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ABSTRACT 

A new formulation of electromagnetism based on linear differential commutator brackets is developed. Maxwell equa-

tions are derived, using these commutator brackets, from the vector potential A


, the scalar potential φ and the Lorentz 
gauge connecting them. With the same formalism, the continuity equation is written in terms of these new differential 
commutator brackets. 
 
Keywords: Mathematical Formulation, Maxwell’s Equations 

1. Introduction 

Maxwell equations are first order differential equations 
in space and time. They are compatible with Lorentz 
transformation which guarantees its applicability to any 
inertial frame. A symmetric space-time formulation of 
any theory will generally guarantee the universality of 
the theory. With this motivation, we adopt a differential 
commutator bracket involving first order space and time 
derivative operators to formulate the Maxwell equations 
and quantum mechanics. This is in addition to our recent 
quaternionic formulation of physical laws, where we 
have shown that many physical equations are found to 
emerge from a unified view of physical variables [1]. In 
such a formulation, we have found that Maxwell equa-
tions emerge from a single equation. Maxwell equations 
were originally written in terms of quaternions. They 
were initially written in twenty equations [a]. However, 
later on Maxwell equations are then written in terms of 
vector in the way that we are familiar today. In our pre-
sent formulation, Maxwell equations are described by a 
set of two wave equations representing the evolution of 
the electric and magnetic fields. This is instead of having 
four equations. We aim in this paper to write down (de-
rive) the physical equations by vanishing differential 
commutator brackets. We know that second order partial 
derivatives commute for space-space variables. We don’t 
assume here this property is a priori for space and time. 
To guarantee this, we eliminate the time derivative of a 
quantity that is acted by a space ( ) derivative followed 
by a time derivative, and vice-versa. In expanding the 
differential commutator bracket, we don’t commute time 
and space derivative, but rather eliminate the time de-

rivative by the space derivative, and vice versa. This dif-
ferential commutator bracket may enlighten us to quan-
tize these physical quantities. By employing the differential 

commutator brackets of the vector A


 and scalar poten-
tial φ, we have derived Maxwell equations without in-
voking any a priori physical law. Maxwell arrives at his 
theory of electromagnetism by combing the Gauss, 
Faraday and Ampere laws. For mathematical consistency, 
he modified Ampere’s law. He then came with the known 
Maxwell equations. 

2. Relativistic Prelude 

From Lorentz transformations one obtain, 

.)    ( =,=,=,)    ( =
2

x
c

v
ttzzyyvtxx      (1) 

We see that the commutator bracket 

   .,=, xtxt               (2) 

where we have taken into account in the order of multi-
plication of the space and time differences, ( tx  , ). 

This shows that the commutator is Lorentz invariant. 
This is a new invariant quantity in relativity. We, how-
ever, already knew that the square interval is Lorentz 
invariant, i.e., 22 )(=)( SS   [2]. It follows from 

Equation (1) that the differential commutator bracket 

0=, 



 

 
t

 is Lorentz invariant too, i.e., =, 



 

 
t

 





 




',


t
. We know that the spatial second order deriva-

tives of a function, ),(= yxff  , is commutative, i.e., 
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xy

f

yx

f





 22

= . We wonder if the commutations of space 

and time derivatives are equally valid for all physical 
quantities. Motivated by this hypothesis, we propose the 
following differential commutator brackets to formulate 
the physical laws. In particular, we apply these differential 
commutator brackets, in this work to derive the continuity 
equation, Maxwell equations. 

3. Differential Commutators Algebra 

Define the three linear differential commutator brackets 
as follows: 

.0=,,0=,,0=, 



 







 







 

 

ttt
(3) 

Equation (3) is correct, since partial derivatives com-

mute, i.e., 
txxt 



 22

= . For a scalar ψ  and a 

vector G


, one defines the three brackets as follows:1 

  ,=, 

















 



ttt




          (4) 

  ,=, 















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


t

G
G

t
G

t


       (5) 

and 

  .=, 



















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


t

G
G

t
G

t


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It follows that 
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(7) 
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(9) 

for any vector F


. The differential commutator brackets 
above satisfy the distribution rule  

      ,ˆˆ,ˆˆ,ˆˆ=ˆ,ˆˆ BCACBACBA          (10) 

where CBA ˆ,ˆ,ˆ  are 
t


,


. It is evident that the differential 

commutator brackets identities follow the same ordinary 
vector identities. We call the three differential commutator 
brackets in Equation (3) the grad-commutator bracket, 

the dot-commutator bracket and the cross-commutator 
bracket respectively. The prime idea here is to replace 
the time derivative of a quantity by the space derivative 



 of another quantity, and vice-versa, so that the time 
derivative of a quantity is followed by a time derivative 
with which it commutes. We assume here that space and 
time derivatives don’t commute. With this minimal 
assumption, we have shown here that all physical laws 
are determined by vanishing differential commutator 
bracket. 

4. The Continuity Equation 

Using quaternionic algebra [3], we have recently found 
that generalized continuity equations can be written as 

,0=
t

J






                (11) 

,0=)( 2

t

J
c







                (12) 

and 

.0=J


                     (13) 

Now consider the dot-commutator of J


   

  .0=
)(

)(

=)(,



















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


t

J
J

t

J
t
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

           (14) 

Using Equations (11)-(13), one obtains  

.0=
11

=)(,

2

22

2

2

2

2

2 JJ
t

J

ctc
c

J
t
























 








 







 (15) 

For arbitrary   and J


, Equation (15) yields the two 
wave equations  

,0=
1

2

2

2

2






tc
             (16) 

and 

.0=
1

2

22
J

t

J

c







              (17) 

Equations (16) and (17) show that the charge and cur-
rent density satisfy a wave equation traveling at speed of 
light in vacuum. It is remarkable to know that these two 
equations are already obtained in [3]. Hence, the current- 
charge density wave equations are equivalent to  

.0=)(, J
t






 



             (18) 
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5. Maxwell’s Equations 

Maxwell’s equations are first order differential equations 
in space and time of the electromagnetic field, viz.,  

,=
0



E


                     (19) 

,
1

=
2

0 t

E

c
JB







            (20) 

,=
t

B
E







                 (21) 

.0=B


                      (22) 

These equations show that charge (  ) and current ( J


) 
densities are the sources of the electromagnetic field. 
Differentiating Equation (20) and using Equation (21), 
one obtains  

.)(=
1

2
0

2

2

2

2 














t

J
cE

t

E

c


      (23) 

Similarly, differentiating Equation (21) and using 
Equation (20), one obtains  

 
2

2
02 2

1
= .

B
B J

c t


 

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        (24) 

These two equations state that the electromagnetic 
field propagates with speed of light in two cases: 

1) charge and current free medium (vacuum), i.e., 
0=0,= J


 , or  

2) if the two equations  

,0=)( 2

t

J
c







               (25) 

and  

  ,0=J


                   (26) 

besides the familiar continuity equation in Equation (11)  

,0=
t

J






               (27) 

are satisfied. Equation (23) and (24) resemble Einstein's 
general relativity equation where space-times geometry 
is induced by the distribution of matter present. We see 
here that the electromagnetic field is produced by any 
charge and current densities distribution (in space and 
time). Now define the electromagnetic vector F


 as  

E
c

i
BF


=                 (28) 

Adding Equation (25) and Equation (26) according to 
Equation (28), one obtains  

.)(=

)()(
1

2
0

2

2

2

2






























J
t

J
c

c

i

E
c

i
BE

c

i
B

tc






        (29) 

Applying Equations(25), (26) (see [3]) in Equation (29) 
yields  

,0=
1

2

2

2

2
F

t

F

c







                  (30) 

This is a wave equation propagating with speed of light 
in vacuum ( c ). Hence, Maxwell wave equations can be 
written as a pure single wave equation of an electromag-
netic sourceless complex vector field F


. We call Equa-

tions (25)-(27) the generalized continuity equations. We 
have recently obtained these generalized continuity equa-
tions by adopting quaternionic formalism for fluid me-
chanics [3]. It is challenging to check whether any real 
fluid satisfies these equations or not. We have recently 
shown that Schrodinger, Dirac and Klein-Gordon and dif-
fusion equations are compatible with these generalized 
continuity equations [3]. Using Equations (19) and (20), 
the electric field dot-commutator bracket yields  

  .0===, J
tt

E
E

t
E

t


























 

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(31) 

This is the familiar continuity equation. Hence, the 
continuity equation in the commutator bracket form can 
be written as  

.0=, E
t






 



             (32) 

Similar, using Equations (21) and (22), the magnetic 
field dot-commutator bracket yields  

  .0==, 
















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


t

B
B

t
B

t
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     (33) 

The electric field cross-commutator bracket gives  

  .0==, 



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




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
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

t

E
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t
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   (34) 

Using Equations (20) and (21), this yields  

  .0=
1

=,
0

2

2
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2
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t
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c
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t
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



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This equation is nothing but Equation (24) above. 
Similarly, the magnetic field cross-commutator bracket 
gives 
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Using Equations (20) and (21) this yields,  

.0=)(
1

=, 2
0

2

2

2

2 


















 



t

J
cE

t

E

c
B

t


  
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This equation is nothing but Equation (23) above. 
Hence, Equations (35) and (37), i.e.,  
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E
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represent the combined Maxwell equations. In terms of 

the vector F


 defined in Equation (33), the wave equation 
in Equation (35) can be written as  

,0=, F
t






 



           (39) 

which is also evident from Equation (28). 

6. Derivation of Maxwell Equations from the 
Vector and Scalar Potentials, ,A


 

The electric and magnetic fields are defined by the vector 

A


 and the scalar potential   as follows  

.=,= AB
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These are related by the Lorentz gauge as  

.0=
1

2 tc
A







               (41) 

Comparing this equation with Equation (11) reveals 
that the continuity equation is nothing but a gauge condi-
tion. This means that a new current density 'J


 can be 

found so that the equation is still intact. We have recently 
explored such a possibility which showed that it is true 

[3]. With this motivation the physicality of the gauge A


 
exhibited by Aharonov–Bohm effect is tantamount to 
that of the current density J


 [5]. The grad-commutator 

bracket of the scalar potential    
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Using Equations (40) and (41), one obtains  
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This yields the wave equation of the vector field A


 
as  
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Similarly, the dot-commutator bracket of the vector A

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Using Equations (40) and (41), one obtains  
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This yields the wave equation of    
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The cross-commutator bracket of the scalar potential    
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Using Equation (40), one finds  
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This yields the Faraday’s equation, 
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It is interesting to arrive at this result by using the 
definition in Equation (40) only. Now consider the dot- 
commutator bracket of A


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Using Equations (40), (41) and the vector identities  
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Equation (51) yields  
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For arbitrary   and A


, Equation (53) yields the two 

equations  
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Equations (54) and (55) are the Gauss and Ampere 
equations. 

Similarly, the cross-commutator bracket of A

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Using Equations (40), (41) and the vector identity  

,)()(=)( GGG


       (57) 

Equation (56) yields  
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For arbitrary   and A


, Equation (58) yields the two 

equations  
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Once again, Equations (59) and (60) are the Faraday 
and Ampere equations, respectively. Hence, the four 
Maxwell equations are completed. To sum up, Maxwell 
equations are the commutator brackets  
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7. Energy Conservation Equation 

In electromagnetism, the energy conservation equation 
for electromagnetic field is written as  
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The energy conservation equation of the electromagnetic 
field can be easily obtain using the following vector 
identity  
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Let now BGFE
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=,= , so that Equation (64) be-

comes  
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Employing Equations (20), (21) and (63), Eq.(65) yi
elds  
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which is the familiar energy conservation equation of the 
electromagnetic field [5]. 

8. Concluding Remarks 

By introducing three vanishing linear differential commu-

tator brackets for scalar and vector fields,   and A


 

and the Lorentz gauge connecting them, we have derived 
the Maxwell’s equations and the continuity equation 
without resort to any other physical equation. Using dif-
ferent vector identities, we have found that no any inde-
pendent equation can be generated from the three differ-
ential commutators brackets. 
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ABSTRACT 

This paper summarizes a theoretical design analysis for the implementation of an electromagnetic modeling tool, focusing 
on the simulation of electromagnetic field propagation inside reverberation chambers. The simulation algorithms which 
have been developed rely on a ray tracing technique, adapted in such a way as to maximize compatibility with the spe-
cific requirements and parameters, as applicable for reverberation chambers. The most significant example of a typical 
parameter is the high rate of wave reflections inside the chambers’ cavity. An implementation of the algorithms was 
used for simulation of several theoretically predictable cases. Study of the results of these test cases showed that some 
of the design decisions and algorithms used need to be reviewed in order to optimize the computational aspects of the 
application, such as resource management (memory, CPU time). Results of typical sample cases are re- viewed in this 
paper as well, in order to identify possible pitfalls and objectives for future research. 
 
Keywords: Electromagnetic Modeling, Computational Electromagnetics, Ray Tracing 

1. Introduction 

Depending on its intended domain of application, electro- 
magnetic immunity of an electronic device towards ra- 
diated electromagnetic fields can be demonstrated by 
using a reverberation chamber [1,2]. Typically, the in-
ternal chamber cavity consists of highly conductive ma-
terial, which leads to a high degree of electromagnetic 
wave reflections. In combination with a tunable mode 
stirrer, standing wave patterns are created, resulting in 
high field strengths on a broad frequency spectrum. 

Looking at radiated immunity assessments according 
to IEC61000-4-21, usage of a reverberation chamber is 
not allowed unless certain criteria are met. For example, 
during an immunity assessment, the device under test 
needs to be placed inside a rectangular virtual volume, 
where it is required that a field homogeneity is guaran-
teed within this volume, with the device put in place. 
This field homogeneity criterion states that the field 
strength amplitude, measured at the eight corner points of 
the virtual volume (and for each polarization respec-
tively), lies within a specified standard deviation from 

the normalized mean value of the normalized maximum 
values obtained at each of these eight locations, during 
one rotation of the mode stirrer.  

This preliminary validation, referred to as a chamber 
loading verification, consumes a significant amount of 
measurement time. Results from a ray tracing simulation 
allow calculation of the electric field vector (amplitude 
and polarisation at a specified moment in time) at each of 
the eight corners of the virtual volume. This in turn al-
lows prediction of the influence of a specific device on 
the chamber loading, without having to cope with the 
aforementioned time loss. 

Moreover, the number of locations for which the re-
sulting field vector is calculated by the adapted ray trac-
ing technique does not have to be limited to the eight 
corner points. This number can be expanded to cover a 
specified volume, consisting of a large set of distinct 
locations. In the obtained simulation model, each of these 
locations will have a resulting field vector associated 
with it. This allows representation of the electromagnetic 
field distribution inside the reverberation chamber as a 
3D vector field. 
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2. Conceptual Description 

Initially, identification and definition of all relevant pa- 
rameters is required, such as chamber dimensions, source 
antenna position and orientation with respect to the 
chamber origin, transmit antenna radiation pattern, con-
ductivity of each enclosure and locations for which a 
resultant field vector is desired. 

These parameters are translated into a set of equations, 
which allow interpretation by the adapted ray tracing 
algorithm. The algorithm decomposes the propagated 
electromagnetic wave front into a finite set of distinct 
rays. Based on the initial equations, the algorithm calcu-
lates how each ray propagates through the defined me-
dium and evaluates possible reflection on obstacle sur-
faces. 

The contribution of each individual ray to the resulting 
3D vector field is quantified by implementation of ap-
propriate equations, which allow calculation of the elec-
tric field strength amplitude, phase and its polarization 
for each position on an arbitrary ray at a specified dis-
tance from the source. 

3. Basic Ray Tracing Process 

Each individual straight ray path segment has a ray Equa-
tion (1) associated with it, which allows calculation of the 
Cartesian coordinates of an arbitrary point p, with p and p0 
elements of the ray path and u


 the unit direction vector. 

0p p s.u 


                 (1) 

Secondly, it is assumed that each enclosure can be rep- 
resented by a grouping of one or more rectangular surf- 
aces. For each of these surfaces, plane Equation (2) holds 
for normal vector and the Cartesian coordinates of an 
arbitrary point p on the surface. This equation represents 
the plane (with infinite length and width) which the sur-
face is part of, where D is a constant that determines part 
of the position of the plane. 

N p D  


                  (2) 

These equations can be used for each enclosure surface 
and ray, given the initial parameters according to a Car-
tesian coordinate system. Substitution of Equations (1) 
and (2) results in Equation (3), which allows evaluation 
of ray surface intersection. 

0N (p s.u) D   
 

            (3) 

Should this equation hold, then intersection occurs and 
variable s represents the distance between p0 and the point 
of intersection, quantifiable by applying Equation (4). 

0D N p
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                (4) 

Finally, it is verified whether the point of intersection 
lies within the surfaces boundaries by an inside-outside 

verification. 
Depending on the intersected surface’s conductivity, 

reflection could occur [3], which is considered to be 
specular. A reflected wave front is in its turn represented 
by a finite set of reflected rays, for which each ray equa-
tion can be calculated based on the law of specular re-
flection (5), with incident ray direction I


 and reflected 

ray direction R


. 

R  I  (2.I N).N  
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              (5) 

This process of reflection continues iteratively for a 
defined finite number of reflections. 

4. An Adapted Ray Tracing Process 

4.1 Interference 

With the basic ray tracing process, detection of inference 
and therefore modeling of standing wave patters is not 
possible, since phase is not taken into account. This as-
pect is adapted by implementation of appropriate equa-
tions for electromagnetic propagation. This is elaborated 
into more detail further on. 

4.2 Multiple Viewpoints 

The basic algorithm focuses on representing a 3D scene 
on a 2D pixel screen, as observed from one single view-
point (e.g. the human eye). The viewpoint is used as the 
starting point for each initial ray, thus the basic process is 
backtracking the trail through the 3D scene in order to 
determine each ray’s contribution to a pixel on the 2D 
screen [4]. 

Here, a 3D vector field is desired, consisting of a set of 
field vectors, where each vector is the resultant of con-
tributions from all intersecting rays at one of the speci-
fied locations of interest. For this reason it is decided to 
use the source antenna location as the origin of each ini-
tial ray, instead of the location of a viewpoint. This is 
referred to as the alternative backtracking algorithm fur-
ther on. 

4.3 Spatial Subdivision and Ray Contribution 

Combination of the alternative backtracking and of the 
assumption of specular reflection could lead to the situa-
tion where a certain location of interest will never be 
reached by a ray. This is due to the fact that an initial 
angle step is applicable between each successive ray. 
This angle step inherently introduces inaccuracy with an 
incremental behavior, linearly proportional to the distance 
from the source. As a solution, each location of interest is 
represented as a cubic cell (Figure 1). This way, the area 
of reception of each location of interest is no longer a 
single coordinate in the Cartesian system, but has now 
been enlarged in such a way that it is represented by a 
cubic volume instead. The edges of each individual 
cube have to be smaller with respect to the applicable 



A Preliminary Ray Tracing Approach to Computational Electromagnetics for Reverberation Chambers 

Copyright © 2010 SciRes.                                                                               JEMAA 

464 

 

Figure 1. Spatial subdivision 

 
wavelength, otherwise phase information would be lost 
by this introduced inaccuracy. 

The algorithm performs detection of intersection be-
tween a ray and a cell facet, based on a set of plane equa-
tions for each group of cell facets which are part of the 
same plane. Identification of the exact cell facet of that 
group is the result of an inside or outside verification.  

To minimize the risk of missing cells, it can be shown 
that a rule of thumb (Equation (6)) expresses the minimal 
angular difference  in terms of the number of reflections 
n, the longest chamber dimension L and the cell size i. 

2
2.arcsin( )

.

i

n L
                 (6) 

As mentioned earlier, modeling at high frequencies 
requires small cell sizes in turn. This has as a consequ- 
ence that very small angle steps have to be chosen, which 
leads to an increasing number of initial rays r and there-
fore algorithm iterations, since r ~ 1/α². This has a nega-
tive effect on the required processing time 

5. Quantification of Electromagnetic Propa-
gation 

5.1 Correlation with Antenna Radiation Pattern 

Each initial ray originates at the location of the transmit 
antenna. A 3D antenna radiation pattern allows determi-
nation of the initial intensity of the radiated EM field 
through interpolation, by matching ray direction and 
azimuth/elevation angle of the radiation pattern. A com-
bination of the radiation pattern of a tuned dipole with a 
sample initial ray is given in Figure 2. 

5.2 Free Space Field Equations 

For computational convenience, the spherical-polar coor- 
dinate system is used to set up equations for the electric 
field component’s amplitude and phase (Figure 3) [5]. 
Under far field conditions, component rE


 can be ne-

glected. 
Using a half wave dipole and assuming free space pro- 

pagation, Equation (7) is applied to calculate the electric 

field component E


at distance r from the transmit an-

tenna. 

