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Abstract 

We present the optimal homotopy asymptotic method (OHAM) to find the numerical solution of 
the second order initial value problems of Bratu-type. We solve some examples to illustrate the 
validity and efficiency of the method. 

 
Keywords 

Initial-Value Problem; Bratu; Numerical Solution; Optimal Homotopy Asymptotic Method 

 
 

1. Introduction 

Herişanu et al. [1] proposed a new technique called the optimal homotopy asymptotic method (OHAM). The 
main advantage of OHAM is that it is reliable and straight forward. Also, the OHAM does not need to worry 
about h  curves as homotopy asymptotic method (HAM). Moreover, the OHAM provides controls the 
convergence of the series solution and its solution agrees with the exact one at large domains, for more infor- 
mation see [2]-[6]. 

On the other hand, the standard Bratu problem is used in a large variety of applications, such as the fuel 
ignition model of the theory of thermal combustion, the thermal reaction process model, the Chandrasekhar 
model of the expansion of the universe, radiative heat transfer, nanotechnology and theory of chemical reaction, 
for more information see [7] [8] and references therein. 

The Bratu initial value problems have been studied extensively because of its mathematical and physical 
properties. In [9], Batiha studied a numerical solution of Bratu-type equations by the variational iteration method; 
Feng et al. [10] considered Bratu’s problems by means of modified homotopy perturbation method; Rashidinia 
et al. [11] applied Sinc-Galerkin method for numerical solution of the Bratu’s problems; Syam and Hamdan [12] 

http://www.scirp.org/journal/ajcm
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used variational iteration method for numerical solutions of the Bratu-type problems; Wazwaz [13] applied 
Adomian decomposition method to study the Bratu-type equations. 

The main goal of this paper is to extend OHAM method to solve the initial value problems of second order 
differential equations of Bratu-type. The OHAM is very useful to get an approximate solution of the initial value 
problems of second order differential equations of Bratu-type. Our numerical examples of OHAM are compared 
with exact ones. 

2. Analysis of OHAM 

In this section we start by describing the basic formulation of OHAM, see for example [1] [3]-[5]. Consider the 
boundary value problem  

( )( ) ( ) ( )( ) 0,

d, 0,
d

L u x g x N u x

uB u
x

 + + =

   =  

 

                          (2.1) 

where ( )g g x=  is a given function and ( )u u x=  is an unknown function. Here, L , N  and B  represent 
a linear operator, a nonlinear operator and a boundary operator, respectively. 

By means of OHAM one constructs a homotopy ( ) [ ], : 0,1h x p × →  , which satisfies the following fa- 
mily of equations  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
1 , , ,

,
, , 0,

p L h x p g x H p L h x p g x N h x p

h x p
B h x p

x

    − + = +   
 ∂ 

=  
∂  

         (2.2) 

where [ ]0,1p∈  is an embedding parameter, ( )H p  is a non-zero auxiliary function for 0p ≠  and 
( )0 0H = . It is easy to see that when 0p =  and 1p =  we have ( ) ( )0,0h x u x=  and ( ) ( ),1h x u x= , 

respectively, where ( )0u x  is obtained from (2.2) for 0p =   

( )( ) ( )
( )( )

0

0

0,

,0 0.

L u x g x

B u x

 + =


=
                                (2.3) 

Therefore, the unknown function ( ),h x p  goes from ( )0u x  to ( )u x  as p  changes from 0  to 1 . 
In the sequel, we choose auxiliary function ( )H p  in the form  

( ) 2 3
1 2 3 ,H p c p c p c p= + + +                            (2.4) 

where ic , 1, 2,3,i =  , are constants to be determined. 
In order to obtain an approximate solution, we expand ( ), , ih x p c , 1, 2,3,i =  , in the form of Taylor’s 

series about p  as  

( ) ( ) ( )0
1

, , , , 1, 2,3, .j
i j i

j
h x p c u x u x c p i

∞

=

= + =∑                      (2.5) 

Now, substituting by Equation (2.5) into Equation (2.2) and equating the coefficients of like powers of p  in 
the resulting equation, we obtain the governing problem of ( )0u x , given by Equation (2.3). In addition, the 
governing problems of ( )1u x  and ( )2u x  are given in the forms  

( )( ) ( ) ( )( )

( ) ( )

1 1 0 0

1 1

,

d, 0
d

L u x g x c N u x

B u x u x
x

 + =

   =  

 

                        (2.6) 

and  
( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )

2 1 2 0 0 1 1 1 0 1

2 2

, ,

d, 0,
d

L u x L u x c N u x c L u x N u x u x

B u x u x
x

  = + + + 
   =  

 

          (2.7) 
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respectively. Also, the general governing problems of ( )ju x  are given by  

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( )

( ) ( )

1 0 0

1

0 1 1
1

, , ,

d, 0, 2,3, 4, ,
d

j j j

j

i j i j i j
i

j j

L u x L u x c N u x

c L u x N u x u x u x

B u x u x j
x

−

−

− − −
=


 = +

  + +  

   = =  

 

∑ 



              (2.8) 

where ( ) ( ) ( )( )0 1 1, , ,m jN u x u x u x−  is the coefficient of mp  in the expansion of ( )( ),N h x p  about the 
embedding parameter p :  

( )( ) ( )( ) ( )0 0 0 1
1

, , , , , ,m
i m m

m
N h x p c N u x N u u u p

∞

=

= +∑                    (2.9) 

where ( ), , ih x p c , 1, 2,3,i =  , is given by Equation (2.5). 
Observe that the convergence of the series (2.5) depends upon the auxiliary constants ic , 1, 2,3,i =  . If the 

series (2.5) converges when 1p = , one has  

( ) ( ) ( )0 0 1
1

,1, , , , , .i j j
j

h x c u x N x u u u
∞

=

= +∑                       (2.10) 

The m-th order approximations are given by  

( ) ( ) ( )1 2 0 1 2
1

, , , , , , , , .
m

m i i
i

u x c c c u x u x c c c
=

= +∑
                     (2.11) 

By substituting Equation (2.11) into Equation (2.1), we get the following expression for residual  

( ) ( )( ) ( ) ( )( )1 2 1 2 1 2, , , , , , , , , , , , .m m mR x c c c L u x c c c g x N u x c c c= + + 
           (2.12) 

If 0R = , then u  will be the exact solution and this, in general, does not happen especially in nonlinear 
problems. In order to find the optimal values of ic , 1, 2,3,i =  , we apply the method of least squares as under  

( ) ( )2
1 2 1 2, , , , , , , d ,

b
m ma

J c c c R x c c c x= ∫                       (2.13) 

where a  and b  are numbers properly chosen in the domain of the problem. Next, minimizing J  with  

1 2

0.
m

J J J
c c c
∂ ∂ ∂

= = = =
∂ ∂ ∂

  

After knowing those constants, the approximate solution of order m  is well determined.  

3. Numerical Examples 

Example 1 Consider the second order initial value problem of Bratu type  

( ) ( )

( ) ( )

2

2

d 2e ,
d

0 0, 0 0.

u xu x
x

u u


=


 ′= =

                                (3.1) 

The initial value problem (3.1) has ( ) 2ln cosu x x= −  as the exact solution. 
Next, we apply the OHAM method to the initial value problem (3.1). We have 
( ) 0g x = , ( )( ) ( ), ,xxL h x p h x p=  and ( )( ) ( ),, 2eh x pN h x p = − . Therefore, according to the OHAM method,  

we have 
Problem of zero order:  
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( )

( ) ( )

2

02

0 0

d 0,
d

0 0, 0 0,

u x
x

u u


=


 ′= =

                               (3.2) 

which has a solution ( )0 0u x = . 
Problem of first order: 

( )

( ) ( )

2

1 1 12

1 1

d , 2 ,
d

0 0, 0 0.

u x c c
x

u u


= −


 ′= =

                                (3.3) 

Problem (3.3) has a solution  
( ) 2

1 1 1, .u x c c x= −                                  (3.4) 

The problem of second order  

( ) ( )

( ) ( )

2
2 2 2

2 1 2 1 2 1 12

2 2

d , , 2 2 2 ,
d

0 0, 0 0.

u x c c c c c c x
x

u u


= − + − +


 ′= =

                  (3.5) 

The solution of Problem (3.5) is given by  

( ) ( )2 2 2 2 2 4
2 1 2 1 2 1 1

1, , 6 6 6 .
6

u x c c c x c x c x c x= − + + −                 (3.6) 

Third order problem is  

( ) ( ) ( )( ) ( )
( ) ( )

2
2 2 2 4 3

3 1 2 3 1 2 3 1 2 1 12

3 3

d 2, , , 2 4 1 3 6 2 ,
3d

0 0, 0 0

u x c c c c c c x c c c x x c
x

u u


= − + + − − + − − +


 ′= =

       (3.7) 

and its solution is given in the form  

( ) ( ) ( )( ) ( )2 2 4 2 2 4 6 3
3 1 2 3 1 2 3 1 2 1 1

1 1, , , 6 45 15 2 .
3 45

u x c c c x c c c x x c c c x x x c= − + + − − + − − +    (3.8) 

Finally, fourth order problem is  

( ) ( ) ( )( )

( )( ) ( )
( ) ( )

2
2 2 2

4 1 2 3 4 1 2 3 4 1 2 1 3 1 22

2 4 2 3 2 4 6 4
1 2 1 1

4 4

d , , , , 2 2 1 4 2 3
d

16 12 4 90 270 180 19 ,
45

0 0, 0 0,

u x c c c c c c c c x c c c c c c
x

x x c c c x x x c

u u


= − + + + − − + + +


 − − + + − − + −

 ′= =



  (3.9) 

which has a solution in the form  

( ) ( ) ( )( )

( )( ) ( )

2 2 4 2 2
4 1 2 3 4 1 2 3 4 1 2 1 3 1 2

3 4 6 2 3 2 4 6 8 4
1 2 1 1

1, , , , 6 4 2 3
6

1 145 15 2 2520 1260 336 19 .
15 2520

u x c c c c x c c c c x x c c c c c c

x x x c c c x x x x c

= − + + + − − + + +

− − + + − − + −
  (3.10) 

Now, by using equations (3.4), (3.6), (3.8) and (3.10), the fourth order approximate solution, using OHAM 
with 1p = , is given by  

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 0 1 1 2 1 2 3 1 2 3 4 1 2 3 4, , , , , , , , , , , , , , .u x c c c c u x u x c u x c c u x c c c u x c c c c= + + + +     (3.11) 

Next, we follow the procedure presented in Section 2, we obtain the following values of ic ’s: 

1 0.9556156427c = − , 2 0.0942570476c = , 3 0.0374885311c =  and 4 0.0116590295c = −  (Table 1). 
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Table 1. Absolute error between the exact solution and approximation solution.                                                                                              

x  Exact sol.  O  sol.HAM  Error  
0.0  0.00000000  0.00000000  0.00000000  
0.1  0.01001671  0.01001607  76.41021065 10−×  
0.2  0.04026955  0.04025980  69.74693876 10−×  
0.3  0.09138331  0.09133801  54.52998213 10−×  
0.4  0.16445804  0.16433092  41.27118347 10−×  
0.5  0.26116848  0.26089981  42.68671650 10−×  
0.6  0.38393034  0.38344668  44.83656903 10−×  
0.7  0.53617152  0.53533472  48.36799541 10−×  
0.8  0.72278149  0.72118096  31.60053795 10−×  
0.9  0.95088489  0.94723518  33.64970628 10−×  
1.0  1.23125294  1.22186142  39.39151960 10−×  

 
Example 2 In this example, let us consider the Bratu initial value problem 

( ) ( ) ( ) ( )
2

2
2

d π e , 0 0, 0 π,
d

u xu x u u
x

′= = =                         (3.12) 

which has  

( ) ( )2 1 π
ln 1 cos

2
x

u x
+ 

= − + 
 

 exact solution. 

Now, we apply the OHAM method presented in previous section. In this example, we have 

( ) 0g x = , ( )( ) ( ), ,xxL h x p h x p=  and ( )( ) ( ),2, π eh x pN h x p = − . Now, 

Problem of zero order:  

( )

( ) ( )

2

02

0 0

d 0,
d

0 0, 0 π.

u x
x

u u


=


 ′= =

                               (3.13) 

Problem (3.13) has a solution ( )0 πu x x= . 
Problem of first order:  

( )

( ) ( )

2 2
2 2

1 12

1 1

d ππ 1 π ,
2d

0 0, 0 0.

u x c x x
x

u u

  
= − + +  

  
 ′= =

                      (3.14) 

The solution of Problem (3.14) is given by  

( ) ( )2 2 2 2
1 1

1 π 12 4π π .
24

u x x c x x= − + +                       (3.15) 

The problem of second order  

( )

( )( )

( )
( ) ( )

2

2 1 22

2
2 2

1 2

2
3 3 4 4 5 5 2

1

2 2

d , ,
d

π 2 2π π
2

π 24 24π 16π 5π π ,
24

0 0, 0 0,

u x c c
x

x x c c

x x x x c

u u





= − + + +


− + − − −

 ′= =

               (3.16) 
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and its solution is given by  

( ) ( )( )

( )

2 2
2 2

2 1 2

2 2
3 3 4 4 5 5 2

1

π 12 4π π
24

π 2520 840π 168π 35π 5π .
5040

xu x x x c c

x x x x x c

= − + + +

− + − − −

               (3.17) 

Third order problem is  

( )

( )( )

( )( )

( ) ( )

2

3 1 2 32

2
2 2

1 2 3

2
3 3 4 4 5 5 2

1 2 1

2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 3
1

3 3

d , , ,
d

π 2 2π π
2
π 24 24π 16π 5π π
12

1 4 1 3 3 5 5π 1 π π π π π π π π ,
2 3 4 40 40 336 2688

0 0, 0 0.

u x c c c
x

x x c c c

x x x x c c c

x x x x x x x x c

u u





= − + + + +



− + − − − +

  − + − − − + + + +  

 
 ′= =



  (3.18) 

The solution of Problem (3.18) is given by  

( )

( )( )

( )( )

3 1 2 3

2 2
2 2

1 2 3

2
2 3 3 5 4 6 5 7 2

1 2 1

2 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10
2 3

1

, , ,

π 12 4π π
24

π 2520 840π 168π 35π 5π
2520

π π π π π 3π 5π ππ .
2 6 24 15 120 560 2240 24192 48384

u x c c c

x x x c c c

x x x x x c c c

x x x x x x x x x c

= − + + + +

− + − − − +

 
− + − − − + + + + 

 

    (3.19) 

In the end, the fourth order problem is given by  

( )

( )( )

( ) )(
(

)( )

2

4 1 2 3 42

2
2 2

1 2 3 4

2
3 3 4 4 5 5 2 2

1 2 1 3 1 2

2
2 2 3 3 4 4

5 5 6 6 7 7 8 8 2 3
1 2 1

2

d , , , ,
d

π 2 2π π
2
π 24 24π 16π 5π π 4 2 3
24
π 26880 26880π 13440π 35840π 6720π

8960
2016π 2016π 400π 50π

π 1612
161280

u x c c c c
x

x x c c c c

x x x x c c c c c c

x x x x

x x x x c c c

= − + + + + +

− + − − − + + +

− + − − −

+ + + + +

− (
)

( ) ( )

2 2 3 3 4 4 5 5

6 6 7 7 8 8 9 9 10 10 11 11 4
1

4 4

80 161280π 161280π 322560π 20160π 56448π

32032π 1888π 1660π 740π 110π 10π ,

0 0, 0 0.

x x x x x

x x x x x x c

u u
















 + − − − +

 + + − − − −
 ′= =

     (3.20) 

which has a solution in the form 
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Table 2. Absolute error between the exact solution and approximation solution.                                                                                               

x  E sol.xact  O sol.HAM  Error  
0.3−  0.59278360−  0.59050589−  32.27771434 10−×  
0.2−  0.46234012−  0.46195092−  43.89206013 10−×  
0.1−  0.26927647−  0.26926585−  51.06182822 10−×  

0.0  0.00000000  0.00000000  0.00000000  
0.1  0.36964005  0.36959323  54.68162342 10−×  
0.2  0.88621083  0.88427218  31.93865546 10−×  
0.3  1.65557083  1.63022895  22.53418803 10−×  

 
( )

( )( ) ( )

( ) ( )( )

(

4 1 2 3 4

2 2 2 2
2 2 3 3 4 4 5 5

1 2 3 4

2 2
3 3 4 4 5 5 2 2

1 2 1 3 1 2

2 2
2 2 3 3 4 4 5 5

, , , ,

π π12 4π π 2520 840π 168π 35π 5π
24 2520

π2 2520 840π 168π 35π 5π 3
5040

π 13440 4480π 1120π 1792π 224π 48π 3
8960

u x c c c c

x xx x c c c c x x x x

xc c c c x x x x c c

x x x x x x

= − + + + + + − + − − −

⋅ + − + − − − +

− + − − − + +

( ) (

6 6 7 7 8 8

2 2
2 3 2 2 3 3 4 4 5 5 6 6
1 2 1

7 7 8 8 9 9 10 10 11 11 4
1

50 56π π π
9 9

π 80640 26880π 13440π 16128π 672π 1344π 572π
161280

236 166 74 5 5π π π π π .
9 9 11 6 78

x x x

xc c c x x x x x x

x x x x x c

+ + 


⋅ + − + − − − + +

+ − − − − 


  (3.21) 

Now, by using Equations (3.4), (3.6), (3.8) and (3.10), the fourth order approximate solution, using OHAM 
with 1p = , is given by  

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 0 1 1 2 1 2 3 1 2 3 4 1 2 3 4, , , , , , , , , , , , , , .u x c c c c u x u x c u x c c u x c c c u x c c c c= + + + +     (3.22) 

Next, we follow the procedure presented in Section 0.2, we obtain the following values of ic ’s: 
1 1.0391835661c = − , 2 0.0042471858c = − , 3 0.0000013808c =  and 4 0.0001595594c =  (Table 2). 

4. Final Remarks 

Throughout this paper, an technique for obtaining a numerical solution for second order initial value problems of 
Bratu-type, is optimal homotopy asymptotic method (OHAM). The main advantage of the used technique is 
achieving high accurate approximate solutions. In the numerical tables and graphics, our numerical results are 
compared with the exact ones. 
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Abstract 

Dimension reduction is defined as the processes of projecting high-dimensional data to a much 
lower-dimensional space. Dimension reduction methods variously applied in regression, classifi-
cation, feature analysis and visualization. In this paper, we review in details the last and most new 
version of methods that extensively developed in the past decade. 

 
Keywords 

Dimensionality Reduction Methods 

 
 

1. Introduction 

Any progresses in efficiently using data processing and storage capacities need control on the number of useful 
variables. Researchers working in domains as diverse as computer science, astronomy, bio-informatics, remote 
sensing, economics, face recognition are always challenged with the reduction of the number of data-variables. 
The original dimensionality of the data is the number of variables that are measured on each observation. 
Especially when signals, processes, images or physical fields are sampled, high-dimensional representations are 
generated. High-dimensional data-sets present many mathematical challenges as well as some opportunities, and 
are bound to give rise to new theoretical developments [1]. 

In many cases, these representations are redundant and the varaibles are correlated, which means that 
eventually only a small sub-space of the original representation space is populated by the sample and by the 
underlying process. This is most probably the case, when very narrow process classes are considered. For the 
purpose of enabling low-dimensional representations with minimal information loss according dimension 
reduction methods are needed.  

Hence, we are reviewing in this paper the most important dimensional reduction methods, including most 
traditional methods, such as principal component analysis (PCA) and non-linear PCA up to current state-of-art 

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/jasmi.2014.42006
http://dx.doi.org/10.4236/jasmi.2014.42006
http://www.scirp.org
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methods published in various areas, such as signal processing and statistical machine learning literature. This 
actual survey is organized as follows: Section 2 reviews the linear nature of Principal component analysis and its 
relation with multidimensional scaling (classical scaling) in a comparable way. Section 3 introduces non-linear 
or Kernel PCA (KPCA) using the kernel-trick. Section 4 is about linear discriminant analysis (LDA), and we 
give an optimization model of LDA which is a measuring of a power of this method. In Section 5 we summarize 
another higher-order linear method, namely canonical correlation analysis (CCA)), which finds a low 
dimensional representation maximizing the correlation and of course its optimization-formulation. Section 6 
reviews the relatively new version of PCA, the so-called oriented PCA (OPCA) which is introduced by Kung 
and Diamantaras [2] as a generalization of PCA. It corresponds to the generalized eigenvalue decomposition of a 
pair of covariance matrices, but PCA corresponds to the eigenvalue decomposition of only a single covariance 
matrix. Section 7 introducs principal curves and includes a characterization of these curves with an optimization 
problem which tell us when a given curve can be a principal curve. Section 8 gives a very compact summary 
about non-linear dimensional-reduction methods using neural networks which include the simplest neural 
network which has only three layers: 
1) Input Layer  
2) Hidden Layer (bottleneck)  
3) Output Layer  
and an auto-associative neural network with five layers: 
1) Input Layer  
2) Hidden Layer  
3) Bottleneck  
4) Hidden Layer  
5) Output Layer  

A very nice optimizing formulation is also given. In Section 9, we review the Nystroem method which is a 
very useful and well known method using the numerical solution of an integral equation. In Section 10, we look 
the multidimensional scaling (MDS) from a modern and more exact consideration view of point, specially a 
defined objective stress function arises in this method. Section 11 summarizes locally linear embedding (LLE) 
method which address the problem of nonlinear dimensionality reduction by computing low-dimensional 
neighborhood preserving embedding of high-dimensional data. Section 12 is about one of the most important 
dimensional-reduction method namely Graph-based method. Here we will see how the adjacency matrix good 
works as a powerful tool to obtain a small space which is in fact the eigen-space of this matrix. Section 13 gives 
a summary on Isomap and the most important references about Dijstra algorithm and Floyd’s algorithm are 
given. Section 14 is a review of Hessian eigenmaps method, a most important method in the so called manifold 
embedding. This section needs more mathematical backgrounds. Section 15 reviews most new developed 
methods such as 
• vector quantization  
• genetic and evolutionary algorithms 
• regression 

We have to emphasize here the all of given references in the body of survey are used and they are the most 
important references or original references for the related subject. To obtain more mathematical outline and 
sensation, we give an appendix about the most important backgrounds on the fractal and topological dimension 
definitions which are also important to understand the notion of intrinsic dimension. 

