the number of pairons having net momentum q . From Equations (30)-(32) we can establish 
Equation (28). To explicitly see this property, we introduce  

,B B≡ ∑q kq
k

                                     (33) 

and obtain, after simple calculations,  

† †
1 1
2 2

, 1 , , .B n n n B B n B B
+ − +

 
   = − − = =     

 
∑q q kq q q q qk q k qk

                 (34) 

Although the occupation number nq  is not connected with Bq  as †N B B≠q q q , the eigenvalues n′q  of nq  
satisfying Equation (34) can be shown straightforwardly to yield Equation (28) with the eigenstates 0 , 

†1 0B= q , † † †2 1 0B B B= =q q q , � . 
The present author’s group [7] [8] [13] regards the superconductivity as a result of the BEC of the c-bosons. 

The free c-bosons moving in 2D with the linear dispersion relation cpε =  undergoes a BEC at [13]  
1 2

B c 01.954 ,k T cn= �                                    (35) 

where 0n  is the pairon number density. The derivation of the linear dispersion relation cpε =  and the BEC is 
outlined in Appendix. The average interpairon distance  

1 2
0 0r n−≡                                        (36) 

is greater several times than the BCS coherence length (pairon size):  

0 F 0 ,hvζ π≡ ∆                                      (37) 

where 0∆  is the zero temperature BCS energy gap. We have  
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0 06.89 .r ζ=                                       (38) 

Thus 2D pairons do not overlap in space. Hence the cT  can be calculated based on the free moving pairons 
model. See Ref. 12 for more details. 

Formula (25) is distinct from the BCS formula in the weak coupling limit:  

0 B c2 3.53 .k T∆ =                                     (39) 

Our Formula (35) obtained after identifying superconducting temperature as the BEC condensation 
temperature contains familiar quantities, the Fermi speed Fv  and the boson density 0n  only. 

For illustration let us take GaAs/AlGaAs. We assume *
e0.067m m=  and 8 1

F 1.36 10 m sv −= × ⋅ , then we 
obtain 11 2

0 10 cmn −= , c 1.29 KT =  (reasonable). Not all electrons are bound with fluxons since the simul- 
taneous generation of ± c-bosons is required. The plateau width vanishes at cT  since the energy gap vanishes 
there. 

The neutral supercondensate is generated from the two ranges of energies of “electrons” and “holes”. Hence it 
is difficult to precisely determine the critical temperature from the theoretical consideration alone. The com- 
parison between theory and experiment may be carried out as follows. First we find the Fermi speed ( )

F
jv  from 

the Hall effect measurements or others. We then find the supercondensate density 0n  from the measurered 
critical temperature cT  by using Equation (35). In the mean field approximation we obtain  

( )0 g B c2 0 ,w k Tε− = =                                 (40) 

which indicates a close connection between the zero temperature gap ( )g 0ε  and the critical temperature cT . A 
rigorous treatment of the BEC of free pairons shows a phase transition of the third order [13]. The molar heat 
rises like 2T , reaches 4.38 R (R = gas constant) at cT , and then decreases to 2R in the high-temperature limit 
[14] as shown in Figure 4. We note that the molar heat does not vanish above cT .  

6. Summary and Discussion  
We have developed a theory regarding MgB2 as a member of GIC. We start with the lattice configuration with 
all ions locations specified, and find that each B-plane contains B’s forming a honeycomb lattice of the 
nearest neighbour distance (lattice constant) 0a  while each Mg-plane contains a base-hexagonal lattice of 
the lattice constant 03a . Since the B-lattice is more compact, it becomes superconducting at the lowest 
temperatures. 

We obtain a linear dispersion relation cpε =  for the moving pairons. The superconducting temperature cT , 
identified as the BEC temperature of the pairons, is given by 1 2

B c 01.954k T cn= � . The supercurrent density is  
 

 
Figure 4. The molar heat capacity C for 2D free massless bosons 
(after Ref. 14, Figure 6.3).                                                                 
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calculated without introducing the averaging. The superconducting energy gap gε  is identified as the gap in the 
pairon energy spectrum, distinct from the BCS energy gap ∆ . 

Canfield and Crabtree have discussed two energy gaps, which is strange since there is one superconducting 
state at 0 K. We shall discuss this topic in a separate publication.  
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Appendix: Linear Dispersion Relation and Bose-Einstein Condensation 
We consider the case of a 2D superconductor. The phonon exchange attraction is in action for any pair of 
electrons near the Fermi surface. In general the bound pair has a net momentum, and hence, it moves. Such a 
pair is called a moving pairon. The energy qw  of a moving pairon can be obtained from  

( ) ( ) ( ){ } ( )
( )

( )20
2, 2 2 , d , ,

2π
q

v
w a a k aε ε ′ ′ ′= + + − + − ∫k q k q k q k q k q

�
           (41) 

which is Cooper’s equation in 2D, Equation (1) of his 1956 Physical Review paper [12]. The prime on the k ′
-integral means the restriction on the integration domain arising from the phonon exchange attraction, see below. 
The pair wavefunctions ( ),a k q  are coupled with respect to the other variable k , meaning that the exact 
(energy-eigenstate) pair wavefunctions are superpositions of ( ),a k q . 

Equation (41) can be solved simply. We briefly review the calculations and results here. We assume that the 
energy qw  is negative:  

0.qw <                                        (42) 

Then, ( ) ( )2 2 0qwε ε+ + − + − >k q k q . Rearranging the terms in Equation (41) and dividing by  
( ) ( )2 2 qwε ε+ + − + −k q k q , we obtain from Equation (41)  

( ) ( )
( ) ( ), ,

2 2 q

C
a

wε ε
=

+ + − + −
q

k q
k q k q

                       (43) 

where  

( )
( )

( )20
2 d ,

2π
v

C k a′ ′ ′≡ ∫q k q
�

                             (44) 

is k-independent. Introducing Equation (43) in Equation (44), and dropping the common factor ( )C q , we 
obtain  

( ) ( ) ( )
2

0
2

d1 .
2 22π q

v k
wε ε

′=
+ + − + +∫ k q k q�

                     (45) 

We now assume a free-electron model in 2D. The Fermi surface is a circle of the radius (momentum)  

( )1 2
F 1 F2 ,k m ε≡                                    (46) 

where 1m  represents the effective mass. The energy ( )ε k  is given by  

( )
2 2

F

1

.
2k m

ε ε
−

≡ =
k k

k                                 (47) 

The prime on the k-integral in Equation (45) means the restriction:  

( ) ( ) D0 2 , 2 .ε ε ω< + − + <k q k q �                           (48) 

We may choose the z-axis along q  as shown in Figure 5.  
The k-integral in Equation (45) can then be expressed by  

( )
( )

F D

F

2 1 2cosπ 2
2

1 1 20 cos0 2 1

2π d4π d sin ,
2 4

k k q

k q
q k

k k
v w m q

θ

θ
θ θ

ε

+ −

−+
=

+ +∫ ∫
�

                 (49) 

where Dk  is  
1

D 1 D F .k m kω −≡ �                                     (50) 

After performing the integration and taking the small-q and small- ( )D Fk k  limits, we obtain  

( )0 F2 π ,qw w v q= +                                    (51) 
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Figure 5. The range of the interaction variables ( ),k θ  is 
limited to a circular shell of thickness Dk .                                 

 
where  

( ){ }
D

0
0

2
exp 2 0 1

w
v
ω−

=
−

�


                                 (52) 

is the pairon ground state energy. 
As expected, the zero-momentum pair has the lowest energy 0w . The excitation energy is continuous with no 

energy gap. The energy qw  increases linearly with momentum q for small q. Hence, the Cooper pair moves 
like a massless particle with a common speed ( ) F2 π v . 

Such a linear dispersion relation is valid for pairs moving in any dimensions (D). However the coefficients 
slightly depend on the dimension as follows:  

0 ,qw w cq= +                                       (53) 

where ( ) F1 2c v=  and ( ) F2 π v  for 3 and 2 D, respectively. 
The velocity v  of the particle having a linear dispersion relation cpε =  is defined and calculated as  

.x
x

x x

pv c p c
p p p
ε∂ ∂

≡ = =
∂ ∂

                                (54) 

The velocity magnitude v  is c. Hence, the pair moves with the speed c. 
We consider a system of free bosons having a linear dispersion relation: ( ) F2 πcp vε = =  moving in 2 D. 

The system undergoes a Bose-Einstein condensation with the critical temperature cT :  
1 2 1 2

B c F1.954 1.244 ,k T cn v n= =� �                              (55) 

where n is the 2D boson density. The cT  is proportional to the square root density. The derivation of Equation 
(55) is given in Ref. 13. Briefly, the chemical potential µ  vanishes below cT  and decreases further above cT . 
The difference between the boson density n and the zero momentum density 0n  is given by  

( )2 2 2
0 0

2π d ,
e e 1x

xc n n x βµβ
∞

−− =
−∫�                             (56) 

where x βε≡ , ( ) 1
Bk Tβ −≡ . We put 0µ =  on the right-hand side and ( ) 1

c B ck Tβ −=  and 0=0n  on the 
left-hand side, and obtain Equation (55). 
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Abstract 
A quasicrystal has a structure intermediate between crystals and compound glasses. The disorder 
in glass makes its diffraction diffuse, so it is surprising that quasicrystals diffract more sharply 
than crystals. The greater sharpness is computed to be due to the hierarchic structure with unit 
cell alignment in 3-dimensional space. Electron microscope phase contrast images map the com-
paratively heavy Mn atoms in icosahedral Al6Mn, where the transition metal locates the centers of 
unit cells inside clusters and superclusters. Because the solid is aperiodic, each diffracted beam is 
a product of multiple interplanar spacings combined, and this contrasts with the unique relation- 
ship between spacing and incident angle in Bragg diffraction from crystals. Simulated quasi- 
structure factors add the relative phase shifts that are in geometric series from cell to cluster to 
superclusters of increasing order. The scattering becomes coherent in best fit, angular configura-
tion between the aperiodic solid and a longitudinally periodic X-ray or electron probe. The quasi- 
structure factors express angular divergence in each diffracted beam from its corresponding 
Bragg condition, and the divergence provides a special metric, essential for atomic measurement 
in the geometric solids. The fit is reinforced at all levels from the unit cell to cluster to high order 
superclusters. The optics operates under a new quasi-Bragg law in a new geometric space. In this 
paper, we proceed to examine the effect of specimen size on line resolution in diffraction, first 
analytically and secondly in simulation. The line resolution follows a power law on the superclus-
ter order, matching its atomic population. 

 
Keywords 
Quasicrystal, Line Width, Quasi-Structure Factor, Geometric Space, Hierarchic, Metric 

 
 

1. Introduction 
Prima facie, an aperiodic solid should scatter incoherently or diffusely, as from an amorphous material or a gas. 
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In these, bond length information can be obtained by measuring Bragg angles observed in coarse patterns with 
cylindrical symmetry about the incident probe. The quasicrystalline, icosahedral phase, i-Al6Mn, was discovered 
thirty four years ago. It has a sharp diffraction pattern containing five-fold axial symmetries and an aperiodic 
atomic map. The quasicrystal does not belong to any member of the complete set of fourteen Bravais lattices 
that contain all crystals. These comprise unit cells that fill space with face sharing surfaces. Nine years ago, Se-
nechal wrote for the American Mathematical Society the paper, “What is a quasicrystal?” It began, “The short 
answer is no one is sure [1]”. Since then, the structure has become clear by consistent interpretation of phase 
contrast micrographs [2]-[7] together with understanding of the 3-dimensional diffraction patterns [4] [8], and 
consistent measurement at the atomic scale. 

Like fused silica, quasicrystals have unit cells, as imaging shows, and these are likewise edge sharing, but 
they differ from the glasses because the unit cells in the quasicrystal are uniformly oriented due to multiple edge 
sharing. The structure is hierarchic so that the diffraction and many other physical properties can be calculated 
easily. The diffraction does not follow Bragg’s law of diffraction for crystals for many reasons, the most obvious 
being that the diffraction series are not in linear order; they are in 3-dimensional geometric series [3] [4]. More-
over, because the solids are aperiodic, the diffraction of a single beam from a quasicrystal is due not to a single, 
specular, diffraction plane selected by precise crystal orientation, but is due to many planes of atoms, at various 
planar separations (d spacings) scattering simultaneously. Each scattered beam results from an effective inter-
planar spacing which is a compromise between many real interplanar spacings. Likewise the diffraction angle is 
a compromise that is not given by Bragg’s law. In quasicrystals, the diffraction follows a quasi-Bragg law that 
describes the geometric series that is observed [6] [9]. With both of these compromises in the aperiodic material, 
a special metric is needed to derive atomic measurements from the diffraction. This metric is calculated through 
simulated quasi structure factors. We have shown previously how quasi-structure factors are calculated for large 
quasicrystals [6] [10]; here we show why diffracted beams have to be sharper in ideal quasicrystals than diffrac-
tion from perfect crystals.  

2. Structure  
Figure 1 shows, at left, a micrograph of Al6Mn obtained at optimum defocus in phase contrast electron micro-
scopy [2] [3]. Each circular spot maps a Mn atom. It is located at the centre of a unit cell and the atom is sur-
rounded by 12 extremely tightly bound Al atoms. The tight binding depends on the precise ratio of atomic di-
ameters in the metal alloy:  

2solute

solvent

1 1τ= + −
d
d

                                       (1) 

 

 
Figure 1. (a) Optimum defocus electron microscope image of Al6Mn [2] [3] (reprinted with 
permissions from L. A. Bursill, J. L. Peng and from Nature). (b) In mirror image, skeletal 
structures, representing icosahedral clusters, match the micrograph. As a cluster, each corner 
of the golden rectangular triads locates an icosahedral unit cell of one central Mn surrounded 
by 12 Al atoms. Note the sections of supercluster order 1 outlined in each image with penta-
gons that connect cluster centres. The unit cells are edge sharing and aligned.                        
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where the golden section, ( )1 5 2τ = + . The ratio is found generally in diatomic quasicrystals. The micrograph 
maps cluster sections as circles of 10 unit cells. The white pentagon connects five clusters in a section of a super-
cluster. The clusters are represented, at right, by golden triads formed from golden rectangles, each with length to 
width ratio τ. The golden triad is a skeleton for an icosahedron, having 12 corners that connect 20 triangular faces 
with 30 congruent edges. On scales that vary by the stretching factor τ2, the triads may also be used to represent 
unit cells or any order of supercluster in the hierarchic structure. 

3. The Metric cs that Relates Structure to Diffraction Angle  
Since the quasicrystal diffraction pattern does not follow Bragg’s law, how are measurements to be made at the 
atomic scale? The logarithmically periodic solid (LPS) [6] has many advantages: measurement is its greatest. 
Calculations of structure factors for the LPS demonstrate that they are all approximately zero: there is no Bragg 
diffraction, and this is a consequence of aperiodicity. In each single quasi-Bragg reflection, multiple interplanar 
spacings operate—contrasting with crystals where the spacing is unique for each reflection. However by scan-
ning over the scattering angle, a compromise scattering angle is found at best fit. A quasi-Bloch wave for this fit 
is illustrated in Figure 2 [6]. The quasi-Bloch wave peaks do not coincide with atomic planes1. 
 

 
Figure 2. A periodic electron beam, moving downwards, scatters 
from atomic planes on an aperiodic quasicrystal cluster to form a 
diffraction pattern in geometric space. This is due to a quasi-Bloch 
wave having maximum overlap with the populations on the atomic 
planes ([6] reprinted with permission). Al atomic populations lie 
above the abscissa; Mn atoms below, as shown. The maximum 
overlap occurs at the quasi-Bragg angle csθB, where θB would be the 
crystalline Bragg angle for diffraction from a corresponding unique 
interplanar spacing such as 1/τ, or 1, τ, τ2 etc.                              

 

 

1High resolution transmission electron microscopy does not image atoms; the Fourier transform method of analysis is misleading. 
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Moreover, this scattering angle maximizes only in second Bragg order, n = 2; The linear Bragg orders, 1, 3, 4, 
5∙∙∙ are forbidden owing to approximately half integral values in the geometric series 1/τ, or 1, τ, τ2 [3] [4]2. 
Without this restriction the diffraction pattern would not be geometric, as observed. Dividing iteratively by the 
scaling stretching factor τ2, the half integrals repeat throughout the geometric series. The maximum in the qua-
si-scattering factor is found at a quasi Bragg angle s Bcθ θ′ = , where cs is what we called the compromise spac-
ing effect and θB = sin−1(nλ/2d) the corresponding angle under Bragg’s law for an interplanar spacing d. The 
wavelength of the X-ray or electron beam is λ. Computations show that cs has the same value for all quasi-Bragg 
diffracted beams, and that value is about 0.947, so that θ ′  is 5.3% less than θB. The simulated compromise 
spacing effect has a value close to the intuitive value 2.5/τ2, and is employed in the following section. The nu-
merator is the nearest half integral to the denominator, which is the stretching factor between hierarchic orders. 
With these adjustments the quasi-Bragg law may be written: 

( )sinm
sd cτ λ θ′=                                      (2) 

with order m−∞ < < ∞ . Computations show that cs is the same for all m and all indexed reflections. Notice that 
every term in the quasi-Bragg law is different from every term in Bragg’s law excepting only the wavelength. 
While aperiodicity requires a new law in physics, the geometric diffraction defines a new space. 

4. Computations on Quasi-Scattering Factors  
4.1. The Metric cs, That Relates Structure to Diffraction angle 
Quasi-scattering factors Fhkl were calculated using the corresponding standard formula in crystallography [11] 
for a cebtrosymmetric crystal, adapted with the factor cs:  

( )( )
1

cos 2π
N

hkl i s hkl i
i

F f c h r
=

= ⋅ ⋅∑                                (3) 

summed over all N atoms in a truncated hierarchic quasicrystal. The factor modifies the projections of the atoms 
onto a scattering plane normal hklh  having indices h, k, l. The atomic scattering factors fi are appropriate for ei-
ther Al or Mn and are found in tables [12] [13]. The LPS is centro-symmetric. 

In large quasicrystals, computation of Equation 3 is restricted by truncation errors. However, the number of 
computations is reduced, without sacrifice of accuracy, by calculating quasi-structure factors iteratively from 
unit cell to cluster to superclusters of increasing order p [10]: 

( )( )
12

2 1

1
cos 2πp p p

hkl s hkl cc hkl
cc

F c h r Fτ −

=

= ⋅ ⋅∑                             (4) 

where ccr  describes the 12 vectors to cluster centers [10], and cluster
hklF  may be written 0

hklF : 

( )( )
12

cluster cell

1
cos 2π

=

= ⋅ ⋅∑hkl s hkl cc hkl
cc

F c h r F                             (5) 

while cell
hklF  uses Equation (3) to sum over the 13 atoms in the unit cell. In these calculations care is taken to 

halve the scattering factors in atoms, in clusters or supercluster of whatever order, that are counted twice; or to di-
vide by three times on atoms counted thrice (Appendix). These Equations (1) to (5) have been previously de-
scribed in greater detail than is given here in summary. The chief purpose of this paper is to demonstrate how the 
sharpness of the diffraction pattern is represented by these structure factors. Now we proceed to a mathematical 
representation of resolution by an application of second derivatives in hierarchic arrangement. To prove it, we 
shall compute the dependence of cs on specimen size, and then its dependence on both short range (unit cell) or 
long range (lattice) symmetries3. A differential formula is used to express resolution, or line width. The formula 
itself matches the computations made on larger quasicrystals, and provides confidence that the sharp diffraction is 
completely understood in these wonderful, but no longer so new materials. Clearly, since the diffraction does not 
follow Bragg’s law, there are many aspects that we cannot take for granted; one is the sharpness of the diffraction. 
The theoretical understanding will make it possible to interpret, in various samples, the effect of defects, espe-

 

 

2In icosahedral units the unit cell has length, a = τ; and edge width unity. The conversion to SI units is given in [4]. 
3The terms in the geometric series tend to integral values at high order [3]. The overlap with the linear, Bragg series has no effect on cs. 
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cially in rapidly quenched material. One of the defects is truncation of the ideal structure that can, in principle, be 
estimated from the results presented here. The simulations described in this paper take no account of thermal ef-
fects, normally represented in crystallography by the Debye-Waller factor, nor do the simulations account for ab-
sorption and lesser effects. 

4.2. Hierarchic Computation of Resolution  
We begin with two hypotheses. The first is that the profile that is given by scanning the value of cs in Equation (4) 
is approximately Gaussian as in the normal distribution. This hypothesis is suggested by the requirements for the 
best fit illustrated in Figure 2 and is indicated in the following simulations. The second hypothesis is that there 
exists a resolution function f(cs), that is approximately the same for all levels of unit cell, cluster and orders of su-
percluster. This hypothesis is supported by the repeating features of the geometric series (ratio τ) scaled between 
orders by the stretching factor τ2. To fix ideas, we suppose that the resolution function depends on the second de-
rivative of the profile, at its peak (where the first derivative is zero), of the scan in cs. A Gaussian profile,  

( )( )2 2exp 2s pf A c c s= − − , will then yield the second derivative as follows: 

( ) ( )2

2 2

2
exp

2 2
s p s p

s

c c c cf A
c σ σ

 − −∂  = − −
 ∂
 

 

2s pc c

Af
σ=

′′ = −                                       (6) 

The metric is the mean value of cs in the peak profile: the value that is scanned in Equation (3), gives the me-
tric that maximizes at cp, since the profile is symmetric. The least squares linear fit, as illustrated in Figure 2, 
does not provide an analytical solution for A and σ, but they can be assessed in the computational scans recorded 
below. Suppose the resolution is some product ( )sB f c′′⋅ . The iterative nature of Equation (5) will then give  

for the resolution R of a supercluster order p, a value ( )( ) p
sB f c′′⋅ . 

( )( ) pp
hkl sR B f c′′= ⋅  

Since ( )( )( )log phkl sp R Bf c′′= , on a logarithmic scale this resolution dependence on p should plot onto a  

straight line. 
This dependence would be consistent with a dependence on the number of scattering atoms which has ap-

proximately the same power law dependence on the order of supercluster. Where the unit cell has 13 atoms, 
some of them shared with neighboring atoms, the cluster contains 12 unit cells, again with some atoms shared. 
The number of scattering atoms increases by about an order of magnitude with each increase in order, the cluster 
being supercluster order 0, with about 100 atoms. Further details are given in Appendix. 

4.3. Dependence of cs on Specimen Size and Range  
The diffraction in quasicrystals is not Bragg diffraction and the structure factors demonstrate the fact. Quasi- 
structure factors provide the value for cs, the metric which is necessary for atomic scale measurements in the 
solids. The following two figures have previously been discussed in detail [14] so we give here the conclusions 
in summary form. Figure 3 is a log plot of quasi-structure factors calculated by scanning cs in Equation (5) [6]. 
The reflection peak shown is typical and is here calculated for the (2/τ, 0, 0) reflection [3] [4] from a superclus-
ter order 6. The fractional divergence from the Bragg position (θB = sin−1(nλ/2d)) is cs = 0.947 (or 1.0 – 534 × 
0.0001). The quasi-Bragg angle θ ′  is 5.3% smaller than the equivalent Bragg angle θB for crystals on a cor-
responding interplanar spacing, such as d = τ−1, 1, τ, τ2 etc. In consequence, the measured quasi-spacing d' is 
5.3% larger than would be given by using Bragg’s formula, d = nλ/2sin(θ). The difference is the compromise 
effect due to logarithmic periodicity and gives the value for the metric cs at the peak of the computational scan. 
The simulated metric is found to have the same value in all quasi-Bragg reflected beams. It provides consistent 
values for atomic size, cell size, cluster size etc. The Bragg angle corresponds to channel 1 in the plot. All struc-  
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Figure 3. Simulated quasi-structure factors, scanned away from the Bragg angle for the reflection 
( ) ( )2 ,0,0 0.8 2 ,0,0scτ τ< < . The calculation is for a supercluster order 6. Fractional divergence is zero 
at the nominal Bragg angle on channel 1 [6] (reprinted with permission from Nova Science Publishers).      

 
ture factors (as for Bragg’s law) are zero. The ordinate values compare with the square of the number of atoms 
in the supercluster, the atomic scattering factors fi being of order 1 (see Appendix). 