 
. .0

cos . .cos cos( . ). 2 2. . .
2 sin

j k rm

L Lk kZ I
E j e

r



 


 
 
 
  


(7) 

5.3 Reflection and Polarization 

Each enclosure inside the cavity of the reverberation 
chamber acts as a discontinuity in the propagation me-
dium. Associating each discontinuity with a reflection 
coefficient allows calculation of the amount field that is 
reflected, relative to the incident field. 

Reflections will occur differently however for EM wa- 
ves polarized in parallel or perpendicular to the plane of 
incidence, leading to two reflection coefficients: ΓH and 
ΓV. This has as a consequence that each incident wave 
needs decomposition into a parallel and a perpendicular 
component. Their contributions to the total reflected field 
vector is calculated separately, according to Equation (8). 

. . . .R H H V V RE E h E v   
   

         (8) 

 

 

Figure 2. Antenna radiation pattern and ray generation 
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Figure 3. Spherical-polar coordinate system 
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HE


 and VE


 represent the parallel, respectively per-

pendicular components of the incident electric field vec-
tor. Rv


 is the resultant tangential unit vector after re-

flection. Equation (9) and Figure 4 show how this new 
unit vector is calculated. 

6. Validation of Typical cases 

Combination of the adapted ray tracing process design 
with the equations for EM propagation and reflection, al- 
lows implementation of modeling algorithms. A pre-
liminary implementation was used to model several 
typical cases. A limited number of examples is shown. 

6.1 Fundamental TE10 Mode inside Rectangular 
Waveguide 

Figure 5 shows the resulting model after simulation of a 
TE10 mode inside a rectangular waveguide (frequency = 
1 GHz, width = λ/2, height << width, monopole at λ/4 
from reflecting front panel). While a 3D vector field is 
calculated, only the vertical components’ magnitudes are 
shown for the sake of clarity. 

A standing wave pattern can be distinguished along 
the longitudinal axis, which corresponds to the theoretic- 
ally expected behavior [6]. The initial part, near the trans- 
mitting monopole, shows abrupt changes. These pheno- 
mena are considered to be caused by the far field approxi- 
mations. 
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Figrue 4. Antenna radiation pattern and ray generation 
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Figure 5. TE10 waveguide model 

6.2 Effect of an Aperture inside a Rectangular 
Waveguide 

Figure 6 shows the resulting model of an identical wave- 
guide setup, where an additional panel is inserted. This 
panel is provided with a narrow aperture, where the ap-
erture is dimensioned in such a way that in theory trans-
mission through the waveguide is blocked. The model 
indeed shows how the standing wave pattern is disrupted 
by the aperture, where a negligible amount of energy 
finds its way beyond the discontinuity. Figure 7 shows a 
top view along the XY-plane. 

6.3 Field Evaluation inside Large Reverberation 
Chamber 

The effect of chamber loading was modeled. To al-low 
validation, a measurement was performed with a single 
field probe located at a specified distance from the 
transmit antenna (setup 1). By adding cascading absorb-
ers on the floor surface (setup 2), the measured field 
strength amplitude decreased by 4.77 dB (Figure 8). 
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Figure 7. Aperture inside waveguide - top view 
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A correct model should allow derivation of a compa-
rable damping value of 4.77 dB. Both setups were mod-
eled for a set of locations of interest (15 × 15 × 15 = 
3375 locations in total), taking a maximum of 10 reflec-
tions into account. The resulting vector fields of both 
setups are given in Figures 9(a) and 9(b), where each 
small, colored line represents a single field vector. Each 
single field vector corresponds to the resultant field vec-
tor for a specific location of interest, as calculated by the 
designed algorithm. 

In order to allow numerical analysis of the resulting 
amplitudes, the values of both models are mapped on a 
histogram (Figure 10). This histogram shows how many 
of the calculated field vectors for each setup have an am-
plitude for which the absolute value lies within one of the 
specified intervals. Although the values for setup 1 have 
the tendency to be slightly higher than the values for se-
tup 2, it can’t be stated that the differences shown are in 
correlation with the measurements. 
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Figure 10. Histogram of field vector amplitudes 

7. Conclusions and Outline for Future   
Research 

Validation through sample cases show that the current 
design delivers acceptable results for smaller cavities (e.g. 
waveguides), but accuracy for larger environments with 
high reflection rates still remains insufficient (validation 
of the chamber loading inside a large reverberation cham-
ber showed that a measured attenuation of 4.77 dB could 
not be reproduced by interpretation of simulation models). 

One of the aspects in the designed algorithm which is 
highly related to this accuracy is the angular difference 
between initial rays. Equation (6) already indicated the 
dependencies between frequency, cell size and their ef-
fect on required processing time. 

In terms of processing time, it can also be noticed that 
the current design often relies on goniometric functions. 
Replacement by matrix transformations for example 
would improve the resource requirements. A second im-
provement could be implemented by grouping the sur-
faces into larger sets during intersection evaluation, and 
to perform intersection evaluation on these sets first. This 
should lead to an O(log n) search algorithm instead of the 
current O(n) version. 

For each ray, the total number of reflections was cho-
sen to be 10 for most aforementioned cases, where this 
number should be related to the remaining field power 
after attenuation and absorption. 

The current design relies on the law of specular reflec-
tion. The diffusion is not taken into account, which also 
leads to less accurate models [7]. 

These aforementioned conclusions present the outline 
of further study in the context of a Ph.D. research, where 
a possible scenario could be the combination of different 
simulation techniques, such as ray tracing, FEM, BEM, 
FDM, FDTD, etc. 
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ABSTRACT 
Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks 
(MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage control is 
currently a very important issue. The voltage is now regulated at the MV busbars acting on the On-Load Tap Changer 
of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the 
distributed generators deliver their power. In this paper an approach based on Sensitivity Theory is shown, in order to 
control the node voltages regulating the reactive power exchanged between the network and the dispersed generators. 
The automatic distributed voltage regulation is a particular topic of the Smart Grids. 
 
Keywords: Voltage Regulation, Reactive Power Injection, Distributed Generation, Smart Grids, Sensitivity Theory, 

Renewable Energy 

1. Introduction 
Due to the development of Distributed Generation (DG), 
which is installed in Medium-Voltage Distribution Net- 
works (MVDNs) such as generators based on renewable 
energy (e.g., wind energy or solar energy), voltage con- 
trol is currently a very important issue. 

The voltage of MVDNs is now regulated acting only 
on the On-Load Tap Changer (OLTC) of the HV/MV tra- 
nsformer [1]. The OLTC control is typically based on the 
compound technique, and this method does not guarantee 
the correct voltage value in the network nodes when the 
generators deliver their power [2,3]. 

When a generator injects power in the network, the vo- 
ltage tends to rise. In HV networks this phenomenon ha- 
ppens mainly when reactive power is injected, because 
the resistance is negligible if compared with the induc-
tive reactance [4]. Instead in MVDNs the resistance is 
not negligible and the result is that an injection of active 
power also increases the voltage. 

In other words the so-called Pθ - QV decoupling [5], 
which is a typical of HV networks, is inexistent in 
MVDNs. The P variations are “coupled” with the voltage 
variations. 

If no precautions are taken, in particular network con- 
ditions the overcome of the maximum admissible voltage 
can happen in any nodes. 

When a generator injects power, the voltage rises in all 
network nodes, but some nodes are mainly influenced 
than others by the power injection. This influence can be 
obtained using a Sensitivity method. 

In this paper an approach based on Sensitivity The- 
ory is shown, in order to control the network voltage us- 
ing the reactive power exchanged between network and 
the distributed generators. This approach allows to con-
trol the voltage in the long term period. Besides, fast- 
dynamic voltage disturbances are not taken into account 
[6]. 

After the theoretical analysis, a numerical example is 
shown, in order to validate the proposed theory. 

The proposed method differs from the others used in 
HV networks analysis, based on the Jacobian Matrix 
[1,2-4] and its application is easy. 

The topological proprieties that results from the th- 
eoretical analysis imply that the proposed sensitivity me- 
thod can be easily implemented in automatic voltage 
control devices, in order to obtain the distributed voltage 
regulation. 

The automatic voltage regulation in a distributed man- 
ner is a typical topic of the Smart Grids context. 

The paper is structured in the following way. In Sec-
tion 1, the proposed voltage control method is shown, 
and an overview on the voltage profiles with DG, are 
given. In Section 3, the proposed Sensitivity approach is 
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studied, referring to a MV test network, composed by 
four nodes. Finally, in Section 4, a numerical application is 
presented, in order to validate the proposed theory. 

2. The Proposed Criteria to Control the 
Network Voltage with Distributed    
Generation 

Many methods can be used to control the voltage in ne- 
twork nodes (network voltages). The proposed method 
varies the reactive power exchanged between the gen-
erators and the network while maintaining the OL-TC in 
a fixed position for a particular load condition. 

Let us suppose that the Automatic Voltage Regulator 
(AVR) that controls the OLTC maintains the MV bus-bar 
voltage at the rated value (1 p.u.), assuming that the 
transformer taps are adequate. 

For passive grids, when no generators are connected to 
the MVDN, the voltage profile (VP; i.e., the voltage 
values along a line) decreases monotonically (see profile 
a in Figure 1) due to the load absorptions. When the gen- 
erators are connected and inject power into the MVDN, 
the nodal voltages increase and the VP is no longer 
monotonic, as shown in profile b in Figure 1 (profile b). 
This phenomenon also occurs if generators work at unitary 
power factor (i.e., only active power is injected due to the 
non-negligible network resistance) [7]. 

It is important to note that, in steady-state, the con- 
dition maintained at the MV busbar by the AVR decouples 
the MV feeders, and the result is that each feeder works 
without the influence of the other lines. In other words, 
the loads and generators connected to other feeders do 
not influence the VP of the considered line. 

Typically, the generators installed in Smart Grids are 
based on renewable energy; therefore, their power-time 
profiles are unknown. Due to the high generated power 
and a possibly low load condition, the voltage in some 
nodes can thus exceed the maximum admissible value 
( maxV ; i.e., the voltage threshold [8]) defined by the 
standards. 

Of course the voltage threshold is strictly related with 
the settings of the voltage relays installed in the network, 
e.g. at the generator nodes [9]. 
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Figure 1. Voltage profiles in a MV feeder with and without 
Distributed Generators 

If the generators are able to control the injected or 
absorbed reactive power, the network voltage profiles 
can be modified by acting on the reactive powers. It is 
clear that each controllable generator needs a Generator 
Remote Terminal Unit (GRTU) that is connected to a 
central control system to set the generator reactive power, 
(i.e., to control the exciter of the synchronous generators 
[1] or act on the inverter control if the generator is in-
verter-based) [10,11]. In this work, the central control is 
called the Generator Control Centre (GCC). In addition, 
we use a hierarchical control structure [12,13]. 

Let us suppose that the voltage is measured only in the 
generator nodes by the GRTUs. This assumption does 
not affect the generality of the proposed method because 
a Measuring Remote Terminal Unit connected to the 
GCC can be installed in each node that must be controlled. 

When the voltage in the ith node exceeds maxV , the GR- 
TU installed in the same node sends the signal “Voltage 
Threshold Overall” (VTO) to the GCC using a commu- 
nication channel. The GCC then selects the generator in 
the jth node that has the maximum influence on the volt- 
age of the ith node, the “Best Generator” (BG), and 
switches it to the reactive power absorption (RPA) mode. 
Therefore, the voltage in the ith node tends to decrease. 

The problem is thus to determine the best generator 
and ensure that the GCC chooses it. In this work, a sensi- 
tivity-based method is proposed to select the BG. 

Moreover, we suppose that the generators can only be 
switched in the RPA mode by the GCC by a constant 
power factor. Therefore, if jP  is the active power inject- 
ted by the generator connected to the jth node, then it ab-
sorbs the reactive power tanj j jQ P φ=  (where cos jφ  
is the minimum power factor of the generator) when it is 
switched during RPA. In other words, we assume that no 
continuous reactive power modulation is possible. 

An example of the procedure described above is shown 
in Figure 2. Let us suppose that load Ld suddenly de-
creases its power (for example, due to a trip) and 2V  
exceed maxV . 

The GRTUs of G2 send the signal VTO to the GCC 
that must choose the BG using the sensitivity method. 
Assuming that the BG is G1, it will be switched by the 
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Figure 2. Voltage control using GRTU and GCC 
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GCC in the RPA mode; therefore, the reactive power 
absorbed by G1 becomes 1 1 1tanQ P φ= . 

As explained in the following, the GCC must know the 
reactive power that each controllable generator can abs- 
orb in order to choose the BG. We suppose that this in-
formation is acquired by the GCC using a polling tech-
nique on each GRTU. 

3. The Proposed Sensitivity Approach 
3.1 Classical Sensitivity Theory Overview 

The classical sensitivity theory used in HV network an- 
alysis to perform primary and secondary voltage regula-
tion [14] is based on the Jacobian Matrix and reveals the 
relationships between the nodal voltages (magnitude and 
phase) and the nodal power injections (active and reac-
tive). The relationships mentioned above are represented 
by the following matrix expression [2]: 

[ ]
[ ]

[ ] [ ]
[ ] [ ]

1

*

*

1 0
0 1

P P
PE V

Q Q Q
V

−
 ∂ ∂    
        ∆   ∆ ∂ ∂        =    ∆  ∂ ∂     ∆          ∂ ∂    

ϑ
ϑ

ϑ

  (1) 

where [ ]E∆  and [ ]∆ϑ  are, respectively, the nodal 
voltage magnitudes (rms) and phase variations corre-
sponding to the nodal active or reactive power injections 

*P ∆   and *Q ∆   ( 1     is the identity matrix). 
Equation (1) can be rewritten in the following compact 

form: 
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where: 
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@         (3) 

is the (injection) sensitivity matrix. The method descries 
above is generally valid, but its computational complexity 
is too high for practical voltage analysis in MVDNs. For 
radial networks, only the voltage magnitude is needed to 
control the nodal voltages. The proposed theory is easier 
than classical theory, and it is suitable for radial MVDNs. 

3.2 The Proposed Theory 
In this section, the proposed theory for choosing the BG 
is outlined. The method is first described in general and 
considers the possibility of reactive power regulation for 
all nodes. 

After the general treatment, the analysis focuses on a 
realistic network in which the reactive power can only be 
controlled in some nodes (generator nodes). 

Let us consider the network depicted in Figure 3, 
which is a four-node test MVDN. 

The general loads Ld1…Ld4 are represented using 
constant PQ models. Positive P (or Q) corresponds to the 
absorbed power by the load. Negative P (or Q) corres- 
ponds to the injected power in the network (i.e., the gene- 
ral load is really a generator). The per-phase equivalent 
circuit is shown in Figure 4. 

The lines L01…L24 are modeled using the RL-direct 
sequence equivalent circuit [15], but the shunt admittan- 
ces are neglected. The node 0 represents the MV busbar, 
which is regulated at a constant voltage value 0E  by the 
AVR of the OLTC. This reference voltage coincides with 
the rated value 0 3nE V= . 

Because the busbar is regulated at 0E , we can char-
acterize the generic node i using the difference 0iV  be- 
tween the magnitude of the busbar voltage and the node 
voltage iE . In other words, we can write: 

0 0i iV E E= −                  (4) 

In radial networks, (4) can be calculated as the sum of 
the voltage differences between adjacent nodes from the 
ith node toward the MV busbar. For example, if 3i =  
(see Figure 4), (4) becomes: 

03 0 3V E E= −                 (5) 
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Figure 4. The per-phase equivalent circuit 
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By adding and subtracting 1E  and 2E  in (5), we ob- 
tain: 

( ) ( ) ( )03 0 1 1 2 2 3

01 12 23   
V E E E E E E

V V V
= − + − + −

= + +
  (6) 

where 03V  is the sum of the voltage differences 01V , 

12V  and 23V . 

23V  can be calculated considering the network para- 
meters and the line power flows as follows: 

23 2 3

23 3 3 23 3 3

23 3 3 3 23 3 3 3

3

23 3 23 3

3

    = cos sin
cos sin

    

    

V E E
R I X I
R E I X E I

E
R P X Q

E

= −
+

+
=

+
=

ϕ ϕ
ϕ ϕ

    (7) 

where 3cosϕ , 3P  and 3Q  are the power factor and the 
active and reactive (per-phase) powers of the load Ld3, 
respectively. 3I , 23R  and 23X  are the current, resis-
tance and reactance of the line L3. 

Normally, the nodal voltages are close to the rated 
voltage nE . Applying this assumption to (7) leads to: 

23 3 23 3
23

n

R P X Q
V

E
+

≅                  (8) 

Similarly, considering nodes 1 and 2, we can write: 

12 1 2
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≅
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  (9) 

where 2SP  and 2SQ  are the active and reactive powers 
through the section S2 and 2cos Sϕ  is the power factor 
for the same section. For 2SP  and 2SQ , we can write: 

2 2 3 4 23 24S R RP P P P P P= + + + +        (10) 

2 2 3 4 23 24S X XQ Q Q Q Q Q= + + + +      (11) 
where 23RP  and 24RP  are the power losses in 23R  and 

24R , while 23XQ  and 24XQ  are the reactive powers 
absorbed by 23X  and 24X . These active and reactive 
losses are negligible compared to the load powers. Ap-
plying this assumption to (9), (10) and (11) leads to: 

2 2 3 4SP P P P≅ + +              (12) 

2 2 3 4SQ Q Q Q≅ + +             (13) 

and: 

( ) ( )12 2 3 4 12 2 3 4
12

n

R P P P X Q Q Q
V

E
+ + + + +

≅  (14) 

Finally, the voltage difference 01V  is: 

01 1 01 1
01 0 1

S S

n

R P X Q
V E E

E
+

= − ≅           (15) 

where: 
1 1 2 3 4SP P P P P≅ + + +           (16) 

1 1 2 3 4SQ Q Q Q Q≅ + + +          (17) 

are the powers through section 1S . 
Using (6) with (15), (9) and (8), we can say that 03V  

is a function of all loads and active and reactive powers, 
i.e., P1…P4 and Q1…Q4. The same observation is valid 
for 3E : 

( )3 0 03 0 01 12 23E E V E V V V= − = − + +      (18) 

because 0E  is constant. In other words, we can write: 

( )3 1 4 1 4,..., , ,...,E f P P Q Q=             (19) 

Equation (19) shows that an active/reactive power 
variation (in the general j  node) that is defined as: 

0f
j j jP P P∆ = −                (20) 

0f
j j jQ Q Q∆ = −               (21) 

where f
jP  ( f

jQ ) and 0
jP  ( 0

jQ ) are the final and ini-
tial power values, respectively, produces a voltage varia-
tion in node 3 that is defined as: 

0
3 3 3

fE E E∆ = −               (22) 

In this treatment, we only consider the reactive power 
variations (i.e., 0jP∆ = ) because we assume that only 
the reactive power can be used to control the node voltages. 

The variation 3E∆  can be calculated by linearizing 
(19) and considering only the reactive power variations. 
In particular, we can write: 

3 3
3 1 2

1 2

3 3
3 4

3 4

E E
E Q Q

Q Q
E E

Q Q
Q Q

∂ ∂
∆ = ∆ + ∆ +

∂ ∂
∂ ∂

+ ∆ + ∆
∂ ∂

        (23) 

The terms i jE Q∂ ∂  in (23) indicate the “gain” from 

the voltage variation iE∆  in node i  when a reactive 
power variation jQ∆  occurs in node j . In other words, 
they are sensitivity terms. 

According to (18), we can obtain: 
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        (24) 

Substituting equation group (24) into (23) has important 
implications. If we have a reactive injection in any node, 
i.e., 0jQ∆ <  (in this case 1...4j = ), then 3 0E∆ >  in 
node 3 (i.e., the voltage increases). Then, if we were to 
reduce the voltage in any node, we must abs- orb reactive 
power from the network (i.e., 0jQ∆ > ) by using, for 
example, the distributed generators. 

If the above analysis that focuses on node 3 is extended 
to all network nodes, (23) has a general matrix relation- 
ship: 
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   (25) 

which in a compact form yields: 

[ ] [ ]QE s Q ∆ = ∆               (26) 

where Qs    is the reactive sensitivity matrix, [ ]Q∆  is 

the reactive power-variations vector and [ ]E∆  is the 
nodal voltages vector. 

Calculating the partial derivatives contained in Qs   , 
we have Equation (27). 

After analyzing this form of (27), we can say that this 
matrix can be built using the following inspection rule: 
“The element ,i j  is the arithmetic sum of the reac-

tance of the branches in which both the powers absorbed 
by node i  and node j  flow multiplied by 1 nE− ”. 

For example, in (27), the element 2, 4 is  

( )01 12 nX X E− +  

because the powers delivered by node 2 and node 4 flow 
in branches 01 and 12. 

