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ABSTRACT

Predicted relative solvent accessibility (RSA)
provides useful information for prediction of
binding sites and reconstruction of the 3D-
structure based on a protein sequence.
Recent years observed development of sev-
eral RSA prediction methods including those
that generate real values and those that pre-
dict discrete states (buried vs. exposed). We
propose anovel method for real value predic-
tion that aims at minimizing the prediction
error when compared with six existing meth-
ods. Theproposed method is based on atwo-
stage Support Vector Regression (SVR) pre-
dictor. The improved prediction quality is a
result of the developed composite sequence
representation, which includes a custom-
selected subset of features from the PSI-
BLAST profile, secondary structure pre-
dicted with PSI-PRED, and binary code that
indicates position of a given residue with
respect to sequence termini. Cross valida-
tion tests on abenchmark dataset show that
our method achieves 14.3 mean absolute
error and 0.68 correlation. We also propose a
confidence valuethat isassociated with each
predicted RSAvalues. Theconfidence iscom-
puted based on the difference in predictions
from the two-stage SVR and a second two-
stage Linear Regression (LR) predictor. The
confidence values can be used to indicate
the quality of theoutput RSA predictions.

Keywords: Relative solvent accessibility;
Support vector regression; PSI-BLAST; PSI-
PRED; Secondary protein structure

1. INTRODUCTION

The knowledge of three dimensional protein struc-
ture plays the key role in understanding protein's
function. Computational prediction of the tertiary
protein structureis one of the central topicsin struc-

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

tural biology due tothe largeand exponentially grow-
ing gap between the number of known protein
sequences and the number of known structures.
Despite several decadesof extensive researchin ter-
tiary structure prediction, this task isstill a bigchal-
lenge, especially for sequences that donot have asig-
nificant sequence similarity with known structures
[1]. Asaresult,the predictions of the solvent accessi-
bility [2] and the secondary structure [3] are
addressed as anintermediate step towardsthe predic-
tion of the tertiary structure. The relative solvent
accessibility (RSA) reflectsthe degree towhich ares
idue interacts with the solvent molecules. Since pro-
tein-protein and protein-ligand interactions occur at
the protein surface, only the residues that have a
large surfacearea exposed tothe solvent canpossibly
bind tothe ligandsand other proteins. As aresult, pre-
diction of solvent accessibility provides useful infor-
mation for prediction of binding sites [4] and is
vitally important for understanding the bindingmech-
anism of proteins [5]. Chan and Dill pointed that the
burial of coreresidues is thedriving force inprotein
folding, which suggeststhat knowledge of localiza-
tion of individual residues (surface vs. buried) pro-
vides useful information to reconstruct the 3D-
structure of proteins [6-8].

The existing solventaccessibility prediction meth-
ods use theprotein sequence, whichis converted into
a fixed-size feature-based representation, as an input
to predict the RSA for each of the residues. These
methods can be divided into two main groups:

- Real valued predictors predict RSA value (the
definition is givenin the Materialssection). Therep-
resentative existing methods are based on linear
regression [9], neural network based regression [11],
neural networks[12], support vector regression [10,
13, 15], and look up table [14]. In Ahmad's study,
binary coding of the sequence wastaken asthe input
features [12], whileall other studiesused the evolu
tionary information inthe form of the PSSM profile
derived with PSI-BLAST asthe input features [9-11,
13-15].

- discrete valued predictors classify each residue
into a predefined set classes. The classes are usually
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defined based on a threshold and include buried,
intermediate, and exposed classes (inh most cases the
predictions concern only two classes, i.e., buried vs.
exposed). The corresponding prediction methods
apply fuzzy-nearest neighbor [17], neural network
[16, 20, 22], support vector machine [19, 21], two
stage support vector machine [18], information the-
ory [23], and probability profile [24]. Early studies
only use sequenceto generate features[ 20, 23], while
recent studiesuse theevolutionary informationin the

form of the PSSM profile togenerate features[18, 19].

The PSI-BLAST profile [25] was recently intro-
duced as an efficient sequence representation that
improves classification accuracy [16]. Subsequently,
researchers have found that secondary structure pre-
dicted using the PSI-PRED method [3] improves the
real valueRSA predictions[2].

This paper investigateswhether improved sequence
representation, which isbased on theinformation har-
vested from the sequence, the PSI-BLAST profile
and the predicted secondary structure, could lead to
improving the RSA predictions. We also investigate
whether it would be possible to build an index that
would indicate thequality of thepredicted RSA value.
The above hypotheses translate into the two follow-
ing goals: (1) we aim at proposing a prediction
method that minimizes the RSA prediction error; (2)
the method should provide a confidence value that
indicates the quality of the predicted RSA values.

The first goal is achieved by designing a custom-
selected set of features, which isbased on performing
feature selection, torepresent the input sequence. As
suggested in previous studies, the PSI-BLAST pro-
file, PSI-PRED predicted secondary structure and
additional features that indicate termini of the
sequence were adopted to represent the input
sequence. In contrastto prior works,we do notuse all
features from the PSI-BLAST profile, but instead we
use two feature selection methods to select a subset
of best-performing features. This resultsin a simpli-
fied prediction model, reduced computational time,
and optimized predictivequality.

To address the second goal, the confidencevalues
are computed based on the differencein predictions
of RSA by two predictors; asupport vector regression
and a linear regression. These values can be used to
indicate thequality of the output RSA predictions.

2. MATERIALS

2.1. Dataset

The dataset used in this paper is referred to as the
Manesh dataset [23] and consists of 215 low-
similarity, i.e., < 25%, proteins. The sequences are
available online at http://gibk21.bse.kyutech.ac.jp/
rvp-net/all-data.tar.gz. The Manesh dataset was
widely used by researchersto benchmark prediction
methods [2, 12-15, 20, 24], and this motivated usto
useitto designand validate our method.

2.2. Relativesolvet accessibility

RSA reflects the percentage of the surface area of a
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given residue that is accessible to the solvent. RSA
value, which is normalized to [0, 1] interval, is
defined as the ratio between the solvent accessible
surface area (ASA) of aresidue within a three-
dimensional structure and ASA of its extended tri-
peptide (Ala-X-Ala) conformation

(1)

2.3. Featurerepresentation

PSI-BLAST profile. PSI-BLAST is used to compare
different protein sequences to find similar sequences
and to discover evolutionary relationships [25]. PSI-
BLAST generatesa profile representing a set of simi-
lar protein sequences inthe formof a20X N position-
specific scoring matrix, where N is the length of the
sequence (window) and where each amino acid inthe
sequence (window) is described by 20 features. We
used PSI-BLAST with thedefault parametersand the
BLOSUMG62 substitution matrix. The profile was
computed for a 15 residues wide window centered on
a target residue and thusit consists of 300 features.
The selected size is motivated by previous studies
that adopted this window size [18] and obtained good
secondary structureprediction results][3].

Secondary structure predicted with PSI-PRED.
The quality of secondary structure predictionhas sig-
nificantly improved in the last decade and nowadays
it issuccessfully used in prediction of tertiary struc-
ture. Recently, secondary structure predicted with the
PSI-PRED algorithm was shown to improve predic-
tion of solvent accessibility [2]. We used PSI-
PRED25 with default parameters to predict second-
ary structure fromthe protein sequences. PSI-PRED
assigns three probabilities for each residue, which
correspond to the probability of assuming helix,
strand, and coil conformation, respectively. These
probabilities were taken as features for the proposed
RSA prediction method.

Binary code. The amino acids that are located at
the two termini of the sequencehave larger probabil-
ity of beingexposed to thesolvent. Thisfact isimple
mented during RSA prediction by using abinary code
that indicates position of a given residue that is
located close to either terminus. The following
binary vector

is used to encode the first five positions at the N ter-
minus (denoted by a;) and the last five position

at the C terminus (denoted by b;). For instance,

the third residue in the sequence is encoded as
(0,0,1,0,0,0,0,0,0,0), whilearesiduethat is out-
side of the first and the last fiveresidues in the
sequence isencoded as(0,0,0,0,0,0,0,0,0,0).

2.4. Featur eselection

JBISE
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PSI-BLAST profile includes 300 features, and thus
feature sdection methods were used to reduce the
dimensionality. Weapplied thecorrelation-based fea
ture selection (CBFS), and another feature selection
method, namely correlation-based method for rele-
vance and redundancy analysis (CBRR), which
selects a subset of features based on filtering redun
dancy within the feature set. The CBFS method is
based on Pearson correlation coefficient r computed
for apairof variables (X, Y) as

(2)

where; is themean of X and y, is themean of Y. The

value of r is bounded within[-1, 1] interval. Higher
absolute value of r corresponds to stronger correla-
tion between X and Y. This method ranks individual
features based onthe correlation coefficient between
each feature and the actual RSA values. A subset of
features with thehighest absoluter value issel ected.

The CBRR feature selection method considers
both the relevance of the features with respect to the
target (RSA values), and the redundancy between the
features. It involvestwo steps: (1) selecting a subset
of relevant features, and (2) selecting predominant
features from among the relevant features. The
details canbe foundin [26].

The 300 featurescorresponding to thePSI-BLAST
profile, 3 featurescorresponding to thepredicted sec-
ondary structureand 10 binary code values were pro-
cessed with both feature selection methods. The fea
ture selection was processed using thetraining set of

Manesh dataset, which includes 30 sequences[14, 20].

The CBRR method automatically filters theredun-
dancy among the features and selects the final num-
ber of selected features, which in our case was 15.
The selected features include 13 features from the
PSI-BLAST profile, and 2 predicted secondary struc-
ture features, see Table 1. In case of CBFS, the num-
ber of selected features should be specified by the

0.1585
0.158
0.1575
0.157
0.1565
0.156

of features
0.1555

100 110

Figure 1. The MAE values against the number of selected
features. The MAE is obtained by using support vector
regression with default parameters to predict test set of the
Monash dataset.
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user. Hence, we tested the performance of different
number of selected features using support vector
regression model with default parameters to predict
RSA values for the test set of the Monash dataset. The
mean absolute error (MAE) steadily decreases to
15.6% by adding up to 70 feaures, and it saturaes
when adding additional features, see Figure 1. Asa
result, the 70 featureswith the highest Pearson corre-
lation were selected when using CBFS. The selected
featuresinclude 65 featuresfrom the PSI-BLAST pro-
file, all 3 predicted secondary structure features, and
2 binary code valuesthat correspond to the first and
last position inthe sequence, seeT ablel.

The two feature sets selected by CBRR and CBFS
and the full feature set (313features) were compared
by predicting RSA values for the test set of the
Manesh dataset using support vector regression with
default parameters. The 15 features selected by
CBRR obtain 16.7% MAE, while the 70 features
selected by CBFSand the full feature set both result
in 15.6% MAE, see Figure 2. The features selected
by CBFS provide lower MAE than the features
selected by CBRR, and they cover only 23% of the
full feature set. Asa result, the 70 features selected
By CBFS were used to design the proposed predic
tion model. The selected featuresare summarized in
Table2.

The feature selection shows that most of the 300
features generated by PSI-BLAST are either redun-
dant and have little or no impact on the RSA
Predictions. Table2 shows that when predicting RSA
for theresidue A, that is located in the center of the

window:

- the featuresto encode the two leftmost positions
(A7, A,_g) and the rightmost position (A;,,) were not
selected, i.e., these amino acids have no impact on
the prediction of the central aminoacid. Therefore, a
sliding window of size 13 would be sufficient for the
RSA prediction. The two amino acidsthat are adja
centtoA;, i.e, A_;and A, ,, havethe most significant

impact on the prediction since they correspond to the
largest number of the selectedfeatures. Interestingly,

Full feature set

Figure 2. Bar chart of MAE values (white) and number of
features (gray) for features selected by CBRR, CBFS, and
the full feature set.
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Table 1. Summary of thefeature selection results.

# selected # selected

Features set f-le;gxtjlre#s features byfeatures by
CBFS CBRR
PSI-BLAST profile 300 65 13
Binary code 10 2 0
Predicted second. structure 3 3 2
Total 313 70 15

residues ati-2 and i+2 positions haverelatively small
influence onthe prediction.

- The selected featuresare almost symmetrically
distributed around A;, e.g., amino acids E, K, Q, R,

and D have similar impact on the solvent accessibil-
ity of the central residue at the thirdleft position (A, ;)

and thethird right position (A;,3).

- Hydrophilic residues, which includeE, K, Q, R,
and D, may have impact onthe solvent accessibility
of A, residue whichis 3 or 4 positions away from the

these residues. This pattern covers19 of theselected
features and we hypothesizethat thisis related to the
a-helical structuresdue tothe followingtwo reasons.
Firstly, these 5hydrophilic residueshave larger prob-
ability (above 0.5) to form helical structure than
strand and coil structures [27]. Secondly, a-helix con-
sists of 3.6 residues per turn, and hence if two resi-
dues inahelix are separated by 2 or 3 residues inthe
sequence then they are spatially closeto each other,
which in turnmay induce someinteractions between
them. For instance, the hydrogen bond that maintains
the helical structureoccurs between tworesidues that
are separated in a sequence by three other residues,
i.e., Ajand A,

3. METHODS

3.1. Prediction method

Linear Regression (LR) and Support Vector
Regression (SVR) were already applied in the RSA
prediction [10,13,15]. In this paper, we propose an
improved two-stage model, which not only aims at
reducing the prediction error, but we also propose

K. Chenet al./J. Biomedical Science and Engineering 1(2008) 1-9

and test a confidence value that is associated with
each predicted RSAvalue.

The proposed two-stageprediction model worksas
follows:

STAGE 1. The input sequences is inputted into
PSIPRED to compute predicted secondary structure
and into PSI-BLAST tocompute the PSI-BLAST pro-
file. Next, the input sequence, the predicted second
ary structure, andthe PSI-BLAST profile are usedto
compute the selected 70 features using a 15 residues
wide window centered over the being predicted resi-
due, and for each residue in the input sequence. The
70 features are used as an input to the LR model and
SVR model that predict a real value (predicted RSA
value) for the central residue ina givenwindow.

STAGE2. Theaim of the stagetwo isto refinethe
predictions from stage one. Similarly to other two
stage designs[13,18], the second stage “smoothes” the
predictions. It takes the three predicted secondary
structure features (computed in stage one by
PSIPRED) and a7 residues wide window from the
first stage predictionscentered over thepredicted res-
idue asthe input to providethe refined real valuepre-
dictions.

Since the prediction quality of SVRis better than
the quality of LR (results arediscussed inthe follow-
ing), the predictionsfrom SVR aretaken as thefinal
prediction outcome. The LR resultsserve as arefer-
ence to evaluate quality of SVR predictions. This
means that if predictions from SVRand LR aresimi-
lar then SVR predictions are assumed to be of high
quality. On the other hand, if thetwo predictionsare
different thenthe SVR prediction isassumed to be of
lower quality. Thecorresponding confidence valueis
defined as

(3)

whereR; is thepredicted RSA from SVR, and T, is the

predicted RSA from LR. A detailed overview of the
prediction procedure isshown inFigure 3.

The optimization of the prediction, through adjust-
ment of internal parameters of the predictors and
selection of the window size for the second stage,
was performed by dividing the Manesh dataset into

Table 2. Summary of feature selection results forthe PSI-BLAST profile by correlation-basedfeature selection method.

15-wide window As As As As As A, Al A Au An As A As A Ay
Total # of features 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
# of selected features 0 0 2 4 5 0 8 19 7 1 6 6 4 3 0
The selected features | E E E CD E P E E |
L K K K EF K K K L L
Q Q @ GH Q Q Q Vv v
R R R I K H R R F
D O LM D D D
N NP N P P
P QR G
S ST
VW
Y
SciRes Copyright © 2008 JBISE
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Table 3. Optimization of parametersfor two-stage SVR.

First stage Second stage
Parameter Parameter MAE Parameter Parameter MAE
C Y C v
1 0.001 0.157 1 0.01 0.150
1 0.005 0.153 1 0.08 0.149
1 0.01 0.151 1 0.15 0.148
1 0.02 0.151 1 0.2 0.148
1 0.03 0.152 1 0.3 0.148
1 0.05 0.155 1 0.4 0.149
0.5 0.01 0.152 0.5 0.15 0.148
0.8 0.01 0.151 0.8 0.15 0.148
1 0.01 0.151 1 0.15 0.148
2 0.01 0.151 2 0.15 0.148
3 0.01 0.151 3 0.15 0.148
5 0.01 0.152 5 0.15 0.148

two subsets, one used to compute the prediction
model andthe other to performtest. Similarly to [14],
30 sequences were used for training and the remain
ing 185 as the test set. The linear regression is
parameterless and thusit does not require optimiza-
tion. For SVR, RBF kernel wasused for both stages.
The parametersfor thefirst stage SVR arey=0.01 and
C=1, andfor the second stage y=0.15 and C=1. These
parameters, which were based on experiments sum-
marized inTable3, provide thelowest MAE. Wenote
that the adjustment of C haslittle impact inthe qual-
ity of predictions. The MAE of the final prediction
for the second stage windows sizes of 5, 7, 9, 11, 15,
and 21 equal 0.149, 0.148, 0.148, 0.148, 0.148, and
0.148, respectively. Thisshows that thewindow size
of 7isthebest choiceto provideaccurate predictions.

3.2. Linear regreesion

A linear regression with p coefficients and n data
points (number of samples), assuming that n>p, cor-
responds to the construction of thefollowing expres-
sion:

(4)

where y; is the predicted RSA value, x; = (X1, X2,
X; p) isthe vector of p features representing i protein
sequence, f; (constant) is parameter to be estimated,
and ¢; is thestandard error. Theabove formulacan be
written in vector-matrix form as:
(5)

The solution to minimize the mean square error |||
is T v-1 vT

p=(X"X)"X"y (6)

— —
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AA,...ALAA...AA,

PSI-PRED Select 15-wide window
ey AAie A A

structure
SS,SS,...SS,...5S, ,SS,

Compute 70 features

Features values for the15-wide window

Input feature vectorsfor
all residues,i=1,2,...,n

First-stage SVR First-stage LR

M. tit,e bttt
Select 7-wide window
ti-3ti-2' .- ti' . 'ti+2ti+3

Input feature vectorsfor
all residues,i=1,2,...,N

Second-stage SVR Second-stageLR

|91 L TN AN o

| FIPYUIRN TR (PPN IO

TT,..T...T,.T,

Compute
confidence value

RR,...R,...R..R,
CGC,..C..C,.C,
Figure 3. RSAprediction with the proposed system; the RSA

value for the i" residue is predicted based on the 70 feature
values (see Table 1) that are computed over a 15 residues

wide window centered on i residue; the feature values are
inputted into thefirst-stage predictor (LRand SVR); next,the
first-stage predictions are aggregated into 7 residue wide
windows and inputted, together with the predicted secondary
structure of the central residue, into the second-stage
predictor that provides the RSAvalues. Finally, compare the
predictions from SVR and LR, and calculate the confidence
value C.

3.3. Supportvector regression
Given atraining set of n data point pairs (x;, y;), i = 1,
2,..., n, wherex; denotes the vector of p features rep-

. .th .
resenting i protein sequence, y; denotes the pre-

dicted RSA value, finding the optimal SVR is
achieved by solving:

Ly g2 .
min5||wH +C (& +E) 7

such that
(8

wherew s avector perpendicular towx-b=0 hyperplane,
Cis a user defined complexity constant, & and fi* are
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slack variablesthat measure the degree of prediction
error of x; for agiven hyperplane, and z= ¢ (x) where

k(x,x)=d (x) - & (x") isauser definedkernel function.

The SVR was trained using sequential minimal
optimization algorithm [28] that was further opti-
mized by Shevadeand colleagues [29]. The proposed
SVR uses RBFkernel

©)

for both stages.

4. RESULTS AND DISCUSSION
The SVR and LR predictors were implemented in
Weka [30], which is a comprehensive open-source
library of machine learning methods. The Manesh
dataset consists of 50682 instances (individual resi-
dues). The evaluation was performed using two test
types to allow for a comprehensive comparison with
previous studies. To compare with [2] and [12], 5-
folds cross validation was executed. On the other
hand, following several other prior studies[14, 20,
24], Manesh dataset was divided into two subsets, 30
sequences were used for training and the remaining
185 as independent test set. The results of both tests,
i.e.,, 5 folds cross-validation and independent test,
were reported in Tables4 and 5. In total, the pro-
posed method was compared with six real value RSA
prediction methods [2, 12-15, 24] and one method
that aimsat prediction of discretestates [20].
Wenote that in statistical prediction, thefollowing
three cross-validation methods are often used to
examine a predictor for its effectiveness in practical
application: independent dataset test, sub-sampling

(such as5-fold and 7-fold) test, and jackknifetest [31].

However, aselucidated by [32] and demonstrated in
[33], among the three cross-validation methods, the
jackknife test isdeemed the most objective that can
always yield a unique result for a given benchmark
dataset, and hence has been increasingly used by
investigators to examine the accuracy of various pre-
dictors[34-42].

4.1. Comparison with competing prediction
methods

For the 5 folds cross-validation test, the mean abso-
lute error (MAE) value of thefirst stage of the pro-

posed method equals 14.6 and the corresponding
Pearson's correlation coefficient (r) equals 0.67.
After the second stage, the MAE value is reduced to
14.3 andr isimprovedto 0.68. Table4 compares the
proposed two-stage SVR with recent methods for
RSA prediction, which include neural network and
support vector regression models[2, 12,13, 15]. The
proposed method obtains0.6 to 3.71ower MAE when
compared with the abovementioned methods. This
translates into 4% to 20% error reduction, respec-
tively. Since some methods predict discrete valued
classes (exposed vs. buried), we also examined the
performance of our method by converting the real
value predictioninto thetwo statesprediction. We fol-
lowed the standard approach, in which the state is
defined based onthe predicted RSA value and apre-
defined threshold. For instance, a 5% threshold
means that the residues having an RSA value (%)
greater or equal 5 are defined as exposed, and other-
wise they are classified as buried. The threshold's
value is usually adjusted between 5% and 50%. We
note that for all thresholds, our method provides the
highest accuracy, see Table 4. The proposed two-
stage model provides 0.3%-0.6% higher accuracies
than the predictioncoming from thefirst stage forvar-
ious thresholds. When compared to the best perform-
ing, existing two-stageSVR method [13], our predic-
tions are characterizedby lower MAE and more accu-
rate two states predictions.

For the independent test, the MAE value for the
first stageof theproposed method equals 15.0 and the
corresponding Pearson's correlation coefficient
equals 0.66. After the secondstage, the MAEvalueis
reduced to 14.8 and r is improved to 0.67. Table 5
compares the proposed two-stage SVR with recent
methods for RSA prediction, which include neural
network andlook-up tablebased methods[14, 20, 24].
The proposed method obtains 1.5 to 4.0 lower MAE
when compared with the above three methods. This
translates into 9% to 21% error reduction, respec-
tively. Similarly to the 5-folds cross validation test,
we also examined the performance of our method by
converting the real value prediction into the two
states prediction. The threshold's value was adjusted
between 5and 50%.

For all thresholds our method consistently pro-
vides the highest accuracy, see Table 5. The two-

Table 4. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were
reported based on3 or 5-foldscross validation test;the real valued predictions were convertedto two state prediction (buried
vs. exposed) withdifferent threshold (5%~50%); unreported resultsare denoted by “-*; best resultsare shown inbold.

Reference Prediction MAE (%) Correlation  Accuracy fortwo-states (buriedvs. exposed) prediction
method coefficientr — g5o5 1006  20%  30%  40%  50%
(2] Neural Network 15.2 0.67 74.9% T77.2% 77.7% T77.8% 78.1%  80.5%
[11] Neural Network 18.0 0.50 - - - - - -
[12] Two-stageSVR 14.9 0.68 81.1% 78.5% 77.6% - - 79.5%
[14] SVR 16.3 0.58 - - - - - -
Thispaper One-stage SVR 14.6 0.67 80.5% 79.1% 78.3% 78.3% 78.3% 80.5%
Thispaper Two-stageSVR 14.3 0.68 81L.1% 79.7% 78.8% 78.6% 78.8% 80.8%
SciRes Copyright © 2008 JBISE
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Table 5. Experimental comparison between the proposed two-stage SVR and other reported methods; the results were
reported based ona test onthe independent dataset (30 sequences fortraining and 185 sequences for test); the real valued
predictions were converted to two state prediction (buried vs. exposed) with different threshold (5%~50%); unreported

results are denoted by “-“; best results areshown in bold.

Prediction Correlation Accuracy fortwo-states (buriedvs. exposed) prediction
Reference MAE (%) O

method coefficientr 5% 10% 20% 30% 40% 50%
[13] Look-up table 18.8 0.48 ) . . . ) )
[19] Neural Network - - 74.6% 71.2% - - - 75.9%
[23] Neural Network  16.3 0.58 75.7%  73.4% - - - 76.2%
Thispaper  One-stageSVR  15.0 0.66 79.8% 78.7% 77.7% 77.7% 77.5% 79.8%
Thispaper  Two-stageSVR  14.8 0.67 80.3% 79.2% 78.1% 78.0% 78.0% 80.2%

stage model provides 0.3%-0.5% higher accuracies
than the one-stage model for various thresholds.
When compared with the best-performing, compet-
ing method based on neural network [24], our predic-
tions result in higher accuracies over all thresholds,
i.e., the differences range between 4% and 5.8%, and
better MAE andcorrelation coefficientvalue.

The three main observations based on the per-
formed empirical evaluation include: (1) the pro-
posed two-state predictor obtains favorable (lower)
error rates when compared with six competing meth-
ods; (2) the improvements are obtained for both real
value and two-state predictions; and (3) the introduc-
tion of the second stage in our design allows for
obtaining improved predictions when compared with
aonestagedesign.

4.2. Confidencevalue for RSA prediction
As one of the goals of this work, we defined confi-
dence values to measure the quality of the predicted
RSA. The confidence values are based on the differ-
ence of predictions made by the two-stage SVR and
the two-stage LR. The following discussion is based
on results of five folds cross-validationtests.

The MAE for two-stage SVR is 0.143 and for two-
stage LR is0.155. Thedifference between the predic-
tions from SVRand LR for the same residuesranges

Figure 4. Bar chart of MAE values for the corresponding
thresholds of confidence value C. The numbers above the
bar show the corresponding coverage, i.e., number of
residues for which the predictions had confidence value
above the threshold. For example, for residues predicted
with which C > 0.99 the MAE equals 12.2, and these
residues cover 14% of the dataset.

