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Abstract 
This paper proposes an output feedback nonlinear general integral controller for a class of uncer-
tain nonlinear system. By solving Lyapunov equation, we demonstrate a new proposition on Equal 
ratio gain technique. By using Equal ratio gain technique, Singular perturbation technique and 
Lyapunov method, theorem to ensure regionally as well as semi-globally exponential stability is 
established in terms of some bounded information. Moreover, a real time method to evaluate the 
ratio coefficients of controller and observer are proposed such that their values can be chosen 
moderately. Theoretical analysis and simulation results show that not only output feedback non-
linear general integral control has the striking robustness but also the organic combination of 
Equal ratio gain technique and Singular perturbation technique constitutes a powerful tool to 
solve the output feedback control design problem of dynamics with the nonlinear and uncertain 
actions. 

 
Keywords 
General Integral Control, Nonlinear Control, Robust Control, Output Feedback Control, Equal Ratio 
Gain Technique, Singular Perturbation Technique, State Estimation, Integral Observer, Output 
Regulation 

 
 

1. Introduction 
Integral control [1] plays an important role in practice because it ensures asymptotic tracking and disturbance 
rejection when exogenous signals are constants or planting parametric uncertainties appear. However, output 
feedback nonlinear general integral control design is not a trivial matter because it depends on not only the un-
certain nonlinear actions, disturbances and nonlinear control actions but also the uncertain estimation error dy-
namics. Therefore, it is of important significance to develop the design method for output feedback nonlinear 
general integral control since some states cannot be measured in practice. 
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For general integral control design, there were various design methods, such as general integral control design 
based on linear system theory, sliding mode technique, feedback linearization technique and singular perturba-
tion technique and so on, which were presented by [2]-[5], respectively. In addition, general concave integral 
control [6], general convex integral control [7], constructive general bounded integral control [8] and the gene-
ralization of the integrator and integral control action [9] were all developed by using Lyapunov method and re-
sorting to a known stable control law. Equal ratio gain technique firstly was proposed by [10] and was used to 
address the linear general integral control design. After that Equal ratio gain technique was extended to the ca-
nonical interval system matrix [11] and was used to deal with nonlinear general integral control design. All these 
design methods and general integral controls above are all based on the state feedback. Presently, output feed-
back general integral control along with its design method has not been developed. 

Motivated by the cognition above, this paper proposes an output feedback nonlinear general integral control-
ler for a class of uncertain nonlinear system. The main contributions are that: 1) as any row integrator and its 
controller gains of a canonical interval system matrix tend to infinity with the same ratio, if it is always Hurwitz, 
and then the same row solutions of Lyapunov equation all tend to zero; 2) theorem to ensure regionally as well 
as semi-globally exponential stability is established in terms of some bounded information; 3) a real time me-
thod to evaluate the ratio coefficients of controller and observer are proposed such that their values can be cho-
sen moderately. Moreover, theoretical analysis and simulation results show that not only output feedback nonli-
near general integral control has the striking robustness but also the organic combination of Equal ratio gain 
technique and Singular perturbation technique constitutes a powerful tool to solve the output feedback control 
design problem of dynamics with the nonlinear and uncertain actions. 

Throughout this paper, we use the notation ( )m Aλ  and ( )M Aλ  to indicate the smallest and largest eigen-
values, respectively, of a symmetric positive define bounded matrix ( )A x , for any nx R∈ . The norm of vector x  

is defined as Tx x x= , and that of matrix A is defined as the corresponding induced norm ( )T
MA A Aλ= . 

The remainder of the paper is organized as follows: Section 2 describes the system under consideration, as-
sumption and output feedback nonlinear general integral control. Section 3 demonstrates a new proposition on 
Equal ratio gain technique. Section 4 addresses the design method. Examples and simulation are provided in 
Section 5. Conclusions are presented in Section 6. 

2. Problem Formulation 
Consider the following controllable nonlinear system, 

( ) ( )

1 2

2 3

 
, ,n

x x
x x

x f x w g x w u

=
 =


 = +









                                (1) 

where nx R∈  is the state; u R∈  is the control input; lw R∈  is a vector of unknown constant parameters and 
disturbances. The uncertain nonlinear functions ( ),f x w  and ( ),g x w  are all continuous in ( ),x w  on the 
control domain n l

x wD D R R× ⊂ × . We want to design an output feedback control law u  such that ( ) 0x t →  
as t →∞ . 

Assumption 1: There is a unique pair ( )00,u  that satisfies the equation, 

( ) ( ) 00 0, 0,f w g w u= +                                  (2) 

so that 0x =  is the desired equilibrium point and 0u  is the steady-state control that is needed to maintain 
equilibrium at 0x = , irrespective of the value of w . 

Assumption 2: Suppose that the functions ( ),f x w  and ( ),g x w  satisfy the following inequalities, 

( ) ( ), 0, x
ff x w f w l x− ≤                                (3) 

( )0 ,m Mg g x w g< < <                                  (4) 
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( ) ( ), 0, x
gg x w g w l x− ≤                                 (5) 

( ) ( )10, 0, f
gf w g w γ− ≤                                  (6) 

for all xx D∈  and ww D∈ , where x
fl , x

gl , mg , Mg  and f
gγ  are all positive constants. 

For the purpose of this paper, it is convenient to introduce the following definition. 
Definition 1: ( ), ,F a b xΦ Φ Φ  with 0aΦ > , 0bΦ > , and x R∈  denotes the set of all continuous differential 

increasing function [12], ( )xΦ , such that 

( )0 0Φ = , 

( ) ,   :x b x R x aΦ ΦΦ ≥ ∀ ∈ >  

( )d d 0,    x x x RΦ > ∀ ∈  

where   stands for the absolute value. 
Figure 1 depicts the example curves for the functions belonging to the function set FΦ . For instance, for all 

x R∈ , the functions, ( )arcsinh x , ( )tanh x , 3ax bx+  ( )0, 0a b> > , ( )sinh x , ax  and so on, all belong to 
function set FΦ . 

The output feedback nonlinear general integral controller [11] and observer [12] are given as, 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

1
1 1 2 2

1
1 1 2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
n n

n n

u u x u x u x x

v x v x v x
σµ α σ φ ϕ σ

σ µ θ σ

−

−

 = − + + + + − −


= + + +






                 (7) 

( )( ) ( )
( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1
1 1

1
1 2 1 1 1

2
2 3 2 1 1

1 1
1 1 1 1 1 2 2

ˆ ˆ ˆ ˆd d

ˆ ˆ ˆ

ˆ ˆ ˆ

 
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ        ,

n n
n n n n n

x x

x x h x x

x x h x x

x f x w h x x h g x w u x u x u x

g x w x
σ

σ σ σ

ε

ε

ε ε σ µ α σ

φ ϕ σ

−

−

−

− − − −
+

 = Φ −

 = + −

 = + −




= + − + Φ − + + + +
 − +













   (8) 

where ˆ nx R∈  is the estimated state; ˆ lw R∈  is the prescient constant parameters and disturbances; µ , ε , σα  
and jh ( )1,2, , 1j n= +  are all positive constants; 

( ) ( ) ( )( )ˆ ˆ ˆ ˆ  0 m M
i i i i i i i i iu x x x xα α α α= < ≤ ≤ , 

 

 
Figure 1. Example curves for the functions belonging to the 
function set FΦ . 
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( ) ( ) ( )( )ˆ ˆ ˆ ˆ  0 m M
i i i i i i i i iv x x x xβ β β β= < ≤ ≤ , 

( )ˆi ixα  and ( )ˆi ixβ  are the slopes of the line segment connecting ˆix  to the origin ( )1, 2, ,i n=  ; ( )x̂φ  
( )( )0 0φ =  is used to attenuate the uncertain nonlinear action of ( ),f x w ; ( )θ σ  ( )( )0 m Mθ θ σ θ< < <  is 

applied to reorganize the integrator output; ( )ϕ σ  ( )( )0 0ϕ =  is utilized to improve the integral control per-  
formance ( )( )0 d dm M

σ σ σα α ϕ σ σ α< < + ≤ ; ( )ˆ ˆ ˆ,f x w  and ( )ˆ ˆ ˆ,g x w  are the normal models of ( ),f x w  and  

( ),g x w , respectively. ( )Φ   belongs to the function set FΦ . 
Assumptions 3: By the definition of controller (7), it is convenient to suppose that the following inequalities, 

( ) ( ) ( ) ( ), 0, , x
ff x w f w g x w x l xφφ− − ≤                         (9) 

( ) ( )0 0lσϕϕ σ ϕ σ σ σ− ≤ −                                   (10) 

hold for all xx D∈ , ww D∈  and σ , 0 Rσ ∈ , where x
fl φ  and lσϕ  are all positive constants. 

By the definitions of ( )ˆi iu x , ( )ˆi iv x  and ( )θ σ , and letting ˆi i ie x x= −  ( )1, 2, ,i n=  , the controller (7) 
can be written as, 

( ) ( ) ( )
( )

1
1 1 2 2

1
1 1 2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
n n

n n

u x x x x

x x x
σµ α α α α σ φ ϕ σ

σ µ β β β

−

−

 = − + + + + − −


= + + +






                 (11) 

and the whole closed-loop system can be written as, 

( ) ( ) ( ) ( ) ( ) ( )( )
( )( )

( ) ( )

1 2

2 3

1
1 1 2 2

1
1 1 2 2

1 1
1 1 2 2 1 1 2 2

 
ˆ, , , ,

        ,
n n n

n n

n n n n

x x
x x

x f x w g x w x g x w g x w x x x

g x w e e e

x x x e e e

σφ ϕ σ µ α α α α σ

µ α α α

σ µ β β β µ β β β

−

−

− −

=
 =


 = − − − + + + +
 + + + +

 = + + + − + + +













 

     (12) 

( )

( ) ( )
( ) ( ) ( )( )

1

1
1 2 1 1

2
2 3 2 1

1 1
1 1 1 1 2 2

1
1 1 2 2

ˆ

 
ˆ

ˆ       

n n
n f n n g n n

g n n g

e

e e h e

e e h e

e h e h x x x

e e e x
σ

σ

ε

ε

ε ε σ µ α α α α σ

µ α α α φ ϕ σ

−

−

− − − −
+

−

Φ =


= −
 = −


 = ∆ − − Φ − ∆ + + + +

 + ∆ + + + − ∆ +














                (13) 

where 

( ) ( )ˆ ˆ ˆ, ,f f x w f x w∆ = − , ( ) ( )ˆ ˆ ˆ, ,g g x w g x w∆ = − , 

and ( )θ σ  is integrated into iβ ( )1,2, ,i n=  . 
By the equation (2) and inequality (4), and choosing 1µ−  and 1

1
n

nhε − −
+  to be large enough, and then setting 

0x e= =   and 0x e= =  of the systems (12) and (13), we obtain 

( ) ( ) ( )1 1
0 00, 0,f w g w σµ α σ ϕ σ− −= +                                (14) 

( )( ) ( )1 1
0 0 0 0 1 0ˆn

f g nhσµ α σ ϕ σ ε σ− − −
+∆ − ∆ + = Φ                        (15) 

where 

( ) ( )0
ˆ ˆ0, 0,f f w f w∆ = −  and ( ) ( )0 ˆ ˆ0, 0,g g w g w∆ = − . 
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Thus, we ensure that 0σ  and 0σ̂  are the unique solutions of the systems (12) and (13), respectively. 
Defining 

TT
0z x σ σ = −  , ( ) ( )0 0ˆ ˆe σ σ= Φ −Φ  and n i

i ieη ε − +=  ( )0,1,2, ,i n=  , and substituting (14)  

and (15) into (12) and (13), respectively, the whole closed-loop system can be rewritten as, 

( )
( )

,

,
z zz A z F z e

A F z eη ηεη η ε

= +


= +





                                 (16) 

where 

1 1 1 1
1 2

1 1 1
1 2

0 1 0 0
0 0 0 0
0 0 1 0

0

z

n

n

A

σµ α µ α µ α µ α
µ β µ β µ β

− − − −

− − −

 
 
 
 =
 
− − − − 
  











, 

1

2

1

1

0 1 0 0 0 0
0 1 0 0 0

0 0 0
0 0 0 1 0
0 0 0 0 1

0 0 0 0
n

n n

h
h

A

h
h h

η

−

+

 
 − 
 −

=  
 
 −
 
− −  

 



, 

( )
T1 1

1 2 3, 0 0zF z e δ µ δ µ δ− − = + −  , 

( )
T1

1 2, 0 0 0F z eη µ− = ∆ + ∆  , 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1
1 0ˆ, , 0, , , 0, 0, 0,f x w g x w x f w g x w g x w g w f w g wδ φ ϕ σ ϕ σ −= − − − − − −   , 

( )( )2 1 1 2 2, n ng x w e e eδ α α α= + + + , 

3 1 1 2 2 n ne e eδ β β β= + + + , 

( ) ( ) ( )( ) ( ) ( ) ( )1
1 0 0 0ˆ 0, 0,f f g g g gx f w g wφ ϕ σ ϕ σ −∆ = ∆ −∆ −∆ −∆ − − ∆ −∆ , 

( ) ( )( )2 1 1 2 2 1 1 2 2 0g n n g n ne e e x x x σα α α α α α α σ σ∆ = ∆ + + + − ∆ + + + + −  , 

and ( ),g x w  is integrated into iα  and σα . 
By Assumptions 2 and 3, the uncertain terms 1δ , 2δ , 3δ , 1∆  and 2∆  satisfy the linear growth bound, 

( )
1 11
z z η
δ δδ γ γ ε η≤ +                                 (17) 

( )
22
η
δδ γ ε η≤                                       (18) 

( )
33
η
δδ γ ε η≤                                       (19) 

( )
1 11

z z ηγ γ ε η∆ ∆∆ ≤ +                                (20) 

( )
2 22

z z ηγ γ ε η∆ ∆∆ ≤ +                               (21) 

where 
1

z
δγ , ( )

1

η
δγ ε , ( )

2

η
δγ ε , ( )

3

η
δγ ε , 

1

zγ ∆ , ( )
1

ηγ ε∆ , 
2

zγ ∆  and ( )
2

ηγ ε∆  are all positive constants. 
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3. Propositions on Equal Ratio Gain Technique 
Equal ratio gain technique is firstly proposed by [10] and is extended to the canonical interval system matrix in 
[11]. For analyzing the stability of the closed-loop system (16), it is necessary to review two important proposi-
tions on Equal ratio gain technique as follows. 

Proposition 1 [10]: as any row controller gains, or controller and its integrator gains of a canonical system 
matrix tend to infinity with the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov 
equation all tend to zero. 

Proposition 2 [11]: a canonical interval system matrix can be designed to be Hurwitz as any row controller 
gains, or controller and its integrator gains increase with the same ratio. 

Based on two Propositions above, it is not enough to analyze the stability of the closed-loop system (16). So, 
a new proposition on Equal ratio gain technique is demonstrated in the next two subsections. 

3.1. New Proposition 
Consider the following controllable canonical interval system matrix A, 

1 1 1 1
1 2 1

1 1 1
1 2

0 1 0 0
0 0 0 0
0 0 1 0

0
n n

n

A
µ α µ α µ α µ α
µ β µ β µ β

− − − −
+

− − −

 
 
 
 =
 
− − − − 
  











 

where 

( )0   1, 2, , 1m M
i i i i nα α α< ≤ ≤ = + , 

( )0   1, 2, ,m M
j j j j nβ β β< ≤ ≤ =  , 

and µ  is a positive constant. 
By Proposition 2, the interval system matrix A can be designed to be Hurwitz for all 0 m M

i i iα α α< ≤ ≤ , 
0 m M

j j jβ β β< ≤ ≤  and 0 µ µ∗< < . Thus, for any given positive define symmetric matrix Q there exists a 
unique positive define symmetric matrix P that satisfies Lyapunov equation TPA A P Q+ = − , and the solution 
of Lyapunov equation can be obtained by skew symmetric matrix approach [13], that is, 

( ) 10.5P S Q A−= −  

where 
TS PA A P= −  and T TA S SA A Q QA+ = − . 

The inversion of the matrix A with 1µ =  is, 

( )

( )

1
1

1

11
1 1 1 1

0
1 0 0 0 0
0 1 0 0 0
0 0 0
0 0 1 0 0

n n

A

β

α α α β

−

−

−−
+ +

 ∗ ∗ ∗
 
 
 
 =
 
 
 
 ∗ ∗ ∗ − − 







  





                       (22) 

where the elements ∗  are omitted since it is useless to achieve our object. The interesting reader can evaluate 
them by 1AA I− = . 

It is well known that the solution P of Lyapunov equation is more and more complex as the order of the sys-
tem matrix A increases. Therefore, for clearly showing the results, we consider a simple case, that is, taking 
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Q I=  and 2n =  of the system matrix A. Thus, taking 1µ = , obtain, 

12 13

12 23

13 23

1
1

1

s s
S Q s s

s s

− 
 − = − − 
 − − − 

 

( )

( ) ( )

1
1

1

1 1
3 1 3 1

0
1 0 0A

β

α α α β

−

−

− −

 ∗
 

=  
 
∗ − −  

 

where 

( )
( )

1 1 3 2 1 1 1 1 2 2 2 1 2
12

2 3 2 1 3 1

s
α α α β α β β α β β α β β

α α β α α β
+ + + + −

=
+ −

 

( )
1 2 2 3 2 1 2 2 1 2 3 3 3 1

13
2 3 2 1 3 1

s
α α β α β β α α β α α α α β

α α β α α β
− − − −

=
+ −

 

( )
( )

3 3 3 2 1 3 2 2 2 1
23

2 3 2 1 3 1

s
α α α β α α β β α β

α α β α α β
+ + + +

= −
+ −

 

and then we have, 

1
13 13

1 3 1

1
2 2

p s α
β α β

= − −  

23
3

1
2

p
α

=  

13 1
33

1 3 12 2
s

p α
β α β

= − +  

Now, 3α , 2α , 1α , 2β  and 1β  are multiplied by 1µ− , then we obtain, 

( )
( )

2
1 1 3 2 1 1 1 1 2 2 2 1 2

12
2 3 2 1 3 1

sµ
α µ α µ α β α β β µ α β β α β β

α α β µα µα β
+ + + + −

=
+ −

 

( )
1 2 2 3 2 1 2 2 1 2 3 3 3 1

13
2 3 2 1 3 1

sµ
α α β α β β α α β µα α α α β

α α β µα µα β
− − − −

=
+ −

 

( )
2

3 3 3 2 1 3 3 2 2 2 1
23

2 3 2 1 3 1

sµ
µ α α α β µα α α β β µα β

α α β µα µα β
+ + + +

= −
+ −

 

1
13 13

1 3 1

1
2 2

p sµ α
µ µ

β α β
= − −  

23
3

1
2

p µ
α

=  

13 1
33

1 3 12 2
s

p
µ α
µ µ

β α β
= − +  

It is obvious that 12sµ , 23sµ  and 13sµ  all tend to the constants as 0µ → , and then we have, 



B. S. Liu 
 

 
108 

3 3 0P Pµ µ= →  as 0µ →  

where [ ]3 3 31 32 33P P p p pµµ= = . 
From the statements above, it is easy to see that for 2n =  of the system matrix A, 3P  can be formulated 

as the linear form on µ  and tends to zero as 0µ → . Moreover, the solution of the matrix S is more and more 
complex as the order of the system matrix A increases. Thus, by the inversion of system matrix 1A−  (22), 

1nP +  can be formulated as the linear form on µ  for the 1n + -order system matrix A, and with the help of 
computer, it can be verified that the solution of 1nPµ

+  still tends to the constant as 0µ → . Therefore, for the 
1n + -order system matrix A, we can conclude that 1 0nP + →  as 0µ → . As a result, the following theorem 

can be established. 
Theorem 1: If the interval system matrix A is Hurwitz for all 0 m M

i i iα α α< ≤ ≤ , 0 m M
j j jβ β β< ≤ ≤  and 

0 µ µ∗< < , and then we have, 

1 1 0n nP Pµ µ+ += →  as 0µ → . 

where 

1 1 1,1 1,2 1, 1n n n n n nP P p p pµ µ+ + + + + + = =   , 

1 1 1 1 1 1
1 1 1, 1 1 1 12 2, 1 1 1 1, 1 1, 1 1 1 1 1 1, 1 1 10.5 1n n n n n n n n n n n nP s s s s s sµ µ µ µ µ µ µβ α α α α α α β α α α− − − − − −
+ + + + + − − + + + + + = − + + + +  . 