3.3 The Choice of the Best Generator 
The BG is the generator that has the greatest influence on 
node i , which is the node where the voltage exceeds the 
threshold. 

Thus, after analyzing (25), we can say that the BG is 
the generator that maximizes the following product, 
which we call the “sensitivity product”: 

i
j

j

E Q
Q

∂
∆

∂
                 (28) 

For example, if the node with a voltage that exceeds 
maxV  is 2i =  and the BG is connected to node 4j = , 

the sensitivity product ( )2 4 4E Q Q∂ ∂ ∆  is the highest 
compared to the other products contained in row 2 of the 
sensitivity matrix. In addition, in order to choose the BG, 
it is necessary to evaluate the single products (28) of the 
row that represents node i . Thus, the value jQ∆  is 
needed and is acquired as the GCC polls the GRTUs, as 
stated previously. 

The procedure described above suggests a way of de-
fining the “sensitivity table” [ ]ST  that contains the sin-
gle sensitivity products. For the MVDN represented in 
Figure 4, [ ]ST  takes the following form 

1 1 1 1
1 2 3 4

1 2 3 4

2 2 2 2
1 2 3 4

1 2 3 4

3 3 3 3
1 2 3 4

1 2 3 4

4 4 4 4
1 2 3 4

1 2 3 4

E E E EQ Q Q Q
Q Q Q Q
E E E EQ Q Q Q
Q Q Q Q
E E E E

Q Q Q Q
Q Q Q Q
E E E EQ Q Q Q
Q Q Q Q

∂ ∂ ∂ ∂ ∆ ∆ ∆ ∆ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂

∆ ∆ ∆ ∆ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂

∆ ∆ ∆ ∆ 
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
 ∆ ∆ ∆ ∆

∂ ∂ ∂ ∂  

   (29) 

Row i  represents the node in which we want to co- 
ntrol the voltage, and column j  represents the nodes in 
which we can control the reactive power. The BG is the 
generator connected to node j  that has the maximum 
absolute value of the sensitivity product in position ,i j . 
By finding the maximum sensitivity product in row i , 

 

01 01 01 01

01 01 12 01 12 01 12

01 01 12 01 12 23 01 12

01 01 12 01 12 01 12 24

1
Q

n

X X X X
X X X X X X X

s
X X X X X X X XE
X X X X X X X X

 
 + + +   = −   + + + +
 

+ + + + 

                  (27) 
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we automatically choose the BG because the location 
corresponds to column j  of the maximum sensitivity pr- 
oduct. 

It is clear that, for a general network with N nodes, the 
sensitivity table takes the following form: 

1 1 1
1 2

1 2

2
1

1

1
1

...

... ... ...

... ... ... ...

... ...

N
N

N N
N

N

E E EQ Q Q
Q Q Q
E Q
Q

E E
Q Q

Q Q

∂ ∂ ∂ ∆ ∆ ∆ ∂ ∂ ∂ 
 ∂

∆ ∂ 
 
 

∂ ∂ ∆ ∆ ∂ ∂ 

     (30) 

It is important to note that, if it is not possible to 
regulate the reactive power (e.g., if in that node there is a 
load or a non-controllable generator) in a node j , then 

0jQ∆ =  and, consequently, the sensitivity product in 
the position ,i j  of the sensitivity table is 0. 

Comparing (29) with (25), we can say that each ele- 
ment ,i j  of [ ]ST  represents the line-to-ground voltage 
variation in node i  when a reactive power variation 
occurs in node j . 

In the following section, a numerical example of the 
sensitivity method application is shown. 

4. Application of the Proposed Method 
The network considered in this numerical application is 
represented in Figure 5. 

During normal network operation, we have four ge- 
nerators and eight loads. The generator and load charac-
teristics are summarized in Table 1 (S is the apparent 
power) and Table 2, respectively (three-phase powers 
are represented in these tables). 

We suppose that the generators normally operate with 
a unitary power factor (i.e., no reactive power is injected 
in the nodes). 

The per-kilometer reactance of the cable lines is x =  
0.17 kmΩ , which is a typical value for Italian MVDNs. 
The line lengths and parameters are summarized in Ta-
ble 3. 

Let us suppose that each generator is connected to its 
GRTU that measures the nodal voltage and communicates 
with the GCC. Moreover, let us suppose that G5 cannot 
regulate the reactive power because it is not designed for 
this purpose. The MV busbar is regulated at the rated 
voltage (1 p.u.), which is 20 kV (line-to-line). In this 
example, the voltage threshold maxV  is 1.05 p.u. 

Using load-flow software, we calculated the voltage E 
in the generator nodes (nodes 4, 5, 6, and 7) for normal 
network operation. The results are shown in Figure 6 
(Normal Operation). 
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Figure 5. The network considered in the numerical applica-
tion 
 

Table 1. Loads characteristics 

Load S [MVA] cos  P [MW] Q [MVAR] 

bl, nl 2 0.95 1.9 0.62 

cl 7 0.92 6.44 2.74 

dl 3 0.92 2.76 1.18 

gl 2.08 0.95 1.99 0.62 

ml 2.58 0.93 2.4 0.94 

ol 1.98 0.96 1.9 0.57 

pl 1.5 0.92 1.38 0.59 

 
Table 2. Generators characteristics 

Generator P [MW] 

G4 6 
G5 1.75 

G6 4.5 

G7 3.75 

 
Table 3. Lines parameters 

Line Name L [km] X [Ω] 

a, l, q 2 0.34 
b, f, g, i, m, n 1 0.17 

c, d, o, p 0.5 0.085 
e 15 2.55 
h 5 0.85 

 
If line b trips (e.g., due to a fault), loads bl, cl and dl 

are cut off from the supply, which causes the voltage to 
increase in the network. In particular, if the load-flow is 
re-computed to take into account the new network con-
figuration, we obtain the results shown in Figure 6 
(Tripped Line). 

It is important to note that, if the voltage exceeds the 
maximum threshold maxV  in node 5, the GRTU con-
nected to G5 sends the VTO signal to the GCC that must 
choose the BG using the sensitivity table. 

We suppose that the three-phase reactive powers ab-
sorbable by each generator that were collected from the 
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last poll are those summarized in Table 4, which also 
contains the corresponding power factors cosφ. To cal-
culate the sensitivity table, we need the single-phase 
powers. Therefore, the reactive powers shown in Table 4 
have to be divided by three. It is important to note that 
the reactive powers calculated this way correspond to 

jQ∆  because 0
jQ  is zero (see (21)). The jQ∆  values 

are shown in Table 5. 
The voltage exceeds the threshold in node 5. Thus, we 

only consider the fifth row of the sensitivity table. 
According to the inspection rule mentioned above, this 
row is as follows: 

5,4 5,5 5,6 5,70 0 0 0S S S St t t t       (31) 

where the single sensitivity products ,S i jt  are: 

( )5,4 4
1 Δ 164.53S a e

n

t X X Q V
E

= − + = −    (32) 

( )5,5 5
1 Δ 0S a e h

n

t X X X Q V
E

= − + + =     (33) 
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Figure 6. Load-Flow results with the Network Normal Op- 
eration 

 
Table 4. Reactive powers absorbable by the generators 

Generator Q [MVAR] cosφ 

G4 1.97 0.95 

G5 0.00 1 

G6 0.91 0.98 

G7 1.23 0.95 

 
Table 5. Reactive Power Variations in the Generator Nodes 

Generator ∆Qj [MVAR] 

G4 0.66 
G5 0.00 
G6 0.30 
G7 0.41 

( )5,6 6
1 Δ

98.65

S a e h
n

t X X X Q
E

V

= − + +

= −
          (34) 

( )5,7 7
1 Δ

133.07

S a e h
n

t X X X Q
E

V

= − + +

= −
         (35) 

The maximum sensitivity product (in absolute value) 
corresponds to generator 4, (i.e., 4j = ). Thus, the BG is 
G4. 

Equation (32) provides important information. If G4 
performs the considered reactive power variation, the 
line-to-ground voltage variation in node 5 is: 

5Δ 164.53 0.0142 . .E V p u= − → −     (36) 

Then, considering (22) (rewritten for node 5), and 
0

5 1.0502 . .E p u=  from Figure 6, we can say that the 
voltage value after the reactive power variation is: 

0
5 5 5Δ 1.036 . .fE E E p u= + =         (37) 

which is less than the voltage threshold maxV . 
Equation (37) shows the theoretical result obtained 

using the proposed method. We checked this value using 
load-flow software: 

5 1.034 . .f
load flowE p u=               (38) 

The percentage error between (38) and (37) is: 

5 5
%

5

100 0.19 %
f f

load flow
f

load flow

E E
ε

E
−

= ⋅ = −     (39) 

which is negligible and demonstrates the validity of the 
proposed approach. 

5. Conclusions 
The proposed sensitivity method allows the voltage wi- 
thin network acting on single generators to be regulated 
by choosing the most effective generator on the contr- 
olled node (i.e., the Best Generator). This is a very im-
portant feature in grids that have distributed generation 
(e.g., in a Smart Grid context). 

The proposed method uses a topological approach. Mo- 
reover, the sensitivity table can be constructed automati-
cally. 

In addition to the BG choice, the proposed method al- 
so evaluates the voltage in all network nodes after a reac-
tive power variation. 

After choosing the BG, but before its commutation du- 
ring RPA, it is possible to verify that the voltage var- 
iation in the other nodes is tolerable for the connected lo- 
ads. Moreover, it is necessary to verify that the threshold 
settings of the voltage relay installed in the same nodes. 
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When a generator is switched during RPA, it works wi- 
th a non-unitary power factor; the reactive power flow in- 
creases along the lines and increases the power loss [16]. 

This phenomenon is negligible in HV networks beca- 
use the line resistance is typically smaller than the line 
reactance, but is important to consider in MV networks. 

Therefore, if network analysis reveals that the RPA- 
switching produces high losses, voltage control using the 
reactive power variation must only be used for temporary 
voltage variation mitigation (i.e., during emergency con-
ditions). 

The possible future develops of this work could be fo-
cused on the optimization of the forecasted power-time 
profiles of the loads and generators applying both the se 
nsitivity approach and distributed voltage measurement. 
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ABSTRACT 

The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system 
transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/converter model, 
the comprehensive numerical simulations with multiple wind farms of DFIG type involved are carried out to reveal the 
impact of wind farm on dynamic behavior of existing interconnected power system. Different load models involving 
nonlinear load model and induction motor model are considered during simulations. Finally, some preliminary conclu-
sions are summarized and discussed. 
 
Keywords: Transient Stability, DFIG, Multiple Wind Farms, Wind Farm Integration, Load Model 

1. Introduction 

In recent years, the increasing concerns to the environ-
mental issues and the limited availability of conventional 
fossil fuels lead to rapid research and development for 
more sustainable and alternative electrical sources. Wind 
energy, as one of the most prominent renewable energy 
sources, is gaining increasing significance throughout the 
world. The currently worldwide installed capacity of grid- 
connected wind generators grows rapidly, and particu-
larly in China, the installed capacity doubles every year 
since 2004. The vast majority of presently installed wind 
turbines are based on the following three main types of 
electromechanical conversion systems. The 1st type is 
normally referred to as a constant-speed or fixed-speed 
turbine. The 2nd type uses a DFIG instead of a SCIG as a 
variable-speed wind turbine. The 3rd type is called a direct-drive 
synchronous generator different from the DFIG. The 
fixed-speed wind turbines equipped with an induction 
generator (squirrel cage or wound rotor) have ever been 
widely used because of the advantage of being simple, 
robust, reliable and well-proven. Also the cost of its 
electrical parts is low. However, the disadvantages of un- 
controllable reactive power consumption, mechanical 
stress and limited power quality control lead to little con-

tributions on improving system dynamic behavior. Espe-
cially, owing to its fixed speed operation, all fluctuations 
in the wind speed are further transmitted as fluctuations 
in the mechanical torque and then as fluctuations in the 
electrical power on the grid. With rapid development in 
power electronic converters recently, an alternative, the 
variable-speed wind turbine, has appeared during the past 
few years and has become the dominant type among the 
new installed wind turbines. It should be pointed out that 
the Doubly-fed Induction Generator (DFIG) equipped 
wind turbine is currently the most popular one due to its 
capability of controlling reactive power, high energy 
efficiency, and the fact that the converter rating of ap-
propriately 20%-30% of the total machine power is 
needed [1,2]. Accordingly, modeling of wind turbine 
with DFIG will be the highlight to be issued in this pa-
per. 

It is known that the electrical characteristics of DFIG 
determined by the converter are quite different from 
the conventional synchronous generators. Power sys-
tem engineers will have to confront a series of challenges 
imposed by integration of large wind power with the 
existing power systems. One of important issues engi-
neers have to face is the impact of wind power penetra-
tion on the dynamic behavior, e.g. the transient stability, 
of an existing interconnected large-scale power system. 

So far, much literature related to transient stability 
analysis of power system with high penetration of grid- 
connected wind farms of DFIG type have been studied 

*This work has also been supported in part by the National Natural 
Science Foundation of China (50977051), the Research Project of Science 
and Technology from Shenzhen Government of China (JC200903
180528A) 
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in [3-9]. Vicatos, Tegopoulos [3] and Senjyu et al. [4] 
discussed the transient characteristics of wind farm 
during the three-phase short circuit condition. Jenkins 
et al. [5] and Shi et al. [6] studied dynamic mathe-
matical model of DFIG suitable for transient stability 
analysis. Muyeen et al. [7] presented detailed analysis 
of windmill mechanical drive train models for transient 
stability analysis of wind power generation system. They 
pointed out that at least two-mass shaft model was 
needed in the transient stability analysis of wind tur-
bine generation system. Gautam et al. [8] and Weise et 
al. [9] examined the impact of high wind generation 
penetration on transient stability and small signal sta-
bility of an existing power system. Shi et al. [10] studied 
the influence of DFIG type wind farms on transient 
stability of the power system, while comparing with the 
synchronous generators connected to the power system 
at the same point. 

In the published literature, some of them mainly fo-
cused on the electromagnetic transient models [3,4] 
unsuitable for transient stability analysis of large-scale 
power system. As for the applications of the electro-
mechanical transient model of DFIG in an existing 
power system [8-10], some studied test systems were 
too simple and the impact of dynamic load model was 
neglected during simulations. Besides, only single wind 
farm [8,10] was introduced to conduct the transient 
stabiity analysis. In a nutshell, the transient stability 
analysis of power system with high penetration of wind 
farms of DFIG type needs to be elaborately explored 
and exploited further. 

In this paper, the detail numerical simulations on the 
IEEE 10-generator-39-bus New England test system as 
benchmark are carried out to discuss the influence and 
interaction of DFIG type wind farms on power system 
transient stability. Multiple wind farms are introduced 
into the existing test system during analysis by replacing 
the existing synchronous generators and integrating into 
the specific buses. Different load models including the 
nonlinear and dynamic motor models are also considered. 
Finally, some meaningful and preliminary conclusions 
are given in this paper. 

The rest of this paper is organized as follows. Section 
2 briefly introduces the mathematical models of DFIG 
and converters. In Section 3, the detail case studies 
focusing on the impacts of grid-connected wind farms on 
an existing test system are carried out. Finally the con-
clusions and discussions are summarized in Section 4. 

2. Modeling of DFIG and Converters 

In the following discussions, the whole wind farm is 
modeled as an aggregated wind park model by one 
equivalent wind generator [1,2]. A general scheme of a 
DFIG including the static converters and controllers is 
depicted in Figure 1. Two converters are connected be-

tween the rotor and grid, following a back-to-back sch- 
eme with a dc intermediate link. 

In the modeling of turbine rotor, there are a lot of 
different ways to represent the wind turbine [1]. In our 
studies, a kind of functions approximation method [11] is 
used to simulate the wind turbine aerodynamic model. 
Furthermore, we assume that the wind speed can be kept 
as constant during the transient stability simulation. The 
pitch angle control strategy is also considered, which is 
implemented by a kind of PI controller [11], to limit the 
aerodynamic efficiency of the rotor. 

For the modeling of DFIG, a two-mass shaft model 
[10,11] is employed to represent the drive train. The 
interface between the wind turbine generator and the 
network is simplified as an algebraic, controlled-current 
source [10,11] which computes the required injected 
current into the network in response to the flux and 
active current commands from the converter model. For 
a given time step, the model holds the in-phase (active 
power) component of current constant and holds constant 
q-axis voltage behind the sub-transient reactance (X”). 

The model of the frequency converter system is generally 
represented with the rotor-side converter, grid-side con-
verter, the dc link and the corresponding converter con-
trol. The modeling of rotor-side converter from [11] is 
employed to implement the decoupled control for stator 
active and reactive powers. The corresponding control 
block diagrams are shown in Figure 2 and Figure 3. 

 Us
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Controller
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Controller 
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Figure 1. General scheme of a DFIG including converters 
and controllers 
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Figure 2. Block diagram for active power control 
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Figure 3. Block diagram for reactive power control 

 
Where, Pord is the active power demand determined by 

wind turbine; VT is terminal voltage considering measure-
ment block; Qord is reactive power demand determined 
by the supervisory VAR controller; Eq” and Ip are the 
flux and active current commands from the converter 
model [11]. In our studies, the grid-side converter is 
assumed to be ideal, and the dc link voltage between the 
converters is kept as constant. 

3. Case Study 

3.1 Transient Stability Evaluation Index 

In our work, the following two indices [12,13] are used 
to evaluate the impact of grid-connected wind farms of 
DFIG type on the transient stability of the test system. 

1) Power angle based stability index [13] 
This index is defined as follows for each island in the 

system: 
max

max

360
100     100 100

360


 




    


     (3) 

where max is the maximum angle separation of any two 
generators in the island at the same time in the post-fault 
response. The transient stability index for the system is 
taken from the smallest index among all islands. Thus,  
> 0 and   0 correspond to stable and unstable con-
ditions respectively. This index is directly proportional to 
system angle separation. Hence it provides a good 
indication of how severe a test system is following a 
contingency. 

2) Critical clearance time (CCT) of faults [13] 
The critical clearance time of a fault is generally 

considered as the best measurement of severity of a con-
tingency and thus widely used for ranking contingencies 
in accordance with their severity. In our studies, the CCT 
is employed as a transient stability index to evaluate the 
test system. CCT is defined as the longest allowed fault 
clearance time without losing stability. This is obtained, 
using a binary search method [13], within a specified 
fault clearance range with a set threshold. If the change 
of the system operation can increase CCT, it is considered 
that such change is favorable to improve power system 
transient stability. 

3.2 Application Example 

The IEEE 10-generator-39-bus New England test system 

shown in Figure 4 is employed to conduct the transient 
stability simulation. Detailed parameters of this system 
can be found in [14]. All simulations are implemented on 
the DSA-TSAT/UDM™ [12] simulation environment, 
developed by Powertech Labs Inc., Canada. 

3.2.1 Multiple Wind Farms Replacing Synchronous 
Generators 

In order to make more sense to replace the synchronous 
generators with wind farms for the power system tran-
sient stability analysis, we made a comprehensive tran-
sient stability analysis with three-phase temporary fault 
on each bus (excluding the generators’ terminal buses) in 
advance. We found that the worst transient stability index 
(with the most negative value of η) corresponds to a 
three-phase fault condition occurred at Bus29. In this con-
dition, the maximum angle separation happens between 
generator SG38 and generator SG39. Thus, in the  
following simulations, the generators SG38 and SG39 
will be replaced by the wind farms equipped with GE 
3.6MW [11] DFIGs with three-phase fault condition at 
Bus29 as benchmark to analyze the impacts of wind farm 
integration on the dynamic behavior of the test power 
system. We designed the following experimental scenarios: 
1) In scenario 1, the synchronous generators SG38 and 
SG39 at Bus38 and Bus39 are equipped with exciters and 
power system stabilizers. The 4th order practical generator 
model is applied to the remaining synchronous generators. 2) 
In scenario 2, the synchronous generators SG38 at Bus38 
is replaced by a wind farm DFIG38 with the same power 
output. The synchronous generator SG39 at Bus39 is 
equipped with exciters and power system stabilizers. The 
remaining synchronous generators are modeled as the 4th 
order practical model. 3) In scenario 3, the synchron- 

 

 

Figure 4. IEEE standard 10-generator-39-bus New England 
system 
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ous generators SG38 and SG39 are replaced by wind 
farms DFIG38 and DFIG39 with the same power out-
puts, respectively. Similarly, the 4th order practical gen-
erator model is applied to the remaining synchronous 
generators. The corresponding experimental scenarios 
are summarized in Table 1. 

As mentioned before, different load models involving 
the nonlinear load model and dynamic load model will be 
considered during the simulation comparisons. The applied 
load models are given in Table 2. 