SciRes Copyright © 2008

between 0 and 0.294. As a result, the confidence
value C distributed in the interval [0.706, 1] for the
Manesh dataset. Higher C values indicatethat the pre-
dictions from SVR and LR are more consistent, and
therefore the corresponding predictions from the
two-stage SVR are assumed to be more accurate.

The C value of 7101 samples, which covers
7101/50682= 14% of the dataset, are greater than
0.99, and the corresponding MAE of these samples
equals0.122, seeFigure 4. The C value of 12846 sam-
ples, which covers 12846/50682= 25.3% of the
dataset, are greater than 0.98, and the corresponding
MAE of these samples equals 0.131. The C value of
18174 samples, which covers 18174/50682= 35.9%
of the dataset, are greater than 0.97, and the MAE of
these samples is 0.136. When the threshold for C
value is set equal or lower than 0.96, the MAE satu-
rates at 0.143, see Figure 4, which is equal to the
MAE for the entire dataset (without using the confi-
dence values). This shows that the confidence values
can be used to identify a subset of the predictions
which on averagehave better quality than the remain
ing predictions. This way, the user could select a
desired fraction of best performing predictions.
Additionally, the user couldinspect quality of predic-
tion for specific amino acids or groupings of amino
acidsthat sharecertain properties suchas hydrophobici ty,
charge, size, etc.

5. CONCLUSIONS

This paper proposes anovel methodfor thereal value
RSA prediction. The proposed method addressestwo
goals, which include improving the quality of RSA
prediction, and development of a confidence value
that allows for selection of better performing RSA
predictions.

Empirical tests withthe Manesh dataset show that
the proposed method is characterized by lower pre-
diction error when compared with six competing real
value RSA prediction methods. Weal so show that the
PSI-BLAST profile that is commonly used to repre-
sent sequences can by largely reduced by using fea-
ture selection, which results a simpler, interpretable
model and in reduction of the computational time
required to developthe prediction model. Our model
indicates that window size of 13is sufficientand only
about 22% of the PSI-BLAST features are useful for
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the RSA prediction. The selected features are sym-
metrically distributed around the predicted residue
and include hydrophilic resideswhen considering the
distance of 3or 4 positionsfrom the predictedresidue.
The confidencevalue C allows theuser to select asub-
set of thepredictions which onaverage are character-
ized by better quality than theremaining predictions.

The knowledge of the surface residues, which are
predicted by the proposed method and which are
directly involvedin theinteraction with other biolog-
ical molecules, was used, for instance, for identifying
protein function and stability [43, 44], for prediction
of binding sites[4], understanding thebinding mech-
anism of proteins [5], reconstruction of the 3D-
structure of proteins [6-8], and toaid fold recognition
[45, 46]. Therefore, improved prediction of the sur-
face residues would have impact onimproving qual-
ity of solutions for these associated tasks.
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ABSTRACT

Objectives: The abutment connection with
the crown is fundamental to the structural
stability of theimplant system and to the pre-
vention of mechanical exertion that can com-
promise thesuccess ofthe implanttreatment.
The aimof thisstudyisto clarifythe difference
in the stress distribution patterns between
implants with internal and external-hex con-
nections with the crown using the Finite Ele-
ment Method (FEM). Materialand Methods: The
internal and external-hex connections of the
Neossand3iimplantsystemsrespectively, are
considered. Thegeometrical properties of the
implant systems are modeled using three-
dimensional (3D)brick elements.Loading con-
ditions includea masticatoryforce of 200, 500
and 1000N applied to the occlusal surface of
thecrownalongwithanabutmentscrewtorque
of 110, 320and 550Nmm. The von Mises stress
distribution in the crown is examined for all
loading conditions. Assumptions madein the
modelinginclude: 1. halfoftheimplant system
is modeled and symmetrical boundary condi-
tions applied; 2. temperature sensitive ele-
ments are used to replicate the torque within
the abutment screw. Results: The connection
type strongly influences the resulting stress
characteristics within the crown. The magni-
tude of stress produced by the internal-hex
implant systemis generally lower than that of
the external-hexsystem. Theinternal-hex sys-
tem held an advantageby including the use of
an abutmentbetween theabutment screw and
the crown. Conclusions: The geometrical
design of the external-hex system tends to
induce stressconcentrations inthe crownat a
distance 0f2.89mm fromthe apex. At thisloca-
tion thetorque appliedto theabutment screw
also affectsthe stresses,so thatthe compres-
sive stresses on the right hand side of the
crown areincreased. Theinternal-hex system

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

has reduced stress concentrations in the
crown. However, because the torqueis trans-
ferred throughthe abutmentscrew tothe abut-
ment contact,changing thetorque hasgreater
effect onthis hexsystem thanthe masticatory
force. Overall the masticatory force is more
influential on the stress within the crown for
the external-hexsystem andthetorqueis more
influentialontheinternal-hexsystem.

Keywords: Component; Biomedical modelling;
Dental implant; Finite element technique

1. INTRODUCTION

Dental implants are a consistently accepted form of
dental treatment. Clinical researchin oral implantology
has led to advancementsin the biomechanical aspects
of implants, implant surface features and implant
componentry. These advancements in implant
componentry include the modification of the exter-
nal-hex connection between the abutment and crown
to the currently used internal-hex (Figure 1Db)).
Although both internal and external-hex connected
implant systems are extensively used, distinctly dif-
ferent performances areon offerin terms of the stress
characteristics produced within the crown. Observa
tions by practitioners have aided theidentification of
implant componentswhich lead to mechanical failure
of the crown and implant [1-3]. Failure may be
defined asthe point at which the material exceeds the
fracture stress, asindicated by itsstress strain rela
tionship. There are two major factors which can
cause the crown and implant to fail. These are
described below;

- typically, over tightening of the abutment screw
causes failure of the crown for internal and external-
hex systems.

- failure of the implant may also be aresult of over
tightening of the abutment screw or excessive
masticatory loads beingtransferred from theocclusal
plane of the crown to an area of stress concentration
at the interface between the abutment and implant
body.

JBISE
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Using theoretical techniques, such as the FEM, all
mechanical aspectsthat could affect theimplant suc-
cess can be evaluated. FEM has been used exten
sively to evaluate the performance of dental implant
prosthesis [4-15]. Studies by Maeda et al. (2006),
Merz et al. (2000) and Khraisat et al. (2002) haveall
considered the behavior of the stresswithin the abut-
ment screw however disregarding the stress within
the crown. To date no published research appears to
have investigated the stress characteristics in the
crown due toan internal or external-hex system. Ulti-
mately, the outcome of this study will facilitate den-
tal practitioners to identify locations within the
implant system that are susceptible to stress concen-
trations.

2. METHODOLOGY

The modeling and simulation herein are performed
using the Strand7 Finite Element Analysis (FEA) Sys-
tem (2004). The first step of the modelingis to define
the geometry of theimplant system. This isthen fol-
lowed by specifying the material behavior in terms of
the Young's modulus, Poisson's ratio and density for
the implant and componentry. After applying the
appropriate loading and restraint conditions, the

a) Loading and restraint conditions
(with detailedvariables)

b) Implant systems

internal and external-hex systems can be evaluated
for their contributions to the stress characteristics
within thecrown.

2.1. Modelling

Data acquisitionfor theinternal and external-hex sys
tems are obtained from the manufacturer's data.
Shown in Figure 1b) are details of the Neoss (2006)
and 3i (2006) systems.

Shown inFigure 1la) arethe detailed variables con-
sidered in this study. The implant is conical with 2
degrees of taperage, a helical thread, diameter of
4.5mm, and length of 11mm. Different fixed
restraints are applied to the symmetrical edge of the
implant system as compared to the outer edge of
implant thread. The symmetrical edgeis restrained
from rotating around the z-axis and translating
through the x- and y-axis. The outer edge of the
implant thread is restrained from deforming in any
direction. Notethat theseloading and restraint condi-
tions are the same for both internal and external-hex
systems.

For the Neoss and 3i finite element models, the
total numbersof elementsare respectively 13464 and
30420 for the implant, 3564 and 9108 for the abut-
ment, 17424 and 25956 for the abutment screw,
38484 and 47052 for the crown. The total number of
nodal points for the entire Neoss and 3i models are
82547 and 122688 respectively.

2.2. StressMeasuring

As indicated in Figure 1c) the von Mises stresses
along the lines NN (NN,_,, NN, 5 and NN;_,) and Il

(.5, Ny, Hgy, Hys, Hggand Ilg ;) for the Neoss
and 3i systems respectively, are measured for all pos

sible combinations of loading. Note that,for example,
along theline 11,_, the beginning location of the line
isidentified as |1, and theend asll,. Theselocations
are believed by cliniciansto becritical for examining
the stress levelsin the crown. Note that bothlines NN

and Il arechosen on Section AA because the highest
stress magnitudes (compressiveis prominent overten-

¢) Locationsfor measuring stress profile and contour

Figure 1. Finite element modelof internal and external-hex systems.

SciRes Copyright © 2008
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sile) occur onthis plane dueto the masticatory |oad-
ing characteristics.

2.3. Loading Conditions
Masticatory force, F),, isapplied to the occlusal sur-

face of the crown at 100, 250 or 500N, inclined at 45
along the x- and y-axis (Figure 1a). Thepreload, Fp,
of 100.97, 293.72 or 504.84N is applied to the abut-
ment screw through the use of temperature sensitive
elements (Figure 1a)). Note that F\, and F are set to

half of the total magnitude because only half of the
implant system is modelled. Therefore the total F,

modelled is200, 500, 1000N and F is 201.93, 587.44,

1009.67N. The manner of modelling the masticatory
forces and the preload applied tothe abutment screw
is described by van Staden et al. (2008). In this study
both theabutment screw preload, Fp, and surfacearea

between abutment and abutment screw are halved
when compared with that used by van Staden et al.
(2008) due to the modelling assumption af oremen-
tioned. Calculations for the abutment screw surface
pressure, g, confer identical resultsthan that found by
van Stadenet al. (2008).

For the present study a negative temperature (-10
Kelvin, K)is appliedto all the nodal points withinthe
abutment screw, causing each element to shrink. A
trial and errorprocess is appliedto determine thetem-
perature coefficient, C, for both the Neoss and 3i sys-
tems (i.e. Cyeoss @Nd Cy;) that can yield an equivalent

Von Mises stress(M Pa)

NN; 5 2.33.4(MM)

a) Stress profile b) Stress contour

Von Mises stress(M Pa)

111.22.5,3.4.4.5,5.6.6.7(MM)

c) Stress profile d) Stress contour

Figure 2. Stress characteristics whenvarying F,,.
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Table 1. Material propertles.

Component  Description  Young'smo-  Poisons  Density,p
dulus,E(Gpa) ratiov  (g/em3)
Mgt e 105.00 037 451
St o 9300 030 1630
Crown ZuegnialY- 172,00 033 605

g. Itis found that when F,=201.93, 587.44 and 1009.67N
then Cyepe=-3.51x10", -9.28<10" and -15.60x10" /K,

and C5=-0.98x10", -1.80x10 and -2.68x10™* /K, respec-
tively.

2.4. Material Properties

The material properties used are specifiedin termsof
Young's modulus, Poisson's ratio and the density for
the implant and all associated components (Table1).
All material properties are assumed to be linear,
homogeneous and elastic inbehavior.

3. RESULTS DISCUSSION

Zirconia typically used as a dielectric material has
proven adequate for application in dentistry. With its
typical white appearanceand high Young'smoduli it
isideal tobe used inthe manufacturing of sub frames

g
=3
g
27}
i
=
§
>
NNy 2.3 3.4(MM)
a) Stress profile b) Stress contour

g
=3
g

7]
8
s

s
>

I11.22.5,3.4.4.5.5.6.6.2(MM)

c) Stress profile d) Stress contour

Figure 3. Stress characteristics whenvarying F..
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for the construction of dental restorations such as
crowns and bridges, which are then veneered with
conventional feldspathic porcelain. Zirconia has a
fracture strength that exceedsthat of Titanium there-
fore it may be considered asa high strength material.
However with cyclic preload and masticatory loads
the compressive strength of 2.1GPa (Curtis et al.
2005) can easily be exceeded especially for implant
systems with external-hex connections, as confirmed
during thisstudy.

The distribution of von Mises stresses inthe crown
is discussed for boththe internal and external -hex sys-
tems for all combinations of masticatory and preload
forces. Shown in Figure 1c), are the von Mises
stresses measured between locations NN, _, (0-

1.76mm), NN, 5 (1.76-1.87mm) and NN, , (1.87-

3.96mm) for the Neoss system. For the 3i system the
von Mises stresses are measured between locations
1,5, (0-2.38mm), 11, 5(2.38-2.78mm), 115, (2.78-
3.67mm), 11,5 (3.67-4.06mm), |15 ¢ (4.06-4.65mm)
and llg_,(4.65-5.27mm), asshown inFigure 1c).

3.1. Masticatory Force, F,,

The distributions of von Mises stresses along the
lines NN and Il for all values of F,, are shown inFig-
ure 2. Note that the preload, For isset atits medium
value, i.e.587.44N.

In general, whenthe applied masticatoryforce, F,,
isincreased, the von Mises stresses also increase pro-
portionally, because the systembeing analysed islin-
ear elastic. When F, increases the stress along the
line NN increases showing two peaks along the line
NN , (refer to Figure 2a)). Thelarger of these two
peaks occurs at adistance of £3.8mm inlength from
NN;. Thisstress peak (ascan be identifiedin Figure
2b)) is caused by a sharpcorner and suddenchange in
section at thispoint.

Elevated stressconcentrations areidentified at the

beginning of thelinell,_, (Figure 2c) and Figure 2d)).

This stress peak, as can beidentified in Figure 2c), is
caused by a sharp corner at this point. For the 3i sys-
tem, the volume of the crown exceeds that of the
Neoss system, thereby suggesting that the 3i crown
may endeavor greater resistance to the applied
masticatory forces. However, eventhough the Neoss
crown has a thinner wall thickness along the line
NN ,, reduced stresses are still evident due to the

abutments high Young's modulus. Overall, thedesign
differences between the Neoss and 3i systems ulti-
mately results inthe 3i systemhaving higher stresses
when F,, isincreased.

3.2. Preload Force, Fp
Toinvestigate the effect of different preload Fp, Fy,

is kept as aconstant and its medium value, i.e. 500N
is considered herein. The distributions of von Mises

SciRes Copyright © 2008

stresses along the linesNN and Il for all values of Fp

are shown inFigure 3.
As found for F),, when F increases the stresses

calculated along theline NN increase, showing two
peaks along the line NN,_, (refer to Figure 3a) and

Figure 3b)). Also, as found for F,, elevated stress
peaks areidentified at the beginning of theline Il ,

(Figure 3c) and Figure 3d)). Overall, all values of
F\ cause greater stressesalong lines NN and I, than

do varyingvalues of Fp.

4. DISCUSSION

FEA has been used extensively to predict the
biomechanical performance of the jawbone sur-
rounding a dental implant [21, 22]. Previous research
considered the influence of the implant dimensions
and the bone-implant bond on the stress in the sur-
rounding bone. However, to date no research has
been conducted toevaluate the stressproduced by dif-
ferent implant to crown connections (i.e. internal and
external-hex). The analysis completed in this paper
uses the FEM to replicate internal and external-hex
systems when subjected to both F\, and F loading

conditions. As shown in Table 2, two stress peaks
were revealed along thelines NN and Il at locations
3.76 and 2.89mm from the top. The stress values
shown were calculated with the other variables (i.e.
Fy or Fp) set toits average.

The mastication force F,, is applied on the

occlusal surface of the crown, evenly distributed
along 378 nodal locations (Figure 1a), and orien
tated at 45 in the x-y plane. Thisinduces compres-
sive stressesin theright hand side of the crown and
tensile inthe left. Varying F,, from 200 to 1000N for

the internal and external-hex systems resultsin a
change in von Mises stress of 545.64 (818.47-
272.82MPa) and 698.09M Pa (1047.14-349.05M Pa)
respectively. The geometrical design of theexternal-
hex system tends to induce stress concentrations,
located 2.89mm fromthe apex inthis study. For this
system, a stress concentration at this point is also
induced by Fp, increasing the compressive stresses

on the right hand side of the crown. Increasing Fp

from its minimumto maximum values, for the exter-
nal-hex system, increases the stress by 485.46MPa
(951.67-466.21MPa).

The internal-hex system has reduced stress concen-

Table 2. Von Misesstress (MPa) incrown (location of stress
recording in brackets).

Fm (N)

500

ariables Fp (N)

200 1000 [201.93|587.44/1009.67

Line
NN
(3.76mm)

I
(2.89mm)

272.82|545.64|818.47 |231.55|545.64/891.83

349.05698.09|1047.14466.21/698.09|951.67
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trations, demonstrating that this design is less sus-
ceptible to stress concentrations within the crown.
However, because of the transfer of the preload
through the abutment screw to abutment contact,
changing F is more influential on this hex system

than F,,. Overall F\,is more influential on the stress
within the crown for the external-hex system and Fp
is more influential on the internal -hex system.

5. CONCLUSION

Thisresearchis apilot study aimed at offering anini-
tial understanding of the stress distribution charac-
teristics in the crown under different loading condi-
tions. Realistic geometries, material properties, load
ing and support conditions for the implant system
were consideredin thisstudy. The geometrical design
of theexternal-hex systemtends toinduce stresscon-
centrations inthe crown at adistance of 2.89mm from
the apex. Atthis location, Fp also affectsthe stresses,

so that the compressivestresses on the right hand side
of the crown are increased. The internal-hex system
has reduced stress concentrationsin the crown. How-
ever, because the preload is transferred through the
abutment screw to the abutment contact, changing Fp
has greater effect on thishex system thanF,,. Overall
F\ is moreinfluential on the stresswithin the crown
for the external-hex system and F is more influen
tial on theinternal-hex system.

Future recommendations include the evaluation
of other implant variables such as the implant wall
thickness and thread design. Ultimately, all implant
components can beunderstood in termsof their influ-
ence onthe stressproduced withinthe implantitself.
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ABSTRACT

In the post-genomic era, the construction and
control of genetic regulatory networks using
gene expression data is a hotresearch topic.
Boolean networks (BNs) and its extension
Probabilistic Boolean Networks (PBNs) have
been served as an effective tool for this pur-
pose. However, PBNs are difficultto be used
in practicewhen thenumber of genes islarge
because of the huge computational cost.In this
paper,we propose a simplified multivariate Markov
model for approximating a PBN. The new model
can preserve the strength of PBNs, the ability to
capture theinter-dependence of the genesin the
network, and at the same time reduce the com-
plexity of the network and thereforethe compu-
tational cost. We then present an optimal con-
trol model with hard constraints forthe purpose
of control/intervention of a genetic regulatory
network. Numerical experimental examples based
on the yeast data are given to demonstrate the
effectiveness of our proposed model and control

policy.

Keywords: Gene expression sequences; Multivariate
Markov chain; Optimal control policy; Probabilistic
Boolean networks

1. INTRODUCTION

An important issue in systems biology is to under-
stand the mechanism in which cells execute and con-
trol ahuge number of operationsfor normal functions,
and also theway in whichthe cellular systemsfail in
disease, eventually todesign some control strategy to
avoid the undesirable state/situation. Many mathe
matical models suchas neural networks, linear model,
Bayesian networks, non-linear ordinary differential
equations, Petri nets, Boolean Networks (BNs) and
its generalization Probabilistic Boolean Networks
(PBNs), multivariate Markov chain model etc.

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

[1,2,4,11,15,16,17,21] have been proposed. Among
all the models, BNs and PBNs have received much
attention. The approach isto model the genetic regu-
latory system by a Boolean network and infer thenet-
work structure from real gene expression data. Then
by using the inferred network model, the underlying
gene regulatory mechanismscan be uncovered. This
is particularly useful asit helpsto make useful pre
dictions by computer simulations. We refer readersto
the survey paper by Shmulevichet al. [18, 19] andthe
book by Shmulevich and Dougherty [20].

The BN model was first introduced by Kauffman
[12, 13, 14]. The advantages of this model can be
found in Akutsu et al. [1], Kauffman [14] and
Shmulevich et al.[17]. Sincegenes exhibit switching
behavior [10], BN models have received much atten-
tion. Ina BN, each geneis regarded as avertex of the
network and is quantized into two levels only (ex
pressed (1) or unexpressed (0)). We remark that the
idea and themodel can beextended easily tothe case
of more thantwo states. The target gene is predicted
by several genes called its input genes through a
Boolean function. If the input genesand the Boolean
functions are given, a BN isdefined. The only ran-
domness involved here is the initial system state.
However, the biological system has its stochastic
nature and the microarray data sets used to infer the
network structure are usually not accurate because of
the experimental noise in the complex measurement
process. Thus stochastic models are more reasonable
choices. To overcome the deterministic nature of a
BN, Akutsu et al.[1] proposed thenoisy Boolean net
works together with an identification algorithm. In
their model, they relax the requirement of consis-
tency imposed by the Boolean functions. Regarding
the effectivenessof a Booleanformalism, Shmulevich
et al. [17] proposed aPBN that canshare the appeal-
ing rule-based propertiesof Boolean networksand it
is robust inthe presence of uncertainty. The model
parameters can be estimated by using Coefficient of
Determination (COD) [8].
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The dynamicsof thePBN can be studiedin the con-
text of standard Markov chain [17, 18, 19]. This
makes the analysis of the network easy. However, the
number of parameters (state of the system) grows
exponentially with respect to the number of genesn.
Therefore it is natural to develop heuristic methods
for model training or to consider other approximate
model. Here we propose a simplified multivariate
Markov model, which can capture both the intra- and
inter-associations (transition probabilities) among
the gene expression sequences. The number of
parameters in themodel is only O(nz) wheren is the
number of genes in a captured network. We remark
that this order is already minimal. We then develop
efficient model parameters estimation methodsbased
on linear programming. We further propose an opti-
mal control formulation for regulating the network so
as to avoid some undesirable stateswhich may corre-
spond to somedisease like cancer.

The rest of the paper is structured as follows. In
section 2, we present the simplified multivariate
Markov model. In section 3, the estimation method
for model parametersis given. Insection 4, an opti-
mal control formulation isproposed. In section 5, we
apply the proposed model and method to some syn-
thetic examples and also the gene expression dataset
of yeast. Concluding remarks are then given to
address further research issuesin section 6.

2. THEMULTIVARIATEMARKOV

CHAIN MODEL

In thissection, wefirst review a multivariate Markov
chain model proposed in Ching, et al. [3] for model-
ing categorical time series data. We remark that the
model hasbeen first applied to predicting demand of
inventory of correlated products. Later the model
was applied tothe building of genetic regulatory net
works [4] from gene expression data. However, the
number of parameters isstill large and further reduc-
tion of themodel parameters isnecessary and asim-
plified model was proposed in [5]. In the remainder
of this section,we present thesimplified multivariate
Markov chain model.

Given n categorical time sequences, we assume
they share the same state space M. We denote the
state probability distribution of Sequencej at timet
byV,", j=1,2,-,n . In Ching, et al. [3], thefollowing
first-order model was proposed to model the relation-
ships among thesequences:

(1)
Where

A;20 for 1<i,j<n and ZA{.{.:I. (2)

j=1

HereA ij is the non-negative weighting of Genej to
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Gene i. The matrix P(”) is a transition probability
matrix for thetransitions of statesin Sequencej to
states in Sequencei in one step, see for instance[3].
In matrix form wehave

where

We note that the column sum of Q is not equal to one

(the column sumof each P(”) is equal to one). The fol-
lowings aretwo propositions[3] relatedto someprop-
erties of themodel.

Proposition 2.11f A ;; >0 for 1<, j<sn, then thematrix
Q has an eigenvalue equal to 1 and the eigenvalues of Q
have moduluslessthanor equal to 1.

Proposition 2.2 Suppose that p) (1<i,j<n) are
irreducibleand A ;; >0for 1=i,j<n . Thenthereis
avector

V=V v v
such that

V=0V

and

where mis the number of states.

In Proposition 2.2, we require all P(”) are irreduc-
ible. But actually, if Q isirreducible, we can get the
same conclusion. If the model is applied to gene
expression data sequences, one may take M={0,1}
and Vt(l) to bethe expression level of thei-th gene at
the timet. From (1), theexpression probability distri-
bution of the i-th gene at time (t+1) depends on the
weighted average of P(”)Vt(n. We remark thatthisis a
first-order model and A j; actually givethe weighting

of how much Genei depends on Genej. In Ching, et
al. [4], this model has been used to find cell cycles.
The most proper parent genes for the i-th gene

(i.e.,Vt(L)l ) can be retrieved from the corresponding
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Aij . Thehigher the valueof A ij » the stronger the par-
ent and child relationship between i-th and j-th gene
will be. When this processis repeated for each j, the
whole genetic network can be constructed. Given a
set of genes

If for any gene in thisset, the rest genes are theonly
candidates being a corresponding parent gene, then
this set of genes forms acycle.

A simplified model was proposedin Chinget al. [5]
by assuming

PP =] if i=#j. (3)

The simplified model has smaller number of
parameters and it has been shown to be statistically
better in termsof BIC, seefor instance [5]. Moreover,
Propositions 1 and 2 still hold for the simplified
model.

3. ESTIMATION OF MODEL PARAME-
TERS

In this section, we present methodsto estimate P(”)
and A j; . We estimate thetransition probability matrix
P(”) by the following method. First wecount the tran
sition frequency of the states in the i-th sequence.
After making anormalization, we obtain an estimate
of the transition probability matrix. We have to esti-
mate n such m-by-mtransition probability matricesto

get theestimate for P(”) as follows:

(i) (i)

From F °, one can obtain the estimate for P " as
follows:

Where

Besides ,we needto estimatethe parametersh ;; .

It can be shown that the multivariate Markov model
has a*stationary vector” V in Proposition 2. The vec
tor V can be estimated from the gene expression
sequences by computing the proportion of the occur-
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rence of each geneand wedenote it by

Y A (1) ~(2) ~ (MNT
V=(V".Vv75.v ).
Wetherefore expect that
Q\A/ ~V.