Discussion 1: From the statements above, the solution of the matrix S is more and more complex as the order 
of the system matrix A increases. So, although Theorem 1 is demonstrated by taking Q I=  and the single va-
riable system matrix A, it is very easy to extend Theorem 1 to any given positive define symmetric matrix Q 
and the multiple variable system matrix A with the help of computer since there is not any difficulty to obtain 
the solution of the matrix S in theory, that is, Lyapunov equation applies to not only the single system matrix but 
also the multiple system matrix. Thus, there is the following proposition. 

Proposition 3: as any row integrator and its controller gains of a canonical interval system matrix tend to in-
finity with the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov equation all tend 
to zero. 

3.2. Example 
For testifying the justification of Theorem 1 and Proposition 3, we consider a 6-order two variable system ma-
trix A as follows, 

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 4 5

0 0 0 0 1 0
0 0 0 0 0 1

0 0
0 0

0
0

x x x x

y y y y

x x x x x

y y y y y

A
β β β β
β β β β
α α α α α
α α α α α

 
 
 
 

=  
 
 − − − − −
 
− − − − −  

 

The inversion of the system matrix A is, 

13 14

23 24

33 34 351

43 44 46

0 0
0 0

0
0

1 0 0 0 0 0
0 1 0 0 0 0

a a
a a
a a a

A
a a a

−

∗ ∗ 
 ∗ ∗ 
 ∗ ∗

=  
∗ ∗ 
 
 
  

 

where 
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( )

( )

( )

2 1 1 2 2 1
13 23 33

2 1 1 2 2 1 1 2 3 2 1 1 2

1 2 2 1 2 1
43 14 24

2 1 1 2 2 1 1 23 2 1 1 2

1 2 2 1
34

3 2 1 1 2

,    ,    

,    ,    

,   

y y x y x y

x y x y x y x y x x y x y

y y y y x x

y x y x y x y xy x y x y

x x x x

x y x y x

a a a

a a a

a

β β α β α β
β β β β β β β β α β β β β

α β α β β β
β β β β β β β βα β β β β

α β α β
α β β β β

−
= − = =

− − −

−
= = − =

− −−

−
=

− ( )
1 2 2 1

44 35 46
3 33 2 1 1 2

1 1 ,    ,    .
y x y x

x yy y x y x
a a aα β α β

α αα β β β β
−

= = − = −
−

 

By the equation T TA S SA A Q QA+ = − , it is very easy to obtain the fifteen linear equations with fifteen ele-
ments of the matrix S. So, it is omitted. 

Thus, taking 

0 0 0 0 1 0
0 0 0 0 0 1
8 2 0 0 3 1
2 7 0 0 1 5
8 2 8 0 3 1
2 8 0 8 1 3

A

 
 
 
 

=  
 
 − − − − −
 
− − − − −  

 

3.0 1.0 0.8 0.6 0.5 0.3
1.0 5.0 1.3 1.0 0.8 0.2
0.8 1.3 6 0.8 0.4 1.0

0.6 1.0 0.8 2.0 1.3 0.5
0.5 0.8 0.4 1.3 3.0 0.8
0.3 0.2 1.0 0.5 0.8 6.0

Q

− 
 
 
 −

=  
 
 
 
  

. 

Now, by Routh’s stability criterion and with the help of computer, we have: 1) if x
iα  ( )1, 2, ,5i =   and 

x
jβ  ( )1,2, , 4j =   of the system matrix A are multiplied by 1µ− , then it is still Hurwitz for all 

0 1.45µ µ∗< ≤ = , and the numerical solutions of 3P  are shown in Table 1; 2) if y
iα  and y

jβ  of the system 
matrix A are multiplied by 1µ− , then it is still Hurwitz for all 0 2.90µ µ∗< ≤ = , and the numerical solutions 
of 4P  are shown in Table 2. 

From the example above, it is obvious that: 1) as shown in Table 1, Table 2, the absolute values of 3ip  and 
4ip  ( )1,2, ,6i =   are all decrease as µ  reduces; 2) although the result above is obtained by a constant sys-

tem matrix, it is easy to be extended to the interval system matrix. This not only verifies the justification of 
Theorem 1 and Proposition 3 but also shows that for the high order and multiple variable system matrix, it is 
convenient and practical with the help of computer. 

 
Table 1. Numerical Solutions of 3P  for all x

iα  and x
jβ  multiplied by 1µ− . 

 1.0µ =  0.1µ =  0.01µ =  

31p  21.38 4.54e-1 4.27e-2 

32p  −5.90 1.66e-1 1.81e-2 

33p  25.78 5.65e-1 5.32e-2 

34p  −10.86 −2.32e-1 −2.24e-2 

35p  0.75 7.50e-2 7.5e-3 

36p  −0.84 2.36e-1 2.46e-2 
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Table 2. Numerical Solutions of 4P  for all y
iα  and y

jβ  multiplied by 1µ− . 

 1.0µ =  0.1µ =  0.01µ =  

41p  −6.73 6.23e-2 7.70e-3 

42p  6.27 3.09e-1 2.97e-2 

43p  −10.86 −3.13e-1 −3.10e-2 

44p  9.45 4.10e-1 3.93e-2 

45p  0.94 1.55e-1 1.60e-2 

46p  0.25 2.50e-2 2.50e-3 

4. Stability Analysis 
The asymptotic stability of the closed-loop system (16) can be achieved by Equal ratio gain technique and Sin-
gular perturbation technique as follows: 

By Proposition 2 [11], the interval system matrix zA  can be designed to be Hurwitz for all 

0 m M
i i iα α α< ≤ ≤ , 0 m M

j j jβ β β< ≤ ≤ , σα  and 0 µ µ∗< < , 

and by choosing jh  ( )1,2, , 1j n= + , the matrix Aη  can be designed to be Hurwitz, too. Thus, by linear 
system theory, two quadratic Lyapunov functions, 

( ) T
z zV z z P z=                                     (23) 

( ) TV Pη ηη η η=                                     (24) 

can be obtained. Where zP  and Pη  are the solutions of Lyapunov equations, 

T
z z z z zP A A P Q+ = −  and TP A A P Qη η η η η+ = −  

with any given positive define symmetric matrices zQ  and Qη , respectively. 
Using ( ) ( ) ( ) ( ), 1 zV z d V z dVηη η= − +  [1] as Lyapunov function candidate, and then its time derivative 

along the trajectories of the closed-loop system (16) is, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T 1 T T

, 1

            1 1 , , ,

z

z
z z z z z

V z d V z dV

VV z
d z A P P A z d A P P A d F z e d F z e

z

η

η
η η η η η

η η

η
ε η η

η
−

= − +

∂∂
= − + + + + − +

∂ ∂

  

(25) 

Substituting ( ),zF z e  and ( ),F z eη  into (25), obtain, 

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )

T T 1 T T T 1
1 2

T1 1 T 1 T
1 2 1 3 3 1

TT 1 1
1 1 2 1 2 1

, 1 1

               1 1 1

               ,

z z z z zn

zn zn zn

n n

V z d z A P P A z d A P P A d z P

d P z d z P d P z

d P d P

η η η η

η η

η ε η η δ µ δ

δ µ δ µ δ µ δ

η µ µ η

− −

− − −
+ +

− −
+ +

= − + + + + − +

+ − + − − − −

+ ∆ + ∆ + ∆ + ∆



      (26) 

where 

1 2 , 1zn n n n nP p p p + =   , 

1 1,1 1,2 1, 1zn n n n nP p p p+ + + + + =   , 

1 1,1 1,2 1, 1n n n n nP p p pη + + + + + =   . 
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Now, by Propositions 1 and 3, we have, 

0zn znP Pµ µ= →  as 0µ → , 

1 1 0zn znP Pµ µ+ += →  as 0µ → . 

Substituting them and (17) - (21) into (26), obtain, 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1

1 2 3 1 2

1 2

2

1
1 1

21
1

T

, 1 2

               2 1 1

1               2

           ,

z
m z zn

z z
zn zn n

m n

V z d Q P z

d P d P d P z

Q d P

µ
δ

η η µ η µ
δ δ δ η

η η
η η

η λ µγ

µγ ε γ ε γ ε γ µ γ η

λ γ ε µ γ ε η
ε

ζ ζ

−
+ ∆ ∆ +

−
∆ ∆ +

≤ − − −

+ − + + − + +

 − − + 
 

= − Λ



  (27) 

where 
T

zζ η=    , 

( )
1

2z z
z m z znQ Pµ

δρ λ µγ= − , 

( ) ( )( ) ( )
1 2 3 1z zn znP Pη η η µ η µ
δ δ δρ µγ ε γ ε γ ε += + + , 

( )1 2

1
1

z z z
nPη ηρ γ µ γ−

∆ ∆ += + , 

( )m Qη
η ηρ λ= , 

( ) ( )( )1 2

1
12 nPη η

η ηγ γ ε µ γ ε−
∆ ∆ += + , 

( ) ( )

( )

1 1
11

z z
z z

z
z

d d d

d d d

η
η

η η
η η η

ρ ρ ρ

ρ ρ ρ γ
ε

 − − − −
 Λ =   − − − −    

. 

The right-hand side of the inequality (27) is a quadratic form, which is negative define when, 

( ) ( ) ( )( )211 1z z
z zd d d dη η

η η ηρ ε ρ γ ρ ρ−− − > − +                         (28) 

This is equivalent to, 

( )
( ) ( )( )2

1

1 1

z
z

d
z z
z z

d d

d d d d

η
η

η
η η

ρ ρ
ε ε

ρ γ ρ ρ

−
< =

− + − +
                         (29) 

By the dependence of dε  on d , it is obvious that the maximum of dε  occurs at ( )* z
z zd η η

ηρ ρ ρ= +  [1] 
and is given by, 

4

z
z

d z z
z z

η
η

η
η η

ρ ρ
ε ε

ρ γ ρ ρ
∗ < =

+
                                 (30) 

Although znPµ  and 1znPµ
+  are dependent on x̂ , they are fixed for any given moment t  and all tend to 

the constants as 0µ → , and then there exists ( )tµ∗∗  such that 0z
zρ >  holds for all ( ) ( )0 t tµ µ∗∗< < . 

Thus, by choosing a moderate ( )tµ  and solving the Equation (30), ( )( )tε µ∗  can be obtained, and then 
0Λ >  holds for all ( ) ( )0 t tµ µ∗∗< <  and ( ) ( )( )0 t tε ε µ∗< < . Consequently, if 0Λ >  holds for all 
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[ )0,t∈ ∞ , then we conclude that ( ), 0V z η ≤  holds uniformly in t . 
Using the fact that Lyapunov function ( ),V z η  is a positive define function and its time derivative is a nega-

tive define function if 0Λ >  holds for all [ )0,t∈ ∞ , we conclude that the closed-loop system (16) is stable. In 
fact, ( ), 0V z η =  means 0x = , 0e = , 0σ σ=  and 0ˆ ˆσ σ= . By invoking LaSalle’s invariance principle, it is 
easy to know that the closed-loop system (16) is uniformly exponentially stable. As a result, we have the fol-
lowing theorem. 

Theorem 2: Under Assumptions 1, 2 and 3, if the matrix Aη  is Hurwitz and the interval system matrix zA  
is Hurwitz for all 0 µ µ∗< < , 0 m M

i i iα α α< ≤ ≤ , 0 m M
j j jβ β β< ≤ ≤  and σα , and then the equilibrium point 

0x = , 0e = , 0σ σ=  and 0ˆ ˆσ σ=  of the closed-loop system (16) is uniformly exponentially stable for all 
( ) ( )0 t tµ µ∗∗< <  and ( ) ( )( )0 t tε ε µ∗< < . Moreover, if all assumptions hold globally, and then it is globally 

uniformly exponentially stable. 
By the demonstration above, there exist ( )tµ∗∗  and ( )( )tε µ∗  such that 0z

zρ >  and 0Λ >  hold for all 
[ )0,t∈ ∞ . So, it is practical and feasible to find a real method to evaluate the instantaneous values ( )tµ∗∗  and 
( )( )tε µ∗ , that is, as follows: 

Step 1: by the inequality ( ) ( )
1

2 z
m z znQ P tµ

δλ µγ> , the impermissible minimum of ( )zn m
P t  is, 

( ) ( )
1

0.5 z
zn m zm

P t Q δλ γ=  

Step 2: by the definitions of ( )ˆi ixα  and ( )ˆi ixβ , the instantaneous values ( )i tα  and ( )i tβ  can be given 
as, 

( )
( )( )
( ) ( )

( )
( )( )
( )

( )

( )
ˆ 0

ˆ
ˆ, if  0;

ˆ

ˆd
ˆif  0.

ˆd
i

i i
i i

i

i i
i i

i x t

u x t
t x t

x t

u x t
t x t

x t

α

α
=


= ≠



 = =


 

( )
( )( )
( ) ( )

( )
( )( )
( )

( )

( )
ˆ 0

ˆ
ˆ, if  0;

ˆ

ˆd
ˆif  0.

ˆd
i

i i
i i

i

i i
i i

i x t

v x t
t x t

x t

v x t
t x t

x t

β

β
=


= ≠



 = =


 

Step 3: by the values ( )zn m
P t , ( )i tα , ( )i tβ  and the condition 0 µ µ∗< < , and using the iterative me-

thod to solve Lyapunov equation, 

( ) ( ) ( ) ( )T
z z z z zP t A t A t P t Q+ = −  

( )tµ∗∗  can be obtained. Thus, by choosing a moderate ( )tµ  and solving Lyapunov equation above again, 
( )znP tµ  and ( )1znP tµ

+  can be evaluated. 
Step 4: by the values ( )i tα , ( )i tβ  and definitions of n i

i ieη ε − += , 1δ  2δ , 3δ , 1∆  and 2∆ , 
1

z
δγ , 

1

zγ ∆ , 
2

zγ ∆ , ( )
1

η
δγ ε , ( )

2

η
δγ ε , ( )

3

η
δγ ε , ( )

1

ηγ ε∆  and ( )
2

ηγ ε∆  can be obtained for given ε . 1nPη +  can be eva-
luated by solving Lyapunov equation TP A A P Qη η η η η+ = − . 

Step 5: by the values ( )znP tµ , ( )1znP tµ
+ , 1nPη + , 

1

z
δγ , 

1

zγ ∆ , 
2

zγ ∆ , ( )
1

η
δγ ε , ( )

2

η
δγ ε , ( )

3

η
δγ ε , ( )

1

ηγ ε∆  and  

( )
2

ηγ ε∆ , and using the iterative method to solve the inequality (30), ( )( )tε µ∗  can be obtained. 
Discussion 2: From the procedure of stability analysis above, it is obvious that: although ( )tε  is dependent 

on ( )tµ , ( )tε  can be chosen arbitrarily small. Thus, so long as the bounded conditions (17) - (21) are satis-
fied, the asymptotically stable control can be achieved. This shows that the striking feature of output feedback 
nonlinear general integral control, that is, its robustness with respect to the nonlinearities, uncertainties and dis-
turbances from the real system, control input and estimated error dynamics, is clearly demonstrated by Equal ra-
tio gain technique and Singular perturbation technique. This means that the organic combination of Equal ratio 
gain technique and Singular perturbation technique constitutes a powerful tool to solve the output feedback con-
trol design problem of dynamics with the nonlinear and uncertain actions. 
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5. Example and Simulation 
Consider the pendulum system [1] described by, 

( )sina b cTθ θ θ= − − +   

where , , 0a b c > , θ  is the angle subtended by the rod and the vertical axis, and T is the torque applied to the 
pendulum. View T as the control input and suppose we want to regulate θ  to r. Now, taking 1x rθ= − , 

2x θ=  , the pendulum system can be written as, 

( )
1 2

2 1 2sin
x x
x a x r bx cu
=

 = − + − +





 

and then it can be verified that ( )0 sinu a r c=  is the steady-state control that is needed to maintain equilibrium 
at the origin. 

The nonlinear general integral controller and the integral observer can be given as, 

( ) ( )( ) ( ) ( )
( ) ( )( )

1
1 1 2 2 1

1
1 1 2 2

ˆ ˆ ˆ ˆ ˆ3 3sinh 3 tanh 4 0.3tanh 4sin 3
ˆ ˆ ˆ ˆ3 sinh 2tanh

u x x x x x

x x x x

µ σ σ

σ µ

−

−

 = − + + + + − +


= + + + 
 

( )( )
( )

( ) ( ) ( )

1
1 1

1
1 2 1 1

2 3
2 1 1 1

ˆ ˆ ˆcosh

ˆ ˆ ˆ5

ˆ ˆ ˆ ˆ10sin 7.5 20 5sinh

x x

x x x x

x x r u x x

σ σ

ε

ε ε σ

−

−

− −

 = −
 = + −


= − + − + − +







 

Thus, it is easy to obtain 16 14.1α≤ < , 23 4α≤ ≤ , 4σα = , 14 6.68β≤ <  and 21 3β< ≤ , and then the 
closed-loop system can be written as, 

( )
( )

,

,
z zz A z F z e

A F z eη ηεη η ε

= +


= +





 

where 

[ ]T1 2 0z x x σ σ= − , 

( ) ( )0 0ˆ ˆsinh sinhe σ σ= − , 

( )ˆ   1, 2i i ie x x i= − = , 

( )2   0,1, 2j
j je jη ε − += = , 

( )1 1 1 1
1 2

1 1
1 2

0 1 0

0
zA c c c b c σµ α µ α µ µ α

µ β µ β

− − − −

− −

 
 

= − − + − 
 
 

, 

0 1 0
0 5 1
5 20 0

Aη

 
 = − 
 − − 

, 

( )
T1 1

1 2 3, 0zF z e δ µ δ µ δ− − = + −  , 

( )
T1

1 2, 0 0F z eη µ− = ∆ + ∆  , 
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( ) ( ) ( ) ( ) ( )( )1 1 1 0ˆsin sin 4 sin 3 0.3 tanh tanha x r a r c x cδ σ σ= − + + + − − , 

( )2 1 1 2 2c e eδ α α= + , 

3 1 1 2 2e eδ β β= + , 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 2 1 0ˆ ˆ ˆ ˆsin sin sin sin 4sin 3 0.3tanh 0.3tanha x r r a x r r bx c c x σ σ∆ = − + − + + − − + − − + , 

( )( ) ( ) ( )( )2 1 1 2 2 1 1 2 2 0ˆ ˆc c e e c c x x σα α α α α σ σ∆ = − + − − + + − . 

The normal parameters are 10a c= =  and 2b = , and in the perturbed case, b  and c  are reduced to 1 
and 5, respectively, corresponding to double the mass. Thus, with 1 6mα = , 2 3mα = , 4σα = , 1 6.68Mβ = , 

2 1mβ = , 5c =  and 1b = , the following inequality, 

( )2
2 2 1 2 1 2 1 0m m m m m m Mc b c bσ σ σα α β µ α µ α α α β α β+ + + − >  

holds for all 0 µ< < ∞ , and then the matrix zA  is Hurwitz for all 16 14.1α≤ < , 23 4α≤ ≤ , 4σα = , 
14 6.68β≤ < , 21 3β< ≤  and 0 µ< < ∞ , and Aη  is Hurwitz, too. 