Does cs change as the cluster size is increased or decreased? The computations shown in Figure 4(a) were per-
formed on superclusters orders 0, 1, 2 and 3, using the method of Equations (3) - (5). The value of the metric cs at 
the peak of the scan is constant; while there is a general decrease in line width as the order increases. The figure 
shows simulated profiles for diffracted beams from the hierarchic icosahedral structure. This is compared with 
three computational devices: in Figure 4(b) the structure factor profile is calculated for the face centered cubic 
(fcc) structure. Notice that the peak occurs at the Bragg angle (channel 1). Its width is more than double the width 
of the profile for the supercluster order 2 (Figure 4(a)), having an equivalent number of atoms. This fact implies 
stronger coherence in the logarithmic solid. Figure 4(c) and Figure 4(d) are computational devices on unrealistic 
structures: in the former case an fcc unit cell is placed in an icosahedral lattice; in the latter an icosahedral cell is 
placed in a cubic lattice. These cases have similar profiles with similar cs offsets. They demonstrate that the off-
sets are due to the geometric series whether it occurs in the cell or in the lattice, and that the influence of the long 
range lattice is the same as the influence of the short range unit cell. Both filter-in the offset and filter-out Bragg 
diffraction. This computational fact is consistent with the repeated series of spacings, scaled between supercluster 
orders by the ratio τ in the geometric series and by the stretching factor τ2 in the hierarchic structure. 

In Figure 5, the logarithms of simulated line widths in Figure 3 and Figure 4(a) are plotted against super-
cluster orders. The straight line fit is predicted by the power law in Equation (7). This least squares fit and these 
graphs confirm consistently the origin of both the compromise spacing effect and the line widths, i.e. the hierar-
chic structure and geometric series diffraction. The least squares, linear fit to the computation is log (half 
width) = −0.96(3) − 0.42(7)p as illustrated in the figure. 

Experimental measurement of line width is complicated by the restricted dynamic range of CCD (charge 
coupled device) detectors and of camera plate. Moreover, most diatomic quasicrystals are dual phase with fine 
structures, or metastable so that large crystals are grown with difficulty. We therefore leave for another time the 
various ways in which line width might be measured in specimens prepared under particular conditions. How-
ever measured, divergence of resolution, or line width, from the linear fit shown in the figure could be used to 
measure defects or defect concentrations, including truncations of the hierarchic structure. 

5. Discussion  
What new properties do these comparatively new materials have? While they share some properties in common 
with metallic glasses, such as corrosion resistance [15] they have special electronic, magnetic and mechanical 
properties associated with their geometric electronic band structures [5] [14]. Their most fundamental property is 
the one that is analyzed here because most of the other properties follow from it: how it comes about that an ape-
riodic material can diffract with a sharp pattern in geometric series? Besides the new quasi-Bragg law and new  
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Figure 4. (a). Computed intensities, i.e. squared structure factors, for ( )2 ,0,0τ  diffraction in supercluster 
orders 3, 2, 1, and in an i-Al6Mn cluster. The intensities are plotted against divergence from Bragg angle and 
span ~15% of this angle. The Compromise Spacing Effect (CSE) shifts quasi-Bragg angle from the calculated 
Bragg angle by 5.3%. The lines from different supercluster orders show the same cs displacement from the 
Bragg angle. (b) (111) structure factors, computed against angle as above, for a cubic cluster of fcc Al, having 
about 19,000 atom sites, similar to quasicrystal supercluster order 2. There is no CSE. At this size, the peaks 
are computed to be comparatively broad, typically 5% of the Bragg angle. (c) Computed structure factor for 
(111) diffraction by an imaginary cubic fcc cell in a logarithmically periodic icosahedral grid, as in super-
cluster order 2. The CSE occurs with a peak narrower than in Figure 4(b) for the crystalline structure. (d) 
Computed structure factor for (τ τ τ) i-Al6Mn icosahedral cell in an imaginary cubic grid of side τ and site 
population about 20,000 (like (b) and (c)).                                                           

 
geometric space, the hierarchy provides, theoretically, higher sharpness and coherence than does the periodicity 
of crystals.  

The fact also suggests a possible extension of finite element analysis. On reflection, it is very surprising that 
the hierarchic structure produces greater coherence in geometric space than do crystals in linear space. It might 
prove possible to eliminate subsidiary minima or maxima by overlaying geometric analysis on conventional li-
near calculations. The stretching factor, that is strict in the present model, might be replaced by diffusion  
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Figure 5. Logarithm of half widths shown in Figure 3 and Figure 4(a) plotted 
against supercluster order, compared with least squares linear fit. The straight 
line was predicted in Equation (7).                                                

 
coefficient, thermal conductivity, viscosity coefficient, or other physical parameter. These extensive influences 
expressed logarithmically in either initial conditions or by progressive computation, might be found to accelerate 
convergence and to eliminate subsidiary solutions. 

6. Conclusion 

A mathematical treatment of the geometric relationships inherent in the ideal hierarchic structure has been ap-
plied to examine sharpness in quasicrystal diffraction. It is not only sharp, but in principle, sharper than in per-
fect crystals. These calculations ignore the blurring effects of defects, which may be expected to depend on ma-
terials processing routes. However, they also suggest methods for characterizing the defects. More generally, the 
results, showing greater sharpness in geometric space than in linearly periodic crystals, suggest opportunities for 
both optics and for general computational methods in finite element analysis. 
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Appendix. How Many Atoms Are There in a Supercluster Order p? 
The hierarchic model is an ideal that makes way for defects. Beyond accounting for optimum defocus phase 
contrast micrographs, such as Figure 1, the second greatest benefit is the facility that the model provides for 
making meaningful and striking calculations for atomic structure and diffraction. The principal result is the dis-
covery of the generic compromise spacing effect, as a product term in the quasi structure factor calculations. On 
scanning this term, the peak in the profile yields the measured metric that enables atomic measurements through 
the new quasi-Bragg law. Atomic sites in the LPS are described in ref. [7]. 

The simplest way of estimating the number of atoms in a supercluster is to count the number of atomic sites: 
the unit cell has 13 atoms, each with a Mn atom at the center. A cluster is made from 12 cells with 13 × 12 = 156 
sites, but with fewer atoms as we shall see. Then, by hierarchic extension, the number of sites in a supercluster 
order p is 156 × 12p. The number of atoms is less than this. 

Start with the cluster: some sites are shared between neighboring cells; some sites a mobile, with neighbors so 
close that one is vacant; in particular, the central “hole”, averted to by Pauling [16], includes several vacancies. 
Take these three groups one at a time.  

Shared sites lie on adjoining edges of neighboring cells. Each cell shares five edges out of 30. Each edge has 
two Al atoms shared three ways. In all, 60 sites are occupied by only 20 atoms. 

Mobile sites contain two sites separated by a distance less than the diameter of metallic Al. Each edge, of the 
cluster contains 4 sites including one mobile site. There are 120 edge sites, but only 90 atomic sites. 

Hole sites occur at the center of the cluster. There are 12 of them on an icosahedron with edge length 1/τ, i.e. 
smaller than the unit Al diameter. The sites are like mobile sites, except that they have space for only 3 atoms. 
Toting the deficits, the cluster has 156-40-30-9=77 atoms.  

Proceed to the supercluster, first order. This has 12 clusters in the hierarchic order. The number of sites is 
12 × 77 = 924. Dimensions are generally scaled up by 2 2.6τ ≈ , so that mobile sites do not occur beyond the 
cluster. 

As before, each cluster shares 5 edges. Each edge has 3 Al atoms. So 90 sites are occupied by 45 atoms. 
The supercluster has a larger hole than the cluster and this is supposedly filled by interstitials. The space is an 

icosahedron with edge width τ3. We have previously suggested how the hole could be filled [4] but there is so far 
no dark field microscopic evidence for support. We estimate that, by contrast with vacancies in the cluster; there 
is at least a cell of interstitial atoms,. i.e. >13 atoms. Toting the discrepancies, the supercluster is estimated to 
contain 924 − 45 + 13 ≈ 892 atoms. 

By similar considerations, we can proceed to superclusters orders 2, 3, 4, 5, 6 etc. Estimates become increa-
singly significant with increasing order, and enter into approximations made in the calculations of qua-
si-structure factors [4] [6]. These take into account shared sites and mobile sites by corresponding computational 
adjustments on atomic scattering factors; but omit the central holes for fear of introducing errors due to structur-
al misplacements. The numbers derived above lead to the conclusion that there is an increase in atomic popula-
tions of about an order of magnitude for each order of supercluster, starting with a population of ≈900 atoms in a 
first order supercluster. If, more precisely, the ratio 892/77 = 11.6 is maintained, then a nearer estimate for the 
atomic populations in a supercluster order p is approximately 892 × (11.6)p−1. Remembering that the atomic 
scattering factor for Al is about 1.1 for 100 kV electrons, and for Mn about 2.1 [12], the atomic populations giv-
en are consistent with the values for the squared quasi-structure factors calculated in Figure 3 for the superclus-
ter order 6.  

Notice also that the different atomic scattering factors in the two atoms give to the Mn atom an intensity in-
crease that is four times greater than Al. This is evident in optimum defocus, phase contrast micrograph in Fig-
ure 1. 

This treatment raises the issue of stoichiometry. The supercluster has a nominal ratio Al:Mn = 6:1. The defi-
cits discussed were all on the part of the solute atoms on unit cell edges. However the metastable icosahedral 
phase grows inside a matrix Al alloy with reduced Mn concentration [17]. The depletion in Al in the hierarchic, 
icosahedral phase, compensates the residual concentration of Mn in the matrix. 
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Abstract 
For the unification of gravitation with electromagnetism, weak and strong interactions, we use a 
unique and very simple framework, the Clifford algebra of space ( )Cl M3 2= � . We enlarge our 
previous wave equation to the general case, including all leptons, quarks and antiparticles of the 
first generation. The wave equation is a generalization of the Dirac equation with a compulsory 
non-linear mass term. This equation is form invariant under the Cl3

∗  group of the invertible ele-
ments in the space algebra. The form invariance is fully compatible with the ( ) ( ) ( )U SU SU1 2 3× ×  
gauge invariance of the standard model. The wave equations of the different particles come by La-
grange equations from a Lagrangian density and this Lagrangian density is the sum of the real 
parts of the wave equations. Both form invariance and gauge invariance are exact symmetries, not 
only partial or broken symmetries. Inertia is already present in the ( )U 1  part of the gauge group 
and the inertial chiral potential vector simplifies weak interactions. Relativistic quantum physics 
is then a naturally yet unified theory, including all interactions. 

 
Keywords 
Electromagnetism, Weak Interactions, Strong Interactions, Gravitation, Clifford Algebra,  
Dirac Equation, Lagrangian Formalism, Gauge Groups, Relativistic Invariance, Electron,  
Magnetic Monopole, Quark, Photon, Gauge Boson, Unification 

 
 

1. Introduction 
The aim of this work is to construct with the same logic and mathematical rigour of General Relativity (GR), a 
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quantum wave of all fermions of one generation in a well-defined framework: the wave is a function of space 
and time into 8

3Cl  where 3Cl  is the Clifford algebra of space. We extend the relativistic constraints and re-
place the ( )2,SL �  group by the greater group ( )*

3 2,Cl GL= �  and we use only true representations and ex-
act calculations. The Lagrangian density has a double link with the wave equations, both cause and conse-
quence. This is new and gives both the limits and the physical reason of the existence of a Lagrangian formal-
ism. We present here the fermionic part of the wave equations. The wave equations have mass terms, and they 
are invariant both under *

3Cl  and under precisely the ( ) ( ) ( )1 2 3U SU SU× ×  gauge group of the Standard 
Model of Quantum Physics (SM). This gauge symmetry is a local and exact one. Complicated calculations of 
the second quantization are not used. Spontaneously broken symmetry is useless. Nevertheless we get many re-
sults of the SM, with less free parameters, which is better. Mass terms of our wave equations allow us to study 
inertia and gravitation directly from the wave equations. The inertial part of the gravitation generates eight po-
tential space-time vectors. Only seven of these eight terms are present in the Christoffel symbols used in diffe-
rential geometry. The eighth, the chiral one, is yet in the ( )1U  gauge and explains the complexity of weak in-
teractions. Using this chiral inertial potential vector, we simplify the electro-weak gauge. We study here the 
fermionic part of the SM. This SM uses also twelve bosons whose components are built from the tensorial den-
sities available from the spinor wave. They will be detailed in another article. 

After Maxwell’s electromagnetism, the discovery of electromagnetic wave and the understanding of the elec-
tromagnetic properties of light, electromagnetic laws became relativistic covariant laws [1]. The electromagnetic 
field became an anti-symmetric tensor and the Maxwell’s laws were invariant under a greater group than the in-
variance group of mechanics. In 1915, Einstein was able to include the gravitation in the same frame. His theory 
of gravitation (GR) [2] [3] is extremely precise, and gravitational waves are now experimentally observed. Next 
Einstein tried to reunite electromagnetism and gravitation into a unique field theory [4]. 

From relativistic ideas de Broglie found the wave associated to the movement of any particle [5]. Only a few 
months after his dissertation, Schrödinger found a non-relativistic wave equation for his wave. This wave equa-
tion explained the quantization of energy levels and started quantum mechanics. At the same time, the spin 1/2 
of the electron was discovered. Pauli gave a non-relativistic wave equation accounting for the spin 1/2. This eq-
uation was the starting point used by Dirac to get his wave equation [6]. The Dirac equation is such a success 
that now again it is an important item of the SM. Only the Dirac equation actually explained the true number of 
energy levels, the true energy levels and quantum numbers of the hydrogen atom [7]. Nevertheless if the Dirac 
equation was, a long time ago, explained in many books from Ref. [8] to [9], then quantum mechanics even 
forgot to teach this part of the quantum theory [10]. First the Dirac wave was the wave of only one electron 
while the Schrödinger equation accounted for systems of electrons. Next the problem of negative energies was 
not solved by the Dirac equation, the charge conjugation did not account for negative energies in the framework 
of the first quantization, only the second. With this second quantization the electromagnetic field became a field 
of operators creating and annihilating photons, with bras and kets in Hilbert linear spaces. This field followed a 
Hamiltonian dynamics with a Schrödinger equation and its unique time variable [11]. Therefore, even if quan-
tum fields incorporated the electromagnetic field and should be compatible with GR, the methods of the second 
quantization, with path integrals and Feynman graphs, were not sufficient to incorporate GR. Several problems 
arose1, often not well exposed, either presenting the Dirac equation from a Hamiltonian dynamics2, either for-
getting that the matrices of ( )2,SL �  replacing the Lorentz transformations were not unitary [11], either with 
wrong calculations.3 The result was an unsolved problem: the union of GR and SM. Nowadays quantum me-
chanics is understood as a gauge theory using a ( ) ( ) ( )1 2 3U SU SU× ×  gauge group [14]. The electron is a 
member of the “first generation” of fundamental fermions. This first generation is replicated into a second and a 

 

 

1The non-relativistic wave of a system of n electrons is a function on the �  field of 3n + 1 variables, the 3n coordinates of each particle, 
and a unique time. The number of particles is changing with creations and annihilations; therefore it is impossible to know precisely what a 
quantum state is. Nevertheless it is necessary to be able to compute integration on these indefinite linear spaces. The Dirac wave is a func-
tion on 4�  not on � . 
2In Ref. [12] the first part of the book presents canonical quantization, Green functions, path integrals and S-matrix from the non-relativistic 
quantum theory. The author writes (page 162) “the Dirac equation may be thought of as a relativistic generalization of the Schrödinger equa-
tion”, which is false because the four µγ  cannot be all Hermitian matrices. So he even does not know that the unitary operators needed on 
page 147 cannot exist. 
3The matrix 0γ  written page 7 in Ref. [13] is different from the definition given in (A.13) page 390. This book had four editions, all with 
the same error. 
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third one with increasing mass. A Lagrangian density gives the wave equations, both for fermions and gauge 
bosons. Each generation has a separate Lagrangian density [12]. After the great success of the Weinberg-Salam 
theory [15] unifying electromagnetism and weak interactions with a ( ) ( )1 2U SU×  gauge group [16], great 
unified theories [17] tried to extend this unification to include strong interactions. These theories predicted the 
disintegration of the proton, but none disintegration was observed. Numerous and complicated attempts with 
quantum groups, strings, branes and many supplementary dimensions, supergravity, loop quantum gravity, were 
developed. All these attempts were based on the methods of the second quantization and consequently were fi-
nally based upon the non-relativistic Schrödinger equation. None of these attempts were able to incorporate GR 
in a renormalizable way.  

We began our work with the Dirac equation of the electron [6]. All calculations are there made with mathe-
matical rigour [7] and with very accurate experimental results. Another reason of this work is the study of the fi-
nite representations of the Lorentz proper group [18]: relativistic quantum mechanics uses not the Lorentz group 
but another one, in a way which is not a consequence of the principles of the theory. 

2. Waves and Wave Equations 
Since 1928 the relativistic invariance of the Dirac theory used the previous Pauli matrices for the spin of the 
electron: the space-time variable ( )0 1 2 3, , ,x x x x x=  was replaced by 

0 3 1 2
0 0

1 2 0 3 , .
x x x ix

x x x x ct
x ix x x

 + −
= + = = 

+ − 

�                           (2.1) 

This is equivalent to say that the three Pauli matrices: 

1 2 3

0 1 0 1 0
; ; ,

1 0 0 0 1
i

i
σ σ σ

−     
= = =     −     

                        (2.2) 

form a orthogonal oriented basis in space. We shall put arrows on vectors in space, so any vector reads 
1 2 3

1 2 3.j
jv v v v vσ σ σ σ= = + +

�                              (2.3) 

Contrary to the Clifford community [19]-[22] we use the matrix representation generated by the Pauli matric-
es. First the geometric algebra of space 3Cl  and ( )2M �  are isomorphic algebras on the real field, the sum 
and the product of matrices are familiar in quantum physics. This matrix representation identifies complex 
numbers and scalar matrices in the Pauli algebra. With this identification we write the x of (2.1) as x xµ

µσ= , 
we consider ( )0 1 2 3, , ,σ σ σ σ  as a basis in space-time and we use the Einstein’s convention of summation on up 
and down indexes, with Latin indexes in space and Greek indexes in space-time. Any element z in the Clifford 
algebra of space 3Cl  is a sum of a real part x, a vector part v� , an axial-vector part iw�  and a pseudo-scalar 
part iy  and we need (a detailed course on Clifford Algebra is available in the first chapter of [23]-[26]). 

†

ˆ; ,

; .

z x v iw iy z x v iw iy
z z x v iw iy z x v iw iy
= + + + = − + −

= = + − − = − − +

� � � �

� � � ��
                         (2.4) 

The application ˆz z�  is the main automorphism of 3Cl . The reverse is also the adjoint (transposed conju-
gate matrix), so †z z z=��  is the reversion. The third conjugation, z z�  is the product of the two previous 
ones and we shall need: 

� ( )† †ˆ ; ; det .z z z AB B A MM MM M= = = = =                       (2.5) 

Space-time is then made of the auto-adjoint part of the space algebra. We use: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 20 0 2 0 1 2 3ˆ ˆ; ; det .x x x x x x x xx x x x x x x x x= = − = = = ⋅ = − = − − −
� �†  

The main reason to the use of the geometric algebra 3Cl  is the ability to read all relativistic quantum physics 
in this algebra: The fermion wave is a function of space and time into 8

3Cl : 

( ) ( )1 2 8
3, , , ; .n nx x Clφ φ φ φ φ φ= = ∈� �                          (2.6) 
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It is made of eight waves, functions of space-time with value in 3Cl  which is a 8-dimensional linear space 
on the real field. The link between 3Cl  and the complex formalism is simple only if we use the left and right 
Weyl spinors nη  and , 1, 2,3, 4,n nξ =  by letting: 

( )

( )

* *
*1 2 2

2* *
2 1 1

* *
*1 2 2

2* *
2 1 1

ˆ ˆ2 2 ; ,

ˆ ˆ ˆ2 2 ; .

n n n
n n n n n

n n n

n n n
n n n n n

n n n

i

i

ξ η η
φ ξ η η σ η

ξ η η

η ξ ξ
φ η ξ ξ σ ξ

η ξ ξ

   − −
= = = − =   

   
   − −

= = = − =   
   

                 (2.7) 

For 5,6,7,8,n =  we let: 

( )

( )

* *
*1 2 2

2* *
2 1 1

* *
*1 2 2

2* *
2 1 1

ˆ ˆ2 2 ; ,

ˆ ˆ2 2 ; .

n n n
n n n n n

n n n

n n n
n n n n n

n n n

i

i

ξ η η
φ ξ η η σ η

ξ η η

η ξ ξ
φ η ξ ξ σ ξ

η ξ ξ

   − −
= = = − =   

   
   − −

= = = − =   
   

�

                 (2.8) 

Our non-linear wave equation of the electron, which has the Dirac equation as linear approximation when the 
Yvon-Takabayasi angle is small or negligible, reads [23]-[35]: 

( ) ( )1 1 1 1 1
21 21 2 1

ˆ ˆ 0; ; ; det .qA m µ
µφ φ σ φ φ ρ σ σ σ σ ρ φ∇ + + = ∇ = ∂ = =             (2.9) 

where 0
0 0, , 1 , , 1, 2,3.j

jq e c m m c jσ σ σ σ= = = = = − =� �  This equation is invariant under any transfor-
mation D defined by an element M of the Lie group *

3Cl  (group of invertible elements of 3Cl ): 

( ) † ; ; ,x D x MxM x x D x
x

µ ν ν µ
µ µ µµσ ∂′ ′ ′ ′= = = ∂ = =

′∂
                 (2.10) 

( ) ( ) ( ) ( ), 1, 2,3, 4; , 5,6,7,8.n n n nx M x n x M x nφ φ φ φ′ ′ ′ ′= = = =� �              (2.11) 

ˆ ˆ; ; ;M M qA Mq A Mµ
µσ′ ′ ′ ′ ′∇ = ∇ ∇ = ∂ =                         (2.12) 

ˆ; , 1, ,8.n n n nM M nξ ξ η η′ ′ == = �                          (2.13) 

Relations (2.13) are the reason of the existence and the definition of “left” and “right” waves in quantum 
physics. Right waves transform with a left multiplication by M while left waves transform by a multiplication by
M̂ . Therefore nξ  and ˆnη  are right waves while nη  and ˆnξ  are left waves. Only one M term is present in 
(2.11) when two M terms are present in (2.10) and (2.12): consequently the wave turns with the θ  angle when 
the space turns with the 2θ  angle. The invariant form of the Dirac equation, which is the linear approximation 
of (2.9) reads: 

( ) ( )1 1 1 1 1
21

ˆ ˆ e 0; det e ,i iqA m β βφ φ σ φ φ ρ φ ρ−∇ + + = =                   (2.14) 

where β  is the Yvon-Takabayasi angle. Our wave equation, in the invariant form, appears then as a simplifi-
cation of the Dirac equation. 

Equations (2.10)-(2.13) have no geometric reason to be restricted to ( )det 1M = . The main change that we 
propose replaces this condition by the less restrictive condition ( )det 0M ≠ . We then enlarge ( )2,SL �  to 

( )2,GL �  which is also the multiplicative group *
3Cl  in the 3Cl  geometric algebra. This is significant be-

cause geometry is linked to gravitation in GR. First reason: this change is possible and astonishing! For any in-
vertible M Equations (2.10) - (2.13) are satisfied, so the restriction ( )det 1M =  is unnecessary. Next the repre-
sentations used in the case of spin 1/2 particles are now correctly used. The quantum theory associated to each 
Lorentz transformation R an element ( )M M R=  but there are two M for one R and only for particular R 
(“bi-valued” representations). Now to any M we associate one ( )R R M=  and :f M R�  is a true mathe-
matical function. Moreover for the gravitation we shall need below the four kinds of representations of 

( )2,GL �  while ( )2,SL �  has only two kinds of representations. Finally this important change is validated by 
all new results that we get from this hypothesis. Considering all M elements with ( )det 0r M= ≠  and noting 

( )*
3 2,Cl GL= �  the set of these elements, we let: 
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( ) 2det e ; e ; : .i iM r M r M R x x MxMθ θ= = =� †                      (2.15) 

and the R transformation satisfies: 
2 2e e .i ix MxM r Mx r M rMxM rxθ θ−′ = = = =† † †                     (2.16) 

Then ( ) ( )D x rR x=  and D is a “Lorentz dilation” made of the Lorentz transformation R conserving space 
orientation and time orientation (this is not a trivial result, relations (2.12) like ( ) 4det D rν

µ =  and 0
0 0D >  are 

proved in Ref. [23] p. 115-118) and of the homothety :h x rx�  with ratio ( )detr M= . We explained pre-
viously how theses dilations constitute a 7-dimensional Lie group [32] and how all laws of electromagnetism, 
quantum wave of the electron included, are invariant not only under the ( )2,SL �  group found in 1928 from 
the Dirac theory, necessary to account for the spin 1/2, but under the ( ) *

32,GL Cl=�  group. Since the study of 
the Lie groups [36] used in quantum physics is based on the properties of the ( ),GL n �  groups, and since *

3Cl  
is exactly one of them, we conserve the matrix representations of this group, Clebsh-Gordan or Racah coeffi-
cients and so on. The first difference is the four kinds of matrix representations that we use now with 

ˆ, , ,n n n nφ φ φ φ� . This has no incidence on spin representations because x x= � . Main difference: we now know 
from where come the representations of ( )2SU  which is a subgroup of *

3Cl . Wave Equations (2.9) and (2.14) 
are invariant under *

3Cl  because: 

( ) ( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ

det det det det .