From the above equation, it suggestsone possible
way to estimate theparameters A={ A i } asfollows:

(4)
subject to

> A,=1 and 2,20, Vj.

J=1

We note that the following formulation of n linear
programming problems can give the necessary solu-
tions of Problem(4). For eachi:

min w,

A

Subject to
(5)

Where

B =[v" [V [ PO 19

and
e=(1,1,...,1)T.

Here) j; isthei-throwof A.

We remark that the estimation method can be
applied to the simplified model (3). Weremark that
other vector norms suchas * ,and - ,can also be
used but they have different characteristics. The for-
mer will resultin a quadratic programming problem
while will still result in alinear programming
problem. Themain computation cost comes from solv-
ing the linear programming problem. In the estima-
tion of , itinvolves only counting frequencies of
transitions and therefore the cost is minimal. Once
the model parameters areavailable, onecan then con-
struct the underlying genetic network easily. We will
demonstrate this in the section of numerical exam-
ples. The model can also be further modified to
include extra conditions such as someA jare known
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to be zero. Such information can be included by add-
ing the constraintsA ;;=0 . Furthermore, for large net-

work, it isknown that thein-degree follows the Pois-
son distribution while the out-degree follows the
power-law, i.e., the number of out-degree to some
negative power. These important properties can also
be easily included inour proposed model [24].

4. THE OPTIMAL CONTROL FORMU-

LATION

In this section, we present the optimal control prob-
lem based on the simplified multivariate Markov
model (3) and formulate it based on the principle of
dynamic programming. In the simplified model (3)
we proposed above, the matrix Q can be regardedas a
“transition probability matrix” for the multivariate
Markov chainin certainsense, andV, can be regarded

as ajoint state distribution vector. We then present a
control model based on the paper by Ching, et al.[6].
Beginning with an initial joint probability distribu-
tion V, the generegulatory network (or themultivari ate
Markov chain) evolvesaccording to twopossible tran-
sition probability matrices Q, and Q.. Without any
external control, we assume that the multivariate
Markov chain evolves according to afixed transition
probability matrix Q, (= Q). When a control is

applied to the network at one time step, the Markov
chain will evolve according to another transition
probability Q, (with morefavorable steady states or a

more favorable state distribution). It will then return
back to Q, again if thereis no control. We note that

one can have more than one type of controls, i.e.,
more than one transition probability matrix Q, to

choose in each timestep. For instance, in order to sup-
press the expression of a particular gene, one can
directly toggle off this gene. One may achieve the
goal indirectly by means of controlling its parent
genes which have aprimary impact on its expression
too. But for the simplicity of discussion, we assume
that there isonly one direct possible control here. We
then suppose that the maximum number of controls
that can be applied to the network during a finite
investigation period T (finite-horizon) is K where
K<T. Theobjective hereis tofind an optimal control
policy such that the state of the network isclose to a
target statevector Z. Without loss of generality, here
we focus on the first gene among all the genes.

Accordingly, we remark that the sub-vector z®¥
denotes the vector containing the first two entries in
Z. It can bea unit vector (adesirable state) or aprob-
ability distribution (aweighted average of desirable
states). Thecontrol system ismodeled as:

SciRes Copyright © 2008

where v(i, i, i) represents all the possible net-

work state probability distribution vectors upto time
t. We define

to bethe set which containsall the possible state prob-
ability vectors upto timet. We notethat one can con
duct aforward calculation to compute all the possible
state vectorsin the sets U(1),U(2),..U(T) recursively.
Here the main computational cost is the matrix-

vector multiplication andthe cost isO((2n)2) wheren
is the number of genes inthe network. We note that
some state probability distribution actually does not
exist because the maximum number of controls isK,
the total number of vectorsinvolvedisonly

For example if K=1, thecomplexity of the abovealgo-
rithm isO(T(2n)?).

Returning to our original problem, our purpose is
to make the system go to the desirable states. The
objective hereis to minimize the overall average of
the distances of the state vectors v(i,..i;) (t=1,2,..,T)

to thetarget vectorz, i.e.,

. 1 & ..
min V(i) 2],

v (ipiy iy )eU(T) T —

(6)

Tosolve (6), we haveto define the following cost
function

as the minimumtotal distance tothe terminal state
at time T when beginning with state distribution vec
tor v(w,) at timet and that the number of controls

used is k. Here W, is a Boolean string of length t.

Given theinitial state of the system, the optimization
problem can beformulated as:

(7

subject to:

To solve the optimization problem, one may con-
sider the following dynamic programming formula
tion:
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(8)
Here Ow,_; and 1w, ; are Boolean stringsof sizet.

The first term in the right-hand-side of (8) is the cost
(distance) when no control is applied at timet while
the second term isthe cost when acontrol isapplied.
The optimal control policy can beobtained duringthe
process of solving (8). Weremark that instead of con-
sidering the objective(6), one canconsider

With{ a ;}a new weighting and a different vector
norm -, .Furthermore, it is interesting to study the
case of infinite horizon. In thiscasea , is chosento be

t-1
(1-a)a for somediscount factora €(0,1).

5. NUMERICAL EXPERIMENTS
5.1. A Simple Example
In thissubsection, we consider asmall five-gene net-
work whose gene expression series can be found in
the Appendix. Figur e 1 showsthe five-gene network.
We note that Gene 1 and Gene 4 depends on all the
other genes, Gene 2 depends on Gene 1 and Gene 3
only, Gene 3 depends on Gene 1 and Gene 2 only,
while Gene 5depends on itself only.

To solve thelinear programming problem in equa-
tion (5), infinity norm is chosen for all numerical
experiments. Thematrices A, P, and Q, (without cor-

trol) are obtainedfrom the proposedmodel as follow:

Where
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Figure 1. The Five-gene Network.

and

The target here isto suppress the first gene but no
preference on other genes. The control we used is to
suppress the first gene directly. Thus the control
matrix isasfollows:

I 1
QlZDlag([O 0]9]25]'35]29]2)'

Without lossof generality, we assume that the ini-
tial statevector isthe uniformdistribution vector (for
each gene), thatis

Moreover, weassume that thetotal timeTis12and
we try several different numbers of controls
K=1,2,3,4,5. Tablel shows the numerical results. All
the computations were donein aPC with Pentium D
and Memory 1GB with MATLAB 7.0. In Table 1,
"Policy" represents the optimal time step at the end
of which acontrol should be applied. For instance,
means that the optimal control policy is to apply the
control at the end of the t=1,2,3-th time step. From
Table 1, observable improvements of the optimal
value is obtainedwhen K increases from 1 to5.

5.2. TheYeast Example

Table 1. Numerical results forthe 5-gene network.

K 1 2 3 4 5
Control
Policy [ [21 11,23 [1237] [12378]
objective 5628 0.4277 0.3379 0.2717  0.2090
Value
Timein 002 002 006 015  0.23
Seconds
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In this subsection, we apply our proposed simplified
multivariate Markov models to the yeast data
sequences [23]. Genome transcriptional analysisis
an important analysis in medicine, etiology and
bioinformatics. One of the applications of genome
transcriptional analysis is used for eukaryotic cell
cycle in yeast. The fundamental periodicity in
eukaryotic cell cycleincludes the eventsof DNA rep-
lication, chromosome segregation and mitosis. Itis
suggested that improper cell cycle regulationleads to
genomic instability, especially inthe etiology of both
hereditary and spontaneous cancers [9, 22]. Eventu-
ally, it is believed to play oneof the important roles
in the etiology of both hereditary and spontaneous
cancers. Thedataset used inour study isthe selected
set from Yeung and Ruzzo (2001) [23]. In the
discretization, if an expressionlevel isabove (below)
a certain standarddeviation from theaverage expres-
sion of the gene, it is over-expressed (under-
expressed) andthe corresponding stateis1 (0)[4].

To solve the linear programming problem in (5),
infinity norm ischosen for all numerical experiments.
The matrices A,P,and Q, (without control) are

obtained from the proposed model. The initial state
vector isassumed to be the uniform distribution (for
each gene) vector

V=2 (L)

In addition, we assume that thetotal time T is 12
and several different maximum numbers of controls
K=1,2,3,4,5 are triedin our numerical experiments.
The target is to suppressthe first genebut no prefer-

ence onother genes. That isthe target state vector z@

T
is (1,0) . Thecontrol we used isto suppress the first
gene directly. Thus the control matrix Q, takes the

same formas thefollowing:

It means thatwe want tocontrol the first gene such
that it will be unexpressed with more probabilities.
The transitions of all the other genes will not be
changed. Table 2 reports the numerical results and
the computational time for different numbers of con
trols K. From Table 2, observable improvements of
the optimal valueis obtained when K increases from
1 to 5. For example, if we will conduct 4 controls
totally in the 12 time steps, we need to suppress the

Table 2. Numerical results forthe yeast dataset.

K 1 2 3 4 5
Control
Policy [0 [2  [123] [1234] [12345]
Objective 6430 0.5751 0.5165 0.4582  0.4000
Value
Timein 4.00 2060 67.90 152.88 245.95
Seconds
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first geneinthe first 4 steps, and will not control itin
other steps. These experiments show that even the
number of genes (384 genes in this data set) is com-
paratively large, the method still can find the control
policiesfast.

6. CONCLUDING REMARKS
In this paper, we proposed a simplified multivariate
Markov model for approximating PBNs. Efficient
estimation methods based on linear programming
method are presented to obtain themodel parameters.
Methods for recovering the structure and rules of a
PBN are alsoillustrated in details. We then give an
optimal control formulation for control the network.
Numerical experiments on synthetic data and gene
expression data of yeast are givento demonstrate the
effectiveness of our proposed model and formulation.
For future research, we will extend the control
problem to thecase of havingmultiple control policy.
Wewill develop efficient heuristic methodsfor solv-
ing the control problem and genetic algorithm is a
possible approach [7]. Extension of the study to the
case of infinite horizon is also interesting. Finally,
we will also apply our model to more real world
datasets.

APPENDIX
The five geneexpression sequences.
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ABSTRACT

In this paper, we present a method using
video codec technology to compress ECG
signals. This method exploits both intra-beat
and inter-beat correlations of the ECG sig-
nals to achieve high compression ratios (CR)
and a low percent root mean square differ-
ence (PRD). Since ECG signhals have both
intra-beat and inter-beat redundancies like
video signals, which have both intra-frame
and inter-framecorrelation, video codec tech-
nology can be used for ECG compression. In
order to do this, some pre-process will be
needed. The ECG signals should firstly be
segmented and normalized to a sequence of
beat cycles with the same length, and then
these beat cycles can be treated as picture
frames and compressed with video codec
technology. We have used records from MIT-
BIH arrhythmiadatabase to evaluate our algo-
rithm. Results show that, besides compres-
sion efficiently, this algorithm has the advan-
tages of resolution adjustable, random
access and flexibility forirregular period and
QRS falsedetection.

Keywords: ECG compression; Video
CODEC; QRS detection; Arithmeticcoding

1. INTRODUCTION
The electrocardiogram (ECG) isan important tool for
diagnosis of heartdiseases. Thevolume of ECGdata
produced by modernmonitoring system canbe quite
large over along period of time and data compression
is often needed for efficient process, store and trans-
mit of such data. In the past, many ECG compression
methods were proposed and could beclassified into
three major categories [1]: a) Parameter extraction
techniques. b) Transform-domain techniques. c)
Direct time-domain techniques.

In thispaper, wepresent amethod for compression
of ECG data using video codec technology. Since
ECG signals have both intra-beat and inter-beat cor-

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

relations like video signals with intra-frame and
inter-frame correlations, video codec technology can
be usedfor ECG compression. For ECG signals, there
is alittle difference, so some pre-process will be
needed: ECG signals should be segmented and period
normalized to a sequence of beat cycles with the
same size. Then these beat cycles can be treated as
‘picture frames' andcompressed with avideo codec.

In this work, we present a method using video
codec technology to compress ECG signals. This
method exploits both intra-beat and inter-beat corre-
lations of the ECG signals to achieve high compres
sion ratios (CR) and a low percent root mean square
difference (PRD). Although video codec technology
was developed to compress video signals, it can be
used to compress other signals aswell, and we illus
trate how video codectechnology can be usedto com-
press ECG signals.In Section |1, we take abrief over-
view of video codec technology. Section Il presents
the coding algorithm. Experimental results and com-
parisons with other algorithm are presented in Sec-
tion IV. At last, we provideconclusions.

2. OVERVIEWOF VIDEOCODEC TECH-

NOLOGY

Representing video material in a digital form
requires a large number of bits. The volume of data
generated by digitizing avideo signal is too large for
most storage and transmission systems. This means
that compression is essential for most digital video
applications. Statistical analysis of video signalsindi-
cates that thereis a strong correlation both between
successive picture frames and within the picture ele
mentsthemselves. Theordicdly decorrelation of these
signals can lead to bandwidth compression without
significantly affectingimage resolution. A video sig-
nal consists of a sequence of individual frames. Each
frame may be compressed individually using an
image CODEC, such as JPEG. This is described as
intra-frame coding for each frame isintra coded with-
out any reference to other frames. However, better
compression performance may be achieved by
exploiting the temporal redundancy in a video
sequence or the similarities between successive

JBISE



D.H. Chenet al./J. Biomedical Science and Engineering 1 (2008) 22-26 23

Figure 1.Video CODEC with prediction.

video frames. This may be achieved by introducing
two functions: 1. Prediction: create a prediction of
the current frame based on one or more previously
transmitted frames. 2. Compensation: subtract the
prediction from the current frame to produce aresid-
ual frame. Then the residual frame is compressed by
an image CODEC. In order to decode the frame the
decoder adds the prediction to the decoded residual
frame. This is described as inter-frame coding for
frames are coded based on some relationship with
other video frames. Figure 1 shows the process
above.

3. METHOD

3.1. System overview

The redundancies inECG signals canbe broadly clas
sified into two types. The redundancies in asingle
ECG cycle and the redundancies across ECG cycles.
These redundancies are sometimes referred to as
intra-beat and inter-beat redundancies[2]. These are
the same with redundanciesin video signals. On the
other hand, thereis a littledifference between video
signals and ECG signals: A video signal consists of a

Figure 2. Functional block diagram of the encoder.

SciRes Copyright © 2008

sequence of individual framesand theseframes are of
the same size. But for ECG signals, these ‘frames' or
beat cyclesare jointed together, and even the sizes of
them arenot thesame. The comparability of the ECG
signals and video signals motivates us to design a
novel ECG compression scheme using video codec
technology, in which the scheme employs the arith-
metic coding for intra-beat redundancies, and a pre-
dictor using cross correlation for inter-beat redun-
dancies.

The functional block diagram of the proposed cod-
ing scheme isshown in Figure 2. Theencoder system
consists mainly four parts: segmentation, period nor-
malization, predictor and residual coding. The pro-
posed encoding algorithm isbriefly described as fol-
lows. Since ECG signals are continuousand in order
to use compress them using avideo codec scheme,
firstly we should segment them to a sequence of
cycles, by noting that the length of each beat cycle
may be varying, a period normalization process is
then proceeded to ensure that the size of each beat
cycleis adjustedto be thesame. Initially, the counter
is set to zero and we select thefirst cycle as the pre-
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diction cycle and compress this cyclewith no predic
tion, then any time when there is a new cycle, the
counter is added by one and the cross correlation
coefficient of the new cycleand the predictioncycle
is calculated. If the result isless than the threshold,
which indicatesthat thisnew cycleand theprediction
cycle have littlesimilarity, or the countis larger than
L (used for random access), we set the counter to zero
and set this new cycle asthe prediction cycle and com-
press it with no prediction, elsethe prediction cycle
is subtracted from this new cycle, and the residual
cycle is then quantized and compressed with the
arithmetic coding.

3.2. QRSdetection and segmentation

To cut continuous ECG signals to individual beats,
the peaks of QRS waves should be detected firstly to
identify each heartbeat. We use a different method to
do this: Let x(i) denote the ECG signal, and a corre-
sponding differentsignal x'(i) isgiven by

x'(i) = 2x(i)— x(i + n)—x(i—n)

wherenisasmall integer determined by the sampling
frequency (typically a value between 0.01f and 0.02f
is used, where f is the sampling frequency). Several
zero points are added to the front and the end of the
ECG signals for calculation of thefirst and last few
points of x'(i). Whenselect proper n for different sam-
ple frequency, (1) islike a band pass filter. It makes
the QRS waves be amplified and the other waves be
weaken. Figure 3 shows a typical ECG signal andits
corresponding difference signal generating by (1).
The sample frequencyis 360Hz withn equalsto5.

For the different signal x'(i), we can use a similar
scan algorithm in[3] for the QRS detection. Results
show that, our method has ahigher detection rate.

After each QRS peak of heartbeat cycles is identi-
fied, theoriginal ECGsignal iscut at every QRS peak.

(1)

3.3. Period normalization
Since each ECG period can havea different duration,
and in orderto compress themusing video codectech-

Voltage mV

1000 1500

Voltage mV

2 500

1000 1500

Figure 3. ECG signal and corresponding differentsignal.
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nology, we normalize each ECG period to the same
length. Weimplement this using a method similar to
the one described in [4]. Let X, =[X,(1)X(2)** X, (Ny)]
denote thek-th ECG cycle. Thenthe period-normalized ECG
cycley, =y (DY (2) -y (N)] iscomputing using

(2)
Where  isaninterpolate version of the samples
X (n) ,and t'= k , N istheperiod of the k-th

ECG cycle, and N is the normalized period. We uti-
lize cubic-splineinterpolation [5] to determine

The N above can be thought as the resolution, like
the spatial resolution (typically 352X 288 or 352X
240 pixelsin MPEG-1) in avideo encoder. Thevalue
of N is predefined in consideration of the sample fre
quency andit can affect theCR andthe PRD.

After period normalization, each ECG period will
be with the same length like video frames with the
same size. Then we can use similar video CODEC
technology to compressthem.

3.4. Prediction

In part 2we know that, in order toexploit the similar-
ities between successive video frames, two functions
prediction and compensationare introduced. The key
to thisapproach isthe prediction function: if the pre-
diction is accurate, the residual frame will be con-
taining little dataand will hence be compressed to a
very small size by the image CODEC.

For video compression, the simplest predictor is
just the previous transmitted frame. We can utilize
this in ECG compression. Since successive ECG
cycles are very similar all thetimes, we makea small
change and introduce the cross correlation coeffi-
cient. Cross correlation coefficient is a standard
method of estimating the degree to which two series
are correlated. Consider two series x; and y; where

i=0,1,2... N— 1, the cross correlation coefficient is
defined as

3

Where x and y are the means of the corresponding
series.

Prediction with crosscorrelation is shownin Fig-
ure 2. Initially we set the counter to zero. The first
ECG beat cycle isset asthe prediction beat cycleand
compressed with no prediction. Any time when there
is anew beat cycle, the counter is added by one and
the cross correlation coefficient of the new beatcycle
and the prediction beat cycle is calculated. If the
counter is smaller than L (predefined for random
access) and the correlation result is higher than the
threshold (typically 0.95 or more), which indicates
that the prediction beat is similar with the current
beat to a great extent, then we useit asthe prediction
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of the current beat. Otherwise, we use the current
beat to replace the prediction beat and compress it
with no prediction and set the counter to zero again.

3.5. Quantization and Coding

The quantization stage removes less important infor-
mation, such asinformation that doesnot have asig-
nificant influence on the appearance of the recon
structed ECG signals, making it possibleto compress
the remaining data.

In this paper, we use the arithmetic coding [6] for
compression of the residual signal andthe periodinfor-
mation. An arithmetic encoder converts a sequence of
data symbolsinto a singlefractional number. The lon-
ger the sequenceof the symbols, the greater thepreci-
sion required to represent the fractional number.
Arithmetic coding providesa practical alternativeto
Huffman coding and can more closely approach the
theoretical maximum compression [7].

3.6. Codingof beat cycles

In the video coding standard MPEG-1, each frame of
video is encoded to produce acoded picture. There
are three main types: |-pictures, P-pictures and B-
pictures. |-pictures are intra-coded without any
motion-compensated prediction. An |-picture isused
as a reference for further predicted pictures. P-
pictures are inter-coded using motion-compensated
prediction from a reference picture. B-pictures are
inter-coded using motion-compensated prediction
from two reference pictures, the P- and/or |-pictures
before and after the current B-picture. However, in
our proposed schemefor ECG compression, we only
introduced two types: |-cycles and P-cycles.

I-cycles are useful resynchronization points inthe
coded bit stream: because it iscoded without predic
tion, an |-cycle may be decoded independently of any
other coded cycles. Thissupport random access by a
decoder in some degree (a decoder may start decod-
ing the bit stream at any I-cycle position). However,
an I-cycle has poor compression efficiency because
no predictionis used.

In MPEG-1 dueto the existence of several picture
types, a group of pictures (GOP) is the highest level
of the hierarchy. A GOP isa series of one or morepic-
ture to assist randomly access into the picture
sequence. Thefirst coded picture inthe groupisanl-

Figure 4. Group of cyclesin coded bitstream.
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picture. Itis followed by an arrangement for P- and
B-pictures. Likewise, we introduce the group of
cyclesin our scheme to assist random access into the
ECG data. The group of cycles length isdefined as
the distance between |-cycles, which is represented
by parameter L in Figure 2. A short group of cycles
may support random accesswell at the cost reducing
the compression ratio. Figure 4 shows a typical
group of cycles.

4. RESULT

We used the MIT-BIH arrhythmia databaseto evalu-
ate the performance of the proposed scheme. The
ECG dataused inour experimentsare sampled at 360
Hz and eachsample has aresolution of 12bit per sam
ple. Through period normalization, we have made the
number of samples in each beat cycle equal 240.
Although for atypical hart rateof 75 beat per minute,
288 samplesineach beat cyclewill be good, but arel-
ative small sampleswill increase compression ratio
without obviously affecting the reconstruction qual-
ity.

We use two widely used measures, the compres-
sion ratio (CR) and the percent root mean squaredif-
ference (PRD) to evaluate our scheme. The CR and
PRD aredefined as

(4)

Where B,; is the total bits of theoriginal ECG sig-
nal, By, is thetotal bits of the ECG signal after com-
pression.

(5)

Where x,,; and X, . are the original and the recon-

structed ECG signals, and n denotes thelength of the
signals.

Figure 5and Figure 6 show example of ECG data
from record 117 andrecord 119 with irregular period
before and after compression.

In Table 1, the proposed method is compared with
other methodsin literaturefor record 117 and 119.

Figure 5. Reconstruction example of MIT-BIH record 117 with
quantization level of 10 BV and 20 WV : (a) original signal of
channel 1, (b)reconstruction signal ofchannel 1 with quantization
level of 10 BV , CR=16 and PRD=2.87, (c) reconstructionsignal of
channel 1 with quantization level of 20 UV ,CR=30.79 and
PRD=5.50.
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Figure 6. Reconstruction example of MIT-BIH record 119 with
quantization level of 10 UV and 20 WV : (a) original signal of
channel 1, (b) reconstruction signal of channel 1 with
guantization level of 10 LV, CR=14.2 and PRD=3.03, (c)
reconstruction signal of channel 1 with quantization level of
20 vV ,CR=24.2 and PRD=6.25.

Tablel.PRD comparison ofdifferent algorithms for record
117 and 119.

Algorithm Record CR PRD (%)
Luet. al[8] 117 8:1 1.18
Hilton[9] 117 8:1 2.6
Djohanet. al[10] 117 8:1 3.9
Proposed 117 8.1:1 1.13
Proposed 117 16:1 2.87
Proposed 117 30.8:1 5.5
Leeet.al[1] 119 24 10.5
Luet. al[8] 119 21.6 5.5
Proposed 119 14.2 3.03
Proposed 119 24.2 6.25

5. CONCLUSION

The main contribution of this paper is to provide an
effective and efficient ECG compression scheme
using video codectechnology. Wehave tested theper-
formance of the proposed scheme by compressing
record from the MIT-BIH arrhythmia database and
compared the resultswith other methods. The results
show that theproposed algorithm comparesfavorable
to other methods in literature. Besides compression
efficiently, the proposed algorithmbenefits from char-
acteristics of the video codec and has the following
advantages: a) Resolution adjustable. By changing
the length N in section 3.3, we can achieve different
resolution just likespatial resolution inavideo codec;
b) Random accessible. In coding stream of the ECG
data, the I-cyclesare intra-coded without any predic-
tion, thus we can access the ECG data from every I-
cycle. c) Flexibility for irregular period and QRS
false detection. In our scheme, the irregular periods
or the QRSfalse detection beat cycles will betreated
as the new prediction cycles and compressed with no
prediction if they don't have enough similarity with
the formal predictioncycle.

SciRes Copyright © 2008
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ABSTRACT

Temporal information processing in the
range of tens to hundreds of milliseconds is
critical in many forms of sensory and motor
tasks. However, little has been known about
the neural mechanisms of temporal informa-
tion processing. Experimental observations
indicate that sensory neurons of the nervous
system do not show selective response to
temporal properties of external stimuli. On
the other hand, temporal selective neuronsin
the cortex have been reported in many
species. Thus, processes which realize the
temporal-to-spatial transformation of
neuronal activities might be required for
temporal information processing. In the
present study, we propose a computational
model to explore possible roles of electrical
synapses in processing the duration of
external stimuli. Firstly, we construct a
small-scale network with neurons intercon-
nected by electrical synapses in addition to
chemical synapses. Basic properties of this
small-scale neural network in processing
duration information are analyzed. Secondly,
a large-scale neural network which is more
biologically realistic is further explored. Our
results suggest that neural networks with
electrical synapses functioning together
with chemical synapses can effectively work
for the temporal-to-spatial transformation of
neuronal activities, and the spatially distrib-
uted sequential neural activities can poten-
tially representtemporal information.

Keywords: Model; Neural network; Electrical
synapse; Temporal information processing

1. INTRODUCTION

Biological neural systems are endowed with the
ability to process temporal information given the
inherent temporal nature of sensory environments

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

and motor tasks. Neuroscientists roughly categorize
temporal information processingin the neural system
into four different timescal es: microseconds, millisec-
onds, seconds and circadian rhythm, which serve for
different physiological functions and rely on differ-
ent neural mechanisms. The processwithin the scale
of millisecond is perhaps the most sophisticated and
the least well understood one amongthese categories.
Behavioral tasks withtemporal information process
ing falling within this scale include speech discrimi-
nation in the auditory system, motion information
processing in the visual systems, and movement
coordination inthe motor system [1-3].