A three-phase temporary fault occurs at Bus29 at time 
t = 0.5 s, and it is cleared at time t = 0.55 s. The corre-
sponding calculated transient stability indices considering 
different load models are given in Table 3 and Figures 
5-6. 

 
Table 1. Designed experimental scenario 

Scenario Synchronous Generators Replaced by Wind Farms

1 N/A 
2 SG38 
3 SG38 and SG39 

 
Table 2. Load model considerations 

Load Model Description 

Z Constant impedance 

ZIP 
Combination of 30% constant impedance (Z), 40% 
constant current (I) and 30% constant power (P) 

ZIP + Dyn Combination of 30% ZIP and 70% induction motor 

 
Table 3. Transient stability evaluation indices considering 
different load models 

1 2 3 Scenario 
 

Load 
Model 

 CCT(s)  CCT(s)  CCT(s)

Z 60.70 0.1379 66.60 0.5399 69.85 1.4712

ZIP 59.58 0.1238 67.14 0.4402 70.17 0.9987

ZIP+Dyn Insecure(-57.95) 0.0421 67.58 0.0746 68.50 0.0676
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Figure 5. Power angle based stability indices with different 
scenarios and load models 

From Table 3 and Figures 5-6, it can be seen that the 
system transient stability can be improved to some ex-
tent when the specific synchronous generator is re-
placed by a wind farm of DFIG type under current fault 
condition and with the consideration of different load 
models. It should be noticed that when considering the 
‘ZIP + Dyn’ load models the power system consisting 
of all conventional synchronous generators (i.e. sce-
nario 1) becomes unstable.  

The maximum angle separation changes in different 
scenarios considering the ‘ZIP + Dyn’ load models. The 
corresponding maximum angle separations are given in 
Table 4. 

From Table 4, it can be seen that the oscillation modes 
related to the transient stability index will change when 
some synchronous generators are replaced by wind farms 
of DFIG type. 

Figures 7(a), 7(b), 7(c) and 7(d) show the active power 
output, rotor speed, reactive power output and terminal 
voltage curves of the wind farm DFIG38 and the replaced 
synchronous generator SG38 considering the ‘ZIP + 
Dyn’ load model, respectively. The solid line corre-
sponds to the DFIG38 and the dotted line corresponds to 
the synchronous generator SG38. These figures show 
that the dynamic behavior of test system resulted in great 
changes after the introduction of wind farm of DFIG type. 
Under current condition, the synchronous generators can- 
not keep stable with great penetration of induction motor 
loads, which may lead to more reactive power requirements 
and more complicated oscillations. With the control 
strategies of DFIG converter and due to the soft connection 
between the mechanical and the electrical side of DFIG, 
the active and reactive power oscillations of DFIG during 
fault is relatively smooth, which is helpful for keeping 
the power system stable. 
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Figure 6. CCT with different scenarios and load models 

 
Table 4. Maximum angle separations in different scenarios 

Scenario Load Model Maximum Angle Separation

1 <SG34, SG39> 

2 <SG31, SG39> 

3 

ZIP+Dyn 

<SG30, SG31> 
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Similarly, Figures 8(a), 8(b), 8(c) and 8(d) give the 
active power output, rotor speed, reactive power output 
and terminal voltage curves of the wind farm DFIG39 
and the replaced synchronous generator SG39 considering 
the ‘ZIP + Dyn’ load model, respectively. The dotted 
line corresponds to synchronous generator SG39 based 
on scenario 1; the dash-dot line corresponds to the syn-
chronous generator SG39 based on scenario 2 and the 
solid line corresponds to the DFIG39 based on scenario 3. 
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Figure 7. Transient behavior curves of the wind farm DFI- 
G38 and the replaced synchronous generator SG38 

 

0 1 2 3 4 5
800

1000

1200

1400

(a) Active power output curves

t (s)

P
 (

M
W

)

0 1 2 3 4 5
60

65

70

(b) Rotor speed curves

t (s)

f (
H

z)

 

 

0 1 2 3 4 5

500

1000

1500

2000

2500

3000
(c) Reactive power output curves

t (s)

Q
 (

M
V

a
r)

0 1 2 3 4 5
0.98

1

1.02

1.04

1.06
(d) Terminal voltage curves

t (s)

U
 (

p
.u

.)

SG39 in Scheme 1 SG39 in Scheme 2 DFIG39  

Figure 8. Transient behavior curves of the wind farm DF- 
IG39 in scenario 3 and the replaced synchronous generator 
SG39 in scenario 1 and scenario 2 

It can be seen from Figure 8 that wind farms of DFIG 
type replacing synchronous generators actually leads to 
great influence on the transient stability of the existing 
power system. Particularly, when the second wind farm 
DFIG39 is introduced into the test system, the transient 
stability of the test system is significantly improved. 

3.2.2 Wind Farms Connected to Existing Power Grid 
In our previous analysis of impact of grid-connected wind 
farm of DFIG type on transient stability, the wind farms 
are introduced into the power grid via replacing existing 
synchronous generators. Actually, it is unpractical to 
replace the existing synchronous generators with wind 
farms during application. When the wind farm is directly 
connected to the transmission system, the corresponding 
network topology and system operating condition will 
change. Therefore, it is necessary and imperative to ex-
plore and exploit the impact on the power system tran-
sient stability in this situation. 

In following simulations, the wind farm equipped with 
GE 3.6MW DFIGs will be connected to each bus excluding 
ding generator buses to carry out the corresponding analysis. 
The synchronous generators are modeled as the 4th order 
practical model. The load model which is a combination 
of 30% ZIP and 70% induction motor (‘ZIP + Dyn’) is 
considered as well. A three-phase temporary fault occurs 
at Bus29 at time t = 0.5s, and it is cleared at time t = 
0.55s. Consider that the load demands do not change 
before and after the integration of wind farm, the power 
outputs of each synchronous generator are decreased by 
10 percent of wind farm rated capacity to meet load 
requirements. And in our studies, the wind farms at all 
grid connection points have to be able to operate at 
power factor between 0.975 lagging and 0.975 leading to 
provide reactive power. The corresponding calculated 
transient stability indices and maximum angle separa-
tions are given in Table 5. 

From Table 5, it can be seen that when the wind farm is 
connected to most buses, the system transient stability can 
be increased under the specific fault condition with the 
consideration of the ‘ZIP + Dyn’ load models. Further- 
more, the CCT is different with the different connection 
point of wind farm. The maximum CCT value is 0.0816 
calculated at Bus26 with wind farm connected. The mini-
mum CCT value is 0.0421 calculated at Bus1. Regarding 
the oscillation mode which may make the system transient 
stability unstable, we found that the maximum angle sepa-
ration happens between synchronous generators SG38 and 
SG39 for almost all connection points of wind farm. When 
the wind farm is connected to bus20, the maximum angle 
separation is between SG34 and SG39. 

Figures 9(a), 9(b), 9(c) and 9(d) show the active power  
output, rotor speed, reactive power output and terminal 
voltage curves of the wind farm of DFIG type connected 
to Bus 26 and Bus 1 considering the ‘ZIP + Dyn’ load 
model, respectively. The solid line corresponds to the 
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Table 5. Transient stability indices and corresponding ma- 
ximum angle separations 

Transient Stability Indices Bus Number 
Connected 
Wind Farm  CCT(s) 

Maximum Angle 
Separation 

1 Insecure(-58.32) 0.0421 <SG38,SG39> 
2 60.69 0.0676 <SG38,SG39> 
3 59.74 0.0676 <SG38,SG39> 
4 60.22 0.0605 <SG38,SG39> 
5 60.78 0.0605 <SG38,SG39> 
6 60.79 0.0605 <SG38,SG39> 
7 61.06 0.0605 <SG38,SG39> 
8 61.21 0.0605 <SG38,SG39> 
9 Insecure(-57.26) 0.0474 <SG38,SG39> 

10 60.47 0.0605 <SG38,SG39> 
11 60.57 0.0605 <SG38,SG39> 
12 60.34 0.0535 <SG38,SG39> 
13 60.38 0.0605 <SG38,SG39> 
14 60.10 0.0605 <SG38,SG39> 
15 59.32 0.0605 <SG38,SG39> 
16 59.04 0.0676 <SG38,SG39> 
17 59.13 0.0676 <SG38,SG39> 
18 59.43 0.0676 <SG38,SG39> 
19 59.19 0.0605 <SG38,SG39> 
20 58.34 0.0605 <SG34,SG39> 
21 59.13 0.0605 <SG38,SG39> 
22 59.15 0.0605 <SG38,SG39> 
23 59.10 0.0605 <SG38,SG39> 
24 59.30 0.0676 <SG38,SG39> 
25 60.50 0.0746 <SG38,SG39> 
26 58.70 0.0816 <SG38,SG39> 
27 58.75 0.0746 <SG38,SG39> 
28 53.94 0.0676 <SG38,SG39> 

No wind farm 
connected 

Insecure(–78.30) 0.0159 <SG38,SG39> 
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Figure 9. Transient behavior curves of the wind farms con-
nected at Bus26 and Bus1 

wind farm of DFIG type connected to Bus26 and the 
dotted line corresponds to the wind farm connected to 
Bus 1. 

4. Conclusions 

The transient stability simulation of power system with 
consideration of large-scale grid-connected wind farms 
of DFIG type are elaborately studied in this paper. The 
multiple wind farm integration with replacing synchronous 
generators is studied first. Furthermore, the impact on the 
power system transient stability with direct connection of 
wind farm of DFIG type is explored and exploited as well. 
According to the simulation results, some preliminary 
conclusions and comments are summarized and dis-
cussed. It should be pointed out that these conclusions 
and comments can provide useful information for power 
system planning and design when considering integrations 
of large wind farms with the existing power system. 
However, they are still preliminary and very limited. The 
impact of wind power on the transient stability of power 
systems involving the more actual factors needs to be 
elaborately studied further in the near future. 
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ABSTRACT 

To investigate the oxidative stress-inducing potential of non-thermal electromagnetic fields in rats. Male Wister rats 
were exposed to electrical field intensity of 2.3 ± 0.82 µV/m . Exposure was in three forms: continuous waves, or modu-
lated at 900 MHz or modulated GSM-nonDTX. The radio frequency radiation (RFR) was 1800 MHz, specific absorp-
tion radiation (SAR) (0.95-3.9 W/kg) for 40 and/or 60 days continuously. Control animals were located > 300 m from 
base station, while sham control animals were located in a similar environmental conditions, but in the vicinity of a 
non-functional base station. The rats were assessed for thiobarbituric and reactive species (TBARS), reduced glu-
tathione (GSH) content, catalase activity, glutathione reductase (GR) and glucose residue after 40 and 60 days of ex-
posure. At 40 days, electromagnetic radiation failed to induce any significant alterations. However, at 60 days of expo-
sure various attributes evaluated decreased. The respective decreases in both nicotinamide adenine dinucleotide phos-
phate (NADPH) and Ascorbate- linked lipid peroxidation (LPO) with concomitant diminution in enzymatic antioxida-
tive defense systems resulted in decreased glucose residue. The present studies showed some biochemical changes that 
may be associated with a prolong exposure to electromagnetic fields and its relationship to the activity of antioxidant 
system in rat Regular assessment and early detection of antioxidative defense system among people working around the 
base stations are recommended. 
 
Keywords: Electromagnetic Field, Telecommunication Base Station, Oxidative Stress, Antioxidant System 

1. Introduction 

Human and animals exposure to environmental hazards 
from low energy electromagnetic fields (EMF) in several 
countries showed some compelling evidence of DNA 
damages of cells in in-vitro cultures when exposed EMF 
[1-3]. These cells are exposed concurrently or sequen-
tially to multiple electromagnetic fields from variety of 
sources, including mobile phone base stations [3]. Tech-
nological advancement in telecommunication network 
from point or nonpoint sources is an environmental real-
ity in rural and urban areas [4]. The radiation exposure 
from these antennas is continuous. Some authors [5] be-
lieve that chronic, low-level radiation exposure may, 
over time be as harmful as higher level radiation. Such 
effects include Fatigue, headache, sleep disruption and 
loss of memory [4]. Mobile handsets naturally contribute 
to athermal influences in living organisms [5], implying a 

causal relationship in several unspecific symptoms dur-
ing and after its use [6]. 

Assessment of potential health risks of EMF are ma- 
nifested after certain duration of irradiation which indi- 
cates long-term cumulative effects. Though, epidemio- 
logical studies suggest the existence of weak links bet- 
ween exposure of EMF and human diseases [7] at mo-
lecular [8] and cellular levels [9], on immune processes 
[10], in DNA [11], on the nervous [12], cardiac [13], 
endocrine [14] reproductive [15] and neurobehavioral 
effects [16]. 

Free radical-catalyzed peroxidative damage to mem- 
brane lipids may impair the formed elements deform-
ability membrane, Na+/K+ gradient and metabolic ma- 
chinery resulting in decreased ATP level and enzy- me 
activity [17]. Several ill healths are due to an imbal-
ance between the activities of an oxidant agent and the 
antioxidant system within the cell. Cytotoxicity is re-
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lated to reactive oxygen species (ROS), viz., superox-
ide radical (*O-

2), hydrogen peroxide (H2O2), and hy-
droxyl radical (OH*), which are produced by various 
factors. This link causes oxidative damage to cell me- 
mbrane, increases in oxygen radical’s production and 
ultimately permits leakage of enzymes, leading to or-
gan damage [18]. The consequences of damage to se-
rum are potentially life-threatening and clinically may 
manifest as hypoxia and several health disorders. To 
our knowledge, the effects of repeated exposure to ele- 
ctromagnetic fields at non-thermal intensities level on 
the oxidative stress in serum are not known. 

The aim of the current investigation was to evaluate 
whether concurrent subchronic exposure to electromag- 
netic fields at non-thermal intensities at environmen-
tally realistic background concentrations and at a con-
centration equal to World Health Organization (WHO) 
maximum permissible limit (MPL)[19] can cause oxi-
dative stress in serum of rats and whether oxidative 
stress is associated with the concomitant diminution in 
both enzymatic and nonenzymatic lipid peroxidation as 
well as antioxidant defense systems. 

2. Materials and Methods 

Male Wistar rats weighing between 75-100 g were proc- 
ured from the Animal Resource Section, Faculty of Pha- 
rmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. 
They were caged in groups of five in clean plastic conta- 
iner with saw-dust chips for bedding. Animals were ma- 
intained under standard management conditions and han-
dled following the guidelines of the Federal Environ-
mental Protection Agency (FEPA). All animals were fed 
everyday given a standard pellet diet (Ladoke feed, Ni-
geria Ltd.) and deionized water ad libitum. The animals 
were kept in the vicinity of the base station ground zero 
consists of three telecommunication antennas and three 
shelters which contain electric power generators (electri-
cal field intensity of 2.3 ± 0.82 µV/m) and radio-fre- 
quencies of 900 or 1800 MHz. A model Rados RDS-120 
Universal Survey Meter, range 0.05-10 µV/m ( Rados 
Tech, Finland) with automatic selection of measuring 
range was used to measure radiofrequency and micro-
waves The specific absorption rate (SAR) in the animals 
range from 0.6 µV/m. Comfort 30s Reliable Digital Ther-
mometer (REF 0T11-121c, 070502) was used to measure 
the temperature around the base stations. The dose-re-
sponse relationships (non-thermal) are nonlinear [7]. 

Ten exposed animals were separately kept in the vicin-
ity of base station in non-thermal intensities environment, 
while ten controlled groups were kept in a similar enviro- 
nment and conditions as the experimental but in nonope- 
rating base station thus served as sham control and ten 
were housed at a location approximately greater than 300 m 
from the nearest designated mobile phone base station. 

All animals completed the study. The average exposure 
time for EMF was 24 h for forty and/or sixty days. 

At 40th day, five exposed five controls and five shams, 
blood was collected via the tail vein in heparinized tubes 
and the blood obtained was used for estimation of thio-
barbituric acid reactive species (TBARS), reduced glu-
tathione (GSH), catalase activity, glutathione reductase 
(GR) and residual glucose. At the end of 60th day, ani-
mals were treated as previously described. 

3. Measurement of Lipid Peroxidation (LPO) 

Enzymatic and non-enzymatic lipid peroxidation was as- 
sessed by measuring malondialdehyde (MDA) levels ba- 
sed on the reaction of MDA with thiobarbituric acid [20]. 
In brief, 200 μl of 30% blood was incubated at 30 ± 
0.5˚C for 30 min. The sample was mixed with 1ml of 10% 
w/v phosphate buffer solution (PBS), and 1ml of 0.67% 
thiobarbiturate in boiling water bath for 10min. Reaction 
was initiated by addition of 1μl of NADPH (1 mM) and/ 
or ascorbate. After cooling, it was diluted with 1ml disti- 
lled water and absorbance was read at 535 nm, Results 
have been expressed as nmol MDA/ml. NADPH depend- 
ed—and ascorbate—linked lipid peroxidation were dete- 
rmined to test the reliability of results (Figure 1). 

4. Assay for GSH Level 

Glutathione content in was estimated following the stan-
dard procedure [21]. Briefly, blood (200 μl) was mixed 
with 2.5 ml phosphate buffer (0.05M) pH 7 and 200 μl of 
5,5’ – dithiobis-2-nitro-benzoic acid reagent. Within 
minutes, absorbance was read at 412 nm. The levels of 
GSH have been expressed as nmol GSH/ml serum. 

5. Determination of Catalase 

Catalase activity in blood was assayed by the spectro-
photometer method [22]. Two hundred microliters were 
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Figure 1. Variations in lipids peroxidation, antioxidative stress 
and glucose residue 
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mixed with phosphate buffer (50 mM, pH7) in a curvette. 
Reaction was started by adding 1ml H2O2 (10 mM) and 
absorbance was recorded at every 10 sec, for 1min. at 
240 nm against water blank. The activity of catalase has 
been expressed as mmol H2O2 utilized/min/ml. 

6. Determination of Glutathione Reductase 
(GR) 

Glutathione activity was measured following the stan-
dard procedure [23]. The 3 ml reaction mixture contained 
2.5 ml PBS (0.12 M, pH 7.2), 0.1 ml EDTA (15 mM), 
and 0.1 oxidized glutathione (GSSG) (65.3 mM). To this, 
100 μl of blood was added and the volume was made up 
with 0.15 ml distilled water. After incubation at room 
temperature for 5 min., 0.05ml NADPH (9.6 mM) was 
added. Decrease in absorbance/min was recorded imme-
diately at 340 nm for 3 min. Control was run without 
GSSG. The activity of GR has been expressed as unit/ml. 
One unit is μmol NADPH utilized/min/ml. 

7. Determination of Residual Glucose 

Residual glucose was determined photometrically [24]. 
Two hundred microliters of blood mixed with 1ml of 5% 
phenol. Reaction was started by adding 2.5 ml concen-
trated H2So4 and absorbance was recorded at 470 nm 
after thorough mixing at room temperature for 20 min. 

The residual glucose has been expressed as nmol gluco- 
se/ml. 

8. Statistics 

Statistical analysis: Data were subjected to Barlett’s test 
for homogeneity, followed by analysis of variance (AN- 
OVA). For post hoc comparison Student Newman Keul’s 
test was employed. 

9. Results 

The temperature at the base stations and the power den-
sity at the four corners of the base stations are presented 
in Table 1. Influence of sub chronic exposure to elec-
tromagnetic field on various oxidative stress-related pa-
rameters in rat whole blood is shown in Table 2. Though 
they have many and varied outputs, at a distance of 50 m 
(C1) the power density is 0.13 µV/m while at distances of 
100m at ground level measures 0.69 µV/m (C2), between 
150 m (C3) and 300m, the power density range from 0.69 
to 0.74 μV/m (Table 1). Results presented demonstrate 
that the low intensities of electromagnetic fields to rats 
exposed for forty days failed to induce any significant 
alterations in any of the oxidative stress-related endpoints 
in rat. However, at 60 days, exposure duration on the 
different attributes evaluated for assessing the oxidative 
stress-inducing potential of electromagnetic field in rat 
decreased. 