M M

qA Mq A M q A

M M r

φ φ φ φ φ φ

φ φ φ φ φ φ

ρ φ φ φ ρ

′ ′ ′ ′∇ = ∇ = ∇

′ ′ ′ ′ ′ ′= =

′ ′= = = =

                    (2.17) 

Then, if we suppose m m r′=  we get: 

( ) ( )1 1 1 1 1 1 1 1
21 21

;
ˆ ˆ ˆ ˆ0 .

m m r m

qA m q A m

ρ ρ ρ

φ φ σ φ φ ρ φ φ σ φ φ ρ

′ ′ ′= =

′ ′ ′ ′ ′ ′ ′ ′ ′= ∇ + + = ∇ + +
            (2.18) 

And we are allowed to say that this equation is “form invariant” since it has exactly the same form in the 
primed and non-primed basis. We explained how the variation of the mass term is linked to the E hν=  rela-
tion, then to the existence of the Planck constant [26]. This enlarged invariance has another unexpected conse-
quence: if we compute in the basis ( )1 2 3 1 2 31, , , , , , ,i i i iσ σ σ σ σ σ  of 3Cl  the eight numeric equations equivalent 
to (2.9) or (2.14) the real part (first term of the basis, 1) is 0= , where   is the Lagrangian density allowing 
us to get the wave Equation (2.9) or (2.14) by means of variation calculus. Therefore a double link exists be-
tween wave equation and Lagrangian formalism. We prove below that this double link is conserved in the gen-
eral case. Another one of the eight numeric equations is simple, the equation corresponding to the 3iσ  term 
which reads: 

1 10; .J J Jµ µ
µ µσ φ φ∂ = = = †                              (2.19) 

This J current is the conservative probability current, 0J  being the probability density. We shall see in the 
next section how this is generalized for the whole wave. 

3. Weak and Strong Interactions 
We studied strong and weak interactions with Clifford algebras having two fictitious supplementary dimensions 
[25] [37]-[41] of space. Since space-time has one dimension more than space, we passed from three to six di-
mensions. This induces three doubling of the dimension of the algebra, and we get the same number of variables 
if we replace 3Cl  by 8

3Cl . The general wave that we consider is a function of space and time into 
( )1 2 8, , ,φ φ φ φ= �  with j j jR Lφ = +  where R is the right part and L is the left part of the wave. The states of 

color of the quark d that we named , ,r g bd d d  are associated to 2 3,φ φ  and 4φ . The states of color of the 
quark u that we named , ,r g bu u u  are associated to 5 6 7, ,φ φ φ� � � . Similarly we let for the neutrino: 8φ φ= �n . We 
remark that this conserves the 1 + 3 + 3 + 1 structure of the algebra of space. Moreover we now consider these 
states of color like complete waves, with a left and a right part. This is then a generalization of our previous 
works. We use now: 
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1 8 2 5

8 1 5 2

3 6 4 7

6 3 7 4

ˆ ˆ
,

ˆ ˆ

l r

g b

φ φ φ φ

φ φ φ φ
φ φ φ φ

φ φ φ φ

 
 

Ψ Ψ   Ψ = =   Ψ Ψ   
 
 

� �

� �                          (3.1) 

with the Weyl representation: 

20
0 2

2

4 2
4 5 0123

4 2

00 1 0
; , 1, 2,3; ;

00 0 1

0 0  00
; ; ; .

0 0 0  0
µ

µ
µ

σ
γ γ γ γ

σ

γ
γ

γ

    
= = = − = = =     −     

−      
= = = = =        −     

jj
j

j

I
j I

I

I I
L L L

I I
ii

i
ii

            (3.2) 

Consequently the cΨ  waves, , , ,c l r g b=  have value in the Clifford algebra of space-time 1,3Cl  and the 
global wave Ψ  has value in the Clifford algebra of an extended space-time 1,5Cl , with two more dimensions 
of space which are fictitious and not present in the dynamics of the wave. Main interest of this writing, this al-
lows an equal treatment of the eight nφ  that we need. The lΨ  part of the wave is the lepton part, made of the 

1φ  wave of the electron and the 8φ�  wave of the neutrino which is also the wave of the Lochak’s magnetic 
monopole [26] [42]-[44]. The wave equation reads: 

( ) 0120 ;

.b g

r l

D L

m
χ χ

ρ
χ χ

= Ψ +

 
=  

 

M

M
                                  (3.3) 

The covariant derivative reads: 

( ) ( ) ( ) ( ) ( )31 2
0 ,

2 2 2
j k

j k
gg gD BP W P GΨ = ∂ Ψ + Ψ + Ψ + Γ Ψi                 (3.4) 

with 
0

0, 1, 2,3; ; ;j j j
jW L W j D L D L L L Lµ µ

µ µ= = = = = −                    (3.5) 

for 1, 2,3.j =  We use two projectors P±  satisfying 

( ) ( )21 0123
1 ;
2

.P L L± Ψ = Ψ ± Ψ =i i                             (3.6) 

Three operators act on the quark sector like on the lepton sector: 

( ) ( ) ( )1 2 335 0125 0132; ; .P P L P P L P P L+ + += Ψ = Ψ = Ψ                    (3.7) 

The fourth operator acts differently on the lepton wave and on the quark sector: 

( )
( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0
0

0 0

0 21 21 30

0 21 21 30

;

1 ;
2

1 1 1 , , , .
3 3 2

l r

g b

l l l l l l

c c c c c c

P P
P

P P

P P

P P c r g b

γ γ γ

γ γ γ

−

−

 Ψ Ψ
 Ψ =
 Ψ Ψ 

Ψ = Ψ + Ψ = Ψ + Ψ + Ψ

Ψ = − Ψ + Ψ = − Ψ + Ψ + Ψ =

i i i

i i i

            (3.8) 

The value −1/3 is compulsory [45] [46] and gives the four correct values of the charges of quarks and anti-  

quarks [25] [47]. To simplify notations we use now , , ,l r g b  instead , , ,l r g bΨ Ψ Ψ Ψ . So we have 
l r
g b

 
Ψ =  

 
  

and 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 4 4 01235 01235 2 5 4 01234 01235

3 4 01253

5 01234 6 01253

7 4

0 01 1; ;
0 02 2

0 0
; ;

0 0

0 0 0
; ;

0

0 0

g g
L L L L L L L L

r r

r b
P P P P L P

g r

b
L P P L

r b g

P L
b

+ − − + −

− −

−

−   
Γ Ψ = Ψ + Ψ = Γ Ψ = Ψ − Ψ =   

   
   

Γ Ψ = Ψ − Ψ = Γ Ψ = Ψ =   −   
−   

Γ Ψ = Ψ = Γ Ψ = Ψ =   
   

Γ Ψ = − Ψ =
−

i
i

i
i

i
i

( ) ( )8 012345 012345

01 1; .
23 3
r

P L L P
g g b

− −   
Γ Ψ = Ψ + Ψ =   −   i

    (3.9) 

Since the left up term of each matrix ( )jΓ Ψ  is zero, the wave equation splits into a lepton part and a quark 
part. 

3.1. The Lepton Wave 
Only the ( ) ( )1 2U SU×  part of the gauge group acts on electron + neutrino. The physical translation is: leptons 
do not strongly interact; they have only electromagnetic and weak interactions. This is fully satisfied in experi-
ments. Since it is independent on the energy scale, two consequences result: strict conservation of the baryonic 
number, general failure of great unified theories. The wave equation acts separately in a lepton part and a quark 
part: 

( )

( )

012

012

0 0 0
0 ; ;

0 0 0

0
0 ; ; .

0

ll l

l

rb gc c c c

g br

D L m

D L m

ρ
χ

χ χ
ρχ χ

χ

Ψ   
= Ψ + Ψ =   

  
Ψ  

= Ψ + = Ψ =    Ψ Ψ   

                (3.10) 

We study first the lepton part of the wave equation. The lepton sector of the standard model, for the first gen-
eration, accounts for the electron, the positron, the left neutrino and the right anti-neutrino. We note the wave 

eψ  of the electron and the wave nψ  of the neutrino as 
1 8

1 1
1 8

2 2

; ; ; ; 1,8.
j j

j j
e n j j j

ξ ηξ ξ
ψ ψ ξ η

ξ ηη η
      

= = = = =      
       

                  (3.11) 

Like previously jξ  are right waves and jη  are left waves. The SM uses a charge conjugation which, up an 
electric phase, lets for the positron wave pψ  and for the anti-neutrino wave aψ : 

* *
2 2; ,p e a ni iψ γ ψ ψ γ ψ= =                                 (3.12) 

where we use the matrix representation of Weyl matrices (3.2) which gives: 

0
.ˆ 0

µ
µγ

∇ 
∂ = ∂ =   ∇ 

                                  (3.13) 

We use (2.7), 1
eφ φ=  and 8

nφ φ= � . The link (3.12) of the SM between the wave of the particle and the wave 
of its anti-particle simply reads: 

1 8
1 1 1 1

ˆ ˆ ˆ ˆ ˆ; .p e a nφ φ σ φ σ φ φ σ φ σ= = = =                             (3.14) 

The lepton wave reads: 
1 8

8 1
1 1

.ˆ ˆ ˆ ˆ ˆ
e n e n

l
a p n e

φ φ φ φ φ φ
φ σ φ σ φ φ φ φ

    
Ψ = = =            

�
                        (3.15) 

It is a well-defined function of space and time with value into the space-time algebra 1,3Cl . Separating ,eξ   

eη  and nη  the Weinberg-Salam model uses projectors ( )5
1 1
2

γ± , which read with our choice (3.2) of Dirac  
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matrices: 

( ) ( ) 2
5 5

2

0 0 0 01 11 ; 1 .
0 0 0 02 2L R

I
I

ξ ξ ξ
γ ψ ψ γ ψ ψ

η η η
         

− = = = + = = =         
         

          (3.16) 

Then for particles left waves are η  waves and right waves are ξ  waves. This is *
3Cl  invariant, conse-

quently relativistic invariant. With space algebra the separation between left and right waves uses: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 8 8
3 3

1 1* 1
2 3

8 8* 8
2 3

1 0 1 01 12 0 1 ; 2 0 1 ;
0 0 0 02 2

0 0 1ˆ2 0 2 0 1 ;
0 1 2

0 0 1ˆ2 0 2 0 1 .
0 1 2

e e n n

e e

n n

R R

L i

L i

ξ φ φ σ ξ φ φ σ

σ η η φ φ σ

σ η η φ φ σ

   
= = = + = = = +   

   
 

= − = = = − 
 
 

= − = = = − 
 

�

�

     (3.17) 

To get the gauge group of the Weinberg-Salam theory we let (see [26] 6.1): 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

21 0123

0 21 30 21 1 0 012 3

2 3 123 3 3 30

1 ;
2

1 1 1; ;
2 2 2

1 1 .
2 2

;

P

P P P P

P P P P

γ γ

γ γ γ γ γ γ

γ γ γ γ

±

− +

+ +

Ψ = Ψ ± Ψ =

Ψ = Ψ + Ψ + Ψ = Ψ + Ψ Ψ = Ψ + Ψ = Ψ

Ψ = Ψ − Ψ = Ψ Ψ = −Ψ + Ψ = Ψ −

i i

i i i i i

i i i i

    (3.18) 

We explained there how the covariant derivative of the Weinberg-Salam model used: 

1 2 ,
2

j
j

YD ig B ig T Wµ µ µ µ= ∂ − −                              (3.19) 

with 
2

j
jT

τ
=  for a doublet of left-handed particles and 0jT =  for a singlet of right-handed particle. Y was the  

weak hypercharge, 1, 2L RY Y= − = −  for the electron. The transposition into Clifford algebra used four space- 
time vectors named “potentials”: 

0 0
; ; ; ;ˆ ˆ0 0

0
; ,

ˆ 0

j
j j j j

j

D B
D D D B B B

D B

W
W W W

W

µ µ µ µ
µ µ µ µ

µ µ
µ µ

σ γ σ γ

σ γ

   
= = = = = =      

   
 

= = =   
 

D B

W

             (3.20) 

which express the covariant derivative in a unique term: 

( )1 2 31 2
0 1 2 3 .

2 2
g gP P P P= ∂ + + + +D B W W W                        (3.21) 

For the calculation of the covariant derivative we use the Socroun’s method incorporating the jg  constants 
into the potentials [48]. The k

jh  potentials simplify the calculation of the ( )3SU  group by using three 
( )2SU  subgroups. We let: 

8
1 1 2 2 3 3 33 3 31 2
1 1 1 3

8
1 6 2 7 3 3 33 3 3
2 2 2 1

8
1 4 2 5 3 33 3 3
3 3 3 2

b ; w , 1, 2,3; ; ; ,
2 2 2 2 2 3

; ; ;
2 2 2 3

; ; 2 .
2 2 2 3

j j g g gg g GB W j h G h G h h G

g g g Gh G h G h h G

g g g Gh G h G h h

 
= = = = = − = + 

 
 

= = − = − + 
 
 

= = − − = − 
 

        (3.22) 
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A detailed calculation was made in [26] 6.1. We have previously supposed that 1φ  and 8φ  have the same 
behaviour under the dilation R induced by M. We need here another behaviour: 8 8Mφ φ �� . We got, with the 
replacement of 8φ  by 8φ� , the replacement of ∇  by ∇ = ∇�  and the replacement of D by D D≠� : 

� ( ) ( )
( ) ( )

8 8 1 1 1 8 8 3 8 1 2 1

1 1 3 1 1 2 8

ˆ ˆ ˆ; 2 b b; ;w w w

ˆ ˆ ˆb w w w .

DR R DR R i R DL L i L i i L

DL L i L i i L

= ∇ = ∇ + = ∇ + − + − +

= ∇ + + − +

� � � �
          (3.23) 

This system is equivalent to: 
� ( ) ( )

( ) ( )

8 8 1 1 1 8 8 8 3 1 1 2

1 1 3 1 1 2 8

ˆ ˆ ˆ ˆ ˆ ˆ ˆ; 2 b b w w w ;

ˆ ˆ ˆb .

;

w w w

R D R DR R i R L D L iL iL i

DL L i L i i L

= ∇ = ∇ + = ∇ − − + +

= ∇ + + − +
           (3.24) 

These derivatives are exactly equivalent to those of the Weinberg-Salam model. Equation (3.10) reads 

( ) 012 0,l lmγ ρχΨ + =D                                  (3.25) 

where lχ  is a term (below) depending on lΨ . The Weinberg-Salam model does not use 8R  and for elec-
tro-weak interactions we can cancel this right wave of the neutrino. But when some neutrinos are observed they 
are able to change into neutrinos of other generations. These changes are studied by using both right and left 
waves. It is the same if we study the Lochak’s magnetic monopole. If the 8φ  wave is used we get many relati-
vistic invariants, unknown in the Dirac theory where only 1a  was used: 

( ) ( )
( ) ( )
( ) ( )

1 1* 1 1* 1 1 8* 1* 8* 1* 1 8 8 1
1 1 1 2 2 2 1 2 2 1

1 8* 1 8* 8 1 8 1* 8 1* 1 8
3 1 1 2 2 4 1 1 2 2

1 8 1 8 1 8 8 1 8 8* 8 8* 8 8
5 1 2 2 1 6 1 1 2 2

ˆ ˆ2 2 ; 2 2 2

2 2 ; 2 2

ˆ

;

ˆ2 2 2 ; 2

;

.2

a a

a a

a a

ξ η ξ η η ξ η η η η η η η η

ξ η ξ η η ξ ξ η ξ η η ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ η ξ η η ξ

= + = = − = = −

= + = = + =

= − = = − = + =

† † †

† †

† † †

            (3.26) 

When the wave of quarks is zero we also have: 

� � ( )

( )

6 1 22 * * 1 1 * 8 * 8 * 8 * 8
1 1 2 1 3 4 5 12

1 2 1

* 8 8 * 1 * 1 * 1 * 1
2 6 2 1 3 4 5 1

1; , ,

.

j

j j l
j

M M
a a M a L R a L a L a R a R

M M

M a L R a L a R a L a R

ρ χ σ σ
ρ

σ σ

=

=

 
= = = + + + + +  

 

= + − + + −

∑ � � � �

� �
       (3.27) 

The lepton wave Equation (3.25) is equivalent to the system: 

� ( )

( )

( ) ( )

( ) ( ) ( )

1 1 1 8 8
1 3 5 1

8 8 1 1
6 4 5 1

1 3 1 1 2 8 * 1 * 8 * 8
1 2 1 4

8 3 8 1 2 1 * 8 * 1 * 1
6 2 1 3

ˆ ˆ ˆ0 2 b .

ˆ ˆ0 .

ˆ ˆ0 (b w ) w w .

ˆ0 b w w w .

σ
ρ

σ
ρ

σ
ρ

σ
ρ

= ∇ + + + −

= ∇ + + +

= ∇ + + − + + + +

= ∇ + − − − + − +

�

�

� �

� �

mR i R i a L a L a R

mR i a L a L a R

mL i L i i L i a R a L a R

mL i L i i L i a R a L a R

              (3.28) 

3.2. Double Link with the Lagrangian Density 
For comparing the previous equations with the usual complex matrix formalism, we associate to 1 8 1, ˆ,R R L�  and 

8L  the Weyl spinors jξ  and jη  and we get: 

( ) ( )

( ) ( )

1 1
1 1 1 1 1 1

8 8
8 8 8 8 8 8

ˆ2 0 ; 2 ; 2 0 ; 2 ;
0 0

ˆ2 0 ; 2 ; 2 0 ; 2 .
0 0

ξ η
ξ η

ξ η
ξ η

   
= = = =   

   
   

= = = =   
   

�

� �

R R L L

R R L L

† †

† †
              (3.29) 
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Equations (3.28) are equivalent to: 

� ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 8 8
1 3 5

8 8 1 1
6 4 5

1 3 1 1 2 8 * 1 * 8 * 8
1 2 4

8 3 8 1 2 1 * 8 * 1 * 1
6 2 3

ˆˆ0 2 b .

ˆˆ0 .

ˆ0 b w w w .

ˆ0 b w w w .

mi i a a a

mi a a a

mi i i i a a a

mi i i i a a a

ξ ξ η η ξ
ρ

ξ η η ξ
ρ

η η η ξ η ξ
ρ

η η η ξ η ξ
ρ

= ∇ + + + −

= ∇ + + +

= ∇ + + − + + + +

= ∇ + − − − + − +

              (3.30) 

Like with the linear Dirac mass term, the covariant derivatives of left spinors are linked by the mass term to 
right ones and the covariant derivatives of right spinors are linked by the mass term to left ones. But we now 
have ja  terms which also change with a gauge transformation [26], compensating exactly the difference be-
tween left and right spinors: these equations are both invariant under *

3Cl  (therefore relativistic invariant) and 
gauge invariant under the ( ) ( )1 2U SU×  gauge group generated by the four nP . The form invariance under 

*
3Cl  is proved in [26] B.4.1 and gauge invariance is proved in B.4.2 to B.4.4. 
Now we multiply on the left side the second relation (3.28) by 8iR− : 

( )8 8 8 8 8 1 8 1
6 4 5 1

ˆ ˆ0 .miR R a R L a R L a R R σ
ρ

= − ∇ + + +�                       (3.31) 

With the left η  and right ξ  spinors this equation reads: 

( ) ( )8 8 * * * 3
6 6 4 4 5 5

1ˆ0 2 .
2

mi a a a a a a σξ ξ
ρ

+ 
= − ∇ + + + 
 

†                      (3.32) 

We name j
Rδ  the real part of ( )† ˆ2 j jiξ ξ− ∇ : 

( )† †ˆ ˆ .j j j j j
R i iµ µ

µ µδ ξ σ ξ ξ σ ξ= − ∂ + ∂                             (3.33) 

This gives: 

( )† 1 1 1 1 1 1 1

8 8 8 8 8 8 8

ˆ ˆ ˆ2 ;; ;

ˆ ˆ; .

j j j j
R R R R R

R R R

i i D D R R D D

D R R D D

µ µ µ µ
µ µ

µ µ µ
µ

ξ ξ δ σ ξ σ ξ

σ ξ σ ξ

− ∇ = − ∂ = = =

= = =

�

�

†

†
              (3.34) 

Then (3.32) is equivalent to: 

( )8 8 * * *
6 6 4 4 5 50 .R R

mi D a a a a a aµ
µδ

ρ
= − ∂ + + +                          (3.35) 

This complex equation is equivalent to the real system: 

( ) ( )8 * * * 8
6 6 4 4 5 50 ; 0 .R R

m a a a a a a D
µ

µδ
ρ

= + + + = ∂                        (3.36) 

We remark that we get not four numeric equations but only two for the four variables of the 8R  spinor wave. 
This will be the same for the other spinor waves. We see this first with 1R . We multiply on the left the first eq-
uation (3.28) by 1iR− † : 

� ( )1 1 1 1 1 1 1 8 1 8
1 3 5 1

ˆ ˆ0 2 b .miR R R R a R L a R L a R R σ
ρ

= − ∇ + + + −� � � � �                    (3.37) 

With the left η  and right ξ  spinors this equation reads: 

( ) � ( )1 1 1 1 * * * 3
1 1 3 3 5 5

1ˆ0 2 4 b .
2

mi a a a a a a σξ ξ ξ ξ
ρ

+ 
= − ∇ + + + + 
 

† †                  (3.38) 

This equation is equivalent to: 
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� ( )1 1 1 1 * * *
1 1 3 3 5 50 4 b .R R

mi D a a a a a aµ
µδ ξ ξ

ρ
= − ∂ + + + +†                     (3.39) 

This complex equation is equivalent to the real system: 

( ) ( ) ( )1 1 * * * 1
1 1 3 3 5 50 4b ; 0 ,R R R

mD a a a a a a D
µ µ

µ µδ
ρ

= + + + + = ∂                  (3.40) 

because ( ) † ˆj j j
RD

µ µξ σ ξ= . Next we multiply on the left the third Equation (3.28) by 1iL− : 

( ) ( ) ( )1 1 1 3 1 1 1 2 8 1 * 1 * 8 * 8
1 2 1 4

ˆ ˆb w w w 0.miL L L L L i L L a R a L a Rσ
ρ

− ∇ + + − + + + + =� �          (3.41) 

We let: 

( ) ( ) ( )
( )

† 1 1 1 8 8 8

†

;; ; ;

2 ; 2 ; .;

j j j j j jk jk
L L L

jk j k jk jk kj jk jk kj jk jk jk
L L L L

i i D L L D L L L L

L D L L d iL iL L D id

µ

µ

µ µ

δ η η η η σ

η σ η

= − ∇ + ∇ = = =

= = + = − = −

� �†

           (3.42) 

We get: 

( ) ( ) ( )1 1 1 8 8 83 31 1ˆ ˆb b ; ; b b .
2 2

j j j
L L LL L D D L L D

µ µ µµ
µ µ

σ ση σ η+ +
= = =†             (3.43) 

With the left η  and right ξ  spinors (3.41) reads: 

( ) ( ) ( ) ( ) ( ) ( )1 1 3 1 1 2 18 * * * 3
1 1 2 2 4 4

10 2 2 b w 2 w w .
2L

mi D i L a a a a a a
µ µ

µ µ µ µ
ση η

ρ
 
 


+
= − ∇ + + − + + + +


†    (3.44) 

This equation is equivalent to: 

( ) ( ) ( ) ( ) ( ) ( )1 1 3 1 1 2 18 * * *
1 1 2 2 4 40 2 2 b w 2 w w .L

mi D i L a a a a a a
µ µ

µ µ µ µη η
ρ

= − ∇ + + − + + + +†       (3.45) 

Separating the real and the imaginary part we get the equivalent system: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 3 1 1 18 2 18 * * *
1 1 2 2 4 4

1 2 18 1 18

0 2 b w w w ;

0 w w .