Information processing in neural systems normally
consists of a number of successive stages. Neural
activities in a certain stage are mostly determined by
neural activities of the preceding stages and our
perception of the world in the brain is based on the
spatio-temporal patterns of neuronal activities
produced at sensory stages [4-5]. Physiological
observations indicate that neurons in the sensory
levels do not respond selectively to the temporal
properties of external stimuli. Temporal information
is thus suggested to be contained in the temporal
patterns of neuronal activities in the sensory layer.
On the other hand, neurons which show selective
response to specific temporal properties, especially
the duration content, have been reportedin the cortex
of many species [6-10]. Temporal information is
therefore suggested to be transformed into the
spatially distributed neuronal activities in the cortex
and neural mechanisms which contribute to the
temporalto-spatial transformation of neuronal
activities arerequired.

Electrical synapse is another type of widely
distributed neuronal connectionin the neural systems
in addition to chemical synapse [11-12]. Functional
role of electrical synapse has been identified in fine
motor coordination which requires temporal infor-
mation processing in milliseconds scale [13]. In the
present work, we try to explore possible neural
mechanisms of electrical synapse in processing the
duration content of external stimuli via computa-
tional approach. Briefly, we construct neural net-
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works containing both electrical and chemical
synapses, which are activated by stimuli with various
durations. Computational resultsshow that electrical
synapse can substantially contribute to thetemporal -
to-spatial transformation of neuronal activities, and
the neuronal activitiesin such networks can poten-
tially represent information about stimulus durations.

2. MODELS AND METHODS

2.1. Model structure

Two types of computational models are constructed.
One is a small-scale neural network which contains
only several tens of neurons. Another isa large-scale
one which is more biologically realistic. We use the
simple model to clarify the basic properties of neural
networks with electrical synapses functioning
together with chemical synapsein temporal informa-
tion processing. The overall behavior isfurther tested
in the large-scale model whichis more biologically
realistic.

The schematic structures of the small- and large-
scale neural networks are illustrated in Figure 1, A
and B respectively. Stimuli with various durations
are applied, as represented by various durations of
the input currents. The input current is injectedto an
input neuron (S) and then transformed into spike
trainsofthisneuron.

The input neuron is connected to some of the ten
excitatory neurons (E) in the small-scale model.
Electrical synapses are presented among assigned
neurons, as indicated in the figure. Excitatory
neurons are connected to each other recurrently by
chemical synapses and each excitatory neuron is
further coupled with an inhibitory neuron (I) to
ensure its stability. Parameters used in the small-

scalemodel arelistedasfollows:
|Spi Intensity of the input current;

CS,.: Strength of chemical synapse from input

neuron to excitatory neurons;
CS,.: Strength of chemical synapse between

excitatory neurons;
ES,.: Strength of electrical synapse between

excitatory neurons;
CS,;: Strength of chemical synapse from excitatory

neurons toinhibitory neurons;
CS Strengthof chemical synapse frominhibitory

neuronsto excitatory neurons.

The large-scale neural network model contains
400 excitatory neurons and 100 inhibitory neurons.
The ratio between the excitatory and inhibitory
neurons follows the experimental observations from
neocortical area [14]. The neural network is further
divided into 100 subgroups with each subgroup
consisting of 4 excitatory neurons and 1 inhibitory
neuron. Excitatory and inhibitory neurons in each
individual subgroup are connected recurrently. Input
neuron is connected to excitatory and inhibitory
neurons on arandom basis. All excitatory neurons are
further connected with each other probabilisticallyin
a recurrent way, and the synaptic strengths are
variables which follow normal distributions.
Parameters used for synaptic connections in the
extended model arelisted asfollows:

CP.. Probability of chemical synapse from input
to excitatory neurons;

CMg, and CD: Mean and standard deviation of
strength of chemical synapsefrom inputto excitatory
neurons;

CPg: Probability of chemical synapse from input

Figure 1. A. Schematic structure of the small-scale neural network model. The input neuron (S) is connected to 4 of the 10
the excitatory neurons (E). Allexcitatory neurons are connected to each other in arecurrent way and each excitatory neuron
is coupled with an inhibitory neuron (I). Excitatory and inhibitory synapses are represented by open and solid circles,
respectively. Neurons in grey shadow are electrically coupled together recurrently.B. Schematic structure of the large-scale
neural network model. Input neuron isconnected to excitatory (E) and inhibitory (I) neurons inthe network ona random basis.
All excitatory neurons are further connected with each other probabilistically in a recurrent way. Electrical synapses are
formed between some of the excitatoryneurons randomly.
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toinhibitory neurons;
CMg and CDg: Mean and standard deviation of

strength of chemical synapsefrom inputto inhibitory
neurons;
CP,.: Probability of chemical synapse between

excitatory neurons;
CMg, and CD..: Mean and standard deviation of

strength of chemical synapse between excitatory
neurons;
CM, and CD: Mean and standard deviation of

strength of chemical synapse from excitatory to
inhibitory neurons;
CM;, and CD;.: Mean and standard deviation of

strength of chemical synapse from inhibitory to
excitatory neurons;

EP..1: Probability of electrical connection

between excitatory neurons within one subgroup;
EP.e,: Probability of electrical connection

between excitatory neurons indifferent subgroups;
EM, and ED_.: Mean and standard deviation of

strength of electrical synapse between excitatory
neurons.

2.2. Mathematical description of neurons and
synapses

2.2.1 Description of integrate-and-fireneuron
Neurons are described in an integrate-and-fire
manner (I-F neuron) [5]. Membrane potential of the
input neuron (V,), excitatory neuron (Vg,), and

inhibitory neuron (V,,) canbe determinedas follows:

dVs

et -V, V) +I (1)
C- Tt = g Wy Vo) B (V)
+8,(0)-(E, -V )+ 1,
(3)
where

C represents the membranecapacitance;
Veq denotes the equilibriummembrane potential;

0)eak 1S the leak conductance;
ge @nd g;,, represent the conductance of excitatory

and inhibitory synapses, respectively;
Ee and E;, represent the reversal membrane

potentials of excitatory and inhibitory synapses,
respectively;
lesyn represents the current passing through
electrical synapses.
In addition, when the membrane potential reaches

athreshold (V,;,), the neuronfires an action potential,
and the membrane potential is immediately reset to
the equilibrium potential (Veq) after a firing lasting
time (Ty,0)-

Parameter values chosenfor the I-F neuron model
arelistedin Tablel. Thesevaluesaremostly adopted
from Troyer and Miller (1997) [15], except that the
firing lasting timeof inhibitory neuronsis chosen as
4 to ensure the neurons' inhibitory effect on the
activities of excitatory neurons.

2.2.2 Description of synaptic current
The chemical synapses are modeled as follows [16-
17]:

(4)
where g, (t) and g;,(t) in egns (2) and (3) are

presented by gcsyn(t)-g(t) here, with Jesyn representing
synaptic strengthwhich ismodified by a factor of g(t):

dg(r) 1 B
- [/ (1)—g(D)] (5)
where

(6)

in which v =15ms, Ey,= - 40 mV, and ® (u)
follows astep function:

The electrical synapses aredescribed asfollows:

(7)

Where g, represents the synaptic strength. We
adopt this abstract function which simply depicts that
the current passing through the electrical synapses is
generally dependent on the membrane potential
difference between the pre-synaptic and post-
synaptic neurons[18].

3. RESULTS

Table 1. Parameter values forthe I-F neuronmodel. The firing lasting time (Ty,,) for sensoryand excitatory neuronsis set as

1.75 ms whereas that forinhibitory neuron isset as 4ms.

c Veq Vth Yieak Eex Ein Tfire
(pF) (mv) (mv) G (mv) mv) (ms)
0.5 -74 -54 0.025 0 -74 1.75/4
SciRes Copyright © 2008 JBISE
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Figure 2. Spike activities of the input neuron (S) in response to constant injected currents with various intensities and

magnitudes.

3.1 Stimulusduration isrepresented by spike
trains of input neuron

The injected current isfirst transformed into a spike
train of the input neuron. Spiking properties of the
input neuron (S) are shown in Figure 2. Injected
currents with different magnitudes and durations are
applied to theinput neuron totest its performance. A
sustained current elicits periodic spikes from the
input neuron and the duration of the spike trainis
determined by the stimulus duration. Input neuron
can therefore mimicthe function of sensory neuron in
neural system.

3.2 Performance of the small-scale neural
network mode

3.2.1 Temporal information can be represented by
the spatially distributed activities of a group of
neurons

Representative firing patterns of the simple model
are givenin Figure 3. Parameters used for Figure 3
are listed in Table 2 and the synaptic connection
follows that illustratedin Figure 1A. Input neuronis
connected to four of the tenexcitatory neurons. Three
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neuronal groups are electrically coupled together
which contain 2, 3 and 4 neurons, respectively.
Raster plots of the firing performancesof the model
neurons in absence and presence of electrical
synapses are compared with stimulus duration being
50 ms (Figure 3A& B) and 100 ms (Figure 3C& D),
respectively.

Results given in Figure 3B& D suggest that
electrical synapses in a neural network can effec
tively transform the temporal domain spike train of
the input neuron into the spatial-temporal firing
pattern of a group of neurons. Each activated neuron
in the group fires within a specific time window,
which is determined by the configuration of the
synaptic connection of theneural network. Furthermore,
stimulus with longer duration can evoke spikes from
more neurons and therefore the stimulus durations
can be represented by the spatial and temporal
structure of thesequential neuronal activities.

3.2.2 The output pattern isclosely related to the

electrical couplingconfiguration
Electrical synapses between excitatory neurons and
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Figure 3. Raster plots for neuronal activities ofthe small-scale model elicited by 50 and 100 ms stimulus durations. Stimuli
are indicated bygrey shadows. A, 50 msduration, without electricalsynapses; B, 50 ms duration, withelectrical synapses; C,
100 ms duration, without electrical synapses; D, 100 ms, with electrical synapses.

Table 2. Parameter values usedin the small-scale neural network model.

IS,,(PA) CS(1'S) CSx(1'S)

ESee(1 ) CS,(19) CS (19

2.0 0.075 0.0001

0.02 1.0 2.0

synaptic connections from input neuron to the
network are important factors that influence the
model's performance. There are three groups of
neurons electrically coupled together in the small-
scale model presented in Figure 1A. Neurons within
each group are all electrically coupled in arecurrent
manner. Furthermore, only oneneuron in each group
is connected to the input neuron. The model outputs
in response to stimuli with different durations are
presented in Figure 3. However, any change in the
configurations of the electrical coupling and input
neuron connection may also cause relevant changes
in the results. Takethe 3-neuron groupin Figure 1A
(E4, E5 andE6) for anexample, relevant possibilities
of the electrical coupling within thisgroup as well as
the chemical synapses between these neuronsand the
input neuron are tested, with therest structure of the
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neural network kept unaltered. The spiking activities
of these three neurons under the test conditions are
plotted in Figure 4. The firing activities are quite
different with different synaptic configurations.
Generally, spikes can be elicited from the neurons
that are chemically connected to the input neuron,
and longer delay is produced when the chemically
activated neuron is electrically coupled with more
neurons that do not receive chemical input from the
input neuron (e.g. A& FvsB&D).

3.3 Performance of the large-scale neural
networ k model

Performance of the small-scale model suggests a
mechanism for temporal information processing ina
neural network containingelectrical synapses. Inreal
neural network, the synaptic strengths as well asthe
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Figure 4. Raster plots for spike activities of threeneuron group with different synaptic configurations. Neurons receive
synaptic input from input neuron are represented by solid circle. Electrical synapses are represented by solid lines. The

stimulus duration is 100 ms with the currentintensity to inputneuron being 2.0 pA.

SciRes Copyright © 2008 JBISE
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Figure 5. A and B are representative raster plots ofthe neuronal activities of the large-scale model in absence and presence
of electrical synapses, respectively. The stimulus duration is 100 ms. Inset graphsrepresent the processes of spike activity
recruitment. C and D show therecruitment processes inabsence and presence of electrical synapses, respectively. Data are

averaged based on10 independent trails(Mean+S.D.).

Table 3. Parameter values usedin the large-scale neural network model.

CP,, 0.25
CP 0.98
CPq, 0.005
/ /

/ /
EPee1 0.25
EPeer 0.0002

CM/CD, (1 S) 0.055/0.003
CMg/CDg (1 S) 0.03/0.01
CMg/CD g (11 S) 0.001/0.001
CMy/CDg (1 S) 0.2/0.01
CM,/CD;, (1 S) 0.7/0.01
EMo/ED (11 S) 0.01/0.001
EMo/EDge (1 S) 0.01/0.001

electrical coupling configuration are not fixed but
variable. A large-scale model which is more biologi-
cally realistic is constructed with parameter varia-
tions,anditsperformanceistested.

Representative firing patterns of the large-scale
model in absenceand presence of electrical synapses
are shown in Figure 5A and B, respectively. The
stimulus duration time is 100 ms. Neural network
parameters used for Figure 5 arelisted in Table 3.

SciRes Copyright © 2008

The inset graphs represent the recruitment process of
the neuronal spiking activities. The temporal distribu-
tion of the neuronal activities under these two condi-
tions is compared by analyzing the recruitment
process in ten independent trials. The results are
shown in Figure 5C and D. It is clear that the
presence of electrical synapses results in a broader
temporal distribution of the sequential spike activi-
ties of the neurons (B & D), whilethe neuronal firing
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Figure 6. Raster plots ofthe large-scale neural network in response to stimuli with different durations. The configuration of
the model isidentical for Figure Ato F.

SciRes Copyright © 2008 JBISE
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Figure 7. Recruitment of neuronal activities (activated numbers) for the large-scale model in response to stimuli with
durations ranging from50 to 100ms (A, step 10ms) and 100to 200 ms (B, step 20ms). The mean values ofsynaptic strength
from input to excitatory neurons are 0.055 and 0.038 for results in Figure Aand B, respectively. Data are analyzed from 10

independent trials inthe form of (Mean+S.D.).

activities are limited within a narrow temporal
window inabsence of electrical coupling (A & C).

The firing patterns of the large-scale model in
response to stimuli with various durationsare further
tested. Stimuli with durationsvarying from 50 ms to
100 ms are applied to thenetwork, with geps being 10
ms. Raster plots of typical spike activities of the
network aregiven in Figure 6, A toF. It is reveded
that the model neurons fire in a sequential pattern,
with more neurons being sequentially recruited in
response to longer duration. Such recruitment
process in response to durations ranging from 50 ms
to 100 msisaveraged based ontenindependent trials
andtheresultisshowninFigure 7A.

Stimuli with durations varying from 50 ms to 100
ms are applied and relevant results are given in
Figure 6and Figure 7A. However, models with this
structure can effectively represent durationsin other
ranges while relevant parameters are changed. These
parameters include the capacitance value of the I-F
neuronal model, the time constant for chemical
synaptic strength, the synaptic strengths from input
neuron to the network et al. Stimuli with durations
ranging from 100 ms to 200 ms are applied to the
network, in which the mean value of synaptic
strength from input neuron to the neural network
(Cm,) arechanged (from0.055 St00.038 S).

The performance of the model (averaged across ten
independent trials) isplotted inFigure 7B.

4. DISCUSSION
Temporal information processing inneural system is
critical for animal behavior. Neuroscientists have
tried a lot in understanding the neural basis of
relevant processes via both experimental [6-10] and
computational approaches[19-24].

In the present study, the computational results
demonstrate that electrical synapses could effec-
tively contribute to the formation of a spatio-
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temporal firing pattern of neuronal ensembles while
each neuron within the ensemble fires within
different time windows, and the spatio-temporal
pattern of the neuronal activities is capable of
representing stimulus duration in the form of
sequential firingactivitiesof thespatially distributed
neurons.

The contribution of electrical synapses in the
formation of spatio-temporal firing patternis
particularly examined in the present study. However,
itisnecessary to mention that other factors can also
contribute to this process. For example, membrane
capacitance of specific neurons can be variable
because of variation in surface area as well as the
membrane capacitance value per unit area [25-28].
These changes can function in parallel to electrical
synapses ininfluencing the sequential firing patterns
of neuronal ensembl es.

Special role of electrical synapse is proposed in
our models and there are also experimental clues
which indicated possible roles of electrical synapse
in temporal information processing. Data demon-
strated that gap junction coupling within inferior
olive mediated by connexin 36 could add 10-20 of
precision to the fine temporal coordination of muscle
firingduringmovement[13].

Neurons in the present work are modeled follow-
ing the classic I-F neuron fashion without any
specific properties for temporal information process
ing. These neurons can be tuned to response to any
non-temporal properties of natural stimulus and
thereby function for the corresponding behavioral
tasks. For example, these neurons could be tone
selective neuron which function for auditory behav-
ior, or mechanosensory neurons which function for
mechanosensation. While both electrical and
chemical synapses are universal in the central
nervous system, the model results suggest that both
the spatial andtemporal neuronal activitiesproduced
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at the sensory layer of neural system could be
processed together by sharing the sameneural circuit.
Temporal content of external stimulus could beread
out from spike patterns of neuronal ensembles in the
brain.
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ABSTRACT

In homogeneous media,N,N -Dimethylacrylamide
(DMA) was grafted copolymerization to cellulose
by a metal-catalyzed atom transfer radical poly-
merization (ATRP) process. First, cellulose was
dissolved in DMACc/LICI system, and it reacted
with 2-bromoisobutyloyl bromide (BiBBr)to pro-
duce macroinitiator (cell-BiB). Then DMA was
polymerized to the cellulose backbone in a
homogeneous DMSO solution in presence of
the cell-BiB. Characterization with FT-IR, NMR,
and GPC measurements showed that there
obtained a graft copolymerwith cellulose back-
bone and PDMASside chains (cell-PDMA) inwell-
defined structure. The proteinsadsorption stud-
ies showed that thecellulose membranes modi-
fied by the as-prepared cell-PDMA copolymer
own good protein adsorptionresistancet.

Keywords: Cellulose; Atom transfer radical
polymerization (ATRP); Homogeneous; Graft
copolymerization; Hemocompatibility

1. INTRODUCTION

Cellulose is the most fluent feedstock in the world
that could beused to preparenew kinds of materials,
and cellulose derivatives have potential application
as functional polymers. Graft copolymers are the
important topic for their novel properties. Today,
“grafting from” method has been widely used to pre-
pare cellulose copolymers. Ceric ion initiation,
Fenton's reagent and v -radiation are thewidely used
methods to graft monomersto cellulose [1,2]. How-
ever, there are some drawbacks of these methods,
such as the production of unwanted homopolymer
together with the graft copolymer, chain degradation

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

of the cellulose backbone during the formation of
free radical grafting sites, and the presence of a con-
siderable amount of ungrafted cellulose in the prod-
uct. In addition, these techniques usually results in
the graft copolymer with poor control over the com-
position, such as molecular weight and the
polydispersity of the grafted chains [3]. Recently,
controlled/“living” radical polymerization methods
have been developed [4], which isable to minimize
chain transfer and to control the molecular weight
and polydispersity. Among them atom transfer radi-
cal polymerization (ATRP) and reversible addition
fragmentation transfer polymerization (RAFT) are
the two convenient methods to prepare well-defined
polymers. Using living free radical polymerization
methods to prepare cellulose graft copolymer is an
attractive topic andsome investigations hadbeen car-
ried out. Perrier, et al. reported a preparation of poly-
styrene graft cellulose by a RAFT process [5].
Carlmark and Malmstrom synthesized a poly(2-
hydroxyethyl methacrylate) graft cellulose using an
ATRP process[6]. However, in both the studies, the
graft copolymerization occursonly on the surface of
cellulose fiber due to the heterogeneous process.
Huang, et al. reported ahomogeneous ATRP process
to prepare cellulose graft copolymers with different
monomers; the reason why ethyl cellulose was
selected as thefeedstock is itseasily dissolving abil-
ity in many solvents[8, 9, 25, 26, 27]. By now there
are still less reports to synthesize cellulose graft
copolymer through a living radical polymerization
directly from cellulose in its homogeneous sol ution,
and it isimportant to preparewell-defined structures
of the graftcopolymer.
Poly(N,N-dimethylacrylamide) (PDMA) is well-
known for its remarkable water solubility and
biocompatibility [10]. Recently, well-defined PDMA
has been prepared by both RAFT [11] and ATRP pro-
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cesses [12]. Also PDMA has been grafting polymer-
ization to polystyrene colloid by ATRP method[13].

Hemodialysis is one of the most important meth-
ods for blood purification [14], and cellulose mem-
branes, especial cellulose acetate (CA) membranes,
are still the major materials for hemodialysis [15].
The cellulose membranes could take the porous and
asymmetrical structure and have both good perme-
ability and mechanical strength. However thrombus
formation onthe blood-contact surface could not sup-
pressed by themembrane. Thus, its hemocompatibility
must befurther improvedfor better hemodialy sis[16].
Several efforts had been carried out to solve these
problems, such as modification of the surface of the
membrane with low-molecular-weight compounds,
hydrophilic polymers andbiologically active heparin
[17,18].

In thispaper, synthesisof thegraft copolymer com-
posed of PDMA chains and cellul osebackbone (cell-
PDMA) in homogeneous solution have been studied
via an ATRP. Moreover, the protein adsorptionresis-
tivity on the cellulose membrane surface modified
with the cell-PDMA was evaluated to understand
hemocompatibility of the cell-PDMA.

2. EXPERIMENTAL SECTION

2.1. Materials

The chemical formula of the DMA is shown in
Scheme 1. Commercial product of microcrystalline
(Sigma, DP= 121) wasused without further purifica-
tion. 2,2'-Bipyridine (bpy) purchased from Aldrich
was recrystallized fromethanol to removeimpurities.
DMA, CuBr with purity of 99.999% and 2-
bromoisobutyloyl bromide (BrBiB) were purchased
from Aldrich and used without further purification.
Other solvents and reagents were extra-pure grade
reagents and used without further purification.

2.2. Dissolution of cellulose in N,N-dimethyl
acetoamide (DM Ac)/LiCl

After driedin vacuum at 35°C overnight microcrystalline
cellulose (5.167 g) was put intoa 250 ml three-necked
round-bottom flask, and adding 100 ml of distilled
water for 30 min to swell it, then water was removed
and fresh water was added again, and the processwas
repeated for three times. Then removing the water
and adding 100 ml of methanol to swell again for 30
min for three times. After removing methanol the cot-
ton wasdried invacuum at 50 °C for 3 h. Then cooling
down the solution and adding 120 ml of DMAc and
heated at 160 °C for 1.5h, and removing 20 ml of
DMAc under reduced pressby arotary evaporator. At
the same time, about 10.22 g of LiCl was dried in
baker at 60 °C. After the removing process of DMAc
finish, adding thedried LiCl intothe system, andstir-
ring at 80°C for 13 h, and thecellulose solution was
obtained at the end[19].

2.3. Synthesismacroinitiator for ATRP
Cellulose was acylated with BrBiB inthe presence of
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pyridine as shown in Scheme 2[25, 26, 27]. Ina 250
ml three-necked round-bottomflask, 60 ml of the cel-
lulose solution in DMAC/LICI and 5 ml of pyridine
were added and mixed, then 6.3541 g of BrBiB was
slowly dropped into the solution at 0 °C in an
ice/water bath. The reaction mixture was further
stirred at roomtemperature overnight. Then the mix-
ture was added with de-ionized water and plenty of
precipitate appeared, and after washed by plenty of
de-ionized water, the precipitate wasdried at 50°C in
vacuum overnight. Finally, there obtained white pow-
der product of macroinitiator(cell-BiB) with weight
of 4.81 g. The cell-BiB can be well dissolved in
dimetyl sulfoxied (DM SO).

2.4. Graftingcopolymerization of DMA by the
cell-BiB

The cell-BiB(0.1737 g, 0.9 mmol) was dissolved in
30 ml of DMSO ina 100 ml of flask. Then 7.92 g
(0.08 mol) of DMA was added, and the solution was
evacuated and flushed with nitrogen for 30 min.
Finally, 0.1021 g of bpy (0.7 mmol) and 0.0444 g of
CuBr (0.31 mmol) were added, and the polymeriza-
tion was carried out at room temperature under the
protect of nitrogen. A few milliliter of samples were
withdrawn from the flask at different reaction time
using degassed syringes to determine monomer con-

version and molecular weight.

CHy=CH-C
N
/N
CH; CH;

Scheme 1. Chemical structure of DMA.

Scheme 2. Synthesis route forthe macroinitiator (cell-BiB).

Scheme 3. Graft copolymerization of DMA on cellulose
backbone in homogeneoussolution via the ATRP route.

The sampleswere diluted with DM SO andfiltering
the solution through a silicon gel column to remove
the Cu ionscatalyst, and then plenty of hexane was
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added to producethe precipitate of the products. The
products were driedat 40°C in vacuumovernight.

2.5. Isolation of the grafted PDM A chains by
hydrolysis

The copolymers were hydrolyzed by 70% H,SO, for
8h at boiling point. At the end, the residual polymer
was participated into plenty of hexaneand was dried
by freeze drying, then the productswere analyzed by
GPC.

2.6. Characterization

The chemical structurewas confirmed using an FT-
IR (FT/IR-615, JASCO, Tokyo, Japan). 'H- and *°C-
NMR spectra were obtained on aNMR spectrometer
(a -300, JEOL, Tokyo, Japan) with D,O as the sol-
vent. The molecular weights of these polymers were
determined by gel permeation chromatography (GPC).
The mixture of methanol/water = 7/3 containing 10
mmol/L of lithium bromide was used as an eluent for
the GPC measurement at a flow rate of 0.4 ml/min
(Column: SB-804 HQ, Shodex, Tokyo, Japan). The
number-averaged molecular weight (M) and weight-

averaged molecular weight (M,) were calculated

using poly(ethyleneglycol) standards.

X-ray photoelectron spectroscopy (XPS) was con
ducted onan AXIS-HSi (Shimadzu/KRATOS, Kyoto,
Japan) employing Mg K, excitation radiation (1253.6
eV). Thetake-off angle of the photoelectron for each
atom wasfixed at 90 deg.