Now, solving Lyapunov equation, TP A A P Iη η η η+ = − , obtain 1 0.57nPη + ≤ , and using ˆ 10a = , ˆ 7.5c = , 
10c = , 2b = , obtain, 

1 4.5 13.4zδ ε η≤ + , 

( ) ( )2 2 2
2 1 210 t tδ ε α α η≤ + , 

( ) ( )2 2 2
3 1 2t tδ ε β β η≤ + , 

1 4.9 13.4z ε η∆ ≤ + , 

( ) ( ) ( ) ( )2 2 2 2 2 2
2 1 2 1 22.5 2.5t t t t zσε α α η α α α∆ ≤ + + + + , 

and then, we have, 

1
4.5z

δγ = , ( ) ( ) ( )
2

2 2 2
1 210 t tη

δγ ε ε α α= + , 

( )
1

13.4η
δγ ε ε= , ( ) ( ) ( )

3

2 2 2
1 2t tη

δγ ε ε β β= + , 

( )
1

13.4ηγ ε ε∆ = , ( ) ( ) ( )
2

2 2 2
1 22.5 t tηγ ε ε α α∆ = + , 

1
4.9zγ ∆ = , ( ) ( )

2

2 2 2
1 22.5z t t σγ α α α∆ = + + . 

Thus, using ( )1 tα , ( )2 tα , ( )1 tβ , ( )2 tβ , 4σα = , 5c = , 1b =  and 1µ =  to solve the equations, 
T

z z z zP A A P I+ = −  and ( )4z z z
z z z

η η
η η ηε ρ ρ ρ γ ρ ρ= + , ( )tε ∗  can be obtained. 

Now, taking 1µ =  and ( ) ( )t tε ε ∗= , the simulation is implemented under the normal and perturbed cases, 
respectively. 

Normal case: the initial states are 1 1̂ 3.0x x= = −  and 2 2ˆ 0x x= = ; the system parameters are 10a c= =  
and 2b = . 

Perturbed case: the initial states are 1 1̂ 3.0x x= = − , 2 1.5x = −  and 2ˆ 0x = ; the system parameters are 
10a = , 1b =  and 5c = , corresponding to doubling of the mass. Moreover, we consider an additive im-

pulse-like disturbance ( )d t  of magnitude 60 acting on the system input between 3 s and 3.5 s. 
Figure 2 and Figure 3 showed the simulation results under the normal (solid line) and perturbed (dashed line) 

cases. The following observations can be made: 1) as 1µ = , there exists ( )tε ∗  such that 0z
zρ >  and 0Λ >   
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Figure 2. The values of 100ε  under normal (solid line) and 
perturbed case (dashed line). 

 

 
Figure 3. System output under normal (solid line) and per-
turbed case (dashed line). 

 
hold for all ( )1 tα , ( )2 tα , ( )1 tβ  and ( )2 tβ . This shows that the closed-loop system is uniformly asymptotic 
stable. 2) the optimum responses are almost identical before the additive impulse-like disturbance appears. This 
means that by Equal ratio gain technique and Singular perturbation technique, we can tune an output feedback 
nonlinear general integral controller with good robustness and high control performance. All these demonstrate 
that output feedback nonlinear general integral control has the striking robustness, that is, so long as the bounded 
conditions are satisfied, the asymptotically stable control can be achieved, but also the organic combination of 
Equal ratio gain technique and Singular perturbation technique constitutes a powerful and practical tool to solve 
the output feedback control design problem of dynamics with the nonlinear and uncertain actions. 

6. Conclusions 
This paper proposes an output feedback nonlinear general integral controller for a class of uncertain nonlinear 
system. The main contributions are that: 1) as any row integrator and its controller gains of a canonical interval 
system matrix tend to infinity with the same ratio, if it is always Hurwitz, and then the same row solutions of 
Lyapunov equation all tend to zero; 2) theorem to ensure regionally as well as semi-globally exponential stabili-
ty is established in terms of some bounded information; 3) a real time method to evaluate the ratio coefficients 
of controller and observer are proposed such that their values can be chosen moderately. 

Theoretical analysis and simulation results show that not only output feedback nonlinear general integral con-
trol has the striking robustness but also the organic combination of Equal ratio gain technique and Singular per-
turbation technique constitutes a powerful tool to solve the output feedback control design problem of dynamics 
with the nonlinear and uncertain actions. 
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Abstract 
Navier-Stokes equation has for a long time been considered as one of the greatest unsolved prob-
lems in three and more dimensions. This paper proposes a solution to the aforementioned equa-
tion on R3. It introduces results from the previous literature and it proves the existence and uni-
queness of smooth solution. Firstly, the concept of turbulent solution is defined. It is proved that 
turbulent solutions become strong solutions after some time in Navier-Stokes set of equations. 
However, in order to define the turbulent solution, the decay or blow-up time of solution must be 
examined. Differential inequality is defined and it is proved that solution of Navier-Stokes equa-
tion exists in a finite time although it exhibits blow-up solutions. The equation is introduced that 
establishes the distance between the strong solutions of Navier-Stokes equation and heat equation. 
As it is demonstrated, as the time goes to infinity, the distance decreases to zero and the solution 
of heat equation is identical to the solution of N-S equation. As the solution of heat equation is de-
fined in the heat-sphere, after its analysis, it is proved that as the time goes to infinity, solution 
converges to the stationary state. The solution has a finite τ time and it exists when τ → ∞ that im-
plies that it exists and it is periodic. The aforementioned statement proves the existence and 
smoothness of solution of Navier-Stokes equation on R3 and represents a major breakthrough in 
fluid dynamics and turbulence analysis. 

 
Keywords 
Navier-Stokes Equation, Millennium Problem, Nonlinear Dynamics, Fluid, Physics 

 
 

1. Introduction 
In this paper, the following form of Navier-Stokes equations in R3 is studied: 

( ) ( )
1

, , 0
n

i
i j i i

j j i

nx t x R
u pu u y u

x
tf

t x
ν

=

∆ ∈
∂∂ ∂

+ ⋅ = − +
∂ ∂ ∂

≥∑                      (1) 
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( )
1

0 , 0
n

ni

i i

u
div u x R t

x=

∂
= = ∈ ≥

∂∑                               (2) 

With initial conditions 

( ) ( ) ( )0,0 nu x u x x R= ∈                                  (3) 

Here 0u x= , C∞  (divergence-free vector field on nR ), ( ),if x t  are the components of a given, externally  

applied force, v is a positive coefficient (the viscosity) and 
2

2
1

n

i ix=

∂
∆ =

∂∑  is the Laplacian in space variables. If  

Euler equations are considered, then the same set of equation must be applied with the condition that viscosity is 
equal to zero. 

The following conditions must be satisfied as it is wanted to make sure that ( ),u x t  does not grow large as 
x →∞ : 

( ) ( )1 on for any and
Ko n

x Ku x C x R Kα
α α

−
∂ ≤ +                        (4) 

And 

( ) ( ) [ [ for, 1 on 0, , , any
Km n

x t mKf x t C x t R x m Kα
α α

−
∂ ∂ ≤ + + ∞                  (5) 

The accepted solution of N-S is physically reasonable if it only satisfies: 

[ [( ), 0,np u C R x∞∈ ∞                                 (6) 

And 

( ) ( )for all bounded e, nd e0 rgy
nR

u x t x C t< ≥∫                        (7) 

At the same time, it is possible to look at spatially periodic solutions. We can assume the following condi-
tions: 

( ) ( ) ( ) ( ), , , for 1o o
j ju x e u x f x e t f x t j n+ = + = ≤ ≤                     (8) 

Under the condition that th
je j=  is unit vector in nR . It must be assumed that ou  is smooth and that 

( ) ( ) [ [3, 1 o for ann 0, , ,yKm
x t mKf x t C t R x m Kα

α α−∂ ∂ ≤ + ∞                   (9) 

The solution is then accepted if it satisfies: 

( ) ( ) [ [3 fo, o 0 1r, n ,ju x t u x e t R x j n= + ∞ ≤ ≤                       (10) 

And 

[ [( ), 0,np u C R x∞∈ ∞
 

The problem is to find and analyze whether a strong, physically reasonable solution exists for the Navier- 
Stokes equation. 

The statement that will be proved is existence and smoothness of Navier-Stokes solutions on R3. Take v > 
0 and n = 3. Let ( )ou x  be any smooth, divergence-free vector field satisfying (1.4). Take ( ),f x t  to be 
identically zero. Then there exist smooth functions ( ),p x t , ( ),iu x t  on R3 x[0, ∞] and the above condi-
tions and equations are satisfied. 

2. Results 
Firstly, the definition of turbulent solutions (Oliver and Titti) [1] is provided. We must define the set of all C∞  
real vector functions ϕ  with compact support in nR  such that 0div ϕ = . We define rLσ  as the closure of 
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0,C σ
∞  with respect to Lr norm . r ; ( ).,.  is the inner product in L2. Lr stands for the usual Lr-space over Rn,  

1 r≤ ≤ ∞. 1
0,H σ  is the closure of 0,C σ

∞  with respect to the norm 1 2 2Hφ φ φ= + ∇  where 
, 1, ,

i

j i j n
x
ϕ

ϕ
=

 ∂
∇ =   ∂ 



.  

When X is a Banach space, . X  denotes the norm on X. [ ]( )1 2, ;mC t t X  and [ ]( )1 2, ;rL t t X  are the Banach 
spaces, where 0,1, ,m =   and 1t  and 2t  are real numbers such that 1 2t t< . C denotes various constants. 

Def 1. (Oliver and Titti) [1] A turbulent solution of Navier-Stokes equation is defined as following: 

1) ( ) ( )2 2 1
0,0, ; 0, ; for all 0u L L L T H Tσ σ

∞∈ ∞ ∩ < < ∞                       (11) 

The relation 

2) ( ) ( ) ( ) ( )( )
0

, , , d , 0
T

u t u u u t aϕ ϕ ϕ ϕ− ∂ ∂ + ∇ ∇ + ⋅∇ =  ∫                    (12) 

Holds for almost all T and all [ [( )1 1
0,0, ; nC T H Lσϕ ∈ ∩  such that ( ), 0Tϕ ⋅ =  

Strong energy inequality 

3) ( ) ( ) ( )2 2 2

2 2 2
2 d

t

s

u t u u sτ τ+ ∇ ≤∫                                    (13) 

Holds for almost all 0s ≥  including 0s = , and all t s> . 
It is necessary to introduce the Stokes operator rA  in rLσ . The following Helmholtz decomposition is ob-

tained: 

, 1r r rL L G rσ= ⊗ < < ∞  

where { };r r r
locG p L p L= ∇ ∈ ∈ . Pσ  denotes the projection from rL  onto rLσ . rA  defines the Stokes oper-

ator with domain ( ) 2,r r
rD A H Lσ= ∩ . A denotes the Stokes operator rA . { } 0Eλ λ

≥  denotes the spectral de-
composition of self-adjoint operator A. 

The existence of turbulent solutions for n = 3 and n = 4 is given by Leray and Kato. In order to derive the next 
results, theorem from Takahiro Okabe will be introduced. 

Theorem 1. Let 2 4n≤ ≤  and let 1r >  and 0m ≥  be 
For 2n = , 

1 4 3, 0 4 3 andr m r< < ≤ < −  

For 3, 4n =  

( )1 , 0 1
1

n nr m n
n r

< < ≤ < − −
−

 

Suppose that ,mK δ
α  for { }2

, ˆ; ( form
mK Lδ
α ϕ ϕ ξ α ξ ξ δ= ∈ ≥ ≤  for , 0α δ >  and 0m ≥ . If 

2
,

r
ma L L K δ

σ σ α∈ ∩ ∩  for some , 0α δ >  then for every turbulent solution ( )u t  there exist 0T >  and 
( ), , , , , 0C n r m aδ α >  such that: 

( )
( )

( )1

2

1 n r n mE u t C t
u t
λ

λ
− − + −− ≤                               (14) 

holds for all λ  and for all t T>  
Def 2. Let n r< < ∞ , na Lσ∈ . A measurable function u defined on ( )0,nR × ∞  is called a global strong so-

lution of Navier-Stokes equation if: 

[ )( ) ( )( )0, ; 0, ;n ru C L C Lσ∈ ∞ ∩ ∞                             (15) 

( )( ), 0, ; nu Au C L
t σ

∂
∈ ∞

∂
 and u satisfies: 
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( ) 0, 0u Au P u u t
t σ

∂
+ + ⋅∇ = >

∂
                             (16) 

where ( )P u uσ ⋅∇  denotes the projection from rL  onto rLσ  of the product of the divergence of solution u and 
the solution itself. 

Takahiro Okabe [2], in his paper named “Asymptotic energy concentration in the phase of the weak solutions 
to the Navier-Stokes equation”, proves that turbulent solutions of Navier-Stokes equation become strong solu-
tions after some definite time. So for the turbulent solution of ( )u t  of Navier-Stokes equation there exists 

* 0T >  such that ( )u t  is a strong solution of Navier-Stokes equation on [ )* ,T ∞ , then the energy identity ex-
ists: 

( ) ( )
22 1/2

2 2

d 2 0
d

u t A u t
t

+ =                               (17) 

For *t T≥ . For any fixed 0λ > , the second term in (16) is estimated from below as: 

( ) ( ) ( )( )2 2 2 2 2 21/2
2 22 2 22

0

d d d
2p p pA u t E u E u E u u t E u tλ

λ λ

λρ ρ λ
∞ ∞ ∞

     = ≥ ≥ ≥ −     ∫ ∫ ∫           (18) 

From (16) to (18), the following is obtained: 

( ) ( ) ( ) 22 2

2 2 2

d
d

u t u t E u t
t χλ λ+ ≤                             (19) 

Afted dividing the both sides of (19) by ( ) 2

2
u tλ , the following is obtained: 

( )

( )
( )

( )

2 2
2 2

2 2

2 2

d
d 1

u t E u tt
u t u t

χ

λ
+ ≤                                (20) 

By (17), the following is obtained ( ) ( ) ( ) ( )
22 21 2

2 22
d d 2 2t u t A u t u t= − = − ∇  it follows from (17) to (20) 

that: 

( )
( )

( )
( )

2 2

2 2
2 2

2 2

21
E u t u t

u t u t

χ

λ

∇
− ≤                                (21) 

By introducing the new theorem that is proved in Takahiro Okabe’s paper [2], the following is obtained. 
Theorem 2. Let 2 4n≤ ≤ . Let r and m be as 
1) 2n =  

4 41 , 0 3
3

r m
r

< < ≤ < −  

2) 3n ≥  

( )1 , 0 1
1

n nr m n
n r

< < ≤ < − −
−  

If 2
0,

ra L L K δ
σ σ σ∈ ∩ ∩ , every turbulent solution of ( )u t  of Navier-Stokes equation satisfies: 

( )
( )

( )( )
2

12
2

2

n r n mu t
O t

u t
− − + −∇

≤                                (22) 

As t →∞ . 
The following theorem can be proved by using well-known Leray’s structure theorem, every turbulent solu-

tion of N-S becomes the strong solution after some time. Although Kato proves that the strong solution decays 
in the same way as the Stokes flow e tA− , we apply different approach by using Oliver and Titti’s paper [1] 
named “Remark on the Rate of Decay of Higher Order Derivatives for solution to the Navier-Stokes equation”. 
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By introducing the above mentioned theorem, the following result is obtained and it proves Theorem 1. 

( )
( )

( )
2

12
2

2

for al1 ln r n mE u t C t t T
u t
λ

λ
− − + −− ≤ ≥  

This result proves that energy of the molecules of fluid moving is smaller than some value determined by C, n, 
r, m and it proves asymptotic energy concentration. In order to prove that turbulent solutions are at the same 
time strong solutions, blow-up time of solutions must be analyzed. 

It is demonstrated that Navier-Stokes equation enter some class as it was already proved ( )e ;A rD Hτ  in ar-
bitrarily short time. Foias and Temam have proved the following solution in the case of periodic boundary con-
dition and for the case of the Navier-Stokes equation on the two-dimensional. Kukavica and Grujic have ob-
tained the given results in pL  spaces. The following lemma must be introduced and it is proved in Oliver and 
Titi’s paper [1]: 

Theorem 3. Let 0τ ≥ , 2r n>  and 2s n< . Then there exists a constant ( ), ,C C n r s=  such that any 
two functions v and w in ( )e ;A rD Hτ  satisfy the inequality: 

( ) ( )( )2 2e , , e e er s r s
r A r A s A r A

L H H L
A vw C n r s A w A v A wτ τ τ τ

− −≤ +               (23) 

The theorem is proved by using Plancherel theorem, the triangle inequality, the inequality 
( ) ( )12r r r rx y x y−+ ≤ +  and the convolution estimate 2 1 2L L Lf g f g∗ ≤ . These are the tools used to prove 
the aforementioned theorem. For further details, look at the aforementioned paper. This theorem demonstrates 
that the blow-up time is infinite so that the solution is existent. In order to find a solution, it must be captured in 
some sort of space where the function oscillates. In order to introduce the following solution, a few more results 
will be introduced. 

Firstly, we assume the existence of solutions [ ] ( )( )0, ; , 2r nu L T H R r n∞∈ >  is known for some T > 0. In 
order to simplify the notation, the following is set: 

2

2r
r L

J A u=                                       (24) 

2

2
er A

r L
G A uτ=                                      (25) 

where ( )tτ τ=  is to be specified later. 
Then the Gevrey norm is used to find the following result: 

( )1 2 1
1 e e d
2 n

r A r A
r r r

R

G G vG A u u A u xτ ττ + += − − ⋅∇∫

                         (26) 

The contribution of pressure term is zero because A commutes with the Leray projection onto divergence free 
vector fields. Note that: 

( )1 2 1 2e r s
s A

r sH
A u c G Gτ

− ≤ +                                 (27) 

By using Theorem 3 and Cauchy-Schwarz inequality, the following result is obtained. 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 !e e d e e

n

r A r A r A r A
s r r r s r r

R

A u u A u x A u u A u c G G G G c G G Gτ τ τ τ
+ + +⋅∇ ≤ ⋅∇ ≤ + + +∫    (28) 

In order to proceed, we introduce the Theorem 4. 
Theorem 4. For all nonnegative p, q and τ we have the following: 

( )
2 2 22e e 2 eqp A p p q AA u A u A uτ ττ +≤ +                            (29) 

The proof is similar to that in Theorem 3, just it should be noted that for every 0x ≥ , 0m >  one has 
e e ex m xx< +  since e ex <  on [ ]0,1  and e ex m xx≤  for 1x ≥ . 

After introducing the theorem and interpolating sG  by using Theorem 3 and Theorem 4 with p s= , 
q r s= − , the similar thing is done with 1sG = . If we apply the Young inequality, the following result is obtained. 
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( ) ( ) ( )1/2 1/2 1/2 1/2 1/2
1 1 3 1 4 1e e d e e 1

n

r A r A r A r A r s
s r r s r r r

R

A u u A u x A u u A c J G G c J G c G Gτ τ τ τ τ −
+ + +⋅∇ ≤ ⋅∇ ≤ + + +∫    (30) 

where 4 2 2n r s n< ≤ < . After setting tτ = , after interpolating the first term on (26) then use the estimate 
on (30), the following equation is obtained: 

( ) ( )1
2, ,r r rHG c u G c r s t G≤ +                               (31) 

This proves that there exists a ( ]0,Tσ ∈  such that ( ) 2
00 rr HG u=  is finite for [ )0,t σ∈ . This proves that 

if space is finite, then Garvey space is finite which demonstrates the existence of stationary solution. 
Now the result of differential inequality for longer time will be derived. The radius of uniform analyticity 

nρ τ=  increases like t  as t →∞  as the solutions for heat equation. First the optimal decay rate for 
Gevrey norm is established, the optimal decay rates for norms of finite order derivatives will be established and 
it will be extended to infinite order. 

If first two terms of Equation (26) are considered and it is assumed that only contribution from linear terms is 
included, interpolation can be used as well as Young inequality while breaking the second term in several frac-
tions. Theorem 3 provides the following: 

12

2
2

r r
r

G J G
τ +

−
≤                                     (32) 

we all together obtain: 

1 2 1 1 1 2

1 12 2 2

21 1
2 2 2 2 2

1 1 1 1 1 3
2 8 2 8 8 2 8

r r
r r r r r

r r r r r

G Jv vG vG G G G

v v v v vG G G J G

ττ ττ
τ τ

τ ττ
τ τ τ τ

+ + + +

+ +

−
− ≤ + − −

   = − + − − + −   
   



 





                (33) 

New theorem is introduced, it is already proved by using Plancherel theorem: 
Theorem 5. Provided that 2 0q p≥ ≥  and 0τ > , the following is obtained: 

( )
2 2, eq p q p AA u c p q u A uττ −≤                            (34) 

Combining Theorem 5 with q r=  and the Young inequality, the following is obtained. 