 
Table 1. In-Situ Measurement of Temperature and Radiation emanating from the GSM Base Stations 

Point Distance (m) Temperature (ºC) 
Dose Rate 
(µSv/hr) 

Dose 
(µSv) 

Corner 1 (C1) 0 37 0.17 0.69 
Corner 2 (C2) 0 33.8 0.13 0.68 
Corner 3 (C3) 0 33.8 0.17 0.68 

Base Station 1 
(BS 1) 

Corner 4 (C4) 0 37 0.17 0.68 
Corner 1 (C1) 0 37 0.14 0.64 
Corner 2 (C2) 0 37 0.13 0.65 
Corner 3 (C3) 0 37 0.15 0.64 

Base Station 2 
(BS 2) 

Corner 4 (C4) 0 37 0.11 0.64 
Corner 1 (C1) 0 37 0.13 0.67 
Corner 2 (C2) 0 37 0.16 0.66 
Corner 3 (C3) 0 37 0.15 0.66 

Base Station 3 
(BS 3) 

Corner 4 (C4) 0 37 0.14 0.66 
50 37 0.13 0.69 

150 37 0.12 0.70 
200 37 0.13 0.71 

BS 1 From C 1 of BS 1 

300 37 0.13 0.71 
50 37 0.15 0.72 

150 37 0.25 0.72 
200 37 0.20 0.73 

BS 2 From C2 of BS 2 

300 37 0.19 0.73 
50 37 0.14 0.74 

150 37 0.09 0.73 
200 32 * 0.10 0.74 

BS 3 From C2 of BS 3 

300 37 0.10 0.74 

*Significantly different (P > 0.05), all rotations are anti-clockwise 
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Table 2. Lipid peroxidation, antioxidative systems and glucose residue in male rats exposed to low level electromagnet fields 

Lipid Peroxidation 
Treatment 

NADPH Ascorbate 

Reduced 
Glutathione 

Catalase 
Glutathione 
reductase 

Residual 
Glucose 

Control 0.373 ± 0.04 0.300 ± 0.03 4.30 ± 0.19 0.209 ± 0.01 4.34 ± 0.07 0.209 ± 0.01 

40 days 0.244 ± 0.01 0.255 ± 0.05 4.28 ± 0.17 0.068 ± 0.01 4.29 ± 0.00 0.091 ± 0.01 

60 days 0.121 ± 0.05* 0.098 ± 0.020* 4.19 ± 0.02 0.055 ± 0.50* 4.27 ± 0.18 0.060 ± 0.12* 

*Significant (P < 0.05) 
Errors indicate the standard error of tne mean (SEM), N = 3 

 
After 40 days of exposure, there were minor decreases 

in lipid peroxidations and other parameters except the 
activity of glutathione reductase which was less marked 
in comparison to control. At 60 days, the decrease activ-
ity of glutathione reductase was 11% of control, catalase 
activity decreased by 15% in comparison to control ac-
tivity. The energy level showed a significant (P < 0.05) 
decreased when compared to the control. 

After 60 days of exposure of rats to low intensities ele- 
ctromagnetic fields there were decreases in LPO compare 
to the control group (P < 0.05). Figure 1 shows varia-
tions in lipid peroxidation, antioxidative stress and glu-
cose residue. The respective decreases in NADPH de-
pendent and ascorbate linked lipid peroxidation were 
25% and 20% of the control groups. The ascorbic acid 
linked lipid peroxidation evidenced by malondialdehyde 
production was similar to that observed for NADPH- 
linked lipid peroxidation. The values obtained for NADPH- 
linked lipid peroxidation were higher than those for as- 
corbic acid lipid peroxidation. 

10. Discussion 

The present study shows that subchronic exposure to low 
intensities EMF induced oxidative stress in rat. More 
importantly, exposure duration further decreased in LPO 
and other antioxidative defense systems (Table 2). This 
indicates that prolonged exposure to non-thermal elec-
tromagnetic fields may induce several unspecific symp-
toms as reported by Abdel-Rassoul et al., 2007 and San-
tini et al., 2003 [16,25]. It is interesting to note that, in 
quantitative terms (% change) the duration of exposure to 
EMF on all antioxidative attributes was almost similar to 
control/sham. At 40 and 60 days of exposure, EMF de-
creased LPO, as well as enzymatic and non-enzymatic 
antioxidants. The significant decrease in temperature at 
point C3 (200 m) from the base station was due to low 
elevation at water front. Some workers found a variety of 
self-reported health effects for people living within 
1,000ft (325 m) of cell towers in rural areas; or within 
300 ft (100m) of base stations in urban areas [6,16,26]. 
Long-term exposure may imply the development of oxi-
dative stress that commensurate with the advancement of 

idiopathic symptoms. 
Erythrocytes are more vulnerable to LPO [27]. LPO 

has been shown to cause profound alterations in the stru- 
cture and functions of the cell membrane, including de-
creased membrane fluidity, increased membrane-bound 
enzymes, and loss of essential fatty acids [28]. Several 
studies in animals and occupationally exposed human 
subjects indicate that exposure to electromagnetic fields 
induced mostly sleep disturbance, irritability, depression 
and headache among others [1,29,30]. The steady de-
crease in LPO in the present study (Table 1) may be at-
tributed to induction of oxidative stress caused by expo-
sure to EMF with diminution in enzymatic antioxidative 
defense mechanism. 

Consistent with these results, reduction in enzymes ac-
tivities is related to consummations of enzymes in oxida-
tive stress. Inhibition of GR leads to accumulation of the 
prooxidant GSSG by preventing reduction of GSSG to 
GSH, suggesting that the depletion of GSH might not 
have been compensated by GR. Thus, reduced supply of 
GSH could activate energy utilization, resulting in re-
duced glucose (Figure 1) [17]. Decreased activity of 
catalase implies that H2O2 remains accumulated in the 
blood. It is known that O2 can spontaneously be con-
verted to H2O2, therefore, the oxidative stress caused by 
low intensity electromagnetic fields may be mediated by 
the conversion of accumulated H2O2 to OH, which is the 
ultimate toxicant for conversion to form O2 [31]. 

The present study of the environmental hazards from 
low energy EMF exposure demonstrates induction of 
oxidative stress in rat. Results of this study are associated 
with concomitant reduction in antioxidant defense sys-
tems. The relationship between the levels of exposure in 
the current study and the actual levels to which the gen-
eral populations are exposed is relevant to public health. 
For this reason, the telecommunication industries could 
take advantage of the complexity of the biological and 
physical processes to standardize guidelines (exposure 
distance) to base stations in rural and urban areas. Regu-
lar assessment and early detection of antioxidative de-
fense system among people working around the base 
stations are recommended. 
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ABSTRACT 

Focal region field of a two dimensional Gregorian system coated with chiral medium is analyzed at high frequency. 
Maslov's method is used because the Geometrical Optics approximation fails at focal points. Maslov’s method com-
bines the simplicity of ray theory and the generality of Fourier transform. Fields patterns are calculated numerically 
and the results are plotted. The effects of thickness of chiral layer, chirality parameter of the chiral medium and permit-
tivity of the medium are analyzed. The problem of simple dielectric layer is discussed as a special case of this problem. 
 
Keywords: Chiral Medium, Maslov,Smethod, Gregorian System, Focal Region Field 

1. Introduction 

The knowledge of focal region field of focusing systems 
is useful for synthesizing feed arrays in imaging and de-
sign of multiple beam antennas in communication sys-
tems. The focusing of electromagnetic waves into mate-
rial media is also a subject of considerable current inter-
est due to applications in hyperthermia, microscopy, and 
optical data storage. Geometrical optics (GO) approxi-
mation is one of the well known method for evaluating 
high frequency field. It has been widely used to study 
various kinds of problems in different areas of electro-
magnetics, acoustics and seismology [1-3]. GO approxi-
mation for wave solution is important in electromagnet-
ics because it provide insight into the behavior of wave 
front. GO is used only for high frequency approximation 
of a wave, provided the ray tube does not vanish. How-
ever, at caustic regions the ray tube shrinks to zero and 
GO show singularity at these regions. These regions are 
of great importance in all practical problems e.g. para-
bolic, paraboloidal and circular reflectors etc. To avoid 
these singularities Maslov proposed a method based on 
Maslov`s theory [4,5]. Maslov’s method has been used to 
find the field at caustic regions [6-20]. The idea in 
Maslov's method provides a systematic procedure for 
predicting the field in the caustic region by combining 
the simplicity of ray theory and generality of the trans-
form method. High frequency field expressions has been 

derived around feed point of a two dimensional Gregor-
ian system using the Maslov’s method in [19]. The same 
focussing system has been coated with isotropic and ho-
mogeneous chiral medium and field expressions are ob-
tained. In Section 2 the plane wave reflection from a 
chiral slab backed by perfect electric conducting (PEC) 
plane is considered. In Section 3 high frequency expres-
sion for the field of a chiral coated Gregorian system 
excited by plane wave is derived. Numerical results and 
discussion are presented in Section 4 and the paper is 
concluded in Section 5. 

2. Reflection of Plane Waves From a Chiral 
Slab Backed by Conductor 

In this paper we want to find the reflected field around 
the focal region of a two dimensional Gregorian’s main 
parabolic reflector coated with chiral medium. To achi- 
eve this the reflection of plane waves from a chiral slab 
backed by perfect electric conducting (PEC) plane is 
discussed as in [15,21]. As shown in Figure 1 the re-

gion 0z   is occupied by free space defined by fol-
lowing equations 

ED
0

=   

HB
0

=   

and the region dz 0  is occupied by the chiral me-
dium defined by Drude-Born-Fadorov (DBF) constitutive 
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relations [21] as follows 

)(= EED    

)(= HHB    

The PEC is placed at dz =  as shown in Figure 1. 
The reflection coefficients for the parallel and perpen-
dicular components of polarization is calculated in [11] 

                
 AAtRRTrBB






 1

3
=   (1) 

In the above equation, 


A , A  and 


B , B  are the 

parallel and perpendicular components of polarization of 
the incident and reflected fields respectively.      RTr  , ,  

and  t  are 22   matrices. Elements of the matrices, 
which are Fresnel coefficients, are given in [15].   and 

3
R  are also 22   matrices and are given in [15]. Us-

ing these reflection coefficients, the focal region fields of 
a two dimensional Gregorian's system are derived. 

3. Focal Region Field of Two Dimensional 
Gregorian Reflector 

Gregorian system consists of two reflectors, one is para-
bolic main reflector and another is hyperbolic sub-re-
flector as shown in Figure 2. This system has several 
advantages over a single parabolic reflector.In this paper 
we want to study the caustic region field of a two dimen-
sional Gregorian system when the main reflector is coa- 
ted with chiral medium using GO and Maslov’s method. 
The equations of each reflector are given as follows 

222

2

1

2

2
2

2

2
1

1
=

1
=,

4
= bac

b
acf

f




 


  

2
21

2
22

=,= acaRacaR              (2) 

In the above relations  
11

,   and  
22

,  are the 

Cartesian coordinates of the point on the parabolic and 
elliptical reflectors, respectively. The Incident wave trav-
eling along the negative z -axis is given by 

 
 

 

Figure 1. Reflection from a chiral slab backed by PEC 

 

 

Figure 2. Gregorian antenna coated with chiral medium 
 

 jkziAiAE
xxyy

i exp)(=            (3) 

where, 
y

A , 
x

A  are the components along y -axis and 

x -axis of the initial amplitude of the incident field re-
spectively. The wave reflected from the hyperboloidal 
surface is given by 

   
    }22cos22sin{exp          

}]22cos22sin{[=

zx

zxy
r

iijkz

iiBiBE







 

 

(4) 

The wave vector of the wave reflected by the parabolic 
reflector is given by 

zx

r iip  2cos2sin=
1

               (5) 

and the wave vector of the wave reflected by the hyper-
bolic reflector is 

   
zx

r iip  22cos22sin=
2

    (6) 

where, the angle   and angle   are given by the re-

lation 

22
1

22
1

1

4

2
=cos ,

4
=sin

f

f

f  



  

2

21

2

21

1
=cos ,

1
=sin 

a

b

RRb

a

RR
  

In the above equations 
1

R  and 
2

R  are the distances 

from the point  
22

,  to the focal points cz =  and 

cz = , respectively. The unit normal vectors to the para-
bolic and hyperbolic surfaces are given by 

1
n  and 

2
n  

respectively. These normals can be written as 

zxzx
iiniin  cossin= ,cossin=

21
  
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The general form of the geometrical optics solution for 
the wave is given by [19] 

)({exp
(0)

)(
=)(

00

2

1

0













Sjk
D

D
ErE       (7) 

The Jacobian associated with the wave reflected by the 
parabolic reflector is given by [19] 

   
  

fD

D
J cos1=

0
=

2

           (8) 

The Cartesian coordinates of the ray reflected by the 
hyperbolic surface is given by 


211122

==
xxx

pppx         (9) 


211122

==
zzz

pppz        (10) 

where,    2

21

2

211
=   . In the above equa-

tion  
11

,
zx

pp  and  
22

,
zx

pp  are the rectangular com-

ponents of reflected wave vectors 1
r

p  and 2
r

p , respec-

tively. Now we consider the field after the reflection 
from the hyperbolic cylinder. The transformation from 
the Cartesian coordinates  zx,  to the ray coordinates 

  ,
1

 is given by [19] 

  









1

2

2

1cos=
R

R
f

D


          (11) 

Thus the geometrical ray expression of each compo-
nent of the reflected wave is 

  


 
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2

1

1

exp1)2(2cos= Sjk
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(12) 
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       (13) 
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
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


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

10

2

1

1

exp1)2(2sin= Sjk
R
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(14) 

where, rE
0
 is the amplitude of the incident wave at the 

reflection point on the parabolic surface and 
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As indicated by (7), )(rE  will become infinite for 

0=
(0)
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D

D 
 i.e. at the caustic points. The expression 

which is valid at the focal point according to Maslov’s 
method is given by [19] 
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The phase function is given by 
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where, 
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We substitute (19)-(20) into (18) and taking 
1=)(

0
A , we can find the finite field around the caustic 

as given below 
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In the above equation, 
1

R , 
0

S , 
1
  and 

ex
S  are ex-

pressed in terms of   and 
1

A  and 
2

A  are the subten-

tion angles 2  at the edges of the parabolic and hy-
perbolic surfaces. The limit of integration are calculated 
by the expression 
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4. Result and Discussion 

Field pattern around the caustic region of a Gregorian 
system are determined using (21-23) by performing the 
integration numerically. The line plots of the field around 
the focal region located between the two reflectors, that 
point 

2
F  in Figure 2. Simulation were done for =

1
A  

/4.1 ,  /6.5=
2

A ,  1=
0

k ,  100=f ,  
0

=   and 

different values of 
0

/=  , d , and  . We have con-

sidered two types of polarization for incident wave. One 
i s  0=(

x
A ,  1)=

y
A  and  the  o ther  i s  1=(

x
A , 

0)=
y

A . The results are plotted in Figures 3-20. In all 

figures horizontal axis is z -axis and vertical axis corres- 
ponds to the absolute value of reflected field component. 
All plots are taken at 0=x . We have studied the effects 
of thickness of the the coated layer ( d ), the chirality 
parameter (  ) and the relative permittivity of the me- 

 

 

Figure 3. Plot of |E| r
x , when parabolic reflector is coated 

with dielectric layer of varying thickness d 

 

 

Figure 4. Plot of || r
y

E , when parabolic reflector is coated 

with dielectric layer of varying thickness d 

dium (  ) on the focal region field. Figures 3-5 show the 
effect of increase in the value of d  keeping 0=  

and 3= , that is ordinary dielectric case. We have 
shown in Figure 3 and 5the || r

x
E  and || r

z
E  for 

0)=1,=(
yx

AA . These figures show that increase in 

thickness of the coated layer ( d ) results an increase in 
|| r

x
E  and || r

z
E . Figure 4 shows the plot of || r

y
E  for 

1)=0,=(
yx

AA . This figure shows decrease in field 

strength as d  increases. Figures 6-11 show the effect 
of d  while keeping 0.5=  and 1=  for both 

types of polarization. Figures 7 and 11 show increase in 
t h e  f i e l d  s t r e n g t h  o f  || r

x
E  a n d  || r

z
E  f o r 

0)=1,=(
yx

AA , respectively. Figure 6 and 10 show the 

cross polarization effect due to chiral medium for polari-
zation 1)=0,=(

yx
AA , which also increases with in-

crease in d . For 0=d , cross polarization effect van-
ishes and field strength increases with increase in d . 
Figure 8 shows the plot of || r

y
E  for 1)=0,=(

yx
AA , 

which decreases with increase in d , and Figure 9 

 

 

Figure 5. Plot of || r
z

E , when parabolic reflector is coated 

with dielectric layer of varying thickness d 

 

 

Figure 6. Plot of || r
x

E , when the thickness of the coated 

layer d is varying. The impedance of chiral medium is equal 
to that of free space 
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Figure 7. Plot of || r
x

E , when the thickness of the coated 

layer d is varying. The impedance of chiral medium is equal 
to that of free space 

 

 

Figure 8. Plot of || r
y

E , when the thickness of the coated 

layer d is varying. The impedance of chiral medium is equal 
to that of free space 

 

 

Figure 9. Plot of || r
y

E , when the thickness of the coated 

layer d is varying. The impedance of chiral medium is equal 
to that of free space 

 
shows the plot for 0)=1,=(

yx
AA . This figure shows 

that cross polarization effect are zero for 0=d , but 
increases with increase in layer thickness d . 

 

Figure 10. Plot of || r
z

E , when the thickness of the coated 

layer d is varying. The impedance of chiral medium is equal 
to that of free space 

 

 

Figure 11. Plot of || r
z

E , when the thickness of the coated 

layer d is varying. The impedance of chiral medium is equal 
to that of free space 

 

 

Figure 12. Plot of || r
x

E  showing the effect of chirality 

parameter  . The impedance of chiral medium is equal to 
that of free space 

 

 

Figure 13. Plot of || r
y

E  showing the effect of chirality 

parameter  . The impedance of chiral medium is equal to 
that of free space 
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Figure 14. Plot of || r
z

E  showing the effect of chirality 

parameter  . The impedance of chiral medium is equal to 
that of free space 

 

 

Figure 15. Plot of || r
x

E  showing the effect of relative 

permittivity   of dielectric layer 

 

 

Figure 16. Plot of || r
y

E  showing the effect of relative 

permittivity   of dielectric layer 

 

 

Figure 17. Plot of || r
z

E  showing the effect of relative 

permittivity   of dielectric layer 

 

Figure 18. Plot of || r
x

E  showing the effect of relative per- 

mittivity   of chiral layer 

 

 

Figure 19. Plot of || r
y

E  showing the effect of relative 

permittivity   of chiral layer 

 

 

Figure 20. Plot of || r
z

E  showing the effect of relative 

permittivity   of chiral layer 

 
Figures 12 and 14 show the effect of chirality pa-

rameter   on field components while keeping 1=  

and 0.5=d . Figures 12 and 14 show the plots of 
|| r

x
E  and || r

z
E  for 0)=1,=(

yx
AA  respectively. 

These figures show that field strength increases with in-
crease in chirality parameter  . Figure 13 shows that 

|| r
y

E  decreases with increase in  . Cross polarization 

effects have not been shown because they have same 
trends as discussed above. Figures 15-17 show the effect 
of   while keeping 0.5=d  and 0= , that is for 

ordinary dielectric case. Figures 15 and 17 show the plot 
of || r

x
E  and || r

z
E  for polarization 0)=1,=(

yx
AA  

respectively and show the increase in the field strength if 
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we increase the relative permittivity of dielectric medium 
coated on the surface of reflector. Figure 16 shows that 

|| r
y

E  decreases with increase in   for polarization 

1)=0,=(
yx

AA . Figures 18-20, which are for chiral 

coating, show the same trends as in Figures 15-17. 

5. Conclusions 

Focal region fields of a two dimensional Gregorian re-
flector is analyzed using GO and Maslov’s method. Two 
types of polarization are discussed. The reflected field 
components are analyzed numerically and the results are 
given in the focal plane. It is concluded that increase in 
chirality parameter (  ), increase in thickness ( d ) and 

relative permittivity (  ), results in increase in of || r
x

E  

and || r
z

E  for 0)=1,=(
yx

AA . While || r
y

E  decreas- 

es for 1)=0,=(
yx

AA . Cross polarized fields exist wh- 

en 0k  and increase with increase in value of d . 
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ABSTRACT 

In presented paper we try to consider problems of the gravitational optics and dark matter developing from the crystal 
model for the vacuum. How it is follows from consideration it enables to describe both electromagnetic waves and 
spectrum of elementary particles from the unified point of view. Two order parameters – a polar vector and an axial 
vector - had to be introduced as electrical and magnetic polarization, correspondingly, in order to describe dynamic 
properties of vacuum. Vacuum susceptibility has been determined to be equal to the fine structure constant  . Unified 
interaction constant g for all particles equal to the double charge of Dirac monopole has been found (g = e/, where e 
charge electron). The fundamental vacuum constants are: g, , parameters of  length ,e n   and parameters of time 

,e n   for electron and nucleon oscillations, correspondingly. Energy of elementary particles has been expressed in 

terms of the fundamental vacuum parameters, light velocity being equal to e e n nc      . The term mass of parti-

cle has been shown to have no independent meaning. Particle energy does have physical sense as wave packet energy 
related to vacuum excitation. Exact equation for particle movement in the gravitational field has been derived, the 
equation being applied to any relatively compact object: planet, satellite, electron, proton, photon and neutrino. The 
situation has been examined according to the cosmological principle when galaxies are distributed around an infinite 
space. In this case the recession of galaxies is impossible, so the red shift of far galaxies’ radiation has to be interpreted 
as the blue time shift of atomic spectra; it follows that zero-energy, and consequently electron mass are being increased 
at the time. Since physical vacuum has been existed eternally, vacuum parameters can be either constant, or oscillating 
with time. It is the time oscillation of the parameters that leads to the growth of electron mass within the last 15 billion 
years and that is displayed in the red shift; the proton mass being decreased that is displayed in planet radiation. 
 