For Atomic force microscopy (AFM) measurement,
the sample was dissolved in DMF at a concentration

of 8x10° g/m. Thenadroplet (20ul) of the solution
was deposited onto freshly cleaved mica, and it was
spin-coated at speed of 900 rpm for 8 s and then 4000
rpm for 30s. The height image of the copolymer on
micaweremeasured by an AFM (Nanoscope Illg D.1.)
in tapping mode with silicon TESP cantilevers. The
scanning rate ranged from 0.5 Hz to 1.0 Hz, and
512X 512 pixelsimages wererecord.

2.7. Coating of the cell-PDMA on cellulose
membrane
)

The regenerated cellulosemembrane, Cuprophan(TM ,
was obtained from Enka, A. G. (Wappertal-Barmen,
Germany). The thickness of the membranes was
20um. First the cellulose membranes were cut into
pieces with diameter of 1.5cm, and they were
immersed into deionized water for 30 min, and then
were dried at 35 °C in vacuumfor 15h. Then the celln
lose membranes were immersed into the 0.5 wt%
aqueous solution of thecell-PDMA for 3min, andthe
membranes were took out and dried under atmo-
spheric conditionsfor 2h, and then was dried at 35°C
in vacuum for 15 h. The structure of the grafted DMA
on the cellulose membranes were confirmed using
XPS and FT-IR. Theratio of nitrogen atom (N) inthe
DMA unit versus carbon atom (C) was determined
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from the XPS elemental analysis.

2.8. Protein adsor ption on the membranesur -
face

Amount of proteins adsorbed on the membrane was
measured by almost the same method reported previ-
ously [20]. The round (diameter: 1.5 cm) cellulose
membranes were placed into a 24-well plate. To
equilibrate the membrane surface, phosphate buffer
solution (PBS, pH 7.4, ionic strength : 0.15 mol/l)
was added into each well and allowed to remain for
15 hat roomtemperature. Protein solutions werepre-
pared in the concentration of 4.5 mg/ml of albumin,
1.6 mg/ml of v -globulin, and 0.3 mg/ml of fibrinogen,
which are 10% of the concentration of the human
plasma level. After removing thePBS, 1.0 ml of each
protein solution was poured onto each membrane and
allowed to remain at 37 °C for 3 h. After rinsing the
membrane three timeswith PBS, the membrane was
taken out of the 24-well plate, and was rinsed again
sufficiently with the 50 ml of PBS. The membrane
was placed into aglass bottle with a1 wt% aqueous
solution of sodiumdodecy! sulfate (SDS) and shaken
(150 rpm) in ashaking bath for 3 h at room tempera
ture to detach the adsorbed protein on the surface. A
protein analysis kit (Micro BCA protein assay
reagent kit, #23235, Pierce, Rockford, IL, USA)
based on the bicinchoninic acid method was used to
determine the protein concentration in the SDS solu-
tion.

3. RESULTS AND DISCUSSION

The cell-BiB was prepared by partial esterification of
the hydroxyl groups of the glucose units of cellulose
with BiBBr inthe presence of pyridine. The reaction
was carried out homogeneously in DMACc/LiCl solu-
tion at room temperature for 23 h. The formation of
the ester bondresulted in theappearance of thechar-

acteristic peaks at 1743 cm* for the C=0 stretching

band in theFTIR spectrum, asshown inFigure 1.
The substitution of the hydroxyl groupson the cel-

lulose backbone with BiBBr was dso confirmed by

cell-PDMA

o

S

8 DMA
c

©

=

&

- cell-B/B
©

S

|_

cellulose

Wavelength(cm™)

Figure 1. FT-IR spectra of cotton (1), cell-BiB (2), DMA (3)
and cell-PDMA(4).
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Figure 2. 'H-NMR and **C-NMR spectra ofcell-BiB (a, b)and cell-PDMA (c, d).

both the ‘H-NMR and °C-NMR. As shown in Figure
2a, there appearsa new singlepeak at 1.8 ppm (peak
a) for methyl protonsin the ester group of BiB, and
the peaksat 8 = 2.8-5.6 ppm (peak b) for the methy-
lene protons and hydroxyl protons in the glucose
units of cellulose[21]. Thetotal substitution degree
(DS) of BiB isobtained by the ratio of theintegral of
the methyl groupsto the integral of protons of glu-
cose, and the DS is 0.2. Figure 2b shows the Bc-
NMR of thecell-BiB, and clearly both the methyl car-
bon from BiB (peak a) and the carbon in glucose
(peak b) appear, and thepeak ¢ at 176 ppm attributed
to theC=0 carbon of BiB [22].

The as-prepared cell-BiB can bedissolved well in
DMSO. Thegraft copolymerization of DMA to cellu-
lose was carried out in DMSO at 100 °C,
[DMAT]:[cell-BiB]:[CuBr]:[bpy] = 88:1:2.9:1.3, and
[DMA], = 2.7 M. Figure 3 shows the kinetic plot of
the reaction, andthe variation of In([M],/[M]) is lin
ear with time, indicating a constant concentration of
propagating radical swhich isthe characteristic of the
controlled/“living” radical polymerization.

The chemical structureof the cell-PDMAwas iden-
tified by FT-IR spectroscopy, NMR and GPC. As
shown inFigure 1, when the FT-IR spectrum of cell-
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PDMA was compared with that of the cell-BiB and

DMA monomer, the absorptions at 1642 cm™
appeared after grafting, which was assigned to the
free C=0 of PDMA, and the peaks at about 3100-

3500 cm ' was assigned to the OH group of cellulose
[23].

Figure 2c shows a'H-NMR spectrum for the cell-
PDMA in methanol-d, at 25 °C, the spectra is about

the same as that of PDMA. The resonance bands
observed at 2.9-3.1 ppm are attributed to the
dimethyl group, andthose observed at1.3~1.8 ppm s
attributed to the methyl amd methylene protons of
PDMA [24]. Part of the resonance bands of cellulose
protons are overlapped with that of PDMA while
there appear peaksat 2.9-4.0 ppmfor the characteris

tics of cellulose. Figure 2d shows a*C-NMR spec-
trum for cell-PDMAin D,O at 25°C. Thecharacteris-

tic of theresonance peak for PDMA was observed at
35 ppm, whichis attributed to the dimethyl moiety
[25]. Theweak peaks appear at 75-85 ppmare attrib-
uted to the carbon for cellulose back bone, and the
peak appear at 182 ppm isattributed to the carbonfor
the carbonyl groups.

The grafted PDMA chains were converted to indi-
vidual moleculesthrough hydrolysisof the backbone
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Figure 3. Time-conversion and the first-order kinetic plot for
the polymerization of DMA initiated by the cell-BiB in the
homogeneous solution of DMSO at 100 °C. [M,] and [M] are
concentrations of monomer at polymerization time= 0 and at
corresponding time, respectively.
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Figure 4. Dependence of M, and M,/M, on monomer conversionin
the graft polymerizationof DMAin DMSO, the PDMA washydrolyzed
from the sidechain of thecopolymer before the GPC measurements.

60—
50
40—

30

Number of holes

20

il ‘ il ‘,UIN““ MH‘M Do

0 0.2 0.4 0.6 038 1

Perimeter Length [jm]

Figure 5. Typical AFM image of the cell-PDMA (a) and the
perimeter distribution ofthe particles (b).
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Figure 6. XPS spectra of P,,, N;g, Cy, and O, observed on
the original cellulose membrane (down row) and that coated
with the cell-PDMA (upper row).
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Figure 7. Amount of proteins adsorbed on original cellulose
membrane (a) and cellulose membrane coated with cell-
PDMA (b).

to determine their molecular weight. Figure 4 shows
the plotof M, and theM, /M , versus the monomer con-

version during the polymerization. The molecular
weight of the graft copolymer isincreased linearly
with the monomer conversion, and the polydispersity
is decreased with the monomer conversion. The
results also confirmed that the graft copolymerization
isacontrolled/”living” radical polymerization.
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Figure 5 shows the AFM image of the cell-PDMA
copolymer deposited on surface of the new cleaved
mica. Many nanoparticles appear with a homoge-
neous size, and Figure 5b gives the perimeter distri-
bution of the particles. Clearely, there are two kinds
of particles exist,one with thediameter about 200nm,
and the other about 38 nm in diameter. Huang also
reported similar result when they measrued the size
of celluose-PSgraft copolymer by AFM, and they con-
cluded that thesmaller particles arethe graft copoly-
mer and the bigger one are the micelles of the graft
copolymer when comparingthe AFM data todynamic
laser light scattering results. Here, we believe that
the smaller particles result from the cell-PDMA
copolymer while the bigger one is the aggregates or
micelle of thegraft copolymer.

The as-prepared cell-PDMA was a water-soluble
polymer having both affinities to the cellulose base
membrane, and its potential blood compatibility
could improvethe surface blood compatibility of the
cellulose membrane by a convenient technique, such
as coating by its aqueous solution. Coating of cellu
lose membrane with the cell-PDMA was carried out
by immersing the membraneinto itsaqueous solution
following a dry process under vacuum. The amount
of the copolymer immobilized on the membrane was
measured by XPS. Figure 6 shows the XPSchart of
both the original cellulose membrane andthe copoly-
mer coated cellulose membrane (upper row). The
peaks attributed to nitrogen (400 eV) atoms was
observed on the surface of membrane coated with the
cell-PDMA. For the membrane coated with the copol-
ymer, the atomic concentrations of nitrogen and car-
bon are 1.82% and 66.16%, respectively. The mole
fraction of DM A on themembrane surfaceis 0.028 by
calculation, which defined as [number of DMA unit
(mol)]/[number of DMA unit (mol) + number of cel-
lulose unit (mol)] was calculated from the value of
N/C.

The adsorption of proteins during contact with
blood on artificial surface is the initials step in a
sequence of eventswhich cause activation of several
cascades of proteolysis systems in the plasma, e.g.,
complement, coagulation pathway, etc. therefore, the
amount of proteins adsorbed on the surface is one of
the important factors for evaluating thehemocom pati bi li ty
of materials. Here, the adsorption of three typical
plasma proteins such as albumin, y -globulin, and
fibrinogen on thecell-PDMA coating cellulose mem:
branes and original cellulose membranes were mea-
sured. As shown in Figure 7, the amounts of each
absorbed protein onthe membrane coated with cell-
PDMA was 70-80% reduced by comparison with
those on the original cellulose membrane for all of
the proteins examined in this study. That is, grafting
of PDMA chains on the cellulose plays an important
role toreduce proteinadsorption.

4. CONCLUSION

In this study, we have successfully synthesized the
cell-PDMA in homogeneous media using an ATRP

SciRes Copyright © 2008

controlled/”living” radical polymerization. The char-
acterizations indicate that the graft copolymerization
is efficient and the obtained copolymer owns well-
defined structures.After coated the cell-PDMA onto
the surface of commercial cellulose membrane, there
obtained membrane with good hemocompatibility,
which was confirmed by the protein adsorption
experiments. This provides a new chance to modify
the surface of polysaccharide materials to improve
their hemocomepatibility. Thecell-PDMA has astrong
potential application onsurface treatment to enhance
separation ability and selectivity on every cellulose
membrane including CA and nitrocellulose, which
are applied in biotechnology research and bioengi-
neering field.
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ABSTRACT

Chaos game representation (CGR) of DNA
sequences and linked protein sequences
from genomes was proposed by Jeffrey (1990)
and Yu et al. (2004), respectively. In this
paper,we consider the CGR of three kinds of
sequences from complete genomes: whole
genome DNA sequences, linked coding DNA
sequences and linked protein sequences.
Some fractal patterns are found in these
CGRs. Arecurrent iterated function systems
(RIFS) model is proposed to simulate the
CGRs of these sequences from genomes and
their induced measures. Numerical results
on 50genomes show that the RIFS model can
simulate very well the CGRs and their
induced measures. The parameters esti-
mated in the RIFS model reflect information
on species classification.

Keywords: Genomes; Chaos game representa-
tion; Recurrentiterated function systems

1. INTRODUCTION
The hereditary information of organisms (except for
RNA-viruses) is encoded in their DNA sequences
which are one-dimensional unbranched polymers
made up from four different kinds of monomers (nu-
cleotides): adenine (a), cytosine (c), guanine (g), and
thymine (t). Based on a technique from chaotic
dynamics, Jeffrey (1990) proposed achaos game rep-
resentation (CGR) of DNA sequences by using the
four vertices of a square in the plane to represent
a,c,g and t. The method produces a plot of a DNA
sequence which displays both local and global pat-
terns. Self-similarity or fractal structures werefound
in these plots. Some open questionsfrom the biologi-
cal point of view based on the CGR were proposed
(Jeffrey 1990).

If the DNA sequences were a random collection of

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

bases, the CGR would be auniformly filled square,
conversely, any patternsvisible inthe CGR represent
some pattern (information) in the DNA sequence
(Goldman 1993). Goldman (1993) interpreted the
CGRs in abiologically meaningful way. All points
plotted within a quadrant must corresponding to sub-
sequences of the DNA sequence that end with the
base labelling the corner of that quadrant. Healso pro-
posed a discretetime Markov Chain model to simu
late the CGR of DNA sequences and use the
sequence's dinucleotide and trinucleotide frequen-
cies to calculate the probabilities in these models.
Goldman's Markov model can be calculated directly
and easily fromthe raw DNA sequences, without ref-
erencetothe CGR.

Deschavanne et al. (1999) used CGR of genomes
to discussthe classification of species. Almeidaet al.
(2001) showed the distribution of positions in the
CGR planeis ageneralization of Markov Chain prob-
ability tablesthat accommodates non-integer orders.
Joseph and Sasikumar (2006) proposed a fast algo-
rithm for identifying all local alignments between
two genome sequencesusing the sequenceinforma-
tion containedin their CGR.

Twenty different kindsof amino acidsare found in
proteins. The idea of CGR of DNA sequences pro-
posed by Jeffrey (1990) wasgeneralized and applied
for visualizing and analyzing protein databases by
Fiser et al. (1994). Generalization of CGR of DNA
may take placein several ways. In the simplest case,
the square in CGR of DNA is replaced by an n-sided
regular polygon (n-gon), wherenis the number of dif-
ferent elementsin the sequence to be represented. As
proteins consist of 20 kinds of amino acids, a 20-
sided regular polygon (regular 20-gon) is the most
adequate for protein sequence representation. A few
thousand points resultin an 'attractor' which gives a
visualization of the rare or frequent residues and
sequence motifs. Fiser et al. (1994) pointed out that
the chaos game representation can also be used to
study 3D structures of proteins.
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Basu et al. (1998) proposed a new method for the
chaos game representation of different families of
proteins. Using concatenated amino acid sequences
of proteinsbelonging to a particular family anda 12-
sided regular polygon, each vertex of which repre-
sents a group of amino acid residues leading to con-
servative substitutions, the method generates the
CGR of the family and allows pictorial representa-
tion of the pattern characterizing thefamily. Basu et
al. (1998) found that the CGRs of different protein
families exhibit distinct visually identifiable patterns.
This implies that different functional classes of pro-
teins produce specific statistical biases in the distri-
bution of different mono-, di-, tri-, or higher order
peptides along their primary sequences.

A well-known model of protein sequence analysis
isthe HPmodel proposed by Dill et al. (1985). In this
model 20 kinds of amino acids are divided into two
types, hydrophobic (H) (or non-polar) and polar (P)
(or hydrophilic). Butthe HPmodel may betoo simple
and lacks sufficient information on the heterogeneity
and the complexity of the natural set of residues
(Wang and Wang 2000). According to Brown (1998),
one can divide the polar classin the HP model into
three classes: positivepolar, uncharged polar andneg-
ative polar. So 20 different kinds of amino acidscan
be divided into four classes: non-polar, negative
polar, uncharged polar and positive polar. In this
model, one considers more details than in the HP
model. We call this model adetailed HP model (Yu et
al.2004a). Based on the detailed HP model, we pro-
posed a CGR for the linked protein sequences from
the genomes(Yu et al. 2004b).

The recurrent iterated function system in fractal
theory (Barnsley and Demko, 1985; Falconer, 1997)
has been applied successfully to fractal image con
struction (Barnsley and Demko, 1985; Vrscay, 1991),
one dimensional measure representation of genomes
(Anh et al. 2002; Yu et al. 2001, 2003) and magnetic
field data (Wanliss et al. 2005; Anh et al. 2005) for
example. Yu et al. (2007) proposed a CGR for the
magnetic field dataand used theRIFS model to simu-
late the CGR.

Although we proposedthe CGR for linked protein
sequences from genomes (Yu et al. 2004b), we did
not consider how to simulate the CGRs. In thispaper,
we extend the CGR to the study of whole-genome
DNA sequences and linked coding DNA sequences
from genomes. Then we usethe RIFS model to simu-
late the CGR of these 3 kinds of datafrom genomes
and their induced measures. Theprobability matrix in
our RIFS model is similar tothe one inMarkov model
used by Goldman (1993), but theway to estimatethis
matrix is different.

2. CHAOS GAME REPRESENTATION OF

GENOMES

Three kindsof sequencesfrom completegenomes are
considered, namely, whole-genome DNA sequences
(including protein-coding and non-coding regions),
linked sequences of all protein-coding DNA
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sequences and linked sequences of all
sequences from compl ete genomes.

For DNA sequences, the CGR is obtained by using
the four vertices of a squarein the plane to represent
a,c,gandt (Jeffrey 1990). The first point of theplot is
placed half way between the center of the square and
the vertex corresponding to the first letter, the ith
point of the plot is placed half way between the (i-
1)th point and the vertex corresponding to theith let-
ter inthe DNA sequence.

For linked protein sequences, we outline here the
way to get the CGR from Yu et al. (2004b). The pro-
tein sequenceis formed by twenty different kinds of
amino acids, namely Alanine (A), Arginine (R),
Asparagine (N), Aspartic acid (D), Cysteine (C),
Glutamic acid (E), Glutamine (Q), Glycine (G),
Histidine (H), Isoleucine(l), Leucine(L), Lysine (K),
Methionine (M), Phenylalanine (F), Proline (P),
Serine (S), Threonine (T), Tryptophan (W), Tyrosine
(Y) and Valine (V) (Brown 1998, page 109). In the
detailed HP model, they can be divided into four
classes: non-polar, negative polar, uncharged polar
and positivepolar. Theeight residuesA, I, L, M, F, P,
W, V designate the non-polar class; the two residues
D, Edesignate the negativepolar class; theseven resi-
duesN, C, Q, G, S T,Y designate the uncharged polar
class; and the remaining threeresidues R, H, K desig-
nate the positive polar class.

For agiven protein sequence s=s,..s; with length,

where s, is oneof thetwenty kindsof amino acids for
i=1,.,I ,wedefine

protein

(1)

Wethen obtain asequence X(s)=a,*--a;, wherea; is

a letter of the alphabet {0,1,2,3}. Wenext define the
CRG for asequence X(s) in a square [0,1] X [ 0,1],
where the four vertices correspond to the four letters
0,1,2,3. Thefirst point of the plot isplaced half way
between the center of the square and thevertex corre-
sponding to thefirst letter of the sequence X(s); the
ith point of the plot isthen placed half way between
the (i-1)th point and the vertex corresponding to the
ith letter. We then call the obtained plot the CGR of
the protein sequence s based on the detailed HP
model.

Usually whole-genome DNA sequences and linked
coding DNA sequences arerelatively long, hence the
resulting CGRsare too dense to visualize any pattern
directly. The linked protein sequences are 3 times
shorter than the linked coding DNA sequences, and
their CGRs produce clearer self-similar patterns. For
example, we show the CGR of the linked protein
sequence of the bacterium Mycobacterium tubercul o-
sisCDC1551 (MtubC) inFigure 1.

Considering the pointsin a CGR of an organism,
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0

Figure 1. Chaos game representation of the linked protein
sequence from genome of Mycobacterium tuberculosis
CDC1551(MtubC) (with 1325681amino acids).

we definea measureu by v (B)=#(B)/N, , where#(B) is
the number of points lying ina subset B of the CGRand
N, is the length of the sequence. Wedivide the square

[0,1] X [0,1] into meshes of sizes 64X 64, 128X 128,
512X 512 or 1024X 1024. Thisresults in a measurefor
each mesh. We then obtain a 64X 64, 128X 128,
512X 512 or 1024X 1024 matrixA=(u ) ;.5 » where

J=64,128,512 or 1024, each elementwu ;is the measure

value on the corresponding mesh. We call A the mea-
sure matrix of the organism. Themeasurep based on
a 128X 128 mesh onthe CGRs areconsidered in this
paper. For example, the measurer based on a
128X 128 mesh of the CGR inFigure 1is shown in
Figure 2.

3. RECURRENT ITERATED FUNCTION

SYSTEM FOR A MEASURE
Consider asystem of contractive mapsS={S,,S,,**,

Sy} and theassociated matrix of probabilities P=(p;;)
such that ¥ ;p;=1,i=1,2,-,N. We consider a random
sequence generated by a dynamical system

(2

where X, is any starting point ando  is chosen
among the set {1,2,--- ,N}with a probability that
depends on thepreviousindex o ; 1 P(0 =i)=p,j ;-
Then (S, P) is calledarecurrentiterated function sys-

tem. Then there exist compact setsA,A;,i=1,2,-:-, N
such that
N N
A={4 4 = USf(A.f)
i=1 J":p[{>0

where set Ais calledthe attractor of theRIFS (S, P).
A major result for RIFS isthat there exists aunique
invariant measureun of the random walk (Eq. 2)
whose support isA (Barnsley et al., 1989).
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Figure 2. The measure Il based on a128X128 mesh ofthe
CGRin Figure1.

The coefficients in the contractive maps and the
probabilitiesin theRIFS are theparameters to beesti-
mated for the measure that we want to simulate. We
now describe themethod of momentsto perform this
task. In the two-dimensional case of our CGRs, we
consider asystem of N contractive maps

[XJ [bl(")J )
S, =s, + “hi=L2,...,N
Yy bz(")

Ifu is theinvariant measure and A the attractor of
the RIFSin R2, themoments of 1 are

N N

_ m_.n _ m_.n _ (i)

Eon = _l.!x Y d# - Z Lx Yy dlul - Zg”m
i =1 i=l

Using the properties of the Markov operator
defined by (S, P) (Vrscay, 1991), we get

g = [x"ydu

;

=3 2 [ (b () s+, ()Y

. (3
When n=0, m=0, from Zgéé’ =1 wehave
=

N
z(pﬁ _é‘jf)g((](l)) =0 4
J=1

fori=1,2,---,N.

Then we can get the valuesfor éfo,jzl, 2,-,N by
solving theabove linear equations.
When m=0, n=1
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hence the moments are given by the solution of the
linear equations

N
Z (S::p_fi - 5_;’;’ )g:):;)
j=1

(5)

When n=0,m=1

hence the moments are given by the solution of the
linear equations

N
Z (S;rp,'j - 5;‘:‘ )g;(ﬁ}u)
=1

(6)

When m,n=1

() _
gnm -

hence the moments are given by the solution of the
linear equations

N

m+n () _
Z (S_f Pji— §fi' )8 =

j=1

(7)

fori=1,2,...,N.
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If wedenote by G,,,, the moments obtaineddirectly
from agiven measure, and g,,, the formal expression

of moments obtained from the above formulae, then
solving the optimizationproblem

will providethe estimates of the parameters of the
RIFS.

OncetheRIFS (S(x),pij,i,j=1,2,--~,N) has beenesti-
mated, itsinvariant measure can be simulated in the
following way: Generatethe attractor of the RIFS via
the randomwalk (Eq. 2). Letx gbe theindicator func-

tion of asubset B of theattractor A. From theergodic
theorem for RIFS (Barnsley et al., 1989), the invari-
ant measureis thengiven by

By definition, an RIFS describes the scale
invariance of a measure. Hence a comparison of the
given measure with the invariant measure simulated
from the RIFSwill confirm whether the given mea
sure has thisscaling behaviour. Thiscomparison can
be undertaken by computing the cumulativewalk of a
measure visualized as intensity values on a JX J
mesh; here J=128 in thispaper.

If we convert the two-dimensional matrix
A=(1 );x;to an onedimensional vector by concate-

nate every row in A at the end of previous row. We
denote the one-dimensional vector asf=(f,,f,, **,f;, ;).

The cumulative walkis defined as
J o
F =) (fi—- /) i=120xJ
i=1

Wherefis the averagevalue of all element in vec
tor f.

Returning to the CGR, an RIFS with 4 contractive
maps {S,,S,,S;,S,} is fitted to the measure obtained
from the CGR using the method of moments. Here we
can fix

Hence the parameters needed to be estimated are the
probabilities in thematrix P. Once wehave estimated
the probability matrix inthe RIFS, we can start from
the point (0.5, 0.5) and use the chaos game algorithm
Eq. (2) togenerate a random point sequence{x;} with
the same length N, of the whole- genome DNA
sequence, linked coding DNA sequence or thelinked
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Figure 3. The RIFS simulated CGR forthe CGR in Figure 1.

protein sequence. Then the plot of the random point
sequences isthe RIFSsimulation of the original CGR
of the data. For example the RIFS simulated CGR of
the CGR inFigure 1is shown inFigure 3. Compar-
ing the RIFS simulationin Figure 3with the original
CGRinFigurel, it isapparent that they are quite sim-
ilar. We then obtain the 128X 128 mesh measuren

based on the simulated CGR. The measure can be
regarded as a simulation of the measure induced
from the original CGR. For example, we show the
128X 128 mesh measure based on the simulated
CGR of Figure 3in Figure 4. The cumulative walks
of these two measures can then be obtained to show
the performanceof thesimulation.

We determine the goodness of fit of the measure
simulated from the RIFS model relativeto the origi-
nal measure based on the following relative standard
error (RSE) (Anh et al. 2002):

Where

0.05

0.045|

e 2 e
g 8 @

Walk representation
o 8
8 §

e
e
o

ool Mtub-protein, e=0.0300
0.005|| —— Walk for the original 128X128 measure
- Walk for the RIFS simulation
06 2000 4000 6000 8000 19090 12000 14000 16000 18000
Pixel position

Figure 5. The walk representation of measures induced by
the CGR inFigure 1 andits RIFS simulationin Figure 4.