2. Principal Component Analysis (PCA) 

Principal component Analysis (PCA) [3] [4] [5]-[8] is a linear method that it performs dimensionality reduction 
by embedding the data into a linear subspace of lower dimensional. PCA is the most popular unsupervised linear 
method. The result of PCA is a lower dimensional representation from the original data that describes as much 
of the variance in the data as possible. This can be reached by finding a linear basis (possibly orthogonal) of 
reduced dimensionality for the data, in which the amount of variance in the data is maximal. 

In the mathematical language, PCA attempts to find a linear mapping P  that maximizes the cost function 
( )Ttr P AP , where A  is the sample covariance matrix of the zero-mean data. Another words PCA maximizes 
TP AP  with respect to P  under the constraint the norm of each column v  of P  is 1 , i.e., 2 1v = . In fact 
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PCA solves the eigenvalue problem:  
  or  AP P Av vλ λ= =                                 (1.1) 

Why the above optimization Problem is equivalent to the eigenvalue problem (1.1)? consider the convex form 
( )1T Tv Av v vλ+ − , it is a straightforward calculation that the maximum happens when Av vλ= . 

It is interesting to see that in fact PCA is identical to the multidimensional scaling (classical scaling) [9]. 
For the given data { } 1

N
i i

x
=

 let ijD d =    be the pairwise Euclidean matrix whose entries ijd  represent the  

Euclidean distance between the high-dimensional data points ix  and ix . multidimensional scaling finds the 
linear mapping P  such that maximizes the cost function:  

( ) ( )22

,
: ,ij i j

i j
Y d y yψ = − −∑                              (1.2) 

in which i jy y−  is the Euclidean distance between the low-dimensional data points iy  and jy , iy  is res- 

tricted to be ix A , with 
2

1jv =  for all column vector jv  of P . It can be shown [10] [11] that the minimum  

of the cost function ( )Yψ  is given by the eigen-decomposition of the Gram matrix TG XX=  where 
[ ]iX x= . Actually we can obtain the Gram matrix by double-centering the pairwise squared Euclidean distance 

matrix, i.e., by computing: 

2 2 2 2
2

,

1 1 1 1 .
2ij ij il jl lm

l l l m
g d d d d

n n n
 

= − − − + 
 

∑ ∑ ∑                      (1.3) 

Now consider the multiplication of principal eigenvectors of the double-centered squared Euclidean distance 
matrix (i.e., the principal eigenvectors of the Gram matrix) with the square-root of their corresponding 
eigenvalues, this gives us exactly the minimum of the cost function in Equation (1.2). 

It is well known that the eigenvectors iu  and iv  of the matrices TX X  and TXX  are related through  

i i iv Xuλ =  [12], it turns out that the similarity of classical scaling to PCA . The connection between PCA and  
classical scaling is described in more detail in, e.g., [11] [13]. PCA may also be viewed upon as a latent variable 
model called probabilistic PCA [14]. This model uses a Gaussian prior over the latent space, and a linear- 
Gaussian noise model. 

The probabilistic formulation of PCA leads to an EM-algorithm that may be computationally more efficient 
for very high-dimensional data. By using Gaussian processes, probabilistic PCA may also be extended to learn 
nonlinear mappings between the high-dimensional and the low-dimensional space [15]. Another extension of 
PCA also includes minor components (i.e., the eigenvectors corresponding to the smallest eigenvalues) in the 
linear mapping, as minor components may be of relevance in classification settings [16]. PCA and classical 
scaling have been successfully applied in a large number of domains such as face recognition [17], coin 
classification [18], and seismic series analysis [19]. 

PCA and classical scaling suffer from two main drawbacks. First, in PCA, the size of the covariance matrix is 
proportional to the dimensionality of the data-points. As a result, the computation of the eigenvectors might be 
infeasible for very high-dimensional data. In data-sets in which <n D , this drawback may be overcome by 
performing classical scaling instead of PCA, because the classical scaling scales with the number of data-points 
instead of with the number of dimensions in the data. Alternatively, iterative techniques such as Simple PCA [20] 
or probabilistic PCA [14] may be employed. Second, the cost function in Equation (1.2) reveals that PCA and 
classical scaling focus mainly on retaining large pairwise distances 2

ijd , instead of focusing on retaining the 
small pairwise distances, which is much more important. 

3. Non-Linear PCA 

Non-linear or Kernel PCA (KPCA) is in fact the reconstruction from linear PCA in a high-dimensional space 
that is constructed using a given kernel function [21]. Recently , such reconstruction from linear techniques 
using the kernel-trick has led to the proposal of successful techniques such as kernel ridge regression and 
Support Vector Machines [22]. Kernel PCA computes the principal eigenvectors of the kernel matrix, rather 
than those of the covariance matrix. The reconstruction from PCA in kernel space is straightforward, since a 
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kernel matrix is similar to the inner product of the data-points in the high-dimensional space that is constructed 
using the kernel function. The application of PCA in the kernel space provides Kernel PCA the property of 
constructing nonlinear mappings. 

Kernel PCA computes the kernel matrix ijK k =    of the data-points ix . The entries in the kernel matrix 
are defined by  

( ): ,ij i jk x xκ=                                        (1.4) 

where κ  is a kernel function [22], which may be any function that gives rise to a positive-semi-definite 
kernel K. Subsequently, the kernel matrix K  is double-centered using the following modification of the entries  

2
,

1 1 1 1 .
2ij ij il jl lm

l l l m
k k k k k

n n n
 

= − − − + 
 

∑ ∑ ∑                            (1.5) 

The centering operation corresponds to subtracting the mean of the features in traditional PCA: it subtracts the 
mean of the data in the feature space defined by the kernel function κ . Hence, the data in the features space 
defined by the kernel function is zero-mean. Subsequently, the principal d eigenvectors iv  of the centered 
kernel matrix are computed. The eigenvectors of the covariance matrix ia  (in the feature space constructed by 
κ ) can now be computed, since they are related to the eigenvectors of the kernel matrix iv  (see, e.g., [12]) 
through  

1
i i

i

a v
λ

=                                         (1.6) 

In order to obtain the low-dimensional data representation, the data is projected onto the eigenvectors of the 
covariance matrix ( )ia . The result of the projection (i.e., the low-dimensional data representation ( )iY y=  is 
given by: 

( ) ( ) ( ) ( )( )11 1, , , ,n nj j
i j i d j ij jy a x x a x xκ κ

= =
= ∑ ∑  

where ( )j
la  indicates the thj  value in the vector la  and κ  is the kernel function that was also used in the 

computation of the kernel matrix. Since Kernel PCA is a kernel-based method, the mapping performed by 
Kernel PCA relies on the choice of the kernel function κ . Possible choices for the kernel function include the 
linear kernel (making Kernel PCA equal to traditional PCA), the polynomial kernel, and the Gaussian kernel 
that is given in [12]. Notice that when the linear kernel is employed, the kernel matrix K is equal to the Gram 
matrix, and the procedure described above is identical to classical scaling (previous section). 

An important weakness of Kernel PCA is that the size of the kernel matrix is proportional to the square of the 
number of instances in the data-set. An approach to resolve this weakness is proposed in [23] [24]. Also, Kernel 
PCA mainly focuses on retaining large pairwise distances (even though these are now measured in feature 
space).  

Kernel PCA has been successfully applied to, e.g., face recognition [25], speech recognition [26], and novelty 
detection [25]. Like Kernel PCA, the Gaussian Process Latent Variable Model (GPLVM) also uses kernel 
functions to construct non-linear variants of (probabilistic) PCA [15]. However, the GPLVM is not simply the 
probabilistic counterpart of Kernel PCA: in the GPLVM, the kernel function is defined over the 
low-dimensional latent space, whereas in Kernel PCA, the kernel function is defined over the high-dimensional 
data space.  

4. Linear Discriminant Analysis (LDA) 

The main Reference here is [27] see also [28]. The LDA is a method to find a linear transformation that maxi- 
mizes class separability in the reduced dimensional space. The criterion in LDA is in fact to maximize between 
class scatter and minimize within-class scatter. The scatters are measured by using scatter matrices. Let we have  
r  class iC  each including in  points i l

jx ∈  and set 1, , l n
rX C C × = ∈ 

 

  , where 1 , ,
i

i i
i nC x x =  


  

and 1
r

iin n
=

= ∑ . Let 1

1 ini i
jj

i

x x
n =

= ∑  and 1

1 n i
ix x

n =
= ∑ .  
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Now we define three scatter matrices: 

The between-class scatter matrix ( )( )1:
Tr i i

b iiS n x x x x
=

= − −∑ , 

The within-class scatter matrix ( )( )1 1: i
Tr n i i i i

w j ji jS x x x x
= =

= − −∑ ∑ , 

The total scatter matrix ( )( )1 1: i Tr n i i
t j ji jS x x x x

= =
= − −∑ ∑ . Actually LDA is a method for the following  

optimization problem:  

arg max
l m

T
b

T
U w

U S U

U S U×∈
 

Hence in this way the dimension is reduced from l  to m  by a linear transformation U  which is the 
solution of above optimization problem. Although we know from Fukunaga (1990), (see [27] and [29]) that the 
eigenvectors corresponding to the 1r −  largest eigenvalues of  

b wS u S uλ=  

form the columns of U as above for LDA.  

5. Canonical Correlation Analysis (CCA) 

CCA is an old method back to the works of Hotelling 1936 [30], recently Sun et al. [31] used CCA as an 
unsupervised feature fusion method for two feature sets describing the same data objects. CCA finds projective 
directions which maximize the correlation between the feature vectors of the two feature sets. 

Let 
1i

n
iX x
=

=  and 
1i

n
iY y
=

=  be two data set of n  points in p
  and q

  respectively, associate with  

them we have two matrices:  

[ ]1 , , p n
X nA x x x x ×= − − ∈  , [ ]1 , , q n

Y nA y y y y ×= − − ∈   

where 1

1 n
iix x

n =
= ∑  and 1

1 n
iiy y

n =
= ∑  are the means of ix  and iy s, respectively. 

Actually CCA is a method for the following optimization problem:  

,
arg max

X Y

T T
X X Y Y

T T T TU U
X X X X Y Y Y Y

U A A U

U A A U U A A U
 

which can be modified as  

,
arg max

X Y

T T
X X Y YU U

U A A U , 1T T
X X X XU A A U = , 1T T

Y Y Y YU A A U =  

Assume the pair of projective directions ( )* *,X yU U  be the solution of above optimization problem, we can  

find another pair of projective directions by solving  

,
arg max

X Y

T T
X X Y YU U

U A A U , * * * * 0T T T T
X X X X Y Y Y YU A A U U A A U= = , 1T T T T

X X X X Y Y Y YU A A U U A A U= =  

repeating the above process 1m −  times we obtain a m -dimensional specs of linear combination of these vec- 
tor-solutions. 

In fact we can obtain this m -dimensional space with solving of the paired eigenvalue problem:  

( ) 1T T T
X Y Y Y X X X XA A A A U A A Uλ

−
= , ( ) 1T T T

Y X X X Y Y Y yA A A A U A A Uλ
−

=  

and the eigenvectors ( ) ( )( ), , 1, ,i i
X YU U i m=   corresponding to the m  largest eigenvalues are the pairs of  

projective directions for CCA see [31]. Hence  
( ){ }, 1, ,i T
X XU A i m=   and ( ){ }, 1, ,i T

Y YU A i m=   
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compose the feature sets extracted from XA  and YA  by CCA. It turns out that the number m  is determined 
as the number of nonzero eigenvalue.  

6. Oriented PCA (OPCA) 

Oriented PCA is introduced by Kung and Diamantaras [2] as a generalization of PCA. It corresponds to the 
generalized eigenvalue decomposition of a pair of covariance matrices in the same way that PCA corresponds to 
the eigenvalue decomposition of a single covariance matrix. For the given pair of vectors u  and v  the 
objective function maximized by OPCA is given as follows:  

( )
( )

2

2arg max
T T

u
Tw T

v

E w u w A w
w A wE w v

=  

where ( ): T
uA E uu= , ( ): T

vA E vv= . A solution 1w∗  of above optimization problem is called Principal 
oriented component and it is the generalized eigenvector of matrix pair [ ],u vA A  corresponding to maximum 
generalized eigenvalue 1λ . Since uA  and vA  are symmetric all the generalized eigenvalues are real and thus 
they can be arranged in decreasing order, as with ordinary PCA. Hence we will obtain the rest generalized 
eigenvectors * * *

2 3, , , mw w w , as second , third, ⋅⋅⋅, thm  oriented principal components. All of these solutions are 
the solutions under the orthogonality constraint:  

* * * 0,  for  T T
i u j i v jw A w w A w i j= = ≠  

7. Principal Curves and Surfaces 

By the definition, principal curves are smooth curves that pass through the middle of multidimensional data sets, 
see [32]-[34] as main references and also [35] and [36]. 

Given the n -dimensional random vector ( )1, , n
nx x x= ∈   with probability density function ( )p x . Let 

: n→ f  be the given smooth curve which can be parametrized by a real value θ  (actually we can choose 

[ ]0,1θ ∈ ). Hence we have ( ) ( ) ( )( )1 , , nf fθ θ θ= f . 

We can associate to the curve f  the projection index : nΘ → f  geometrically as the value of θ   
corresponding to the point on the curve f  that under Euclidean metric is the closet point to x .  

We say f  is self-consistent if each point ( )θf  is the mean of all points in the support of density function 
p  that are projected on θ , i.e.,  

( ) ( ).E x x θ θ Θ = = f f  

It is shown in [32] that the set of principal curves do not intersect themselves and they are self-consistent. 
Most important fact about principal curves which proved in [32] is a characterization of these curves with an 
optimization Problem:  

Theorem 1 A curve f  is a principal curve (associate with the data set ( ){ }
1

Ni

i
x

=
) iff it solves fallowing 

optimization problem  

( ) ( )( )( ) 2

, 1
,min

N
i i

i
x x

=

−∑
Θ

Θ
f

f
f

f                             (1.7) 

Of course to solve (or even estimate) minimization (0.7) is a complex problem, to estimate f  and θ  in  
[32] an iterative algorithm has given. It started with ( ) ( ) 1,E xθ θ= +f u , where 1u  is the first eigenvector of  
covariance matrix of x  and ( )f xθ = Θ . Then it iterates the two steps:  
• For a fixed θ , minimize ( )x θ− f  by setting  

( ) ( )   for each  j jE x x jθ θ = Θ = ff  
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• Fix f  and set ( )x θΘ =f  for each x  until the change in ( )x θ− f  is less than a threshold.  
One can find in [37] another formulation of the principal curves, along with a generalized EM algorithm for 

its estimation under Gaussian pdf ( )p x . Unfortunately except for a few special cases, it is an open problem for 
what type of distributions do principal curves exist, how many principal curves there exist and which properties 
the have see [36]. in recent years the concept of principal curves has been extended to higher dimensional 
principal surfaces, but of course the estimation algorithms are not smooth as the curves.  

8. Non-Linear Methods Using Neural Networks 

Given Input variables { }1 2, , , Nx x x , neural networks getting this input and gives output variables 

{ }1 2, , , my y y  with  

( ), , 1, ,j jy y x w j m= =   

where the weights w  are determined by training the neural network using a set of given instances and a cost 
function see [38]. Over the last two decades there are several developments based on a ring architectures and 
learning algorithms of dimensional reduction techniques could be implemented using neural networks, see [35] 
[36] [38]-[40]. Consider the simplest neural network which has only three layers:  
1) Input Layer  
2) Hidden Layer (bottleneck)  
3) Output Layer  
there are two steps here: 
• In order to obtain the data at node k  of the hidden layer, we have to consider any inputs ix  in 

combination with their associated weight’s ikw  along with a threshold term (or called bias in some 
references) kρ , Now they are ready passing through to the corresponding activation kϕ , hence we are  
building up the expression ( )k k ik iiw xϕ ρ +∑ . 

• Here we have to repeat step (1) with changing original data ix  with new one namely ( )k k ik iiw xϕ ρ +∑ , of  

course according the threshold jρ  and possibly new output function outϕ . Hence we have:  

.j out j kj k k ik i
k i

y w w xϕ ρ ϕ ρ
  = + +  

  
∑ ∑  

We observe that the first part of network reduces the input data into the lower-dimensional space just as same 
as a linear PCA, but the second part decodes the reduced data into the original domain [36] [35]. Note that only 
by adding two more hidden layers with nonlinear activation functions, one between the input and the bottleneck, 
the other between the bottleneck and the output layer, the PCA network can be generalized to obtain non-linear 
PCA. One can extend this idea from the feed-forward neural implementation of PCA extending to include 
non-linear activation function in the hidden layers [41],. In this framework, the non-linear PCA network can be 
considered of as an auto-associative neural network with five layers:   
1) Input Layer  
2) Hidden Layer  
3) Bottleneck  
4) Hidden Layer  
5) Output Layer  

If : n l→Θ  f  be the function modeled by layers (1) , (2)  and (3) , and : l n→ f  be the modeled  
function by layers (3) , (4)  and (5) , in [35] have been shown that weights of the non-linear PCA network are 
determined such that the following optimization Problem solved:  

( )( ) 2

, 1
,min

N

i i
i

x x
=

−∑
Θ

Θ
f

f
f

f  

As we have seen in the last section the function f  must be Principal curve(surface). In the thesis [42], one 
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can find comparison between PCA, Vector Quantization and five layer neural networks, for reducing the 
dimension of images.  

9. Nystroem Method 

The Nystroem Method is a well known technique for finding numerical approximations of generic integral 
equation and specially to eigenfunction problems of the following form: 

( ) ( ) ( ), d
b

a
W x y f y y f xλ=∫  

We can divide the interval [ ],a b  into n  points 1, , nθ θ  where  

1i i iθ θ+ = + ∆  and 
b a

n
−

∆ = , 1 aθ = , n bθ = . 

Now consider the simple quadrature rule:  

( ) ( ) ( )
1

,
n

j j
j

b a W x f f x
n

θ θ λ
=

−
=∑                                (1.8) 

which f  approximates f , for ix θ=  we obtain a system of n  equations:  

( ) ( ) ( )
1

, , 1, ,
n

i j j i i
j

b a W f f i n
n

θ θ θ λ θ
=

−
= =∑  

  

without loss of generality we can shift interval [ ],a b  to unit interval [ ]0,1  and change the above system of 
equations to the following eigenvalue problem:  

( )A f nD= f                                        (1.9) 

where ( ),i jA W θ θ =   , ( )1, , nf f=  

f  and ( )1diag , , nD λ λ=  , substituting back into 0.8 yields the  

Nstroem extension for each if :  

( ) ( ) ( )
1

1 ,
n

i j i j
ji

f x W x f
n

θ θ
λ =

= ∑   

We can extend above arguments for nx∈  and > 1n , see [42]. 
Motivated from 0.9 our main question is if A  be a given n n×  real symmetric matrix with small rank r , 

i.e., r n , can we approximate the eigenvectors and eigenvalues of A using those of a small sub-matrix of A?  
Nystroem method gives a positive answer to this question. Actually we can assume that the r  randomly 

chosen samples come first and the n r−  samples come next. Hence the matrix A  in 0.9 can have following 
form:  

T

E B
A

B C
 

=  
 

 

Hence E  represents the sub-block of weights among the random samples, B  contains the weights from 
the random samples to the rest of samples and C contains the weights between all of remaining samples. Since 
r n , C  must be a large matrix. Let U  denote the approximate eigenvectors of A , the Nystroem 
extension method gives:  

1T

U
U

B UD−

 
=  
 

 

where U  and D  are eigenvectors and diagonal matrix associate with E , i.e., TE U DU= . Now the 
associated approximation of A , which we denote it with A , then we have:  

( ) ( )1 1
1 11    

T
T T T

T T T TT T

U E B EUDU B
A UDU D U D U B E A B

B UD B B E B BB B E B
− −

− −−

      
= = = = =      

      
  

The last equation is called “bottleneck” form. There is a very interesting application of this form in Spectral 
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Grouping which it was possible to construct the exact eigen-decomposition of A  using the eigen- 
decomposition of smaller matrix rank r . Also Fowlkes et al have given an application of the Nystroem method 
t NCut Problem, see [43].  

10. Multidimensional Scaling (MDS) 

Given N  point { }1 2: , , , n
NX x x x= ⊂   and build up the distance matrix ijd ∆ =    where ij i jd x x= − , 

( or in general ( ),ij i jd d x x= for some metric which defined )d  MDS (  better to say a m -dimensional 

MDS )  is a technique that produces output points { }1 2, , , m
Ny y y ⊂   such that the distances ijd  are as  

close as possible to a function f  of the corresponding proximity's ( )ijf d . From [36], whether this function 
φ  is linear or non-linear, MDS is called either metric or non-metric. Define an objective stress function  

MDS-PROCEDURE:  
• Define an objective stress function and stress factor α , that it depends on ( )2

, iji j f d∑  or on 2
, iji jd∑   

( )
( )( )2

,, , :
ij ij

i jf
S

f d d
X f

α

−
Φ ∆ =

∑
                              (1.10) 

• Now if for a given X  as above, find *f  that minimize 0.10, i.e., 

( ) ( )*, , min , ,f
S Sf

X f X fΦ ∆ = Φ ∆  

• Determine the optimal data set X  by  

( ) ( )* *, , min , ,f
S SX

X f X fΦ ∆ = Φ ∆  

If we use Euclidean distance and take f id=  in Equation (1.10) the produced output data set should be 
coincide to the Principal component of cov(X)( without re-scaling to correlation), hence in this special case 
MDS and PCA are coincide (see [44]) There exist an alternative method to MDS, namely Fast Map see[45] [46].  