L L L L

L L L

mD D d a a a a a a

D D d

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ

δ
ρ

 
 

= + + − + + + +

= ∂



 
+  

−
        (3.46) 

We multiply on the left the last Equation (3.28) by 8̂iL− : 

( ) ( ) ( )8 8 3 8 1 2 1 * 8 * 1 * 1
6 2 1 3

ˆ ˆ0 b w w w .miL L L i L a R a L a Rσ
ρ

 
= − ∇ + − − − + − + 

 
�            (3.47) 

With the left η  and right ξ  spinors (3.47) reads: 

( ) ( ) ( ) ( ) ( ) ( )8 8 3 8 1 2 81 * * * 3
6 6 2 2 3 3

10 2 2 b w 2 w w .
2L

mi D i L a a a a a a
µ µ

µ µ µ µ
ση η

ρ
 
 


+
= − ∇ + − − − + + +


†    (3.48) 

This equation is equivalent to: 

( ) ( ) ( ) ( ) ( ) ( )8 8 3 8 1 2 81 * * *
6 6 2 2 3 30 2 2 b w 2 w w .L

mi D i L a a a a a a
µ µ

µ µ µ µη η
ρ

= − ∇ + − − − + + +†       (3.49) 

Separating the real and the imaginary part we get the equivalent system: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

8 3 8 1 18 2 18 * * *
6 6 2 2 3 3

8 2 18 1 18

0 2 b w w w .

0 w w .

L L L L

L L L

mD D d a a a a a a

D D d

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ

δ
ρ

 
 

= + − − + + + +

= ∂



 
−  

−
       (3.50) 
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Adding and subtracting the second Equations (3.46) and (3.50) we get: 

( )
( ) ( ) ( )

1 8

1 8 2 18 1 18

0

0

;

2 w w .

L L

L L L L

D D

D D D d

µ

µ

µ µ µ

µ µ µ

= ∂ +

= ∂ − +  
  

−
                      (3.51) 

The lepton part of the Lagrangian density is the sum of the real parts in (3.36), (3.40), (3.46), (3.50): 

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

8 * * * 1 1 * * *
6 6 4 4 5 5 1 1 3 3 5 5

1 3 1 1 18 2 18 * * *
1 1 2 2 4 4

8 3 8 1 18 2 18 *
6 6 2

1 10 4b
2 2

1 2 b w 2 w w
2

1 2 b w 2 w w
2

µ

µ

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ µ

δ δ
ρ ρ

δ
ρ

δ
ρ

   
= = + + + + + + + +   

   
  + + + − + + + +    

+ + − − + + + 
  

l R R R

L L L L

L L L L

m ma a a a a a D a a a a a a

mD D d a a a a a a

mD D d a a a a



( )* *
2 3 3 . 
+ 

 
a a

      (3.52) 

This gives: 

( )

( ) ( )

1 8 1 8 1 1 8

1 18 2 18 3 8 1 * * * * * *
1 1 2 2 3 3 4 4 5 5 6 6

10 b 2
2

w w w .

µ µ µ
µ

µ µ µ µ
µ µ µ

δ δ δ δ

ρ

 = = + + + + + + 

− + + − + + + + + 
  +

l R R L L R L L

L L L L

D D D

mD d D D a a a a a a a a a a a a


        (3.53) 

Since * * * * * * 2
1 1 2 2 3 3 4 4 5 5 6 6a a a a a a a a a a a a ρ+ + + + + =  we get: 

( ) ( )(
( ) ( ) )

( )
( ) ( ) ( )

1 1 1 1 8 8 8 8

1 1 1 8 8 8
1 8

1 1 1 1 8 8

1 2 1 8 1 2 8 1 3 1 1 8 8

ˆ ˆ ˆ ˆ0
2

ˆb 2

w w w w w .

l
i

m

i i

µ µ µ µ
µ µ µ µ

µ µ µ µ
µ µ µ µ

µ µ µ
µ

µ µ µ µ
µ µ µ µ µ

ξ σ ξ ξ σ ξ ξ σ ξ ξ σ ξ

η σ η η σ η η σ η η σ η

ρ ξ σ ξ η σ η η σ η

η σ η η σ η η σ η η σ η

= = − ∂ + ∂ − ∂ + ∂

− ∂ + ∂ − ∂ + ∂

+ + + +

 − + + − + − + 

 † †

† †

† † †

†

†

†

†

†

† †

†

       (3.54) 

Now we derive the wave equations resulting from the Lagrange equations. The Lagrange equation: 

( )1 1µ
µξ ξ

 ∂ ∂ = ∂
 ∂ ∂ ∂ 

 
† †

                                (3.55) 

gives 

� ( )1 1 1 8 8
1 3 5

ˆˆ0 2b ,mi a a aξ ξ η η ξ
ρ

= − ∇ + + + −                        (3.56) 

which is the first Equation (3.30), equivalent to the first Equation (3.28). Similarly deriving with 1η †  we get 
the third Equation (3.30), equivalent to the third Equation (3.28). Next the Lagrange equation 

( )8 8µ
µξ ξ

 ∂ ∂ = ∂
 ∂ ∂ ∂ 

 
† †

                               (3.57) 

gives 

( )8 1 1 8
4 5 6

ˆˆ0 ,mi a a aξ η ξ η
ρ

= − ∇ + + +                          (3.58) 

which is equivalent to the second Equation (3.28). The Lagrange equation 
( )8 8µ

µη η

 ∂ ∂ = ∂
 ∂ ∂ ∂ 

 
† †

 gives the  
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last Equation (3.28). This establishes the double link between wave equations and Lagrangian density. The link 
from Lagrangian density to wave equations was known from the beginning of quantum mechanics. The link 
from wave equations to Lagrangian density is the true reason of the existence of a Lagrangian mechanism. This 
link is much stronger than the first one on the physical point of view, because the old link supposes an integra-
tion by parts and a cancellation of terms. The possibility of this cancellation is dubious in the case of propagat-
ing waves (like gravitational waves). 

3.3. Double Link with the Lagrangian Density (Quark Case) 

Noting 
( ) ( )

� ( ) � ( )

33

3 3
, 0,1, 2,3

ˆ
 

n nn n
j j

j n n n n
j j

P P
P j

P P

φ φφ φ

φ φ φ φ

++

+ +

    = =       

��

�
 and 2,3, 4n =  we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3
0 1 2 3

3 3 3 3 3 3 3
0 1 2 3

2 ; ; ;
3 3

4 ; ;
3

;

.
3

;

n n n n n n n n n

n n n n n n n n n

i iP R L P iL P L P iL

i iP R L P iL P L P iL

φ φ φ φ

φ φ φ φ

+ +

+ + + + + + +

= + = = = −

= − + = = − =

� �

� � � �� � �
         (3.59) 

We note mod 3 : 3 3, 4 1n n= = =  and 5 2= . The covariant derivative reads, with 2,3, 4n = : 

� ( ) ( ) ( )
� ( ) ( ) ( )

( )

1 2 1 1 2 2 3 3
1 1 1 1 1 1

3 3 3 1 2 3 1 1 2 3 2 3 3 3
1 1 1 1 1 1

1 2 3 3

2 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ b ,
3

4 ˆ ˆ ˆ ˆ ˆ ˆb ,
3

ˆ ˆ ˆ ˆb w w w
3

n n n n n n
n n n n n n

n n n n n n
n n n n n n

n n n n n

iDR R R i h ih R i h ih R i h h R

iDR R R i h ih R i h ih R i h h R

iDL L L i i L L

+ +
− − + + − +

+ + + + + + + +
− − + + − +

+

= ∇ + + + + − + −

= ∇ − + + + − + −

= − ∇ − + −

� � � � � �

( )
( ) ( )

( ) ( )
( ) ( )

1 2 1
1 1

1 2 2 3 3
1 1 1 1

3 3 3 1 2 3 3 1 2 3 1
1 1

1 2 3 2 3 3 3
1 1 1 1

ˆ

ˆ ˆ ,

ˆb w w w
3

.

n
n n

n n
n n n n

n n n n n n
n n

n n
n n n n

i h ih L

i h ih L i h h L

iDL L L i i L L i h ih L

i h ih L i h h L

+
− −

+
+ + − +

+ + + + + +
− −

+ + +
+ + − +

− +

− − − −

= ∇ − − − + −




 +

− − −




−


� �

     (3.60) 

When lΨ  is zero the 2ρ  term is a sum of 66 terms (relativistic invariants): 

( )
7 *2 *

2 , ,
2; ,

n
pq pq n n n n n n

n n n n n
n n p q

d d s s d R L L Rρ η ξ
=

=

= + = + =∑ ∑ †                  (3.61) 

where in 2,3, 4,5,pq
ns n =  23,34, 42,56,67,75,52,53,54,62,63,64,72,73,74pq =  and: 

2 3 4 5
ˆ ˆˆ ˆ2 2 ; 2 ; 2 ; 2 2 .pq p q q p pq q p pq p q pq p q q ps s s sη η η η η ξ η ξ ξ ξ ξ ξ= = − = = = = −† † † † † †          (3.62) 

And when the Ψ  wave is complete, with both lepton and quarks terms we have: 

( )
6 7 *2 * *

1 2 , ,
.

n n
pq pq

n n n n n n
n n n p q

a a d d s sρ
= =

= =

= + +∑ ∑ ∑                           (3.63) 

This is a sum of 72 terms, all positive. 

3.4. The Quark Wave 
Like in the lepton case the Lagrangian density is doubly linked to wave equations in the quark case. The La-
grangian density reads: 

( ) ( ) ( ) ( )
� ( ) �

7
† † † †

2

7†† 3 3
1 2 3 4 5 6 7

2,3,4 2 2,3,4

ˆ ˆ
2

2 4 1b b b ,
3 3 3

n
n n n n n n n n

q
n

n
n n n n n n n n n n n n n

n n n

im µ µ µ µ
µ µ µ µρ η σ η η σ η ξ σ ξ ξ σ ξ

ξ ξ ξ ξ η η

=

=

=
+ +

= = =

= + − ∂ + ∂ − ∂ + ∂

 + − − + + + + + + +

 


 



  

∑

∑ ∑ ∑



      †

   (3.64) 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 3 1 2 3 3 2 3 3 3 3
1

†1 1 1 1 1 1 1 1
2 1 1 1 1

†2 1 2 1 2 1 1 1
3 1 1 1 1

w w w w w w ;

ˆ ˆ ;

ˆ ˆ ;

n n n n n n n n n n n n n

n n n n n n n n n
n n n n

n n n n n n n n n
n n n n

i

h h h h

i h h h h

η η η η η η η η η η η η

ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η η η

+ + + + + +

+ + + +
− − − −

+ + + +
− − − −

= − + − − + −

 = + − −  
 = − + − +  







† † † †† †

† † † †

† †
†

†

†

†

( ) ( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

3 1 3 1 3 1 3 1
4 1 1 1 1

† †3 3 3 31 3 1 1 3 1 1 3 1 1 3 1
5 1 1 1 1

†3 3 32 3 1 2 3 1 2
6 1 1 1

ˆ ˆ ;

ˆ ˆ ;

ˆ ˆ

n n n n n n n n n
n n n n

n n n nn n n n n
n n n n

n n nn n n
n n n

h h h h

h h h h

i h h h

ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η

+ + + +
− − − −

+ + + ++ + + + + + + +
− − − −

+ + ++ + + +
− − −

 = − − +  
 = + − −  

= − + −







† †

† † † †

†

† †

† † ( ) ( )( )
( ) ( ) ( ) ( )

†33 1 1 3 1
1

3 33 3 3 1 3 3 1 3 3 3 1 3 3 1
7 1 1 1 1

ˆ ˆ .

;nn n
n

n nn n n n n n n
n n n n

h

h h h h

η η

ξ ξ ξ ξ η η η η

++ + + +
−

+ ++ + + + + + + + + +
− − − −

 +  
 = − − +  


† †

†

† †

       (3.65) 

We can derive from this Lagrangian density the wave equations: 

2 1 1 1 1 2 2 2 2
5 1 3 5 1 4

5 5 6 6 7 7 5 5 6 6 7 7
5 1 5 1 5 1 4 4 4

ˆ ˆ 0, 2,3, 4.
ˆ ˆ ˆ ˆ ˆˆ

.

n n
R

n n nn n nn n n n n n n n
R n

n n n n n n

iDR m n

d L s R s L s R s L

s R s R s R s L s L s L

ρχ

ρ χ σ σ

σ σ σ

+ + + + + + + +

− + = =

= − + + +

+ + + + + +

                (3.66) 

3 3

2 3 3 3 3 1 3 1 3 3 1 3 1 3 23 3 2 3 2 3 3 2
3 5 1 3 5 1 4

3 2 2 3 3 3 3 4 4 3 2 2 3 3 3 3 4 4
5 1 5 1 5 1 3 3 3

0, 2,3, 4.

ˆ ˆ ˆ ˆ ˆ ˆ .

n n
R

n n n n n n n n n n n n n n
R n

n n n n n n

iDR m n

d L s R s L s R s L

s R s R s R s L s L s L

ρχ

ρ χ σ σ

σ σ σ

+ +

+ + + + + + + + + + + + + + + + + + + + + +
+

+ + + + + +

− + = =

= − + + +

− − − + + +

�

       (3.67) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

* * * *2 * 1 1 1 1 2 2 2 2
2 1 4 2 1 3

* * * * * *5 5 6 6 7 7 5 5 6 6 7 7
2 1 2 1 2 1 3 3 3

ˆ 0, 2,3, 4.

.

n n
L

n n n n n n n n n n n n n n
L n

n n n n n n

iDL m n

d R s L s R s L s R

s L s L s L s R s R s R

ρχ

ρ χ σ σ

σ σ σ

+ + + + + + + +

− + = =

= + + − +

− − − + + +� � � � � �

         (3.68) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 3

* * * *2 3 * 3 3 3 1 3 1 3 3 1 3 1 3 2 3 3 2 3 2 3 3 2
3 2 1 4 2 1 3

* * * * * *3 2 2 3 3 3 3 4 4 3 2 2 3 3 3 3 4 4
2 1 2 1 2 1 4 4 4

0, 2,3, 4.

.

n n
L

n n n n n n n n n n n n n n
L n

n n n n n n

iDL m n

d R s L s R s L s R

s L s L s L s R s R s R

ρχ

ρ χ σ σ

σ σ σ

+ +

+ + + + + + + + + + + + + + + + + + + + + +
+

+ + + + + +

− + = =

= + + − +

+ + + + + +

� �

� � � � ��   (3.69) 

To get the Lagrangian density from these wave equations we multiply (3.66) on the left by , 2,3, 4nR n =�  
and (3.67) by 3 , 2,3, 4.nR n+ =  We let: 

† ˆ ; ,;jk k j jk jk kj jk jk kj
R RR D R R d iR iRµ µ µ µ µ µ µ µξ σ ξ= = + = − +                    (3.70) 

and we get: 

� �3 3 3 33 31 1ˆ ˆb 2 b ; b 2 b , , 2,3, 4.
2 2

n k n k n k n kR R R R n kµ µ
µ µ

σ σξ σ ξ ξ σ ξ+ + + ++ +
= = =� �† †            (3.71) 

Then (3.66) gives: 

( ) ( ) ( )

( )

1 2 1 1 2 2 3 2
1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 22 1 1 2 2 5 6 7 5 6 7 3
5 3 5 4 5 5 5 4 4 4

20 b
3

1 .
2

n n n n n n n n
R R R n n n n n n R

n n n n n n n n n n n n n n
n

i D D h ih R h ih R h h D

m d s s s s s s s s s s

µ µ µ µ µ
µ µ µ µ µ µ µ µδ

σ
ρ

+ +
− − + + − +

+ + + +

= − ∂ + + + + − + −






+

+ + + + + + + + + + +
  (3.72) 

Like in the lepton case, the particular form of this wave equation allows us to get an equivalent system with 
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only two numeric equations: 

( ) ( )

( )
3 2 1 1 2 1 1 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 22 1 1 2 2 5 6 7 5 6 7
5 3 5 4 5 5 5 4 4 4

2 10 b
3 2

| .

n n n n n n n n n n n
R R n n R n R n R n R n R

n n n n n n n n n n n n n n
n

D h h D h D h d h D h d

m d s s s s s s s s s s

µ µ µ µ µ µ
µ µ µ µ µ µ µδ

ρ

+ + + +
− + − − + +

+ + + +

= + + − + − + −

+ + + + + + + + + + +
    (3.73) 

1 1 2 1 1 2 2 2
1 1 1 1 .n n n n n n n n n

R n R n R n R n RD h d h D h d h Dµ µ µ µ µ
µ µ µ µ µ

+ + + +
− − + +∂ = + + −                    (3.74) 

By adding and using qp pqd d= −  we get: 

( )2 3 4 0.R R RD D Dµ µ µ
µ +∂ =+                                 (3.75) 

Only the sum of the three currents generated by the three colors of the d quark is a conservative space-time 
vector. Similarly for the u quark, with colour states 3 , 2,3, 4,n nφ + =�  we get: 

( )
( ) ( )

(

3 3 3 1 2 3 1 3
1 1

1 2 3 2 3 3 2 3
1 1 1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 3
3 5 3 5 4

2 2 2 2 23 2 3 3 3 4 3 2 3 3
5 5 5 3 3 3

40 b
3

n n n n n
R R R n n

n n n
n n n n R

n n n n n n n n
n

n n n n n

i D D h ih R

h ih R h h D

m d s s s s

s s s s s s

µ µ µ
µ µ µ µ

µ µ
µ µ µ µ

δ

ρ

+ + + + + +
− −

+ + + +
+ + − +

+ + + + + + + + + + + +
+

+ + + + +

= − ∂ − + +

+ − + −

+ + + + +

+ + + + + + )23 4 31 .
2

n σ+ +


               (3.76) 

Next the particular form of this wave equation allows us to get an equivalent system with only two numeric 
equations: 

( )

(
)

3 3 3 2 3
1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 3
3 5 3 5 4

2 2 2 2 2 23 2 3 3 3 4 3 2 3 3 3 4
5 5 5 3 3 3

1 3 1 3 2 1 1 3 2 3
1 1 1 1

40 b
3

1
2

n n n
R R n n R

n n n n n n n n
n

n n n n n n

n n n n n n
n R n R n R n

D h h D

m d s s s s

s s s s s s

h D h d h D h

µ µ
µ µ µ

µ µ µ
µ µ µ µ

δ

ρ

+ + +
− +

+ + + + + + + + + + + +
+

+ + + + + +

+ + + + + + +
− − + +

= − + −

+ + + + +

+ + + + + +

+ − + −( )2 3 2 3 .n n
Rd µ+ + +

              (3.77) 

3 1 3 1 3 2 3 1 3 1 3 2 3 2 3 2 3
1 1 1 1 .n n n n n n n n n

R n R n R n R n RD h d h D h d h Dµ µ µ µ µ
µ µ µ µ µ

+ + + + + + + + + + + + +
− − + +∂ = + + −             (3.78) 

And we also get 

( )5 6 7 0.R R RD D Dµ µ µ
µ +∂ =+                                 (3.79) 

For the left waves, we multiply (3.68) on the left by , 2,3, 4nL n =  or (3.69) by 3̂ , 2,3, 4nL n+ =  and we get, 
with: 

3 3 3; ; ,n n n n n n pq p q
L LD L L D L L L µ µη σ η+ + += = =� � †                        (3.80) 

( ) ( )

( ) ( ) ( )

(
)

† 1 2 3

1 2 1 1 2 2 3 3
1 1 1 1 1 1

2 2 2 22 1 1 2 2
2 4 2 3

2 2 2 2 2 25 6 7 5 6 7 3
2 2 2 3 3 3

b0 2 w 2 w w
3

2 2

1 .
2

n n n n n
L

n n n n n
n n n n n n L

n n n n n n n n
n

n n n n n n

i D i L

h ih L h ih L h h D

m d s s s s

s s s s s s

µ µ

µ
µ

µ µ µ

µ µ µ

η η

ρ
σ

+

+ +
− − + + − +

+ + + +

 = − ∇ + − + − + 
 

−



+ − − − −

+ + + + +

+




+ + + + + + 

             (3.81) 
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Here also this wave equation is equivalent to a system of only two numeric equations: 

( ) ( )

( ) (
)

3 3 1 3 2 3
1 1

221 1 2 1 1 2 2 2 1
1 1 1 1 2

2 2 2 2 2 2 2 2 21 2 2 5 6 7 5 6 7
4 2 3 2 2 2 3 3 3

b0 w w w
3

.

w

n n n n n n n
L L n n L L L

n n n n n n n n n n
n L n L n L n L n

n n n n n n n n n n n n

n
L

D h h D D d

mh D h d h D h d d s

s s s s s s s s s

D

µ µ µ µ
µ µµ

µ

µ µ µ µ µ µ µ µ

µ
µ

δ

ρ

+ +
− +

+ + + + +
− − + +

+ + +

 = + − + − − − + 
 

− + − + + +

+ + + + + + + + +

∂ = 1 3 2 3 1 1 2 1 1 2 2 2
1 1 1 1w .n n n n n n n n n n n n

L L n L n L n L n Ld D h d h D h d h Dµ µ µ µ µ µ µ µ µ µ
µ µ

+ + + + + +
− − + +− + − + +

         (3.82) 

Finally for the left waves of the u quark we have: 

( ) ( )

( ) ( ) ( )

(

3 3 3 1 2 3

1 2 3 3 1 1 2 3 3 2 3 3 3
1 1 1 1 1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 32
3 2 4 2 3

2

2 23 2 3 3 3
2 2 2

b0 2 w 2 w w
3

2 2

n n n n n
L

n n n n n
n n n n n n L

n n n n n n n n
n

n n

i D i L

h ih L h ih L h h D

m d s s s s

s s s

µ µ

µ
µ

µ µ µ

µ µ µ

η η

ρ

+ + + +

+ + + + + + +
− − + + − +

+ + + + + + + + + + + +
+

+ + +

 = − ∇ − + − − 
 

− + − − − −

+ + + + +

+ +



+




†

)2 2 2 24 3 2 3 3 3 4 3
4 4 4

1
2

n n n ns s s σ+ + + 


+
+ + +

          (3.83) 

Here also this wave equation is equivalent to a system of only two numeric equations: 

( ) ( )

( )

(

3 3 3 3 3 1 3 2 3
1 1

1 3 3 1 2 3 3 1 1 3 3 2 2 3 3 2
1 1 1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 3
3 2 4 2 3

3
2

b0 w w w
3

n n n n n n n
L L n n L L L

n n n n n n n n
n L n L n L n L

n n n n n n n n
n

n

D h h D D d

h D h d h D h d

m d s s s s

s

µ µ µ µ
µ µµ

µ

µ µ µ µ µ µ µ µ

δ

ρ

+ + + + +
− +

+ + + + + + + + + + + +
− − + +

+ + + + + + + + + + + +
+

+

 = − + − − − − 
 

− + − +

+ + + + +

+ )2 2 2 2 2 22 3 3 3 4 3 2 3 3 3 4
2 2 4 4 4

3 1 3 2 3 1 1 2 1 1 3 3 2 2 3 3 2
1 1 1 1

| .

w w .

n n n n n

n n n n n n n n n n n n n
L L L n L n L n L n L

s s s s s

D d D h d h D h d h Dµ µ µ µ µ µ µ µ µ µ µ
µ µ µ

+ + + + +

+ + + + + + + + + + +
− − + +

+ + + + +

∂ = − − + − + +

     (3.84) 

For the left waves of quarks only one sum gives a conservative space-time vector, because the weak gauge 
links the waves of the u and d quarks: 

7

2
0.

n
n
L

n
D µ

µ

=

=

 ∂ = 
 
∑                                      (3.85) 

This means that a conservative probability current does not exist for an isolated coloured quark, and this is 
well known, since it is impossible to observe such isolated states. 

The Lagrangian density 2 q  is the sum on 2,3, 4  of the sum of Equations (3.73), (3.77), (3.82) and (3.84). 
All mass terms are gotten twice and the sum of all squares is exactly 22ρ . The Lagrangian density for all ob-
jects of the first generation is the sum l q= +   . Since 2ρ  is the sum of the lepton part and the quark part, 
it is sufficient to add the 16 equations, 4 from the lepton case, 12 from the quark case, to get the simplification 
by 2ρ  in the mass term. This achieves the general proof of the double link between wave equations and La-
grangian density. 