Keywords: Space Electromagnetism, Electromagnetism and Particles Physics, Universe Evolution Modeling 

1. Introduction 

The science about cosmology has been in rather difficult 
situation in recent years. On one hand, observations of 
star dynamics in galaxies and of galaxies in clasters show 
substantial deviation of rotation velocities from Kepler’s 
law; this proves the existence of additional matter (dark 
matter) which participates in gravitational interaction [1- 
3]. On the other hand, more careful examination of the 
red shift in the nearer space at the distances of 105-107 
light years as well as observation of supernova outburst 
[4,5] show that velocity of the Universe expansion incr- 
eases with time, and this in turn requires introduction of 
additional dark energy with anti-gravitational properties. 

Thus, a contradiction arises. Practically, in one and the 
same point it is necessary to introduce both dark matter 
creating additional gravitational field and dark energy 
having anti-gravitation. Since there is no doubt about the 
facts above, their interpretation must be revised. 

At the present time there are two mutually exclusive 
points of view. First, despite very distinctive spatial non- 
homogeneity of matter, observations show that at the 
distances of about 109 light years (cell of homogeneity) 
matter is distributed in the space quite homogeneously. 
Besides, the cosmological principle suggests that these 
homogeneous cells should cover the entire infinite space. 
Second, the red shift discovered by Hubble, which he 
interpreted as Doppler's principle related to the galaxies 
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expansion, made Friedman’s model of expanding Unive- 
rse quite necessary. From Hubble’s empirical law that 
determines dependence of velocity of galaxies on the 
distance v = Hr, we can suppose existence of a singular-
ity at a certain time. Since velocity of expansion of the 
galaxies cannot exceed the light velocity c, it follows 
from the relation c = HR = HcT0, that there is quite a 
definite size of the Universe growing with time R = cT0, 
here –T0 is the singularity offset counted from the present 
moment; Hubble’s constant equal to H = 1/T0 decreases 
with time; however, observations show, that the value H, 
on the contrary, increases with time. 

If we interpret the existence of a singularity as a Big 
Bang, we have to bear in mind that the explosion is a ph- 
ase transition from a metastable state into another more 
stable state accompanied with release of energy. Before 
the phase transition, this energy is homogeneously distri- 
buted around the space. They sometimes say: explosion 
power is equivalent to e.g. one kilogram of trotyl; it is ob- 
vious that two kilograms of trotyl give off right twice as 
much energy as one kilogram does. Besides, the phase tr- 
ansition does not begin with the singularity but with the 
nucleation of a new phase whose size exceeds the critical 
radius. In this case energy is released in accordance with 
broadening the new phase at the expense of the phase ed- 
ge motion. Since the average energy density of the entire 
matter in vacuum is approximately 0.008 erg/m3, this 
very energy should be released at the phase transition of 
each cubic meter of vacuum. It is difficult to imagine, 
however, that electrons and protons could be created out 
of this homogeneously distributed in space energy, and, 
besides, in exactly equal quantities. An explosion of a 
hydrogen bomb in vacuum can serve as a model of a hot 
Universe. The hydrogen bomb is a local object in a meta- 
stable state. There is a mixture of light and heavy nuclei 
under the temperature of several million degrees at the 
moment of detonation. According to D’Alambert equa-
tion, the electromagnetic pulse and the neutrino pulse 
will start to disperse with the light velocity. Following 
electromagnetic pulse relativistic electrons will fly and 
then light, and heavy nuclei. In a second, the electro-
magnetic pulse will reach the Moon area and nothing will 
stay at the point of explosion. Thus, the examined case is 
also far from the Friedman’s model of expanding Uni-
verse. 

In order to somehow reconcile the model of the infi-
nite matter distribution in space with that of the expand- 
ing Universe, Milne offered the following reasoning [6]. 
If we mentally specify a sphere of a definite size in a 
matter homogeneously distributed around an infinite spa- 
ce, then external layers of the sphere due to their spheri-
cal symmetry have no influence on the sphere dynamics. 
Therefore, we can ignore the external layers and consider 
the Universe as a sphere of a definite size that precisely 
coincides with the Friedman’s model. However, this 

statement is a mistake. The thing is that with matter be-
ing homogeneously distributed about the entire infinite 
space, the gravitational potential follows the condition of 
the translational invariance:  U r const


. We may 

consider this constant to be equal to zero, therefore, a 
gravitational potential only arises at deviation of a matter 
distribution from an average value. For that reason the 
equation for the potential can be written as follows: 

    04U r r    
 

.           (1) 

Here 0  is an average density of matter. From equ- 

ation (1) we can see that it is not necessary to search for 
dark energy as the density is both the gravitating and the 
anti-gravitating matter in the form of  r 

 and 0 . 

On the other hand, if we mentally specify a sphere of 
radius R with the density of matter 0  and ignore the 

external matter, we come to another equation for the po-
tential: 

  0 ,
4

0,

    r < R;
U r

      r > R.
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This equation has the following solutions: 
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 
   

 
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  (2) 

Similar expressions can be used for determining gra- 
vitational potentials of planets, stars and galaxies in a 
form of the sum of the potentials of stars with their spec- 
ific location. However, for the scales comparable with 
the size of homogeneity cell and bigger, we come to an 
obviously non-physical result: the potential in any arbitr- 
ary point depends on the radius of a sphere which we 
mentally specify out of the entire infinite space. Thus, 
any result depending on the mentally specified radius of 
the sphere, including the radius of the visible part of the 
Universe, is physically incorrect. 

For instance, we can determine the circular orbital vel- 
ocity v1 for the Universe of radius R on the sphere surfa- 
ce from the equality of centripetal and centrifugal forces: 

 2 0 0
1

4 4
;

3 3r R

U r R
R  v R R

r

 



   


  

If v1 is equal to the light velocity с, we obtain the fol-
lowing expression for the critical matter density in the 
Universe: 

2 2

2

3 3
.

44c

c H

R



   

This corresponds to the condition R = rg when rg is a 
gravitational radius. Therefore, with the definite choice 
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for R we may come to the conclusion that the Universe is 
a black hole, while, as it follows from the cosmological 
principle at the scales comparable with the radius of the 
visible part of the Universe, the gravitational potential 
has no specific features and its average value is zero. 

The same situation takes place when we consider the 
influence of a pressure on the dynamics of the expanding 
Universe. For instance, if we take a big vessel with a gas, 
mentally specify a sphere of radius R in it, and ignore the 
gas surrounding the sphere, we can state that the gas will 
broaden and get cool at the expense of the internal pres-
sure. This may remind the model of the expanding Uni-
verse. Remember, however, that the specified sphere is 
surrounded with the same gas at the same pressure; that 
is why there will be neither broadening nor cooling. Thus, 
for the infinite Universe both an average gravitational 
potential and an average pressure are constant; besides, 
since the expanding dynamics is influenced by the equal 
to zero gradients of these variables, there cannot be neit- 
her expanding nor compression. An infinite system can 
only stratify according to the energy density and we rea- 
lly observe this stratification on giant scales from the va- 
lue less than 10-9erg/cm3 for an inter-galaxy space to the 
value over 1039 erg/cm3 for nuclear energy. 

Nevertheless, within the frames of the cosmological 
principle there is a problem, the so called photometric 
paradox. The thing is that at present time when stars and 
galaxies radiate light in the entire infinite space, we can 
introduce an average luminosity L of a unit volume, pro-
vided that the densities of a luminous flux intensity at the 
distance r from a single volume is equal to j = L/4πr2. 
The integral over the sphere of radius R gives the total 
flux intensity equal to J = RL; it follows that with R ap-
proaching infinity the flux intensity must approach infin-
ity as well. Practically, however, we see rather a low sky 
luminosity. This is the photometric paradox. 

In fact, by calculating the intensity, we must take into 
consideration the retardation effects. The flux that comes 
to a certain point (r = 0) at a certain time (t = 0) radiates 
at different moments depending on the distance:  

 
0r

J j t d r c L t dt
c 

     
  


        (3) 

Expression (3) shows that the flux coming from the 
deep Universe will be finite if L(t) at longer t decreases 
faster than 1/t. 

Besides, we can divide the entire flux observed at any 
point of the infinite space into two parts: the flux Jvis of a 
visible part of space R = cT0, Т0 ~ 15·109 years and the 
relict flux Jrel radiating from the spots with r > R: 

 
0

1

' '.
TN

vis rel n
n

J J J J L t dt


 

      

Here summing was carried out over a countable num-

ber of galaxies in the visible part of the Universe. Thus, 
from the expressions given above it follows that the Un- 
iverse must be non-stationary, not due to an expansion of 
galaxies’, but at the expense of a variation of physical 
vacuum parameters. Since the relict radiation correspo- 
nds to the temperature 30K, the Universe had such a 
temperature long ago. The one but not the only feature of 
a non-stationarity is the red shift of atomic spectra that 
we can interpret as the blue temporal shift of both char-
acteristic Bohr energy and all atomic energy levels cor-
respondingly, at the expense of variation of physical vac- 
uum parameters. Observations show that the characteris-
tic Bohr frequency depends on time and increases with 
time. By introducing a frequency of an arbitrary atomic 
level, we obtain the following expression for the Hub-
ble’s constant:  

 
   

0

td
H t

dt t



 

   
           (4) 

Both ω(t) and H(t) are monotonously increasing func-
tions. The latest observations of the flashes of far super-
nova [4-5] show temporal growth of H. It is senseless to 
explain this situation using space-time properties. 

Speaking about space-time properties is quite the same 
as judging about wine quality by the curvature of a bottle 
surface. Dilettantes are often attracted by the appearance 
of the vessel, while connoisseurs pay attention to its con- 
tents, conservation conditions, and temporal changes. We 
should regard space like a vessel with the only feature: 
its volume is infinite. Its internal properties are to be dis- 
cussed. 

2. Hidden Parameters of Vacuum 

We should proceed from the experimental fact that the 
energy and the pulse of any elementary particle are: 

;k kћ p ћk  


               (5) 

Here ωk-frequency for electron, proton, photon and 
neutrino, correspondingly, we expressed as follows:  

2 2 2 2 2 2
0 0 , ;; ;ek e pk p r v kc k c k ck           (6) 

The unified formula for the energy of any elementary 
particle points to the existence of the universal interac-
tion for fields related to each particle. Besides, the two 
oscillation branches with the energy gap observed in the 
excitation spectrum prove an existence of a certain set of 
discrete oscillators whose interaction causes normal os-
cillations with frequencies ωk. In fact, we can represent 
vacuum as a crystal object of a cubic or hexagonal sym-
metry with a very small lattice period, much less than 
10-26 cm. We can estimate the upper limit of a lattice pe-
riod by the maximum particle energy in cosmic rays 
equal to 1021 eV that corresponds to the wave vector of 
1026 cm-1. The vacuum ground state is the equilibrium 
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position of all oscillators; these are the points of equilib-
rium forming crystal lattice related to the absolute coor-
dinate system. Under the deviation of an oscillator from 
the equilibrium position, a dipole moment arises. For the 
scales exceeding the lattice period we can introduce a 
macroscopic order parameter as an electric polarization 
of vacuum: 

  4
i

i

P r d
V




 
 

. 

Suppose, there are two branches of normal oscillations 

of field P


 that we can call electron and nucleon modes. 
The Hamiltonian for electron and nucleon modes written 
in the unified form, is: 

  22 2 2 2
, ,

1

8 e n e nH P P P d r  


   
   

   (7) 

For electronic and nucleonic parts, we introduced the 
parameters of time τe, τn and length ξe, ξn that characterize 
the kinetic and gradient energy of the fields. Besides, we 
introduced a dimensionless parameter of an elastic coef-
ficient  corresponding to the reciprocal susceptibility 
common to both modes. These are the latent parameters 
of vacuum and the available experimental data are suffi-
cient to determine them. 

By using the minimal action principle for the Lagrange 
function equal to the difference of the kinetic energy - 
the first member of expression (7), and the potential en-
ergy—the second and the third members of (7), we ob-
tain the equation of motion for six independent normal 
oscillations Pex, Pey, Pez, Pnx, Pny, Pnz: 

2 2 2 2
2 2
, , , , ,2 2 2 2

0e n e n e n x zP
x y z t

  
     

            
  (8) 

By setting up the following solutions:  

  , , , , expx y z x y zP a i kr t 


,          (9) 

we obtain the spectrum for normal oscillations:  
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 
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   
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    (10) 

Therefore, we can represent physical vacuum as some 
coherent state with the natural frequency standards in the 
form of homogeneous polarization oscillations about an 
absolute coordinate system 

   , ; , , , ; , , , ;0, expe n x y z e n x y z e nP r t a i t


 

with the absolute time, homogeneous around the entire 
space   abst r t


. 

The situation, however, becomes more complicated, 
since the electrical vacuum polarization generates the fol- 
lowing electric charge: 

4 edivP  


.               (11) 

Here e  is the electric charge density, while the po-

larization is determined by both electron and nucleon 

modes e nP P P 
  

. This results in an additional long- 

range Coulomb interaction between the normal oscilla-
tions Pex, Pey, Pez, Pnx, Pny, Pnz  

   '1
'
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e er r

U d rd r
r r

 



 

 
         (12) 

For simplicity, we consider normal oscillations inside 
the electronic modes. We dimensionlize coordinates and 
time. We express new variables like this: ;et t   

er r  ; velocity being in terms of c = ξe/τe. It makes 

sense to specify a dimensional value for the electric po-
larization in the terms of the electron charge: 

2
e

e
P P



 

, 

after that the electron field action reduces to form: 
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(13) 

Here i and j run over x, y, z and we carried out summa-
tion over repeated indices. By varying action S over the 
values , ,i i i jP P P x  , we come to the following system 

of the integral-differential equations:  
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        
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
 

   

(14) 

Consider the solutions in the form of plane waves: 

    , expi iP r t P i kr t 
 

          (15) 

For plane waves, Equation (14) reduce to the form:  

 2 2
2

0i j
i j

k k
k P P

k
              (16) 

By making the determinant of the Equation (16) equal 
to zero, we obtain the oscillation spectrum: 



New Consideration of Problems of Gravitational Optics and Dark Matter Based on Crystal Model of Vacuum 

Copyright © 2010 SciRes.                                                                               JEMAA 

499

 

2
2 2

2 2 2

2
2 2

2 2 2

2 2

x yx x z

x y y y z

y zx z

k kk k k
k                                     

k k k

k k k k k
                      k                       

k k k

k kk k
                                            

k k

 

 

 
   

 
 

    
 

2
2 2

2

0

zk
  k

k
 



 
   

 

                   (17) 

 
Equation (17) transforms to 

   22 2 2 21 0k k                (18) 

Thus, from (18) we obtain the normal spectrum of the 
oscillations; from Equation (16), we obtain the form of 
the oscillations: 
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   (19) 

Expressions (19) allow the definition of the general pr- 
operties of the normal oscillations for vacuum fields link- 
ed by the long-range Coulomb interaction. The Lap-la-
cian operator in Equation (14) requires that the polariza-
tion components be eigenfunctions of this operator: 

2
i iP P                  (20) 

The result of the Coulomb interaction is that the oscil-
lations of the polarization are divided into two classes: 

longitudinal 1P


 with 1 0rotP 


 and lateral 2P


 with 

2 0divP 


, according to the Helmholz theorem 1P  


; 

2P rotA


, here   and A


 are scalar and vector po-

tentials. Longitudinal oscillations provide a depolarizing 

electric field 1E P 
 

, which meets the following condi-

tion: 

4 .edivE 


 

For lateral (transverse!) oscillations, the depolarizing 
field equals to zero. As a result, the frequencies for lon-
gitudinal and lateral oscillations are different. 

The problem, however, is that for linear homogeneous 
differential equations we may take into consideration bo- 
th eigenfunctions and eigenvalues, while the amplitude 
of the eigenfunctions remains arbitrary. Suppose, an eig- 
enfunction specifies the configuration of the excitation; 
though the excitation energy and pulse are the integrals 
of motion, and yet they can have arbitrary meanings. Ne- 

vertheless, in practice we can see that energy of any exci- 
tation has quite a definite meaning both for light quantum 
and for any elementary particle. Therefore, within the fr- 
amework of homogeneous equations it is impossible to 
realize the origin and the physical meaning of the Planck 
constant. 

For linear systems, the amplitude of oscillations turns 
out to be quite definite under the external force; then we 
can express the solution by means of the Green function, 
which meets the homogeneous equation and has quite 
definite amplitude. Non-homogeneous equations are 
necessary for the following reasons. We know from the 
theory of many-body systems that, if a system consists of 
discrete particles, the correlation effects substantially 
decrease the ground state, and local states such as pola-
rons can occur. Therefore, we pass to consideration of 
the ground state taking into account correlation effects. 

From an endless number of particles forming a crystal-
line vacuum state we examine one particle as a point unit 
source  eQ r 

, which generates longitudinal electric 

field defined by equations: 
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Thereafter, we can write the interaction energy of the 
point source with vacuum fields as follows:  

0 0 .
4

g
U E P


 

 
                    (21)  

Here g is the constant of interaction between the point 
unit field and vacuum fields; it is convenient to express 
this constant in a normalized form: g = g1e. By varying 
the Lagrange function over P


, we obtain a non-homo- 

geneous equation for polarization: 
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t
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  
          (22) 

Divergence of the left and the right parts of the Equa-
tion (22) results in the expression for the induced charge 
density, related to the electrical polarization for the case 
when a source is moving with velocity v


: 
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   (23) 

It is obvious from (23) that the induced charge density 
is the Green function for a point source that fulfills the 
homogeneous equation over the entire space except one 
point; but due to this point, the function acquires quite 
definite values over the entire space.  

At first, we consider a particular solution of Equation 
(23). Fourier-transformation over coordinates results in 
the Fourier-harmonics for the induced charge density in 
vacuum:  
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Here the corresponding coordinate dependence of the 
induced charge density for the case, when velocity lies in 
z-axis, is: 
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Here, it is convenient to proceed to the new integration 
variables  

21' ;' ;' vkkkkkk zzyyxx   

in addition, to a new coordinate system: 
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After that, the induced charge density expressed in di- 
mensional units transforms to the equation:  
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(25) 

From (25) we can see that the characteristic dimension 
of the polarization charge is a definite value equal to the 
correlation radius or the Compton length of electron: 

0ee cr e   . The polarization charge moving 

relative to the absolute coordinate system, in accordance 
with the Lorentz transformation, is deformed in such a 
way that its dimensions decrease along the direction of 
motion 

.1  ; 2
,, vrrrrr ecezeceyex   

Total polarization charge as an integral over the entire 
space is proportional to the constant of interaction g and 

the vacuum susceptibility σ -1:  
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The total polarization charge does not depend on the 
particle velocity that we can interpret as the law of con-
servation of charge. 

We can find a scalar potential for the motionless sour- 
ce from the expression: 
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The polarization for the electron is similar to that of 
the proton within an accuracy of a charge sign:  
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They only differ in the characteristic wavelength rc,e 
and rc,n. The main feature of the solution for the polariza-
tion (28) is an absence of divergence at a point r = 0 that 
leads to the finite value of the particle energy. 

Therefore, we can see that the vacuum polarization re- 
sults in decrease of the source energy by U0, both elec-
tronic and nucleonic modes having the same form: 
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Non-homogeneous Equation (23) defines two parame-
ters: the polarization charge q and the radius of a charge 
localization rc;e,n. 