11. Locally Linear Embedding (LLE) 

Locally linear embedding is an approach which address the problem of nonlinear dimensionality reduction by 
computing low-dimensional neighborhood preserving embedding of high-dimensional data. A data set of 
dimensionality n , which is assumed to lie on or near a smooth nonlinear manifold of dimensionality m n , is 
mapped into a single global  coordinate system of lower-dimensionality m . The global nonlinear structure is 
recovered by locally linear fits.As usual given a Data set of N  points on a n -dimensional points { } 1

N
i i

x
=

 
from some underlying manifold. Without loss of generality we can assume each data point and its neighbors lie 
on are close to a locally linear sub-manifold. By a linear transform, consisting of a translation, rotation and 
rescaling, the high-dimensional coordinates of each neighborhood can be mapped to global internal coordinates 
on the manifold. In order to map the high-dimensional data to the single global coordinate system of the 
manifold such that the relationships between neighboring points are preserved. This proceeds in three steps:   
• Identify neighbors of each data point ix . this can be done by finding the K  nearest neighbors, or choosing 

all points within some fixed radius ε .  
• Compute the weights ijw    that best linearly reconstruct ix  from its neighbors.  
• Find the low-dimensional embedding vector iy  which is the best reconstructed by the weights determined 

in the previous step.  
After finding the nearest neighbors in the first step, the second step must compute a local geometry for each 

locally linear sub-manifold. This geometry is characterized by linear coefficients that reconstruct each data point 
from its neighbors. 

( )

2

1 1
min

i j

n K

i ij Nw i j
x w x

= =

−∑ ∑                                 (1.11) 

where ( )iN j  is the index of the thj  neighbor of the point. It then selects code vectors so as to preserve the 
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reconstruction weights by solving  

( )

2

1 1
min

i j

n K

i ij NY i j
y w y

= =

−∑ ∑                                (1.12) 

This objective can be restate as  

( )min T

Y
Tra Y YL                                   (1.13) 

where ( ) ( )L I W T I w= − − . 
The solution for Y  can have an arbitrary origin and orientation. In order to make the problem well-posed,  

those two degree of freedom must be removed. Requiring the coordinates to be centered on origin ( 1 0ii y
=

=∑ , 

and constructing the embedding vectors to have unit covariance ( )TY Y I= , removes the first and second  

degrees of freedom respectively. The cost function can be optimized initially by the second of those two 
constraints. Under this constraint, the cost is minimized when the column of TY  (rows of Y) are the 
eigenvectors with the lowest eigenvalues of L . Discarding the eigenvector associated with eigenvalue 0  
satisfies the first constraint. 

12. Graph-Based Dimensionality Reduction 

As before given a data set X  include N  points in n
 , i.e., { }1 2, , , NX x x x=  , we associate to X  a 

weighted undirected graph with N  vertices and use the Laplacian matrix which defined see [47]. In order to 
define an undirected graph we need define a pair ( );V E  of sets, V  the set of vertices and E  the set of 
edges. we follows here the method introduced in [48]. 

we say iv V∈  if ix X∈  and ( ),i jv v E∈  iff ix  and jx  are close . But what it means to be close ? 
there are two variations define it:   
• ε -neighborhoods, which ε  is a positive small real number.  

ix  and jx  are close  iff 
2

i jx x ε− ≤ , where the norm is as usual the Euclidean norm in n
 . 

• K  nearest neighbors. Here K  is a natural number.  
ix  and jx  are close  iff ix  is among K  nearest neighbors of jx  or jx  is among K  near-es 

neighbors of ix . that means this relation is a symmetric relation. 
To associate the weights to edges, as well, there is two variations:  

• Heat kernel, which γ  is a real number.  
2

exp if    and    are  close

0                             otherwise

i j
i j

ij

x x
x x

w γ

  −  −  = 
 



，

，

 

• Simple adjacency with parameter γ = ∞ . 

1 if   and   are close

0 otherwise
i j

ij

x x
w

= 


，

，
 

We assume our graph, defined as above, is connected, otherwise proceed following for each connected 
component. Set 1

N
ii ijjd w

=
= ∑  and 0ijd =  if i j≠ , ijD d =   , ijW w =   . L D W= −  is the Laplacian 

matrix of the  
graph, which is a symmetric, positive sewmi-definite matrix, so can be thought of as an operator on the space of 
real functions defined on the vertices set V  of Graph. 

Compute eigenvalues and eigenvectors for the generalized eigenvector problem:  

L Dλ=f f  

Let 0 1 1, , , N −f f f  be the solutions of the above eigenvalue problem, ordered acording to their eigenvalues,  
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0 0

1 1

1 1

0 1 10
N N

N

L D
L D

L D

λ
λ

λ
λ λ λ
− −

−

=

=

=

= ≤ ≤ ≤

f f
f f

f f




 

We leave out the eigenvector (trivial eigenfuntion) corresponding to eigenvalue o, which is a vector with all 
component equal to 1  and use next m  eigenvectors for embedding in m -dimensional Euclidean space:  

( ) ( )( )1 , ,i i
i mx  f f  

which ( )if  means thi  component of the vector f . This called the Laplacian Eigenmap embedding by Bel- 
kin and Niogi, see [48]. 

13. Isomap 

Like LLE the Isomap algorithm proceeds in three steps:  
• Find the neighbors of each data point in high-dimensional data space.  
• Compute the geodesic pairwise distances between all points.  
• Embed the data via MDS so as preserve those distances  

Again like LLE, the first, the first step can be performed by identifying the K -nearest neighbors, or by 
choosing all points within some fixed radius, ε . These neighborhood relations are represented by graph G  in 
which each data point is connected to its nearest neighbors, with edges of weights ( ),Xd i j  between neighbors. 

The geodesic distances ( ),Xd i j  between all pairs of points on the manifold M  are then estimated in the 
second step. Isomap approximates ( ),Md i j  as the shortest path distance ( ),Gd i j  in the graph G . This can 
be done in different ways including Dijstra algorithm [49] and Floyd's algorithm [50]  

14. Hessian Eigenmaps Method 

High dimensional data sets arise in many real-world applications. These data points may lie approximately on a 
low dimensional manifold embedded in a high dimensional space. Dimensionality reduction (or as in this case, 
called manifold learning) is to recover a set of low-dimensional parametric representations for the 
high-dimensional data points, which may be used for further processing of the data. More precisely consider a 
d-dimensional parametrized manifold   embedded in n

  where ( )<d n  characterized by a nonlinear  
map : d nψ ⊂    , where   is a compact and connected subset of d

 . Here n
  is the high-  

dimensional data space with ( )ψ=   being the manifold containing data points and d  is the low-  
dimensional parameter space. Suppose we have a set of data points 1 2, , , Nx x x  sampled from the manifold 
  with  

( ) , 1, 2, , ,i ix y i Nψ= =   

for some iy ∈ . Then the dimensionality reduction problem is to recover the parameter points iy s and the 
map ψ  from iy s.  

Of course, this problem is not well defined for a general nonlinear map ψ . However, as is shown by Donoho 
and Grimes in the derivation of the Hessian Eigenmaps method [51], if ψ  is a local isometric map, then 

( )1y xψ −=  is uniquely determined up to a rigid motion and hence captures the geometric structure of the data 
set. 

Given that the map ψ  defined as above, is a local isometric embedding, the map 1 : n dφ ψ −= ⊂      
provides a locally) isometric coordinate system for  . Each component of φ  is a function defined on   
that provides one coordinate. The main idea of the Hessian Eigenmaps is to introduce a Hessian operator and a 
functional called the  -functional defined for functions on  , for which the null space consists of the d  
coordinate functions and the constant function. Let :f    be a function defined on   and let 0x  be 

an interior point of manifold  . We can define a function :g    as ( ) ( )( )g y f yψ= , where 
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( ) dφ= ⊂    and [ ]T1 2, , , dy y y y h= ∈ ⋅   is called a pullback of f  to  . Let ( )0 0y xφ= . We  

call the Hessian matrix of g  at 0y  the Hessian matrix of function f  at 0x  in the isometric coordinate and  

we denote it by ( )0
iso
fH x . Then ( ) ( ) ( )2

0
0,

iso
f i j

i j

g y
H f x

y y
∂

=
∂ ∂

. From the Hessian matrix, we define a  - 

functional of f  in isometric coordinates, denoted by iso
f , as  

( )
2

d ,iso iso
f f F

H f x x= ∫                           (1.14) 

where dx  is a probability measure on   which has strictly positive density everywhere on the interior of  
 . It is clear that iso

f  of the d  component functions of φ  are zero as their pullbacks to   are linear 

functions. Indeed, ( )iso
f ⋅  has a ( )1d + -dimensional null space, consisting of the span of the constant func-  

tions and the d component functions of φ ; see [51] (Corollary 4). The Hessian matrix and the  -functional in 
isometric coordinates introduced above are unfortunately not computable without knowing the isometric 
coordinate system φ  first. To obtain a functional with the same property but independent of the isometric 
coordinate system φ , a Hessian matrix and the  -functional in local tangent coordinate systems are 
introduced in [51]. Qiang Ye and Weifeng Zhi [52] developed a discrete version of the Hessian Eigenmaps me- 
thod of Donoho ad Grims.  

15. Miscellaneous 

15.1. Vector Quantization 

The main references for vector quantization are [40] and [53]. In [53] it is introduced a hybrid non-linear 
dimension reduction method based on combining vector quantization for first clustering the data, after cons- 
tructing the Voronoi cell clusters, applying PCA on them. In [40] both non-linear method i.e., vector quanti- 
zation and non-linear PCA (using a five layer neural network) on the image data set have been used. It turns out 
that the vector quantization achieved much better results than non-linear PCA.  

15.2. Genetic and Evolutionary Algorithms 

These algorithms introduced in [54] are in fact optimization algorithms based on Darwinian theory of evolution 
which uses natural selection and genetics to find the optimized solution among members of competing popu- 
lation. There are several references for genetic and evolutionary algorithms [55], see [56] for more detail. An 
evolutionary algorithm for optimization is different from classical optimization methods in several ways:  
• Random Versus Deterministic Operation  
• Population Versus Single Best Solution  
• Creating New Solutions Through Mutation  
• Combining Solutions Through Crossover  
• Selecting Solutions Via “Survival of the Fittest” 
• Drawbacks of Evolutionary Algorithms  

In [55] using genetic and evolutionary and algorithms combine with a k-nearest neighbor classifier to reduce 
the dimension of feature set. Here Input is population matrices which are in fact random transformation matrices 
{ }( )im NW × , then algorithms will find output m NY ×  so that the k-nearest neighbor classifier using the new fea- 
tures m r m N N rB Y X× × ×=  classifies the training data most accurately.  

15.3. Regression 

We can use Regression methods for dimension reduction when we are looking for a variable function  
( )1, , ny f x x=   for a given data set variables { }ix . Under assumption that the ix s are uncorrelated and  

relevant to expanding the variation in y . Of course in modern data mining applications however such as- 
sumptions rarely hold. Hence we need a dimension reduction for such a case. We can list well-known dimension 
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reduction methods as follows:  
• The Wrapper method in machine learning community [57]  
• Projection pursuit regression [36] [58] 
• Generalized linear models [59] [60]  
• Adaptive models [61]  
• Neural network models and sliced regression and Principal hessian direction [62]  
• Dimension reduction for conditional mean in regression [63]  
• Principal manifolds and non-linear dimension reduction [64]  
• Sliced regression for dimension reduction [65]  
• Canonical correlation [66]  
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Appendix. Fractal and Topological Dimension 

The main Reference for this appendix is [67]. Local (or topological) Methods (1): The definition of topological 
dimension was given by Brouwer in 1913: A. Heyting, H. Freudenthal, Collected Works of L.E.J Brouwer, 
North Holland Elsevier, 1975. 

To begin at the very beginning: How can we best define the dimension of a closed bounded set dΩ ⊂  , say? 
• When Ω  is a manifold then the value of the dimension is an integer which coincides with the usual notion 

of dimension;  
• For more general sets Ω  we can have fractional dimensional  
• Points, and countable unions of points, have zero dimension.  

Local (or topological) Methods (2): The earliest attempt to define the dimension:  
Definition 1 We can define the Topological dimension ( )dimTΩ  by induction. We say that Ω  has zero 

dimension if for every point x∈Ω  every sufficiently small ball about x  has boundary not intersecting Ω . 
We say that Ω  has dimension d  if for every point x∈Ω  every sufficiently small ball about x  has 
boundary intersecting Ω  in a set of dimension 1d − .  

Local (or topological) Methods (3): 
Definition 2 Given 0> , let ( )N   be the smallest number of  -balls needed to cover Ω . The Box 

dimension is  

( )
0

log
dim : limsup

1log
B

N
→

Ω =
 
 
 







 

Example 1 For { }1 : 1 0n
n

 Ω = ≥ 
 

   

1dim
2B Ω =  

Local (or topological) Methods (4): The Hausdorff dimension dimH Ω  for a closed bounded set dΩ ⊂   is 
defined as follows: 

Definition 3 Consider a cover { }iU=  for Ω  by open sets. For > 0δ  we can define  

( ) ( )inf diam i
i

H U δδ  Ω =  
 
∑ 

 

where the infimum is taken over all open covers { }iU=  such that ( )diam iU ≤  .Then  
( ) ( )0limH Hδ δ

→Ω = Ω   and finally,  

( ){ }dim : inf : 0H H δδΩ = Ω =  

• Fact1: For any countable set Ω  we have dim 0H Ω =   
• Fact2: dim dimH BΩ ≤ Ω   

Local (or topological) Methods (4) as shown in Figure 1.  
Local (or to pological) Methods (5): 
Example 2 (von Koch curve: [ ] The von Koch curve is a standard fractal construction. Starting from  

[ ]0 0,1Ω = , we associate to each piecewise linear curve nΩ  in the plane ( which is a union of 4n  segments of 
length 3 n− ) a new one 1n+Ω .This is done by replacing the middle third of each line segment by the other two 
sides of an equilateral triangle bases there. Alternatively, one can start from an equilateral triangle and apply this 
iterative procedure to each of the sides one gets a snowflake curve.  

For Ω  = von Koch curve, both the box dimension and Hausdorff dimension are equal in fact, as shown in 
Figure 2: 

 ( ) ( ) log 4
dim dim

log3H B= =
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Example 3 (Ω : the Middle third Cantor set 2E ,  This is the set of closed set  
of points in the unit interval whose triadic expansion does not contain any occurrence of the digit 1 : 

{ }
1

: : 0, 2
3

k
kk

k

i
i

∞

=

 Ω = ∈ 
 
∑  

For the middle third Cantor set both the Box dimension and the Hausdorf dimension are log 2 0.690
log 3

=   

The set 2E  is the set of points whose continued fraction expansion contains only the terms 1  and 2 . 
Unlike the Middle third Cantor set, the dimension of this set is not explicitly known in a closed form and can 
only be numerically estimated to the desired level of accuracy. as shown in Figure 3, For the Sierpinski car-  

pet both the Box dimension and the Hausdorff dimension are equal to log8 1.892
log3

=   

 

 
                    Figure 1. (I) Cocer by balls, (II) Cover by open sets.                   

 
                             Figure 2. The construction of von Koch-curve.      
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            Figure 3. The construction Sierpinski Carpet.                                         
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Abstract 

In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in 
cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder 
for 0r ≠  is solved directly. The Poisson equation is approximated by fourth-order finite differ-
ences and the resulting large algebraic system of linear equations is treated systematically in or-
der to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s 
equations with known analytical solutions and the numerical results obtained show that the me-
thod produces accurate results. 

 
Keywords 

Poisson’s Equation; Tri-Diagonal Matrix; Fourth-Order Finite Difference Approximation;  
Hockney’s Method; Thomas Algorithm 

 
 

1. Introduction 

The three-dimensional Poisson’s equation in cylindrical coordinates ( ), ,r zθ  is given by 

( )2

1 1 , ,rr r zzU U zU U f r
r r θθ θ+ + + =                              (1) 

has a wide range of application in engineering and science fields (especially in physics).  
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In physical problems that involve a cylindrical surface (for example, the problem of evaluating the tempera-
ture in a cylindrical rod), it will be convenient to make use of cylindrical coordinates. For the numerical solution 
of the three dimensional Poisson’s equation in cylindrical coordinates system, several attempts have been made 
in particular for physical problems that are related directly or indirectly to this equation. For instance, Lai [1] 
developed a simple compact fourth-order Poisson solver on polar geometry based on the truncated Fourier series 
expansion, where the differential equations of the Fourier coefficients are solved by the compact fourth-order finite 
difference scheme; Mittal and Gahlaut [2] have developed high order finite difference schemes of second- and 
fourth- order in polar coordinates using a direct method similar to Hockney’s method; Mittal and Gahlaut [3] 
developed a second- and fourth-order finite difference scheme to solve Poisson’s equation in the case of cylin-
drical symmetry; Alemayehu and Mittal [4] have derived a second-order finite difference approximation scheme 
to solve the three dimensional Poisson’s equation in cylindrical coordinates by extending Hockney’s method; 
Tan [5] developed a spectrally accurate solution for the three dimensional Poisson’s equation and Helmholtz’s 
equation using Chebyshev series and Fourier series for a simple domain in a cylindrical coordinate system; 
Iyengar and Manohar [6] derived fourth-order difference schemes for the solution of the Poisson equation 
which occurs in problems of heat transfer; Iyengar and Goyal [7] developed a multigrid method in cylindrical 
coordinates system; Lai and Tseng [8] have developed a fourth-order compact scheme, and their scheme relies 
on the truncated Fourier series expansion, where the partial differential equations of Fourier coefficients are 
solved by a formally fourth-order accurate compact difference discretization. The need to obtain the best solu-
tion for the three dimensional Poisson’s equation in cylindrical coordinates system is still in progress. 

In this paper, we develop a fourth-order finite difference approximation scheme and solve the resulting large 
algebraic system of linear equations systematically using block tridiagonal system [9] [10] and extend the 
Hockney’s method [9] [11] to solve the three dimensional Poisson’s equation on Cylindrical coordinates system. 

2. Finite Difference Approximation 

Consider the three dimensional Poisson’s equation in cylindrical coordinates ( ), ,r zθ  given by 

( )
2 2 2

2 2 2 2

1 1 , , onU U U U f r z D
r rr r z

θ
θ

∂ ∂ ∂ ∂
+ + + =

∂∂ ∂ ∂
 

and the boundary condition 

( ) ( ), , , ,   on  U r z g r z Cθ θ=                                  (2) 

where C is the boundary of D  and D is 

( ){ }
1

0 1 0 1 0 1, , : , , , 2π

D

r z R r R a z bθ θ θ θ θ θ

=

< < < < < < < <
 and ( ){ }2 0 1, , : , ,0 2πD r z R r R a z bθ θ= < < < < ≤ <  

Consider Figure 1 as the geometry of the problem. Let ( ), ,u r zθ  be discretized at the point ( ), ,i j kr zθ  and 

for simplicity write a point ( ), ,i j kr zθ
 
as ( ), ,i j k  and ( ), ,i j ku r zθ  as , ,i j ku . 

Assume that there are M points in the direction of r , N points in θ  and P points in the z  directions to form 
the mesh, and let the step size along the direction of r  be r∆ , of θ  be θ∆  and z  be z∆ . 