SciRes Copyright © 2008

4 For MtubC-protein RIFS CGR

Figure 4. The measure basedon a 128X 128 mesh of the
RIFS simulated CGRin Figure 3.

1 M o
SR ﬂ;(FJ_F:)

and

HereM=128X128, (FJ-)MJ-:1 and (fj)Mj:lare thewalks
of the original measure and theRIFS simulated mea
sure respectively, F is themean val ueof(Fj)szl.

The goodness e< 1.0 indicates the simulation is
very well (Anh et al. 2002). For example, the cumula-
tive walks forthe measure inducedby the CGRin Fig-
urelandits RIFSsimulation in Figure 4are givenin
Figureb. It isseen that thetwo walks arealmost iden-
tical. Thisindicates that RIFSfits very well the mea-
sure induced by theoriginal CGR. The RSE e=0.0300
isvery small, whichalso indicatesexcellent fitting.

4. DATA,DISCUSSIONAND CONCLUSION

We downloaded whole-genome DNA sequences,
coding DNA sequences and protein sequences from
50 complete genomes of Archaea and Eubacteria
from the public database Genbank at the web site
http://www.ncbi.nlm.nih.gov/Genbank/. We list the
name of the 50 bacteriain Appendix.

Wethen produce the CGRs of the data from the 50
genomes as described in Section 2. For more exam-
ples, we plot the chaos game representation of the
linked coding sequence from genome of Mycoplasma
pulmonis UAB CTIP (Mpul) in Figure 6. Fractal
(self-similarity) patternscan be seen in these CGRs.
We only use the moments of 128X 128 mesh
measure I based on the CGRs to estimatethe param-
eters (probability matrix) in the RIFS model. Then
the RIFS simulation of the original CGRs is per-
formed using the chaos game algorithm. Wethen get
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0

Figure 6. Chaos game representation of the linked coding
sequence from genome of Mycoplasma pulmonis UAB CTIP

(Mpul) (with 873,651 bps).

0

Figure 7. The RIFS simulated CGR for the CGR in Figure6.

Table 1. The goodness of fit for the walk representations of
three kinds ofdata from 50genomes.

—— Walk for the original 128X128 i

007 . -+ Walk for the RIFS simulation

0.08 1
c i 1
S 00 h
i) 5 1 ax | .’ﬂ'?:"“_
% - ‘,‘\ \{ \",\ ! \
(-4 bk 7 P 3
& ooy N W
x A ht
™ k

0.02/
£ | %

001 A A

Y M
h T
0 Mpul-cDNA,e=0.1261 Y M gl
R
001
0 2000 4000 6000 8000 10000 12000 14000 16000
Pixel position

Figure 8. The walk representation of measures induced by
the CGR inFigure 6 andits RIFS simulationin Figure 7.

the 128X 128 mesh measurel based on thesimulated
CGR. To show theperformance of the simulation, we
compare the cumulative walks of the original mea-
sure and itssimulation & . For example,the RIFS sim
ulated CGR of the linked coding sequence from
genome of Mycoplasma pulmonis UAB CTIP (Mpul)
based on the 128X 128 mesh measurell from Figure
6 isshowninFigure 7, whilethe walk representation
of measures induced by the CGRin Figure 6 and its
RIFS simulation inFigure 7are shown inFigure 8.
Goldman (1993) interpreted the patterns in CGRs
of DNA sequences by the dinucleotide and
trinucleotide frequencies in the original sequence.
The probability matrix in our RIFSmodel character-
izes the dinucleotideor di-amino acidfrequencies (in-
formation) which is similar to the one in Markov
model used by Goldman (1993), but the way to esti-

mate this matrixis different.

The values of the RSE of the simulation for 50
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Species e for efor efor
(abbrev.)  wholeDNA codingDNA  linked
proteins
Aful 0.5797 0.2669 0.0366
Paby 0.3502 0.3214 0.0333
IIi}/_ro 0.4324 0.3411 0.0361
jan 0.2136 0.2675 0.0647
haloNRC 0.3728 0.3569 0.0297
Taci 0.2707 0.2735 0.1030
Tvol 0.3126 0.2716 0.1308
Mthe 0.5188 0.5676 0.0299
Aero 0.6213 0.2222 0.0452
Ssol 0.3798 0.3612 0.1098
MtubH 1.3037 0.5862 0.0333
MtubC 1.3010 0.5711 0.0300
Mlep & 0.4271 0.3332 0.0404
Mpneu 0.0484 0.0589 0.1686
Magen 0.0731 0.2305 0.2617
Mpul 0.0639 0.1261 0.2267
Uure 0.0783 0.2064 0.4058
Bsub 0.4051 0.8012 0.0684
Bhal 0.1198 0.2652 0.0489
Llac 0.1032 0.1879 0.0500
Spyo 0.1049 0.1759 0.0678
Spne 0.1125 0.1358 0.0932
SaurN 0.1264 0.2728 0.1020
SaurM 0.1229 0.2680 0.1054
CaceA 0.1887 0.1693 0.1859
Aqua 0.4825 0.3457 0.0661
Tmar 0.4470 0.6674 0.0597
Ctra 0.8986 0.4769 0.1066
Cpneu 0.7786 0.7170 0.1312
CpneuA 0.7593 0.7093 0.1044
CPneuJ 0.7899 0.7352 0.1290
Syne 0.0521 0.0396 0.0667
ost 0.1411 0.1439 0.0931
Bbur 0.1466 0.1255 0.2008
Tpal 0.3068 0.1212 0.0908
Atum 0.2614 0.2655 0.0403
smel 0.1739 0.1957 0.0380
Ccre 0.1171 0.1558 0.0259
RPro 0.3887 0.7126 0.2132
Nmen 0.1973 0.1933 0.0430
NmenA 0.2039 0.1993 0.0559
EcoliKM 0.3225 0.3472 0.0714
EcoliOH 0.3222 0.3810 0.0868
Hinf 0.0677 0.2388 0.0883
Xfas 0.1246 0.1460 0.0324
Paer 0.2149 0.1823 0.0470
Pmul 0.1032 0.2087 0.0911
Buch 0.1954 0.2598 0.3911
Hpyl 0.2567 0.2615 0.1161
Cle 0.1540 0.1797 0.0802
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genomes are listedin Tablel.

It is seenthat all thevalues of the RES except two
are much less than 1.0, confirming that the RIFS
model can simulate very well the measures of three
kinds of data. Thevalues of e for whole-genome DNA
data are generally larger than thosefor linked coding
DNA data, which in turn are larger than those for
linked protein data. In other words, the RIFS model
can simulate the measures for linked protein data
better than themeasures for linked coding DNA data,
and can simulate measures for linked coding DNA
data better thanthe measures for whole-genome DNA
data. We notice that the linked protein sequence is
shorter than the corresponding linked coding DNA
sequence, while the linked coding DNA is shorter
than the whole-genome sequence. We guess the
length of thedata reflects theinformation complexity
of the dataand the RIFSmodel is still simple model
which simulates simpler databetter. This result indi-
cates that we can use the estimated parametersin the
RIFS model for linked protein datafrom genomes to
characterize the genomes. Wefind that the estimated
probability matrices in the RIFS model for species
from the same category are similar to each other. For
example, the estimated probability matrices for the
measures of linked protein sequences from the three
Gram-positive Eubacteria (high G+C) Mycobacte-
rium tuberculosis H37Rv (MtubH), Mycobacterium
tuberculosis CDC1551 (MtubC) and Mycobacterium
leprae TN (Mlep) are:

Hence we can use the RIFS estimated probability
matrices of the linked protein sequences from
genomes to define adistance metric between two spe-
cies for the purpose of construction of phylogenetic
tree. Thiswork is beng undertaken.

We can now draw some conclusions. First, the
chaos game representation of the threekinds of data
from genomes can give a visualization of the
genomes and produce some fractal patterns. Second,
the RIFS model can be used to simulate CGRs of

SciRes Copyright © 2008

genomes and their induced measures. Third, the RIFS
simulation of measures for linked protein data is
better than that of measures for whole-genome DNA
data and linked coding DNA data. Finally, the esti-
mated parameters inthe RIFS modelsfor the linked
protein data from genomes can beused to character-
ize the phylogeneticrel ationships of thegenomes.
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APPENDIX

These 50 bacteriainclude eight Archae Euryarchaeota: Archaeoglobus
fulgidus DSM 4304 (Aful, NC000917), Pyrococcus abyss GE5 (Paby,
NC000868), Pyrococcus horikoshii OT3 (Pyro, NC000961),
Methanococcus jannaschii DSM 2661 (Mjan, NC000909), Halobacterium
sp. NRC-1 (haoNRC, NC002607), Thermoplasma acidophilumDSM 1728
(Taci, NC002578), Thermoplasma volcanium GSS1 (Tvol,NC002689), and
Methanobacterium thermoautotrophicum deltaH (Mthe, NC000916); two
Archae Crenarchaeota Aeropyrum pernix K1 (Aero, NC000854) and
Sulfolobus solfataricus P2 (Ssol, NC002754); three Gram-positive
Eubacteria (high G+C): Mycobacterium tuberculosis H37Rv (MtubH,
NC000962), Mycobacterium tuberculosis CDC1551 (MtubC, NC002755)
and Mycobacterium leprae TN (Mlep, NC002677); twelve Gram-positive
Eubacteria (low G+C): Mycoplasma pneumoniae M129 (Mpneu,
NC000912), Mycoplasma genitaliumG37 (Mgen, NC000908), Mycoplasma
pulmonis UAB CTIP(Mpul, NC002771), Ureaplasma urealytiaum serovar
3 str. ATCC 700970 (Uure, NC002162), Bacillus subtilis subsp. subtilis str.
168 (Bsub, NC000964), Bacillus halodurans C-125 (Bhal, NC002570),
Lactococcus lactis subsp. lactis 111403 (Llac, NC002662), Streptococcus
pyogenes M1 GAS (Spyo, NC002737), Sreptococcus pneumoniae TIGR4
(Spne, NC003028), Saphylococcus aureus subsp. aureus N315 (SaurN,
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NC002745), Saphylococcus aureus subsp. aureus Mu50 (SaurM,
NC002758), and Clostridium acetobutylicum ATCC 824 (CaceA,
NCO003030). The othersare Gram-negative Eubacteria, which consstof two
hyperthermophilic bacteria Aquifex aedlicus VF5 (Aqua, NC000918) and
Thermotoga maritima MSB8 (Tmar, NC000853); four Chlamydia:
Chlamydia trachomatis D/UW-3/CX (Ctra, NC000117), Chlamydia
pneumoniae CWL029 (Cpneu, NC000922), Chlamydia pneumoniaeAR39
(CpneuA, NC002179) and Chlamydia pneumoniae J138 (CpneuJ,
NC002491); two Cyanobacterium: Synechocystis sp. PCC6803 (Syne,
NC000911) andNostoc sp. PCC7120 (Nost, NC003272); twoSpir ochaete:
Borrelia burgdorferi B31 (Bbur, NC001318) and Treponema pallidum
Nichols (Tpal, NC000919); and fifteen Proteobacteria. The fifteen
Proteobacteriaare dividedinto four subdivisions,namely alpha subdivision:
Agrobacterium tumefaciensstrain C58 (Atum, NC003062), Snorhizobium
meliloti 1021 (smel, NC003047), Caulobacter crescentus CB15 (Ccre,
NC002696) and Rickettsia prowazekii Madrid (Rpro, NCO00963); beta sub-
division: Neisseria meningitidis MC58 (Nmen, NC003112) and Neisseria
meningitidis 22491 (NmenA, NCO003116); gamma subdivision: Esche-
richiacoli K-12 MG1655 (EcoliKM,NC000913), Escherichia coli O157:H7
EDL933 (EcoliOH, NC002695), Haemophilus influenzae Rd (Hinf,
NC000907), Xylella fastidiosa 9a5c (Xfas, NC002488), Pseudomonas
aeruginosa PAO1 (Paer, NC002516), Pasteurella multocida subsp.
multocida str. Pm70 (Pmul, NC002663) and Buchnera str. APS (Buch,
NC002528); and epsilon subdivision: Helicobacter pylori 26695 (Hpyl,
NCO000915) and Campylobacter jgjuni  subsp. jejuni NCTC 11168 (Cjg,
NC002163). The abbreviations in thebrackets stand for the names of these
speciesand theirNCBI accession numbers.

JBiSE



SciRes Copyright © 2008

J. Biomedical Science and Engineering, 2008, 1, 52-58

Scientific
Research
Publishing

A combinatorial analysisof geneticdata for

Crohn'sdisease

WeidongMao' & Jeonghwal ee’

‘Department of Mathematics& Computer Science, Virginia StateUniversity, Petersburg, VA 23806, USA. Department of Computer Science,
Shippensburg University, Shippensburg, PA 17257, USA. Correspondence should be addressed to Weidong Mao (wmao@vsu.edu) or Jeonghwa

Lee(jlee@ship.edu).

ABSTRACT

The both environmental and genetic factors have
rolesinthe developmentof somediseases. Complex
diseases,suchas Crohn'sdiseaseorTypelldiabetes,
are caused by acombination of environmental fac-
tors and mutations in multiple genes. Patients who
havebeendiagnosed withsuch diseasescannot eas-
ily be treated. However, many diseases can be
avoided ifpeopleathighriskchangetheirliving style,
one examplebeing theirdiet. Buthow canwetelltheir
susceptibility to diseases before symptoms are
found andhelp themmake informeddecisions about
their health? With the development of DNA
microarray technique, it is possible to access the
human genetic information related to specific dis-
eases. This paper uses a combinatorial method to
analyze the genetic data for Crohn's disease and
search disease-associated factors for given
case/control samples. An optimum random forest
based methodhas beenapplied topublicly available
genotype data on Crohn's disease for association
study andachieved apromisingresult.

Keywords: Genetic factor; Crohn's disease; Ran-
dom forest

1. INTRODUCTION

Crohn's disease (alsoknown as regional enteritis) is a
chronic, episodic, inflammatory condition of thegas-
trointestinal tract characterized by transmural
inflammation (affecting the entire wall of the
involved bowel) andskip lesions (areasof inflamma-
tion with areas of normal liningin between). Crohn's
disease isatypeof inflammatory bowel disease(I1BD)
and can affect any part of the gastrointestinal tract
from mouth to anus. As a result, the symptoms of
Crohn's disease canvary among affected individuals.
The exact cause of Crohn's diseaseis unknown. How-
ever, research shows that the inflammation seen in
the people with Crohn's disease involvesseveral fac-
tors: the genes the patient hasinherited, theimmune
system itself, and the environment [1]. In other
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words, genetic factor has been invoked in the
pathogenesis of thedisease.

Although the Crohn's disease cannot easily be
treated, it can beavoided if people at high risk change
their living style, such as their diet. But how can we
tell the susceptibility of people to the disease before
symptoms are found and help them make informed
decisions about their health? With the development
of DNA microarray technique, itis possible toaccess
the human geneticinformation related tospecific dis-
eases. Assessing the association between DNA vari-
ants and disease has been used widely to identify
regions of the genome and candidate genes that con-
tribute todisease[2].

99.9% of oneindividual's DNA sequences are iden
tical tothat of another person. Over 80% of this0.1%
difference will be Single Nucleotide Polymorphisms
(SNP) and they promiseto significantly advance our
ability to understand and treat human disease. A SNP
is a single base substitution of one nucleotide with
another. Each individual has many single nucleotide
polymorphisms that together create a unique DNA
pattern for that person. It isimportant to study SNPs
because they represent genetic differences among
human beings. Genome-wide association studies
require knowledge about common genetic variations
and the ability to genotype asufficiently comprehen
sive set of variants in a large patient sample [3].
High-throughput SNP genotyping technologies make
massive genotype data, with a large number of indi-
viduals, publicly available. Accessibility of genetic
data makesgenome-wide association studies for com-
plex diseases possible.

Success stories when dealing with diseasescaused
by a single SNP or gene, sometimes called monogenic
diseases have been reported [4]. However, most com-
plex diseases, suchas psychiatric disorders, are char-
acterized by anon-mendelian, multifactorial genetic
contribution with a number of susceptible genes
interacting with each other [5]. A fundamental issue
in the analysis of SNP datais to define the unit of
genetic function that influences disease risk. Is it a
single SNP, a regulatory motif, an encoded protein
subunit, a combination of SNPs in acombination of
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genes, an interacting protein complex, ametabolic or
a physiological pathway [6]? In general, it may be
impossible to associate a single SNP or gene with a
disease because a disease may be caused by com
pletely different modifications of alternative path-
ways, and each geneonly makesa small contribution.
This makes theidentification of geneticfactors diffi-
cult. Multi-SNP interaction analysis is more reliable
but it is computationally infeasible. An exhaustive
sea chamong multi- SNP combi nationis computational ly
infeasible even for asmall number of SNPs. Further-
more, there are no reliable tools applicable to large
genome rangesthat couldrule out or confirm associa-
tion with adisease.

Itisimportant to searchforinformative SNPs among a
huge number of SNPs. These informative SNPs are
asumed to be associaedwith gendicdiseases. Tag SNPs
generated by the multiplelinear regression based method
[7] are good informative SNPs, but they are reconstruc-
tion-oriented instead of disease-oriented. Although the
combinatorial search method [8] for finding disease-
associated multi-SNPcombinations hasa better result, the
exhaugivesearchisstill very slow.

Multivariate adaptiveregression splinemodels [9,
10] are used to detect associations between diseases
and SNPs with some degree of success. However, the
number of selected predictorsis limited, and thetype
of possible interactionsmust be specifiedin advance.
Multifactor dimensionality reduction methods [11,
12] are developed specifically to find gene-gene
interactions among SNPs, but they arenot applicable
to alarge set of SNPs.

Random forest model has been exploredin disease
association studies [13], but it wasapplied on simu
lated case-control data in which the interacting
model among SNPs and the number of associated
SNPs are spedified, thus making the association
model simple and the association isrelatively easier
to detect. For real data, such as Crohn's disease [14],
multi-SNP interactionis much morecomplex , which
involves more SNPs.

In Section 2 of this paper, we propose an optimum
random forest model for searching the disease-
associated multi-SNP combination for given case-
control data. In the optimum random forest model,
we generate a forest for each variable (e.g. SNP)
instead of randomly selecting some variablesto grow
the classification tree. Wecan find thebest classifier
(a combination of SNPs whichincludes the SNP) for
each SNP, and then we may have M classifiers if the
length of the genotype is M. We rank classifiers
according to their prediction rate, andthe SNPwith a
higher predictionrates ismore disease-associated.

The association of multi-SNP combination can be
measured by thedisease susceptibility predictionrate.
In Section 3 weaddress the disease susceptibility pre-
diction problem [15, 16, 17, 18]. The goal of disease
susceptibility prediction is to assess accumulated
information targeted to predicting susceptibility to
complex diseases with significantly high accuracy
and statistical power. The problem is based on the
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association study we described above. The Disease-
associated multi-SNP combination found in associa-
tion studies can be used to predict the susceptibility
to diseases. On the other side, the prediction results
can be used to evaluate the accuracy of the associa-
tion studies. A higher prediction rate means the
higher reliability of the association studies.

The proposed method is applied to analyze the
genetic data of the Crohn's disease. Wefind the dis
ease-associated multi-SNP combination and apply it
to predict the susceptibility. Theaccuracy of the pre-
diction is higher than that of all previously known
methods. It can be also applied in disease prevention
and control in the near future. For example, after
training the available case-control genome data, we
can find those significant SN Ps which are well asso-
ciated with the disease. When a patient comes, and
we obtain hi gher geneti c data, we don't need to check
the whole sequence, but only disease-associated
SNPs instead. This will save much money and time
for diagnosis and can be done before the onset of di s-
eases. Therefore, treatment could start earlier to pre-
vent or delay the occurrence of the disease.

2. DISEASEASSOCIATION SEARCHFOR
CROHN'SDISEASE

In this section we first give an overview of the ran-
dom forest tree and classification tree, then we will
describe the geneticmodel. Next wepropose the opti-
mum random forestalgorithm to searchTag SNPs.

2.1. Classification Trees and Random For est
In machine learning, a Random Forestis a classifier
that consists of many classification trees. Each treeis
grown asfollows:

1. If the number of casesin the training set is N,
sample N cases at random - but with replacement,
from the original data. Thissample will bethe train-
ing set forgrowing the tree.

2. If there are M input variables, anumber m<<M
is specified such that at each node, m variables are
selected randomly out of the M and the best split on
these m is used to split the node. The value of mis
held constant during theforest growing.

3. Each treeis grown tothe largest extent possible.
Thereisno pruning[19].

A different bootstrap sample from theoriginal data
is usedto construct a tree. Therefore, about one-third
of the cases are left out of the bootstrap sample and
not used in the construction of the tree. Cross-
validation is not required because the one-third oob
(out-of-bag) data is usedto get anunbiased estimate
of theclassification error as treesare added to thefor-
est. Itis also used to get estimates of variableimpor-
tance. After each tree is built, we compute the
proximities of eachterminal node.

In every classification treein theforest, put down
the oob samples and make prediction the classifica
tion of the oob samples. In suchway we can compute
the importance scorefor variables in each tree based
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on the number of votes cast for the correct class. All
variables can be ranked and thoseimportant variables
can befoundinthisway.

Random forest is a sophisticated method in data
mining to solveclassification problems, andit can be
used efficiently in disease association studies to find
most disease-associated variables such as SNPs that
may be responsiblefor diseases.

2.2. GeneticModel

Recent work has suggested that SNPsin human popu-
lation are not inherited independently; rather, sets of
adjacent SNPs are present on allelesin a block pat-
tern, so called haplotype. Many haplotypeblocks in
human have been transmitted through many genera-
tions without recombination. This means although a
block may contain many SNPs, it takes only afew
SNPs to identify orto tag each haplotypein theblock.
A genome-wide haplotype would comprise half of a
diploid genome, including one allele from each
allelic gene pair. The genotype is the descriptor of
the genome whichis the set of physical DNA mole-
cules inherited from the organism's parents. A pair of
hapl otype consists of a genotype.

SNPs are bi-allelic and can be referred as 0 for
majority allele and 1, otherwise. If alleles on both
haplotypes arethe same, then the corresponding geno-
type ishomogeneous, and can berepresented asO or 1.
If the twoalleles on thetwo haplotypes aredifferent,
the genotypeis heterozygous, represented as?2.

In Figure 1, there are four chromosomes, we
assume the firsttwo chromosomes belongto one per-
son and theother two chromosomesbelong to another
person. We can find on most sitesthe four chromo
somes are identical, but on somesites they arediffer-
ent, nucleotideson thesesites are SNP. Thehaplotype
is the concatenation of SNPs and agenotype iscom-

SNP SNP SNP

SNPs

Chromosome 1
Chromosome?2
Chromosome3
Chromosome4

Haplotypel
Haplotype2
Haplotype3
Haplotype4

Haplotypel
Haplotype2
Haplotype3
Haplotype4

Genotypel
Genotype2

Figure 1. SNP, haplotype andgenotype.
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posed of two haplotypes.

The case-control sample populations consist of N
individuals who arerepresented in genotype with M
SNPs. Each SNP attainsone of the three values 0, 1,
or 2. ThesampleGisan (0,1, 2)-valued N x M matrix,
where each row corresponds to an individual, each
column correspondsto a SNP.

The sample G has 2 classes, case and control, and
M variables, and each of them represents a SNP. To
construct a classification tree, we split the sample S
into 3 child sub-samples, depending onthe value(0, 1,
2) of the variable (SNP) on thesplitting site(loci). In
fact we can construct a binary tree (split sample
according to homozygous or heterozygous), but there
is no way to tell thedifference between major allele
(1) and minor allele (0). Inorder to distinguishthem
we split the sampleinto 3 sub-samples instead of 2.
We grow the tree to the largest possible extent. The
construction of the classification tree for case-
control sampleis illustrated in Figure 2. In the first
level, wesplit thesample (30 genotypes, 14 cases and
16 controls) into 3 sub-samples (17, 8, 5) at loci 5
(the 5" SNP). In the second level, the first sub-
sample splits at loci 9 and the second sub-sample
splits at loci 7. No splitting is required for the third
sub-sample because it is a terminal node with only
one class. Inthe third level, the only split node splits
at loci 3. The relationship of a leaf to the tree on
which it grows can be described by the hierarchy of
splits of branches(starting from thetrunk) leading to
the last branchfrom which theleaf hangs. The collec-
tion of split siteis aMulti-SNPs combination (MSC),
which can beviewed as aclassification tree. Inthis
example, MSC = {5, 9, 7,3}and m= 4, which isa col-
lection of 4SNPs, represented astheir loci.

2.3. Searching for Disease Associated Multi-
SNPs
Tofully understand the basis of complex diseases, it

control
Split condition

Number of sampless sent to
child node

Split site

Terminal node(leaf)

Splitnode

Figure 2. Classification tree forcase-control sample.
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is important to identify the critical genetic factors
involved, which isa combination of multiple SNPs.
For a given sample G, S is the set of all SNPs (de
noted by loci) for the sample, and a multi-SNPscom-
bination (MSC) is a subset of S. In disease associa
tions, weneed tofind aMSC which consistsof acom-
bination of SNPsthat are well associated with thedis-
ease. To find such MSC, we need first rank all SNPs
according to their association degree (measured as
weight) with diseases. Based on the sorting, we can
find the n most disease associated SNPs for agiven
threshold n.

Although there are many statistical methods to
detect themost disease associated SNPs, such asodds
ratio or risk rates, the result is not satisfactory. We
decide to usethe random forestto find them.

2.4. Optimum Random For est

Werandomly generatea group of MSCsfor each SNP.
The sizeof theMSC should be much lessthan thesize
of set S(m << M). Each MSC can be represented as a
tree and all trees make the forest F. All trees (or
MSCs) of the forest F,; (i=1, 2, ..., M) must include the

i"" SNP andthe other (m-1) SNPs canbe randomly cho-

sen from Sexcept the i" SNP. Inthis way, the M for-
ests cover all SNPsinS.

We grow a classification tree for every MSC in
each forest F;. We run all the testing samples down

these treesto get the classifier for each sample inthe
training set, then we can get a classification rate for
each tree inF;. The MSC, is therepresentative for the

forest F; and the MSC; has the highest classification
rate among all trees in F;. Each member (SNP) of the
MSC,; is assigned a weight Wi j (j€ MSC) based on the

classification rate. The weights for SNPs in thesame
MSC are the same. We canfind M MSCsfor theM for-
ests. If a SNPis notamember of MSC;, thenw; ; = 0.