In order to determine vacuum parameters, we require 
that the polarization charge, both for proton and electron, 
be equal to the electron charge, whereas the particle en-
ergy must be equal to the ionization energy of a source 
out of a potential energy well, which the source creates 
for itself: 
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By adding the definition of the fine structure constant 
ce 2  to the latter equations, we obtain the equality 

1371
1  g . It follows that the vacuum polariza-

bility 1  equals to the fine structure constant α, wher- 
eas the constant of the interaction of a point source with 
vacuum fields equals to the Dirac monopole charge 

eg   [7]. 
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We can define the correlation radius and the fundame- 
ntal frequency for electronic and nucleonic normal mode 
as follows: 
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As a result, the rest energy in form (30) reduces to a 
quite transparent form:  
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It follows that the point source with the interaction 
constant g polarizes vacuum and induces charges with 
dimension rc,e for electronic and rc,n nucleonic modes. 
The electric field energy for both proton and electron is 
equal to e2/rc,e and to e2/rc,n, correspondingly, and it turns 
out to be 137 times less than the energy related to the 
electrical polarization. We should notice that the solution 
for the polarization (28) is formed by three modes of 
normal vacuum oscillations Px,Py,Pz, each creating a 
charge equal to e/3: 
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Now we consider the structure of the fields in the ex-
cited state. The excited state corresponds to the genera-
tion of a source at a certain time. Suppose, a point source 
is generated at time t = 0 under the initial conditions for 
polarization: 
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In this case, the general solution of Equation (22) con-
sists of a particular solution (28) and two fundamental 
solutions of the homogeneous wave equation:  
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     (32) 

By taking into account initial conditions, we can redu- 
ce the solution (32), both for electron and nucleon, to the 
form:  
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  (33) 

The characteristic feature of the solution above is that 
the electrical polarization for both electron and proton, 
covers the entire infinite space and oscillates synchro-
nously with the frequency ωe,n;0. 

The solution (33), however, contains a substantial dis-
advantage: such wave packet cannot move in space, it is 
a typical standing wave. Impossibility of motion is caus- 
ed by the fact that the phase velocity of different harmo- 
nics vf = ωk / k changes from infinity to the light velocity 
c, whereas the group velocity vg = ∂ωk / ∂k changes from 
zero to c. 

In a general case, the solution for the polarization for a 
wave packet moving with velocity v


 should have a so- 

liton form:  

     tftvrPtrP


 ,           (34) 

A similar property is natural for the solution of a one- 
dimensional D’Alambert equation that fulfills the condi-
tion of deviation from a state of equilibrium for a flexible 
infinite string u(x,t) = u(x ± ct). A possibility of motion 
without changing the form is directly connected to a lin-
ear excitation spectrum in k-space ωk = ck. For two- and 
three-dimensional cases, the solution of the D’Alambert 
equation substantially differs from the one-dimensional 
one. An excitation generated in some point starts propa-
gating at velocity c in the form of concentrated circles for 
two-dimensional case, and in the form of concentrated 
spheres for the three-dimensional case. The propagation 
of radio waves strictly follows the three-dimensional 
D’Alambert equation, which proceeds from the Maxwell 
equations. Radio waves, however, are a multiquantum 
process. Nevertheless, a single quantum, while having 
wave properties, yet behaves like a particle. The thing is 
that a light quantum radiated by an excited atom at a dis-
tant star can cover million years without spreading dis-
persion. After colliding with a similar atom on the Earth, 
the light quantum transfers into a similar state of excita-
tion. Therefore, there must be a solution of a soliton type 
for a light quantum in the form (34), which gives the 
origin of ray optics. 

Analysis shows that it is impossible to obtain such a 
spectrum in a three-dimensional isotropic space for one 
order parameter. Following strictly the terminology, we 
should consider electromagnetic oscillations as coupled 
oscillations of a two-component order parameter in the 
form of an electric and magnetic polarization of vacuum. 

Suppose a magnetic polarization with the same Ham-
iltonian, as that for the electric polarization (7) is possi-
ble to appear in vacuum:  

  rdMMMH nene
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

   (35) 

We define a magnetic order parameter, as well as an 
electric polarization, through the sum of the elementary 
magnetic moments: 

.
4  iV

M 

 

 

Practice shows that electric and magnetic dipole mo-
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ments create, correspondingly, electric and magnetic 
fields, similar in configuration:  
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    (36) 

It follows that for a similar distribution of the electric 
and magnetic polarization, electric and magnetic fields 
will be similar as well. We can reduce expressions (36) 
to the form:  
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Here 0  is the potential Coulomb function for a unit 

source '10 rr


 . Under an arbitrary distribution of 

the electric and magnetic polarization, scalar potentials 
(37) acquire the form:  
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         (38) 

It follows that the sources of the electric field are the 

electric charges defined by the relation ePdiv 4


, 

whereas the sources of the magnetic field are the magnetic 

charges defined by the relation 4Mdiv


. As a re-

sult, the electric and magnetic fields meet the conditions: 

4 ;    4 .edivE divH   
 

 

Energy of the electric and magnetic fields turns up to 
be 137 times less than that of the electric and magnetic 
polarization, correspondingly. The configurations of the 
electric and magnetic fields are similar under the similar 
distribution of the electric and magnetic polarization. For 
example, if we create a homogeneous electric polariza-

tion P


 in a full-sphere, then it causes generation of the 

depolarizing electric field inside the sphere 3PE


 ; 

therefore, the depolarization coefficient for a sphere is 
equal to 1/3. The situation is the same with a spherical 

magnet: 3MH


 . Generation of the magnetic field 

also leads to the long-range Coulomb interaction between 
the normal oscillations: Mex,Mey,Mez,Mnx, Mny, Mnz. 

We can define the electric current with the expression: 

4 .ej P rotM  
    

The continuity equation follows from here: 
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Now we show in what way the interaction between the 
electric and magnetic polarization provides the solution 
of the soliton type. We add the interaction energy of cur-
rents to the Hamiltonians (7) and (35) in the form:  

 4
e eU P rotM M rotP d r

 
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           (39) 

From there we obtain the combined equations for a 
plane polarized electromagnetic wave:  
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 (40) 

By setting up the solutions in the form:  
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we can obtain the system of equations:  
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The compatibility condition for the Equations (42) 
leads to the equation: 
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This gives the spectrum of normal oscillations: 

,2 222
zyxz kkkk    

After that, the solutions for the electric and magnetic 
polarization transmitting with the light velocity reduce to 
the soliton form: 

     
  2 2 2

, exp

             exp 2 ;

x x y z

x y z

P r t a i k x k y k z t

i t k k k

    

   



 

     tzkykxkiatrM zyxy  exp,


 



New Consideration of Problems of Gravitational Optics and Dark Matter Based on Crystal Model of Vacuum 

Copyright © 2010 SciRes.                                                                               JEMAA 

503

  2 2 2exp 2 .x y zi t k k k     

We proceed from the supposition that the electron ra-
diates a light quantum; then from a wide range of possi-
ble solutions we should choose a solution compatible 
with the own field of the electron. Since the light quan-
tum propagating along z-axis has a wave vector kz, we 
can specify a Fourier-harmonic kz from the scalar poten-
tial (27) which defines the field of the electron. In the 
cylindrical coordinate system, the Fourier-harmonic for 
the scalar potential becomes: 
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Here K0 is the Macdonald function. We express the 
electric polarization along the x-axis as Px = ∂Φ/∂x. Thus, 
for a plane-polarized wave compatible with the field of 
the electron and fulfilling the system of Equation (40), 
we obtain the solution for the electric polarization:  
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 (43) 

This solution is a quasi-one-dimensional infinite mon- 
ochromatic wave propagating at the light velocity along 
the z-axis and interacting with the similar magnetic pola- 
rization My. In the transversal direction, the monochro-
matic wave (43) is localized with the dimension equal to 
the wavelength, since the Macdonald function at big 
values of argument approximately equals: 

   .exp
21 x

x
xK 
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This precisely corresponds to the experiment, as it is 
impossible to localize a light ray more than the light 
wavelength. 

Therefore, from the values, which we consider as fun-
damental e,ħ,c,me,mp, we go over to the set of values, 
which characterize properties of physical vacuum ,, g  

pepe  ,,,  under the additional condition: ppee    

= c. In connection with this, we must change the conce- 
pts of mass and matter. 

Wave equations can only be applied to the material me- 
dium having definite dynamic properties, so the idea of 
physical vacuum means that the entire infinite space is 
filled with a definite matter. The particles that we ob-
serve – electrons, protons, photons – these are excitations 
of vacuum in the form of wave packets, which are eigen- 
functions of the united system of twelve equations. From 

the point of view of wave mechanics, we can character-
ize a wave packet with energy, momentum, angular mo-
mentum and oscillation amplitude; specifically for the el- 
ectric polarization, we define the amplitude by the elect- 
ric charge. For a multi-component order parameter, the 
form or symmetry of oscillations is important. In this co- 
nnection, the concept of a particle mass does not have 
independent meaning. Researchers introduced the values 
of mass and charge, as well as Planck constant for partic- 
les, in different periods of time and so far, they have con- 
sidered these values as independent ones. As we showed 
above, charge quantization and existence of Planck con-
stant are the consequences of correlation effects related 
to discreteness of physical vacuum. Now it makes sense 
to study the concept of mass for a wave packet. 

From practice we know that, if we describe the particle 
oscillation spectrum with the expression: 
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then the particle velocity is equal to the group velocity: 
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If we express the wave vector k


 from (44) through 
the group velocity, we obtain the value of frequency in 
the form:  
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Multiplying terms of (45) by ħ, we come to the rela-
tivistic expression for the particle energy:  
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The expression for the particle mass m = E0/c
2 follows 

from the latter Equation (46), the concept of mass being 
not necessary if we specify velocity in terms of light ve-
locity. 

The examples given below illustrate how to express 
some known values in terms of vacuum parameters: 

De Broglie wavelength: 
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Here we have to consider k, the particle wave vector, 
as a quantum number independent of vacuum parame-
ters. 
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Compton wavelength: 
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Classical radius of electron: 
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Bohr energy:  
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By making Bohr energy equal to photon energy, 

BBB ckE ,,     

we obtain   quantum wavelength, which corresponds 
to Bohr energy 
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We can express Rydberg constant through vacuum 
parameters: 
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It follows from the above expressions that fine struc-
ture constant characterizes not only the fine structure of 
the hydrogen atomic spectrum but the entire lengths hi-
erarchy of the quantum mechanics as well. It is easy to 
see that characteristic lengths form a geometrical pro-
gression: 

.,
32

,,0 BBece arr    

All the lengths contain neither Planck constant, nor 
mass, nor charge of electron. In this connection, it makes 
sense to express the Schrödinger equation through the 
natural parameters of physical vacuum. 

The Hamiltonian for the Schrödinger equation for a 
hydrogen atom looks like this: 
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In this expression, we take the fundamental constants 
ħ,me,0,e, which specify the characteristic parameters of a 
hydrogen atom (47-48), as independent; however, as we 

demonstrated above, none of these constants ought to be 
taken as a fundamental one. 

We can write the Hamiltonian of the electron in the 
nuclear field of a hydrogen atom in a different form:  
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e
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The Planck constant expressed through the electron 
charge reduces (49) to the form  
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Here, it is convenient to use the dimensionless length 

ecrrr , , the dimensionless wave vector ecrkk ,


 

and the dimensionless time tt e,0 . We express the 

energy in terms of the electron rest energy eg/rc,e: 
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The particle velocity is equal to the group velocity of 

the wave packet kkkkv k


 21  and we 

express it in terms of light velocity. Approximate expres-
sions correspond to the case of a low velocity k ≈ ν << 1. 
We can regard the value k2 in the approximate expression 
(51) as the eigenvalue of the Laplacian operator; then we 
may reduce (51) to the equation for the eigenfunction and 
the eigenvalue:  

r
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2

1
   ;         (52) 

From (52) it follows that the Schrödinger equation 
only contains one dimensionless small parameter α of a 
physical vacuum susceptibility. The fundamental func-
tion Ψof a free electron in Cartesian coordinates is equal 

to  rki


exp ; we express the eigenvalue by the equality: 

22k . 

Now we find out the Bohr quantization conditions for 
a hydrogen atom. The circular motion of electron around 
an atomic nucleus is defined by the equality of centrifu-
gal and centripetal forces:  

2
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r
r

  .                (53) 

Bohr assumed a quantization of adiabatic invariants: 

  nhdqp ii  

For the circular motion, the latter relation reduces to 
the form: 

nhpr   

Externally, it looks as if a quantum of action existed, 
that provides quantization of a pulse moment. However, 
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by taking into consideration the pulse p = ħk, we come to 
the cyclic boundary conditions for a wave vector: 

.nkr   

It follows that Planck constant has nothing to do with 
forming the wave function. Since rvk  , we can 

add to Equation (53): 
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From where we can obtain the energy, radius and ve-
locity at the stationary Bohr orbits: 

.;;
2

2

2

2

n
v

n
r

n
nnn




   

That accurately corresponds to the relations (47,48).  
Compton scattering, which we regard as one of the ev- 

idences proving existence of quantum of action, proceeds 
from the laws of conservation of energy and momentum 
for electron and  quantum: 

.'

1

;'

1

2

2

,0

2

2

2
0,2

0,



 

k

c

v

vm
k

c

v

cm
cm

e

e
e





















      (54) 

It follows from (54), that we can specify the wave 
vector of a scattered light by the relation:  
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Here θ is the angle between vectors v


 and 'k


; be-
sides, there is a length parameter cmeeK 0,,    where 

we take the values cme ,, 0,  as the fundamental ones. 

However, by taking into consideration the fact, that rela-
tions (5) and (6) define the spectrum of a particle, we can 
reduce combined Equation (54) to the form: 
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It follows that the scattering characteristic is defined 
neither by the Planck constant nor by the electron mass, 
but by the space and frequency resonance for the wave 
packets; scattering being submitted to the same Formula 
(55) with the Compton length  eeceeK rc  ,0,,  

equal to the correlation radius. 
Once in his days Planck supposed that radiation and 

absorption of light should proceed by quanta. Later this 
brilliant supposition was confirmed. After that, scientists 

had only to examine the properties of electron responsi-
ble for light radiation and absorption in a quantum way. 
Albert Einstein, however, considered something different. 
Since we can observe light quanta, then light is quantized 
due to existence of quantum of action; the question 
“Why?” being quite inappropriate here since physical 
mechanism for quantization of action just does not exist. 
We can only say that these are the properties of space- 
ime. We just substitute one senseless statement by ano- 
her one. Nevertheless, proceeded from the fact that elec-
tron radiates and absorbs light per quanta, a planetary 
model of electron is suggested by itself. The electron rest 
energy equals to: ecee reg ,,0,0    . We can write 

  quantum energy in a similar way:   egk  . 

Since the photon spin equals to  , then, by representing 
it in the form of the orbital moment    rkprs , 

we come to quite transparent cyclic conditions for the ra- 
dius of photon orbit kγ rγ = 1. After that, the photon ene- 
rgy reduces to the form: εγ = eg/rγ

. We can obtain such an 
energy as follows: use the solution for the electron pola- 
rization in the form (28), set it up into Hamiltonian (7) 
and integrate over space from infinity to the radius rγ. 
Therefore, the nature of fields for photon and electron is 
the same. By radiating photon, an electron takes off some 
part of its polarization coat, the intrinsic energy of the 
electron being reduced. 

3. Gravitaitional Optics 

In the previous part we showed that all particles can be 
considered as excitations of physical vacuum; they are 
the solutions of the unified system of equations for cou-
pled oscillations of the multicomponent order parameter 

 MP


, . That is why we can be sure to a certain degree 

that all particles similarly contribute to the gravitational 
interaction, particle energy being the interaction parame-
ter. Now we write down the standardized form of the 
Hamiltonian for a particle in the gravitational field cau- 
sed by a massive body of mass m1  

  1mm
H p

r


 


               (56) 

We express the particle mass through energy m  
  2p c 

; after that the Hamiltonian (56) reduces to the 

form:  

  1
2

1  ;   .g
g

r m
H p r

r c




 
   

 


      (57) 

Here rg is the gravitational radius which scales gravita-
tional potential of a massive body. For an arbitrary po-
tential, the Hamiltonian has the form: 

    1  .H p r  
 

 

In general case, particle energy is defined by the follo- 
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wing expression:  

  2 2 2
0p c p  

 
            (58) 

In addition, particle velocity equals to  

 p
v

p









                   (59) 

From the coordinate system (x,y,z,t) we proceed to a 
new time t ct  and, in Equation (58) – to a new mo-
mentum cp p

 
; then the particle velocity does not 

depend on the chosen scales of length and time, but be-
comes a dimensionless value expressed in terms of light 
velocity:  

 
2 2
0

p p
v

p p






 

 

 
           (60) 

The second equation that defines the particle motion in 
the gravitational field looks like this:  

 p H p   
             (61) 

By taking into account Equation (60), we can rewrite 
(61) as follows:  

      d
v p p r

dt
  
 

        (62) 

For low velocities we can substitute value  p  by 

an approximate expression 0 ; after that Equation (62) 

reduces to that of Newton’s mechanics: 

 .r r 
   

Based upon this equation, Albert Einstein affirmed 
that the inertial mass and the gravitating mass are 
equivalent. This statement, however, is incorrect. An 
accurate equation of motion (62) is transformed to: 

    r r v v r   
               (63) 

It follows, that particle inertia depends on the direction 
of motion. It is interesting to note that the intrinsic (in-
ternal) energetic properties of a particle are lost in the 
equation of motion (63). This means that we can apply 
the obtained equation to any relatively compact object. It 
can be a planet, a satellite, an electron, a proton, a photon, 
a neutrino—all the same.  

Bearing in mind (60), we reduce (61) as follows: 

 2 2
0

,
pp

v r
p

 


  
 

From the latter equation we obtain the integral of mo-
tion in two different forms:  

   
   2

exp ;

1 exp 2 .

p const

v const

  

  
          (64) 

Now we examine the motion in the Coulomb potential 
with the Hamiltonian (57). In a centrally symmetrical 
field motion develops in a plane crossing the centre of a 
massive body; therefore, we can re-write Equation (63) 
for the plane (x,y):  

  

  

3

3

;

.

g

g

r
x x x xx yy

r
r

y y y xx yy
r

   

   

   

   
        (65) 

In the polar coordinate system Equation (65) becomes  

 2 2
2

1 ;

2 .

g

g

r
r r r

r
r

r r r
r



  

  

 

 

   
           (66) 

The second equation in (66) can be integrated easily; 
after that we obtain the integral of motion corresponding 
to the angular momentum conservation law:  

2 exp .grr const
r


 

 
 

            (67) 

At the beginning, we consider a circular motion: 
0r r   . Then, the first equation of (66) leads to 

1 2
2

2 3 2
; ,g gr r

r
r r

                (68) 

This exactly coincides with the results of Kepler’s 
problem, the first space velocity on the orbit of radius r 
being equal to  

1
grv r
r

                  (69) 

Consequently, the first space velocity attains to the 
light velocity at r = rg. 

Further, we consider an arbitrary motion relative to a 
heavy centre. Let us assume that at time t = 0, a particle 
has coordinates (r = r0, φ = 0), complete velocity v0 and 
azimuth velocity 0 0 0v r   . From the integrals of mo-

tion (64, 67) it follows:  

 2 2 2 2 2
0

0

2 2
0 0

0

1 1 1 exp 2 ;

exp .

g g

g g

r r
v r r v

r r
r r

r r
r r



 

  
           

 
  

 



 
 (70) 

From the system of Equation (70) we obtain the equa-
tion that combines φ and r: 

0

2

2 2
0 0

0 0

exp 2 1g g

v dr
d

r rr
r v v

r r r





 
     

               

  (71) 
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Now proceed to a new variable 0r r   and new 

parameters of the problem: 

 0 0; 1 .gr r v             (72) 

We examine the situation when the radial velocity at 
the starting point is zero. It follows that 0 0v v ; after 

this, Equation (71) acquires the form  

 

   2

1

1
exp 2 1 1 1 1

d
d

  


      





   
        

    

 

(73) 

Here, the parameter δ defines a deviation from the 
circular motion in an orbit. We apply the Equation (73) 
to the Solar system. The gravitational radius of the Sun 
equals to 1.5 km. The radius of the terrestrial orbit is 1.5 
108 km, the radius of Mercury orbit is 0.5 108 km, the 
radius of the solar sphere is 6. 96 105 km. The parameter 

β in (73) is equal to 810E
  for the Earth planet; to 

83 10M
   for the Mercury; and to 62,1 10S

   

for the Sun surface. It follows that the circular orbital 

velocity of the Earth is 410E Ev    . In dimen-

sional terms the circular velocity of the Earth equals to 
10-4c = 30 km/cek The Mercury moves in an elliptic orbit 
according to (73), where the value β << 1. Second order 
expansion in series of the exponent (73) leads to the 
equation  

     2
1

1
,

1 2 2 1 2 1 2

d  
       




       
  

(74) 

It enables to obtain the orbit path  

1 2

1 2
1 2 cos

1

 
   


 


  
     

     (75) 

We can find the complete revolution of the path from 
the condition:  

1 2
2

1

  


 



 

Consequently, the angle gain over one revolution of 
the path is  

2 1
1

 


    
. 