Here 0 0,    and  i j kr R i r j z a k zθ θ θ= + ∆ = + ∆ = + ∆
 

Where 1,2, , , 1, 2, ,i M j N= =   and 1, 2, ,k P=  . 
When 0r =  is an interior or a boundary point of (2), then the Poisson’s equation becomes singular and to take 

care of the singularity a different approach will be taken. Thus in this paper we consider only for the case 0r ≠ . 
Using the approximations that  

( )
( )( )

12
42 2

, ,2 2
, ,

1 11
12 r r i j k

i j k

U U O r
r r

δ δ
− ∂  = + + ∆   ∂  ∆ 

                      (3) 

( )
( )( )

12
42 2

, ,2 2
, ,

1 11
12 i j k

i j k

U U Oθ θδ δ θ
θ θ

− ∂  = + + ∆   ∂  ∆ 
                      (4) 
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                   Figure 1. Portion of a cylinder.                                      

( )
( )( )

12
42 2

, ,2 2
, ,

1 11
12 z z i j k

i j k

U U O z
z z

δ δ
− ∂  = + + ∆   ∂  ∆ 

                      (5)  

Now using (3), (4) and (5), we get (Refer the work of Mittal and Ghalaut in [2]) 
From (1) consider only the approximation of the sum of the first and the third terms, that is, the sum of  

2

2

U
r

∂
∂

 and 
2

2 2

1

i

U
r θ

∂
∂

  

( )
( ) ( )

( )

2 2

2 2 2
, ,

, , 1, , 1, , , 1, , 1,2 2 2 2

2 2

1, 1, 1, 1, 1, 1, 1, 1,2 2 2

1

1 520 1 2 5 2 1
12

1 11
12

i i j k
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i i i
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i i

U U
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U U U U
r r r

θ
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 ∂ ∂
+ 
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+ + + + + − + 

∂ ∂  

( ) ( ) ( ) ( )( )

2

2 2
2 2 4 4

, ,2 2 i j kr U O r
r

θ

θ θ
θ

 
 
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where 
( )
( )

2

2

r
ω

θ

∆
=

∆
 

Again from (1) consider only the approximation of the sum of the first and the fourth terms, that is, the sum of  
2

2

U
r

∂
∂

 and 
2

2

U
z

∂
∂

, and we get 
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r z

r
U U U U

r z

r r r
U U U U U

z z z

+ + + − − + − −

+ − + −

 ∂ ∂
+ ∂ ∂ 

 ∆
 = + + + +
 ∆ ∆ 

     ∆ ∆ ∆
     + − + + − + − +

      ∆ ∆ ∆      

∂
− ( ) ( ) ( ) ( )( )

2 2 2
2 2 4 4

, ,2 2 2 2 i j kr z U O r z
r z r z

  ∂ ∂ ∂
+ ∆ + ∆ + ∆ + ∆  ∂ ∂ ∂ ∂  

    (7) 

Once again from (1) consider only the approximation of the sum of the second and the fourth terms, that is, the  

sum of 
2

2 2

1

i

U
r θ

∂
∂

 and 
2

2

U
z

∂
∂

; to get 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

2 2

2 2 2
, ,

, 1, 1 , 1, 1 , 1, 1 , 1, 1 , 1, , 1,2 2 2 2

, , 1 , , 1 ,2 2 2 2

1

1 1 1 5 12
12

5 1 1 12 20

i i j k

i j k i j k i j k i j k i j k i j k
i i

i j k i j k i j
i i

U U
r z

U U U U U U
z zr r

U U U
z zr r

θ

θ θ

θ θ

+ + + − − + − − + −

+ −

 ∂ ∂
+ 

∂ ∂ 

   
   = + + + + + − +
    ∆ ∆∆ ∆   

   
   + − + − +
   ∆ ∆∆ ∆   

( ) ( ) ( ) ( )( )

,

2 2 2 2
2 2 4 4

, ,2 2 2 2 2

1 1
12

k

i j k
i

z U O z
r z r z

θ θ
θ





  ∂ ∂ ∂ ∂
− + ∆ + ∆ + ∆ + ∆  ∂ ∂ ∂ ∂  

(8) 

Again taking the approximation of the term U
r

∂
∂

 by 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

2 , 1, , 1, , , 1 , , 1 2 , ,

, ,

3 3 3
2 2 2, , , , , ,

3 2 2

4 4 4

1 4

2

1
3

, 0 1

r i j k i j k i j k i j k r i j k

i j k

i j k i j k i j k

U U U U UU
r r

U U U
r z

r r r z
O r z

φδ φ δ

φ θ φ
θ

θ φ

+ − + −+ + + + −∂  = ∂ ∆ 

∂ ∂ ∂
− ∆ − ∆ − ∆

∂ ∂ ∂ ∂ ∂

+ ∆ + ∆ + ∆ ≤ ≤

               (9) 

Equation (9) implying that 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

2 , 1, , 1, , , 1 , , 1 2 , ,

, ,

3 3
2 2, , , ,

3 2

3
2 4 4 4, ,

2

1 41
2

1 1
3

1

r i j k i j k i j k i j k r i j k

i j ki i

i j k i j k

i i

i j k

i

U U U U UU
r r r r

U U
r

r rr r

U
z O r z

r r z

φδ φ δ

φ θ
θ

φ θ

+ − + −+ + + + −∂  = ∂ ∆ 

∂ ∂
− ∆ − ∆

∂ ∂ ∂

∂
− ∆ + ∆ + ∆ + ∆

∂ ∂

              (10) 

Now letting 
( )
( )

2

2

r

z
α

∆
=

∆
 and adding (6), (7), (8) and twice of (10), we get 
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( )
( ) ( )

( ) ( )

2 2 2

2 2 2 2
, ,

1, 1, 1, 1, 1, 1, 1, 1, 1, , 1, ,2 2 2

, 1, , 1, 1, , 1 1, , 12

1 12

1 1 2 5
12

52 1 1

i i i j k

i j k i j k i j k i j k i j k i j k
i i

i j k i j k i j k i j k
i

U U U U
r rr r z

U U U U U U
r rr

U U U U U
r

θ

ω ω

ω α

+ + + − − + − − + −

+ − + + + −

 ∂ ∂ ∂ ∂
+ + + 

∂∂ ∂ ∂ 

   
= + + + + + − +   

∆    
 

+ − + + + + + 
 

( )

( )( ) ( )( )

( ) ( )
( )

( ) ( )

( )

1, , 1 1, , 1

1, , 1, , , 1, , 1, , ,2

, 1, 1 , 1, 1 , 1, 1 , 1, 1 , ,2 2 2 2

2

2 5 2 5 1 20 2

1 1 1 1 120
12

5 12

i j k i j k

i j k i j k i j k i j k i j k
i

i j k i j k i j k i j k i j k
i i

i

U

U U U U U
r

U U U U U
z zr r

r

ωα α α

θ θ

θ

− + − −

+ − + −

+ + + − − + − −

+

 
+ − + + − + − + +  

  
   
   + + + + + − +
    ∆ ∆∆ ∆   

+ −
∆ ( )

( )
( ) ( )

( )

( ) ( ) ( ) ( )

( )

, 1, , 1, , , 1 , , 12 2 2

2 2 2 2 2 2 2 2
2 2 2 2

, , , ,2 2 2 2 2 2 2 2 2

2 2 2
2

2 2 2

5 12

1 1 1
12 12

1 1
12

i j k i j k i j k i j k
i

i j k i j k
i

i

U U U U
z z r

r U r z U
r r r r z r z

r z

θ

θ
θ θ

θ
θ

+ − + −

   
   + + − +
   ∆ ∆ ∆   
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + ∆ + ∆ − + ∆ + ∆     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ ∂ ∂
− + ∆ 

∂ ∂ 
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2
2 , 1, , 1, , , 1 , , 12

, ,2 2

3 3 3
2 2 2 4 4 42 , , , , , , , ,

3 2 2

1 4 1
3

r i j k i j k i j k i j k
i j k

r i j k i j k i j k i j k

U U U U
z U

rr z

U U U U
r z O r z

r r r r z

φδ

φ δ
φ θ φ θ

θ

+ − + −+ + + ∂
+ ∆ +  ∆∂ ∂ 

− ∂ ∂ ∂
+ − ∆ − ∆ − ∆ + ∆ + ∆ + ∆

∆ ∂ ∂ ∂ ∂ ∂

  (11) 

Now choose 1
12

φ =  and consider the following terms in (11) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
2 2

, ,2 2 2 2 2

32 2 2 2
2 2 2 , ,

, ,2 2 2 2 3

32 2 2 2
2 2 2 , ,

, ,2 2 2 2 2 2

1 1
12

1 1
12 3

1 1 1
12 12

i j k
i

i j k
i j k

i

i j k
i j k

ii

r U
r r r

U
r z U r

rr z r z r

U
z U

rr z r z r

θ
θ θ

θ θ
θ θ

  ∂ ∂ ∂ ∂
− + ∆ + ∆  ∂ ∂ ∂ ∂  

∂  ∂ ∂ ∂ ∂
− + ∆ + ∆ − ∆  ∂ ∂ ∂ ∂ ∂  

∂  ∂ ∂ ∂ ∂
− + ∆ + ∆ − ∆ +  ∂ ∂ ∂ ∂ ∂ ∂  

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

3
2 , ,

2

3 2 2 2 2 2 2
2 2 2 2

, ,3 2 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2

, ,2 2 2 2 2 2

3
2 ,

 

1 1 1
3 12

1
12

1
12

i j k

i j k
i i

i j k

i

i

U
z

r z

Ur r z U
r r r z r r z

r z U
r r z z

U
r

θ
θ θ

θ
θ θ

θ

 ∂
∆  ∂ ∂ 

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − ∆ − ∆ + ∆ + ∆ + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

      ∂ ∂ ∂ ∂ ∂ ∂
− ∆ + ∆ + ∆       ∂ ∂ ∂ ∂ ∂ ∂      

∂
− ∆ ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3
2, , ,

2 2

2 2 2 2 2 2
2 2 2

, ,2 2 2 2 2 2 2

32 2 2
2 2 2 2 , ,

, ,2 2 2 3

2 2
2 2

2 2

1 1
12

1 1 1
12 4

1
12

j k i j k

i j k
i

i j k
i j k

i i

U
z

r r z

r z U
r z r r z

U
r z U r

r r rr z r

r
r

θ

θ
θ θ

θ
θ

θ
θ

 ∂
+ ∆  ∂ ∂ ∂ ∂ 

  ∂ ∂ ∂ ∂ ∂ ∂
= − ∆ + ∆ + ∆ + +  ∂ ∂ ∂ ∂ ∂ ∂  

∂  ∂ ∂ ∂ ∂
− ∆ + ∆ + ∆ − ∆   ∂ ∂ ∂ ∂ ∂  

∂ ∂
= − ∆ + ∆

∂ ∂
( ) ( )

32 2 2 2
2 2 , ,

, ,2 2 2 2 2 3

1 1 1
4

i j k
i j k

i ii

U
z U r

r r rz r r z rθ
∂  ∂ ∂ ∂ ∂ ∂

+ ∆ + + + − ∆   ∂∂ ∂ ∂ ∂ ∂  

   (12) 
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Again we can write the term ( )
3

2 , ,
3

1
4

i j k

i

U
r

r r
∂

− ∆
∂

 in (12) as  

( )

( )

( ) ( ) ( )

( ) ( ) ( )

2 3
, ,
3

2 2 2 2

, ,2 2 2 2

2 2 22 2
, , , , , ,

2 2 2

2 2 2 2
, ,

3 2

4

1 1
4

1 1+
4 4 4

4 4 4

i j k

i

i j k
i i i

i j k i j k i j k

i i i ii

i j k i

i i i

Ur
r r

r
U

r r r rr r z

U U Ur r r
r r r r r r r rr z

U Ur r rf
r r rr r

θ

θ

∂∆
−

∂

∆  ∂ ∂ ∂ ∂ ∂
= − + + + 

∂ ∂∂ ∂ ∂ 
   ∂ ∂ ∂∆ ∆ ∆ ∂ ∂ ∂

+ +        ∂ ∂ ∂ ∂∂ ∂     

∂ ∂∆ ∆ ∆∂
= − − +

∂ ∂
( ) ( )

( )

2 22 2
, , , , , ,
2 4 2 3 2

2 2
, ,
2

1
2 4

4

j k i j k i j k

i i

i j k

i

U Ur r
rr r r

Ur
r r z

θ θ

 ∂ ∂∆ ∆ ∂
− +   ∂∂ ∂ ∂ 

 ∂∆ ∂
+   ∂ ∂ 

       (13) 

Using (12), (13), and multiplying both sides of (11) by ( )212 r∆  and rearranging and simplifying further, we 
get 

( )

( ) ( ) ( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )

2 2 2 2
2 , ,

0 , , 1 1, , 2 1, ,

3 , 1, , 1, 4 , , 1 , , 1 5 1, 1, 1, 1,

6 1, 1, 1, 1, 7 1, , 1 1, , 1 8 1,

324
2r z r i j k

i

i j k i j k i j k

i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k i j

rr f
r

a i U a i U a i U

a i U U a i U U a i U U

a i U U a i U U a i U

θδ δ δ δ

+ −

+ − + − + + + −

− + − − + + + − −

 ∆
∆ + + + + 

 
= + +

+ + + + + +

+ + + + + ( )
( )( )

, 1 1, , 1

9 , 1, 1 , 1, 1 , 1, 1 , 1, 1

k i j k

i j k i j k i j k i j k

U

a i U U U U

+ − −

+ + − + + − − −

+

+ + + +

      (14) 

where  

( ) ( ) ( )

( )

( )

( ) ( )

2 2

0 2 2 2 2

3 2

1 2 2

3 2

2 2 2

3 42

40 1 6 12

2 320 2 8 3 3 3
2

2 320 2 8 3 3 3
2

22 12 2 20

i i i i

i i i i ii i

i i i i ii i

i i

r r
a i

r r r r

r r r r ra i
r r r r rr r

r r r r ra i
r r r r rr r

a i a i
r r

ω ωα

ω ωα α

ω ωα α

ω ωα α

∆ ∆ 
= − + + − + 

 

   ∆ ∆ ∆ ∆ ∆
= − − + − + − −   

   

   ∆ ∆ ∆ ∆ ∆
= − − − + + + +   

   

= − + − = − 2 2−

 

( ) ( )

( ) ( ) ( )

5 62 2 2 2

7 8 9 2

3 31 1
2 2

3 31 1
2 2

i i i ii i i i

i i i i i

r r r ra i a i
r r r rr r r r
r r r ra i a i a i

r r r r r

ω ω ω ω

ωα α α α α

∆ ∆ ∆ ∆
= + + + = + − −

∆ ∆ ∆ ∆
= + + + = + − − = +

 

The system of equations in (14) is a linear sparse system, and thereby when solving we save both work and 
storage compared with a general system of equations. Such savings are basically true of finite difference me-
thods: they yield sparse systems because each equation involves only few variables. 

To solve equation (14), consider first in the θ  direction, next in the z  direction and lastly in the r  direction, 
and thus (14) can be written in matrix form as  
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AU =                                           (15) 
where  

1 1

2 2 2

3 3 3

1 1 1M M M

M M

R S
T R S

T R S
A

T R S
T R

− − −

 
 
 
 

=  
 
 
  
 



 

and it has M  blocks and each is of order NP . 

i i

i i i

i i i
i

i i i

i i

R R
R R R

R R R
R

R R R
R R

′ ′′ 
 ′′ ′ ′′ 
 ′′ ′ ′′

=  
 
 ′′ ′ ′′
  ′′ ′ 



, 

i i

i i i

i i i
i

i i i

i i

S S
S S S

S S S
S

S S S
S S

′ ′′ 
 ′′ ′ ′′ 
 ′′ ′ ′′

=  
 
 ′′ ′ ′′
  ′′ ′ 



 

i i

i i i

i i i
i

i i i

i i

T T
T T T

T T T
T

T T T
T T

′ ′′ 
 ′′ ′ ′′ 
 ′′ ′ ′′

=  
 
 ′′ ′ ′′
  ′′ ′ 



 

, ,  and i i iR S T  are of order NP . 
For the domain 1D   

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0 3

3 0 3

3 0 3

3 0 3

3 0

i

a i a i
a i a i a i

a i a i a i
R

a i a i a i
a i a i

 
 
 
 

′ =  
 
 
  
 



 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

4 9

9 4 9

9 4 9

9 4 9

9 4

i

a i a i
a i a i a i

a i a i a i
R

a i a i a i
a i a i

 
 
 
 

′′=  
 
 
  
 



 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 5

5 1 5

5 1 5

5 1 5

5 1

i

a i a i
a i a i a i

a i a i a i
S

a i a i a i
a i a i

 
 
 
 

′ =  
 
 
  
 


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( )
( )

( )

( )

7

7

7

7

i

a i
a i

S a i

a i

 
 
 
 ′′=
 
 
 
 



, 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 6

6 2 6

6 2 6

6 2 6

6 2

i

a i a i
a i a i a i

a i a i a i
T

a i a i a i
a i a i

 
 
 
 

′=  
 
 
  
 



 

( )
( )

( )

( )

8

8

8

8

i

a i
a i

T a i

a i

 
 
 
 ′′=
 
 
 
 



 

For the domain 2D , 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 3 3

3 0 3

3 0 3

3 0 3

3 3 0

i

a i a i a i
a i a i a i

a i a i a i
R

a i a i a i
a i a i a i

 
 
 
 

′ =  
 
 
  
 



 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

4 9 9

9 4 9

9 4 9

9 4 9

9 9 4

i

a i a i a i
a i a i a i

a i a i a i
R

a i a i a i
a i a i a i

 
 
 
 

′′=  
 
 
  
 



 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 5 5

5 1 5

5 1 5

5 1 5

5 5 1

i

a i a i a i
a i a i a i

a i a i a i
S

a i a i a i
a i a i a i

 
 
 
 

′ =  
 
 
  
 



 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 6 6

6 2 6

6 2 6

6 2 6

6 6 2

i

a i a i a i
a i a i a i

a i a i a i
T

a i a i a i
a i a i a i

 
 
 
 

′=  
 
 
  
 



 

iS ′′  and iT ′′  are the same as in the domain 1D . 
Here in 2D , the matrices , , , , ,i i i i iR R S S T′ ′′ ′ ′′ ′  and iT ′′  are circulant matrices of order N ; and 

[ ]T0 1 2 M=  B B B B , [ ]1 2
T

3i i i i iP= B d d d d  and 1 2
T

ik ij ij ijPd d d =  d  

such that each ijkd  represents a known boundary values of U  and values of f , and 

[ ]T1 2 3 M= U U U U U , ( )T
1 2 3i i i i iPU U U U= U  and ( )T

1 2 3ij ij ij ij ijPU U U U U=   
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Thus, we write (15) as 

1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

1

 

  M M M M M

R S
T R S
T R S

T R−

+ =
+ + =

+ + =

+ =


U U B
U U U B
U U U B

U U B

                                 (16)
 

3. Extended Hockney’s Method 

Observe that matrices , ,i i iR R S′ ′′ ′  and iT ′  are real symmetric matrices and hence their eigenvalues and eigen-
vectors can easily be obtained as 

For 1D  

( ) ( )0 3
π2 cos

1ij
ja i a i

N
λ  = +  + 

, ( ) ( )4 9
π2 cos

1ij
ja i a i

N
β  = +  + 

, ( ) ( )1 5
π2 cos

1ij
ja i a i

N
η  = +  + 

 

( ) ( )2 6
π2 cos

1ij
ja i a i

N
ζ  = +  +  , ( ) ( )1 1   and  1 1i M j N= =  

and for 2D  

( ) ( )0 3
2π2 cosij

ja i a i
N

λ  = +  
 

, ( ) ( )4 9
2π2 cosij

ja i a i
N

β  = +  
 

, ( ) ( )1 5
2π2 cosij

ja i a i
N

η  = +  
 

 

( ) ( )2 6
2π2 cosij

ja i a i
N

ζ  = +  
 

, ( ) ( )1 1   and  1 1i M j N= =  

Let jq  be an eigenvector of , ,i i iR R S′ ′′ ′  and iT ′  corresponding to the eigenvalue , ,ij ij ijλ β η  and ijξ ; and  
matrix [ ]T1 2 3 NQ = q q q q  be a modal matrix of , ,i i iR R S′ ′′ ′  and iT ′ , i∀  such that 

TQ Q I=  
The N N×  modal matrix Q is defined by 

2 πsin
1 1ij

ijq
N N

 =  + + 
, ( ), 1 1i j N=  for 1D ; cos sin

ijq
N

θ θ+ 
=  
 

 where  ( )( )2π 1 1i j
N

θ = − −  

( ), 1 1i j N=   for 2D  
Let ( )diag , , , ,Q Q Q Q=   be a matrix of order NP ; thus   satisfy T I=   since TQ Q I= .  
Since ,i iR S  and iT  are symmetric matrices, we have 

( )1 2diag , , ,T i i i
i j j jP iR µ µ µ= = ϒ    where π2 cos

1
i
jP ij ij

k
P

µ λ β  = +  + 
 

( )1 2diag , , ,T i i i
i j j jP iS ξ ξ ξ= = Φ    where ( )7

π2 cos
1

i
jP ij

ka i
P

µ η  = +  + 
 

( )1 2diag , , ,T i i i
i j j jP iT τ τ τ= = Ψ    where ( )8

π2 cos
1

i
jP ij

ka i
P

τ ζ  = +  + 
 

Let  

 T
i i i i= ⇒ =U V U V  ,  T

i i i i= ⇒ =B b B b                     (17)  

where  

[ ]T1 2 3i i i i iPV V V V= V , [ ]T1 2 3ik i k i k i k iNkV v v v v=  ; 

[ ]T1 2?  i ii i k= b bb b  and [ ]1
T

2ik i k i k iNkb b b= b  
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Pre-multiplying Equation (16) by T and applying (17), we get 

1 1 1 2 1

2 1 2 2 2 3 2

3 2 33 3

1

3 4

M M M M M−

ϒ +Φ =

Ψ + ϒ +Φ =

Ψ + ϒ +Φ =

Ψ + ϒ =



V V b
V V V b

V V V b

V V b

                               (18) 

Now from each Equation of (18) we collect the first equations and put them as one group of equation  
1 1 2

1

2 1 2 2 2 3
2

3 2 3 3 3 4
3

1 2 1 1 1
1

1

i
jk k jk k

jk k jk k jk k

jk k jk k jk k

M M M M M M
jk k jk k jk k M

M M M M
jk k jk k M

V V

V V V

V V V

V V V

V V

µ ξ

τ µ ξ

τ µ ξ

τ µ ξ

τ µ

− − − − −
−

−

+ =

+ + =

+ + =

+ + =

+ =

b

b

b

b

b

                     (19) 

Now put 1k =  in Equation (19) and collect the entire first set of equations, for 1, 2,3, ,i M=   and 
1,2,3, ,j N=   to get 

 
1 1

1 1 1 1 1 1
i i i i i i
j j j j j j iv v vτ µ ξ− ++ + = b  and 0

1 10j j
Mv v= =                       (20a) 

Again consider the second equations by putting 2k = , and get  
1 1

2 2 2 2 2 2
i i i i i i
j j j j j j iv v vτ µ ξ− ++ + = b  and 0

2 20j j
Mv v= =                      (20b) 

Continuing in this manner and finally considering the last equations for k P= , we obtain 
1 1i i i i i i

jP jP jP jP jP jP iv v vτ µ ξ− ++ + = b  and 0 0 M
jP jPv v= =                       (20c) 

All these set of Equations (20a)-(20c) are tri-diagonal ones and hence we solve for i
jkv  by using Thomas al-

gorithm. With the help of (17) again we get all i
jku  and this solves (14) as desired. By doing this we generally 

reduce the number of computations and computational time.  

4. Numerical Results 

In order to test the efficiency and adaptability of the proposed method, computational experiments are done on 
some selected problems that may arise in practice, for which the analytical solutions of U  are known to us. 
The computed solutions are found for all grid points for any values of ,M N  and P . Here results are reported 
at some randomly taken mesh points in terms of the absolute maximum error from Table 1 to 7. 