3 02

1 1
8r rrJ c J G

τ
≤ +                                  (35) 

If we set ( )2
0 tτ τ α= +  where 0 0τ >  and 0 2vα< ≤ . The following is immediately found. 

1
2 4 8

vαττ = ≤                                     (36) 

So that the first two terms on the right of equation (33) are nonpositive and can be neglected. The main task is 
now to analyze the nonlinear terms and if possible prove that these nonlinear solutions do not affect the decay 
properties of the solution to infinite order. Applying the estimate on nonlinear term and by interpolating sJ  by 
using theorem p r= , q s= ; sJ  is interpolated in an analogous manner. By application of Young inequality, 
the following is found. 

( )

( ) ( ) ( )
( ) ( )( )

2 2 11 4 3 4 1 2 1 4 5 4 1 2 2 1 2 3 2
5 0 1 6 0 4 1 7 0

2 1 21 4 5 4 2
6 0 8 1

e e d

1

31
8

n

r A r A

R

r s r s r s r s
r r r r r r

r s r s
r r r

A u u A u x

c J G G c J G c G G c J G

vc J G C G G

τ τ

τ τ τ τ

τ τ

− − − − −
+ +

− − −
+

⋅∇

≤ + + + ≤

+ + + +

∫

        (37) 

3. Theoretical Findings 
The following differential inequality is obtained. 
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( )
( ) ( )( )2 1 22 1 2 3 2 1 4 5 4 2

3 0 7 0 6 0 82 2 1

1 2 2 2 1
8

r s r sr s
r r r r rr

v vG G c J c J G c J G c Gτ τ τ
τ τ

− − −−
+

≤ − + + + + +         (38) 

As we are considering global asymptotics and blow-up profiles, they are only possible in the presence of a 
critical controlled quantity or the combination of a subcritical and a supercritical controlled quantity. It turns out 
that the Navier-Stokes equation according to differential inequality tends to contract these quantities, in that way 
leading to a useful way to force finite time blow-up. The idea of using minimal surface area as controlled quan-
tities originates from Hamilton. In order to discuss the blow-up time, we introduce the following well known 
proposition: 

Assume that ( )2 tMπ  is non-trivial. Let 2: tS Mβ →  be any immersed sphere not homotopic to a point.  

Each such sphere has an energy ( )
2

21, : d
2

tS g

E tβ β= ∫  using the metric tg  at time t. If we define ( )2W t  to be  

the infimum of ( ),E tβ  over all such β . It turns out from standard Sacks-Uhlenbeck minimal surface theory 
that this infimum is actually attained. The differential inequality is obtained using structure of minimal surfaces 
and the Gauss-Bonnet formula [3]: 

( ) ( ) ( )2 min 2
14
2tW t R t W tπ∂ ≤ − −                            (39) 

where minR  is the Ricci scalar. It demonstrates that the change of infimum of energy becomes negative in finite 
which is absurd. Therefore this forces blow-up in finite time. This means that the solution blows up in a finite 
time, which is why the surgery approach will be used. 

If the above mentioned state holds, then the differential inequality, in order to make nonlinear terms of lower 
order, has to satisfy the following form: 

( ) ( )( )2 1 22 1 2 1 2 1 4 1 4
7 0 6 0 82

1 1
32

r s r sr s
r r r

v c J G c J G c Gτ τ τ
τ

− − −−> + + +                (40) 

where ( ) ( )2 , 2 1s r r∈ +    is fixed. First it must be noted that rG  is an increasing function of τ , so that at 
the beginning at the initial time 0t = , rG  is bounded between 

2

0
rA u  when 0 0τ τ= =  and 

2

0er AA uσ  
when 0τ τ σ= = . Thus the left side of equation (39) diverges faster than the right side as 0τ → , so that we 
can satisfy condition at 0t =  by choosing ( ]0 0,τ σ∈  small enough. However, what happens when τ  
doesn’t converge to 0. Imagine τ → ∞ , then the left part of equation is 0 and the right part is higher than zero, 
but that is not possible, because it is proved above that the infimum of energy becomes negative, that is absurd. 
So the solution must blow up in some definite and the equation must hold even for τ  as a solution. This proves 
that the solution is existent and smooth. In order to proceed, we will analyze the nonlinear terms. After having 
proved that the above equation must hold even for some τ  that does not converge to 0, the only equation that 
must be solved is the following: 

( )
4

02 2 1r r r

cG G Jδ
τ τ +

≤ − +                                (41) 

where 16vδ = . According to assumption that there exist positive real numbers 1M  and γ  which may de-  

pend on 0u  such that ( )
( )

2 1

1
Mu t

t γ≤
+

 for all 0t ≥  where ( )u t  is a solution to the Navier-Stokes equa-  

tion ( )2
0 1 0J M γτ τ≤  provided ( )2

0 tτ τ α= +  and 2
2

0 LJ u= , where 0 0τ >  and 0 2vα< ≤ , a final 
form of differential inequality is obtained. 

( )2 2 1r r r

kG G
γ

δ
τ τ + +

≤ − +                                  (42) 

The integrating factor for linear differential inequality is: 

2
0

2 2
0 0 0

1exp d
t t

t
t

δ α
τ α

δ
τ α τ

   +′ =   ′+   
∫                            (43) 
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So the following is obtained. 

( ) ( )2 12d
d

r
rG k

t
δ α γδ ατ τ − − −≤                                (44) 

If we fix α  small enough so that ( )rδ α γ> + , the following is concluded: 

( ) ( ) ( ) ( ) ( ) ( )

2
0
22 2

0

1 10r r r r

k kG t G
r r

δ α

γ γ

τ
δ α γ δ α γττ τ+ +

  
≤ − +   − + − +  

             (45) 

If the condition (39) is satisfied for all t, estimate (44) will be global in time. It is sufficient to show the fol-
lowing: 

( ) ( )( )( ) ( )1 2 1 22 2 1 2 1 2 1 4 1 4
7 0 6 0 8

32 1s r sr s
r r rc J G c J G c G g t

v
τ τ τ τ− − −− + + + ≤               (46) 

for some non-increasing function ( )g t . Estimate (44) shows that this is the case whenever 0γ >  and 

( ) ( ) ( )2
0

10r r

kG
r γδ α γ τ +

>
− +

                            (47) 

which satisfies the above mentioned conditions and it proves the existence of a solution. As τ → ∞ , rG  con-
verges to zero therefore the solution is existent at the beginning, and if the equations exist, then the solution ex-
ists in the time τ . 

It is obtained that: 

( ) ( ) ( )26
2r r

c
G t O δ α

γ
τ

τ
−

+
≤ +                              (48) 

The upper bound of decay is calculated and given below: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 2
2 2 1 2 1 2 2 1 2 20 6

0 2

9 2

, ,

1, 1

m r m r m
r r

r
m

c
A u c m r J G c m r M O

c c m r O

γ
δ α

γ

γ δ α
γ

τ
τ τ τ

τ τ

τ
τ

− − −
+

+ −
+

   ≤ ≤ +   
   

≤ +

            (49) 

where ( ),c m r  is given above according to the following definition and maximum is attained at 
( )2q pζ τ= −  so the following definition demonstrates: 

( ) ( ) ( )2 2, 2 e for 2q p q pc q p q p q p− − −= − >                        (50) 

( ), 1,  for 2c q p q p= =                               (51) 

This proves that solution is existent even when τ  does not converge to 0. 
Now in order to proceed and analyze the blow-up time, v as the solution of the heat equation will be intro-

duced. It should be proved that the solution w u v= −  between Navier-Stokes and heat solution in mA ⋅  can 
be made sufficiently small so that u must decay at the same rate. 

First an estimate on the difference w in ( )e ;A rD Hτ . Clearly, it satisfies the following equation: 

t w v w u u p∂ = ∆ − ∇ −∇                                (52) 

0w∇⋅ =                                     (53) 

As the heat equation preserves the divergence condition, the following equation is obtained 0w∇⋅ =  for all 
0t ≥ . Setting: 

2

2r
r L

A wγ =                                    (54) 

2

2
er A

r L
A wτζ =                                   (55) 
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And repeating the steps, the following result is obtained: 

( ) ( )

( )

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1

3
1 02 2 3 5 2 12 1

1
2

1 1 1 1 1
2 8 2 8 16 2

r r r r s r r r s r r

r r r rr

v c G G G G c G G G

cv v v v O γ

ζ τζ ζ ζ

τ ζ ττ ζ ζ ζ
τ τ τ ττ

+ + + + +

+ + ++

≤ − + + + +

     = − + − − + +     
     









           (56) 

The second of nonlinear terms arises from (47) by using and choosing the smallest possible 2s r= . For 
2r ≤ , the following is obtained: 

( ) ( )

( )

1 2 1 2 1 2 1 2 1 2
1 1 /2 1 1 /2 1

2 1 2

higher _ order _ terms

1 1 higher _ order _ terms

s r r r r r r r

r r

G G G G G G G G

O Oγ γτ τ

+ + + + +

+ + +

+ = + = +

  = +      

              (57) 

The following differential inequality is obtained: 

( ) ( )
8

2 3 5 2 12 1

1
r r rr

c
t O γγ

εδζ ζ
τ ττ + ++ +

 ≤ − + +  
 

                          (58) 

And the following is obtained: 

( )
( )

2 11
2

,
higher _ order _ termsm

m

c m r
A w

γ

ε

τ +
≤ +                         (59) 

After having proved that solution for τ  exists and if we examine the equation, as τ → ∞  the distance be-
tween heat equation solution and Navier-Stokes equation demonstrates convergence and if the following heat 
equation solution is found then the solution for Navier-Stokes equations exist and is in the same range as heat 
equation solution. 

Now the heat solution equation Cannon [4] is analyzed. The solution of heat equation: 

( ) 0t u∂ − ∆ =                                      (60) 

Satisfies a mean-value property 

0,u∆ =                                         (61) 

Precisely if u solves 

( ) 0t u∂ − ∆ =                                       (62) 

And 

( ) ( ), domx t E uλ+ ⊂                                    (63) 

Then 

( ) ( )
2

2, , d d ,
4 E

y
u x t u x y t s s y

sλ

λ
= − −∫                             (64) 

where Eλ  is a heat ball, 

( ) ( ){ }: , : , ,E y s y sλ λ= Φ >                                  (65) 

( ) ( )
2

2, : 4 π exp .
4

n x
x t t

t
−  

 Φ = −
 
 

                               (66) 

Notice that 

( ) ( )diam 1E oλ =                                      (67) 
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So that λ →∞  demonstrates that equation is existent and is captured in the ball if the λ  is finite. 
The previous assumptions and results prove the existence of smooth and strong Navier-Stokes solution of eq-

uation in R3 and represent the solution of millennium problem in R3. 

4. Conclusion 
It is proved that the strong solution of Navier-Stokes equation is smooth, existent and unique. Firstly, turbulent 
solutions are defined and it is proved that they are strong solution, but as the turbulent solutions are only possible 
for small time intervals, it is tried to extend the time interval by using the Equation (39) and it is proved that the 
differential inequality (40) holds at the same time for some τ  that does not converge to 0. Then the result is 
established, it is demonstrated that solutions exhibit possible finite blow-up time, which means that they exist and 
persist in the system. In order to establish if the solution exists for the finite time, the heat equation solution and 
Navier-Stokes solution are compared. It is proved that two solutions converge as τ → ∞  which proves the ex-
istence of solution in infinite time. If a surgery procedure is applied, the solution exists for some time, then blows 
up, then arises again and that process repeats. This statement proves that the solution is either existent or periodic, 
but it exists all the time. It is possible to introduce a stochastic process in order to explain the existence of the 
dynamical periodic solution, but this is left for further research. This paper proves the existence of Navier-Stokes 
solution in R3 and represents a breakthrough in fluid dynamics analysis. 
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Abstract 
The upwind scheme is very important in the numerical approximation of some problems such as 
the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow 
formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods 
combined with the upwind scheme are usually used to solve the phase pressure equation. In this 
case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local 
mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in 
some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways 
to calculate the nonlinear coefficients may have distinct and significant effects, which have been 
investigated by some authors. We propose a new algorithm to obtain a more effective and stable 
approximation of the coefficients under the consideration of the upwind scheme. 

 
Keywords 
Velocity Projection, Upwind Scheme, Penalty Discontinuous Galerkin Methods, Two Phase Flow in 
Porous Media 

 
 

1. Introduction 
In the context of some fields, such as modeling and simulation of fluid flows in petroleum or groundwater re-
servoirs, the studies of processes of the simultaneous flow of two or more fluid phases within a porous medium 
are of great significance. In this paper, we consider the cases of two-phase flow where the fluids are immiscible. 
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A large number of methods, which are based on the finite difference (FD), the finite volume (FV) or the finite 
element (FE) methods, have been developed to deal with the two-phase flow problem. As is well known, no 
matter which kind of numerical methods is used, the upwind scheme is of great significance in the approxima-
tion of some problems such as the convection dominated problem, the two-phase flow problem, and so on. 

To achieve stable numerical computations in the simulation of two-phase flow problem, an accurate approxi-
mation of the flux is one of the most important and desirable ingredients. If we use Penalty Discontinuous Ga-
lerkin (PDG) methods to discretize the pressure equation, like in [1]-[3], both the pressure and saturation equa-
tions will be discritized by the PDG methods, and a process of reconstruction of the velocity needs to be done 
after the pressure equation is solved. In [2], an average total velocity was post processed by substituting the 
piecewise constants of pressure gradient and saturation gradient into the velocity-pressure expression directly. 
Actually such reconstructed velocity, on some level, belongs to the lowest order Raviart-Thomas finite element 
space. In [4], a post-processed total velocity is reconstructed in the Brezzi-Douglas-Marini (BDM) finite ele-
ment spaces. But it needs that the degree of the polynomial is more than one, that is, using the linear approxima-
tion in DG method is not enough to reconstruct a velocity in BDM1 space. A more stable and accurate recon-
struction was developed in [1], in which the velocity reconstructed from the piecewise linear pressures could 
even belong to the first-order Raviart-Thomas finite element space. However, all the reconstructions mentioned 
above didn’t consider the upwind scheme, which was basically used in the discretization of the equations. The 
property of the local mass conservation is crucial in porous media flow and transport problems. The upwind 
scheme has direct effect on the local mass conservation of the reconstructed velocity. We found that unless the 
upwind scheme and penalty terms which are used in the discretization of the two-phase flow problem are consi-
dered together into the velocity reconstruction, the error of the local mass conservation cannot reach a satisfac-
tory level. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces [5] with consi-
dering the upwind scheme totally. 

The different ways to calculate the nonlinear coefficients may have distinct and significant effects, which 
have been investigated by some authors. For the approximation of the coefficients, we extend the one used in [6] 
to that each coefficient in element K is evaluated as the average of the upwind value on K∂ . This improves the 
stability of the numerical scheme even when an explicit scheme is used. In contrast with the explicit scheme de-
scribed in [2], our explicit PDG scheme with this special approximation of coefficients can not only get rid of 
the extra penalties from the pressure equation but also have a robust performance in the heterogeneous media. 

The rest of the article is organized as follows: In addition to the introduction and conclusion, we divide the 
text of this document into four parts. Section 2 is the first part and consists of two subsections, in which we in-
troduce governing equations of two-phase flow problem and the corresponding interface conditions in Subsec-
tions 2.1 and 2.2 respectively. The second part, Section 3, comes in four subsections. In Subsection 3.1, the up-
wind average approximations of coefficients are introduced. In Subsections 3.2 and 3.3, the PDG methods are 
used for the pressure equation and the velocity reconstruction is presented respectively. In Subsection 3.4, the 
PDG methods are used for the saturation equation. The third part, Section 4, consists of two subsections. In 
Subsections 4.1 and 4.2, we introduce all the possible projection schemes with respect to the velocity recon-
struction and the scheme without any explicit projections. In the last part, Section 5, several numerical examples 
in two dimensions are provided. 

2. Problem Model 
2.1. Mathematical Formulation 
We consider two immiscible incompressible fluids in porous media and there is no mass transfer between the 
phases. Various and alternative model equations for two-phase flow problem can be found in reference [7]. Here 
we use the phase formulation for which the primary variables are wetting phase pressure and saturation ( wp  
and wS ), and in the absence of gravity and sink/source term we have: 

( ) 0,t w n cD p D pλ λ−∇ ⋅ ∇ + ∇ =                                   (1) 

( )d
0,

d
w c

n w w w t
w

S p
f D S f u

t S
φ λ

 ∂
+∇ ⋅ ∇ +∇ ⋅ = ∂  

                     (2) 

where the denotations and meanings of each coefficient and their relationships are defined as follows: D is the 
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absolute permeability tensor and is discontinuous in heterogeneous media; φ  denotes the porosity of the me-
dium; cp  is the capillary pressure; nλ , wλ  and tλ  are wetting, nonwetting and total mobility respectively; 

wf  is the fractional flow; ∇  and ∇⋅  are the gradient operator and divergence operator respectively. We will 
use the Brooks-Corey model [8] throughout this paper, in which some of these coefficients are non-linear func-
tions defined below: 

( )
1

,c w d wp S p S θ
−

=                                          (3) 

( )
( )

2
2

1 1
,

w w

n w
n

S S
S

θ
θ

λ
µ

+ 
− −  

 =                               (4) 

( )
2 3

,w
w w

w

S
S

θ
θ

λ
µ

+

=                                          (5) 

, , ,w n
t n w w n

t t

f f
λ λ

λ λ λ
λ λ

= + = =                               (6) 

,
1

w rw
w

rn

S S
S

S Srw
−

=
− −

                                       (7) 

where dp  is the entry pressure needed for the wetting phase to enter large pores which are completely filled 
with the non-wetting phase; nµ  and wµ  are the non-wetting and wetting phase viscosity; θ  is the parameter 
associated with pore size distribution; rnS  and rwS  are the residual saturation. 

Some notations for the mesh are given below: Ω  is the domain; ∂Ω  is the boundary of the domain; h  is 
the partition of Ω ; K is the finite element in h ; K∂  is the edges of element K; :h =  {e: all edges in h }, 
is the set of all edges contained in h ; i

h  is the set of all interior edges contained in h . The Equations (1) 
and (2) are subject to appropriate initial and boundary conditions to close the system. Here we give two feasible 
sets of boundary conditions: one is the Mixed-Neumann boundary condition as in [2], 

( ) ,   on  ,w t n w c in t sMS u f D p n S u nλ+ ∇ ⋅ = ⋅ Γ                          (8) 

,   on  ,n w c N sNf D p n gλ ∇ ⋅ = Γ                                    (9) 

,     on  ,w D pDp g= Γ                                          (10) 

0,   on  ,t pNu n⋅ = Γ                                           (11) 

and the other is Neumann-Drichlet boundary condition used in [9], 

( ) ,   on  ,w
w n w c w t N sNu n f D p f u n gλ⋅ = ∇ + ⋅ = Γ                       (12) 

,   on  ,n dir sDS S= Γ                                            (13) 

,   on  ,w dir pDp p= Γ                                           (14) 

,   on  .t
t N pNu n g n⋅ = ⋅ Γ                                        (15) 

The whole boundary of the porous medium domain ∂Ω  is divided into three mutually disjoint parts: the in-
flow, noflow, and outflow boundaries ( inΓ , noΓ , outΓ ), respectively. In the case of Neumann-Drichlet boun-
dary condition, pDΓ  and sDΓ  occupy the outflow boundary, pNΓ  and sNΓ  occupy the inflow and no-flow 
boundaries such that 0Ng <  on inflow boundary and 0Ng =  on no-flow boundary. In the case of mixed- 
Neumann boundary condition, pDΓ  occupies the inflow and outflow boundaries, pNΓ  occupies the no-flow 
boundary, sMΓ  occupies the inflow boundary, and sNΓ  occupies the no-flow and outflow boundaries. 
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2.2. Interface Conditions 
In order to test the barrier effect phenomenon of two phase flow, the nonlinear interface condition discussed in 
[1] [6] [10]-[13] will be introduced here. Following [9], we assume an initially fully water saturated domain 
( )I IIΩ = Ω Ω  with an interface JΓ  between two different sands, and the oil is injected from the inflow part of 
boundary inΓ , see Figure 1. In addition, we assume that IΩ  stands the coarse sand and IIΩ  is the fine sand. 