The weight foreach SNPW, =12,....M)inMis
the sum of weights from all MSCs.

1)

In the general random forest (GRF) algorithm, the
MSC is selected completely randomly and m<< M. It
may miss someimportant SNPs if they are notchosen
for any MSC. In our optimum random forest (ORF)
algorithm, this scenariois avoided becausewe gener-
ate at least one MSC for each SNP. On the other hand,
in GRF, theclassifier (forest) consists of trees where
there isa correlation between any two treesin thefor-
est, and the correlation will decrease the rate of the
classifier. But in ORF, we generate a forest by ran-
domly choosing MSC and samples for each tree and
the prediction fortesting samplesisin this forestonly,
which is completelyindependent from theother trees.
In this way, we extinguish the correlation among
trees.

All SNPs aresorted according to their cumulative
weights. The most disease-associated SNP isthe one
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with the highest weight. The contribution to diseases
of each SNP is quantified by its weight, but in GRF
there is no way tell the difference of contribution
among SNPs. The GRF can only tell the difference
among classifiers (trees).

3. DISEASE SUSCEPTIBILITY PREDICTION
In thissection wefirst describethe input and the out-
put of prediction algorithms and then show how to
apply the optimum random forest to the disease sus-
ceptibility prediction.

Data sets have n genotypes and each has m SNPs.
The input fora prediction algorithmincludes:

(G1) Training genotype setg; = (gi,j), i=01, .., n,
j=1..m,g;€{0,1,2}

(G2) Disease status s(g;) €{0,1}, indicating if g;, i
=0,1, .., n,isincase (1) orin control (0) , and

(G3) Testing genotype g, without any disease sta-
tus.

We will refer tothe parts (G1-G2) of the input as
the training set andto thepart (G3) as thetest set. The
output of prediction algorithms is the disease status
of thegenotype s(g,).

We use leave-one-out cross-validation to measure
the quality of the algorithm. In the leave-one-out
cross-validation, the disease status of each genotype
in the dataset is predictedwhile the rest of the datais
regarded as thetraining set.

We describe several universal prediction methods
below. These methodsare adaptationsof general com-
puter-intelligence classifyingtechniques.

Closest Genotype Neighbor (CN). For the test
genotype g,, find the closest (with respect to Ham-

ming distance) genotype g; in the trainingset, and set
the statuss(g,) equals tos(g;).

Support Vector MachineAlgorithm (SVM). Sup-
port Vector Machine (SVM) is ageneration learning
system based on recent advances in statistical learn
ing theory. SVMs deliver a state-of-the-art perfor-
mance in real-world applications and havebeen used
in case/control studies[18, 20]. There are someSVM
softwares availableand we decide to use libsvm-2.71
[19] withthe following radial basisfunction:

exp(- | u-v| %)

General Random Forest (GRF). We use Leo
Breiman and Adele Cutler's original implementation
of RF version[19]. Thisversion of RFhandles unbal-
anced datato predict accurately. RF triesto performa
regression on the specified variables to produce the
suitable model. RFuses bootstrapping toproduce ran-
dom trees and it has its own cross-validation tech
nigue to validatethe model for predicti on/ classi ficati on.

Most Reliable 2 SNP Prediction (MR2) [17].
This method chooses apair of adjacent SNPs (site of
s; and s, ;) to predict the disease status of the test

genotype g, by voting among genotypes from the
training set which have the same SNP valuesas g, at
the chosen sitess; and s;, ;. They choose the 2 adja-
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cent SNPs with the highest prediction rate in the
training set.

LP-based Prediction Algorithm (LP). This
method assumesthat certain haplotypes are suscepti-
ble to thedisease while othersare resistant tothe dis-
ease. The genotype susceptibility is then assumed to
be a sumof susceptibilities of its two haplotypes.

Wewant to assign a positive weight to susceptible
hapl oty pes and a negative weight to red stant hapl oty pes
such that for any control genotypethe sum of weights
of its haplotypesis negative and for any case geno-
type it is positive. We would also like to maximize
the confidence of our weight assignment which can
be measured by the absolute values of the genotype
weights. In other words, we would like to maximize
the sum of absolute values of weights over all geno-
types.

This method is based on agraph X = {H, G}, where
the vertices H correspond to distinct haplotypes and
the edges G correspond to genotypes connecting its
two haplotypes. The density of Xisincreased by drop-
ping SNPs which do not collapse edges with an oppo-
site status. The linear program assigns weights to
haplotypes that, for any non-diseased genotype, the
sum of weights of its haplotypesis lessthan 0.5 and
greater than 0.5 otherwise. We maximize the sum of
absolute values of weights over all genotypes. The
status of the testing genotype is predicted as sum of
its endpoints[15].

Optimum Random Forest (ORF). In thetraining
set, the optimum random forest algorithm we
described aboveis usedto sort all SNPs, and find out
the m most disease associated SNPs for a given
threshold m. The m most disease associated SNPs
(Tag SNPs) are usedto buildthe optimumrandom for-
est to test the left-out sample. In |leave-one-out test,
since the training set is different after leaving one
sample out, wemay have different Tag SNPs for dif-
ferent training sets. Them variables (SNPs) are used

to grow many different classification trees by per-
muting the order of the splitting site (Note that the
tree {3, 9, 5}isdifferent from the tree{5, 9, 3}). We
may use the m Tag SNPs to grow many (say, 500)
trees and choose the best tree (classifier) to predict
the disease status of the testing genotype. The best
tree has the highest average prediction rate (over
1000 trials) inthe training set. Then we run the test
ing genotype downthe best treeto get itsdisease sta-
tus. The Optimum Random Forest algorithm isillus-
tratedin Figure 3.

4. RESULTS & DISCUSSION

In thissection wefirst describethe genetic data of the
Crohn's disease and then discuss our experimental
results.

4.1. Data Set

The genetic data is derived from the 616 kilobase
region of human Chromosome 5g31 that may contain
a genetic variant responsible for Crohn's disease by
genotyping 103 SNPs for 129trios [14]. All offspring
belong to the case population, while almost all par-
ents belong to the control population. In the entire
data, there are 144 case and 243 control individuals.
The missing genotypedata and haplotypeshave been
inferred using the 2SNPphasing method[21].

4.2. Measuresof Prediction Quality
To measure the quality of prediction methods, we
need to measure the deviation between the true dis
ease status and the result of predicted susceptibility,
which can beregarded as measurement error. Wewill
present the basic measures used in epidemiology to
qguantify theaccuracy of our methods.

The basic measuresare:

Sensitivity: the proportion of persons who have
the disease andwho are correctlyidentified as cases.

Specificity: the proportion of people who do not

Figure 3. Optimum Random ForestAlgorithm.
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have the disease and who are correctly classified as
controls.

The definitions of these two measures of validity
areillustrated inTablel.

Inthistable:

a = True positive, people with the disease who test
positive

b = False positive, people without thedisease who
test positive

¢ = False negative, people with the disease who
test negative

d = True negative, people without the disease who
test negative

From Tablel, we can compute Sensitivity (accu-
racy in classification of cases, Specificity (accuracy
in classificationof controls) and accuracy:

Sensitivity = -2

atc

(2
3
4

Sensitivity is the ability to correctly detect a dis
ease. Specificity isthe ability toavoid calling normal
as disease. Accuracy is the percent of the population
that arecorrectly predicted.

4.3. Resultsand Discussion

The normalized weights of 103 SNPs are shown in
Figure 4. SNPs with higher weights aremore associ-
ated with thedisease.

In Table2 we compare theoptimum random forest
(ORF) method withthe other 5methods we described
in Section 3. Thebest accuracy is achieved by ORF -
74.4%. From theresults we canfind that the ORF has
the best result since we select the most disease-
associated multi-SNPsto build the random forest for
prediction. Because these SNPs are well associated
with the disease, the random forest may produce a
good classifier to reflect the association.

Tablel. Classification contingency table.

True Status
+ -
Classified + a b
Status . c d

Table 2. The comparison ofthe prediction ratesof 6 prediction
methods.

Measures Prediction Methods

CN SVYM GRF MR2 LP ORF
Sensitivity 455 20.8 340 30.6 375 70.1
Specificity 63.3 83.8 852 852 885 76.9
Accuracy 546 63.6 66.1 655 695 74.4
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Figure 5shows the receiver operating characteris-
tics (ROC) curve for 6 methods. A ROC curve repre-
sents the tradeoffs between sensitivity and specificity.
The ROC curve alsoillustrates the advantage of ORF
over all previous methods.

If the size of MSC is m, and the total number of
SNPs isM, to get a good classifier, then m should be
much lessthan M. The prediction rate depends onthe
size of MSC, as shownin Figure 6. In our experiment,
we found that the best size of MSCis 19.

5. CONCLUSION
In this paper, we discussthe potential of applying ran-
1
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Figure 4. Normalized weights for103 SNPs.
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dom forest on disease association studies. The pro-
posed genetic susceptibility prediction method based
on the optimum random forest is shown to have a
high prediction rate and the multi-SNPs being
selected to build the random forest are well associ-
ated with diseases. Actually the cause of complex dis-
eases is the combination of the environmental,
genetic factors and some other factorssuch as infec
tion andraces. Inour futurework we are goingto ana
lyze the interactive contribution of these factors for
the development of complex diseases. Our next pro-
ject is going to find the relationship between the
genetic factor and racein the development of Type2
Diabetes. Theintegrated software will be available
soon for publicuse.
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ABSTRACT

Apoptosis proteins have a central role in the
development and homeostasis of an organism.
These proteins are very important for under-
standing the mechanism of programmed cell
death, and their function is related to their
types. The apoptosis proteins are categorized
into the following four types: (1) Cytoplasmic
protein; (2) Plasma membrane-bound protein;
(3) Mitochondrial inner and outer proteins; (4)
Other proteins. A novel method, the Hilbert-
Huang transform, is applied for predicting the
type of a given apoptosis protein with support
vector machine. High success rates were
obtained by the re-substitutetest (98/98=100%)
and jackknifetest (91/98 = 92.9%).

Keywords:Hilbert Huang transform; Sup-
port vector machine; Subcellular location
predict

1. INTRODUCTION

Apoptosis, or programmed cell death, isa fundamen-
tal process controlling normal tissue homeostasis by
regulating a balance between cell proliferation and
death [1]. This process entails the autolytic degrada
tion of cellular components, and is characterized by
blebbing of cell membranes, shrinkage of cell vol-
umes, and condensationof nuclei [2],and is currently
an area of intense investigation. Cell death and
renewal are responsible for maintaining the proper
turnover of cells, which ensures aconstant controlled
flux of fresh cells. Programmed cell death and cell
proliferation are tightly coupled. When apoptosis
malfunctions, a variety of formidable diseases can
ensue: blocking apoptosisis associated with cancer
and autoimmune disease, whereas unwanted
apoptosis can possibly lead to ischemic damage or
neurodegenerative disease [3]. Apoptosisis consid-
ered to have akey rolein these several devastating
diseases and, in principle, provides many targets for
therapeutic intervention [4]. To understand the

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

apoptosis mechanism and functions of various
apoptosis proteins, it will be helpful to obtain infor-
mation about their subcellular location. This is
because the subcellular location of apoptosisproteins
is closely related to their function [5,6]. It has been
known that there are 732 archetypical proteins with
“apoptosis” domains [7], and only 98 of these pro-
teins are known to be the apoptosis protein (for more
details, one can visit: http://www.apoptosis-db.org).
Scientists usually deal with a number of protein
sequences already known belongingto apoptosispro-
teins. However, it is both time-consuming and costly
to determine which specific subcellular location a
given apoptosis protein belongs to. Confronted with
such asituation, can we develop a fast and effective
way to predict the subcellular location for a given
apoptosis protein based on its amino acid sequence?
Recently, Guo-ping Zhou [7] attempted to identify
the subcellular location of apoptosis proteinsaccord-
ing to their sequences by means of the covariant
discriminant function, which was established on the
basis of the Mahalanobis distance and Chou's
invariance theorem [7,8,9].The results were quite
promising, indicating that the subcellular location of
apoptosis proteins are predictable to aconsiderably
accurate extent if agood vector representation of pro-
tein canbe established. It isexpected that, with acon-
tinuous improvement of vector representation meth
ods by incorporating amino acid properties, and by
using morepowerful mathematicsmethods, somethe-
ory predicting method might eventually becomea use-
ful tool in this area because the function of an
apoptosis protein isclosely related toits subcellular
location. The present study was initiated in an
attempt to addressthis problem.

Chou and Elrod made an extensiveresearch in pre-
dicting subcellular location mainly based on the
amino acid composition. Subsequently, in order to
take into account the sequence-order effects and
improved the prediction quality, Chou has further
incorporated the quasi-sequence order effect [5] and
introduced the concept of “pseudo-amino-acid com-
position” [9]. For example, Chou [10] classifiedmem-
brane proteins intofive different types and proposed
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a covariant discriminant algorithm to predict the
types of membraneproteins. Recently, Cai et al. [11]
applied neural network to this problem. To improve
the prediction quality, Chou [5] proposed a new
method in which the covariant discriminate algo-
rithm was augmented to incorporate the quasi-
sequence-order effect. This method uses the amino
acid composition and the sequence-order-coupling
numbers (reflecting the sequence order effect) in
order toimprove theprediction quality. Feng[12] pro-
posed anew representation of unified attribute vector,
that each protein can be represented by a vector,
which is 20-D vector in Hilbert space with unified
length. Hence, all of proteins have their representa-
tive points onthe surface of the 20-D globe. The rep-
resentative points of the proteins inthe same family
or with the higher sequence identity are closer on the
surface. The overall predictive accuracy could be
improved from 3% to 5% for different databases[12]
with this simply modification of the usage of the
amino acid composition. Recently, a series of new
powerful approaches have been developed by Chou
and hisco-workers [13]. Encouraged by the great suc-
cesses of the previousinvertigators in the area, here
we would like to use adifferent strategy, the support
vector machines, to approach this very important but
also very difficult problem in the hope that our
approach can play a complementary roleto the exist
ing methods.

2. HILBERTHUANG TRANSFORM

The HHT consists of two parts: empirical mode
decomposition (EMD) and Hilbert spectral analysis
(HSA). Thismethod is potentially viable for nonlin
ear and nonstationary data analysis, especially for
time-frequency-energy representations. It has been
tested and validated exhaustively, but only empiri-
cally. In all the cases studied, the HHT gave results
much sharper than those from any of the traditional
analysis methods intime-frequency-energy represen
tations. Additionally, the HHT revealed true physical
meanings in many of the dataexamined. Powerful as
it is, the method is entirely empirical. In order to
make the method morerobust and rigorous, many out-
standing mathematical problems related to the HHT
method need to be resolved. In this section, a brief
introduction to the methodology of the HHT will be
given. Readers interested in the complete details
should consult[14].

2.1. The empirical mode decomposition
method (thesifting process)

In this method any time series, including non-linear
and non-stationary series, can be decomposed into a
finite number of intrinsic mode functions (IMFs)
through empirical mode decomposition (EMD) pro-
cess. An IMF isafunctionwhich must follow two con-
ditions: (1) the difference between the numbers of
extrema and zero-crossings is of <1 ; and (2) the
mean of theupper envelop (linked by local maxima)
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and the lower envelop (linked by local minima) are
zero at every point.

The EMD process is as follows. According to
Hilbert-Huang transform(HHT)[14], once the
extrema of atime series x(t) are identified, all the
local maximaand minimaare connected by two spe
cial lines asthe upper and lower envelopes respec
tively. Their mean isdesignated as m;, andthe differ-

ence between x(t) and m, isx(t)-m;=h, . If h; isnot an
IMF, h, is treated as the data and undergoes the pro-
cedure above, then h;-m;;=h,;; . Repeat this sifting
procedure k times until hy, is an IMF, that ishy ;-
my,=hy, thus the first IMF component is obtained,
i.e. . Then separate| MF; from the original time series
by x(t)- IMF,=r,. Treatr, as the new data and subject

it to the same sifting process above. Repeat this pro-
cedure on all the subsequent r; , i.e. ry-IMF,=r,, r,-

IMFg=rg,, 1 - IMF =1.
So theresult is:

2.2. Hilbert transform
Having obtained the intrinsic mode function compo-
nents IMF; (denoted asc;), one will have no difficulty

in applyingthe Hilbert transform to each IMF compo-
nent,

in whichthe PV indicates the principal valueof the
singular integral. With the hilbert transform, the ana-
lytic signal isdefined as

Here, a;(t) is theinstantaneous amplitude, and 0 ,(t)
is thephase function,

H(e,(1)
0

and the instantaneousfrequency is simply

_da(1)
(="

With the Hilbert Spectrum defined, we can also
definethe marginal spectrum h(w) as

.(1) = arctan

The marginal spectrum offers a measure of the
total amplitude (or energy) contribution from each
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Table 1. Comparative summary of Fourier, Wavelet and HHT
analyses.

Fourier Wavel et Hilbert
Basis A priori apriori adaptive
Convolution: convolution: differentiation
Frequency global regional local,
Uncertainty uncertainty certainty
) energy energy-time- energy-time-
Presentation  _frequency frequency  frequency
Nonlinear no no yes
Nonstationary no yes yes
Feature discrete: no
, no continuous: yes
Extraction
yes
Theoretical theory theory o
base complete complete ~ empirical

frequency value. This spectrum representsthe accu-
mulated amplitude over the entire data span in a
probabilistic sense.

The combination of the empirical mode decompo-
sition and the Hilbert spectral analysisis also known
as the “Hilbert-Huang transform” (HHT) for short.
Empirically, all testsindicate that HHT isa superior
tool for time-frequency analysis of nonlinear and
nonstationary data. It is based on an adaptive basis,
and the frequency is defined through the Hilbert
transform. Consequently, thereis no need for the spu-
rious harmonics to represent nonlinear waveform
deformations as in any of the priori basis methods,
and there is no uncertainty principle limitation on
time or frequency resolution from the convolution
pairs based alsoon a priori basis.

A comparative summary of Fourier, wavelet and
HHT analysesisgivenintheTablel:

This tableshows that the HHT is indeed a powerful
method for analyzing data from nonlinear and

nonstationary processes: it is based on an adaptive
basis; the frequency is derived by differentiation
rather than convolution; therefore, it isnot limited by
the uncertainty principle;it is applicableto nonlinear
and nonstationary data and presents the results in
time-frequency-energy spacefor featureextraction.

Support Vector Machine (SVM) is one type of
learning machines based on statistical learning the-
ory. A complete descriptionto thetheory of SVMsfor
pattern recognition is in Vapnik's book.[15]. SVMs
have been usedin arangeof bioinformatics problems
including proteinfold recognition[16]; proteinprotein
interactions prediction [17]; prediction of protein
subcellular location [17, 18], protein secondary
structure prediction, T-cell epitopes prediction, Clas-
sification of protein quaternary structure [19].

In this paper, we apply Vapnik's support vector
machine for predicting thetypes of apoptosis proteins.
Wehave used the OSU_SVM, aMatlab SV M toolbox
(http://www.ece.osu.edu/~maj/osu_svm),whichisan
implementation of SVMfor the problemof patternrec
ognition.

3. TRAINING AND PREDICTION
According to their subcellular location [12],
apoptosis proteins are classified into the following
four types: (1) typel: Cytoplasmic protein; (2) typell:
Plasma membrane-bound protein; (3) typeIIl: Mito-
chondrial inner and outer proteins; (4) type IV: Other
proteins (seeTable2).

In this research, we first translate every aminoacid
sequence sinto a numerical sequence f by hydrophobicity
index, then, decompose it into a finite number of
intrinsic mode functions (IMFs) through empirical
mode decomposition (EMD) process, we just select
the 2nd to 4th components (IMF2, IMF3, IMF4),
because first IMF just reflects the rand composition
and the last isjust the trendences composition of the
numerical sequence f. Then applying the Hilbert

Table 2. List of the acession numbers for the 98 apoptosis proteins classified into four categories according to their
subcellular locations. (Type |: 43Cytoplasmic proteins; Type I1: 30 Plasma membrane-bound proteins; Type |ll: Mitochondrial

inner and outerproteins ; Type IV: 12 Other proteins).

Type Typel Typell Typelll TypelV
NP_033941, NP_033940, NP_033939, NP_037223, NP_037275, P10417, P53563, Q63369,
NP_031637, NP_031570, NP_031563, NP_032013, NP_032612, Q07816, P49950, Q90660,
NP_031490, NP_033447, ,NP_036246, NP_037315, NP_005916, Q07817, 095831, QO00653,
NP_001218, NP_004041, NP_065209, NP_005579, NP_000034, Q90X1, Q9IM5E3, Q04861,
NP_001151, NP_071610,NP_071567, NP_001056, NP_003781, Q9VvVQ79, 077737, P19838,

proteins ~ NP_066961, NP_037054, NP_036894, NP_002498, NP_036742, Q00709, NP_032715,
NP_005649, NP_004392, NP_004315, NP_031553, NP_031549, XP_008738, P98150,
NP_001187, NP_001159, NP_001157, P50555, P25118, P18519, NP_033873, Q15121,
NP_001156, P55212,P42574, P39429, P51867, 019131, Q63199, Q62048,
P55867, P22366, P55866, P55214, 077736, , 002703,Q13014, NP_033872,
P55269, P29466, P55865, P29452, Q63690, Q07820, Q91828, NP_004040,
Q02357, 054786, Q60989,Q62210, Q91827, Q07812, P28825, NP_005736

Q60431, 070201, XP_013050,

NP_001179

a.Derived from SWISS-PROT data bank.

b.Of the 12 other apoptosis proteins, five are locatedin nucleus, twoin endoplasmic reticulum, one in microtubule, and one inlysosome [7].
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transform to each IMF component, we get theinstan-
taneous amplitude a;(t), then get the energy value
€= L , (=2, 3, 4. Next, get its energy ratio
i l .Last every proteinwas represented asa
point or avectorin a23-D space. The first 20 compo-
nents of its vector were supposed to be the occur-
rence frequencies of the 20 aminoacids in theprotein
concerned, thelast three components wereits energy
ratio timesaweight, there, weset theweight is0.2.

The computationswere carried out on a PC. Also
for the SVM, the width of the Gaussian RBFs is
selected as that which minimized an estimate of the
VC-dimension. After being trained, the hyper-plane
output by theSVM was obtained. The SVM method is
applied to two-class problems. In this paper, for the
four-class problems, we have used a simple and
effective method: “one-against-others” method [16]
to transfer it intotwo-class problems. Wefirst test the
selfconsistency and leave-one-out cross-validation
(jackknife test) of the method, followed by testing
the method by prediction of anindependent dataset.
As a result, the rates of self-consistency, cross-
validation of prediction werequite high.

In addition to the prediction algorithm, we also
need to construct atraining data set to complete the
establishment of a statistical prediction method. To
realize this, based onthe SWISS-PROT data bank, 98
apoptosis proteins(the datewere takenfrom Zhou[7])
were classified into the following four subcellular
locations: (1) cytoplasmic, (2) plasma membrane-
bound, (3) mitochondrial, and (4) other (Table1l).

4. RESULTSAND DISCUSSION

By means of the SVM algorithm described inthe last
section, a statistical prediction was performedfor the
98 apoptosis proteins listed in Table 2. The predic-
tion was conducted by two different approaches, the
re-substitution test and thejackknife test. The results
aregiveninTable3.

4.1. Re-substitution test
The so-called re-substitution test is an examination
for the self-consistency of a prediction method[7].

When the re-substitution test was performed for the
current study, the typeof each apoptosisproteinin a
data set wasin turn identified using the rule parame-
ters derived from the same data set, the so-called
training dataset. Asshown inTable3, theoverall suc
cess rate thus obtained for the 98 apoptosis proteins
in Table 1 was 100%, indicating an excellent self-
consistency.

However, duringthe process of there-substitution
test, the rule parameters derived from the training
data set includethe information of the query protein
later plugged back in the test. This will certainly
underestimate the error and enhance the success rate
because the sameproteins are usedto derive therule
parameters and to test themselves. Nevertheless, the
re-substitution test isabsolutely necessary becauseit
reflects the self-consistency of a prediction method,
especially for its algorithm part. A prediction algo-
rithm certainly cannot be deemed asa good oneif its
self-consistency is poor. In other words, the re-
substitution test is necessary but not sufficient for
evaluating a prediction method. As a complement, a
cross-validation test for an independent testing data
set is needed because it canreflect the effectiveness
of a prediction method in practical application. This
is important especially for checking the validity of a
training data set-whether it contains sufficient infor-
mation to reflectall theimportant features concerned
so asto field a high success ratein application.

4.2. Jackknifetest

As is well known, the independent data set test, sub-
sampling test, and jackknife test arethe three meth
ods often used for cross-validation in statistical pre-
diction. Among these three, however, the jackknife
test isdeemed asthe most effective and objective one
for a comprehensive discussion about this). During
jackknifing, each proteinin the dataset isinturn sin-
gled out as atested proteinand all the rule parameters
are calculated based on the remaining proteins. In
other words, the subcellular location of each
apoptosis proteinis identified by the rule parameters
derived using all the other apoptosis proteins except
the onethat isbeing identified. During the process of

Table 3. Testedresults for the 98 apoptosis prtoeinsin Table 2 by both Re-substitution testand Jackknife test.Alluse Gauss

RBF kernel function, while the value C =15, andthe gama= 80.