Example 1. Consider 2 0U∇ =  with the boundary conditions ( )0, , 0U zθ = , ( )1, , sinU z zθ θ=  

( ) ( ),0, 0 , π,U r z U r z= = , and ( ) ( ), ,0 0, , ,1 sinU r U r rθ θ θ= =  

The analytical solution is ( ), , sinU r z rzθ θ=  and the computed results of this example are shown in Table 1. 
Example 2. Consider 2 2π cos sin πU r zθ∇ = −  with the boundary conditions 

( )1, , cos sin πU z zθ θ= , ( )2, , 2cos sin πU z zθ θ=  

( ),0, sin πU r z r z= , π, , 0
2

U r z  = 
 

, and ( ) ( ), ,0 0 , ,1U r U rθ θ= =  

The analytical solution is ( ), , cos sin πU r z r zθ θ=  and the computed results of this example are shown in 
Table 2. 

Example 3. Consider 2 3cosU θ∇ = −  with the boundary conditions 

( ) ( )0, , 1, , 2U z U z zθ θ= = − , ( ) ( ),0, 1 2U r z r r z= − − , π, , 2
2

U r z z  = − 
 
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 Table 1. Maximum absolute error of example 1.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 3.51670e-005 (29,9,39) 1.37257e-006 
(9,9,29) 1.46565e-005 (29,19,9) 4.15180e-006 
(9,19,9) 3.53325e-005 (29,29,19) 2.45633e-006 

(9,19,19) 2.06578e-005 (29,29,29) 1.74383e-006 
(9,29,39) 1.13280e-005 (29,39,19) 2.45924e-006 
(9,39,29) 1.46438e-005 (29,39,29) 1.74829e-006 
(19,9,9) 9.21838e-006 (39,9,19) 1.35171e-006 

(19,9,19) 5.32850e-006 (39,9,39) 7.75143e-007 
(19,19,19) 5.46733e-006 (39,19,29) 9.82456e-007 
(19,29,39) 3.02425e-006 (39,29,19) 1.38647e-006 
(19,39,9) 9.27536e-006 (39,39,9) 2.34568e-006 
(19,39,39) 3.02636e-006 (39,39,39) 7.68613e-007 

 Table 2. Maximum absolute error of example 2.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 2.93159e-003 (29,9,39) 2.98714e-003 

(9,9,29) 2.95649e-003 (29,19,9) 7.39877e-004 

(9,19,9) 7.32025e-004 (29,29,19) 3.31950e-004 

(9,19,19) 7.38648e-004 (29,29,29) 3.31771e-004 

(9,29,39) 3.27574e-004 (29,39,19) 1.86718e-004 

(9,39,29) 1.83450e-004 (29,39,29) 1.86618e-004 

(19,9,9) 2.95328e-003 (39,9,19) 2.98618e-003 

(19,9,19) 2.97861e-003 (39,9,39) 2.98710e-003 

(19,19,19) 7.44907e-004 (39,19,29) 7.46353e-004 

(19,29,39) 3.31145e-004 (39,29,19) 3.31953e-004 

(19,39,9) 1.84585e-004 (39,39,9) 1.84916e-004 

(19,39,39) 1.86232e-004 (39,39,39) 1.86784e-004 

 
( ) ( ), ,0 1 cosU r r rθ θ= − , ( ) ( ), ,1 1 cos 2U r r rθ θ= − −   

The analytical solution is ( ) ( ), , 1 cos 2U r z r r zθ θ= − −  and the computed results of this example are shown 
in Table 3. 

Example 4. Consider ( ) ( )2 2 2
2

1π sin 2 sin πU r z
r

θ ∇ = − − 
 

 with the boundary conditions 

( )1, , 0U zθ = , ( ) ( ) ( )152, , sin 2 sin π
4

U z zθ θ= , ( ) π,0, 0 , ,
2

U r z U r z = =  
 

 and ( ) ( ), ,0 0 , ,1U r U rθ θ= =  

The analytical solution is ( ) ( ) ( )2
2

1, , sin 2 sin πU r z r z
r

θ θ = − 
 

 and the computed results of this example  

are shown in Table 4. 
Example 5 Consider ( )( )( )2 38 1 2 sin cosU rz z r θ θ∇ = − − + , where 0 2πθ≤ <  with the boundary conditions  

( )0, , 0U zθ = , ( ) ( )( )1, , 1 sin cosU z z zθ θ θ= − +  ( ) ( ), ,0 0 , ,1U r U rθ θ= =  

The analytical solution is ( ) ( )( )3, , 1 sin cosU r z r z zθ θ θ= − +  and the computed results of this example are  
shown in Table 5. 
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 Table 3. Maximum absolute error of example 3.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 1.81124e-004 (29,9,39) 1.16544e-005 

(9,9,29) 4.45263e-005 (29,19,9) 1.82484e-004 

(9,19,9) 1.81185e-004 (29,29,19) 4.61297e-005 

(9,19,19) 6.02480e-005 (29,29,29) 2.04978e-005 

(9,29,39) 3.97430e-005 (29,39,19) 4.61300e-005 

(9,39,29) 4.46327e-005 (29,39,29) 2.04979e-005 

(19,9,9) 1.81939e-004 (39,9,19) 4.61828e-005 

(19,9,19) 4.59426e-005 (39,9,39) 1.17058e-005 

(19,19,19) 4.59583e-005 (39,19,29) 2.05467e-005 

(19,29,39) 1.50833e-005 (39,29,19) 4.61879e-005 

(19,39,9) 1.82013e-004 (39,39,9) 1.82652e-004 

(19,39,39) 1.50852e-005 (39,39,39) 1.15493e-005 

 Table 4. Maximum absolute error of example 4.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 3.68396e-003 (29,9,39) 3.98135e-003 

(9,9,29) 4.07400e-003 (29,19,9) 6.33780e-004 

(9,19,9) 7.68229e-004 (29,29,19) 3.64070e-004 

(9,19,19) 1.04366e-003 (29,29,29) 4.17368e-004 

(9,29,39) 5.73867e-004 (29,39,19) 1.75928e-004 

(9,39,29) 3.62888e-004 (29,39,29) 2.24720e-004 

(19,9,9) 3.58663e-003 (39,9,19) 3.89251e-003 

(19,9,19) 3.92179e-003 (39,9,39) 3.97355e-003 

(19,19,19) 9.34774e-004 (39,19,29) 9.60868e-004 

(19,29,39) 4.61633e-004 (39,29,19) 3.55183e-004 

(19,39,9) 7.29565e-004 (39,39,9) 7.23913e-004 

(19,39,39) 2.68695e-004 (39,39,39) 2.34933e-004 

 Table 5. Maximum absolute error of example 5.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 5.97062e-004 (29,9,39) 1.65910e-004 

(9,9,29) 4.42157e-004 (29,19,9) 4.11093e-004 

(9,19,9) 5.09956e-004 (29,29,19) 1.01380e-004 

(9,19,19) 3.72361e-004 (29,29,29) 6.92680e-005 

(9,29,39) 3.26827e-004 (29,39,19) 1.03392e-004 

(9,39,29) 3.27891e-004 (29,39,29) 6.38312e-005 

(19,9,9) 3.72181e-004 (39,9,19) 1.80739e-004 

(19,9,19) 2.39220e-004 (39,9,39) 1.49613e-004 

(19,19,19) 1.52973e-004 (39,19,29) 6.95506e-005 

(19,29,39) 1.04227e-004 (39,29,19) 1.06985e-004 

(19,39,9) 3.96923e-004 (39,39,9) 4.28673e-004 

(19,39,39) 9.84850e-005 (39,39,39) 3.91182e-005 
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This example was considered by M.C. Lai [1] as a test problem and our results are better than their results in 
terms of accuracy. For instance, for (8,16,16) the maximum absolute error in their result is 9.1438e-004 and while 
ours is 3.28689e-004. 

Example 6 Consider 2 6 cosU rz θ∇ = , where 0 2πθ≤ <  with the boundary conditions  

( )0, , 0U zθ = , ( ) 31, , cosU z zθ θ= ; ( ), ,0 0U r θ =  and ( ) 3 3, ,1 cosU r rθ θ=  

The analytical solution is ( ) 3 3, , cosU r z r zθ θ=  and the computed results are shown in Table 6. 

Example 5.7 Consider ( ) ( )2 2 2
2

1π sin 2 sin πU r z
r

θ ∇ = − − 
 

 where 0 2πθ≤ <  with the boundary condi- 

tions 

( )1, , 0U zθ = , ( ) ( ) ( )152, , sin 2 sin π
4

U z zθ θ= ; ( ) ( ), ,0 0 , ,1U r U rθ θ= =  

The analytical solution is ( ) ( ) ( )2
2

1, , sin 2 sin πU r z r z
r

θ θ = − 
 

 and the computed results of this example  

are shown in Table 7. 

Table 6. Maximum absolute error of example 6.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 3.04648e-003 (29,9,39) 3.06543e-004 

(9,9,29) 3.18297e-003 (29,19,9) 2.00777e-004 

(9,19,9) 3.05549e-003 (29,29,19) 2.85659e-004 

(9,19,19) 3.16606e-003 (29,29,29) 3.02059e-004 

(9,29,39) 3.19893e-003 (29,39,19) 2.85718e-004 

(9,39,29) 3.19459e-003 (29,39,29) 3.02122e-004 

(19,9,9) 6.03143e-004 (39,9,19) 1.42033e-004 

(19,9,19) 6.87721e-004 (39,9,39) 1.62951e-004 

(19,19,19) 6.89766e-004 (39,19,29) 1.58004e-004 

(19,29,39) 7.13568e-004 (39,29,19) 1.42553e-004 

(19,39,9) 6.05428e-004 (39,39,9) 1.58596e-004 

(19,39,39) 7.13712e-004 (39,39,39) 1.63583e-004 

 Table 7. Maximum absolute error of example 7.                                                              

( ), ,N P M  Max. absolute error ( ), ,N P M  Max. absolute error 

(9,9,9) 3.00418e-003 (29,9,39) 4.13706e-003 

(9,9,29) 2.36262e-003 (29,19,9) 8.41886e-004 

(9,19,9) 4.54924e-003 (29,29,19) 5.78646e-004 

(9,19,19) 4.13088e-003 (29,29,29) 6.30456e-004 

(9,29,39) 4.49099e-003 (29,39,19) 3.91287e-004 

(9,39,29) 4.67590e-003 (29,39,29) 4.41870e-004 

(19,9,9) 3.54731e-003 (39,9,19) 4.01710e-003 

(19,9,19) 3.84938e-003 (39,9,39) 4.09806e-003 

(19,19,19) 1.08325e-003 (39,19,29) 1.10354e-003 

(19,29,39) 6.43373e-004 (39,29,19) 5.01257e-004 

(19,39,9) 9.83307e-004 (39,39,9) 7.61254e-004 

(19,39,39) 4.66590e-004 (39,39,39) 3.82100e-004 



A. Shiferaw, R. C. Mittal 
 

 
86 

5. Conclusions 

In this work, we have transformed the three dimensional Poisson’s equation in cylindrical coordinates system into 
a system of algebraic linear equations using its equivalent fourth-order finite difference approximation scheme. 
The resulting large number of algebraic equation is, then, systematically arranged in order to get a block matrix. 
By extending Hockney’s method to three dimensions, we reduced the obtained matrix into a block tridiagonal 
matrix, and each block is solved by the help of Thomas algorithm. We have successfully implemented this method 
to find the solution of the three dimensional Poisson’s equation in cylindrical coordinates system and it is found 
that the method can easily be applied and adapted to find a solution of some related applied problems. The method 
produced accurate results considering double precision. This method is direct and allows considerable savings in 
computer storage as well as execution speed.  

Therefore, the method is suitable to apply to some three dimensional Poisson’s equations. 

References 
[1] Lai, M.C. (2002) A Simple Compact Fourth-Order Poisson Solver on Polar Geometry. Journal of Computational 

Physics, 182, 337-345. http://dx.doi.org/10.1006/jcph.2002.7172 
[2] Mittal, R.C and Gahlaut, S. (1987) High Order Finite Difference Schemes to Solve Poisson’s Equation in Cylindrical 

Symmetry. Communications in Applied Numerical Methods, 3, 457-461.  
[3] Mittal, R.C. and Gahlaut, S. (1991) High-Order Finite Differences Schemes to Solve Poisson’s Equation in Polar 

Coordinates. IMA Journal of Numerical Analysis, 11, 261-270. http://dx.doi.org/10.1093/imanum/11.2.261 
[4] Alemayehu, S. and Mittal, R.C. (2013) Fast Finite Difference Solutions of the Three Dimensional Poisson’s Equation 

in Cylindrical Coordinates. American Journal of Computational Mathematics, 3, 356-361. 
[5] Tan, C.S. (1985) Accurate Solution of Three Dimensional Poisson’s Equation in Cylindrical Coordinate by Expansion 

in Chebyshev Polynomials. Journal of Computational Physics, 59, 81-95.  
http://dx.doi.org/10.1016/0021-9991(85)90108-1 

[6] Iyengar, S.R.K. and Manohar, R. (1988) High Order Difference Methods for Heat Equation in Polar Cylindrical Polar 
Cylindrical Coordinates. Journal of Computational Physics, 77, 425-438.  
http://dx.doi.org/10.1016/0021-9991(88)90176-3 

[7] Iyengar, S.R.K. and Goyal, A. (1990) A Note on Multigrid for the Three-Dimensional Poisson Equation in Cylindrical 
Coordinates. Journal of Computational and Applied Mathematics, 33, 163-169.  
http://dx.doi.org/10.1016/0377-0427(90)90366-8 

[8] Lai, M.C. and Tseng, J.M. (2007) A formally Fourth-Order Accurate Compact Scheme for 3D Poisson Equation in Cy-
lindrical and Spherical Coordinates. Journal of Computational and Applied Mathematics, 201, 175-181.  
http://dx.doi.org/10.1016/j.cam.2006.02.011 

[9] Smith, G.D. (1985) Numerical Solutions of Partial Differential Equations: Finite Difference Methods. Third Edition. 
Oxford University Press, New York. 

[10] Malcolm, M.A. and Palmer, J. (1974) A Fast Method for Solving a Class of Tri-Diagonal Linear Systems. Communi-
cations of Association for Computing Machinery, 17, 14-17. http://dx.doi.org/10.1145/360767.360777 

[11] Hockney, R.W. (1965) A Fast Direct Solution of Poisson Equation Using Fourier Analysis. Journal of Alternative and 
Complementary Medicine, 12, 95-113. http://dx.doi.org/10.1145/321250.321259 

http://dx.doi.org/10.1006/jcph.2002.7172
http://dx.doi.org/10.1093/imanum/11.2.261
http://dx.doi.org/10.1016/0021-9991(85)90108-1
http://dx.doi.org/10.1016/0021-9991(88)90176-3
http://dx.doi.org/10.1016/0377-0427(90)90366-8
http://dx.doi.org/10.1016/j.cam.2006.02.011
http://dx.doi.org/10.1145/360767.360777
http://dx.doi.org/10.1145/321250.321259


American Journal of Computational Mathematics, 2014, 4, 87-92 
Published Online March 2014 in SciRes. http://www.scirp.org/journal/ajcm 
http://dx.doi.org/10.4236/jasmi.2014.42008   

How to cite this paper: Ngwane, F.F. and Jator, S.N. (2014) L-Stable Block Hybrid Second Derivative Algorithm for Parabolic 
Partial Differential Equations. American Journal of Computational Mathematics, 4, 87-92.  
http://dx.doi.org/10.4236/jasmi.2014.42008   

 
 

L-Stable Block Hybrid Second Derivative  
Algorithm for Parabolic Partial Differential 
Equations 

Fidele Fouogang Ngwane 1*, Samuel Nemsefor Jator 2 
1Department of Mathematics, USC Salkehatchie, Allendale, USA 
2Department of Mathematics and Statistics, Austin Peay State University, Clarksville, USA 
Email: *fifonge@yahoo.com  
 
Received 28 January 2014; revised 28 February 2014; accepted 5 March 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 

An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a 
continuous second derivative method that is defined for all values of the independent variable and 
applied to parabolic partial differential equations (PDEs). The use of the BHSDA to solve PDEs is 
facilitated by the method of lines which involves making an approximation to the space deriva-
tives, and hence reducing the problem to that of solving a time-dependent system of first order in-
itial value ordinary differential equations. The stability properties of the method is examined and 
some numerical results presented. 

 
Keywords 

Hybrid Second Derivative Method; Off-Step Point; Parabolic; Partial Differential Equations 

 
 

1. Introduction 
We adopt the method of lines approach which is commonly used for solving time-dependent partial differential 
equations (PDE), whereby the spatial derivatives are replaced by finite difference approximations (see Lambert 
[1], Ramos and Vigo-Aguiar [2], Brugnano and Trigiante [3], Cash [4], Enright [5], Hairer et al. [6], Henrici [7], 
Butcher [8], Fatunla [9], Jator [10], and Onumanyi et al. [11], [12]). Consider the PDE of the form 

( ) [ ] [ ]
2

2 , ,   0,1 0u u x t t T
t x

∂ ∂
= ∈ × < ≤

∂ ∂
                              (1) 
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subject to the initial/boundary conditions 

( ) ( ) [ ] ( ) ( ),0 ,   0,1 , 0, 1, 0, 0.u x G x x u t u t t= ∈ = = ≥                    (2) 

We seek a solution in the strip [ ] [ ]0,1 0 < t T× ≤  by first fixing the grid in the spatial variable x , then 
approximating this spatial derivative using the central difference method, and finally solving the resulting 
system of first order time dependent ODEs. Specifically, we discretize the space variable with mesh spacings  

1x M∆ = , 
, 0,1, ,mx m x m M= ∆ =  . 

We then define ( ) ( ), m mu t u x t≈ , ( ) ( ) ( ) T
1 , , mt u t u t=   u , and replace the partial derivatives 

( )2

2

, u x t
x

∂

∂
  

occurring in (1) by the central difference approximation to obtain 
( ) ( ) ( ) ( ) ( )2

1 1

, 
, 2 , ,m

m m m

u x t
u x t u x t u x t x

t + −

∂
 = − + ∆ ∂

; 0,1, , 1m M= − , which reduces the PDE to the semi- 

discrete problem 

( )
( )1 12

d 1 2
d

m
m m m

u
u u u

t x
+ −= − +

∆
 

which can be written in the form 

( ) ( ) 0, , 0 ,f t′ = =u u u u                                  (3) 

where ( ),t =f u Au , and A is an M M×  matrix arising from the central difference approximations to the 
derivatives of x . The problem (2) is now a system of first order ODEs which is solved by the BHSDA. 

The paper is organized as follows. In Section 2, we derive a continuous approximation which is used to obtain 
the BHSDA. The BHSDA is also analyzed in Section 2. The computational aspects of the method is given in 
Section 3. Numerical examples are given in Section 4 to show the accuracy of the method. Finally, the 
conclusion of the paper is discussed in Section 5. 

2. Development of the Method 

We begin by considering a scalar form of (3)  

( ) ( ) [ ]0 0 0, , ,   , Nu f t u u t u t t t′ = = ∈                             (4) 

where we assume that the function f is Lipshitz continuous and the problem (4) possesses a unique solution. 
Furthermore, let nu  be an approximation of the theoretical solution ( )u t  at nt . Our objective is to 
simultaneously seek numerical approximations at the points n nt t hν ν+ = +  and 1n nt t h+ = +  respectively, 
where h  is the step size, n  the grid index, and ( )0,1 .ν ∈  This approximation nu  is provided by a 
continuous approximation ( )U t  as a by-product. Thus, we assume that ( )U t  is of the form 

( )
4

4

0
j

j
U t t

=

= ∑                                       (5) 

where j  are unknown coefficients. 
In order to uniquely determine the unknown coefficients j , we impose that the interpolating function (4) 

coincides with the analytical solution at the end point nt  and also satisfies the differential Equation (3) at the 
points , 0,1, 2n jt jν+ =  to obtain the following system of equations:  

( ) ( ) ( )1 1, , , 0,1, 2.n n n j n j n nU t y U t f U t g jν ν+ + + +′ ′′= = = =                    (6) 

We note that (6) leads to a system of five equations which is solved by Cramer's Rule to obtain j . The 
continuous method is constructed by substituting the values of j  into Equation (5) which is simplified and 
expressed in the form  

( ) ( ) ( ) ( )( ) ( )2
0 1 1 1 1n n n n nU t y h t f t f t f h t gν νβ β β γ+ + += + + + +                 (7) 
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where ( )0 tβ , ( )1 tβ , ( )tνβ , ( )1 tγ , are continuous coefficients, and 
( )( ) 1

1

1

d ,
d

n

n

t

n

u

f t u t
g

t

+

+

+ = . The continuous  

method (7) is then evaluated at { }1,n nt t tν+ += , for 1 2ν =  to yield 

( ) ( )

( )

2

1 2 1 2 1 1

1 1 2 1

17 44 13 3
96 96

4 .
6

n n n n n n

n n n n n

h hy y f f f g

hy y f f f

+ + + +

+ + +


= + + − +


 = + + +

                   (8) 

Remark 2.1 In order to conveniently analyze and implement the method (8), we will express it in block form 
as given in (9). 

( ) ( ) ( ) ( ) ( )0 1 0 1 02
1 1A Y A Y h B F B F h C Gµ µ µ µ µ− −

 = + + +                        (9) 

where 
T

1 1
2

, nn
Y u uµ +

+

 
=   
 

, 
T

1 1
2

, nn
Y u uµ−

−

 
=   
 

, 
T

1 1
2

, nn
F f fµ +

+

 
=   
 

, 
T

1 1
2

, nn
F f fµ−

−

 
=   
 

, ( )T
10, nG gµ += ,  

1,µ =  , 0,1,n =  , and the matrices ( )0A , ( )1A , ( )0B , ( )1B , ( )0C  are 2 by 2 matrices whose entries are 
given by the coefficients of (8). 