The process of the phenomenon is described briefly below. First, oil approaches the material interface but 
cannot penetrate it and begin to accumulate. In this case, only water pressure wp  is continuous on the interface, 
capillary pressure cp  and saturation wS  are discontinuous and satisfy: 

( )

1

,

,

1 .

I
I

II

I
c d w

II
c d

I II I II
w w w rn

p p S

p p

S S S S

θ
−

Ω

Ω


=

 =


− = − −


                              (16) 

Then, when more and more oils accumulate at the interface and the capillary pressure on the coarse side ex-
ceeds the entry pressure of the other side ( )I

II
c dp pΩ ≥ , the oils begin to penetrate and enter the fine sand. At 

this time, both wp  and cp  are continuous, but saturation wS  is still discontinuous and satisfies: 

( )1 .
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− −   
                (17) 

We note that a critical point of saturation can be found when the capillary pressure on coarse side increases to 
the value equivalent to the threshold pressure on fine side. That is, deducing from 

I

II
c dp pΩ =  we have, 
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                           (18) 

This point will be used to judge whether the nonwetting phase can or cannot penetrate the material interface. 
So the interface conditions can be rewritten in the form below. For capillary pressure, 
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and for wetting phase saturation, 

( )

( )

*

*

1 , ,

1 , .
1

II
II

I

I II I
w rn w w

I II
II I Iw w

I II II II Id w rw
w rw rn rw w wI I I

d rw rn

S S S S

S S p S S
S S S S S S

p S S

θ
θ

θ

 − − >
− =     − − − − − ≤    − −   

           (20) 

 

 
Figure 1. The interface (dashed line) between two subdomains 
with different rock properties. 
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Condition (20) is the same as that described in [1] except that the wetting phase (instead of the nonwetting 
phase) is used as the saturation variable. Moreover, (19) is only written for the capillary pressure and not for the 
wetting phase pressure, since the variable wp  is always continuous in the problem discussed. Noting that if the 
sub-domain IΩ  has a finer texture than IIΩ , all the relationship above can be treated in a similar manner with 
superscript I  and II  reversed. 

3. Discrete Schemes 
3.1. Approximation of Coefficients 
For the approximation of coefficients,we extend the one used in [6]. Let σ  denote any coefficients waiting for 
some proper approximations. Firstly we recall the original way to approximate the coefficients, 

1 ,

1 .

e e

K K

e

K

σ σ

σ σ

 =


 =
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∫

∫
                                   (21) 

The approach described in [6] is, 

( )

( )
,

,

,

1 ,
3

e K e

K e K e
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TS

TS

σ σ

σ σ
∈∂

 =



=


∑
                                (22) 

where ,K eTS  denotes the mean water saturation on the edge e of the element K, see [6] for more details. Now it 
is extended to the following one, 

1 ,

1 .
3

e e

K e
e K

e
σ σ

σ σ
↑

∈∂

 =

 =

∫

∑
                                   (23) 

where the upwind value of the side average on the interior edge is considered. The quantity σ ↑  is called the 
upwind flux which is done with respect to the normal component of the total velocity tu , such that for all 

e K K− +∈∂ ∂ , 

,  0,

,  0.
t eK

t eK

u n

u n

σ
σ

σ

−

+

↑
 ⋅ ≤= 

⋅ >
                                (24) 

where the normal vector en  points from K +  to K − . Throughout this paper, all the coefficients on element K 
and edge e are calculated by the upwind averaged constant and the integral average constant which are described 
in (23). 

3.2. Pressure Approximation with PDG 
In this section we apply the Penalty Discontinuous Galerkin (PDG) methods [14] such as Nonsymmetric Interior 
Penalty Galerkin (NIPG) to the pressure Equation (1). Some notations for DG methods are defined: 

{ } ( ) [ ]1: ,  : ,  ,
2 hv v v v v v e− + − += + = − ∀ ∈                          (25) 

{ } [ ]: ,  : ,  ,v v v v e= = ∀ ∈∂Ω                                      (26) 

( ) ( ){ }2
1: | | , ,h K hX w L w P K K= ∈ Ω ∈ ∀ ∈                        (27) 
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where v±  are the restrictions of v on two adjacent elements K ±  respectively. 
The pressure Equation (1) discretized by PDG reads as follows. 
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            (28) 

Indeed, the PDG methods are only applied to the wetting-phase pressure term, for the capillary pressure term 
a traditional DG method with the upwind scheme is used. 

3.3. Velocity Reconstruction 
After solving the discrete pressure Equation (28), the total velocity will be reconstructed in the lowest-order Ra-
viart-Thomas space ( )0RT , the first-order Raviart-Thomas space ( )1RT  and the first-order Brezzi-Douglas- 
Marini space ( )1BDM  respectively, refer to [5] for more details about those spaces. The main idea of the re-
construction in the current section follows the one depicted in [1], and we will extend it to the situation that the 
discretization of the pressure equation contains an upwind scheme. 

A proper reconstruction of velocity stems from the local mass conservation law as shown in the following 
description. Firstly, we recast the variational Equation (28) on element K into two parts as follows, 

{ }1 1 1d
,

d

k
k k k k k kc
t t K w n K w t e wK K K e
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S
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∑∫ ∫ ∫ ∫     (29) 
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∫ ∫ ∫ ∫         (30) 

Combing (29) and (30), it is easily seen that the local mass is conserved, 

( ) ( )1 1 1 1 1 ,k k k k k
t t t e w nK K e K

e K
u v u v u n v q q v+ + + + +

∈∂

∇ ⋅ = − ⋅∇ + ⋅ = +∑∫ ∫ ∫ ∫                (31) 

where wq  and nq  are the sink and source terms which are zeros here. Noting that if the edge e belongs to both 
K∂  and DΓ  on the right hand side of Equations (29) and (30), 1k

wp +    is equal to ( )1k
w dirp p+± −  and the 

sign ±  is determined by the direction of en , for example, the sign is positive when en  is the outer normal 
vector with respect to K∂ . 

Secondly, using (29) and (30) as the degree of freedom for some H(div) spaces, the total velocity will be ob-
tained as some appropriate projections or interpolations in these spaces. In order to have a proper interpolation 
in 0RT , 1RT  and 1BDM  spaces, we should specify a set of degree of freedom (DOF) for these H(div) spaces 
and a corresponding set of basis functions. If let v be any constant in the polynomial space of degree zero 0P , 
(29) will vanish and (30) will become the 0RT  space’s DOF which is the integral of the normal component of 
velocity on each edge. Correspondingly, the set of basis functions for 0RT  on the reference element is, 

( )1ˆ ,  1, 2,3,
ˆ2

i ix a i
K

ϕ = − =                             (32) 

where K̂  is the area of the reference element K̂  and ia  is one of its the vertices. 
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Let |v K  and |v e  be any functions in the space of polynomial of degree one 1P , then (29) and (30) be-
come the DOFs for 1RT . The corresponding basis functions for 1RT  space on the reference elements are, 
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Let |v e  be any functions in 1P  polynomial space, thus the basis functions of 1BDM  can be obtained in a 
similar manner except that (29) is not used. All the DOFs for 1BDM  are just defined on the edges of element, 
so only (30) is used to determine the basis functions. The corresponding basis functions for 1BDM  are, 

1 2

2 6
ˆ ˆ, ,

6 4 4 6 6 12
x x

x y y x
ϕ ϕ

−   
= =   + − − −   

 

3 4

4 6
ˆ ˆ, ,

2 6
x x
y y

ϕ ϕ
−   

= =   −   
 

5 6

2 6 2 6 12 6
ˆ ˆ, .

4 6
y x x y
y y

ϕ ϕ
− − + −   

= =   −   
 

It is noted that the choice of DOFs for the 1BDM  and 1RT  spaces is not unique, for example, the half-edge 
integral of the normal components of velocity is also available and applicable. 

3.4. Saturation Approximation 
The spatial discretization of the saturation equation is similar to that of the pressure equation given in (28). The 
diffusion term of the saturation equation is discretized by the PDG methods, and the advective term is discre-
tized by a traditional DG method with using the upwind scheme. An Euler scheme in time is used. The satura-
tion Equation (2) equipped with Mixed-Neumann boundary conditions (8)-(11) could be written as: 
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The variational form in terms of Neumann-Dirichlet boundary conditions (12)-(15) reads: 
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where ( )wJ S  is the interface condition of saturation described in (20). 

4. Feasible Projections of the Discrete Strategies 
4.1. DDG Methods with Some Other Projections 
The abbreviation DDG means that DG methods are used for both pressure and saturation equations. For a clear 
comparison in the numerical experiments, we list all the possible and feasible projections below. Firstly, we de-
note RT(1) (or BDM(1)) as the the velocity space projected into RT (or BDM) space by (29) and (30). Secondly, 
RT(2) (or BDM(2)) means the projection into RT (or BDM) space with considering the upwind scheme but without 
the penalty term, 
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Thirdly, for ( )3RT  (or ( )3BDM ), it means the projection with considering the penalty term but without the 
upwind scheme, 
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At last, for ( )4RT  (or ( )4BDM ), it means the projection without considering both the penalty term and the 
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upwind scheme, 
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As indicated in introduction, for all DDG methods the velocity derived by the projection ( )1RT  (or ( )1
1BDM ) 

preserves the local mass conservation property best, which will shown in the numerical examples. 

4.2. DDG Method without Explicit Projections 
In [2] the velocity is used directly as the combination of the gradient of the solutions and coefficients, as 
follows, 
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where the average of the total velocity is used in the interior edges. Although it doesn’t use any projections ex-
plicitly, the velocities constructed from (41) and (42) are some kind of implicit projections into 0RT  space. The 
velocity derived from (41) and (42) is close to the velocity projection in ( )4

0RT  space which is constructed by 
(39) and (40). But their value in each element is different. Furthermore, the DDG method with using the velocity 
reconstruction presented in this subsection has certain differences in contrast to what proposed in [2], which are 
reflected in two aspects below: 

1) The variational form of the saturation equation doesn’t incorporate any additional penalties from the pres-
sure equation. 

2) The approximations of the coefficients are totally different. 

5. Numerical Examples 
In this section, we present some computer experiments to examine the proposed methods on two dimensional 
spaces. Both two boundary conditions with different types are used in the examination of all the methods. In 
tests 1 and 2 we consider the displacement of the non-wetting phase by the wetting phase, which is similar to the 
so called quarter-five spot problem introduced in [2]. In test 3 we consider the displacement of the wetting phase 
by the non-wetting phase which is used to simulate the barrier effect in [9]. The domains used in the experi-
ments are the square ( )20, 2  with two corners be cut off, and for the mesh used in the discontinuous problem a 
small square with different rock property is fixed inside the domain, see Figure 2(a) and Figure 2(b). In each 
test, we use the Nonsymmetric Interior Penalty Galerkin (NIPG) method with the penalty parameters 1=ε , 

1=σ  and 1β = . In order to prevent the oscillations, a slope limiter procedure described in [15] is used. 
If considering the mixed-Neumann type boundary (8)-(9) for the saturation equation, the following initial and 

boundary conditions are used: 

( )0 0.2,wS t = =                                        (43) 

( )0.9   on  ,in sM inS = Γ Γ                                 (44) 

( )0 m s   on  ,N sN no outg = Γ Γ Γ                          (45) 

( )63.45 10 Pa   on  ,dir pD inp = × Γ Γ                         (46) 
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(a)                                                   (b) 

Figure 2. Meshes used in the experiments. (a) quarter-five spot mesh used in homogeneous medium; (b) 
quarter- five spot mesh used in discontinuous media. 

 
( )62.41 10 Pa   on  ,dir pD outp = × Γ Γ                            (47) 

( )0 m s   on  .t e pN nou n⋅ = Γ Γ                                 (48) 

When the Neumann-Dirichlet type boundary (12)-(13) is used for the saturation equation, the following initial 
and boundary conditions are considered: 

( )0 1,wS t = =                                            (49) 

( )10 m s    on  ,n e sN inu n −⋅ = ⋅ Γ Γ                              (50) 

( )10 m s    on  ,w e sN nou n −⋅ = ⋅ Γ Γ                              (51) 

( )1   on  ,dir sD outS = Γ Γ                                     (52) 

( )2 12.05 10  m s    on  ,t e pN inu n − −⋅ = × ⋅ Γ Γ                       (53) 

( )10 m s    on  t e pN nou n −⋅ = ⋅ Γ Γ                              (54) 

( )52.01 10 Pa   on  .dir pD outp = × Γ Γ                           (55) 

The parameters including rock and fluid properties used in the simulation are summarized in Table 1. 

5.1. Test 1 
In test 1, we examine the property of the local mass conservation law. For this purpose, we solve the so-called 
quarter-five spot problem on a homogeneous medium and check the numerical local mass of the reconstructed 
velocity. All the projection methods discussed above will be used and compared. The domain used in the expe-
riment is the square ( )20, 2  with two corners be cut off, see Figure 2(a). The initial and boundary conditions 
(43)-(48) is used. The parameters with respect to the rock property and Brooks-Corey model are listed in Table 
1, Test 1. In Figure 2(a), the spot at the left bottom is the inflow boundary inΓ , the outflow boundary outΓ  is 
located at the right top corner, the rest of the boundary is the noflow boundary noΓ . To make sure that the water 
front stays inside the domain, the final time is set to T = 160 s. We use a constant time step, and the ratio of the 
time step to the space step’s square is about 2 4.5dt h  . We use ( )0DDG  to denote the DDG method without 
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Table 1. Parameters used in the numerical simulations. 

Test 1 

porosity 0.4φ =  

permeability [m2] [ ] 1150.4,0;0,1 10D −= ×  

viscosity[kg/(ms)] 31.0 10nµ
−= × , 41.0 10wµ

−= ×  

residual saturation 0.05rwS = , 0.1rnS =  

Brooks-Corey 33 10 Padp = × , 3θ =  

Test 2 

porosity 0.2φ =  

permeability [m2] [ ] 111,0;0,1 10D −= ×  

viscosity[kg/(ms)] 32.0 10nµ
−= × , 45.0 10wµ

−= ×  

residual saturation 0.05, 0.01rw rnS S= =  

Brooks-Corey 35 10 Padp = × , 2θ =  

Test 3 

porosity 0.2Iφ = , 0.2IIφ =  

permeability [m2] [ ] 1110,0;0,1 10ID −= × , [ ] 111,0;0,1 10IID −= ×  

viscosity[kg/(ms)] 21.0 10nµ
−= × , 31.0 10wµ

−= ×  

residual saturation 0I II
rw rwS S= = , 0I II

rw rnS S= =  

Brooks-Corey 41 10 PaI
dp = × , 41.5 10 PaII

dp = × , 2Iθ = , 2IIθ =  

 
explicit projections. Since there is no sink and source terms the exact local mass is zero on each elements, that is,  

, 0,h t ee
e K

K u n
∈∂

∀ ∈ ⋅ =∑ ∫  where en  is the outward unit normal vector to K∂ . Thus we can easily define the  

errors of the local mass conservation under the vector norms l∞  and 2l  which are respectively 
1

2 2

max and .
h h

t e t ee eK e K K e K
u n u n

∈ ∈∂ ∈ ∈∂

  
⋅ ⋅       

∑ ∑ ∑∫ ∫ 
                     (56) 

The errors of the local mass conservation at selected times are listed in Table 2 and Table 3. 

5.2. Test 2 
In this test, we show the numerical solutions solved by our scheme with using projection ( )1

0RT  in a homoge-
neous media. For the results with using projection ( )1

1BDM  and ( )1
1RT , they are similar with using ( )1

0RT  so 
are omitted. The mesh used in test 2 is the same as the previous test.The initial and boundary conditions (43)-(48) 
are used in this test. To make sure that the water front stays inside the domain, the final time is set to T = 180 s. 
A constant time step is used, and the ratio of the time step to the space step’s square is about 2 4.5dt h  . The 
parameters of rock property and Brooks-Corey model are listed in Table 1, Test 2. The contours of wetting 
phase saturation in the homogeneous medium at selected times are presented in Figure 3. 

5.3. Test 3 
In the last test, we examine our scheme in a discontinuous media. We assume that the domain used here is in-
itially fully water saturated and with the interfaces between two different sands, see Figure 4. IIΩ  is the fine 
sand and IΩ  is the coarse sand, so the oil-trapped phenomenon will appear on the interfaces J

+Γ  see Figure 4. 
The critical point in (19) is * 0.44wS ≈ , and the oil will penetrate the interface J

+Γ  when *I
w wS S≤ . The mesh  
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Table 2. Numerical errors of the local mass conservation in test 1 at times t = 40 s and t = 80 s. 

 t = 40 s t = 80 s 

 l∞  2l  l∞  2l  

( )0DDG  2.2913e−04 5.7110e−04 2.3767e−04 5.8819e−04 

( )1
0RT  2.8284e−09 1.6994e−08 2.2655e−09 1.6564e−08 

( )2
0RT  2.2117e−04 5.2564e−04 2.2860e−04 5.3194e−04 

( )3
0RT  2.0947e−05 7.6105e−05 1.8192e−05 6.8195e−05 

( )4
0RT  2.2087e−04 5.2553e−04 2.2808e−04 5.3135e−04 

( )1
1BDM  2.6577e−09 1.6747e−08 2.1773e−09 1.5875e−08 

( )2
1BDM  2.2117e−04 5.2564e−04 2.2860e−04 5.3194e−04 

( )3
1BDM  2.1408e−05 7.8417e−05 1.7849e−05 6.9403e−05 

( )4
1BDM  2.2086e−04 5.2552e−04 2.2808e−04 5.3135e−04 

( )1
1RT  2.0632e−09 1.6436e−08 2.5179e−09 1.7404e−06 

( )2
1RT  2.2933e−04 5.7035e−04 2.3798e−04 5.8939e−04 

( )3
1RT  2.1631e−05 7.9100e−05 1.7994e−05 7.0000e−05 

( )4
1RT  2.2913e−04 5.7110e−04 2.3766e−04 5.8819e−04 

 
Table 3. Numerical errors of the local mass balance in test 1 at times t = 120 s and t = 160 s. 

 t = 120 s t = 160 s 

 ∞l  2l  ∞l  2l  

( )0DDG  2.4309e−04 5.9636e−04 2.4690e−04 6.0363e−04 

( )1
0RT  2.4551e−09 1.7281e−08 2.3734e−09 1.8916e−08 

( )2
0RT  2.3367e−04 5.4152e−04 2.3644e−04 5.4898e−04 

( )3
0RT  2.1099e−05 7.1351e−05 1.4933e−05 6.7183e−05 

( )4
0RT  2.3305e−04 5.3781e−04 2.3576e−04 5.4316e−04 

( )1
1BDM  2.4264e−09 1.7214e−08 2.4283e−09 1.7782e−08 

( )2
1BDM  2.3368e−04 5.4152e−04 2.3644e−04 5.4898e−04 

( )3
1BDM  2.1464e−05 7.2709e−05 1.5027e−05 6.7311e−05 

( )4
1BDM  2.3305e−04 5.3780e−04 2.3576e−04 5.4316e−04 

( )1
1RT  2.0203e−09 1.6556e−08 2.4811e−09 1.8123e−08 

( )2
1RT  1.5926e−04 5.9819e−04 2.4740e−04 6.0948e−04 

( )3
1RT  2.1777e−05 7.3186e−05 1.5423e−05 6.6493e−05 

( )4
1RT  2.4309e−04 5.9636e−04 2.4691e−04 6.0363e−04 
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Figure 3. The contours of wetting phase saturation in the homogeneous medium at selected times in the Test 2. 
 