The century displacement of the Mercury perigee 
means that while the Earth makes 100 revolutions around 
the Sun, the Mercury makes the number of revolutions 

equal to  3 2
100 M E  . From here we obtain  

3 2
2

100 21''
1

M M

M E

 


 
 

     
      (76) 

The value 0, 2M   is the eccentricity of the Mer-

cury elliptic orbit. 
From (75) we can obtain the condition when an elliptic 

orbit transforms into a parabolic path:  

1 2 0.     

It follows that the second space velocity is a little less 
than that of Kepler’s problem and is equal to  

     2
2 0 1 11 2 1 2 1v v v v            (77) 

Further, we consider the motion of a photon or a neu-
trino in a gravitational field. In this case, for the equation 
of motion (71), it is necessary to assume v0 = vφ0 = 1. 
Then, Equation (71) leads to 

1 2 1
exp 2 1 1

d 

  



  

   
  

       (78) 

In order to calculate the complete angle of displace-
ment B  for a light beam passing a gravitating mass, 

we move to a new variable 1   and, as a result, we 

obtain:  

  
1

2
0

2

exp 2 1

d



  


 

        (79) 

Integral (79) is divergent at 1  . It proceeds from 

the fact that at the gravitational radius a photon has a 
stationary orbit. For β << 1. 

2arcsinB                  (80) 

it follows that the deviation of a light beam moving, 
for example, along the Sun surface is 0.86 '' . The only 
stationary orbit for a photon is gr r  that corresponds 

to the parameter 1  . The slightest deviation from unit 

makes a photon either leave for infinity, or fall down to 
the centre. Figure 1 illustrates a photon getting off a sta-
tionary orbit. 

Now we study a radial motion which we can determine 
from the integrals of motion (68). Under the given input 
conditions of the coordinate and velocity directed along 
the radius, and by using the integrals of motion (68), we 
obtain the energy of a photon moving away from the 
centre:  

  0

1
exp 1p p p 


  

     
  

       (81) 
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Figure 1. The paths of a photon at different initial conditi- 
ons. Curve 1 exhibits the photon leaving for infinity at the 
input condition β = 0.9999. Curve 2 shows the photon falling 
down to the centre at β = 1.01. Arrow 3 displays the photon 
radially leaving for infinity from under the gravitational 
radius 

 
It follows that the photon crosses freely the gravita-

tional radius and at the infinity the photon energy equals 
to:  

 0 0
0

exp exp grp p p
r


 

    
 

      (82) 

The radial velocity of the photon remains constant; 
2 2

2 2 2
2

; ; 1.y x yx
x y x y

p p pp
v v v v v

p p p


       

The velocity of particles with non-zero mass is defined 
by the equation:  

   2 2
0

0

1 exp 2 1 exp 2g gr r
v v

r r

   
     

   
   (83) 

From (83) we can define the second space velocity:  

 2 2
0 2 1 exp 2 ,v v               (84) 

it follows from (84) that at the initial velocity v0 > v2, any 
particle crosses freely the gravitational radius and leaves 
for infinity. Note that the first space velocity v1 equals to 

 . A circular orbit is steady under the condition that v2 

> v1 from the equation  

 1 exp 2     

we define the boundary of stability for circular orbits 
0.796812c   . Circular orbits are only stable to 

small disturbances under the condition c  . This 

situation is described by the equation of motion (73) 
where we can consider the value of   as a disturbance 

of a circular orbit. It follows from (73) that for c   

any small value 0   makes a particle leave for infin-
ity along the path similar to that shown on Figure 1 
(curve 1). Under the disturbance 0  , a particle falls 
down to the centre and as well leaves for infinity along 
the curve similar to 2, 3 on Figure 1. 

Since all bodies in the Solar system obey the same 
equation of motion (66), we can measure time in terms of 
any periodical process that occurs in the Solar system; 
for example, in terms of revolution of the Earth around 
the Sun. Further, since we can calculate the periods of 
revolution for any bodies beforehand, time in the entire 
Solar system runs similarly. Moreover, we extend the 
time over the entire visible part of the Universe; and we 
are quite right when we measure time in billions of years, 
whereas we measure distance in billions of light years.  

Therefore, following Newton, we can repeat that a 
particle moves uniformly and straight until no force is 
applied. Following Galilee, we can say that under the 
same initial conditions in the gravitational field all parti-
cles move along the same paths. For example, under the 
same initial conditions an ultra relativistic proton moves 
in the same path as a photon does. However, Einstein’s 
statement that time runs differently in each lift does not 
have any physical meaning, since every electron covers 
the entire infinite space (33) and simultaneously interacts 
with all particles in the Universe. 

4. Problems of Dark Matte 

In the previous section we introduced the concept that it 
is the total particle energy  p 

 which plays the key 

part in the gravitational interaction, but not the rest mass, 
as it is usually considered. This fact substantially changes 
the estimations of the matter quantity participating in the 
gravitational interaction. For example, the protons whose 
energy achieves 1021 eV in cosmic rays create a gravita-
tional potential 1012 times higher than that for protons on 
the Earth whose energy is 109 eV. The situation is similar 
for neutrino. The mean energy of neutrino emitted by 
neutron beta decay is about 106 eV; whereas zero energy 
of neutrino, which we usually take into account for 
gravitational interaction, is estimated by value of 10 eV. 
Consequently, neutrino contributes into the gravitational 
interaction 105 times more. Photons having zero mass are 
not considered as carriers of the gravitational interaction 
at all. Deviation from the straight motion for a photon is 
caused by the Einstein deflection effect. This point of 
view contradicts elementary physics. The thing is that, if 
two bodies exist at positions 1r


 and 2r


, and interact 

according to the law  1 2U r r
 

, then their momenta 1p


 

and 2p


 follow the equations  

   
1 21 1 2 2 1 2;r rp U r r    p U r r     

           (85) 
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Since  

   
1 21 2 1 2 ,r rU r r U r r    

   
        (86) 

then, as a consequence of (85,86), follows the law of 
total momentum conservation:  

 1 2 1 20; .
d

p p    p p const
dt

   
   

      (87) 

Thus, the distortion of the trajectory for a photon 
passing e.g. the Sun shows(demonstrates) the variation of 
its momentum; it follows from the law of the total mo-
mentum conservation that the momentum of the Sun 
changes by the same amount. We can make an obvious 
conclusion: if a photon is attracted to a massive body, 
then the massive body is attracted to the photon to the 
same extent. Therefore, photons, like any other particles, 
participate in the gravitational interaction, interaction 
intensity being proportional to the proper intrinsic energy 
of the particle: p   .  

The azimuth velocity of stars in galaxies is about 
100-200 km/sec. That is why, the dark matter elements 
belonging to a certain galaxy at first sight may seem to 
have the same velocities. Hence, all relativistic particles, 
such as photons, neutrino, and cosmic rays, are beyond 
our consideration; as a result, practically none of the ob-
served particles can create an additional gravitational 
field. In this connection an idea arises that there are 
heavy cold particles contributing only to the gravitational 
interaction; they are called dark matter.  

However, a possible alternative point of view exists. 
First, we examine a simple example. A charged ion of a 
hydrogen atom creates a Coulomb potential where local-
ized states for an electron are formed. Filling up one of 
the localized states makes the hydrogen atom electrically 
neutral, as the nuclear field is completely screened by an 
electron. On the other hand, if we insert a proton into a 
metal where there is a sea of free electrons, the localized 
state does not occur, but this time the nuclear field is 
screened by free electrons. The trajectory of each elec-
tron is distorted near the nucleus so much, that, as a re-
sult, electron density increases exactly to the same extent 
and it screens the nuclear field completely. A positive 
charge interacts with all free electrons of metal in a Cou-
lomb way and attracts them.  

Any heavy body attracts all free particles of a cosmic 
space by the gravitational interaction in a Coulomb way 
as well. Nevertheless, there is a significant difference 
between these two processes. Free electrons of metal are 
attracted to a positive charge, begin repulsive from each 
other, as a consequence, the electrical field of the posi-
tive charge is screened by electrons. The situation is 
quite opposite with the gravitational interaction. A mas-
sive body attracts particles from the surrounding space. 
Due to this attraction the total gravitational potential in-
creases, thereby increasing the particle attraction even 

more. A positive feedback or antiscreening arises that 
can lead to the system instability. As an illustration, we 
examine the both situations: screening of an electrical 
field by free electrons in metal and antiscreening of a 
gravitational field by free particles (any) in cosmic space. 

An external charge with harmonics  ext k  placed 
into a metal creates a real charge  i k  defined as a 
sum of external and induced charges: 

     i ext resk k k               (88) 

We can express the induced charge through the po-
larizability of electrons in metal      res ik k k    . 

Here   2 2
TFk k k  ; kTF is a characteristic wave 

vector calculated using a Thomas – Fermi approximation 
[8]. As a result, we obtain  

   
   

2

2 2

2

;
1

4
,

ext
i ext

TF

F
TF

B

k k
k k

k k k

k
k

a


 





 
 



  (89) 

Here kF is a Fermi momentum in metal. It follows 
from (89) that a Coulomb potential of a point charge q, 
for example, is transformed into a screened potential: 

 ; exp .ext i TF

q q
 k r

r r
      

Now we consider a situation rather close to the gravi-
tational interaction. Suppose, the entire space is filled up 
with neutral particles that have some homogeneous den-
sity 0  and interact according to the law of gravitation. 

If any density fluctuation  ext k  occurs in the space, 

then, owing to the gravitational interaction, all other par-
ticles begin to adjust to this density; there-after we can 
re-write the real density in the form:  

           i ext res ext ik k k k k k           (90) 

On the analogy of a free electrons susceptibility, we 
imagine a gravitational susceptibility  k  like this: 

2 2
0k k  . Here 0k  depends on the value of 0  and 

on the distribution function of the particle velocity. Af-
terwards, the real density acquires the form:  

   
2

2 2
0

i ext

k
k k

k k
 


 

This causes gravitational instability of the system rela-
tive to the long-wave density fluctuations. As fluctua-
tions develop, slow particles, which compose a small part 
of an average density, are pulled out of the surrounding 
space and transformed into clusters of matter in form of 
stars and galaxies. Fast relativistic particles remain free 
and continue to participate in creating an additional grav- 
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itational field. We denote clusters of a cool matter in 
form of stars and galaxies having finite motion as 

 cold k . The remainder relativistic particles in form of 

cosmic rays, photons and neutrino create additional non-
homogeneous matter density due to the trajectory distor-
tion      rel rel ik k k   . Here  rel k  is the grav- 

itational polarizability of the relativistic particles. Thus, 
the total density is equal to 

   
 

.
1

cold
i

rel

k
k

k








 

Being on Earth, we have no possibility to scan the dis-
tribution of a total energy over the entire space. However, 
judging from the fact that the azimuth velocity of stars 
moving away from the centre of galaxy remains nearly 
constant, the total gravitational potential must have the 
form: 

  ln ,i
c

r
r

R


 
   

 
 

Here η is a dimensionless parameter, Rc– a gravita-
tional size of a space belonging to a certain galaxy. Pro-
vided that the centrifugal and centripetal forces are equal 

 2 i r
r

r r




 


  

we come to the expression for the circular velocity: 

.v r    

At the star velocity being approximately equal to 200 

km/sec we obtain the value 78 10   . From the ex-

pression for the potential and with the aid of the Poisson 
equation we obtain the space distribution density of mat-
ter: 

 

 

2 2

2

2

4
;

.
4

i

i

r
r c

c
r

r

  




  


 

The space integral of density provides a value of mass 
inside a sphere of radius R: 

2 2

.i

c R v R
M


 

   

For our Galaxy having the size of about R = 5·104 light 
years and velocity of v = 200 km/sec we obtain Mi = 1045 
gr Mass of cool matter is estimated by value coldM   

444.10 gr , therefore, mass of a relativistic matter is com- 
parable with that of the cool one rel coldM M . Thus, as 
a result of the trajectory distortion for relativistic parti-
cles, an additional nonhomogeneous distribution of rela-

tivistic matter occurs and, consequently, an additional 
gravitational potential as well. That is why, there is no 
need to search for a mystical dark matter; relativistic en-
ergy is quite sufficient to create an additional gravita-
tional field. Moreover, emission of radiation by stars and 
galaxies as well as supernova outburst lead to the con-
stant growth of relativistic energy in space. So, observa-
tions of the azimuth stellar motion both in galaxies and 
galaxies in clusters point to the existence of an additional 
gravitational field. Since azimuth and radial motion fol-
lows from the general equation of motion, for example in 
form (63), the radial motion is submitted to the same 
additional gravitational attraction; for this reason, there is 
no dark energy to create antigravitation [9,10]. Thus, if 
red shift is related to recession of galaxies, then a contra-
diction arises, because galaxies have to scatter with ac-
celeration but, judging from the azimuth motion, this is 
impossible. 

It is more natural to consider atomic spectra of far 
stellar radiation to be time dependent as a consequence of 
time dependence of physical vacuum parameters. Since 
atomic levels are proportional to Bohr energy, and Bohr 
energy, in turn, is proportional to the rest energy of elec-

tron ( 2
0B e   ) we can affirm that the electron mass 

increases with time; this means that vacuum parameters 
for the electron oscillation branch  e t  and  e t  

decrease with time. The Hubble constant can be defined 
from the following expression:  

   
 

 
 
 

 

0

0

0

0

0

0

.
0

e

e

e

e

e

e

m td
H t

dt m t

td
       

dt t

td
       

dt t







 
    

 
   

 
 

    

          (91) 

The red shift indicates that the Hubble constant is a 
monotonically growing time function and at the present 

moment it equals to 182.5 10  cek-2. 
Nowadays the Universe is in a metastable state, energy 

emission transitions occurring in two opposite directions. 
On one hand, nucleosynthesis of light nuclei—takes pla- 
ce, which is the source of stellar energy. On the other 
hand, nuclear disintegration of heavy nuclei (natural ra-
dioactivity) – occurs, as well with energy emission. From 
today’s point of view, nuclear fusion looks quite natural 
as there is a binding energy between nuclei; moreover, 
the binding energy on one nucleus increases with the 
growth of atomic number up to iron. Creation of heavier 
elements turns out to be less gainful; in this connection it 
is a surprise that heavy elements, up to uranium, exist on 
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Earth. Nuclei of uranium are in metastable state. If we 
launched a piece of uranium towards the Sun, the ura-
nium nuclei, under neutron bombardment, would de-
compose into lighter fragments. This means that uranium 
cannot occur on Sun. Deposits of uranium on Earth, 
however, prove that the Earth is an earlier formation than 
the Sun. Chemical composition of the Earth principally 
differs from that of the Sun. Sun consists of 75% hydro-
gen, 24% helium and a negligibly small amount of heav-
ier elements, whereas Earth consists of 32% iron, 30% 
oxygen and a noticeable amount of heavier elements up 
to uranium. Heavy elements existing on Earth, as well as 
the red shift, point out to nonstationarity of physical va- 
cuum parameters. Heavy elements could only occur on 
Earth when they were energetically gainful; variations of 
physical vacuum parameters led to the transition of 
heavy nuclei into a metastable state. A further evidence 
of nonstationarity of physical vacuum parameters is that 
not only stars, but also planets emit energy; moreover, 
volcanic activity, similar to that on the Earth, is still be-
ing observed on Jupiter satellites. It is known that the 
Jupiter emits twice as much energy as it receives from 
the Sun. We can express the Jupiter energy emission via 
the Hubble constant. From the law of conservation of 
energy it follows:  

 2 0.J J

d
M c L

dt
             (92) 

Here MJ c2– is Jupiter energy of 511.8 10  erg, and LJ 

is the integral emission flux of 256.5 10  erg/sec. By di- 
viding both parts of (92) into Jupiter energy, and consid-
ering that the Jupiter only consists of hydrogen, we can 
reduce (92) to form  

0 0

0 0

0.e n
J

e n

d dt d dt
l

 
 


 


      (93) 

Here lJ is specific luminosity of the Jupiter equal to 
26 13.6 10 s  . Taking into consideration the definition 

of the Hubble constant (91), we can rewrite Equation (93) 
as follows:  

 0 0

0 0

,n e
J

n n

d dt
H t l

 
 

          (94) 

All values at the right part of (94) are known, there-
fore, 

0 0 .n ed d

dt dt

 
   

So, the red shift shows that the rest energy of the elec-
tron is growing with time, whereas emission of radiation 
by planets indicates that the rest energy of the proton is 
decreasing; the total change of the energy for the electron 
and proton is so great, that it leads to planet heating and 
emission of radiation.  

Since physical vacuum has existed eternally, the val-
ues, which characterize the vacuum, can only be of two 
types: either time independent constants, or oscillating 
functions. The fundamental values are general for both 
electron and nuclear modes , , e e n ng c       seem 

to be thought as constant values; however, we have to 
consider as time dependent the values, which are charac-
teristic either for an electron mode only by ,e e  , or for 

a nuclear one—by ,n n  . At the present moment elec-

tron and nuclear frequencies are moving towards each 
other. 

Finally, we pay attention to one more mechanism of a 
gravitational instability. Not coincidentally, there has 
been some cause for concern so far, that microscopic 
black holes are possible to occur under the experimental 
research with Large Hadron Collider in CERN. The thing 
is that the gravitational attraction between particles 
grows with increasing particle energy, whereas, the elec-
trical repulsion remains constant due to the law of con-
servation of charge. In this connection we examine two 
protons which are speeded up to a certain energy in an 
accelerator. We write down the Hamiltonian for two pro- 
tons, taking into account an electrical and gravitational 
interaction: 

2
1 2

1 2
1 2 1 2

.
m me

H
r r r r


    

 
     

Since masses of the particles are proportional to their 
energy m1 = ε1/c

2, m2 = ε2/c
2, then, under the following 

condition 

21 2
4

e
c

 
  

the gravitational attraction turns out to exceed the elec-
trical repulsion. Consequently, the gravitational collapse 
may occur when the particle energy amounts to 

2
2710c

ec 


    eV. 

Maximum particle energy in cosmic rays reaches 1021 
eV. The value of energy expected at the accelerator in 
CERN is 7 · 1015 eV that is eleven orders less than the 
critical value. That is why the microscopic black holes 
are impossible to appear in the accelerator. From the ex-
pression for the critical energy, we can define the spe-
cific wave vector and the corresponding de Broglie wave 
length: 

2

1 2c c
c

c ec
c k


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


 

It follows: 

32
2 3

1.88 10
e

cm
c c

 
 

   
  
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Planck introduced the specific length by reason of di-
mension: 

3pl

r
r

c



. 

It is easy to see that the specific length c  can be ex- 

pressed via Planck length as follows: 

Pl
c

r


  

Thus, the considerations above allow attaching a ph- 
ysical sense to the Planck length, which defines the most 
probable value for the lattice constant of physical vacu- 
um; here kc specifies the edge of the Brillouin zone in 
k space, and c – the width of the allowed energy re-

gion. 

5. Conclusions 

In presented paper we try to consider problems of the 
gravitational optics and dark matter developing from the 
crystal model for the vacuum. Thus, our model for vac-
uum is represented as a material medium in which dyn- 
amical properties of the crystal specify the spectrum of 
elementary particles . How it is follows from considerat- 
ion it enables to describe both electromagnetic waves and 
spectrum of elementary particles from the unified point 
of view. We have obtained the combined equations for a 
multicomponent order parameter in the form of the elec- 
tric and magnetic vacuum polarization, which defines the 
spectrum and symmetry of normal oscillations in the 
form of elementary particles. We have restored the fun-
damental parameters of physical vacuum, such as: a susc- 
eptibility for the electric and magnetic polarization (equal 
to the constant of fine structure), parameters of length 
and time for the electron and nuclear branches of the 
oscillations, correspondingly. We have shown that the 
charge quantization is directly connected to discreteness 
of vacuum consisting of particles with the interaction 
constant equal to the double charge of a Dirac monopole. 
Elementary particles are excitations of vacuum in a form 
of wave packets of a soliton type. We have obtained an 
exact equation of motion for a particle in a gravitational 
field. Energy defines both gravitational interaction and 
particle inertia, inertia being of an anisotropic value; that 
is why the statement, that the inertial and gravitational 
masses are equivalent, is not correct. We have examined 
the situation when galaxies are distributed over the entire 
infinite space according to the cosmological principle. In 
this case recession of galaxies is impossible; therefore, 

the red shift of radiation emitted by far galaxies must be 
interpreted as the blue time shift of atomic spectra. As a 
consequence, it follows that both rest energy and mass of 
electron are increasing now. Since physical vacuum ex-
ists eternally, vacuum parameters can be either constant 
or oscillating with time. These are time oscillations of 
   tt ne  ,  and    tt ne  ,  wh- ich have caused elec-

tron mass growth within recent 15 milliard years, induc-
ing red shift; on the contrary, proton mass decreases, 
responsible for emission of radiation by planets. 
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