2.1. Local Truncation Error 

Define the local truncation error of (4) as 

( ) ( ) ( ) ( ) ( )1 0 1 02
11Ł ;z t h Z A Z h B F B F h C Gµ µ µµ µ −−

 = − − + −                      (10) 

where 

( )
T

1 1
2

, nn
Z u t u tµ +

+

  
=       

, ( )
T

1 1
2

, nn
Z u t u tµ−

−

  
=       

, ( )( )
T

1 1 1 1
2 2

, , ,n nn n
F f t u t f t u tµ + +

+ +

   
 =         

, 

( )( )
T

1 1 1
2 2

, , ,n nn n
F f t u t f t u tµ−

− −

   
 =         

, and ( ) ( ) ( )( )T

1 2Ł ; Ł ; , Ł ;z t h z t h z t h=            is a linear difference  

operator. Assuming that ( )z t  is sufficiently differentiable, we can expand the terms in (10) as a Taylor series 

about the point nt  to obtain the expression for the local truncation error. ( ) ( )5Ł ;z t h O h=   , hence the  

method is of order four. 

2.2. Stability 

Proposition 2.2 The BHSDA (9) applied to the test equations u uλ′ =  and 2u uλ′′ =  yields. 

( ) 1 , ,Y M q Y q hµ µ λ−= =                                 (11) 

with the amplification matrix  

( ) ( ) ( ) ( )( ) ( ) ( )( )10 0 0 1 12 .M q A qB q C A qB
−

= − − +                       (12) 

Remark 2.3 The dominant eigenvalue of )(qM  specified by 
2

max 2 3

48 18 2
48 30 8

q qq
q q q

+ +
=

− + −
 is a rational  

function called the stability function which determines the stability of the method. 
Proof. We begin by applying (2) to the test equations u uλ′ =  and 2u uλ′′ =  which are expressed as 
( ),f t u uλ=  and ( ) 2,g t u uλ=  respectively; letting q hλ= , we obtain a system of linear equations which is 

used to solve for Yµ  with (12) as a consequence.  
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Definition 2.4 The block method (9) is said to be 1) A -stable if for all   q −∈ , ( )M q  has a dominant 
eigenvalue maxq  such that max 1q ≤ ; moreover, since maxq  is a rational function, the real part of the zeros of 

maxq  must be negative, while the real part of the poles of maxq  must be positive; 2) L -stable if it is A -stable 
and max 0q →  as q → −∞ .  

Corollary 2.5 The method (9) is A -stable and L -stable.  

Proof: The dominant eigenvalue maxq  for the method (9) is given by 
2

max 2 3

48 18 2
48 30 8

q qq
q q q

+ +
=

− + −
 and the  

proof follows from definition 2.4. 
Remark 2.6 The stability region for the method (9) is given in Figure 1 showing the zeros and poles of the 

dominant eigenvalue maxq . 

3. Computational Aspects 

The resulting system of ODEs (3) is then solved on the partition  
{ }0 1 0π : , N N nt t t t t nh< < < = +  

b ah t
N
−

= ∆ =  is a constant step-size of the partition of πN , 1, 2, ,n N=  , N  is a positive integer and n   

the grid index. 
Step 1: Use the block method (9) to solve (3) on rectangles [ ] [ ]0 1, 0,1t t × , [ ] [ ] [ ] [ ]1 2 1, 0,1 , , , 0,1N Nt t t t−× × . 

Step 2: Let 
T

, 1 , 1,
2

,m m nm n
Y u uµ +

+

 
=   
 

, noting that ( ) ( ), , m n m n m nu t u u x t≈ ≈ , then for 1, ,m M=  , 0n = ,  

and 1µ = , the approximations 
T

,1 1 ,1,
2

,m mm
Y u u

 
=   
 

 are simultaneously obtained on [ ] [ ]0 1, 0,1t t × . 

Step 3: Step 2 is repeated for 1, ,m M=  , 1, 2, , 1n N= − , and 2,3, , Nµ =  , to generate the approxi-  
mations ,2 ,3 ,, , ,m m m NY Y Y  on [ ] [ ] [ ] [ ]1 2 1, 0,1 , , , 0,1N Nt t t t−× × . 

We note that for linear problems, we solve (3) directly with our Mathematica code enhanced by the feature 
[ ]NSolve . 

4. Numerical Examples 

Computations were carried out in Mathematica 9.0 and the errors were calculated as ( ), ,m n m nu u x t− , where 
( ) ,m n m nu t u≈ . We note that the method is particularly useful, but not limited to solving parabolic partial 

differential equations where the solution decays very rapidly and where the PDEs are stiff parabolic equations 
(see Cash [4]). 

Example 4.1 As our first test example, we solve the given PDE (see Cash [4]) 

( ) ( ) ( )
2

2 , 0, 1, = 0, ,0 sin π .u u u t u t u x x
t x

κ∂ ∂
= = =

∂ ∂
 

The exact solution ( ) 2π, e sin πtu x t xκ−= . 
In Table 1, it is noticed that the method with the BHSDA is the most accurate. 
Example 4.2 As our second test example, we solve the given stiff parabolic equation (see Cash [4]) 

( ) ( ) ( )
2

2 , 0, 1, = 0, ,0 sin π sin π , 1.u u u t u t u x x x
t x

κ ω ω∂ ∂
= = = +

∂ ∂
  

The exact solution ( ) 2 2 2π π, e sin π e sin πt tu x t x xκ ω κ ω− −= + . 
Cash [4] notes that as ω  increases, equations of the type given in example 4.2 exhibit characteristics similar 

to model stiff equations. Hence, the methods such as the Crank-Nicolson method which are not 0L -stable are 
expected to perform poorly. The BHSDA is L -stable and perform excellently when applied to this problem. 
Therefore the BHSDA is competitive with the 0L -stable methods of Cash [4]. In Table 2, we display the results 
for 1κ =  and a range of values for ω . 
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Figure 1. The region of absolute stability of the BHSDA of order 4 is to the left of the 
dividing line and is symmetric about the real axis; the square and plus symbols to the left and 
right of the imaginary axis represent the zeros and poles of qmax respectively.                

 
Table 1. A comparison of errors of methods for Example 4.1 at t = 1.                                              

x∆  t∆  κ  Crank-Nicolson Cash (2.6a, b) Cash (2.13a, b, c) BHSDA 

0.1  0.1  1 53.0 10−×  51.5 10−×  64.5 10−×  61.3 10−×  

0.05  0.05  1 69.0 10−×  64.0 10−×  72.7 10−×  71.7 10−×  

0.1  0.1  5 42.0 10−×  83.0 10−×  102.0 10−×  192.5 10−×  

0.05  0.05  5 141.0 10−×  224.0 10−×  223.7 10−×  247.0 10−×  

 
Table 2. A comparison of errors of methods for Example 4.1 at t = 1 and ω = 1, Δx = 0.1, Δt = 0.1.                      

ω  BHSDA Crank-Nicolson Cash (2.6a, b) Cash (2.13a, b, c) 

1 62.64 10−×  56.20 10−×  53.7 10−×  51.5 10−×  

2 61.32 10−×  53.83 10−×  51.8 10−×  67.4 10−×  

3 61.32 10−×  39.30 10−×  51.9 10−×  67.4 10−×  

5 61.32 10−×  11.80 10−×  51.8 10−×  67.4 10−×  

10 61.32 10−×  16.10 10−×  51.8 10−×  67.4 10−×  

5. Conclusion 

We have proposed a BHSDA for solving parabolic PDEs via the method of lines. The method is shown to be L - 
stable and competitive with existing methods in the literature. 
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Abstract 

In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenva-
lue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a 
direct solution method in computational linear algebra. We apply our proposed formula to a tech-
nique used in nonlinear finite-element methods and discuss methods for determining singular 
points, such as bifurcation points and limit points. In our proposed method, the increment in arc 
length (or other relevant quantities) may be determined automatically, allowing a reduction in the 
number of basic parameters. The method is particularly effective for banded matrices, which al-
low a significant reduction in memory requirements as compared to dense matrices. We discuss 
the theoretical foundations of our proposed method, present algorithms and programs that im-
plement it, and conduct numerical experiments to investigate its effectiveness. 

 
Keywords 

Derivative of a Determinant with Respect to an Eigenvalue; Modified Cholesky Decomposition; 
Symmetric Matrix; Nonlinear Finite-Element Methods; Singular Points 

 
 

1. Introduction 

The increasing complexity of computational mechanics has created a need to go beyond linear analysis into the 
realm of nonlinear problems. Nonlinear finite-element methods commonly employ incremental techniques in-
volving local linearization, with examples including load-increment methods, displacement-increment methods, 
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and arc-length methods. Arc-length methods, which seek to eliminate the drawbacks of load-increment methods 
by choosing an optimal arc-length, are effective at identifying equilibrium paths including singular points. 

In previous work [1], we proposed a formula for the derivative of a determinant with respect to an eigenvalue, 
based on the trace theorem and the expression for the inverse of the coefficient matrix arising in the conju-
gate-gradient method. In subsequent work [2]-[4], we demonstrated that this formula is particularly effective 
when applied to methods of eigenvalue analysis. However, the formula as proposed in these works was intended 
for use with iterative linear-algebra methods, such as the conjugate-gradient method, and could not be applied to 
direct methods such as the modified Cholesky decomposition. This limitation was addressed in Reference [5], in 
which, by considering the equations that arise in the conjugate-gradient method, we applied our technique to the 
LDU decomposition of a nonsymmetric matrix (a characteristic example of a direct solution method) and pre-
sented algorithms for differentiating determinants of both dense and banded matrices with respect to eigenva-
lues. 

In the present paper, we propose a formula for the derivative of a determinant with respect to an eigenvalue in 
the modified Cholesky decomposition of a symmetric matrix. In addition, we apply our formula to the arc-length 
method (a characteristic example of a solution method for nonlinear finite-element methods) and discuss me-
thods for determining singular points, such as bifurcation points and limit points. When the sign of the derivative 
of the determinant changes, we may use techniques such as the bisection method to narrow the interval within 
which the sign changes and thus pinpoint singular values. In addition, solutions obtained via the New-
ton-Raphson method vary with the derivative of the determinant, and this allows our proposed formula to be 
used to set the increment. The fact that the increment in the arc length (or other quantities) may thus be deter-
mined automatically allows us to reduce the number of basic parameters exerting a significant impact on a non-
linear finite-element method. Our proposed method is applicable to the TLDL  decomposition of dense matrices, 
as well as to the TLDL  decomposition of banded matrices, which afford a significant reduction in memory re-
quirements compared to dense matrices. In what follows, we first discuss the theoretical foundations of our pro-
posed method and present algorithms and programs that implement it. Then, we assess the effectiveness of our 
proposed method by applying it to a series of numerical experiments on a three-dimensional truss structure. 

2. Derivative of a Determinant with Respect to an Eigenvalue in the Modified  
Cholesky Decomposition 

The derivation presented in this section proceeds in analogy to that discussed in Reference 5. The eigenvalue 
problem may be expressed as follows. If A  is a real-valued symmetric n n×  matrix (specifically, the tangent 
stiffness matrix of a finite-element analysis), then the standard eigenvalue problem takes the form 

Ax xλ= ,                                        (1) 
where λ  and x  denote the eigenvalue and eigenvector, respectively. In order for Equation (1) to have trivial 
solutions, the matrix A Iλ−  must be singular, i.e., 

det 0Α λΙ − = 
 .                                      (2) 

We will use the notation ( )f λ  for the left-hand side of this equation: 

( ) detf λ Α λΙ = − 
 .                                    (3) 

Applying the trace theorem, we find 

( )
( )

1 1
trace trace

f
f

λ
Α λΙ Α λΙ Α λΙ

λ
− −′  ′       = − − = − −          

   ,                   (4) 

where 

11

21 22

1

.
ij

n nn

a
a a sym

A a

a a

Α λΙ

 
 
  = − = =   
 
 



 



.                           (5) 
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In the case of TLDL  decomposition, we have 
TA LDL=                                       (6) 

with factors L and D of the form 

( )

21

1 1

1 0
1

1

ij

n n n

L

−

 
 
  = =   
 
  





 

  

,                            (7) 

11

22

0

0

ij

nn

d
d

D d

d

 
 
  = =   
 
 



.                            (8) 

The matrix 1L−  has the form 

( )

211

1 1

1 0
1

1

ij

n n n

g
L g

g g

−

−

 
 
  = =   
 
  

 



.                           (9) 

Expanding the relation 1LL I− =  (where I  is the identity matrix) and collecting terms, we find 

( ) ( )2 2 3 3 1 1ij ij i j i j i i i jg g g g− −= − − − − −     .                   (10) 

Equation (10) indicates that ijg  must be computed for all matrix elements; however, for matrix elements 
outside the bandwidth, we have 0ij =

, and thus the computation requires only elements ij  within the band-
width. This implies that a narrower bandwidth gives a greater reduction in computation time. 

From Equation (4), we see that evaluating the derivative of a determinant requires only the diagonal elements  
of the inverse matrix (6). Upon expanding the product 

1T 1 1L D L
− − −    using Equations (7-9) and summing the  

diagonal elements, Equation (4) takes the form 

( )
( )

2

1 1

1n n
ki

i k iii kk

f g
f d d

λ
λ = = +

′  
= − + 

 
∑ ∑ .                         (11) 

This equation demonstrates that the derivative of the determinant may be computed from the elements of the 
inverses of the matrices D and L obtained from the modified Cholesky decomposition. As noted above, only 
matrix elements within the a certain bandwidth of the diagonal are needed for this computation, and thus com-
putations even for dense matrices may be carried out as if the matrices were banded. Because of this, we expect 
dense matrices not to require significantly more computation time than banded matrices. 

By augmenting an TLDL  decomposition program with an additional routine (which simply adds one addi-
tional vector), we easily obtain a program for evaluating the quantity f f′ . The value of this quantity may be 
put to effective use in Newton-Raphson approaches to the numerical analysis of bifurcation points and limit 
points in problems such as large-deflection elastoplastic finite-element analysis. Our proposed method is easily 
implemented as a minor additional step in the process of solving simultaneous linear equations. 

3. Algorithms Implementing the Proposed Method 

3.1. Algorithm for Dense Matrices 

We first present an algorithm for dense matrices. The arrays and variables appearing in this algorithm are as 
follows.  

1) Computation of the modified Cholesky decomposition of a matrix together with its derivative with respect 
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to an eigenvalue 
(1) Input data 
A : given symmetric coefficient matrix,2-dimension array as A(n,n) 
b : work vector, 1-dimension array as b(n) 
n : given order of matrix A and vector b 
eps : parameter to check singularity of the matrix output 
(2) Output data 
A : L matrix and D matrix, 2-dimension array as A(n,n) 
  fd : differentiation of determinant 
  ichg : numbers of minus element of diagonal matrix D (numbers of eigenvalue) 
  ierr : error code 
      =0, for normal execution 
      =1, for singularity 
(3) LDLT decomposition 
  ichg=0 
  do i=1,n 
<d(i,i)> 
  do k=1,i-1 
      A(i,i)=A(i,i)-A(k,k)*A(i,k)２ 
    end do 
  if (A(i,i)<0) ichg=ichg+1 
    if (abs(A(i,i))<eps) then 
     ierr=1 
     return 
    end if 
  <l(i,j)> 
    do j=i+1,n 
      do k=1,i-1 
        A(j,i)=A(j,i)-A(j,k)*A(k,k)*A(i,k) 
      end do 
      A(j,i)=A(j,i)/A(i,i) 
    end do 
  end do 
  ierr=0 
(4) Derivative of a determinant with respect to an eigenvalue (fd) 
  fd=0 
  do i=1,n 
<(i,i). 
    fd=fd-1/A(i,i) 
  <(i,j)> 
    do j=i+1,n 
      b(j)=-A(j,i) 
      do k=1,j-i-1 
        b(j)=b(j)-A(j,i+k)*b(i+k) 
      end do 
      fd=fd-b(j)２/A(j,j) 
    end do 
  end do 
2) Calculation of the solution 
(1) Input data 
A : L matrix and D matrix, 2-dimension array as A(n,n) 
  b : given right hand side vector, 1-dimension array as b(n) 
n : given order of matrix A and vector b 
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(2) Output data 
  b : work and solution vector, 1-dimension array 
(3) Forward substitution 
  do i=1,n 
    do j=i+1,n 
      b(j)=b(j)-A(j,i)*b(i) 
    end do 
  end do 
(4) Backward substitution 
  do i=1,n 
    b(i)=b(i)/A(i,i) 
  end do 
  do i=1,n 
    ii=n-i+1 
    do j=1,ii-1 
      b(j)=b(j)-A(ii,j)*b(ii) 
    end do 
  end do 

3.2. Algorithm for Banded Matrices 

We next present an algorithm for banded matrices. The banded matrices considered here are depicted schemati-
cally in Figure 1. In what follows, nq  denotes the bandwidth including the diagonal elements. 

1) Computation of the modified Cholesky decomposition of a matrix together with its derivative with respect 
to an eigenvalue 

(1) Input data 
A : given coefficient band matrix, 2-dimension array as A(n,nq) 
  b : work vector, 1-dimension array as b(n) 
  n : given order of matrix A 
  nq : given half band width of matrix A 
  eps : parameter to check singularity of the matrix 
(2) Output data 
  A : L matrix and D matrix, 2-dimension array 
  fd : differential of determinant 
  ichg : numbers of minus element of diagonal matrix D (numbers of eigenvalue) 
  ierr : error code 
      =0, for normal execution 
      =1, for singularity 
(3) LDLT decomposition 
  ichg=0 
  do i=1,n 
  <d(i,i)> 
    do j=max(1,i-nq+1),i-1 
      A(i,nq)=A(i,nq) -A(j,nq)*A(i,nq+j-i)２ 
    end do 
    if (A(i,nq)<0) ichg=ichg+1 
    if (abs(A(i,nq))<eps) then 
      ierr=1 
      return 
    end if 
<l(i,j)> 
    do j=i+1,min(i+nq-1,n) 
      aa=A(j,nq+i-j) 
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      do k=max(1,j-nq+1),i-1 
        aa=aa- A(i,nq+k-i)*A(k,nq)*A(j,nq+k-j) 
      end do 
      A(j,nq+i-j)=aa/A(i,nq) 
    end do 
  end do 
  ierr=0 
(4) Derivative of a determinant with respect to an eigenvalue (fd) 
  fd=0 
  do i=1,n 
<(i,i)> 
    fd=fd-1/A(i,nq) 
<(i,j)> 
    do j=i+1,min(i+nq-1,n) 
      b(j)=-A(j,nq-(j-i)) 
      do k=1,j-i-1 
        b(j)=b(j)-A(j,nq-(j-i)+k)*b(i+k) 
      end do 
      fd=fd-b(j)２/A(j,nq) 
    end do 
    do j=i+nq,n 
      b(j)=0 
      do k=1,nq-1 
        b(j)=b(j)-A(j,k)*b(j-nq+k) 
      end do 
      fd=fd-b(j)２/A(j,nq) 
    end do 
  end do 
2) Calculation of the solution 
(1) Input data 
  A : given decomposed coefficient band matrix,2-dimension array as A(n,nq) 
  b : given right hand side vector, 1-dimension array as b(n) 
  n : given order of matrix A and vector b 
  nq : given half band width of matrix A 
(2) Output data 
  b : solution vector, 1-dimension array 
(3) Forward substitution 
  do i=1,n 
    do j=max(1,i-nq+1),i-1 
      b(i)=b(i)-A(i,nq+j-i)*b(j) 
    end do 
  end do 
(4) Backward substitution 
  do i=1,n 
    ii=n-i+1 
    b(ii)=b(ii)/A(ii,nq) 
    do j=ii+1,min(n,ii+nq-1) 
      b(ii)=b(ii)-A(j,nq+ii-j)*b(j) 
    end do 
  end do 

4. Numerical Experiments 

To demonstrate the effectiveness of the derivative of a determinant in the context of TLDL  decompositions in 
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                          Figure 1. Banded matrix.                               

the arc-length method of nonlinear analysis, we conducted numerical experiments on a three-dimensional truss 
(Figure 1). We first describe the nonlinear FEM algorithms used in these numerical experiments. 

In nonlinear FEM methods [6] [7], the matrix determinant vanishes at singular points, indicating the presence 
of a zero eigenvalue. The existence of a formula for the derivative of the determinant with respect to an eigen-
value makes it easy to identify singular points, using the fact that the sign of the derivative changes in the vicin-
ity of a singular point. Within the context of the arc-length method, we apply a search technique (such as the bi-
section method) to narrow the interval within which the sign of f f′  changes and thus to pinpoint the location 
of the singular point. Of course, this calculation could also be performed by counting the number of negative 
elements of the diagonal matrix D arising from the TLDL  decomposition. Moreover, the solution obtained via 
Newton-Raphson varies as ( )1 f f′ , and hence we may use the quantity ( )1 f f′  as an increment. The fact 
that the increment in the arc length (or other quantities) may thus be determined automatically allows us to re-
duce the number of basic parameters exerting a significant impact on the nonlinear finite-element method. 
However, in the numerical experiments that we have conducted so far, we have found that accurate determina-
tion of singular points, such as bifurcation points or limit points, requires, in addition to values of the quantity 
( )1 f f′ , the imposition of constraints on the maximum values of the strain and/or the relative strain. For ex-

ample, if we are using steel, we impose a strain constraint. Choosing the smaller of ( )1 f f′  and this con-
straint value then allows the singular point to be determined accurately. Aggregating all the considerations dis-
cussed above, we arrive at the following arc-length algorithm for identifying singular points along the main 
pathway. 

{1} step=0 
(1) Configure or input data parameters (incremental convergence tolerance, maximum number of steps, 

maximum number of iterations at a single step, choice of elasticity or elastoplasticity analysis, number of subdi-
visions for the strain value constraint, threshold value for identifying singularity in the TLDL  decomposition, 
elasticity coefficients and plasticity parameters, node coordinates, characteristics of all elements, boundary con-
ditions, etc.) 

(2) Compute bandwidth 
(3) Initialize arrays and other variables 
(4) Configure or input external force vectors 
 
{2} step=1,2,3,··· 
 
 1) iteration=0 
  (5) Recall data from previous step (node coordinates, cross-sectional performance, displacement, strain, 

stress, f f′ , etc.). 
  (6) Compute tangent stiffness matrix. 
  