3.5. Lessons of This Calculation 
The previous calculation proves that the use of 1,3Cl  and 1,5Cl  algebras is unnecessary. The 3Cl  algebra is 
then the unique framework allowing us to describe all interactions of quantum physics, if we use also this 
framework to describe gravitation. In this framework we are also able to establish the double link between wave 
equations and Lagrangian density. The existence of a Lagrangian principle is then compulsory; it is not the con-
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sequence of a meta-physical prescription but a mere consequence of the physical laws of quantum physics. The 
necessity of a physical reason for the Lagrangian formalism was explored by L. de Broglie, his idea was the sta-
tionary action of the particle as a limit case of the growing entropy in thermodynamics [49]. We may now con-
sider the quantum wave equations themselves as a necessary consequence of the geometry of the space-time: the 
form of the mass term results from the constraints of the invariance under *

3Cl  and from the gauge group which 
is the greatest possible group compatible with the 3Cl  algebra. 

The existence of the double link has other consequences that we shall develop in the second part of this work 
on the boson part of the SM: only the fermion wave is linked to a Lagrangian density which is made of the wave 
equations and is then necessary. The dynamics of the boson part must then be a consequence of the dynamics of 
the fermion wave. The SM considers the dynamics of boson waves as a consequence of the Lagrangian density, 
but the relations between potentials and fields are not deduced, they are postulated independently of the laws 
giving the dynamics of the fields. 

We previously got this double link, first in the wave of the electron [33], next for electro-weak and strong in-
teractions [25] [26], but we did not see the reduction of the number of the numeric equations. The reason was 
the rebuilding of the wave equation on the Dirac form from the Lagrangian density, the 1φ  wave of the electron 
incorporating both left and right waves, while the Lagrangian density separates the left and right parts of the 
wave. It is very easy, in this rebuilding, to use the main automorphism ˆz z�  equivalent to the P transforma-
tion of quantum physics. But this transformation is not a symmetry of quantum physics, because it is not a 
symmetry of weak interactions. All our wave equations have a ( )31 2σ+  factor which becomes ( )31 2σ−  
when we use the main automorphism, losing the possibility of factorization. 

Moreover the 16 equations containing RDµ
µ∂  and LDµ

µ∂  are consequence of the Lagrangian formalism 
which is a consequence of the 16 other equations. This was first seen by Boudet [50] in the frame of the linear 
Dirac theory of the electron. Our study proves that it is general: the numeric equations equivalent to the wave 
equations of the “matter” (spinor waves) may be split into two parts: a dynamical part containing rotational-like 
terms, and a conservative part containing divergence-like terms, and the conservative part is a consequence of 
the dynamical equations. 

The building of the wave equations from the Lagrangian density uses ( )31 2σ+  but this process could also 
use ( )11 2σ+  or ( )21 2σ+ . This may be the origin of the existence of three and only three generations of 
fundamental fermions with same dynamics.  

Finally the synthesis of all interactions in a unified frame is the simple question: how these dynamical quan-
tum equations are linked to GR? 

4. Inertia and Gravitation 
In [26] Ch.9 we considered an element M not restricted to be constant in space-time. In the vicinity of a point x 
where ( )0 1M =  we use: 

( )

( )

( )

( )

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 b
2

1 b
2

ˆ 1 b
2

1 b ,
2

dxM p f l a h i g i b i i

dxM p f l a h i g i b i i

dxM p f l a h i g i b i i

dxM p f l a h i g i b i i

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

= + + + + + + + +

= + + + + − − − −

= + − − − + + + −

= + − − − − − − +

�
             (4.1) 

where b  is the chiral potential 1b 2g B= . We get 

( ) ( ) ( ) ( )

( ) ( )

( )

1

1 1
1 2 3 1 2 3

1
1 2 3 1 2 3

det 1 b ; det 1 b ;

det 1 b ,
2

ˆ 1 b .
2

MM M dx p i M dx p i

dxM M M p f l a h i g i b i i

dxM p f l a h i g i b i i

µ µ
µ µ µ µ

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

σ σ σ σ σ σ

σ σ σ σ σ σ

−

− −

−

= = + + = − +

= = + − + + + + + + −

= + − + + + − − − +

       (4.2) 
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The dilation D defined from M in (2.10) gives: 

( )
( )
( )
( )

0 0 0 1 2 3

1 1 0 1 2 3

2 2 0 1 2 3

3 3 0 1 2 3

x x p x f x l x a x dx

x x f x p x b x g x dx

x x l x b x p x h x dx

x x a x g x h x p x dx

µ
µ µ µ µ

µ
µ µ µ µ

µ
µ µ µ µ

µ
µ µ µ µ

′ = + + + +

′ = + + + −

′ = + − + +

′ = + + − +

                        (4.3) 

Christoffel’s symbols α
βγΓ  being defined as 

,x x x dxα α α β γ
βγ′ = + Γ                                  (4.4) 

we then get 
0 1 2 3
0 1 2 3

1 0 2 0 3 0
0 1 0 2 0 3

2 3 3 1 1 2
3 2 1 3 2 1

; ;

; ;

p

f l a

h g b

µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

Γ = Γ = Γ = Γ =

Γ = Γ = Γ = Γ = Γ = Γ =

Γ = −Γ = Γ = −Γ = Γ = −Γ =

                   (4.5) 

Since D is a dilation, product in any order of a Lorentz transformation and an homothety, the Christoffel’s 
symbols have this particular form and we get not 64 but only 28 4 7= ×  functions: the four bµ  present in 
(4.1) are not in the geometry, because the kernel of the group homomorphism M D�  is the ( )1U  group 
generated by i [23] [47]. Since the Christoffel’s symbols are not symmetric, a torsion exists, like in any geome-
try able to account for spin 1/2. Vectors transforming as (4.4) are the contravariant ones. Now for covariant 
vectors we have 

ˆ ,M Mµ µ
µ µσ σ ′∇ = ∂ = ∂                                 (4.6) 

with the same µσ . This is an important difference with all preceding attempts, using always variable µγ . This 
gives 

( )1 1ˆ .M M dxν ν ν µ ρ
ν ν ν νµ ρσ σ σ− −′ ′∇ = ∂ = ∂ = ∂ − Γ ∂                      (4.7) 

Therefore we get for covariant vectors the usual transformation: 

.dxµ ρ
ν ν νµ ρ′∂ = ∂ − Γ ∂                                   (4.8) 

This relation allows the covariant derivative to be commutative with contractions. It leads the covariant deriv-
ative back to partial derivative for scalars. The connection (4.5) is new, because all preceding attempts have 
used variable µγ , while we use constant µσ . The relativistic transformation of the Dirac ψ  wave uses a  

4 4×  matrix 
0
ˆ0

M
N

M
 

=   
 

 and transforms ( )xψ  into ( ) ( )x N xψ ψ′ ′ = , the Dirac equation satisfies, if  

( ) ( ) ( )1det 1: 0 ,M iqA im N iqA imµ µ
µ µ µ µγ ψ γ ψ−  ′ ′ ′= = ∂ + +  +  + = ∂  and we may remark that the µγ  ma-  

trices are not changed in the frame of x′ . Then why could they change as soon as the theory uses curvilinear 
coordinates? Actually the first Dirac theory used the transformation (2.10) and constant matrices, as soon as 
1928. 

A non vanishing torsion was used previously by A. Einstein [4] to unify gravitation and electromagnetism. 
Since his attempt was studied at the very early times of quantum mechanics he evidently did not start from the 
Dirac wave, which was invented 3 years later. We next get 

( ) �( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

1 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ   

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .

ˆ ˆD ,

M M M M M M M M M

M M M M M M

µ µ
µ µ µ

µ µ µ
µ µ µ

φ φ φ σ φ φ σ φ φ

φσ φ φσ φ φσ φ φ φ φ φ

φ φ φ φ

− − − −

− − −

 ′ ′ ′∇ = ∂ = ∂ + ∂ 
 = ∂ + ∂ = − ∂ + ∇ = ∇ − ∇ 

′ ′ ′∇ =

 
       (4.9) 

with 
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( ) ( )1
1 2 3 1 2 3

1ˆ ˆD b .
2

M M p f l a h i g i b i iµ
µ µ µ µ µ µ µ µ µσ σ σ σ σ σ σ−  = ∇ − ∇ = ∂ + − − − + + + −  

     (4.10) 

This introduces 8 space-time vectors that we name “potentials of inertia”: 

( )

0 1 2 3
0 0 0 0

2 3 1
3 1 2

1 2 3 1 2 3

; ; ;

; ; b b

1D .
2

;

; ;

b

p p f f l l a a

h h g g b b

p f l a hi gi bi i

µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ
µ µ µ µ µ µ µ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ

= = Γ = = Γ = = Γ = = Γ

= = Γ = = Γ = = Γ =

= ∇ + − − − + + + −

         (4.11) 

In space algebra we need also 

( ) ( )1
1 2 3 1 2 3

ˆ ˆD ,
1D b .
2

M M p f l a i h i g i b i

φ φ φ φ

σ σ σ σ σ σ−

′ ′ ′∇ =

= ∇ − ∇ = ∇ + − − − + + + +

� �

� � � �
           (4.12) 

Now we look at the simple case (negligible gravitation) where all terms , , , , , ,p f l a h g bµ µ µ µ µ µ µ  are zero, but 
not bµ . We then get simply: 

0; ; D b; D b.
2 2
i ix xα µ µ

βγ ′Γ = = = ∇ − = ∇ +� �                         (4.13) 

Without the neutrino and quarks wave, we have 8 8 3 1̂ 0R L W L= = =  and 1 eia βρ= , where β  is the Yvon- 
Takabayasi angle. We then get 

�1 1 1
1

1 1 * 1
1

ˆ ˆ0 2 b ,

ˆ ˆ0 b .

mR i R i a L

mL i L i a R

ρ

ρ

= ∇ + +

= ∇ + +
                               (4.14) 

Using the main automorphism on the first Equation (4.14) we get 

1 1 * 1
1

ˆ ˆ2 b 0.
ρ

∇ − − =
mR i R i a L                                (4.15) 

The wave equation of the electron alone is then equivalent to the system: 
1 1 1

1 1 1

ˆ ˆ2 b e ,
ˆ ˆb e .

i

i

R i R im L

L i L im R

β

β

−

−

∇ = +

∇ = − −
                                (4.16) 

This system reads: 

1 1 1 1

1 1 1 1

3ˆ ˆ ˆb b e ,
2 2

3ˆ ˆ ˆb b e .
2 2

i

i

i iR R R im L

i iL L L im R

β

β

−

−

∇ = + +

∇ = − −
                            (4.17) 

If we have: 

1
3 3 b,
4 2

qA g B= =                                   (4.18) 

using 
1 1 1 1 1 1

3 3 12 3
ˆ ˆ ˆ; ; ,R L L R iφ σ φ σ σ σ= − = − =                         (4.19) 

we get: 

1 1 1
12 12

1 1 1
21

1 1 1 1
21

ˆ ˆ0 b ,
2

ˆ ˆ0 D ,
ˆ ˆ0 D .

i

i

i qA me

qA me

qA m

β

β

φ φ σ φ σ

φ σ φ φ

φ φ σ φ φ ρ

−

−

 = ∇ − + + 
 

= + +

= + +

                        (4.20) 
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which is our wave Equation (2.9) of the electron alone, with the only change of ∇  into D . The complication 
of the two parts of the electron wave with different eigenvalues of the weak hypercharge simply comes from the 
strange fact that the chiral potential b  is both a gauge potential and a potential of inertia. The introduction of 
the inertial potential b  into the Dirac equation gives the weak hypercharge. This means that the Dirac wave is 
yet a unitary electromagnetic-gravitational wave.  

Now we consider the neutrino wave where 8φ�  replaces 8φ . This means that, when , 1, 2,3, 4n nφ =  sees 
the Clifford algebra of space with the basis ( )1 2 3, ,σ σ σ  as a direct oriented basis, , 5,6,7,8n nφ =  sees the 
same algebra reversed, or with the same basis ( )1 2 3, ,σ σ σ  as an inverse basis. These waves satisfy: 

( ) ( )ˆ ˆ; D ; D b.
2

n n iMφ φ φ φ φ φ′ ′ ′ ′= ∇ = ∇ = ∇ = −� � �                      (4.21) 

Without quark and electron waves, we have 1 1 3 8 0R L W L= = =  and 6 eia βρ= , we then get 
8 8

8 8 8

0 e ,

0 b e .

i

i

R im L
L i L im R

β

β−

= ∇ +

= ∇ + +

�

� �
                              (4.22) 

Using the main automorphism on the first Equation (4.22) we get the system: 
8 8

8 8 8

e ,

b e .

i

i

R im L
L i L im R

β

β

−

−

∇ =

∇ = − −

� �

� �
                              (4.23) 

This gives: 

8 8

8 8 8

D b e ,
2

D b b e ,
2

i

i

i R im L

i L i L im R

β

β

−

−

 − = 
 
 − = − − 
 

� �

� �
                          (4.24) 

Adding we get: 

( )

8 8 8
3 3

8 8 8
12

b0 D e ,
2

bˆ ˆ0 D e ,
2

i

i

i m i

m

β

β

φ φ σ φ σ

σ φ φ φ

−= + +

= + +

��
                           (4.25) 

which is a Dirac-like wave equation in inverse order. Next if we consider the cd  wave alone we have n
dcφ φ=  

while if we consider the cu  wave alone we have 3 n
ucφ φ += �  and we get: 

�

�3 3 3 3 3 3

2ˆ ˆ ˆ ˆ0 b e 0 b e ,
3 3
40 b e 0 b e

;

.
3 3

;

n n i n n n i n

n n i n n n i n

i iR R im L L L im R

i iR R im L L L im R

β β

β β

−

+ + + + + − +

= ∇ + + = ∇ − +

= ∇ − + = ∇ − +� � � �
             (4.26) 

This gives: 

3 3 3 3

3 3 3 3

ˆ ˆ ˆ0 b b e ,
2 6

ˆ ˆ ˆ0 b b e ,
2 6

50 b b e ,
2 6

50 b b e .
2 6

n n n i n

n n n i n

n n n i n

n n n i n

i iR R R im L

i iL L L im R

i iR R R im L

i iL L L im R

β

β

β

β

−

−

+ + + − +

+ + + − +

= ∇ − − −

= ∇ − + +

= ∇ + + −

= ∇ + − +

� �

� �

                      (4.27) 

And the wave equations become: 

( )
( )

21

3 3 3 3
12

bˆ ˆ0 D ,
6
5ˆ ˆ0 D b .
6

n n n n

n n n n

m

m

φ φ σ φ φ ρ

σ φ φ φ φ ρ+ + + +

= + +

= − +
                        (4.28) 



C. Daviau et al. 
 

 
1588 

which also are Dirac-like wave equations. 
Since a mass term is present in the wave equations we are able to study in an unified way quantum behaviour 

and inertia-gravitation. In a rotating frame [51] the limit speed is not equal to c but varies. The limit speed be-
comes ( ) 01 , ,v c a m m m c a cTπ= + = =�  where T is the period of the rotation of the frame. We also have 

( )01 2v c ν ν= +  where 1 Tν =  is the frequency of rotation of the frame and 0ν  is the frequency of the 
wave. Therefore this effect is very small. 

The inclusion of inertia necessitates the use of two forms of differential operator, acting on the right or on the 
left side. This unified behaviour links the complicated operators of the electro-weak gauge to the unique electric 
gauge. The SM is not only able to incorporate inertia and gravitation. This is already realized since 1928 in the 
Dirac theory. The gravitation is not a very little force, it has the same strength as electromagnetism, but this is 
usually not obvious, because the proper masses of quantum physics are very small in comparison with the 
Planck mass. 

5. Conclusions 
All waves of the fermion part of the SM may be described as functions of space-time in the Clifford algebra of 
space. Contrary to the common expectation, the algebra of space is the framework of the unification of all inte-
ractions, not the algebra of space-time. The global wave is a function of space-time in a 64-dimensional linear 
space isomorphic to 8

3Cl , or to the space of all linear applications (called operators in the SM) from 3Cl  into 
3Cl . In this space multiplications by the left and multiplication by the right place play the same role. Conse-

quently, 32 parameters concern waves similar to the wave of the electron ruled by a Dirac equation. 32 parame-
ters are those of waves similar to the wave of the neutrino, with a reverse Dirac equation. This global wave is 
obtained also as eight waves which are functions ( ) , 1, ,8nx x nφ =� �  of space-time into 3Cl . 

The wave equations result from Lagrange equations calculated from a Lagrangian density and this Lagrangian 
density is exactly the sum of the real part of these wave equations. This gives both the reason and the limit of the 
Lagrangian physics. This limit comes from the fact that only the fermion part of the SM allows us to get a 
double link between wave equations and Lagrangian density. 

The Lorentz group of the restricted relativity is extended to a greater group of invariance. This group has a 
geometric origin, since it is the *

3Cl  group of the invertible elements of the algebra constructed from the 3-di- 
mensional space. The invariance under this greater group rules all waves of quantum physics. This group has not 
only two kinds of non-equivalent representations, but four, all necessary for the waves. We must consider not 
only φ  waves but also φ�  waves. The use of the 3Cl  algebra seems paradoxical for a relativistic unified 
model. Nevertheless 3Cl  is the best framework since including both the space-time and the group of invariance 
of the quantum waves. The four kinds of representations of the *

3Cl  group are necessary used, and we must dis-
tinguish ˆ, ,M M M�  and M . Since x x= �  only two kinds of representations are used in space-time algebra. 
Then it is very difficult to account there for chirality and to include both weak interactions and gravitation. No- 
natural differential operator in space-time algebra includes the four ˆD, D, D�  and D  operators. In space-time 
algebra, the orientation of the global space-time is available, not the separate orientations of time and space 
needed in quantum physics. 

We previously studied several particular cases and we obtained several important results: the gauge inva-
riance is exact in the particular case where only the electron has a non-zero right wave [26]. In a second paper, 
we will study this gauge invariance in the general case. We explained in [46] how the additivity of the potential 
terms is equivalent to the Pauli principle. We have less free parameters in comparison with the SM using second 
quantification, because the study of the electron fixes the value of the Weinberg-Salam angle [45]. Consequently 
this fixes the values of the charges of quarks and antiquarks [46]. The proper masses are no more the fundamen-
tal quantities that the theory must account for. These fundamental quantities are actually the mρ  products and 
there is only one proper mass in each generation. 

Old questions may also receive a very different answer: the density of probability is in the non-relativistic 
quantum theory a fundamental quantity; it is the square of the modulus of the wave. This has survived in the Di-
rac theory, because the density of probability becomes 0J , the time component of the e eJ φ φ= �  conservative 
current, and because 2J J ρ⋅ = . This induces the confusion between 0J  and ρ . The generalization of the 
wave breaks this confusion: J is generalized as the contravariant sum of the 16 currents of the Weyl spinors, 
while 2ρ  is the sum of 72 relativistic invariant terms. The density of probability always exists (see [26] Chap-
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ter 9) and the wave is normalized in the stationary case, but this density has none metaphysical property ruling 
all physical laws. The normalization of the wave is only a consequence of the principle of equivalence between 
the inertial mass-energy (sum over the whole space of the density of energy of the wave) and the gravitational 
mass-energy of the particle (linked to the frequency of the de Broglie’s clock). 
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Abstract 
One of the biggest unsolved problems in physics is the particle masses of all elementary particles 
which cannot be calculated accurately and predicted theoretically. In this paper, the unsolved 
problem of the particle masses is solved by the accurate mass formulas which calculate accurately 
and predict theoretically the particle masses of all leptons, quarks, gauge bosons, the Higgs boson, 
and cosmic rays (the knees-ankles-toe) by using only five known constants: the number (seven) of 
the extra spatial dimensions in the eleven-dimensional membrane, the mass of electron, the 
masses of Z and W bosons, and the fine structure constant. The calculated masses are in excellent 
agreements with the observed masses. For examples, the calculated masses of muon, top quark, 
pion, neutron, and the Higgs boson are 105.55 MeV, 175.4 GeV, 139.54 MeV, 939.43 MeV, and 126 
GeV, respectively, in excellent agreements with the observed 105.65 MeV, 173.3 GeV, 139.57 MeV, 
939.27 MeV, and 126 GeV, respectively. The mass formulas also calculate accurately the masses of 
the new particle at 750 GeV from the LHC and the new light boson at 17 MeV. The theoretical base 
of the accurate mass formulas is the periodic table of elementary particles. As the periodic table of 
elements is derived from atomic orbitals, the periodic table of elementary particles is derived 
from the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbit-
als. All elementary particles including leptons, quarks, gauge bosons, the Higgs boson, and cosmic 
rays can be placed in the periodic table of elementary particles. The periodic table of elementary 
particles is based on the theory of everything as the computer simulation model of physical reality 
consisting of the mathematical computation, digital representation and selective retention com-
ponents. The computer simulation model of physical reality provides the seven principal mass 
dimensional orbitals and seven auxiliary mass dimensional orbitals for the periodic table of ele-
mentary particles. 
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The Periodic Table of Elementary Particles, Computer Simulation, Knees-Ankles-Toe,  
The Theory of Everything 

 
 

1. Introduction 
According to Johan Hansson, one of the ten biggest unsolved problems in physics [1] is the incalculable particle 
masses of leptons, quarks, gauge bosons, and the Higgs boson. The Standard Model of particle physics contains 
the particles masses of leptons, quarks, and gauge bosons which cannot be calculated or predicted theoretically. 
From a theoretical point of view, the particle mass is a total unsolved problem and they might as well have been 
random numbers drawn from a hat. The repetition of leptons and quarks with increasing masses has also re-
mained as unsolved problem. Max Jammer [2] concluded that nobody knows what particle masses really are. 
The mass parameters experimentally measured for elementary particles have no theoretical explanation what-
soever. From the vantage point of theory, the masses could just as well be a set of randomly generated numbers. 

This paper provides a solution to the unsolved problem of particle masses. In this paper, all elementary par-
ticles and cosmic rays (the knees-ankles-toe) can be calculated accurately and predicted theoretically by the ac-
curate mass formulas of leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays by using only five 
known constants: the number (seven) of the extra spatial dimensions in the eleven-dimensional membrane, the 
mass of electron, the masses of Z and W bosons, and the fine structure constant. The calculated masses are in 
excellent agreements with the observed masses. For examples, the calculated masses of muon, top quark, pion, 
neutron, and the Higgs boson are 105.55 MeV, 175.4 GeV, 139.54 MeV, 939.43 MeV, and 126 GeV, respec-
tively, in excellent agreements with the observed 105.65 MeV, 173.3 GeV, 139.57 MeV, 939.27 MeV, and 126 
GeV, respectively. The theoretical base of the accurate mass formulas is the periodic table of elementary par-
ticles [3]-[6]. As the periodic table of elements is derived from atomic orbitals, the periodic table of elementary 
particles is derived from the seven principal mass dimensional orbitals and seven auxiliary mass dimensional 
orbitals. All elementary particles including leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays can 
be placed in the periodic table of elementary particles.  

The periodic table of elementary particles is derived from the computer simulation model of physical reality 
[7] which is the theory of everything [8]. We are living in a computer simulation to simulate physical reality 
which has the same computer simulation process as virtual reality (computer-simulated reality). The computer 
simulation process involves the digital representation of data, the mathematical computation of the digitized data 
in geometric formation and transformation in space-time, and the selective retention of events in a narrative. 
Conventional physics cannot explain physical reality clearly, while computer-simulated physics can explain 
physical reality clearly by using the computer simulation process consisting of the digital representation com-
ponent, the mathematical computation component, and the selective retention component. The computer simula-
tion model of physical reality provides the seven principal mass dimensional orbitals and seven auxiliary mass 
dimensional orbitals for the periodic table of elementary particles. 

In Section 2, the periodic table of elementary particles is derived from the computer simulation of physical 
reality. Section 3 deals with the gauge boson mass formula and the cosmic ray mass formula. Section 4 explains 
the lepton mass formula and the quark mass formula. Section 5 describes the Higgs boson mass formula. 

2. The Periodic Table of Elementary Particles 
The periodic table of elementary particles is derived from the computer simulation model of physical reality 
consisting of the mathematical computation, digital representation, and selective retention components.  