 
Figure 4. Discontinuous quarter-five spot problem. 

 
used in this test is Figure 2(b). The initial and boundary conditions (49)-(55) are used in this test. The initial and 
boundary conditions (49)-(55) are used in this test. To make sure that the water front stays inside the domain, the 
final time is set to T = 200 s. A constant time step is used, and the ratio of the time step to the space step’s 
square is about 2 4.5dt h  . The parameters of rock property and Brooks-Corey model are listed in Table 1, 
Test 3. When the oil flows from coarse sand to fine sand with the injection of oil from the inflow boundary inΓ , 
more and more oil approaches and accumulates at the front of the interface of the fine sand. When the accumu-
lation reaches a critical point, that is, when the capillary pressure at the coarse side of the interface is greater 
than at the fine side, the accumulated oil will penetrate the interface and enter the fine sand area. By contrast, in  
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Figure 5. The contours of wetting phase saturation in the discontinuous media at selected times in the Test 3. 
 
the reversed direction the oil immediately penetrate the interface, that is, the oil-trapped phenomenon will not 
happen if the oil flows from fine sand to coarse sand. The contours of wetting phase saturation in the disconti-
nuous media at selected times are presented in Figure 5. 

6. Conclusion 
The velocities reconstructed from projections ( )1

0RT  ( )1
1BDM  and ( )1

1RT  are much better to preserve the local 
mass conservation property than the others. That is, the velocity reconstruction with the projection that considers 
both the upwind scheme and penalty term can best preserve the local mass conservation property. The approxi-
mation of the coefficient (23) is very essential to the stability of all the DDG methods. Instead of (23), if the ap-
proximation of coefficient (21) is used, the variational form of the saturation equation has to incorporate addi-
tional penalties from the pressure equation; otherwise the scheme will be unstable. 
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Abstract 
In this paper, firstly, some priori estimates are obtained for the existence and uniqueness of solu-
tions of a nonlinear viscoelastic wave equation with strong damping, linear damping and source 
terms. Then we study the global attractors of the equation. 

 
Keywords 
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1. Introduction 
We know that viscoelastic materials have memory effects. These properties are due to the mechanical response 
influenced by the history of the materials. As these materials have a wide application in the natural science, their 
dynamics are of great importance and interest. The memory effects can be modeled by a partial differential equ-
ation. In recent years, the behaviors of solutions for the PDE system have been studied extensively, and many 
achievements have been obtained. Many authors have focused on the problem of existence, decay and blow-up 
for the last two decades, see [1]-[5]. And the attractors are still important contents that are studied. 

In [6], R.O. Araújo, T. Ma and Y.M. Qin studied the following equation 

( ) ( ) ( ) ( )
0

dt tt ttu u u u g s u t s s f u h xρ +∞
− ∆ − ∆ + ∆ − + =∫                     (1.1) 

and they proved the global existence, uniqueness and exponential stability of solutions and existence of the 

http://www.scirp.org/journal/ijmnta
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global attractor. 
In [7], Y.M. Qin, B.W. Feng and M. Zhang considered the following initial-boundary value problem: 

( ) ( )
( )
( ) ( ) ( ) ( ) ( )

0

0 1

( ) d , , ,

, 0, ,

, ( ), , , , , , ,

t tt tt t

t

u u u u g s u t s s u x t x t

u x t x t

u x u x u x u x u x t u x t x R

ρ

τ τ
τ

σ τ

τ

τ τ τ

+∞

+

 − ∆ − ∆ + ∆ − + = ∈Ω >

 = ∈∂Ω ≥


= = = ∈Ω ∈

∫
             (1.2) 

where Ω  is a bounded domain of ( )1nR n ≥  with a smooth boundary ∂Ω , ( ),u x tτ  (the past history of u) is 
a given datum which has to be known for all t τ≤ , the function g represents the kernel of a memory, ( ),x tσ σ=   

is a non-autonomous term, called a symbol, and ρ is a real number such that 21
2n

ρ< ≤
−

 if 3n ≥ ; 1ρ >  if  

1, 2n = . They proved the existence of uniform attractors for a non-autonomous viscoelastic equation with a past 
history. For more related results, we refer the reader to [8]-[14]. 

In this work, we intend to study the following initial-boundary problem: 

( ) ( ) ( )
( )
( ) ( )

2
1 2 30

0 1

d , , 0

, 0, , 0

,0 , ( ,0) ( ),

p
tt t t

t

u u g s u t s s u u u u f x x t

u x t x t

u x u x u x u x x

ε ε ε
+∞ − − ∆ + ∆ − − ∆ + + = ∈Ω >


 = ∈∂Ω ≥
 = = ∈Ω

∫
         (1.3) 

where 1 2 3, , 0,ε ε ε ≥  and ( )1nR nΩ ⊂ ≥  is a bounded domain with smooth boundary ∂Ω , 

2 2 42 min ,
2

n np
n n

+ < <  
− 

 if 3n ≥ ; 2p >  if 1, 2n = , for the problem (1.3), the memory term 

( ) ( )
0

dg s u t s s
+∞

∆ −∫  replaces ( ) ( )
0

d
t
g t s u s s− ∆∫ , and we consider the strong damping term 1 tuε− ∆ , the li-  

near damping term 2 tuε  and source terms 2
3

pu uε − . We define 

( ) ( ) ( ) ( ), , ,ts x s u x t u x t sη η η= = = − −  

A direct computation yields 

( ) ( ) ( )t s ts s u tη η= − +  

Thus, the original memory term can be written as 

( ) ( ) ( ) ( ) ( )
0 0 0

d d dg s u t s s g s s u g s s sη
+∞ +∞ +∞

∆ − = ⋅∆ − ∆∫ ∫ ∫  

and we get a new system 

( )( ) ( ) ( ) ( )2
1 2 30 0

1 d d p
tt t tu g s s u u g s s s u u u f xε η ε ε

+∞ +∞ −− − ∆ − ∆ − ∆ + + =∫ ∫           (1.4) 

t s tuη η= − +                                    (1.5) 

with the initial conditions 

( ) ( ) ( ) ( ) ( ) ( )0 1,0 , ,0 , 0 ,0 0,t
tu x u x u x u x x xη η= = = = ∈Ω                 (1.6) 

and the boundary conditions 

( ), 0, , 0u x t x t= ∈∂Ω ≥                               (1.7) 

The rest of this paper is organized as follows. In Section 2, we first obtain the priori estimates, then in Section 
3, we prove the existence of the global attractors. 
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For convenience, we denote the norm and scalar product in ( )2L Ω  by ⋅  and ( ),⋅ ⋅ , let ( )1V H= Ω , 
( ) ( )2D A H= Ω . 

2. The Priori Estimates of Solution of Equation 
In this section, we present some materials needed in the proof of our results, state a global existence result, and 
prove our main result. For this reason, we assume that 

(G1) :g R R+ +→  is a differentiable function satisfying ( )
0

1 d 0g s s l
+∞

− = >∫ ; 
(G2) ( ) ( )0, 0,g s g s s R+′≥ ≤ ∀ ∈ ; 
(G3) There exists a constant 0ξ >  such that ( ) ( ) 0g s g sξ′ + ≤ , s R+∀ ∈ ; 
Lemma 1. Assume (G1), (G2) and (G3) hold, let 

22 , 3
2

2, 1,2

np n
n

p n

 < < ≥
−

 ≥ =

 

and ( ) ( ) ( )1 2
0 1 0,u u H L∈ Ω × Ω , ( )2f L∈ Ω , tv u uε= + , then the solution ( ),u v  of Equation (1.3) satisfies  

( ) ( ) ( )1 2
0,u v H L∈ Ω × Ω  and 

( ) ( ) ( )1 1
1 2
0

2 2 2 1
2

1

0
, e 1 et t

H L

W Cu v u v
k k

α α

α
− −

×
= ∇ + ≤ + −                    (2.1) 

here ( ) ( )2 2 3
0 1 0 02 2

2
0 p

pW v l u u
p
ε

ε ε= + − ∇ + , thus there exists 0E  and ( )1 1 0t t= Ω > , such that 

( ) ( ) ( ) ( )1 2
0

2 2 2
0 12 2

,
H L

u v u t v t E t t
×

= ∇ + ≤ >                        (2.2) 

Proof. We multiply tv u uε= +  with both sides of equation and obtain 

( )( ) ( ) ( )( ) ( )2
1 2 30 0

1 d d , ,p
tt t tu g s s u u g s s s u u u v f vε η ε ε

+∞ +∞ −− − ∆ − ∆ − ∆ + + =∫ ∫  

By using Holder inequality, Young’s inequality and Poincare inequality, we get 

( ) ( ) ( ) ( )

( )

2 2

2 2

2 2
2 2 2 2 2 22
2 2 2 2 2 2

2 2
2 2 2 2

2 2 2 2
1

1 d 1 d, , , ,
2 d 2 d

1 d 1 d,
2 d 2 d 2 2
1 d ,
2 d 2 2

tt t t tu v v u v v u v v v u v
t t

v v u v v v u v
t t

v v u v
t

ε ε ε ε

ε εε ε ε

ε εε
λ

= − = − = − −

= − + ≥ − − −

≥ − − ∇ −

            (2.3) 

and 

( )( )( ) ( ) 2 2

2 20

d1 d , ,
2 dt
lg s s u v l u u u u l u

t
ε ε

+∞
− − ∆ = − ∆ + = ∇ + ∇∫                (2.4) 

and 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 0 0
d , d , d ,tg s s s v g s s s u g s s s uη η η ε

+∞ +∞ +∞
− ∆ = − ∆ + − ∆∫ ∫ ∫            (2.5) 

For the first term on the right side (2.5), by using (G1), (G2) and (G3), we have 

( ) ( ) ( ) ( ) ( )

( ) ( )
0 0

2 2

2 20 0

2 2

, ,

d d d d

1 d 1d d
2 d 2

1 d ,
2 d 2

t t s

g V g V

g s s u x s g s s x s

g s s g s
t

t

η η η η

η η

ξη η

+∞ +∞

Ω Ω

+∞ +∞

∇ ⋅∇ = ∇ ⋅ ∇ +∇

= ∇ + ∇

≥ +

∫ ∫ ∫ ∫

∫ ∫              (2.6) 
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where 

( ) ( ) 22

, 20
dg V g s s sη η

+∞
= ∇∫                               (2.7) 

For the second term on the right side (2.5), by using Holder inequality and Young’s inequality, we get 

( ) ( )( ) ( ) ( )

( )

0 0

2
2 2

, 20

d , d d

d
4 g V

g s s s u g s s u x s

g s s u

η ε ε η

ξ εη
ξ

+∞ +∞

Ω

+∞

− ∆ = ∇ ∇

≥ − − ∇

∫ ∫ ∫

∫
                   (2.8) 

So, we have 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )

0 0 0

2
2 2 2

, , 20

d , d , d ,

1 d d
2 d 4

t

g V g V

g s s s v g s s s u g s s s u

g s s u
t

η η η ε

ξ εη η
ξ

+∞ +∞ +∞

+∞

− ∆ = − ∆ + − ∆

≥ + − ∇

∫ ∫ ∫

∫
            (2.9) 

By using Poincare inequality, we obtain 

( ) ( ) ( )2
1 1 1 12

2 2 221
1 12 2 2

2 2 221
1 1 12 2 2

, , ,

d
2 d

d
2 d

t tu v v u v v u u u

v u u
t

v u u
t

ε ε ε ε ε ε ε

ε ε
ε ε ε

ε ε
ε λ ε ε

− ∆ = −∆ + ∆ = ∇ + ∆ +

= ∇ − ∇ − ∇

≥ − ∇ − ∇

                   (2.10) 

and 

( ) ( ) 2
2 2 2 2 22 2

2 222 2
2 22 2

2 22
2 22

1

, ,

2 2

1
2 2

t t t t t

t t

t

u v u u u u u u

u u u

u u

ε ε ε ε ε ε

ε ε ε ε
ε

ε εεε
λ

= + = −

≥ − −

 ≥ − − ∇ 
 

                       (2.11) 

and 

( ) ( )2 2 3
3 3 3

d, ,
d

p p p p
t p pu u v u u u u u u

p t
ε

ε ε ε ε ε− −= + = +                    (2.12) 

By using Holder inequality and Young’s inequality, we obtain 

( )( ) 2 21
2 2

1

1,
2 2

f x v f v v fλ
λ

≤ ⋅ ≤ +                            (2.13) 

Then, we have 

( )

2 2
2 2 2 2 2 2 2

2 2 2 2 2 2 ,
1

2
2 2 2 2 221

1 1 1, 2 2 2 20

2 2 32
2 322

1

2 21
2 2

1

1 d d 1 d
2 d 2 2 2 d 2 d

dd
4 2 d

d1
2 2 d

1
2 2

g V

g V

p p
t p p

lv v u v u l u
t t t

g s s u v u u
t

u u u u
p t

v f

ε εε ε η
λ

ε εξ εη ε λ ε ε
ξ

εε εεε ε ε
λ

λ
λ

+∞

− − ∇ − + ∇ + ∇ +

+ − ∇ + − ∇ − ∇

 + − − ∇ + + 
 

≤ +

∫
             (2.14) 
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That is 

( ) ( )

( )

2 2 2 223
1 1 1 12 2 , 2

2 22
1 32 ,0

1 1

2 2
2 22

1

2d 2 2
d

2 d 2
2 2 2

12 1
2

p
g V p

p
g V p

t

v l u u v
t p

l g s s u u

u f

ε
ε ε η ε λ ε ε λ

εε ε ξε ε ε η ε ε
λ ξ λ

εε
λ

+∞

 
+ − ∇ + + + − − − 

 
 

+ − − − − ∇ + + 
 
 + − ≤  

∫               (2.15) 

Next, we take proper 1 2 3, , ,ε ε ε ε , such that 

( )

2
1 1 1 1

2
2 1 0

1 1

3 2

2 2 0

2 d 0
2 2

2 1 0
2

a

a l g s s

a

ε λ ε ε λ

εε εε ε ε
λ ξ λ

εε

+∞


 = − − − ≥
   = − − − − ≥  

 
   = − ≥   

∫                        (2.16) 

Taking 2
1 1

1

min , , ,
2

aa p
l

ξα ε
ε ε

 
=  

− 
, then 

( ) ( ) 2
1 12

1

d 1 :
d

W t W t f C
t

α
λ

+ ≤ =                            (2.17) 

where ( ) ( )2 2 2 3
12 2 ,

2 p
g V pW t v l u u

p
ε

ε ε η= + − ∇ + + , by using Gronwall inequality, we obtain 

( ) ( ) ( )1 11

1

0 e 1 et tCW t W α α

α
− −≤ + −                            (2.18) 

From 22 , 3
2

np n
n

< < ≥
−

, according to Embedding Theorem then ( ) ( )1
0

pH LΩ ⊂ Ω , let ( ){ }1min 1,k l ε ε= − , 

so we have 

( ) ( ) ( )1 1
1 2
0

2 2 2 1
2

1

0
, e 1 et t

H L

W Cu v u v
k k

α α

α
− −

×
= ∇ + ≤ + −  

Then 

( ) 1 2
0

2 1

1

lim ,
H Lt

Cu v
kα×→∞

≤  

So, there exists 0E  and ( )1 1 0t t= Ω > , such that 

( ) ( ) ( )1 2
0

2 2 2
0 122

,
H L

u v u t v E t t
×

= ∇ + ≤ >  

Lemma 2. Assume (G1), (G2) and (G3) hold, let 

2 42 , 3

2, 1,2

np n
n

p n

+ < < ≥

 ≥ =

 



L. Guo et al. 
 

 
147 

and ( ) ( ) ( )2 1
0 1,u u H H∈ Ω × Ω , ( )1f H∈ Ω , tv u uε= + , then the solution ( ),u v  of Equation (1.3) satisfies 

( ) ( ) ( )2 1,u v H H∈ Ω × Ω  and 

( ) ( ) ( )2 2
2 1
0

2 2 2 2
2 2

2

0
, e 1 et t

H H

W Cu v u v
k k

α α

α
− −

×
= ∆ + ∇ ≤ + −                 (2.19) 

Here ( ) ( )2 2
1 0 1 02 2

0V u u l uε ε= ∇ +∇ + − ∆ , thus there exists 1E  and ( )2 2 0t t= Ω > , such that 

( ) ( ) ( ) ( )2 1

2 2 2
1 22 2

,
H H

u v u t v t E t t
×

= ∆ + ∇ ≤ >                     (2.20) 

Proof. We multiply tv u uε−∆ = −∆ − ∆  with both sides of equation and obtain 

( )( ) ( ) ( )( ) ( )2
1 2 30 0

1 d d , ,p
tt t tu g s s u u g s s s u u u v f vε η ε ε

+∞ +∞ −− − ∆ − ∆ − ∆ + + −∆ = −∆∫ ∫     (2.21) 

By using Holder inequality, Young’s inequality and Poincare inequality, we get 

( ) ( ) ( )

( )

( )

2

2

2

2

2 2 2
2 2

2 2
2 2 2 2

2 2 2 2

2 2
2 2 2 2

2 2 2 2
1

1 d, , ,
2 d

1 d ,
2 d
1 d ,
2 d
1 d
2 d 2 2
1 d
2 d 2 2

tt t t tu v v u v v u v
t

v v u v
t

v v u v
t

v v u v
t

v v u v
t

ε ε

ε ε

ε ε

ε εε

ε εε
λ

−∆ = − −∆ = ∇ − −∆

= ∇ − − −∆

= ∇ − ∇ + ∇ ∇

≥ ∇ − ∇ − ∇ − ∇

≥ ∇ − ∇ − ∆ − ∇

 

and 

( )( )( ) ( ) 2 2

2 20

d1 d , ,
2 dt
lg s s u v l u u u u l u

t
ε ε

+∞
− − ∆ −∆ = − ∆ −∆ − ∆ = ∆ + ∆∫           (2.22) 

and 

( ) ( )( ) ( )( ) ( ) ( )( )0 0 0
d , ( ) d , d ,tg s s s v g s s s u g s s s uη η η ε

+∞ +∞ +∞
− ∆ −∆ = − ∆ −∆ + − ∆ − ∆∫ ∫ ∫       (2.23) 

For the first term on the right side (2.23), by using (G1), (G2) and (G3), we have 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0

2 2

2 20 0

2 2

, ,

d d d d

1 d 1d d
2 d 2

1 d
2 d 2

t t s

g D A g D A

g s s u x s g s s x s

g s s g s
t

t

η η η η

η η

ξη η

+∞ +∞

Ω Ω

+∞ +∞

∆ ⋅∆ = ∆ ⋅ ∆ + ∆

= ∆ + ∆

≥ +

∫ ∫ ∫ ∫

∫ ∫             (2.24) 

where 

( ) ( ) ( ) 22

, 20
dg D A g s s sη η

+∞
= ∆∫                              (2.25) 

For the second term on the right side (2.23), by using Holder inequality and Young’s inequality, we get 

( ) ( )( ) ( ) ( )

( ) ( )

0 0

2
2 2

, 20

d , d d

d
4 g D A

g s s s u g s s u x s

g s s u

η ε ε η

ξ εη
ξ

+∞ +∞

Ω

+∞

− ∆ − ∆ = ∆ ∆

≥ − − ∆

∫ ∫ ∫

∫
                (2.26) 

so, we have 
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( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

0

0 0

2
2 2 2

, , 20

d ,

d , d ,

1 d d
2 d 4

t

g D A g D A

g s s s v

g s s s u g s s s u

g s s u
t

η

η η ε

ξ εη η
ξ

+∞

+∞ +∞

+∞

− ∆ −∆

= − ∆ −∆ + − ∆ − ∆

= + − ∆

∫

∫ ∫

∫

 

By using Poincare inequality, we have 

( ) ( ) ( )2
1 1 1 12

2 2 221
1 12 2 2

, , ,

d ,
2 d

t tu v v u v v u u u

v u u
t

ε ε ε ε ε ε ε

ε ε
ε ε ε

− ∆ −∆ = −∆ + ∆ −∆ = ∆ + ∆ −∆ − ∆

= ∆ − ∆ − ∆
            (2.27) 

and 

( ) ( ) 2
2 2 2 2 22 2

2 22
2 22

1

, ,

1
2 2

t t t t t

t

u v u u u u u u

u u

ε ε ε ε ε ε

ε εεε
λ

−∆ = −∆ − ∆ = ∇ − ∇ ∇

 ≥ − ∇ − ∆ 
 

               (2.28) 