2) iteration=1,2,3,··· 
  (7) Compute the TLDL  decomposition (including the computation of f f′  and the number of negative 

elements of the diagonal matrix D ) and the solution to the simultaneous linear equations. 
  (8) Choose the new arc length to be the smaller of the absolute value of the following two quantities: (a) the 

value obtained from the arc-length method and (b) 1 f f′ . Within the iterative process, adjust as necessary to 
ensure that the maximum value of the strain satisfies the strain constraint. Compute the incremental strain and 
the total strain. 
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  (9) Use the constitutive equation to compute the material stiffness and the stress at arbitrary points. 
  (10) Compute the tangent stiffness matrix. 
  (11) Compute the residual (the extent to which the system is unbalanced) and assess convergence. 
  (12) If not converged, return to step 2). If converged and the sign of f f′  has changed, use the bisection 

method to search for the singular point. Once the singular point has been identified with sufficient accuracy, 
confirm it by counting the number of negative entries of the diagonal matrix D obtained from the TLDL de-
composition; then proceed to step (2) unless the maximum number of steps has been taken, in which case stop 
the calculation. 

Numerical Experiments 

As shown in Figure 2, the three-dimensional truss we considered consists of 24 segments and 13 nodes and is 
symmetric in the xy plane. To ensure that the load results in a symmetric displacement, the load is applied in the 
downward vertical direction to nodes 1 - 7, with the load at node 1 being half the load at the other nodes. All 
numerical experiments were carried out in double-precision arithmetic using the algorithm described above. 
Computations were performed on an Intel(R) Core™ i7 3.2 GHz machine with 12 GB of RAM, running Win-
dows 7 and gcc-4.7-20110723-64 Fortran. We analyzed three computational procedures: Equations (4) and (11) 
for dense matrices, and Equation (11) for banded matrices. All three procedures yielded identical results. We ve-
rified that our proposed formula allows accurate calculation of the quantity f f′ . In what follows, we will 
discuss results obtained for the banded-matrix case. 

The following parameter values were used. The incremental convergence tolerance was 810TOLER −= . The 
maximum number of steps was 2000NSTEP = . The maximum number of iterations at a single step was

30NITR = . We used elastoplasticity analysis ( )1IEP = . The threshold value for identifying singularity inthe 
modified Cholesky decomposition was 1210EPS −= . The elasticity coefficients and plasticity parameters 
were configured as follows: elasticity coefficient ( )5 22.058 10 N mmE = × , initial cross-sectional area 

 

 
                       Figure 2. A three-dimensional truss structure model.              
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( )2
0 1.0 mmA = , number of subdivisions for strain value constraint 250MD = , Poisson ratio 0.3ν =  (in the 

elastic regime) or 0.5ν =  (in the plastic regime), and yield stress ( )2235.2 N mmyσ = . To allow the stress to  

be computed directly from the strain, we adopted the Richard-Abbott model as the constitutive equation. The 
relationship between the stress σ  and the strain ε  is given by 

( )

( )
1

1

p
p

m m
p

y

E E
E

E E

ε
σ ε

ε
σ

−
= +
 − +  
 

,                            (12) 

( )
1

d
d

1

p
t pm

m m
p

y

E E
E E

E E

σ
ε

ε
σ

+

−
= = +

 − +  
 

,                          (13) 

where pE  is the effective strain hardness, which is set to 0.01pE E=  in our numerical experiments; m  is a 
parameter that controls the degree of smoothness, which is set at 18m = , close to bilinear point; and tE  is the 
tangential stiffness at an arbitrary point [8]. 

The tangent stiffness matrix for the three-dimensional truss takes the form 

0 0

0 0

K K
K

K K
− 

=  − 
,                                    (14) 

where 

( ) T
0

1 2tE A NNK I cc
ν− + 

= + 
  

,                            (15) 

x

y

z

c
c c

c

 
 =  
 
 

,                                      (16) 

, ,j i j i j i
x y z

x x y y z z
c c c

− − −
= = =

  

.                          (17) 

Here N  is the axial force, i  and j  are the indices of the nodes at the segment endpoints, ( ),i ix y  and 
( ),j jx y  are the ,x y  coordinates of nodes ,i j , and   is the segment length. 

Figure 3 plots the load-displacement curve obtained using the proposed method. Figures 3 and 4 indicate the 
correct count of eigenvalues. A total of six eigenvalues appear before the limit point, with the sixth eigenvalue 
corresponding to the limit point itself. 1λ  through 5λ  are bifurcation buckling points, and 6λ  is the limit 
point. The pair ( )2 3,λ λ  is a pair of multiple roots, as is the pair ( )4 5,λ λ . If the number MD  of subdivisions 
for the strain value constraint is too small, discrepancies in the number of zero eigenvalues detected by the pro-
posed method can arise, causing some singular points to be overlooked. For this reason, we have here chosen 

250MD = , but high-precision nonlinear analyses require large numbers of steps. The method that we have 
proposed is a simple addition to the process of solving simultaneous linear equations and may be put to effective 
use in nonlinear analysis. 

5. Conclusions 

We have presented a formula for computing the derivative of a determinant with respect to an eigenvalue. Our 
computation proceeds simultaneously with the modified Cholesky ( )TLDL  decomposition of the matrix, a 
characteristic example of a direct solution method. We applied our proposed formula to the determination of 
singular points, such as branch points and breaking points, in the arc-length method in a nonlinear finite-element 
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                            Figure 3. Vertical displacement and load level.        

 
Figure 4. Vertical displacement and numbers of ei- 
genvalue.                                      

method. In this application, we detect changes in the sign of the derivative of the determinant and then use the 
bisection method to narrow the interval containing the singular point. 

Moreover, because the solution obtained via the Newton-Raphson method varies with the derivative of the 
determinant, it is possible to use this quantity as the arc length. This then allows the arc-length increment to be 
determined automatically, which in turn allows a reduction in the number of basic parameters impacting the 
nonlinear analysis. However, as our numerical experiments demonstrated, when using the proposed method, it is 
necessary to impose a constraint on the absolute value of the maximum values of the strain or the relative strain, 
and to use the strain constraint to control the increment. The proposed method is designed to work with the 

TLDL  decomposition and exhibits a significant reduction in memory requirements when applied to the TLDL  
decomposition of banded matrices instead of dense matrices. 

Numerical experiments on a three-dimensional truss structure demonstrated that the proposed method is able 
to identify singular points (bifurcation points and limit points) accurately using the derivative with respect to an 
eigenvalue of the characteristic equation of the stiffness matrix. This method does not require the time-con- 
suming step of solving the eigenvalue problem and makes use of the solution to the simultaneous linear equa-
tions arising in incremental analysis, thus making it an extremely effective technique. 
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Abstract 

Using the bifurcation theory of dynamical systems to a class of nonlinear fourth order analogue of 
the B(m,n) equation, the existence of solitary wave solutions, periodic cusp wave solutions, com-
pactons solutions, and uncountably infinite many smooth wave solutions are obtained. Under dif-
ferent parametric conditions, various sufficient conditions to guarantee the existence of the above 
solutions are given. Some exact explicit parametric representations of the above waves are deter-
mined. 
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1. Introduction 

Recently, Song and Shao [1] employed bifurcation method of dynamical systems to investigate bifurcation of 
solitary waves of the following generalized (2 + 1)-dimensional Boussinesq equation 

( )2 0tt xx yy xxxxxx
u u u u uα β γ δ− − − − = ,                         (1.1) 

where , ,α β γ  and δ  are arbitrary constants with 0γδ ≠ . Chen and Zhang [2] obtained some double period-
ic and multiple soliton solutions of Equation (1.1) by using the generalized Jacobi elliptic function method. Fur-
ther, Li [3] studied the generalized Boussinesq equation: 

( )1t t xxxxx
u auς ς + + =                                (1.2) 
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by using bifurcation method. In this paper, we shall employ bifurcation method of dynamical systems [4]-[11] to 
investigate bifurcation of solitary waves of the following equation: 

( ) ( ) ( ) ( ) ( )2 ,m n n n

tt xx yy xx xxxx
u u u a u uδ= + + +                     (1.3) 

Numbers of solitary waves are given for each parameter condition. Under some parameter conditions, exact so-
litary wave solutions will be obtained. It is very important to consider the dynamical bifurcation behavior for the 
travelling wave solutions of (1.3). In this paper, we shall study all travelling wave solutions in the parameter 
space of this system. Let ( ) ( ) ( ), ,u x y t x y ctφ φ ξ= + − = , where c is the wave speed. Then (1.3) becomes to 

( ) ( ) ( ) ( )( )42 22 ,m n nc a b uφ φ φ′′ ′′ ′′= + +                           (1.4) 

where “'” is the derivative with respect to ξ . Integrating Equation (1.4) twice, using the constants of integration 
to be zero we find 

( ) ( )22 2 11 0,m n n nq p r n n nφ φ φ φ φ φ φ− − ′ ′′+ + + − + =                      (1.5) 

where 
22 , ,c bp q r

a a a
= = − = . Equation (1.5) is equivalent to the two-dimensional systems as follows 

( )2 2 2

1

1d d,
d d

m n n

n

q p rn n yyy
rn

φ φ φ φφ
ξ ξ φ

−

−

+ + + −
= = −                        (1.6) 

with the first integral 

( ) ( )2 2 2 21 21 1, .
2 2 2

m nn nrn
q pH y h

n m n n
φ φ φ φφ φ − −− += + + + + = + + 

              (1.7) 

System (1.6) is a 5-parameter planar dynamical system depending on the parameter group ( ), , , ,m n p q r . For 
different m, n and a fixed r , we shall investigate the bifurcations of phase portraits of System (1.6) in the phase 
plane ( ), yφ  as the parameters ,p q  are changed. Here we are considering a physical model where only 
bounded travelling waves are meaningful. So we only pay attention to the bounded solutions of System (1.6). 

2. Bifurcations of Phase Portraits of (1.6) 

In this section, we study all possible periodic annuluses defined by the vector fields of (1.6) when the parameters 
,p q  are varied. 
Let 1d dnrnξ φ ζ−= , Then, except on the straight lines 0φ = , the system (1.6) has the same topological 

phase portraits as the following system 

( )1 2 2 2d d
,

d d
1n n ny

rn p rn ynφ
φ φ φ φ

ζ ζ
− −= = − + + −                          (2.1) 

Now, the straight lines 0φ =  is an integral invariant straight line of (2.1). 
Denote that 

( ) ( ) ( ) ( )2 2 31 , 2 2m n n m nf q p f q M p nφ φ φ φ φ φ− − − − ′= + + = − + −              (2.2) 

For ( ) 1 12 , 1 2 1, 1 2 1,m n l l Z m m n n+− = ∈ − = − − = −   

When ( )
( )

1

0
2
2

m np n
q m

φ φ
− −

= = − − 
, ( )0 0.f φ′ ± =   

We have ( ) ( )
( )

( )
( )

2 2

0
2 2

1
2 2

m n
m n m np n p n

f q p
q m q m

φ

− −
− −   − −

± = + − + −   − −   
  

and which imply respectively the relations in the ( ),p q -parameter plane 
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2 2
22: , 0, 0,

2 2

m n
m n
n

a
n m nL q p p q
m m

−
−

−
−− − = − > < − − 

  

( )
2 2
2

2: , 0, 0,
2 2

m n
m n
nb

n m nL q p p q
m m

−
− −
−

− − = − < > − − 
  

For  ( ) 1 12 , 1 2 , 1 2 1,m n l l Z m m n n+− = ∈ − = − = −  when ( )
( )

1

0
2
2

m np n
q m

φ φ
− −

= = − − 
, ( )0 0.f φ′ =  We have 

( ) ( )
( )

( )
( )

2 2

0
2 2

1
2 2

m n
m n m np n p n

f q p
q m q m

φ

− −
− −   − −

= + − + −   − −   
 and which imply respectively the relations in the ( ),p q - 

parameter plane 

( )
2 2
2

2: , 0, 0,
2 2

m n
m n
nb

n m nL q p p q
m m

−
− −
−

− − = − < > − − 
 

( )
2 2
2

2: , 0, 0,
2 2

m n
m n
nc

n m nL q p p q
m m

−
− −
−

− − = − − < < − − 
 

For ( ) 1 12 1 , 1 2 1, 1 2 ,m n l l Z m m n n+− = − ∈ − = − − =  when ( )
( )

1

0
2
2

m np n
q m

φ φ
− −

= = − − 
, ( )0 0.f φ′ =  We have 

( ) ( )
( )

( )
( )

2 2

0
2 2

1
2 2

m n
m n m np n p n

f q p
q m q m

φ

− −
− −   − −

= + − + −   − −   
, which imply respectively the relations in the ( ),p q - 

parameter plane 

2 2
22 4: .

2 2

m n
m n
n

d
n m nL q p
m m

−
−

−
−− − + = −  − − 

  

For ( ) 1 12 1 , 1 2 , 1 2 ,m n l l Z m m n n+− = − ∈ − = − =  when ( )
( )

1

0
2
2

m np n
q m

φ φ
− −

= = − − 
, ( )0 0.f φ′ ± =  We have 

( ) ( )
( )

( )
( )

2 2

0
2 2

1
2 2

m n
m n m np n p n

f q p
q m q m

φ

− −
− −   − −

= + − + −   − −   
 and  ( ) ( )

( )
( )
( )

2 2

0
2 2

1
2 2

m n
m n m np n p n

f q p
q m q m

φ

− −
− −   − −

− = − − − −   − −   
,  

which imply respectively the relations in the ( ),p q -parameter plane 

2 2
22: , 0.

2 2

m n
m n
n

e
n m nL q p pq
m m

−
−

−
−− − = − < − − 

 

Let ( ),e eM yφ  be the coefficient matrix of the linearized system of (2.1) at an equilibrium point ( ),e eyφ . 
Then, we have 

( ) ( )( ) ( ) ( )( )3 3 3,0 det ,0 2 2 .n m n
i e i i iJ M rn q m p nφ φ φ φ φ− − −= = − + −  

By the theory of planar dynamical systems, we know that for an equilibrium point of a planar integrable sys- 
tem, if 0J <  then the equilibrium point is a saddle point; if 0J >  and ( )( ), 0e eTrace M yφ =  then it is a 

center point; if 0J >  and ( )( )( ) ( )
2

, 4 , 0e e e eTrace M y J yφ φ− > ,.then it is a node; if 0J =  and the index of  

the equilibrium point is 0 then it is a cusp, otherwise, it is a high order equilibrium point. 
For the function defined by (1.7), we denote that 
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( ) ( )( )
( )
( )

2 22,0 , 1 - 4.
2 2

n n
i i i i

p m nmh H i
n m n n m n

φ φ φ+ − −−
= = + = − + + 

 

We next use the above statements to consider the bifurcations of the phase portraits of (2.1). In the ( ),p q  pa-
rameter plane, the curves partition it into 4 regions for 2 1, 2m n l m n l− = − − =  shown in Figure 1 (1-1), (1-2), 
(1-3), and (1-4), respectively. 

1) The case 0q ≠ , We use Figure 2, Figure 3, Figure 4, and Figure 5 to show the bifurcations of the phase 
portraits of (2.1). 

2) The case 0q = . We consider the system 

( )1 2 2 2d d
,

d d
1n n ny

rn p rn ynφ
φ φ φ φ

ζ ζ
− −= = − + + −                   (2.3) 

with the first integral 

( ) ( ) 22 1 2 21 1, .
2 2 2

nn n pH y rn y h
n n

φ φφ φ −− += − − +  = + 
                (2.4) 

Figure 6 and Figure 7 show respectively the phase portraits of (2.3) for 12n n=  and 12 1n n= + . 

3. Exact Explicit Parametric Representations of Traveling Wave Solutions of (1.6) 

In this section, we give some exact explicit parametric representations of periodic cusp wave solutions. 
1). Suppose that ( ) 44, 6, 0, ,n m r p q A= = < ∈ , In this case, we have the phase portrait of (2.1) shown in Figure 2 

(2-5). Corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point 
2 4

,0
2

p p q
S

q±

 − + − ±
 
 

, the  

arch curve has the algebraic equation 

( )

2 2

2 2 2

5 4 5 45 51 4 16 15 4 16 15 .
4 2 2

p p q p p q

y
r q q

φ φ

   
− − − − −   

   = − −
   −
   
   

                (3.1) 

Thus, by using the first Equation of (1.6) and (3.1), we obtain the parametric representation of this arch as fol-
lows: 

( ) ( )

2

1
1 1

5 45
4 16 15 , ,

2

p p q

cn k
q

φ ξ ξ−
− − −

= ± Ω                     (3.2) 

where 

2 2

1 1 2

4 45
16 15 4 16 15, .
4 42

16 15

p q p p q

k
qr p q

− − −
Ω = =

− −

 

We will show in Section 4 that (3.10) gives rise to two periodic cusp wave solutions of peak type and valley 
type of (1.3). 

2). Suppose that ( ) 32, 4, 0, ,n m r p q A= = > ∈ , In this case, we have the phase portrait of (2.1) shown in 
Figure 2 (2-4). corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point ( )0,0A , the arch 
curve has the algebraic equation 

2 2 21 1 ,
6 4
q py

r
φ φ + = + 

 
                              (3.3) 

Thus, by using the first equation of (1.6) and (3.3), we obtain the parametric representation of this arch as follows: 
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(1-1)                                      (1-2) 

             
(1-3)                                       (1-4) 

Figure 1. (1-1) m – n = 2l, n = 2n1; (1-2) m – n = 2l − 1, n = 2n1; (1-3) m – n = 
2l, n = 2n1 + 1; (1-4) m – n = 2l-1, n = 2n1 + 1.                             

 

 
(2-1)                             (2-2)                             (2-3) 

 
(2-4)                             (2-5)                             (2-6) 

Figure 2. The phase portraits of (1.6) for m – n = 2l, n = 2n1,l, n1∈Z+. (2-1) r < 0, n1 = 2, (p, q) ∈ (A3); (2-2) r < 
0, n1 ≥ 2, (p, q) ∈ (A3); (2-3) r > 0, n1 ≥ 2, (p, q) ∈ (A3); (2-4) r > 0, n1 = 1, (p, q) ∈ (A3); (2-5) r < 0, n1 = 2, (p, q) ∈ 
(A4); (2-6) r < 0, n1 ≥ 3, (p, q) ∈ (A3).                                                               
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(3-1)                      (3-2)                      (3-3)                         (3-4) 

 
(3-5)                      (3-6)                      (3-7)                         (3-8) 

Figure 3. The phase portraits of (1.6) for m – n = 2l – 1, n = 2n1, l, n1∈Z+. (3-1) r < 0, n1 = 1, (p, q) ∈ (B1); (3-2) r < 0, n1 

= 2, (p, q) ∈ (B1∪B2); (3-3) r > 0, n1 ≥ 2, (p, q) ∈ (B1) ∪(B2); (3-4) r > 0, n1 ≥ 2, (p, q) ∈ (B3); (3-5) r < 0, n1 = 2, (p, q) 
∈ (B3); (3-6) r < 0, n1 ≥ 2, (p, q) ∈ (B1∪B2); (3-7) r < 0, n1 = 2, (p, q) ∈ (B4) ∪(B2); (3-8) r > 0, n1 ≥ 2, (p, q) ∈ (B4).                                                       
 

( ) ( )
22 sin ,

3 1 6
q q

p r
φ ξ ξ

 
= −  +  

                           (3.4) 

We will show in Section 4 that (3.10) gives rise to a solitary wave solutions of peak type and valley type of 
(1.3). 

3). Suppose that ( ) 23, 5, 0, ,n m r p q C= = < ∈ , In this case, we have the phase portrait of (2.1) shown in Fig-
ure 4 (4-5). corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point ( )0,0A , the arch 
curve has the algebraic equation 

( ) ( )( )( )( )2
1 2 3 4

2 ,
3

y
r

φ φ φ φ φ φ φ φ= − − − −
−

                      (3.5) 

where 3
1 2 3 4

1, 0, 1 4.
8 6 5i i i
q p iφ φ φ φ φ φ φ < < < + + = = − 

 
 

Thus, by using the first equation of (1.6) and (3.5), we obtain the parametric representation of this arch as fol-
lows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

2
4 1 2 1 4 2 2 2

2
4 1 4 2 2 2

;
,

;
sn k

sn k
φ φ φ φ φ φ ξ

φ ξ
φ φ φ φ ξ
− − − Ω

=
− − − Ω

                     (3.6) 

where ( );sn x k  is the Jacobin elliptic functions with the modulo k ,  

( )( )3 2 3 1
2 ,

6r
φ φ φ φ− −

Ω =
−

 
( )( )
( )( )

3 2 4 1
2

4 2 3 1

,k
φ φ φ φ
φ φ φ φ
− −

=
− −

 
We will show in Section 4 that (3.6) gives rise to a smooth compacton solution of (1.3). 