2.1. The Mathematical Computation Component 
The geometry in the mathematic computation component for the computer simulation process is oscillating 
M-theory. M-theory with eleven-dimensional membrane is an extension of string theory with ten-dimensional 
string, in contrast to the observed 4D. In conventional M-theory, space-time dimensional number (D) is fixed. As 
a result, the observed 4D results from the compactization of the extra space dimensions in 11D M-theory, How-
ever, there is no experimental proof for compactized extra space dimensions, and there are numerous ways for 
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the compactization of the extra space dimensions [9]. As described before [7], the geometry for the mathematical 
computation is oscillating M-theory derived from oscillating membrane-string-particle whose space-time dimension 
number oscillates between 11D and 10D and between 10D and 4D dimension by dimension reversibly. There is no 
compactization. Matters in oscillating M-theory include 11D membrane (211) as membrane (denoted as 2 for 2 
space dimensions) in 11D, 10D string (110) as string (denoted as 1 for 1 space dimension) in 10D, and variable D 
particle (04 to 11) as particle (denoted as 0 for 0 space dimension) in 4D to 11D.  

As described previously [10], the QVSL (quantum varying speed of light) transformation transforms both space- 
time dimension number (D) and mass dimension number (d). In the QVSL transformation, the decrease in the speed 
of light leads to the decrease in space-time dimension number and the increase of mass in terms of increasing mass 
dimension number from 4 to 10, 

D 4
D ,c c α −=                                      (1a) 

( )( )2 D 42
0E M c α −= ⋅                                   (1b) 

( )( )2 d 4 2
0M cα −= ⋅ .                                  (1c) 

2
D D ,n

nc c α−=                                    (1d) 

2
0,D,d 0,D ,d ,n

n nM M α− +=                                 (1e) 

( ) ( )QVSLD,d D , dn n→ ±∓                               (1f) 

2
vacuum,D 0,D ,E E M c= −                                 (1g) 

where cD is the quantized varying speed of light in space-time dimension number, D, from 4 to 10; c is the ob-
served speed of light in the 4D space-time; α is the fine structure constant for electromagnetism, E is energy; M0 is 
rest mass; D is the space-time dimension number from 4 to 10; d is the mass dimension number from 4 to 10; n is 
an integer; and Evacuum = vacuum energy. For example, in the QVSL transformation, a particle with 10D4d is trans-
formed to a particle with 4D10d from Equation (1f). Calculated from Equation (1e), the rest mass of 4D10d is 1/α12 
≈ 13712 times of the mass of 10D4d. In terms of rest mass, 10D space-time has 4d with the lowest rest mass, and 
4D space-time has 10d with the highest rest mass. Rest mass decreases with increasing space-time dimension 
number. The decrease in rest mass means the increase in vacuum energy (Evacuum, D), so vacuum energy increases 
with increasing space-time dimension number. The vacuum energy of 4D particle is zero from Equation (1g). The 
mass dimension number is limited from 4 to 10, because 4D is the minimum space-time, and 11D membrane and 
10D string are equal in the speed of light, rest mass, and vacuum energy. Since the speed of light for >4D particle is 
greater than the speed of light for 4D particle, the observation of >4D superluminal particles by 4D particles vi-
olates casualty. Thus, >4D particles are hidden particles with respect to 4D particles. Particles with different 
space-time dimensions are transparent and oblivious to one another, and separate from one another if possible. 

In the digital representation component for the computer simulation process, data in physical reality are re- 
presented by digital representations. Both data and digital representations exist. For the digital representation 
component of physical reality, the three intrinsic data (properties) are rest mass-kinetic energy, electric charge, 
and spin which are represented by the digital space structure, the digital spin, and the digital electric charge, re-
spectively. 

2.2. Digital Space Structure 
The digital representations of rest mass and kinetic energy are 1 as attachment space for the space of matter and 0 
as detachment space for the zero-space of matter, respectively [7] [11]. In the digital space structure, attachment 
space attaches to matter permanently or reversibly. Detachment space detaches from the object at the speed of 
light. Attachment space relates to rest mass and reversible movement, while detachment space relates to irre-
versible kinetic energy. 

As shown previously [8], our universe is the dual asymmetrical positive-energy-negative-energy universe where the 
positive-energy universe on attachment space absorbed the interuniversal void on detachment space to result in the 
combination of attachment space and detachment space. The combination of n units of attachment space as 1 and n 
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units of detachment space as 0 brings about three different digital space structures: binary partition space, miscible 
space, or binary lattice space as below.  

( ) ( ) ( ) ( ) ( ) ( )combination1 0 1 0 , 1 0 , or 1 0

attachment space detachment space binary partition space, miscible space , binary lattice space
n n n n n n+ → +

  (2) 

Binary partition space, (1)n(0)n, consists of two separated continuous phases of multiple quantized units of at-
tachment space and detachment space. In miscible space, (1 + 0)n, attachment space is miscible to detachment 
space, and there is no separation of attachment space and detachment space. Binary lattice space, (1 0)n, consists 
of repetitive units of alternative attachment space and detachment space. Binary partition space, miscible space, 
and binary lattice space relate to quantum mechanics, special relativity, and force fields, respectively [7].  

Bounias and Krasnoholovets [12] propose that the reduction of dimension can be done by slicing dimension, such 
as slicing 3 space dimension object (block) into infinite units of 2 space dimension objects (sheets). As shown pre-
viously [8], the positive-energy 10D4d particle universe as our observable universe with high vacuum energy 
was transformed into the 4D10d universe with zero vacuum energy at once, resulting in the inflation. During the 
Big Bang following the inflation, the 10d (mass dimension) particle in attachment space denoted as 1 was sliced by 
detachment space denoted as 0. For example, the slicing of 10d particle into 4d particle is as follows.  

( )
10

slicing
10 4 4 4 ,d

d 5
1 1 0 1

10d particle 4d core particle binary lattice space

n
=

→ ∑                     (3) 

where 110 is 10d particle; 14 is 4d particle; d is the mass dimension number of the dimension to be sliced; n as 
the number of slices for each dimension; and (04 14)n is binary lattice space with repetitive units of alternative 4d 
attachment space and 4d detachment space. For 4d particle starting from 10d particle, the mass dimension num-
ber of the dimension to be sliced is from d = 5 to d = 10. Each mass dimension is sliced into infinite quantized 
units (n = ∞) of binary lattice space, (04 14)∞. For 4d particle, the 4d core particle is surrounded by 6 types (from 
d = 5 to d = 10) of infinite quantized units of binary lattice space. Such infinite quantized units of binary lattice 
space represent the infinite units (n = ∞) of separate virtual orbitals in a gauge force field, while the dimension 
to be sliced is “mass dimensional orbital” (DO), representing a type of gauge force field. In addition to the six 
DO’s for gauge force fields from d = 5 to d = 10, gravity appears as the seventh DO at d = 11. As a result, there 
are seven mass dimensional orbitals as in Figure 1. 

2.3. The Digital Spin 
The digital representations of the exclusive and the inclusive occupations of positions are 1/2 spin fermion and 
integer spin boson, respectively [7]. Fermions, such as electrons and protons, follow the Pauli exclusion prin-
ciple which excludes fermions of the same quantum-mechanical state from being in the same position. Bosons, 
such as photons or helium atoms, follow the Bose-Einstein statistics which allows bosons of the same quan-
tum-mechanical state being in the same position. As a result, the digital representations of the exclusive and the 
inclusive occupations of positions are 1/2 spin fermion and integer spin boson, respectively. The symmetry be-
tween fermion and boson is supersymmetry. Two supersymmetry transformations from boson to fermion and 
from fermion to boson yield a spatial translation. In physical reality, supersymmetry is varying supersymmetry 
[8]. In varying supersymmetry, the repetitive transformation between fermion and boson brings about a spatial 
translation and the transformation into the adjacent mass dimension number. Varying supersymmetry transfor-
mation is one of the two steps in transformation involving the oscillation between 10D particle and 4D particle. 
The transformation during the oscillation between 10D particle and 4D particle involves the stepwise two-step 
transformation consisting of the QVSL transformation and the varying supersymmetry transformation. The QVSL  
 

 
Figure 1. The seven mass dimensions as mass dimensional orbitals. 
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transformation involves the transformation of space-time dimension, D whose mass increases with decreasing D 
for the decrease in vacuum energy. The varying supersymmetry transformation involves the transformation of 
the mass dimension number, d whose mass decreases with decreasing d for the fractionalization of particle, as 
follows. 

( ) ( )
( )

QVSL

varyingsupersymmetry

stepwise two-step varying transformation

(1)   D, d D 1 , d 1

(2)   D, d D, d 1

←→ ±

←→ ±

∓                            (4) 

The repetitive stepwise two-step transformation between 10D4d and 4D4d as follows. 
10D4d 9D5d 9D4d 8D5d 4D5d 4D4d↔ ↔ ↔ ↔ ↔ ↔�                    (5) 

In this two-step transformation, the transformation from 10D4d to 9D5d involves the QVSL transformation as 
in Equation (1d). Calculated from Equation (1e), the mass of 9D5d is 1/α2 ≈ 1372 times of the mass of 10D4d. 
The transformation of 9D5d to 9D4d involves the varying supersymmetry transformation. In the normal super-
symmetry transformation, the repeated application of the fermion-boson supersymmetry transformation carries 
over a boson (or fermion) from one point to the same boson (or fermion) at another point at the same mass. In 
the varying supersymmetry transformation, the repeated application of the fermion-boson supersymmetry trans-
formation carries over a boson from one point to the boson at another point at different mass dimension number in 
the same space-time number. The repeated varying supersymmetry transformation carries over a boson Bd into a 
fermion Fd and a fermion Fd to a boson Bd−1, which can be expressed as follows 

d,F d,B d,B ,M M α=                                     (6a) 

d 1,B d,F d,F ,M M α− =                                    (6b) 

where Md, B and Md, F are the masses for a boson and a fermion, respectively; d is the mass dimension number; 
and αd, B or αd, F is the fine structure constant that is the ratio between the masses of a boson and its fermionic part-
ner. Assuming α’s are the same, it can be expressed as  

2
d,B d 1,B d 1M M α+ += .                                  (6c)  

2.4. The Digital Electric Charge 
As described before [13], the digital representations of the allowance and the disallowance of irreversible kinetic 
energy are integral electric charges and fractional electric charges, respectively. Individual integral charge with 
irreversible kinetic energy to cause irreversible movement is allowed, while individual fractional charge with ir-
reversible kinetic energy is disallowed. The disallowance of irreversible kinetic energy for individual fractional 
charge brings about the confinement of individual fractional charges to restrict the irreversible movement re-
sulted from kinetic energy. Collective fractional charges are confined by the short-distance confinement force 
field where the sum of the collective fractional charges is integer. As a result, fractional charges are confined 
and collective. The confinement force field includes gluons in QCD (quantum chromodynamics) for collective 
fractional charge quarks in hadrons and the magnetic flux quanta for collective fractional charge quasiparticles 
in the fractional quantum Hall effect (FQHE) [14]-[16]. 

In the periodic table of elementary particles, fractional charge quarks have their own seven mass dimensional 
orbitals as the seven auxiliary mass dimensional orbitals in addition to the seven principal mass dimensional or-
bitals for leptons as in Figure 2. 

2.5. The Selective Retention Component 
The selective retention component retains selectively events in a narrative. The retained events are unified by the 
common narrative. The narrative of physical reality is the four-stage evolution of our cyclic dual universe. The 
four force fields are unified by the four-stage evolution.  

Our dual universe is the globally reversible cyclic dual universe as shown in Figure 3 [7] for the evolution of 
our universe as described previously [7]. 

The four reversible stages in the globally reversible cyclic dual universe are: 1) the formation of the 11D  
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Figure 2. Leptons and quarks in the seven principal dimensional orbitals (solid lines) 
denoted by the principal dimensional orbital number d and the seven auxiliary dimen-
sional orbitals (dash-dotted lines) denoted by the auxiliary dimensional number a.                                                                                                                                              

 

 
Figure 3. The globally reversible cyclic dual universe.                                                                                               

 
membrane dual universe; 2) the formation of the 10D string dual universe; 3) the formation of the 10D particle 
dual universe; and 4) the formation of the asymmetrical dual universe. The pre-strong force (the prototype of 
observed strong force) and pre-gravity emerged in the stage 2. The pre-electromagnetism emerged in the stage 3, 
while the weak force emerged in the stage 4. The selective retention of the four force fields provides the four 
force fields (gauge bosons) for the four of the seven principal mass dimensional orbitals (Bd) as in Table 1. The 
other three of the seven principal mass dimensional orbitals are for the CP (right) nonconservation, the CP (left) 
nonconservation, and the weak (right) force. 

The periodic table of elementary particles for leptons, quarks, and gauge boson is in Table 2 with both the prin-
cipal mass dimensional orbital numbers and the auxiliary mass dimensional orbital numbers.  

3. The Gauge Boson Mass Formula and the Cosmic Ray Mass Formula 
The gauge boson mass formula is Equation (7) derived from Equation (6c) based on the digital spin structure, 

2
d 1,gaugeboson d,gaugeboson d 1M M α+ += .                               (7) 

Each dimension has its own αd, and all αd’s except α7 (αw) of the seventh dimension (weak interaction) are equal to 
α, the fine structure constant of electromagnetism. The lowest energy boson is the Coulombic field for electromag-
netism based on Equation (6b) and the second lowest boson energy is π1/2 (a spin 1 boson as a half of the spin 0 pion) 
with the mass of 70 MeV for the strong interaction. As described in Section 4, this boson B6 is used to construct 
gluon.  
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Table 1. The masses of the principal mass dimensional orbitals (gauge bosons) α = αe, d = mass dimensional orbital number.    

Bd Md GeV (calculated) Gauge boson Interaction 

B5 Meα 3.7 × 10−6 A = photon Electromagnetic 

B6 Me/α 7 × 10−2 π1/2 Strong 

B7 M6/αw
2 91.1876 (given) 0

LZ  weak (left) 

B8 M7/α2 1.71 × 106 XR CP (right) nonconservation 

B9 M8/α2 3.22 × 1010 XL CP (left) nonconservation 

B10 M9/α2 6.04 × 1014 0
RZ  weak (right) 

B11 M10/α2 1.13 × 1019 G Gravity 

 
Table 2. The periodic table of elementary particles d = principal mass dimensional orbital number, a = auxiliary mass dimension-
al orbital number.                                                                                               

d a = 0 1 2 1 2 3 4 5  

 Lepton   Quark     Boson 

5 νe        B5 = A 

6 e        B6 = π1/2 

7  νµ/µ ντ/τ d7/u7 s7 c7 b7 t7 B7 = 0
LZ  

8  0µ′  (hidden)  b8 (hidden) t8    B8 = XR 

9 F9        B9 = XL 

10 F10        B10 = 0
RZ  

11 F11        B11 gravity 

 

5,B 6,F eM M Mα α= = .                                   (8a) 

6 5 1 2

2
B B eM M M Mπα α= = =                               (8b) 

In Table 1, αw is not same as α because there is a mixing between electromagnetism and the weak interaction in 
the standard theory of the electroweak interaction, and sinθw is not equal to 1 where θw is the weak mixing angle 
[17]. As a result, αw instead of α is used to calculate 

7BM  from 
6BM  based on the gauge boson formula Equation 

(7). 
7BM  is the mass of weak Z boson MZ which is 91.1876 GeV. 

7 6

6

2
B Z B

B Z

w

w

M M M

M M

α

α

= =

=
                                   (9) 

The calculated value for αw is 0.02771. As described in the following paragraphs and Table 3, B8, F9 and B9 in 
Table 2 are observed in cosmic rays as the first knee, the second knee, and the toe, respectively, where the calculated 
masses are in good agreement with the observed masses [6]. The calculated energy for B11 is 1.13 × 1019 GeV in 
good agreement with the Planck mass, 1.22 × 1019 GeV for gravity. 

High-energy cosmic rays which have much higher energies than the energy of particles accelerated by the Large 
Hadron Collider provide the study of elementary particles beyond the capacity of particle accelerators. The cosmic 
ray mass formula is to the energy spectrum for the knees-ankles-toe of cosmic rays [6]. The energy spectrum from 
109 eV to 1020 eV appears to follow a single power law except few breaks at the knees-ankles-toe [18]. The power 
index increases at the first knee and the second knee, and decreases at the ankle. Above 4 × 1019 eV, the power index 
increases as the “toe”. The fine structure of the cosmic ray spectrum [19] shows that an ankle with decrease in power 
index is in between the first knee and the second knee, resulting in two knees, two ankles, and one toe. As explained 
previously [6], the knees-ankles-toe are explained by the very high-energy fermions and bosons in the periodic 
table of elementary particles. In the periodic table, some high-energy dimensional fermions (Fd where d = dimen-  
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Table 3. The calculated masses for dimensional bosons-fermions and the observed eV for the knees-ankles-toe. Bd = mass 
dimensional boson, Fd = mass dimensional fermion.                                                             

Bd, Fd calculated eV Calculation cosmic rays observed eV 

B8 1.7 × 1015  the first knee 3 × 1015 

the midpoint between B8 and F9 2 × 1016 Equation (11) the first ankle 2 × 1016 

F9 2.4 × 1017 
8BM α  the second knee 3 × 1017 

the midpoint between F9 and B9 2.8 × 1018 Equation (11) the second ankle 3 × 1018 

B9 3.2 × 1019 9FM α  the toe 4 × 1019 

F10 4.4 × 1021 
9BM α  beyond the GZK limit not observed 

 
sional orbital number from 5 to 11) and bosons (Bd) are involved in the knees-ankles-toe. At the knees and the 
toe, some parts of the energies from the energy sources of cosmic rays are spent to generate Fd and Bd, resulting 
in the increase of power index. The ankles are the the middle points (midpoints) between the adjacent dimen-
sional fermions and bosons. At a midpoint, the energy is too high to keep the thermally unstable high- energy 
dimensional particle, resulting in the decay and the decrease of power index. 

The cosmic ray mass formula is derived from Equations (6a) and (6b)  

d,F d,BM M α=                                       (10a) 

d 1,B d,FM M α− =                                     (10b) 

where Md,B and Md,F are the masses for a boson and a fermion, respectively; d is the mass dimension number from 8 
to 10; and αd,B or αd,F is the fine structure constant. The midpoint is expressed as follows. 

( ) ( )( )( )midpoint adjacent dimensional ferion adjacent dimensional bosonexp ln ln 2M M M= +              (11) 

The calculated masses of B8, the midpoint, F9, the midpoint, and B9, are 1.7 × 1015, 2 × 1016, 2.4 × 1017, 2.8 × 
1018, and 3.2 × 1019 eV, respectively, which are in good agreement with observed 3 × 1015, 2 × 1016, 3 × 1017, 3 × 
1018, and 4 × 1019 eV for the first knee, the first ankle, the second knee, the second ankle, and the toe, respective-
ly as in Table 3. 

The mass of F10 is 4.4 × 1021 eV beyond the GZK (Greisen-Zatsepin-Kuzmin) limit, which occurs at about 5 × 
1019 eV, as the maximum energy of cosmic ray particles that have traveled long distances (about 160 million 
light years), due to the theoretical energy losses of higher-energy ray particles and to scattering from photons in 
the cosmic microwave background. Therefore, F10 and above are not observed.  

4. The Lepton Mass Formula and the Quark Mass Formula 
The lepton mass formula and the quark mass formula are derived from the electric digital charge structure where 
the digital representations of the allowance and the disallowance of irreversible kinetic energy are integral elec-
tric charges and fractional electric charges, respectively [13]. The collectivity of fractional charges requires the 
attachment of energy as flux quanta to bind fractional charges. As a result, the integer-fraction transformation 
from integral charges to fractional charges involves the integer-fraction transformation to incorporate flux quan-
ta similar to the composite fermion theory for the FQHE [20] [21]. In the composite fermion model, the forma-
tion of composite fermion is through the attachment of an even number of magnetic flux quanta to electron, 
while the formation of composite boson is through the attachment of an odd number of magnetic flux quanta to 
electron. In the same way, the integer-fraction transformation from integral charges to fractional charges for 
quarks consists of the three steps: 1) the attachment of an even number of flux quanta to individual integral 
charge fermions to form individual integral charge composite fermions (Fc); 2) the attachment of an odd number 
of flux quanta to individual integral charge composite fermions to form transitional collective integral charge 
composite bosons (Bc); and 3) the conversion of flux quanta into the confinement force field to confine collec-
tive fractional charge composite quarks (Qc) converted from composite bosons as follows. 
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2 flux quanta 3 flux quanta
c c

QCD
c c

c c

individual e e individual F F

transitional collective B B
1 2collective 2 Q Q of and charge with 3 gluons individual e e
3 3

→ →

→

± ± +

             (12) 

where Fc, Bc, and Qc are the composite fermion the composite boson, and the composite quark, respectively. The 
first step of the integer-fraction transformation from electron to quark is the attachment of 2 flux quanta to indi-
vidual integral charge electrons to form individual composite fermions (Fc’s). The flux quanta (70.0252 MeV) 
are the flux quanta as proposed by Peter Cameron to calculate accurately the masses of pion, muon, and proton 
[22]. The quantum of 70.0252 MeV is also the bosonic mass quantum proposed by Malcolm H. MacGregor for a 
basic building block to calculate accurately the masses of hadrons [23]. According the periodic table of elemen-
tary particles, the flux quantum is B6 from Table 1. From Equation (6b), the relationship between B6 and elec-
tron (F5) is as follows.  

6 5B F e 70.0252 MeVM M Mα α= = =                              (13) 

where α is the fine structure constant for electromagnetism. The Fpc (the principal composite fermion) consists of two 
B6 as flux quanta.  

pc 6F B2 140.0505 MeVM M= =                                (14) 

The mass of pion (boson) is the mass of the principal composite fermion (Fpc) minus the mass of electron (fer-
mion) [22]. 

pcF e 139.5395 MeVM M Mπ = − =                               (15) 

which is in excellent agreement with the observed 139.5702 MeV. 
In the second step for the attachment of odd number of flux quanta, the odd number of flux quanta can be one 

flux quantum for one principal composite fermion or three flux quanta for three principal composite fermions, 
resulting in lepton or quark, respectively. For the formation of lepton, the second step is the attachment of one 
flux quantum to one individual integral charge principal composite fermion to form the transitional integral 
charge principal composite boson. In the second step, the principal composite boson for composite lepton is B6 + 
Fpc. In the third step, the principal composite boson is converted into two composite leptons (Lc) with the addi-
tion of electrons, resulting in muon as follows.  

pc pc 6 6 6 6B c F B B B Bfor L 2 3M M M M M M= + = + =                        (16a) 

c pc 6L e B e B
32 3 2 105.5491 MeV
2

e
e

MM M M M M M Mµ α
= = + = + = + =              (16b) 

which is in excellent agreement with the observed 105.6584 MeV. The muon mass formula in Equation (16b) is 
identical to the Barut lepton mass formula for muon [24]. Equation (16b) explains the origin of 3/2 which cannot 
be explained easily by Cameron, MacGregor, and Barut. Without binding the composite leptons together by the 
flux quanta, leptons have integral electric charges instead of fractional electric charges. 

The Barut lepton mass formula [24] is expressed as follows. 

4e
lepton e

0

3
2

n

a

MM M a
α =

= + ∑ ,                                    (17) 

where n = 0, 1, and 2 are for e, µ, and τ, respectively. The calculated mass of τ is 1786.2 MeV in good agreement with  

the observed mass as 1776.82 MeV. According to Barut, the second term, 4

0

n

a
a

=
∑  of the mass formula is for the Bohr-  

Sommerfeld quantization for a charge-dipole interaction in a circular orbit. The experimental proof of this di-
pole-interaction in a circular orbit is shown as the light boson at 17 MeV from the generation of pairs of electrons 
and positrons by firing protons at thin targets of lithium-7 [25] [26]. The light boson is the orbit o oe e  in the 
circular orbit. The masses of the bosons from orbit o oe e  are calculated as follows.  
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o o o

4
boson e e e e

1
2 2

n

a
M M M M a

=

= = = ∑                               (18) 

where the masses of the bosons for n = 1 and 2 are 2Me for ee  (electron-positron pair) and 34Me for the light boson, 
respectively. The calculated mass of the light boson is 17.374 MeV in excellent agreement with the observed mass as 
17 MeV [25]. As in Figure 2 and Table 2, νµ and ντ share the same orbitals with µ and τ, respectively. All neutrinos 
(νe, νµ and ντ) in the periodic table of elementary particles (Table 2) are nearly massless because of chiral symmetry 
(permanent left-handed). 