And using Interpolation Theorem, we have 

( ) ( )
( )

( ) ( )

( )

2
2 1 4

3 3 3 02 2 2 2 2 2

2 2 2
3 02 21 2

2 2
1

2 21
0 1 32 2 2

,

2 2

, , , , .
2 2

n p
p p

p

n p

u u v u v C u u v

C u
v u

lv u C u l

ε ε ε

εε
ε

ε ε ε ε ε

−
− −

−

−

−∆ ≤ ∆ ≤ ∆ ∆

≤ ∆ + ∆

≤ ∆ + ∆ +

               (2.29) 

By using Holder inequality and Young’s inequality, we have 

( )( ) 2 21 1
2 2

1 1

1, ,
4

f x v f v v fλ ε
λ ε

−∆ ≤ ∇ ⋅ ∇ ≤ ∇ + ∇                      (2.30) 

Then, we have 

( ) ( ) ( )

( )

2 2
2 2 2 2 2 2

2 2 2 2 2 2
1

2
2 2 2 2

1, , 2 20

22 2 221 2
1 22 2 22

1

2 2 2 21 1 1
0 1 32 2 2 2 2

1 1

1 d d
2 d 2 2 2 d

1 d d
2 d 4

d 1
2 d 2 2

1, , , ,
2 2 4

g D A g D A

t

lv v u v u l u
t t

g s s u v
t

u u u u
t

lv u C u l v f

ε εε ε
λ

ξ εη η ε
ξ

ε ε ε εεε ε ε
λ

ε λ εε ε ε ε
λ ε

+∞

∇ − ∇ − ∆ − ∇ + ∆ + ∆

+ + − ∆ + ∆

 − ∆ − ∆ + − ∇ − ∆ 
 

≤ ∆ + ∆ + + ∇ + ∇

∫
 

That is 

( ) ( )

( ) ( )

( )

2 2 2 221 1
12 2 , 2

2 22
1 2 ,0

1 1

2 2
2 0 1 32 22

1 1

d 2
d 2

2 d
2 2 2 2

22 1 2 , , , , .
2

g D A

g D A

t

v l u v
t

l g s s u

u f C u l

ε λ
ε ε η ε ε

εε ε ξε ε ε η
λ ξ λ

εε ε ε ε
λ ε

+∞

  ∇ + − ∆ + + − − ∇    
 

+ − − − − ∆ + 
 
 + − ∇ ≤ ∇ +  

∫                (2.31) 
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Next, we take proper 1 2 3, , ,ε ε ε ε , such that 

( )

21 1
1

2
2 1 0

1 1

3 2

2 0
2

2 d 0
2 2 2

2 1 0
2

b

lb g s s

b

ε λ
ε ε

εε εε ε ε
λ ξ λ

εε

+∞


= − − ≥


   = − − − − ≥  

 
   = − ≥   

∫                      (2.32) 

Taking 2
2 1

1

min , ,
2

bb
l

ξα
ε ε

 
=  

− 
, then 

( ) ( ) ( )2
2 0 1 3 22 2

1 1

d 2 2 , , , , : ,
d

V t V t f C u l C
t

α ε ε ε
λ ε

+ ≤ ∇ + =                  (2.33) 

where ( ) ( ) ( )
2 2 2

12 2 ,g D AV t v l uε ε η= ∇ + − ∆ + , by Gronwall inequality, we have 

( ) ( ) ( )2 22

2

0 e 1 et tCV t V α α

α
− −≤ + −                             (2.34) 

From 22
2

np
n

< ≤
−

, according to Embedding Theorem, then ( ) ( )2 1, pH WΩ ⊂ Ω , let ( ){ }1min 1,k l ε ε= − , 

so, we have 

( ) ( ) ( )2 2
2 1

2 2 2 2
2 2

2

0
, e 1 et t

H H

V Cu v u v
k k

α α

α
− −

×
= ∆ + ∇ ≤ + −  

then 

( ) 2 1

2 2

2

lim ,
H Ht

Cu v
kα×→∞

≤  

So, there exists 1 0E >  and ( )2 2 0t t= Ω > , such that 

( ) ( ) ( ) ( )2 1

2 2 2
1 22 2

, .
H H

u v u t v t E t t
×

= ∆ + ∇ ≤ >  

3. Global Attractors 
Theorem 1. Assume (G1), (G2) and (G3) hold, let 

2 2 42 min , , 3
2

2, 1,2

n np n
n n

p n

 + < < ≥  
− 

 ≥ =

 

and ( ) ( ) ( )2 1
0 1,u u H H∈ Ω × Ω , ( )1f H∈ Ω , tv u uε= + , so Equation (1.3) exists a unique smooth solution 

( ) [ ) ( ) ( )( )2 1, 0, ;u v L H H∞∈ +∞ Ω × Ω  

Proof. By the method of Galerkin and Lemma 1 and Lemma 2, we can easily obtain the existence of solu-
tions. Next, we prove the uniqueness of solutions in detail. 

Assume that ,u v  are two solutions of equation, let w u v= − , then, the two equations subtract and obtain 

( )( ) ( )( )

( )
1 2 1 20 0

2 2
3

1 d d

p p

w g s s w g s s w w

v v u u

η η ε ε

ε

+∞ +∞

− −

′′ ′ ′− − ∆ − ∆ −∆ − ∆ +

= −

∫ ∫
               (3.1) 
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where 

( ) ( ) ( ) ( )1 2, , , , ,u x t u x t s v x t v x t sη η= − − = − −                       (3.2) 

By multiplying the equation by w′  and integrating over Ω , we get 

( )( ) ( )( )( )
( )( )

1 2 1 20 0

2 2
3

1 d d ,

,p p

w g s s w g s s w w w

v v u u w

η η ε ε

ε

+∞ +∞

− −

′′ ′ ′ ′− − ∆ − ∆ −∆ − ∆ +

′= −

∫ ∫
              (3.3) 

here 

( ) 2

2

1 d,
2 d

w w w
t

′′ ′ ′=                                 (3.4) 

and 

( )( )( ) 2

20

d1 d ,
2 d
lg s s w w w

t
+∞

′− − ∆ = ∇∫                         (3.5) 

by using (G1), (G2) and (G3), we have 

( )( )( ) ( )( ) ( ) ( )( )1 2 1 2 1 2 1 20 0

2 2
1 2 1 2, ,

d , d ,

1 d
2 d 2

t s

g V g V

g s s w g s s

t

η η η η η η η η

ξη η η η

+∞ +∞
′− ∆ − ∆ = − ∆ −∆ − + −

≥ − + −

∫ ∫
       (3.6) 

By using Poincare inequality, we have 

( ) 2 2
1 1 1 12 2,w w w wε ε ε λ′ ′ ′ ′− ∆ = ∇ ≥                         (3.7) 

and 

( ) 2
2 2 2,w w wε ε′ ′ ′=                               (3.8) 

By using Holder inequality, Young’s inequality and Poincare inequality, we have 

( ) ( )
( )

2 2 2 2
3 2

1 1
2 3 0

2 2
2 2 2 23 0 3 0

3 1 3 1 22 2 2 2
1 1

, d

d

2 2
8 8

p p p p

p p

u u v v w u u v v w x

p u v w w x C w w

C C
w w w w

ε ε

ε ε

ε ε
ε λ ε λ

λ λ

− − − −

− −

′ ′− = −

′ ′≤ + ≤

′ ′≤ + ≤ + ∇

∫

∫                  (3.9) 

then, we have 

2 2 2 2 2 2
1 2 1 2 1 1 22 2 , , 2 2

2
2 23 0

3 1 22 2
1

1 d d 1 d
2 d 2 d 2 d 2

2
8

g V g V

lw w w w
t t t

C
w w

ξη η η η ε λ ε

ε
ε λ

λ

′ ′ ′+ ∇ + − + − + +

′≤ + ∇
       (3.10) 

That is 
2

2 2 2 2 2 23 0
1 2 3 1 1 222 2 , 2 2 ,

1

d 4
d 4g V g V

C
w l w w w

t
ε

η η ε λ η η
λ

 ′ ′+ ∇ + − ≤ + ∇ + −          (3.11) 

Taking 
2

3 0
3 1 2

1

max 4 , ,1
4

C
m

l
ε

ε λ
λ

  =  
  

, then 



L. Guo et al. 
 

 
151 

( )2 2 2 2 2 2
1 2 1 22 2 , 2 2 ,

d
d g V g Vw l w m w l w

t
η η η η ′ ′+ ∇ + − ≤ + ∇ + −               (3.12) 

By using Gronwall inequality, we have 

( ) ( ) ( ) ( )2 2 22 2 2
1 2 1 22 2 , 2 2 ,

0 0 0 0 emt
g V g V

w l w w l wη η η η ′ ′+ ∇ + − ≤ + ∇ + −  
         (3.13) 

So we get ( ) 0w t ≡ , the uniqueness is proved. 
Theorem 2. Let X be a Banach space, and ( ){ } ( )0S t t ≥  are the semigroup operator on X. ( ) :S t X X→ , 
( ) ( ) ( )S t S S tτ τ= + , ( )0S I= , here I is a unit operator. Set ( )S t  satisfy the follow conditions. 
1) ( )S t  is bounded, namely 0R∀ > , Xu R≤ , it exists a constant ( )C R , so that 

( ) ( ) [ )( )0,
X

S t u C R t≤ ∈ +∞  

2) It exists a bounded absorbing set 0B X⊂ , namely, 0B B∀ ⊂ , it exists a constant 0t , so that 

( ) ( )0 0S t B B t t⊂ ≥  

3) When 0t > , ( )S t  is a completely continuous operator A. 
Therefore, the semigroup operators ( )S t  exist a compact global attractor. 
Theorem 3. Under the assume of Theorem 1, equations have global attractor 

( ) ( )0 0
0s t s

A B S t Bω
≥ ≥

= =


 

where ( ) ( ){ }2 12 1
00

2 2 22 1
0 0 0 1, : , H HH H

B u v H H u v u v E E
×

= ∈ × = + ≤ + , 0B  is the bounded absorbing set of  

( ) ( )2 1
0H HΩ × Ω  and satisfies 

1) ( )S t A A= , 0t > ; 
2) ( )( )0lim , 0

t
dist S t B A

→∞
= , here ( ) ( )2 1

0B H H⊂ Ω × Ω  and it is a bounded set,  

( ) 2 1, supinf H Hy Yx X
dist X Y x y

×∈∈
= −  

Proof. Under the conditions of Theorem 1, it exists the solution semigroup ( )S t , here ( ) ( )2 1
0X H H= Ω × Ω , 

( ) 2 1 2 1:S t H H H H× → × . 
1) From Lemma 1 to Lemma 2, we can get that ( ) ( )2 1

0B H H∀ ⊂ Ω × Ω  is a bounded set that includes in  

the ball ( ){ }2 1
0

,
H H

u v R
×

≤ , 

( )( ) ( )( )2 1 2 12 1
0 00

2 2 22 2 2
0 0 0 0 0 0, , 0, ,H H H HH H

S t u v u v u v C R C t u v B
×

= + ≤ + + ≤ + ≥ ∈  

This shows that ( ) ( )0S t t ≥  is uniformly bounded in ( ) ( )2 1
0H HΩ × Ω . 

2) Furthermore, for any ( ) ( ) ( )2 1
0 0,u v H H∈ Ω × Ω , when { }1 2max ,t t t≥ , we have 

( )( ) 2 12 1
00

2 2 2
0 0 0 1, H HH H

S t u v u v E E
×

= + ≤ +  

So, we get 0B  is the bounded absorbing set. 
3) Since ( ) ( ) ( ) ( )2 1 1 2

0 0H H H LΩ × Ω → Ω × Ω  is tightly embedded, which means that the bounded set in 
( ) ( )2 1

0H HΩ × Ω  is the tight set in ( ) ( )1 2
0H LΩ × Ω , so the semigroup operator ( )S t  is completely conti-

nuous. 
So, the semigroup operators ( )S t  exist a compact global attractor A. The proof is completed. 
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Abstract 
This paper discusses a comparative study of two modeling methods based on multimodel ap-
proach. The first is based on C-means clustering algorithm and the second is based on K-means 
clustering algorithm. The two methods are experimentally applied to an induction motor. The 
multimodel modeling consists in representing the IM through a finite number of local models. This 
number of models has to be initially fixed, for which a subtractive clustering is necessary. Then 
both C-means and K-means clustering are exploited to determine the clusters. These clusters will 
be then exploited on the basis of structural and parametric identification to determine the local 
models that are combined, finally, to form the multimodel. The experimental study is based on 
MATLAB/SIMULINK environment and a DSpace scheme with DS1104 controller board. Experi-
mental results approve that the multimodel based on K-means clustering algorithm is the most ef-
ficient. 

 
Keywords 
Multi-Model Modeling, C-means Clustering Algorithm, K-Means Clustering Algorithm, Induction 
Motor (IM), Experimental Validation 

 
 

1. Introduction 
Induction motors are the basis elements in industrial applications thanks to their economic cost, judicious size, 
and easy maintenance [1] [2]. However, these motors are complex and have a strongly nonlinear system. It is 
often hard to determine an adequate model that represents all the dynamic behavior of this machine. 
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Modeling is an essential initial step in the industrial process control. This fundamental step is necessary either 
for a control law development or for the development of a diagnosis procedure. Modeling a process consists in 
establishing relationships between its characteristics variables and in representing the dynamic behavior of this 
process in a particular field of operation. 

Based on a priori knowledge of the studied process, many modeling types are used. The increasing complexi-
ty of industrial process pushes many researchers to develop modeling techniques that exploit linear systems 
tools. Hence, in this paper we will consider the modeling based on multimodel approach that recently, has been 
implemented in various science and engineering domains, concerning application to modeling, control and fault 
diagnosis [3]-[10]. 

The multimodel approach consists in replacing the unique nonlinear model by a set of simpler linear models 
to create a model-base. Generally, each model of this base contributes to the whole description of the considered 
system through weighed functions or validities functions. 

The modeling via this approach needs to follow up a scheme of four steps that are database acquisition, clus-
tering, structural and parametric identification and fusion. 

For clustering, many algorithms are adopted in literature [11]-[14], in this paper we will focus on three fuzzy 
clustering algorithms that are subtractive, C-means and K-means clustering algorithms. The subtractive algo-
rithm is used to determine the cluster number, whereas the C-means and the K-means will be exploited to gener-
ate the cluster centers then to construct the clusters. Thus, we will compare two modeling methods, the first is 
based on the association of subtractive-C-means algorithm and the second is based on the association of subtrac-
tive-K-means algorithm. 

The two proposed modeling method are experimentally implemented to an induction motor. 
The organization of this paper is as follows. The second part consists in describing the modeling with multi- 

model approach, the third part develops the application of the two modeling methods based on the two cluster-
ing algorithm to the induction motor. The part four is a comparative study of the two modeling method and fi-
nally the conclusion is in the fifth part. 

2. Multi-Model Modeling 
To obtain a multimodel, we have to follow a strategy of four stages that are database acquisition, data clustering, 
structural and parametric identification and local models fusion. 

The system is considered as a black box. Thus, it is exited via a rich frequency input. The collected data is 
consisting of a set of input/output measurements. Then the collected data will be divided into N clusters through 
clustering algorithms. Later, three clustering algorithms will be developed: the subtractive, C-means and 
K-means algorithm. Next, structural and parametric identification follow the clustering to obtain the local mod-
els. The structural identification is achieved using the general procedure of order estimation and the Instrumental 
determinant ratio (IDR). For the parametric identification, the generalized recursive least square is implemented. 
The obtained local models are combined through weighted functions that are calculated based on residue ap-
proach [5]-[8]. 

Two strategies are adopted. The first is based on the C-means clustering algorithm and the second is based on 
K-means clustering method as shown in Figure 1 and Figure 2. 

3. The Clustering Algorithms 
Clustering data consists of organizing and collecting similar data points into group or cluster. The similarity is 
estimated by a function that computes the distance between the data points, usually, the Euclidean distance. 

In literature, various clustering algorithm was proposed to deal with clustering problem [11]-[14]. Subtractive, 
C-means and K-means are among the most commonly-used clustering algorithm 

3.1. Subtractive Clustering 
The subtractive clustering algorithm was suggested by Chiu as an extension of the mountain function. It is able 
to determine the number and the value of cluster centers. 

The process is provided with the following steps. 
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Figure 1. Modeling strategy based on C-means clustering algorithm. 

 

 
Figure 2. Modeling strategy based on K-means clustering algorithm. 

 
1) Each data point is considered as a cluster center that has the calculated potential pi given in (1). 

2

24

1
e

pi pj

a

y y
n

r
i

j
p

−
−

=

= ∑                                      (1) 

where ra defines the neighborhood radius. 
The data with the high potential is the first cluster center. 
2) The data potentials are recalculated by (2). 
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where rb > 0 is the new neighborhood radius that must be rather greater then ra to not having cluster centers that 
are closely spaced. Usually rb = 1.5ra. 

3) The process is repeated until the obtaining of the k-th center and the potentials are recalculated by (3). 
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4) The process is repeated until the following condition (4). 
* *

1kP Pε<                                          (4) 

3.2. C-Means Clustering 
The C-means known as FCM is a data clustering algorithm that considers that each data point belongs to a clus-
ter through a membership function. It consists in producing an optimal partition by minimizing the objective 
function J on the basis of the following process. 

1) Initialize arbitrarily the Fuzzy membership matrix µik 
2) Calculate the cost function J by (5). 

( ) 2

1 1 1
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J J dµ
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= =∑ ∑∑                                  (5) 

3) Estimate the clusters centers ci by the Equation (6). 
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4) Updates the membership functions as the relation (7). 

( )2 1

1

1
ik g

c
ik

j jk

d
d

µ
−

=

=
 
  
 

∑
                                    (7) 

5) Recalculate the cost function J. If J is less than a threshold, the process will be ended. If not, return to step 
3. 

3.3. K-Means Clustering 
The K-means clustering algorithm is known as an efficient and rapid one. It is able to construct a fixed finite 
number of clusters by minimizing the Euclidean distance between the data and the equivalent cluster center. 

The K-means clustering algorithm is detailed by the following process. 
1) Select arbitrarily cluster centers ci from the training data set. 
2) Calculate the membership matrix uij using the Equation (8). 

2 2
1 if ,

0 else
j i j k

ij
x c x c k iu

 − ≤ − ≠= 


                            (8) 

3) Calculate the cost function J by the Equation (9). Stop the process if it is less than a certain threshold. 

2
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4) Update the cluster center ci according to the relation (10). 

,

1
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k x Gi

c x
G ∈
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Next, return to step 2. 

4. Application of the Two Modeling Strategy on the IM 
We propose in this section to modeling the IM by the two multimodel modeling strategies previously described. 
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Firstly, we have to collect a rich data base from the measurement of input/output of the IM. The electric motor 
is 1 kw squirrel cage Induction motor. 

The training data set is generated through an experimental set-up that is described by Figure 3. It is used with 
the help of Matlab/Simulink and DSpace system with DS1104 controller board to collect the database. 

The data collection requires the use of speed and current sensors. For that, Hall type sensors are exploited to 
measure stator currents and an incremental encoder position sensor delivering 1024 pulses per revolution is 
mounted on the shaft to measure the IM speed. 

To test the robustness of the modeling approach we propose to vary the IM parameter and to apply a wide 
range of loads. 

The load is a resistive bank fed by a DC generator that is connected to the IM. 
To vary the stator resistances, three variable resistors are linked in series to the motor phases. 
A large data set is selected out after input/output measurements at an operating point of 600 rpm. 

4.1. Modeling of IM via the Method Based on C-Means Clustering Algorithm 
The subtractive clustering algorithm helps to determine the clusters number that is N = 8. So, the objective of 

the C-means clustering is to generate these eight clusters. 
The obtained clusters will be identified to obtain the local models that are defined by these recurrent equa-

tions. 
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Figure 3. Experimental set up. 
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The combination of the local models through the validities shown in Figure 4 helps to construct the final 
multimodel as shown in Figure 5. 