4). Suppose that ( ) 12, 3, 0, ,n m r p q B= = < ∈ . In this case, we have the phase portrait of (2.1) shown in 
Figure 3 (3-1), corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point ( )0,0A , the arch 
curve has the algebraic equation 
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(4-1)                              (4-2)                             (4-3) 

 
(4-4)                              (4-5)                             (4-6) 

 
(4-7)                              (4-8)                             (4-9) 

 
(4-10)                              (4-11)                             (4-12) 

Figure 4. (4-1) r > 0, n1 = 1, (p, q) ∈ (C1); (4-2) r > 0, n1 ≥ 1, (p, q) ∈ (C2); (4-3) r > 0, n1 = 1, (p, q) ∈ (C2); (4-4) 
r > 0, n1 ≥ 2, (p, q) ∈ (C2); (4-5) r < 0, n1 = 1, (p, q) ∈ (C2); (4-6) r < 0, n1 ≥ 2, (p, q) ∈ (C2); (4-7) r > 0, n1 ≥ 2, (p, 
q) ∈ (C3); (4-8) r < 0, n1 = 1, (p, q) ∈ (C3); (4-9) r > 0, n1 = 1, (p, q) ∈ (C4); (4-10) r < 0, n1 = 1, (p, q) ∈ (C4); 
(4-11) r > 0, n1 ≥ 2, (p, q) ∈ (C4); (4-12) r < 0, n1 ≥ 2, (p, q) ∈ (C4).                                         
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(5-1)                                  (5-2)                                (5-3) 

 
(5-4)                                  (5-5)                                (5-6) 

 
(5-7)                                                                    (5-8) 

Figure 5. The phase portraits of (1.6) for m – n = 2l – 1, n =2n1 + 1, l, n1∈Z+ (5-1) r > 0, n1 ≥ 2, (p, q) ∈ (D2); (5-2) 
r > 0, n1 = 1, (p, q) ∈ (D2); (5-3) r > 0, n1 ≥ 2, (p, q) ∈ (D3) ∪(D4); (5-4) r > 0, n1 = 1, (p, q) ∈ (D3) ∪(D4); (5-5) 
r < 0, n1 ≥ 2, (p, q) ∈(D3) ∪(D4); (5-6) r < 0, n1 = 1, (p, q) ∈(D3) ∪(D4); (5-7) r < 0, n1 ≥ 2, (p, q) ∈ (D2); (5-8) r < 
0, n1 = 1, (p, q) ∈ (D2).                                                                               

 
( )2 2 5 1

,
5 4

pqy
r q
φ φ

+ 
= + −  

                             (3.7) 

Thus, by using the first equation of (1.6) and (3.7), we obtain the parametric representation of this arch as fol-
lows: 

( )

( )

2

5 1
4 .

41 tanh
5

p
q

q
r

φ ξ
ξ

+
−

=
 

− −  
 

                          (3.8) 
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(6-1)                                  (6-2)                                (6-3) 

Figure 6. The phase portraits of (1.6) for n = 2n1, n1∈Z+. (6-1) r < 0, n1 = 2, m1 ≥ n1, p < 0; (6-2) r < 0, n1 ≥ 2, m1 > n1, 
p < 0; (6-3) r > 0, m1 > n1, p < 0.                                                                       
 

 
(7-1)                        (7-2)                         (7-3)                        (7-4) 

Figure 7. The phase portraits of (1.6) for n = 2n1 + 1, n1 ∈ Z+. (7-1) r > 0, n1 = 1, m1 ≥ n1, p > 0; (7-2) r < 0, n1 = 1, m1 > n1, p 
< 0; (7-3) r < 0, n1 ≥ 2, m1 > n1, p > 0, (7-4) r < 0, n1 ≥ 2, m1 > n1, p < 0.                                            

 
We will show in Section 4 that (3.8) gives rise to a solitary wave solution of peak type or valley type of (1.3). 

5). Suppose that ( ) 3 43, 4, 0, ,n m r p q D D= = > ∈   ,in this case, we have the phase portrait of (2.1) shown  
in Figure 5 (5-4). corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point  

2 4
,0

2
p p q

S
q±

 − + − ±
 
 

, the arch curve has the algebraic equation 

( )
2 2

2 2 7 4 7 40 .
3 12 2 36 35 12 2 36 35

p p q p p qy
r q q
φ φ φ

    
    = − − − + − − − − −

        
         (3.9) 

Thus, by using the first equation of (1.6) and (3.9), we obtain the parametric representation of this arch as fol-
lows: 

( ) ( )
2 2

2
3 3

7 7 4 7 7 4 ; ,
12 2 36 35 12 2 36 35

p p q p p q sn k
q q q q

φ ξ ξ
 
 = − − − + + − Ω
 
 

       (3.10) 

where ( );sn x k  is the Jacobin elliptic functions with the modulo k  and  

2

3

47
36 35 ,
6

p q

qr

− −
Ω =

 
3 2

1 1 ,
2412

36 35

k
p q

= +

−  

We will show in Section 4 that (3.10) gives rise to a smooth compacton solution of (1.3). 
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6). Suppose that ( ) 3 43, 4, 0, ,n m r p q D D= = < ∈  , In this case, we have the phase portrait of (2.1) shown in 
Figure 5 (5-6), corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point  

2 4
,0

2
p p q

S
q±

 − ± − ±
 
 

, the arch curve has the algebraic equation 

( )
2 2

2 2 7 4 7 40 .
3 12 2 36 35 12 2 36 35

p p q p p qy
r q q

φ φ φ
    
    = − − − + − − − − −

    −     
        (3.11) 

Thus, by using the first equation of (1.6) and (3.11), we obtain the parametric representation of this arch as fol-
lows: 

( )
( )

2 2

2

2
2

4 4

7 4 7 7 4
36 35 12 2 36 357 7 4 ,

12 2 36 35 7 7 4 ;
12 2 36 35

p q p p q
q q qp p q

q q p p q sn k
q q

φ ξ

ξ

 
−  − − 

 
 = − − − +

 
 + −  Ω
 
 

            (3.12) 

where 

2

4

47
36 35 ,
6

p q

qr

− −
Ω =  4 2

1 1 ,
2412

36 35

k
p q

= − +

−

 

we will show in Section 4 that (3.20) gives rise to a smooth compacton solution of (1.3) 
7). Suppose ( ) 1 2 44, 5, 0, ,n m r p q B B B= = < ∈    that. In this case, we have the phase portrait of (2.1) 

shown in Figure 3 (3-2) and (3-7), corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point 
( )0,0A , the arch curve has the algebraic equation 

2 3 21 1 .
2 9 8 6

q py
r

φ φ = + + −  
                       (3.13) 

Thus, by using the first equation of (1.6) and (3.13), we obtain the parametric representation of this arch as fol-
lows: 

( ) 1 2
3 , , ,
8 72
p q g g
q r

φ ξ ξ
 

= +℘ −  −  
                     (3.14) 

where 
2 3

1 22 3
27 27 6, .
16 128

p pg g
qq q

= = −  We will show in Section 4 that (3.14) gives rise to a smooth compacton  

solution of (1.3). 
8). Suppose ( ) 34, 6, 0, ,n m r p q A= = < ∈ . In this case, we have the phase portrait of (2.1) shown in Figure 2 

(2-1), corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point ( )0,0A , the arch curve has 
the algebraic equation 

2 2
2 2 21 5 5 4 5 5 4 .

4 8 2 16 15 8 2 16 15
p p q p p qy

r q q q q
φ φ
  
  = + + − + − −
  −   

           (3.15) 

Thus, by using the first equation of (1.6) and (3.15), we obtain the parametric representation of this arch as fol-
lows: 

( ) ( )

2

5 5

5 5 4
8 2 16 15

,
;

p p q
q q
cn k

φ ξ
ξ

− + −
= ±

Ω
                      (3.16) 
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where 

2

5

45
16 15 ,

4

p q

qr

−
Ω =

−
 4 2

1 ,
248

16 15

pk
p q

= +

−

 

We will show in Section 4 that (3.16) gives rise to two periodic cusp wave solutions of peak type and valley 
type of (1.3). 

9). Suppose ( ) 43, 5, 0, ,n m r p q C= = > ∈ . In this case, we have the phase portrait of (2.1) shown in Figure 4 
(4-5), corresponding to the orbit defined by ( ), 0H yφ =  to the equilibrium point ( )0,0A , the arch curve has 
the algebraic equation 

( )( )( )( )2
1 2 3 4

2 ,
3

y
r
φ φ φ φ φ φ φ φ= − − − −                   (3.17) 

where 3
1 2 3 4

1, 0, 1 4.
8 6 5i i i
q p iφ φ φ φ φ φ φ < < < − − − = = − 

 
 Thus, by using the first equation of (1.6) and (3.17),  

we obtain the parametric representation of this arch as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

2
4 3 2 3 4 2 6 6

2
4 2 4 3 6 6

;
,

;
sn k

sn k
φ φ φ φ φ φ ξ

φ ξ
φ φ φ φ ξ
− − − Ω

=
− − − Ω

                  (3.18) 

where ( );sn x k  is the Jacobin elliptic functions with the modulo k  and  

( )( )4 2 3 1
6 ,

6r
φ φ φ φ− −

Ω =  
( )( )
( )( )

4 3 2 1
6

3 2 3 1

,k
φ φ φ φ
φ φ φ φ

− −
=

− −
 

We will show in Section 4 that (3.6) gives rise to a smooth compacton solution of (1.3). 

4. The Existence of Smooth and Non-Smooth Travelling Wave Solutions of (1.6) 

In this section, we use the results of Section 2 to discuss the existence of smooth and non-smooth solitary wave 
and periodic wave solutions. We first consider the existence of smooth solitary wave solution and periodic wave 
solutions. 

Theorem 4.1 
1). Suppose that ( )1 1 22, 2 1 5, , , 0, ,m n n n l n Z r p q C+− = = + ≥ ∈ > ∈ : Then, corresponding to a branch of the 

curves ( ) ( )2 3,H y h hφ =  defined by (1.7), Equation (1.3) has a smooth solitary wave solution of peak type, 

corresponding to a branch of the curves ( ) ( )3 2, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth  
family of periodic wave solutions (see Figure 4 (4-4)). 

2). Suppose that ( ) 22, 3, , 0, ,m n n m Z r p q C+− = = ∈ > ∈ : Then, corresponding to a branch of the curves 

( ) 2,H y hφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of peak type, corresponding 

to a branch of the curves ( ) ( )3 2, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of pe- 
riodic wave solutions (see Figure 4 (4-3)). 

3). Suppose that ( )1 1 22, 2 1 5, , , 0, ,m n n n l n Z r p q A+− = = + ≥ ∈ > ∈ , Then, corresponding to a branch of the 

curves ( ), 0H yφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of peak type, corres-

ponding to a branch of the curves ( ) ( )1 2, , ,H y h h h hφ = ∈  defined by (1.7), equation (1.3) has a smooth family  
of periodic wave solutions (see Figure 4 (4-12)). 

4). Suppose that ( ) 22 , 3, , 0, ,m n l n m Z r p q C+− = = ∈ > ∈ , Then, corresponding to a branch of the curves 

( ), 0H yφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of valley type, corresponding 

to a branch of the curves ( ) ( )1 3, , ,H y h h h hφ = ∈  defined by (1.7), equation (1.3) has a smooth family of peri- 
odic wave solutions (see Figure 4 (4-3)). 
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5). Suppose that ( ) 22 , 4, , 0, ,m n l n m Z r p q A+− = ≥ ∈ > ∈ , Then, corresponding to a branch of the curves 

( ) 2,H y hφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of peak type, corresponding 

to a branch of the curves ( ) ( )3 4, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of pe- 
riodic wave solutions (see Figure 2 (2-3)). 

6). Suppose that ( ) 22 , 4, , 0, ,m n l n m Z r p q A+− = ≥ ∈ > ∈ , Then, corresponding to a branch of the curves 

( ) 3,H y hφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of peak type, corresponding 

to a branch of the curves ( ) ( )1 2, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of peri- 
odic wave solutions (see Figure 2 (2-3)). 

7). Suppose that ( ) 32 , 3, , 0, ,m n l n m Z r p q C+− = = ∈ > ∈ , Then, corresponding to a branch of the curves 

( ), 0H yφ =  defined by (1.7), Equation (1.3) has a smooth solitary wave solution of valley type, corresponding 

to a branch of the curves ( ) ( )1 2, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of peri- 
odic wave solutions (see Figure 2 (2-3)). 

8). Suppose that ( ) 32 1, 4, , 0, ,m n l n l Z r p q B+− = − = ∈ > ∈ , Then, corresponding to a branch of the curves 

( ) ( )3 2, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of periodic wave solutions (see  
Figure 3 (3-5)). 

9). Suppose that: ( ) 32 1, 4, , 0, ,m n l n l Z r p q B+− = − ≥ ∈ > ∈ , Then, corresponding to a branch of the curves 

( ) 2,H y hφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of valley type, corresponding 

to a branch of the curves ( ) ( )1 2, , ,H y h h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of peri- 
odic wave solutions (see Figure 3 (3-4)). 

10). Suppose that ( ) 12 , 2, , 0, ,m n l n l Z r p q B+− = = ∈ < ∈ , Then, corresponding to a branch of the curves 

( ), 0H yφ =  defined by (1.7), equation (1.3) has a smooth solitary wave solution of valley type, corresponding 

to a branch of the curves ( ) ( )1, , 0,H y h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of peri- 
odic wave solutions (see Figure 2 (2-4)). 

11). Suppose that ( ) 12 1, 2, , 0, ,m n l n l Z r p q B+− = − = ∈ < ∈ : Then, corresponding to a branch of the curves 

( ), 0H yφ =  defined by (1.7), Equation (1.3) has a smooth solitary wave solution of valley type, corresponding 

to a branch of the curves ( ) ( )1, , 0,H y h h hφ = ∈  defined by (1.7), Equation (1.3) has a smooth family of peri- 
odic wave solutions (see Figure 3 (3-1)). 

We shall describe what types of non-smooth solitary wave and periodic wave solutions can appear for our 
system (1.6) which correspond to some orbits of (2.1) near the straight line 0φ = . To discuss the existence of 
cusp waves, we need to use the following lemmarelating to the singular straight line. 

Lemma 4.2 The boundary curves of a periodic annulus are the limit curves of closed orbits inside the annulus; 
If these boundary curves contain a segment of the singular straight line 0φ =  of (1.4), then along this segment 
and near this segment, in very short time interval y ξφ=  jumps rapidly. 

Base on Lemma 4.2, Figure 2, and Figure 3, we have the following result. 
Theorem 4.3 
1). Suppose that 2 , 4, .m n l n l Z +− = = ∈  
a). For ( ) 40, ,r p q A< ∈  corresponding to the arch curve ( ), 0H yφ =  defined by (1.7), Equation (1.3) has 

two periodic cusp wave solutions; corresponding to two branches of the curves ( ) ( )1, , ,0H y h h hφ = ∈  defined  
by (1.7), Equation (1.3) has two families of periodic wave solutions. When h varies from 1h  to 0, these periodic 
travelling waves will gradually lose their smoothness, and evolve from smooth periodic travelling waves to pe-
riodic cusp travelling waves, finally approach a periodic cusp wave of valley type and a periodic cusp wave of  
peak type defined by ( ), 0H yφ =  of (1.7) (see Figure 2 (2-5)). 
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b). For ( ) 30, ,r p q A∈>  corresponding to the arch curve ( ) ( )2, , 0,H y h h hφ = ∈  defined by (1.7), Equation 

(1.3) has two periodic cusp wave solutions; corresponding to two branches of the curves ( ) ( )1, , ,0H y h h hφ = ∈   
defined by (1.7), Equation (1.3) has two families of periodic wave solutions. When h varies from 1h  to 0, these 
periodic travelling waves will gradually lose their smoothness, and evolve from smooth periodic travelling 
waves to periodic cusp travelling waves, finally approach a periodic cusp wave of valley type and a periodic  
cusp wave of peak type defined by ( ), 0H yφ =  of (1.7) (see Figure 2 (2-1)). 

2). Suppose that 2 1, 4, .m n l n l Z +− = − = ∈  
c). For ( ) 40, ,r p q B< ∈  corresponding to the arch curve ( ), 0H yφ =  defined by (1.7), Equation (1.3) has 

two periodic cusp wave solutions; corresponding to two branches of the curves ( ) ( )1, , 0,H y h h hφ = ∈  defined  
by (1.7), Equation (1.3) has two families of periodic wave solutions. When h varies from 0 to 1h , these periodic 
travelling waves will gradually lose their smoothness, and evolve from smooth periodic travelling waves to pe-
riodic cusp travelling waves, finally approach a periodic cusp wave of valley type and a periodic cusp wave of  
peak type defined by ( ), 0H yφ =  of (1.7) (see Figure 3 (3-7)). 

d). For ( ) 30, ,r p q B< ∈  corresponding to the arch curve ( ), 0H yφ =  defined by (1.7), Equation (1.3) has 

two periodic cusp wave solutions; corresponding to two branches of the curves ( ) ( )3, , 0,H y h h hφ = ∈  defined  
by (1.7), Equation (1.3) has two families of periodic wave solutions. When h varies from 0 to 3h , these periodic 
travelling waves will gradually lose their smoothness, and evolve from smooth periodic travelling waves to pe-
riodic cusp travelling waves, finally approach a periodic cusp wave of valley type and a periodic cusp wave of  
peak type defined by ( ), 0H yφ =  of (1.7) (see Figure 3 (3-5)). 

d). For ( ) 1 20, ,r p q B B< ∈   corresponding to the arch curve ( ), 0H yφ =  defined by (1.7), Equation (1.3) 

has two periodic cusp wave solutions; corresponding to two branches of the curves ( ) ( )1, , 0,H y h h hφ = ∈  de- 
fined by (1.7), Equation (1.3) has two families of periodic wave solutions. When h varies from 0 to 1h , these 
periodic travelling waves will gradually lose their smoothness, and evolve from smooth periodic travelling 
waves to periodic cusp travelling waves, finally approach a periodic cusp wave of valley type and a periodic  
cusp wave of peak type defined by ( ), 0H yφ =  of (1.7) (see Figure 3 (3-3)). 

We can easily see that there exist two families of closed orbits of (1.3) in Figure 2 (2-6), Figure 3 (3-6) and 
in Figure 6 (6-2). There is one family of closed orbits in Figure 3 (3-3), (3-8), Figure 4 (4-2), (4-5) - (4-7), 
(4-9), (4-11) and in Figure 5 (5-3), (5-5) - (5-7) and in Figure 7 (7-3), (7-4). In all the above cases there exists  
at least one family of closed orbits (1.3) for which as whichh from ( ),0eH φ  to 0, where eφ  is the abscissa of 

the center, the closed orbit will expand outwards to approach the straight line 0φ =  and y φ′=  will ap- 
proach to ∞ . As a result, we have the following conclusions. 

Theorem 4.4 
1). Suppose that 1 12 , 2 1, , .m n l n n l n Z +− = = + ∈  
a). If ( )1 20, 1, ,r n p q C< ≥ ∈ ; then when ( )1,0h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 

finite many periodic traveling wave solutions; where h  varies from 1h  to 0, these periodic traveling wave so-
lutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 4 (4-2)). 

b). If ( )1 30, 2, ,r n p q C< ≥ ∈ ; then when ( )10,h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 
finite many periodic traveling wave solutions; when h  varies from 0 to 1h , these periodic traveling wave solu-
tions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 4 (4-7)). 

c). If ( )1 20, 2, ,r n p q C< ≥ ∈ ; then when ( )20,h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 
finite many periodic traveling wave solutions; when h  varies from 0 to 2h , these periodic traveling wave so-
lutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 4 (4-6)). 
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d). If ( )1 40, 2, ,r n p q C> ≥ ∈ ; then when ( )2 ,0h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 
finite many periodic traveling wave solutions; when h  varies from 2h  to 0, these periodic traveling wave so-
lutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 4 (4-11)). 

e). If ( )1 20, 1, ,r n p q C< = ∈ ; then when ( )20,h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 
finite many periodic traveling wave solutions; when h  varies from 0 to 2h , these periodic traveling wave so-
lutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 4 (4-5)). 

f). If ( )1 40, 1, ,r n p q C> = ∈ ; then when ( )20,h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 
finite many periodic traveling wave solutions; when h  varies from 0 to 2h , these periodic traveling wave so-
lutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 4 (4-9)). 

2). Suppose that ,then when ( )10,h h∈  in (1.7), Equation (1.3) has two family of uncountably infinite many 
periodic traveling wave solutions; when h  varies from 0 to 1h , these periodic traveling wave solutions will 
gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp traveling 
waves (see Figure 2 (2-6)).Parallelling to Figure 2 (2-6), we can see the periodic travelling wave solutions im-
plied in Figure 3 (3-6) and Figure 6 (6-2) have the same characters. 

3). Suppose that 1 12 1, 2 1, , .m n l n n l n Z +− = − = + ∈  
g). If ( )1 2 40, 1, ,r n p q D D< = ∈  ; then when ( )20,h h∈  in (1.7), Equation (1.3) has a family of uncounta- 

bly infinite many periodic traveling wave solutions; when h  varies from 0 to 2h , these periodic traveling 
wave solutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to peri-
odic cusp traveling waves (see Figure 5 (5-6)). 

h). If ( )1 20, 2, ,r n p q D< ≥ ∈ ; then when ( )10,h h∈  in (1.7), Equation (1.3) has a family of uncountably in- 
finite many periodic traveling wave solutions; when h  varies from 0 to 1h , these periodic traveling wave solu-
tions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp 
traveling waves (see Figure 5 (5-7)). 

i). If ( )1 3 40, 2, ,r n p q D D< ≥ ∈  , then when ( )1,0h h∈  in (1.7), Equation (1.3) has a family of uncounta- 
bly infinite many periodic traveling wave solutions; when h  varies from 1h  to 0, these periodic traveling 
wave solutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to peri-
odic cusp traveling waves (see Figure 5 (5-3)). 

j). If ( )1 3 40, 2, ,r n p q D D< ≥ ∈  , then when ( )20,h h∈  in (1.7), Equation (1.3) has a family of uncounta- 
bly infinite many periodic traveling wave solutions; when h  varies from 0 to 2h , these periodic traveling 
wave solutions will gradually lose their smoothness, and evolve from smooth periodic traveling waves to peri-
odic cusp traveling waves (see Figure 5 (5-5)). 

4). Suppose that 1 12 1, , , 0.n n l n Z q+= + ∈ =  
k). If 10, 2, 0r n p< ≥ > , then when ( )1,0h h∈  in (1.7), Equation (1.3) has a family of uncountably infinite  

many periodic traveling wave solutions; when h  varies from 1h  to 0, these periodic traveling wave solutions 
will gradually lose their smoothness, and evolve from smooth periodic traveling waves to periodic cusp travel-
ing waves (see Figure 5 (5-5)). 

Equation (1.3) has one family of uncountably infinite many periodic traveling wave solutions; when h  va-
ries from 0 to 1h , these periodic travelling wave solutions will gradually lose their smoothness, and evolve from 
smooth periodic travelling waves to periodic cusp travelling waves (see Figure 7 (7-4)). 
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