For the formation of quark, the second step is the attachment of 3 flux quanta (B6’s) to three individual 
integral charge principal composite fermions (Fpc’s) to form the transitional collective integral charge principal 
composite bosons (Bpc’s). The transitional principal composite bosons are derived from the combination of the 
three principal composite fermions (3 Fpc’s) with the three flux quanta (3 B6’s) which are connected and located 
at the same position in the same 3-Fpc energy level. One 3-Fpc energy level consists of the three connected Fpc 
sites with the connected three flux quanta (3 B6’s). The mass of the transitional principal composite bosons Bpc 
is as follows. 

pc pc 6 6 6 6B F B B B B e3 3 6 3 9 9 630.227 MeVM M M M M M M α= + = + = = =             (19) 

In the third step, 3 flux quanta (B6’s) are converted to 3-color gluons (red, green, and blue) in QCD. Each of 
the three Fpc sites in the energy level has ±1/3 charge. The fractional charges of quarks are the integer multiples 
of ±1/3e. One principal composite boson (Bpc) is converted into two composite quarks (fermions) in the same 
way as the conversion of one photon (boson) into two fermions (electron-positron). As a result, the principal 
composite quark (Qpc) has 1/2 mass of the principal composite boson (Bpc) in addition to the mass of 1/3 and 2/3 
electrons for the three Fc sites for different electric charges as follows. 

pc

pc

Be e e
Q

1 or 2 1 or 2 9 315.28 or 315.45 MeV
3 2 3 2

MM M MM
α

= + = + =               (20) 

From Equation (20), the principal composite quark with 1/3 electric charge is the principal composite d quark 
with 315.28 MeV, and the principal composite quark with 2/3 charge is the principal composite u quark with 
315.45 MeV.  

According to the periodic table of elementary particles (Table 2), quarks have the auxiliary mass dimensional 
orbital in addition to the principal mass dimensional orbital as in Figure 2. As a result, there are the auxiliary 
composite quarks (Qac) in addition to the principal composite quarks (Qpc). The three-step transformation in the 
integer-fraction transformations from integral charge to fractional charge is applicable to the auxiliary composite 
quarks. The auxiliary flux quantum is Ba7 which is in between d7 and d8 as shown in Figure 2. As a result, αw in-
stead of α is used for Ba7. Muon, a composite lepton, instead of electron is used for Ba7 as follows.  

B wM M µα=                                        (21) 

where αw is the fine structure constant for weak force from Equation (9). In the first step, the Fac (the auxiliary com-
posite fermion) consists of two Ba7 as auxiliary flux quanta.  

ac a7F B2 2 wM M M µα= =                                   (22) 

The second step is the attachment of 3 auxiliary flux quanta (Ba7’s) to the individual integral charge auxiliary 
composite fermions (Fac’s) to form the transitional collective integral charge auxiliary composite bosons (Bac’s). 
The transitional auxiliary composite bosons are derived from the combination of the three auxiliary composite 
fermions (3 Fac’s) with the three flux quanta (3 Ba7’s) which are connected and located at the same position in 
the same 3-Fac energy level. One 3-Fac energy level consists of the three connected Fac sites with the connected 
three auxiliary flux quanta (3 Ba7’s). The mass of the transitional auxiliary composite bosons Bac is as follows. 

ac ac ac7 ac7 ac7 ac7B F B B B B3 3 6 3 9 9 wM M M M M M M µα= + = + = =                    (23) 

In the third step, 3 auxiliary flux quanta (Ba’s) are converted to 3-color gluons (red, green, and blue) in QCD 
to confine the collective fractional charge auxiliary composite quarks (Qac’s) conversed from the transitional 
auxiliary composite bosons (Bac’s). One composite boson (Bac) is converted into two composite quarks (fer-
mions) in the same way as the conversion of one photon (boson) into two fermions (electron-positron). As a re-
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sult, the auxiliary composite quark (Qac) has 1/2 mass of the auxiliary composite boson (Bac).  

ac acQ B 2 9 2 13.16 MeVwM M M µα= = =                             (24) 

The composite quark mass formula is the combination of the principal composite quark and the auxiliary 
composite quark with the Bohr-Sommerfeld quantization for a charge-dipole interaction in a circular orbit as fol-
lows. 

c pc ac

4 4e e
Q Q Q

1 1

91 or 2 9
3 2 2

n n
w

a a

MM MM M M a aµα
α= =

= + = + +∑ ∑                      (25) 

where n = 1, 2, 3, 4, and 5 for u/d, s, c, b, and a part of t, respectively.  
At n = 5 for Equation (25), the mass (140.4 GeV) is greater than B7 (91.1876 GeV) as in Table 1, so the last 

two auxiliary mass dimensional orbitals of the seven auxiliary dimensional orbitals are in between d8 and d9. The 
formation of the auxiliary mass dimensional orbitals between d8 and d9 requires the extra-principal flux quantum 
as B7 instead of B6. For the first step in the three-step transformation from integer charge to fractional charge for 
the extra quarks is to form the extra composite fermion. B7 is Z boson. The Fepc (the extra principal composite 
fermion) consists of two B7 as flux quanta. The Fepc (the extra principal composite fermion) consists of two B7 as 
flux quanta.  

epc 7F B Z2 2M M M= =                                       (26) 

For the second step to form the extra principal composite boson, only one extra-principal flux quantum is 
added to one extra-principal composite fermion, because the 3-color principal electric and 3-color auxiliary flux 
quanta already exist, and there is no need for three extra-principal flux quanta.  

epc epc 7B F B Z Z Z2 3M M M M M M= + = + =                              (27) 

The third step is the conversion of the extra-principal composite boson to two extra-principal quarks (Qepc). 
Only The neutral Bepc is used for Qepc, so no electron is added.  

epc epcQ B Z2 3 2 136.78 GeVM M M= = =                              (28) 

Since Qepc involves only one extra-principal flux quantum, Qepc is identical to the extra-composite lepton Lec 
which is neutral extra-muon 0µ′ . 

0 epcQ Z3 2 136.78 GeVM M Mµ′ = = =                                (29) 

The extra-auxiliary flux quantum is Bea is like Equation (21).  

ea 0BM M µ α′=                                          (30) 

where the fine structure constant in between d8 and d9 is α. For the first step in the three-step transformation 
from integer charge to fractional charge, the extra-auxiliary composite fermion (Feac) is the composite of two 
B8ea’s.  

ea 8ea 0F B2 2M M M µ α′= =                                      (31) 

For the second step to form the extra-auxiliary composite boson Beac, only one extra-auxiliary flux quantum is 
needed in the same way for the formation of the extra-principal composite boson.  

eac eac 8ea 8ea 8ea 8ea 0B F B B B B2 3 3M M M M M M M µ α′= + = + = =                     (32) 

For the third step to form quark from composite boson Beac, extra-auxiliary composite boson is converted into 
two extra-auxiliary composite quarks (Qeac). 

( )
eac eac 0Q B Z Z2 3 2 3 3 2 2 9 4M M M M Mµ α α α′= = = =                    (33) 

The mass formula for the extra- composite quark (Qec) with the Bohr-Sommerfeld quantization for a charge-di- 
pole interaction in a circular orbit is as follows. 

ec epc eac

4 4
Q Q Q

1 1

3 9
2 4

n n
Z Z

a a

M MM M M a aα′ ′

′ ′= =

′ ′= + = +∑ ∑                        (34) 



D.-Y. Chung 
 

 
1602 

where n' = 1 and 2 for b and t, respectively. 
Quark is the combination of the composite quark from Equation (25) and the extra-composite quark from Eq-

uation (34). The quark mass formula is as follows.  

c ec

4 4e e Z Z
quark Q Q

1 1

91 or 2 9 3 9
3 2 2 2 4

n n
w

a a

MM M M MM M M a aµα α
α

′

′= =

′= + = + + + +∑ ∑             (35) 

where n =1, 2, 3, 4, and 5 for d/u. s, c, b, and t, respectively; and n' = 1 and 2 for b and t respectively. The calcu-
lated masses for d, u, s, c, b, and t are 328.4 MeV, 328.6 MeV, 539 MeV, 1605.3 MeV, 4974.6 MeV, and 175.4 
GeV, respectively. In the Standard Model, there are three generations of leptons. Extra-muon 0µ′  is outside of 
the three generations of leptons in the Standard Model, so 0µ′  is hidden as shown in Table 2. As shown in Ta-
ble 2, to be symmetrical to the hidden 0µ′ , the extra composite quark, (Qepc) and the extra auxiliary composite 
quark (Qeac) for b quark are also hidden (absent).  

The calculated mass of top quark is 175.4 GeV in good agreement with the observed 173.3 GeV. The calcu-
lated masses are the constituent masses which include all different types of the flux quanta (B6, B7a, B8, and 
B8ea). The calculated constituent masses are comparable to the quark masses proposed by De Rujula, Georgi, and 
Glashow [27], Griffiths [28], and El Naschie [29]. The masses of hadrons are the combinations of the constitu-
ent quark masses minus the binding energy in the hadronic bond among quarks [30] [31]. The hadronic bond is 
the overlapping of the auxiliary dimensional orbitals, so it involves the auxiliary composite quarks, consisting of 
the primary auxiliary composite quark (Qac) from Equation (24), the secondary auxiliary composite quark ( acQ′ ), 
and the tertiary auxiliary composite quark ( acQ′′ ). The secondary auxiliary composite quark ( acQ′ ) is generated 
from the primary auxiliary composite quark in the same way as Equation (24).  

ac acQ Q9 2 1.64 MeVwM M α′ = =                                  (36) 

The tertiary auxiliary composite quark ( acQ′′ ) is generated from the secondary auxiliary composite quark in 
the same way as Equation (36).  

ac acQ Q9 2 0.20 MeVwM M α′′ ′= =                                 (37) 

For neutron, the binding energy (EQ-Q) in the hadronic bond between quarks involves the primary auxiliary 
composite quark to become the binding energy and the secondary auxiliary composite quark to become the mass 
to replace the primary auxiliary composite quark as below. 

( )ac acQ-Q Q Q2 23.04 MeVE M M ′= − =                              (38) 

The mass of neutron which has two hadronic bonds is the sum of the constituent masses of u, d, and d quarks 
minus the binding energy from the two hadronic bonds. 

N u d Q-Q2 2 939.43 MeVM M M E= + − =                            (39) 

The calculated mass of neutron is in good agreement with the observed value 939.57 MeV.  
Proton is more stable than neutron, so it involves the additional binding energy from the tertiary auxiliary 

composite quark as below. 

( )ac ac acQ-Q Q Q Q2 23.45 MeVE M M M′ ′′= − + =                          (40) 

The mass of proton which has two hadronic bonds is the sum of the constituent masses of u, u, and d quarks 
minus the binding energy from the two hadronic bonds. 

P u d Q-Q2 2 938.78 MeVM M M E= + − =                           (41) 

The calculated mass of proton is in good agreement with the observed value 938.21 MeV. 
Another way to form hadrons is through the combinations of Me/α (= 70.03 MeV) and 3Me/2α (= 105.04 

MeV) as the mass quanta (mass building blocks) by the MacGregor’s constituent quark model [23] [32]. There-
fore, the masses of hadrons can be calculated by the combinations of the constituent quark masses from the 
quark mass formula as Equation (35) and by the combinations of the mass quanta from the MacGregor’s consti-
tuent quark model [23] [30]-[32]. Another type of quark mass is the current mass which is much lower than the 
constituent mass, because it does not include some parts of principal composite quark (Qpc) and auxiliary com-
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posite quark (Qac) which become massless gluon [28] [33].  
Another extra-muon is charge extra-muon, µ±′ , derived from W± boson. The formation of µ±′  is same as 

0µ′  based on Equations (28) and (29). (The observed mass of W boson is 80.385 GeV.) 

W3 2 120.58 GeVM Mµ±′
= =                                 (42) 

Extra-muon µ′  includes neutral 0µ′  and charge µ±′ . 

5. The Higgs Boson Mass Formula 
In the conventional model, under spontaneous symmetry breaking, zero-energy ground state space turns into the 
nonzero-energy scalar Higgs Field which exists permanently in the universe. The problem with such nonze-
ro-energy field is the cosmological constant problem from the huge gravitational effect by the nonzero-energy Higgs 
field [34]. The coupling of massless particle to the Higgs field produces the transitional nonzero-energy Higgs 
field-particle composite which under spontaneous symmetry restoring produces the massive particle with the longi-
tudinal component on zero-energy ground state space without the Higgs field as follows. 

 

[ ]

spontaneous  symmetry breaking

massless particle spontaneous symmetry rest

zerro-energygroudstatespace nonzero-energyscalar Higgs field

the transitional nonzero-energy Higgs field-particlecomposite

→

→ oring

massive particle with the longitudinalcomponent on zero-energygroundstatespace without the Higgs field
→   (43) 

To avoid the cosmological problem from the huge gravitational effect by the nonzero-energy Higgs field is to 
make the Higgs field a transitional field which exists momentarily and to make zero-energy ground state space a 
permanent zero-energy ground state space which exists permanently in the universe [8]. For the digital space struc-
ture, such zero-energy ground state space is zero-energy attachment space which attaches particles to account for 
the longitudinal component, mass, and reversible movement. Unlike the conventional model, attachment space 
actively couples to massless particle. Under spontaneous symmetry breaking, the coupling of massless particle 
to zero-energy attachment space produces the transitional nonzero-energy Higgs field-particle composite which 
under spontaneous symmetry restoring produces massive particle on zero-energy attachment space with the lon-
gitudinal component without the Higgs field as follows. 

[ ]

spontaneous symmetry breaking

spontaneous  symmetry  restoring

massless particle  + zero-energyattachment space

the transitional non-zeroenergy Higgs field-particlecomposite
massive particle with th

→

→

e longitudinalcomponent on zero-energyattachment space without the Higgs field
  (44) 

The opposite of attachment space is zero-energy detachment space which detaches particles to account for ir-
reversible kinetic energy. Unlike the conventional model, detachment space actively couples to massive particle. 
Under spontaneous symmetry breaking, the coupling of massive particle to zero-energy detachment space pro-
duces the transitional nonzero-energy reverse Higgs field-particle composite which under spontaneous symme-
try restoring produces massless particle on zero-energy detachment space without the longitudinal component 
without the reverse Higgs field as follows. 

[ ]

spontaneous  symmetry breaking

spontaneous  symmetry restoring

massive particle + zero-energy detachment space
the transitional nonzero-energy reverse Higgs field-particlecomposite

massless particle

→

→ without the longitudinalcomponent
on zero-energydetachment space without the reverse Higgs field

             (45) 

For the electroweak interaction in the Standard model where the electromagnetic interaction and the weak in-
teraction are combined into one symmetry group, under spontaneous symmetry breaking, the coupling of the 
massless weak W, weak Z, and electromagnetic A (photon) bosons to zero-energy attachment space produces 
the transitional nonzero-energy Higgs fields-bosons composites which under partial spontaneous symmetry res-
toring produce massive W and Z bosons on zero-energy attachment space with the longitudinal component 
without the Higgs field, massless A (photon), and massive Higgs boson as follows. 
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[ ]spontaneous symmetry breaking

massless WZ zero-energy WZattachment space massless A zero-energy A attachment space A

the transitional nonzero-energy WZHiggs field -WZcomposite

nonzero-energy A Higgs field -A com

+ + +

→

+[ ] partial  spontaneous  symmetry restoringposite
massive WZ with the longitudinalcomponent on attachment space without the Higgs field

massless A the nonzeroenergy massive Higgs boson

→

+ +

   (46) 

 Being outside of the three-generation lepton-quark in the Standard Model, the Higgs boson adopts the extra- 
muon condensate µ µ′ ′  which is outside of the three-generation lepton-quark. In other words, the extra-muon 
condensate becomes the Avatar Higgs boson [5]. The extra-muon condensate µ µ′ ′  includes 0 0µ µ′ ′  and 
µ µ± ±′ ′ .The extra-muon condensate composite consists of 0 0µ µ′ ′ , µ µ+ +′ ′ , and µ µ− −′ ′ . From Equations (29) and (42), 
the mass of the µ µ′ ′  condensate composite as the Higgs boson composite is as follows. 

( ) ( ) ( )
0 0Higgsboson composite

2 136.78 GeV 2 120.58 GeV 2 120.58 GeV
756 GeV

M M M Mµ µ µ µ µ µ+ + − −′ ′ ′ ′ ′ ′= + +

= + +

=

             (47) 

This extra-muon condensate composite as the Higgs boson composite at 750 GeV is in good agreement with 
the 756 GeV diphoton excess observed from the Large Hadron Collider (LHC) with zero charge and zero spin 
[35] [36]. The µ µ′ ′  condensate composite decays into three µ µ′ ′  condensates. Just as the observed top quark is 
a bare quark with the observed mass of about 173 GeV instead of about 346 GeV (two times 173 GeV) for top 
quark-antitop quark boson, the observed mass of µ µ′ ′  as the Higgs boson is the mass of bare µ' as follows. 

observed as theHiggsboson composite 6 756 GeV 6 126 GeVM Mµ µ µ µ′ ′ ′ ′= = =                 (48) 

The calculated mass (126 GeV) is in excellent agreement with the observed 125 GeV [37] or 126 GeV [38]. 

6. Conclusions 
One of the biggest unsolved problems in physics is the particle masses of all elementary particles which cannot be 
calculated accurately and predicted theoretically. In this paper, the unsolved problem of the particle masses is solved 
by the accurate mass formulas which calculate accurately and predict theoretically the particle masses of all leptons, 
quarks, gauge bosons, the Higgs boson, and cosmic rays (the knees-ankles-toe) by using only five known con-
stants: the number (seven) of the extra spatial dimensions in the eleven-dimensional membrane, the mass of 
electron, the masses of Z and W bosons, and the fine structure constant. The calculated masses are in excellent 
agreements with the observed masses. For examples, the calculated masses of muon, top quark, pion, neutron, and 
the Higgs boson are 105.55 MeV, 175.4 GeV, 139.54 MeV, 939.43 MeV, and 126 GeV, respectively, in excellent 
agreements with the observed 105.65 MeV, 173.3 GeV, 139.57 MeV, 939.27 MeV, and 126 GeV, respectively. The 
mass formulas also calculate accurately the masses of the new particle at 750 GeV from the LHC and the new 
light boson at 17 MeV. The theoretical base of the accurate mass formulas is the periodic table of elementary par-
ticles. As the periodic table of elements is derived from atomic orbitals, the periodic table of elementary particles is 
derived from the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals. All ele-
mentary particles including leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays can be placed in the pe-
riodic table of elementary particles. 

The periodic table of elementary particles is derived from the theory of everything as the computer simulation 
model of physical reality consisting of the mathematical computation, digital representation and selective reten-
tion components. The mathematical computation involves oscillating M-theory as oscillating membrane-string- 
particle whose space-time dimension (D) oscillates between 11D and 10D and between 10D and 4D. For the 
digital representation component, the three intrinsic data (properties) are rest mass-kinetic energy, electric 
charge, and spin which are represented by the digital space structure, the digital spin, and the digital electric 
charge, respectively. The digital representations of rest mass and kinetic energy are 1 as attachment space for the 
space of matter and 0 as detachment space for the zero-space of matter. The digital representations of the exclu-
sive and the inclusive occupations of positions are 1/2 spin fermion and integer spin boson, respectively. The 
digital representations of the allowance and the disallowance of irreversible kinetic energy are integral electric 
charges and fractional electric charges, respectively. For the selective retention component, gravity, the strong  
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Table 4. The mass formulas of gauge bosons, cosmic rays, leptons, quarks, and the Higgs boson.                                     

mass 
formula of 

Equation # Table # Particles involved 

gauge 
bosons 

7 1 gauge bosons for electromagnetism, strong force, weak force (left), CP  
non-conservation (right), CP non-conservation (left), weak force (right), and gravity 

cosmic rays 10a. 10b, 11 3 knees, ankles, and toe 

leptons 17 2 electron, muon, tau, and the light boson 

quarks 35 2 d, u, s, c, b, and t 

Higgs boson 47, 48  the Higgs boson and the Higgs boson composite 

 
force, electromagnetism, and the weak force are the retained events during the reversible four-stage evolution of 
our universe, and are unified by the common narrative of the evolution. The computer simulation model of 
physical reality provides the seven principal mass dimensional orbitals and seven auxiliary mass dimensional 
orbitals to place leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays in the periodic table of ele-
mentary particles. 

The summary of the mass formulas is in Table 4. 

References 
[1] Hansson, J. (2015) International Journal of Modern Physics and Applications, 1, 12-16. 
[2] Jammer, M. (2009) Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, USA. 

http://dx.doi.org/10.1515/9781400823789 
[3] Chung, D. (1997) Speculations in Science and Technology, 20, 259-268. http://dx.doi.org/10.1023/A:1026433207862 
[4] hung, D. (2014) Journal of Modern Physics, 5, 1234-1243. http://dx.doi.org/10.4236/jmp.2014.514123 
[5] Chung, D. and Hefferlin, R. (2013) Journal of Modern Physics, 4, 21-26. http://dx.doi.org/10.4236/jmp.2013.44A004 
[6] Chung, D. (2014) Journal of Modern Physics, 5, 1467-1472. http://dx.doi.org/10.4236/jmp.2014.515148 
[7] Chung, D. (2016) Journal of Modern Physics, 7, 1210-1227. http://dx.doi.org/10.4236/jmp.2016.710110 
[8] Chung, D. (2016) Journal of Modern Physics, 7, 642-655. http://dx.doi.org/10.4236/jmp.2016.77064 
[9] Woit, P. (2006) Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law. Basic 

Books, New York. 
[10] Chung, D. (2015) Journal of Modern Physics, 6, 1820-1832. http://dx.doi.org/10.4236/jmp.2015.613186 
[11] Chung, D. and Krasnoholovets, V. (2013) Journal of Modern Physics, 4, 27-31.  

http://dx.doi.org/10.4236/jmp.2013.44A005 
[12] Bounias, M. and Krasnoholovets, V. (2003) The International. Journal of Systems and Cybernetics, 32, 1005-1020.  
[13] Chung, D. (2016) Journal of Modern Physics, 7, 1150-1159. http://dx.doi.org/10.4236/jmp.2016.710104 
[14] Tsui, D., Stormer, H. and Gossard, A. (1982) Physical Review Letters, 48, 1559.  

http://dx.doi.org/10.1103/PhysRevLett.48.1559 
[15] Stormer, H. (1999) Reviews of Modern Physics, 71, 875. http://dx.doi.org/10.1103/RevModPhys.71.875 
[16] Laughlin, R. (1983) Physical Review Letters, 50, 1395. http://dx.doi.org/10.1103/PhysRevLett.50.1395 
[17] Salam, A. (1968) Weak and Electromagnetic Interactions. In: Svartholm, W., Ed., Elementary Particle Theory, Alm-

quist and Wiksell, Stockholm, 367-387.  
[18] Drury, L. (2012) Astroparticle Physics, 39-40, 52-60. http://dx.doi.org/10.1016/j.astropartphys.2012.02.006 
[19] Sveshnikova, L., Korosteleva, E., Kuzmichev, L., Prosin, V., Ptuskin, V. and Strelnikova, O. (2013) Journal of Phys-

ics: Conference Series (JPCS), 409, Article ID: 012062. http://dx.doi.org/10.1088/1742-6596/409/1/012062 
[20] Kamilla, R., Wu, X. and Jain, J. (1996) Physical Review Letters, 76, 1332-1335.  

http://dx.doi.org/10.1103/PhysRevLett.76.1332 
[21] Jain, J. (2007) Composite Fermions. Cambridge University Press, New York.  

http://dx.doi.org/10.1017/CBO9780511607561 
[22] Cameron, P. (2011) Apeiron, 18, 29-42. 

http://dx.doi.org/10.1515/9781400823789
http://dx.doi.org/10.1023/A:1026433207862
http://dx.doi.org/10.4236/jmp.2014.514123
http://dx.doi.org/10.4236/jmp.2013.44A004
http://dx.doi.org/10.4236/jmp.2014.515148
http://dx.doi.org/10.4236/jmp.2016.710110
http://dx.doi.org/10.4236/jmp.2016.77064
http://dx.doi.org/10.4236/jmp.2015.613186
http://dx.doi.org/10.4236/jmp.2013.44A005
http://dx.doi.org/10.4236/jmp.2016.710104
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/RevModPhys.71.875
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1016/j.astropartphys.2012.02.006
http://dx.doi.org/10.1088/1742-6596/409/1/012062
http://dx.doi.org/10.1103/PhysRevLett.76.1332
http://dx.doi.org/10.1017/CBO9780511607561


D.-Y. Chung 
 

 
1606 

[23] MacGregor, M. (2007) The Power of Alpha: The Electron Elementary Particle Generation with Alpha-Quantized Life-
times and Masses. World Scientific Publishing, Singapore.  