4.2. Modeling of IM via the Method Based on K-Means Clustering Algorithm 
The same modeling process is respected. In fact, the K-means clustering is applied in order to generate the 

eight clusters that will be identified and combined to create the multimodel. 
The local models are described by the following discrete transfer functions (19)-(26). 
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Figure 4. The validities evolutions. 

 

 
Figure 5. Multimodel modeling of IM based on C-means. 
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The obtained results are illustrated by Figure 6 that illustrates the evolution of the real speed and the modeled 
speed. 

The different validities functions are illustrated by Figure 7. 
 

 
Figure 6. Multimodel modeling of IM based on K-means. 

 

 
Figure 7. Validities evolutions. 
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Table 1. Comparative study of the two modeling strategies. 

Algorithms NRMSE 
C-means 0.0210 
K-means 0.0177 

 
We propose to compare the two modeling strategies. Therefore, we calculate for each strategy the normalized 

roots mean square modeling error NRMSE. Then, a comparative table (Table 1) is dressed. 
We can notice that the method based on K-means clustering algorithm is the most convergent as the NRMSE 

calculated is the lowest. 

5. Conclusion 
In this paper, the multimodel modeling strategy is described. Two strategies are developed. The first is on the 
basis of C-means clustering algorithm and the second is based on K-means clustering algorithm. The two me-
thods are applied in real time to an induction motor at an operating point of 600 rpm submissive to load insertion 
and parameter variation. A comparative study helps to confirm that the method based on K-means is the most 
convergent. In future work, to improve the modeling performance the modeling should take into account the to-
tal behavior of the induction motor. 
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Abstract 
This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) 
sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. 
Thecontribution of this paper is on one hand the creation of a new DFIM model based on mul-
ti-model approach and, on the other hand, the synthesis of an adaptive PI multi-observer. The DFIM 
Volt per Hertz drive system behaves as a nonlinear complex system. It consists of a DFIM powered 
through a controlled PWM Voltage Source Inverter (VSI). The need of a sensorless drive requires soft 
sensors such as estimators or observers. In particular, an adaptive Proportional-Integral mul-
ti-observer is synthesized in order to estimate the DFIM’s outputs which are affected by different 
faults and to generate the different residual signals symptoms of sensor fault occurrence. The con-
vergence of the estimation error is guaranteed by using the Lyapunov’s based theory. The proposed 
diagnosis approach is experimentally validated on a 1 kW Induction motor. Obtained simulation re-
sults confirm that the adaptive PI multiobserver consent to accomplish the detection, isolation and 
fault identification tasks with high dynamic performances. 
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1. Introduction 
Doubly-fed induction machine (DFIM) has become the most competitive choice in several applications related 
with renewable energy especially wind energy as a generator or as a motor for industrial applications such as 
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rolling, rail traction or even marine propulsion or pumping. Nevertheless, it arrives that this machine presents an 
electric or mechanical defect. 

In recent years, the development of fault diagnosis techniques has become an important issue seen the contin-
uing evolution of modern systems complexity and the increasing demand for improving the reliability and secu-
rity of controlled systems [1]-[5]. 

Observer-based diagnosis method is one of the wide variety of different diagnosis approaches that have al-
ready been proposed in the literature, these approaches are based on the use of an adequate model [6]-[10]. It is 
often difficult to synthesize a sufficient model that is able to take into account the system’s nonlinearity and 
complexity. Thus many different approaches have been developed to deal with this problem. As a solution, mul-
ti-model approach is one of the most widely used modeling techniques. This approach consists in representing 
the whole behavior of a nonlinear system by a set of simple local models. Generated sub models are then com-
bined using validity function to contribute to the construction of the whole model [11]-[13]. Indeed, the multi- 
models facilitate the extension of some analysis tools that are developed in linear context to nonlinear context. 

Then, faults diagnosis consists in the use of multiobserver based on decoupled multi-model structure [14]-[19]. 
Within this diagnosis context, the main objective of this paper is the detection and isolation of different types 

of sensor faults that may affect the doubly fed induction motor. 
As it is the workhorse of industry, the use of the doubly fed induction machine (DFIM) in industrial applica-

tions has grown impressively in recent years especially for variable speed applications. Thus, an increasingly 
growing interest is given to the implementation of a supervision process to ensure a safe application of this ma-
chine. As the DFIM is a nonlinear complex system that is subject of load disturbances, it is often difficult to 
synthesize a single model, therefore, a single observer that is able to detect and isolate the system’s faults. Thus 
the multi-model approach may be a solution to facilitate diagnosis task. 

This paper treats the different steps for the study of the diagnosis of DFIM sensor faults based on multimodel 
approach. Starting with the decoupled multi-model modeling of the DFIM Volt per Hertz drive system which 
consists of a DFIM powered through a controlled PWM Voltage Source Inverter (VSI) in presence of load dis-
turbances, next the design of an adaptive PI multi-observer that will be exploited finally for the faults detection. 
The adaptive PI multi-observer is synthesized after modification of the PI multi-observer in the case of variable 
faults. Finally, the proposed diagnosis approach is validated experimentally on an Induction motor. 

Section 2 is dedicated to DFIM modeling in the dq synchronous reference frame. Section 3 deals with the 
DFIM modeling via decoupled multiple model approach respecting the different steps that lead to the realization 
of this task. In section 4 an adaptive PI multiobserver is synthesized to be used in section 5 for the detection and 
isolation of sensor faults that can affect the motor. Section 6 is an experimental validation of the proposed diag-
nosis method on a squirrel cage induction motor. 

Simulation and experimental results for the DFIM multi-model modeling and the implementation of the di-
agnosis approach are performed by using the environment MATLAB/SIMULINK. 

2. Classic DFIM Modeling 
The DFIM Volt per Hertz drive system consists of a DFIM powered through the grid in stator side and a PWM 
inverter in the rotor side [1]-[4]. 

The mathematical model of the DFIM is presented here via the dq equations in the reference frame. 
The equations for the stator and rotor voltage can be written as (1)-(4). 
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where 

s rw w w= +                                         (2) 

The flux equations can be expressed as 
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The mechanic equation is described as 

( ) ( )
d

dt em t r
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w N
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                                (4) 

A Simulink model is built using the Equations (1)-(4) and the DFIM parameters in Table 1. 
The DFIM model is highly nonlinear since it contains product terms such as speed w with flux φd or φq, con-

sequently with current id or iq. Thus to cope with this problem the multi-model approach is next suggested. 

3. The DFIM Drive System Modeling via Decoupled Multi-Model Approach 
The multi-model approach consists in representing the system’s behavior with a set of local linear models. Every 
local model or sub model contributes to this global representation via a validity function which takes its values 
in {0, 1}. 

The DFIM Modeling with multi-model approach is executed through a sequence of four steps which are clus-
ters estimation, structure identification, parametric identification and local models combination. 

The performance of the cluster estimation depends on the quality of data base which must be rich in informa-
tion. The process inputs and outputs are acquired after application of a voltage scalar control strategy as shown in 
Figure 1. 

An excitation produced by applying a variable amplitude high frequency signal at the desired speed loop. The 
acquisition phase consists in the collection of the DFIM’s output signals; the speed, the rotor currents ird and irq. 
The rotor frequency fr is considered as the system’s input signal. The multi-model modeling is applied in such a 
way to create the system’s model in presence of load disturbances, thus a variable Load torque is produced by a 
pseudo random binary signal. 

Next, the input-output collected data on DFIM are clustered into several groups through a Chui’s clustering  
 

Table 1. The DFIM parameters. 

Variable Value 

Rs 0.05 Ω 

Rr 0.38 Ω 

Msr 47.3 H 

Ls 50 H 

Lr 50 H 

Jt 0.05 Kg·m2 

ft 0.003 N·m/rad/s 

Np 2 
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Figure 1. DFIM Volt per Hertz drives system. 
 
algorithm. Then, the structure identification is performed on each cluster using instrumental determinants ration 
(RDI) method or the general procedure for order estimation while the parameters identification of each sub model 
are identified using recursive least square (RLS) method. Finally, obtained sub models are combined using the 
validity concept. 

The different steps of multi-model modeling and implementation are performed thanks to MATLAB/ 
SIMULINK environment 

The modeling strategy leads to a decoupled multi-model with six sub models which can be presented as fol-
lows. 
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Vi is the ith validity value which computes the ith sub model’s contribution to the creation of the system’s glob-
al output. These functions have the following properties (7). 
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The different obtained DFIM system’s matrixes are expressed as (8)-(11). 
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By exciting the system with a variable input, the modeling results of the speed, the current ird and the current 
irq are shown in Figures 2-4. We can notice that the multi-model outputs follow with acceptable error the real 
outputs. 
 

 
Figure 2. Speed Multi-model modeling. 
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Figure 3. ird current Multi-model modeling. 

 

 
Figure 4. irq Multi-model modeling. 

 
The normalized roots mean square modeling error NRMSE for each modeling error; the speed, ird and irq 

modeling error are calculated and given in Table 2. 
The obtained multi-model is compared to a model done by RLS method, Figure 5 approves the efficiency of 

the multi-model. 
Next this multi-model will be exploited in the multiobserver design. 

4. Adaptive Proportional-Integral Multiobserver Designs 
In this section we propose to study in the first part the PI multiobserver then the modified or adaptive PI mul-
tiobserver in second part of this section. 

Firstly, the DFIM decoupled multi-model structure is modified in order to take into account the unknown in-
put vector, and then exploited in the rest of this paper in order to conceive the based observer diagnosis’s strate-
gy. 
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Table 2. NRMSE for the modeling errors. 

 NRMSE 

Speed modeling error 0.0243 

ird current modeling error 0.0947 

irq current modeling error 0.0214 

 

 
Figure 5. Multi-model, System and RLS outputs. 

 
where Ei and f identify, respectively, the impact of the unknown input on the state’s system and the unknown 
input vector. 

4.1. PI Multiobserver 
The PI structure is developed below in favor of achieving simultaneously estimation of both state and unknown 
inputs. 
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where xi and y denote respectively the estimated state vector and output vector. Vi are the validities functions 
calculated in the modeling phase. 

This observer is known as a robust observer regarding the unknown inputs that have feebly variation. The 
main task of the observer design is to find out the gain matrices KI and Kpi. 

The PI observer uses the influence of the rebuilding output’s error with a proportional effect to estimate the 
system’s whereas the integral effect is used to estimate the signal of sensor or actuator’s defaults. 

The sub models’ outputs yi(k), used, as modeling’s artificial signals, to represent the real system’s behavior are 
not exploitable to control an observer, indeed only the multi-model’s total output y(k) as it is accessible to mea-
surement, can be designed with a system’s physical quantity. Thus an augmented system is defined below. 
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By the use of the Lyapunov’s approach defined below and taken advantage of ensuring the employed observ-
er’s stability, and in order to guarantee the convergence of the estimation’s error, the conditions generated in 
forms of linear matrix inequalities (LMI) permit to compute the observer’s gains. Thus the following theorem 
proposed in [14] [15] suggests sufficient conditions ensuring the exponential convergence of the estimation’s 
error. 

Theorem: The estimation error between the decoupled multi-model (12) and the PI observer (13) converges 
exponentially towards zero if there exists a symmetric definite positive matrix P and a matrix G verifying the 
LMI following: 
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α is the attenuation rate which serves to quantify the convergence speed of the estimation error. Having 0 < α 
< 0.5 let to find the KI and Kp gains as: 

1
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Taking into account the fact that the unknown inputs are considered as constant or with very slow dynamics, 
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Considering the definition of augmented system, the augmented error can be defined as 

( ) ( )( ) ( )1 ,a a a a ae k A K C k e k+ = −                             (23) 
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The Lyapunov approach is defined as 

( )( ) ( ) ( )T T, 0V e k e k Pe k P P P= > =                           (25) 

The exponential convergence is guaranteed if there exists a symmetric definite positive matrix P and a posi-
tive scalar α verifying the following condition: 
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This PI multiobserver is studied and developed by [17] [18], however, the studied multiobserver is valid only 
in the case of slowly varying faults. 

4.2. Adaptive PI Multiobserver 
To consider the case of variable fault, as expressed in (28), we propose to create an adaptive PI multiobserver 
that is based on the updating of the estimated validity functions îV  which are computed as the Equations (29)- 
(31). 

In fact the real system depends on the fault, so the multiobserver design should also consider this fault  
therefore in each instant a new validities are computed in order to guarantee always the convergence of the resi-
due ri expressed by (29). 
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The Final adaptive PI multiobserver is developed in (32).
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5. Detection and Isolation of DFIM System’s Sensors Faults 
In this section, the main task to be reached is detection and isolation of the Doubly fed Induction motor’s faults 
by means of a designed adaptive PI multi-observer synthesized to estimate the different system outputs. Within 
this part the fault effect on the system state is expressed with Ei, i = 1,···, N while M represents the faults effect 
on the DFIM output. 

Three types of sensor faults are considered, they affect respectively the speed Ω, the ird current and the irq cur-
rent. The faults are variable and have sinus form. 

The PI multiobserver structure is equivalent to a bank of three multiobservers since 

ˆˆ rd rqy i i = Ω                                 (33) 

The different faults are chosen to be occurred in the same date. In this case; 

0.2 0 0
0 0.2 0
0 0 0.2

M
 
 =  
  

                             (34) 

And 

0, 1, ,iE i N= ∀ =                                (35) 

The resolution of the different LMI helps to find the matrices gains then to construct the PI multiobserver. The 
KPi and KI gains are given by (36). 

1 2 3

4 5 6

0.121 0 0 0.123 0 0 0.120 0 0
0 0.057 0 , 0 0.115 0 , 0 0.115 0 ,
0 0 0.114 0 0 0.118 0 0 0.122

0.123 0 0 0.120 0 0 0.273 0 0
0 0.118 0 , 0 0.124 0 , 0 0.277 0
0 0 0.120 0 0 0.118 0

p p p

p p p

K K K

K K K

     
     = − = =     
          
   
   = = =   
      

,
0 0.274

0.134 0 0
0 0.127 0
0 0 0.131

IK

 
 
 
  

 
 =  
  

   (36)

 The residual equations are given as follows: 

1 1

2 2

3 3

ˆ
ˆ
ˆ

s

id

iq

R y y
R y y
R y y

 = −


= −
 = −

                                   (37) 

where Rs, Rid and Riq designate respectively the speed residual signal, ird current residual signal and irq current 
residual signal. 
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ˆiy  designate the ith estimated output and yi designate the ith real system output in no faulty case. 
Obtained results approve the performance of the fault estimation method; the different system’s outputs yi, i = 

1, ···, 3 follow rapidly and respectively, the real ones yi with satisfied error as shown in Figure 6, Figure 7 and 
Figure 8. 

The different fault evolutions approve that the estimated fault is occurred at the same time when the real fault 
is occurred so the detection task is verified. 

The three residual signals shown in Figure 9, Figure 10 and Figure 11 follow with high precision the differ-
ent sensors fault signals and approve that the faults are well identified. 

The isolation task is verified since for each system output a multiobserver is synthesized, i.e. each residue is 
sensitive to only one sensor fault and insensitive to all other faults concerning the residual signals computed in 
(36). 

The isolation of the different sensor faults can be summarized in the Figure 12. In fact, if a speed sensor fault 
f1 is occurred then the residual signal Rs ≠ 0, if an ird current sensor fault f2 is occurred then the residual signal 
Rid ≠ 0, and if an irq current sensor fault f3 is occurred, the residual signal Riq ≠ 0. 

Considering the previous results, generated relationship can be described in a summarized table as shown in 
Table 3. 

6. Experimental Validation 
In this section the proposed diagnosis approach is validated experimentally on 1 KW squirrel cage Induction 
motor. 
 

 
Figure 6. Speed sensor fault identification. 

 

 
Figure 7. ird current sensor fault identification. 
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Figure 8. irq current sensor fault identification. 

 

 
Figure 9. Speed residual signal Rs and speed sensor fault evolution. 

 

 
Figure 10. ird current residual signal Rid and current fault evolution. 
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Figure 11. irq current residual signal Riq and current fault evolution. 

 

 
Figure 12. The residual sensor faults evolutions. 

 
Table 3. Fault signature table. 
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f1 ≠0 0 0 
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An experimental set up drive system exposed in Figure 13 is prepared to provide a set of input/output mea-
surement with the help of MATLAB/SIMULINK and DSpace system with DS1104 controller board based on 
the digital signal processor (DSP) TMS320F240. The measurement of the stator current is achieved via Hall 
type sensors. An incremental encoder position sensor delivering 1024 pulses per revolution is used to detect The 
IM speed. Load torque is generated by a resistive bank fed by a DC generator. 

To create parameter variation we propose to use a variable resistor that is connected in series to each phase of 
the motor to vary the stator resistance 

The experimental set up is exploited to collect a rich database at 600 rpm with a wide range of loads and sta-
tor resistance variations. 

The database is then clustered into eight clusters. Next a structural and parametric identification is performed 
into the obtained cluster to generate the eight local models. Finally a multi-model is created after the combina-
tion of the local models pondered by validities functions. 

The obtained multi-model is next necessary to synthesize the adaptive PI multiobserver. 
The resolution of the different LMI conditions helps to calculate the multiobserver gain matrices that are ex-

pressed in Equation (38). 

1 2 3

4 5 6

0.121 0.0340
0.113 0.0348 0.130 0.0376

, , 0.025 0.0200 ,
0.048 0.1184 0.046 0.1183

0.026 0.0208

0.025 0.0200 0
0.148 0.0354

0.085 0.0679 , ,
0.057 0.0813

0.047 0.1123

I I I

I I I

K K K

K K K

 
     = = =           
 

  = = =      

7 8

.063 0.0503
0.025 0.0200 ,
0.043 0.0349

0.025 0.0200 0.025 0.0200
0.072 0.0575 , 0.071 0.0572
0.047 0.1096 0.047 0.0376

0.025 0
0 0.020

I I

p

K K

K

 
 
 
  

   
   = =   
      
 

=  
 

           (38) 

To test the obtained multiobserver, we inject two sensor fault, the first affect the speed sensor between t = 109 
s and t = 130 s, while the second affect the current sensor between t = 14 s and 21 s. 
 

 
Figure 13. Experimental setup system. 
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Figure 14 and Figure 15 approve that the estimated speed and current signals follow the real ones affected 
with the faults. Figure 16 and Figure 17 expose the residual signals that approve that the estimated fault follow 
the real ones. 

According to experimental results, we can resume that the detection of the sensor fault is successfully 
achieved. We can notice that the value of the residual signals (speed and current residue) changes from zeros 
only when the fault occurs. 

The identification of the faults is approved as the two residual signals follow with high precision of the two 
sensors fault signals. 
 

 
Figure 14. Speed sensor fault identification. 

 

 
Figure 15. Is current sensor fault identification: Real current with fault and estimated current. 
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Figure 16. Speed residual signal Rw and speed sensor fault evolution. 

 

 
Figure 17. Current residual signal Ris and current sensor fault evolution. 

 
The fault isolation is proved as for each system output an estimated output is generated. Each residue is sensi-

tive to only one sensor fault. 

7. Conclusions 
In this paper, a multi-model diagnosis strategy is applied to the detection and isolation of the different sensor 
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model approach. Then considering the system’s decoupled multi-model structure an adaptive PI multi-observer 
is synthesized. The novel multiobserver is synthesized exploiting the classic PI multiobserver that is modified to 
obtain the adaptive one. The modification consists in the multiobserver validities calculation. This multiob- 
server is used in the fault detection and isolation of the different sensor faults that can affect the system’s outputs. 
The obtained experimental and simulation results performed under MATLAB/SIMULINK environment show 
that the applied method has an excellent capacity to describe the Induction machine under faulty case. The ob-
jectives are reached since the different computed residuals signals affirm that the detection, identification and 
isolation of the sensors faults are well achieved. In this paper the study is limited on simulation and without con-
sidering actuators and system faults, thus, in future work experimental study concern the induction motor, in fu-
ture work we will propose to validate experimentally the diagnosis approach on a DFIM under sensor and actu-
ator faults. 
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