[24] Barut, A. (1979) Physical Review Letters, 42, 1251-1253. http://dx.doi.org/10.1103/PhysRevLett.42.1251 
[25] Krasznahorkay, A., et al. (2016) Physical Review Letters, 116, Article ID: 042501.  

http://dx.doi.org/10.1103/PhysRevLett.116.042501 
[26] Feng, J., et al. (2016) Physical Review Letters, 117, Article ID: 071803. 
[27] De Rujula, A., Georgi, H. and Glashow, S. (1975) Physics Review D, 12, 147.  

http://dx.doi.org/10.1103/PhysRevD.12.147 
[28] Griffiths, D. (2008) Introduction to Elementary Particles. Wiley-VCH, Weinheim, 135. 
[29] El Naschie, M. (2002) Chaos, Solitons and Fractals, 14, 369-376. http://dx.doi.org/10.1016/S0960-0779(02)00022-X 
[30] Chung, D. (1999) Speculations in Science and Technology, 21, 277-289. http://dx.doi.org/10.1023/A:1005513404873 

http://link.springer.com/article/10.1023/A:1005513404873  
[31] Chung, D. (2001) arXiv:hep-th/0111147v5. 
[32] MacGregor, M. (1990) Il Nuovo Cimento A, 103, 983-1052. http://dx.doi.org/10.1007/BF02782738 
[33] Watson, A. (2004) The Quantum Quark. Cambridge University Press, Cambridge, 285-286.  
[34] Weinberg, S. (1989) Review Modern Physics, 61, 1-23. http://dx.doi.org/10.1103/RevModPhys.61.1 
[35] ATLAS and CMS (2015) CMS PAS EXO-15-004 and ATLAS-CONF-2015-081. https://indico.cern.ch/event/442432/ 
[36] Nakai, Y., Sato, R. and Tobioka, K. (2016) Physical Review Letters, 116, Article ID: 151802.  

http://dx.doi.org/10.1103/PhysRevLett.116.151802 
[37] The CMS Collaboration (2012) Physics Letters B, 716, 30-61. http://dx.doi.org/10.1016/j.physletb.2012.08.021 
[38] The ATLAS Collaboration (2012) Physics Letters B, 716, 1-29. http://dx.doi.org/10.1016/j.physletb.2012.08.020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service for you: 
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. 
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system 
Fair and swift peer-review system 
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles 
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 

http://dx.doi.org/10.1103/PhysRevLett.42.1251
http://dx.doi.org/10.1103/PhysRevLett.116.042501
http://dx.doi.org/10.1103/PhysRevD.12.147
http://dx.doi.org/10.1016/S0960-0779(02)00022-X
http://dx.doi.org/10.1023/A:1005513404873
http://link.springer.com/article/10.1023/A:1005513404873
http://dx.doi.org/10.1007/BF02782738
http://dx.doi.org/10.1103/RevModPhys.61.1
https://indico.cern.ch/event/442432/
http://dx.doi.org/10.1103/PhysRevLett.116.151802
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://papersubmission.scirp.org/


Journal of Modern Physics, 2016, 7, 1607-1615 
Published Online August 2016 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2016.712145   

How to cite this paper: Lartigue, J. (2016) The Hubble Field vs Dark Energy. Journal of Modern Physics, 7, 1607-1615.  
http://dx.doi.org/10.4236/jmp.2016.712145  

 
 

The Hubble Field vs Dark Energy 
Juan Lartigue 
Department of Nuclear Chemistry, Faculty of Chemistry, National University of México, México City, México 

    
 
Received 28 June 2016; accepted 28 August 2016; published 31 August 2016 

 
Copyright © 2016 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The Hubble equation was considered valid enough to calculate the recession velocity of galaxies, 
until further observations showed that there would be an accelerated recession in the Hubble flow, 
necessarily tied to an accelerated expansion of the Universe. So, this paper postulates the exis-
tence of a Hubble field as a possible cause for such an accelerated expansion, with some conditions: 
it must be a scalar field whose intensity should be a constant in respect to distance and whose 
Poisson equation should not be zero nor a function of mass; such field could rather be a property 
of the space-time. The obvious expression for acceleration should be the derivative of the Hubble 
equation respect to time, which gives two opposed-signs terms whose substitution by the De-Sitter 
equation drives to a permanent negative acceleration, similarly to that obtained by the 2nd Fried-
mann equation. Otherwise, the inclusion of the Λ term in the gravitational Einstein equation has 
led to a two opposed-signs terms expression, resembled to a non-published Newton equation. The 
negative term expresses the gravitational attraction and the positive one expresses the accele-
rated expansion as a Λ function, which usually is attributed to dark energy. In this paper it is 
shown that Λ is proportional to the squared Hubble parameter and that the uncertain dark energy 
may be substituted by the calculable Hubble field intensity to obtain an equation for the net Un-
iverse acceleration. Equations for the Hubble parameter as functions of time and radius are also 
deduced. A relation is shown between the various assumed masses of the Universe and its critical 
radius. Additional Universe parameters are estimated such as the deceleration factor and a solu-
tion for the Poisson equation in the Hubble field. A brief comment t on high-standard candles is in-
cluded. 

 
Keywords 
Hubble Law, Hubble Field, Cosmological Constant, Friedmann Equations 

 
 

1. Introduction 
Since the A. Riess et al. [1] discovery of the acceleration of the Universe expansion, the cause of this phenome-
non has been attributed to a mysterious dark energy whose nature and characteristics remain unknown. Dark 
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energy has been associated to the cosmological constant, Λ, which was previously discarded by Einstein and 
now is related to dark energy density, ρΛ, as 

4πGρΛΛ = .                                      (1.1) 

The dark energy presents two problems. The first one is that such alleged energy has not been detected or 
measured experimentally. The second one is that its density is usually expressed as an equivalent mass density 
(kg∙m−3) though a so-crucial relationship such as  

2E m cΛ Λ=                                        (1.2) 

has not been proved yet. Its present numerical value has been estimated from the WMAP experiments [2] to a 
figure that t allows the Universe to reach its critical condition at the present time. Its hypothetical value is ex-
pressed by reference [3] as: “Dark energy is necessary to balance the books”.  

Besides, there is a problematic complement of dark energy theory: it is assumed that it generates a negative 
pressure or vacuum energy that pulls the Universe to expand itself. Though the equation of state is feasible  

pρΛ = − ,                                       (1.3) 

where −p is the negative pressure generate d) the implied numerical values would not be big enough to pull the 
entire Universe back. Reference [4] expresses on both topics: “The relevant fact about dark energy is not its 
pressure: it is that it is persistent; it doesn’t dilute away as the Universe expands”. And adds: “Banning negative 
pressure from popular expositions of Cosmology would be a great step forward”. 

In explaining the Universe acceleration, several alternative theories have been published based on extensions 
of the relativistic theory of gravity and MOND theory [5], as well as on variations of gravitation as a function of 
scales [6]. This later reference mentions the possible substitution of the constant Λ by a scalar field. Such is the 
proposal of this paper, assuming a constant intensity of a scalar field. It follows a review of previous concepts. 

The Hubble parameter, H(t) is defined as: 

( ) aH t
a

=


                                       (1.4) 

where a is the radial Universe function, related to the distance r by the co-moving equation  
a= ⋅r x                                        (1.5) 

x is the constant commoving coordinate and a  is the time derivative of a substitution of the co-moving equa-
tion in (1.1) to give the Hubble equation: 

( )H t ⋅= rr                                       (1.6) 

The time derivative of this equation would represent the accelerated radial expansion:  
2 .H H= −r r r                                    (1.6.a) 

The problem here is that H , usually obtained by the De-Sitter expression, drives to an Universe acceleration, 
0<r , as opposed to the present accepted criteria [7]:. 

Bergstron and Goobar [8] had included the cosmological constant, Λ, in the Einstein gravitation equation as 
follows: 

2
8π1 R g R g GTµν µν µν µν− − Λ =                               (1.7) 

the two first terms form the Einstein tensor, Gµν; gµν stands for the fundamental covariant tensor; G is the gravi-
tational constant, while Tµν represents the energy-momentum tensor. This expression assumes a unitary value for 
light velocity. Einstein added Λto his equations in 1917 in order to match a static Universe concept. However, A. 
Friedmann did not take Λ into account in obtaining two basic solutions, five years later [9] 

2 2

2 2
8π

3
bG c

a a
a kρ

= −


                                  (1.8a) 
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2
4π 3

3 b
a G p
a c

ρ + = −  
 



                                  (1.9) 

a  is the acceleration of matter at the Universe radial function, a; ρb is the Universe baryonic density; p is th to-
tal pressure; k is a curvature parameter of the Universe, and c is the light velocity in a vacuum. Accordingly to R. 
Tolman [10], the Einstein Universe is filled by incoherent matter and, in a first Friedmann model, the total pres-
sure is assumed to be zero, yet both energy and matter get conserved. An adequate way to fulfill Einstein and 
Friedmann conditions would be assuming the Universe as a powder cloud with a tiny matter density and p = 0, 
which implies that the energy momentum tensor [11] is 

T u uµν µρ=                                       (1.9) 

uµ and uν are the 4-velocity vectors that, in a co-moving frame, are u = (1, 0, 0, 0). Therefore, Too = ρs 
(When the value for Λ is substituted). 
By applying to (1.7) the conservation criteria for matter in the Universe, plus the co-moving equation and the 

baryonic density concept as well, the present Universe acceleration would be: 

2
bGMr = −

r
                                      (1.8), 

where Mb is the baryonic (o if preferred, gravitational mass) contained in a sphere of radius r. Equation (1.8) is 
the same of Newton for gravitational acceleration, so implying that it remains negative as r increases, a conclu-
sion that would result opposed to recent works [1] [12]. The first solution for Equation (1.3) was that of 
De-Sitter in 1917, though he did assume an empty Universe, i.e. Tµν = 0. In what follows, a Λ value and its rela-
tionship to the Hubble parameter are calculated. Thereafter, an equation for the Hubble field is deduced, and two 
equations for H as functions of time and distance are also proposed. The criticality and deceleration parameters 
are calculated as well as a Poisson equation for the scalar Hubble field. A brief comment on high-z standard 
candles is included at the end of the paper. 

2. The Λ and H Values 
By applying the FLRW metric to the Einstein equation, reference [13] gives way to a very useful form of the 
second Friedmann equation: 

4π
3 3

bGa
a

ρ
= −

Λ
+

                                    (2.1) 

T is equation has been also deduced by L. Calder and O. Lahav in a landmark paper [14]. It can be expressed 
by means of the commoving equation and the density definition, as: 

2 3
bGM Λ

= − +
rr

r
                                    (2.2) 

Since Λ had not been considered a function of time, reference [15] did assume a constant value for Λ = 1.0 
(supposed it is dark energy), which should intersect the ΩU curve at the present time. Such a constant unitary 
value (assumed as vacuum energy) intersecting the ΩU curve at the present time is also mentioned by reference 
[16]. ΩU is the ratio between the Universe total density and its own critical density. These and other authors [2] 
conclude that the present time is the critical one, an assumption that would imply now that 0=r , as opposed to 
the discovery of reference [1]. 

Calder and Lahav [17] have referred an original Newton equation for the Universe acceleration (not public 
shed by Newton in his Principia) which may be written as: 

2
b

b
GM CM= − +r r

r
                                   (2.3) 

where C is an arbitrary constant. By comparing Equations ((2.2) and (2.3)), they conclude that Λ must be pro-
portional to the entire mass of the Universe, Mb (a constant) as: 

bCMΛ =                                       (2.4) 



J. Lartigue 
 

 
1610 

However, the constancy of Λ would require C to be a true constant. It may be calculated at the equilibrium 
point ( 0=r ) in Equation (2.3) as follows: 

( )3
cC G r=                                       (2.5) 

Equating the expressions for C from (2.4) and (2.5) it gives: 

3
3 b

c

GM
r

Λ =                                       (2.6) 

So showing that Λ is a constant being related to the critical radius. Otherwise, the equation presented by ref-
erence [8] and anywhere (Λ = 8πGρΛ) would require knowing the dark energy density, an uncertain parameter at 
the present time. 

The proposition of M. Carmeli and T. Kuzmenko [18] for theΛ constant value could be a real solution: 
3 τΛ =                                         (2.7) 

τo is the age of the Universe; if it is τo = 14.0 × 109 (y) [19], then Λ = 1.53 × 10−35 (s−2) [19]. 
Accordingly to Equation (1.1) the Hubble parameter is a function of time. Its present (constant) value, Ho is 

defined as:  

( )18 11 2.25 10 s
o

oH
τ

− −= = ×                                 (2.8) 

Therefore, from (2.7) and (2.8): 
23 oHΛ =                                         (2.9) 

Multiplying Equation (2.9) by ro gives: 

2 consta t
3

no o
o Hr r =

Λ
⋅=                                  (2.10) 

If this equation is valid at the present time, it is postulated in this work to be valid also at the critical time, i.e. 
2 constantcc rH =                                     (2.11) 

and therefore, at any time: 

( ) ( )2 constantH t r t =                                   (2.12) 

Equation (2.10) shows that the second term of Equation (2.2) does imply a positive acceleration expansion, 
with a constant value as proposed by reference [4], and opposed to the gravitational attraction in the Universe. 
So, if Equation (2.12) is valid, the Equation (2.2) may be written as: 

( ) 2
212 bGMHr −=

r
rr                                   (2.13) 

Equation (2.13) represents the net acceleration of the Universe expansion, i.e., the difference between the at-
tractive gravitational field and the expansive Hubble field. It seems clear that, when the Universe radius was 
small, the gravitational field intensity was dominant, but nowadays, at a bigger Universe radius, the Hubble field 
intensity should be overbearing, as shown in Figure 1. 

3. The Hubble Field 
In what follows, the variable intensity of the gravitational field is represented by G and the constant intensity of 
the Hubble field is written as ГH, i.e. 

( )2
2 m sb

G
GM −= − ⋅

r
Γ                                    (3.1) 

( )2 2m sH H −= ⋅rΓ                                     (3.2) 

Therefore, the net Universe acceleration may be expressed, from Equation (2.13), as the difference: 
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Figure 1. The constant Hubble field intensity ΓH (m∙s−2, red line) vs 3 cases of gravitational acceleration ΓG (m∙s−2, blue, 
green, purple lines, see text) as functions of the Universe ratio, r/ro. The intersection points correspond to the 3 possible crit-
ical Universe radii. The critical times are marked in the upper abscissa. The difference between the ΓG lines and the ΓH line 
represents the net acceleration, r  (m∙s−2), Equation (2.13).                                                                 

 

[ ] [ ] ( )2m sH G
−= − ⋅r Γ Γ                                  (3.3) 

Since the potential energy in the gravitational field is always negative (U < 0), the gravitational potential 
(energy per unit mass) is negative too; it is expressed as: 

( )1J kgG
G

GMV
r

−⋅= −                                   (3.4) 



J. Lartigue 
 

 
1612 

By definition [20], the intensity of the gravitational field is the negative of the gradient of the gravitational 
potential: 

G GV= −Γ ∇                                        (3.5) 

it is therefore negative, as expressed in Equation (3.1). 
Similarly, the Hubble field intensity could be defined as the gradient of a positive scalar Hubble field poten-

tial: 

H HV=Γ ∇                                        (3.6) 

The substitution of Equation (3.2) in (3.6) gives a definition of the Hubble field intensity 
2

H HH V= =rΓ ∇                                     (3.7) 

By assuming from Equation (2.12) that ΓH = constant in Equation (3.7), the radial integration of this equation 
gives an expression for the Hubble potential: 

( )2 2 2 2m sH HV H r −= ⋅ ⋅=rΓ                                (3.8) 

(alternative units applied in Equation (3.8) point out that there is no mass involved in the Hubble potential). 
Assuming that Equation (2.12) is valid, it is possible to estimate the constant Hubble field intensity by using 

the present values of Ho and the Universe radius, ro [21]: 

( )2 292.2 10 m sH o oH r − −= = ⋅×Γ                               (3.9) 

This would be the value of the Hubble field intensity, i.e. the Hubble acceleration of the Universe at any time, 
if there was not a gravitational field. Since it is not feasible to assign to the Hubblefield any known physical ent-
ity, it may be assumed that it corresponds, rather, to a property of the space-time. The present net acceleration 
results, from Equation (2.13), ( ) ( )9 21.7 10 m sor r − −= × ⋅  and the velocity ( ) ( )8 17.5 10 m sor r −= × ⋅ . This val-
ue, higher than c, could be feasible in a particular non-inertial frame, such as it would be outside the Hubble 
sphere, where >r c . 

The assumption for ГH to be constant allows obtain a general expression for H as a function of distance, from 
Equations ((2.12) and (3.9)): 

( ) ( )
5

1
1 2

4.7 10 sH r
r

−
−×

=                                 (3.10) 

The present Ho value has been defined as the reciprocal of the Universe age (Equation (2.8)) but there is not a 
general expression to determine H(t). The same Equations ((2.12) and (3.9)) could allow calculate the Hubble 
parameter at any time if the distance is expressed as a function of time in a continuously accelerated movement: 

( ) ( )
12

1
1 3

1.8 10 sH t
t

−
−×

=                                 (3.11) 

Therefore, Equations ((3.10) and (3.11)) are proposed as general functions for H(r) and H(t). 

4. Additional Relevant Parameters 
4.1. Critical Parameters Corresponding to the Assumed Values of Mass in the Universe 
From R. Johnson [22], the values assigned to the baryonic mass of the Universe vary according to several crite-
ria: one is based on the total number of stars and it yields 1.0 × 1052 kg; even figure, as modified by the interga-
lactic and interstellar media, is 1.7 × 1053 kg; another one, based in the Hoyle-Carvalho equation [23], assigns 
Mh = 1.84 × 1053 (kg) as the value covering the Hubble length (1.37 × 1026 m). All these figures have been ob-
tained by research inside the observable Universe, i.e. into the Hubble sphere. So, accordingly to the cosmolog-
ical principle, trying to determine the total mass contained in the total volume of the Universe is a valid problem. 
From the above given data, the density of the observable Universe is ρh = 1.8 × 10−26 (kg∙m−3) a value here as-
sumed for the entire Universe whose radius is estimated to be ro = 4.4 × 1026 (m) [2] giving, for the total baryo-
nic mass in the Universe, Mu = 6.5 × 1054 (kg). Besides, dark mass could eventually be included as a gravita-
tional mass, giving a total of Mg = 3.25 × 1055 (kg). 
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The critical point of the Universe may be defined as the time when the Universe becomes flat, i.e. when it 
may change from positive to a negative curvature. That implies 0r =  in Equation (2.13), which gives: 

( ) 2
2

c
c

cH GM
r

r =                                     (4.1) 

In Equation (4.1) it has not been specified the kind of mass to apply, which must be selected in any case. 
Since the l.h.s. is a constant (ΓH), it is possible to directly obtain the value of the critical radius from: 

( )2

H
cr

GM
=
Γ

                                     (4.2) 

Since G and ΓH are constants, this equation gives  

( )1 20.173cr M= ×                                   (4.3) 

In Table 1 they are shown the corresponding critical radius and times for the three above assumed masses.  

4.2. The Deceleration Parameter 
The deceleration parameter, q, is defined as: 

2
rr
r

q =




                                      (4.1) [32] 

Its present value results q = −1.3, which confirms the possibility of an accelerated Universe. 

4.3. The Poisson Equation 
The spatial derivative of Equation (3.7) is a solution of the Poisson equation in the Hubble field: 

( )2 2 2sHV H −∇ =                                    (4.4). 

It means that there exists a force-flow in the Hubble field. 

5. A Brief Comment 
As assumed above, the constancy of ΓH would require some kind of justification. Subsequent studies to that of 
Riess et al. [1], which was limited to z ≤ 1, refer also to the present accelerated expansion of the Universe, i.e. 
whose velocity is continuously increasing but there is no mention about the acceleration’s magnitude, even less 
about any variation; so, by now, it may be assumed that the expansive acceleration value obtained by Equation 
(3.9) in this work is a constant, as expressed by the product H2r in Equation (2.12). 

Reference [24] analyses the Universe evolution for redshifts z ≤ 3.0 and concludes, in his Figure 4, that there 
were two epochs: an slowing down expansion and, after that, the present accelerated expansive period; it would 
mean that after the enormous velocity reached in the inflationary period, it followed a slowing down expansion 
period that, just before the present time, with z = 0, has changed to a positively accelerated expansive process; in 
this way, the present time would almost correspond to the critical time with its implicit critical radius and densi-
ty as well as a flat geometry (k = 0). These results do not coincide at all with those of A. Riess [25] who propos-
es a value of z = 0.46 for the curvature change, a value that would imply a critical time of 10.5 Gy. It was an 
event considered by the same author [26] as “a cosmic jerk: the transition from desceleration in the past to acce-
leration in the future”. A possible partial matching of Figure 1 of this work with Figure 4 of reference [24] could 
be that: if H is a constant respect to time and distance, the slowing down expansion period would correspond to the  
 
Table 1. Critical radius and critical time for three cases of universe’ mass.                                                       

Mass of the Universe (kg) Critical radius rc (m) Critical time tc (Gy) 

Mb = 1.84 × 1053 (in the Hubble sphere) 7.0 × 1025 7.1 

Mu = 6.54 × 1054 (in the Universe) 4.3 × 1026 13.6 

Mg = 3.25 × 1055 (including dark matter) 1.0 × 1027 24.0 
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[ΓG] > ΓH epoch (in the total Universe case, curve sphere case, curve Γh). Consequently, the ΓH = [ΓG] step 
would have defined the critical time in two possible cases. If dark matter would have been added, the critical 
point would still have to wait for another to period. The validity of the model here proposed could only be prov-
en if future SN observations detect additional increases in the expected distances, at several (z > 1) values, and if 
they match with the net acceleration given by Equation (3.3). Some important experiments at higher z values 
(8.6 and 11.0) have been performed in two recent projects [27] [28] that mention mag variations but say nothing 
about older acceleration values. 

Anyway, there is a limit to distance measurements by present methods: it comes from the estimation of refer-
ence [29] about the first star formation, that he assumes to have occurred at a Universe age of~50 (My), or z ~50, 
a fact that puts a limit to the use of SN as standard candles. The same restriction could apply to the efforts to use 
quasars [30] and γ-ray bursts [31] as standard candles. However, spectroscopic methods could always been ap-
plied if higher redshifts (z > 50) could be identified; for example, the CMB defines the maximum observable 
cosmological value at z~103 [29]; it implies e.g., if λo is today about 1 (mm), the emitted λe should have been 
about 1 (µm) i.e. infrared photons traveling till now, in a co-moving coordinate, since the decoupling time. 

6. Conclusions 
1) The value of the cosmological constant, Λ is proportional to the reciprocal of the squared Universe age 

(Equation (2.9)). So, it results proportional to the present value of the squared Hubble parameter. 
2) Since Λ cannot be directly associated to any known field, the present work substitutes the Λ term by a con-

stant Hubble field intensity term (Equation (2.10)), to obtain the Equation (2.13), expressed in Figure 1. The 
form of this equation could have been foreseen from the time derivative of the Hubble Equation (1.2) which 
shows that the net acceleration of the Universe would depend on two opposed-signs terms. 

3) The Hubble field intensity is defined as the gradient of a positive Hubble potential (Equation (3.6)). Its 
constant value is 2.2 × 10−9 (m∙s−2). However, the present net acceleration is 1.7 × 10−9 (m∙s−2). The expansion 
velocity at the astronomical radius results today ( ) 2.5o =r r c , a feasible value in a co-moving coordinate that, if 
Equation (3.6) is valid, it would imply a new physical theory after that of c (max).  

4) The assumption of the constancy of the Hubble field intensity drives to obtain two general functions of 
time and distance for the Hubble parameter (Equation (3.10), Equation (3.11)). 

5) Equation (2.13) gives the net acceleration of the Universe, as well as its critical radius when 0r = . So, it 
is not necessary to appeal to aΩU balance. The critical conditions of the Universe are found to depend of the 
Universe’s mass chosen; here they were considered 3 cases: baryonic into the Hubble sphere, baryonic in the 
assumed total volume of the Universe and baryonic plus dark matter in the total volume. They are shown in 
Figure 1, which presents both the Hubble and Newton accelerations (ΓH, ΓG) as functions of the r/ro ratio and 
points out both the critical radius and critical time for the 3 cases above mentioned. 

6) The deceleration parameter gave a negative value, so showing that the Universe is self-expanding. The 
Poisson equation for the Hubble field is ∇2VH = H2, since matter is not a component of the Hubble field. 

7) The validity of the model here proposed could only be proven if future SN observations detect additional 
increases, such as it is being assumed in a recent academic project. 
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