Success Rate

Testmethod

Type | Typell Typelll TypelV Overall
covariant 43/43=100%  30/30=100%  9/13=60.2%  7/12=58.3% 89/98=90.8%
Re-substitute SVM 42/43=97.70% 30/30=100% 13/13=100% 12/12=100%  97/98=99.0%
HHT 43/43=100%  30/30=100% 13/13=100% 12/12=100%  98/98=100%
covariant 42/43=97.7% 22/30=73.3% 4/13=30.8%  3/12=25.0% 71/98=72.5%
Jack-knife SVM 39/43=91.4% 28/30=93.3% 12/13=92.5% 9/12=75.0% 88/98=89.8%
HHT 41/43=95.3% 29/30=96.7% 12/13=96.7%  9/12=75.7 91/98=92.9%
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jackknifing, both the training data set and testing
data set are actually open, and a protein will in turn
move from oneto the other. As expected, the success
prediction rates by jackknife test were decreased in
comparison with those by the re-substitution test.
Such adecrement isparticularly moreremarkable for
small subsets. This is because the cluster-tolerant
capacity for small subsets is usually low. And hence
the information loss resulting from jackknifing will
have a greater impact on the small subsets than the
large ones. Nevertheless, as shown in Table 2, the
overall jackknife rate for the data set of the 98
apoptosis proteins could still reach 93%. It is
expected that the success rate for identifying the
subcellular location of apoptosis proteins can be fur-
ther enhanced by improving the trainingdata of small
subsets by adding into them more new proteins that
have been found belongingto thesubcellular location
defined by thesesubsets.

5. CONCLUSIONS

The above results, together with those obtained by
the covariant discriminant prediction algorithm [7],
have indicated that thetypes of apoptosis proteinsare
predictable with aconsiderable accuracy. It isantici-
pated that the HHT, and the SVM, if effectively com-
plemented with each other, will become a powerful
tool for predicting the types of apoptosis proteins.
The current study has further demonstrated that the
datasets originally constructed by Zhou[7] will be
very useful for the area of apoptosis study. It is
expected that the prediction quality can be further
improved if the current HHT can be properly com-
bined with pseudoamino acid composition[9] and
function domine composition and with other amino
acid properties.
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ABSTRACT

Brain-computer interface (BCI) provides new
communication and control channels that do
not depend on the brain's normal output of
peripheral nerves and muscles. In this paper,
we report on results of developing a single
trial online motor imagery feature extraction
method for BCI. The wavelet coefficients and
autoregressive parameter model was used to
extract the features from the motor imagery
EEG and the linear discriminant analysis
based on mahalanobis distance was utilized
to classify the pattern of left and right hand
movement imagery. The performance was
tested by the Graz dataset for BClI competition
2003 and the satisfactory results are obtained
with anerror rateas low as 10.0%.

Keywords: Brain-computer interface (BCI); Motor
imagery; Wavelet coefficients; Autoregressive
model

1. INTRODUCTION

Left and right hand movement imagery can modify
the neuronal activity in the primary sensorimotor
areas, leading to the changes of the mu rhythm and
beta rhythm. BCI requires effective online process-
ing method to classify these EEG signals in order to
construct a system enabling severely physically dis-
abled patientsto communicationwith their surround-
ings[1-4].

Time/s

FeeDback period With Cue

Trigger
Beep

Figurel. Timing scheme.
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This paper presents a novel effective method for
feature extraction of motor imaginary. We combine
the discrete wavelet transform (DWT) with
autoregressive model (AR) to extract more useful
information for non-stationary EEG signals. Apply-
ing this method to analyze the Graz dataset for BCI
competition 2003, we achieved the classification
accuracy of 90.0%.

2. METHODOLOGY

2.1. Experimental paradigm

The data set was provided by department of medical
informatics, institutefor biomedical engineering, uni-
versity of technology Graz [5]. It was recorded from
anormal subject(female, 25y) duringa feedback ses
sion. Thesubject sat inarelaxing chairwith armrests.
The task was to control afeedback bar by means of
imagery left or right hand movements. The order of
left and right cues was random.

Figure 1 shows thetiming of the experiment. The
first 2swas quite; at t=2s an acoustic stimulus indi-
cated the beginning of the trial; the trigger channel
(#4) went from low to high, and across “+” was dis-
played for 1s; then at t=3s, an arrow (left or right)
was displayed as cue. At the same time the subject
was asked to move a bar into the direction of the cue.
The feedback wasbased on AAR parameters of chan-
nel #1 (C3) and #3 (C4), the AAR parameters were
combined with a discriminant analysis into one out-
put parameter.

The recording was made using a G.tec amplifier
and aAg/AgCI electrodes. Three bipolar EEG chan-

A
© 6 0
© & 06

Figure 2. Electrode positions.
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Figure 3. Average power spectrums on channelC3 and C4.

nels (anterior '+', posterior '-') were measured over
C3, Cz and C4 [Figure 2]. The EEG was sampled
with 128Hz, it was filtered between 0.5 and 30Hz.
Similar experimentsare describedin [6].

The experiment consists of 7 runs with 40 trials
each. All runs were conducted on the same day with
several minutesbreak durrngexperiment. Onehalf of
the datasets are provided for training; others are for
evaluating the performanceof the system.

2.2. Featureconsideration

Central brain oscillations in the mu rhythm in the
range of 7-12Hz and beta above 13Hz bands are
strongly related to sensorimotor tasks. Sensory stim-
ulation, motor behavior, mental imagery can change
the functional connectivity cortex which resultsin an
amplitude suppression or in an amplitude enhance-
ment .This phenomenon was also called event-
related desynchronization (ERD) and event-related
synchronization (ERS) [7, 8]. Left and right hand
movement imagery is typically accompanied with
ERD in themu and betarhythms and hasthe charac-
teristic of contral ateral dominance.

The power spectrums on C3 and C4 of the training
set are shownin Figure 3. It indicatesthat the power
spectrums mainly distribute in the range of 8-13Hz
and 19-24Hz.In addition, the power of mu and beta
rhythms evoked by right hand movement imagery is
lower than that of left hand movement imagery for
channel C3, andit is contrary for channel C4whichis
consistent with the principle of contralateral domi-

nance. Thisled us to use wavelet decomposition to
extract the differences between the two motor imag
ery tasks.

2.3. Procedure

The flow chart of processing single-trial motor imag-
ery EEG isshown asinFigure 4. First, thetime win-
dow was usedto filter thedata in temporal domain in
order to get the segment that contained the most obvi-
ous difference between the two motor imagery tasks.
Then EEG signals were decomposed into the fre
quency sub-bands usingDWT and a set for statistical
features was extracted from the sub-bands to repre-
sent the distribution of wavelet coefficients accord-
ing to the characteristics of motorimagery EEG sig
nals. Also the sixth-order AR coefficients of segmen-
tation EEG signals were estimated using Burg's algo-
rithm. Next, thecombination features of wavelet coef-
ficients and the AR coefficientswere used as aninput
vector. Finally linear discriminant analysis (LDA)
based on mahalanobis distance was utilized to clas-
sify computed featuresinto different categories that
represent theleft or right hand movement imagery.

2.4. Featureextraction using discr ete wavel et
transforms

Classic Fourier transform has succeeded in station-
ary signals processing. However, EEG signal con-
tains non-stationary or transitory characteristics.
Thus itis not suitable to directly apply Fourier trans
form to such signals. The wavelet transform decom-
poses a signal into a set of functions obtained by
shifting and dilating one single function called
mother wavelet [10, 11]. Continuouswavelet trans
formisgiven by

(1)

Where v (t) is themother wavelet, a isthe scale
parameter andt is the shift parameter. In principle
the CWT produced an infinitenumber of coefficients,
thus it providesa redundant representationof the sig
nal.

The DWT provides a highly efficient wavelet rep-
resentation that can be implemented with a simple
recursive filter scheme and the original signal recon-
struction can be obtained by aninverse filter. Thepro-

Statistical features wavelet
Coefficients

EEG temporal filter

linear discriminant
analysis

Coefficients of autoregressive

Figure 4. Flow chart ofthe data processing.
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Figure 5. Decomposition of DWT; h[n] is the high-pass filter; g[n]is the low-passfilter.

cedure of multi-resolution decomposition of asignal
x[n] is schematically shown inFigureb5.

The number of levels of decompositionis chosen
on the basis of the dominant frequency components
of the signal. According to the motor imagery EEG
signals itself, wechose the level of 4 andthe wavelet
of Daubechies order 10.As aresult,the EEG signal is
decomposed into the details D1-D3 and approxima-
tion A3. The ranges of different frequency band are
showninTablel.

The extracted wavelet coefficientsshow thedistri-
bution of the motor imagery signal in time and fre
quency. It can be seen from the table that the compo-
nent D3 decompositionis within the mu rhythm, D2
is within the beta rhythm. Statistics over the set of
wavelet coefficients were computed so as to reduce
the total dimensionof the featurevectors. The statis-
tical featuresof each sub-band areas follows:

(1) Mean of the absolute valuesof the coefficients.

(2) Standard deviationof the coefficients.

(3) Averagepower of thewavelet coefficients.

These features represent the frequency distribu-
tion and the amount of changesin frequency distribu-
tion. Thus 12 statistical features of wavelet coeffi-
cients are obtainedfor two channels.

2.5. Feature extraction using autoregressive
model

EEG signal canbe considered asthe output of alinear
filter driven by a white noise. This filter, referred to
asAR, is alinear combination of the previous output
itself. A zero-mean, stationary autoregressive pro-
cess of orderpisgivenby

(2)

Where p is the model order, x(n) is thesignal at the
sampled pointn, ap(i) isthe AR coefficientsand € (n)
is a zero-meanwhite noise. Inapplication, the values
of the ap(i) have to be estimated fromthe finite sam
ples of datax(1),x(2),x(3),...,X(N).

The first important things involved in using AR
model is determining the optimal AR model order
since too low a model order tends to smooththe spec-
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trum and too high tends to introduce spurious peaks.
Here order six was used based onthe suggestions[9].

Then the Burg's method was used to estimate the
AR coefficients. This method is more accurate and
yields better resolution without the problem of spec-
tral 'leakage' as compared to other methods such as
Levison-Durbin asit usesthe data points directly. In
addition, the Burg's method can minimize both for-
ward and backward error.

Next the AR coefficients were computed and we
got six coefficients for each channel, giving atotal of
12 AR coefficientsfeatures for each EEG segment for
amotor imagery task.

2.6. Linear discriminant analysis(L DA)

LDA is oneof themost effectivelinear classification
methods for brain-computer interface, and itrequires
fewer examplesfor obtainingareliableclassifier out-
put [12].

As to theLDA method, assume that each data ele
ment s; has m features. Then, an element s, is one
point in a dimensional feature space. The number of
examplesisn, each exampleis assigned toone of two
classes C={0,1}; Then, Sis a matrix of size nxm, and
Cis avector of size n.Ny. And N; are the number of
elements for class0 and 1, respectively.

The mean 1  of each classcis the meanover all s,

with i being all elementswith in classc . The total
mean of thedatais

(3)

Table 1. Frequencies correspond to different levels of
deposition for daubechies order 10 wavelet with a sample
rate 128HZ.

Decomposed signal  Frequency range (Hz) Level
D1 32-64 1
D2 16-32 2
D3 8-16 3
A3 0-8 3
JBISE
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Table 2 . Dirrerent wavelet usedfor extracting features.

Wavel et Recognition rate
Daubechies order 10 90%
Discrete Meyer 90%
Coiflets order 5 89.29%
Rbiol.3 87.86%

The covariance matrix C of the datais the expecta
tion valuefor

4

Then, theweight vector w and the offset w, are
-1 /i

w=C" (14— 1) ()

W, =—uw (6)

The weight vector w determines a separating
hyperplane in the m -dimensional feature space. The
normal distanceD(x) of any element X is

(7)

If D(x) islarger than O, x is assigned to class 1,
whileif D(x) issmaller than 0O, x is assignedto classO.
However, D(x)=0 indicates that all elements x are
part of theseparating hyperplane.

3. EXPERIMENT RESULTS

Here, we have had 6 statistical wavelet coefficients
and 6 AR coefficientsfor each channel, giving a total
of 24 features for a motor imagery task. These
parameters were selected as inputs of LDA classifier.
Table 2 compared the classification performances
among four different wavelets. The results show the
Daubechies order 10 gave the best performance and
the recognition rate is as high as 90.0%. Also the
results indicate that method of combining DWT with
AR model are capable of extracting more useful
information from the simultaneously acquired motor
imagery EEG. Furthermore, when the window of 384
samples with a shift of 1 sample was used, maximum
classification accuracy of 92.1%is achieved.

4. CONCLUSIONAND FUTURE WORK

In this paper, a novel single-trial motor imagery EEG
classification method isproposed. The pattern classi-
fication techniques as described in this work make
possible the development of a fully automated motor
imagery EEG signalsanalysis system whichis accu-
rate, simple and reliable enough to use in brain-
computer interface. Future work will utilizethe algo-
rithms developed in this study to directly control the
embedded rehabilitation robot so as to help the
patient with severed paralysisto solvethe problem of
environment control and provide a new communica-

SciRes Copyright © 2008

tion and channel tooutside world.
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ABSTRACT

In this paper the design of a novel modular
hydraulic/pneumatic actuated tele-robotic sys-
tem and a new infrastructure for MRI-guided
intervention for closed-bore MRI-guided neuro-
surgery are presented. Candidate neurosurgical
procedures enabled by this system would
include thermal ablation, radiofrequency abla-
tion, deep brain stimulators, and targeted drug
delivery.The majorfocus isthe application of the
designed MR-compatible robotic system to MRI-
guided brain biopsy. Navigation and operating
modules were designed to undertake the align-
ment and advancement of the surgical needle
respectively. The mechanical design and con-
trol paradigm are reported.

Keywords: MR-compatible robot; Tele-surgery;
Tele-robotics; Medical robot

1. INTRODUCTION

The common requirement for most neurosurgical pro-
cedures is tomanipulate a surgical tool relativeto an
anatomic target. This includes aligning, orienting,
and advancing thetool to aspecific anatomic target in
the brain. The advantages of robotic-based neurosurgi cal
procedures are well recognized in the clinical and
technical community dueto both the locating accu-
racy and the tele-surgery potential of the robotic sys-
tems. A neurosurgical procedureis a highlyinteractive
process and the goal of neurosurgical robotic systemis
to provide the neurosurgeon with a reliable tool that
augments hisor her ability during the operation. Any
surgical robotic system has to meet specific design
considerations for its intended use such as safety,
capability of being sterilized, fault-tolerancy, accu-
racy, stability, and dexterity. MRI-guided applica
tions impose additional demandssuch asremote con-
trol, reduced size, lightweight structure, and ability to
operate inthe MRI bore. Primarily, thereis theissue of

Published Online May 2008 in SciRes. http://www.srpublishing.org/journal/jbise

MR-compatibility of materials and devices. Conven-
tional robotic systems are not suitable for useinside
the MRI scanner because they containferromagnetic
materials and electrical circuits. These components
cause spatial distortions and impart noise to the MR
images, while conversely the magnetic field of the
MRI system interferes with the electrical circuits.
The strong magnetic field dictates that only non-
ferromagnetic materialscan beused for the mechani-
cal parts.

The major shortcomingin the use of conventional
MRI systems for neurosurgery istheir relianceon pre-
operative MR images. As surgery progresses and ana-
tomic tissue areremoved or distorted, the intracranial
anatomic positional relationship of the brain and sur-
rounding structures change. This is commonly
referred to as “brain shift”. Intra-operative changes
due totumor resection, brain swelling, and cerebro spi nal
fluid (CSF) leakage further increase brain shift [1, 2,
3]. As these processes are unavoidable in most
neurosurgical procedures, they decrease theaccuracy
in all surgery that is based on preoperative MR
images [3]. These intra-operative changesmake it dif-
ficult or impossible to accurately determine the true
intra-operative anatomic positionof the anatomictar-
get based onthe preoperative images. Accuratelocal-
ization during surgery thus requires the acquisition
of intra-operative images. In recent years, advances
in computer technology, robotics, and a significant
increase in the accuracy of imaging have helped the
clinicians in planning and executing surgical proce-
dures in MRI environments. The advantagesof surgi-
cal robotics arewell known inclinical environments
due to their precisions, accuracy, repeatability, and
capability fortele-surgery [4].

In the area of MRI-guided tele-surgery, there are
currently several systemsunder development. Tajima
et al. [5] designed and built a prototype of an MRI-
compatible manipulator for treatment and diagnosis
of heart diseases. Larson et al. [6] developed a
device to perform minimally invasive interventions
in the breast with real time MRI guidance for the
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early detection and treatment of breast cancer. Engi-
neering Services Inc. (Ontario, Canada) has also
developed an MR-compatibletele-robotic system for
prostate surgery [7]. Krieger et al. [8] designed and
developed a novel remotely actuated manipulator
(APT-MRI)to access prostatetissue under MRI guid-
ance. Fischer et al [ 9] designed araobotic assistant sys-
tem using pneumatic components aimed to be used
for prostate needle placement in a closed-bore MRI
scanner. Kim et al [ 10] designed anddeveloped a new
master-slave MR-compatible surgical manipulator
for minimally invasive liver surgery. Chinzei et al.
[11] designed and developed anovel MR-compatible
manipulator used to position and direct an axi-
symmetric tool suchas laser pointer or a biopsy cath-
eter. Moser et al. [12] designed and developed aone
DOF MR-compatible master-slave robotics system
and a haptic interface using hydraulic transmission.
Koseki et al. [13] designed and developed an endo-
scope manipulator for trans-nasal neurosurgery capa
ble of being used inside the gantry of vertical field
open MRI. Flueckiger et al. [14] proposed a haptic
interface compatible with MR scanner for neurosci-
ence studies. Miyataet al. [15] designed and devel-
oped an MR-compatible forceps manipulator using a
new cam mechanism for the multi-function
micromanipulator system for neurosurgery proce
dures. Engineering ServicesInc. has also developed
an MR-compatibletele-robotic system using water
hydraulic and pneumatic actuators for neurosurgery
[7]. TheCalgary Health Regionand University of Cal-
gary are developing the world's first image guided

neurosurgical robot (NeuroArmTM) in collaboration
with MD Robatics for micro-neurosurgery. The robot
is under design and construction stage now [16].

Slave Manipulator
Operating Unit

Patient

Head holder
Surgical
Table
Closed MRI Scanner

Power/Control Unit

Motion

Hydralic/Pneumatic
controller

Valves

Figure 1. A schematicof the entire system.
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Nakamura et al. [17] developed and manufactured
the 6 DOF manipulator using nonferromagnetic mate-
rials (aluminum) and actuated by ultrasonic motors.

The goal of our research projectis todesign, fabri-
cate, and test a hydraulic/pneumatic actuated MR-
compatibletele-robotic system for MRI-guided neu-
rosurgery, in particular, the brain biopsy. The
mechanical design and related infrastructure are
reported.

2. ROBOTDESIGN
2.1. MR-compatible robotic system infra-
structure
MRI-guided tele-robotic system requires surgical
planning, MR-image acquisition, human-machine
interface, navigation, and sensing. To address those
components required for MRI-guided intervention,
an infrastructure is needed regardless of the type of
surgical operation. A schematic diagram of the pro-
posed infrastructure is illustrated in Figure 1. The
entire system consists of three main subsystems as
follows: (i) operating unit; (ii) power/control unit;
and (iii) surgeon-machine interface unit. The operat-
ing and surgeon-machine interface unitsare commu-
nicating through MR images and related information
using an image processing device. The image pro-
cessing device is used to provide information
required by both the surgeon-machine interface unit
and power/control unit. The operating unit and
power/control unit are communicating through
power transmission andsensory information systems.
Also, the surgeon-machine interfaceand power/ contr ol
units are communicating through operation inputs
created by operator input device (master).

As shown, all three units communicate through

MRI monitoring
display

Hydraulic and Pneumatic

) Valves
Image processing
device

Surgeon-Machine Interface Unit

Screen control
user interface
Surgeon
Operator input device
(Master)

Operation Input
Image Information
Sensor Information
Control Singnal
Power Transmission
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image information, sensory information, control sig-
nals, and power transmission. Asillustrated, the visu-
alization of the surgical tool and the target as well as
surgical planning based on intra-operative MR
images arecompleted on a display monitor infront of
the surgeon in the surgeon-machine interface unit.
One should note that the proposed infrastructure is
based on a fundamental principle which is both the
surgeon and power/control unit share the control of
the tele-robotic system such that the surgeon will use
his/her judgment and expertise to control the entire
procedure. In other words, it isalmost impossible to
eliminate the surgeon from the control system and
have the entire tele-robotic system performed the
required task autonomously.

2.2. Operatingunit

Operating unit comprises the slave manipulator, head
holder, surgical table, and MRI scanner located in
MR operating room. The patient's head and the slave
manipulator are fixedto the surgical table inorder to
avoid any relative displacement during the surgical
operation. The patient's head needs to be secured and
fixed in all surgical operationsto avoid unexpected
motions caused by disorderly reaction of the patient's
body.

Due to the presence of strong magnetic field and
switching gradients both the head holder and the
slave manipulator arerequired to beconstructed from
MR-compatible materials and devices. The slave
manipulator must perform therequired tasksin acon-
fined space between the patient and the bore of the
MR scanner. Therefore, the slave manipulator is
needed to be designedin avery compact size. Inaddi-
tion, the slave manipulator required to be registered
with respect to the MR scanner such that the position
and orientation of thesurgical tool with respect to the
target could be determined based on data obtained
from the MR images. One should note that the
patient's head must be secured during the operation
as the desired position and orientation of the surgical
tool with respect to the target will be obtained while
the surgical device isoutside thepatient's skull. Thus,

Biopsy Module

Navigation Module

Surgical Arm

Connecting Arm
Locking Mechanism

Figure 2. 3D model ofthe slave manipulator.
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the head holder is considered as a major component
in the proposed infrastructure for application of the
tele-robotic system in MR-guided neurosurgery pro-
cedures.

2.3. Manipulator power/control unit

The manipulator power/control unit is located in an
adjacent control room at a proper distance away from
the MR scanner due to electrical/electronic devices
and circuits aswell as non-MR-compatiblematerials
used in itsstructure. Themajor function of the manip-
ulator power/control unit is to provide required
power to the slave manipulator. The power/control
unit consists of two major sub-units: (i) hydraulic
power units, hydraulicvalves, and pneumaticvalves;
and (ii) motion controller devices such as computer
and electrical/electronic components and circuits.
The surgeon could manipulate the slave manipul ator
inside the MR scanner through a master manipulator
located in the surgeon-machine interface unit. The
motion controller in the power/control unit is also
communicating with the master manipulator in the
surgeon-machine interface unit to provide appropri-
ate control signalsto hydraulic and pneumatic valves.
The motion controller also receives the sensory data
feedback from the slave manipulator. In addition, the
motion controller is also provided with the MR
images data originated from the image processing
device asshowninFigure 1.

2.4. Surgeon-machineinterface unit

The major function of the surgeon-machine interface
unit istoprovide an interfacebetween the entiretel e-
robotic system and the surgeon as the end user. The
goal of usingtele-robotic system for M R-guided neu-
rosurgery isnot to replacethe surgeonwith the robot,
but to provide him/her with advanced tools for
remote execution of neurosurgical procedures. The
unit is located in the adjacent control room to avoid
magnetic interference dueto use of electrical devices
and non-MRI-compatible materials used in its struc-
ture. A master and a screen control user interface are
the major subsystems of this unit. The images of the

Base Plate

Hydraulic Cylinder
Moving Plate

Figure 3. 3D model ofthe navigation module.
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Slide

Rodless Pneumatic Cylinder
Pneumatic Motor

Upper Fixed
Plate
Moving Plate
Guide Pines

Base Plate

Lower Fixed Biopsy Needle

Plate

Figure 4. 3D model ofthe biopsy module.

slave and surrounding environment are projected on

the screento allow visualization of the target and sur-

gical tools movements. The surgeon would manipu-

late the position and orientation of the surgical

devices via themaster controller. Surgeonsstrongly

rely on thevisual MR imagesas they areonly reliable
source of information during the operation. The
screen control user interface is theunit that provides
the visualization of the tissue and surgical tool while
the operation progresses. Thereare several important

challenging issues that one must consider in design

ing the screencontrol user interfaceincluding [18]: (i)
integration of navigation and display with robot sys-
tems; (ii) updating the MR imagesin real time; (iii)

providing the surgeon with means of controlling the
information displayed; and (iv) finding waysto com-

municate useful information without overwhelming

the surgeon by pointless details. The master manipu-

lator isthe unit with which surgeons could communi-

cate their control commands. Any commonly used
interfaces for human-machine interactions such as
mice, joystick, touch screens, push buttons, and foot
switches could be used.

2.5. Mechanical design for the slave manipu-
lator

A 3D model of the slave manipulatoris shown inFig-
ure 2. The surgical needle is held and advanced by
the biopsy module. The biopsy module is attached to
the navigation module.

The navigation module isa six degrees of freedom
parallel mechanism consisting of a base and a plat-
form interconnected through6 legs (or struts). Six lin
ear hydraulic actuators are used to provide required
linear displacement for each leg. A locking mecha
nism is used to guide the needle as well aslock the
robot at desired orientation. It isfixed to the base of
the parallel mechanism through a connecting arm by
screws. All three units (the navigation module,
biopsy module, andthe locking mechanism) are held
by a surgical arm. The surgical arm is attached to a
surgical tablethrough a set of screws.

2.6. Navigation module
A 3D model of the navigation moduleis shown inFig-

SciRes Copyright © 2008

71

Rod 2 toconnect

SRS arm tothe Spherical
navigation module Joint 2
Revolute
Link 2 Joint
Link 1
Spherical
Joint 1

Rod 1 toconnect
SRS to thesurgical
table

Figure 5. A schematicdiagram of the surgical arm.

ure 3. It consists of a base plate and a moving plate
interconnected through 6 links. Each link consists of
ahydrauliclinear actuator, a spherical joint, and a uni-
versal joint.

2.7. Biopsy module and locking mechanism

A 3D model of the biopsy moduleis presented inFigure
4. 1t is basically a three-plate mechanismincluding: (i)
a lower fixed plate, (ii) anupper fixed plate, and (iii)
amoving plate. Both lower and upper fixed plates are
attached to thebase plate by two sets of screws. Two
guide pins are used to support the moving plate. The
moving plate is moved up and down using a pneu-
matic rodless cylinder. The moving plate isattached
to the slide of the pneumatic cylinder. A 3D model of
the locking system isshown in Figur e 2. The locking
system consists of a connecting arm and locking mecha-
nism. As shown, thelocking mechanismis attached to the
base plate of the parallel mechanism through the con-
necting arm. All mechanical parts are constructed
from MR-compatible materials.

2.8. Surgical arm

The surgical arm supports both the navigation and
biopsy modules during the operation. The surgical
arm hasto beeasily maneuvered by theclinician to be
located at the entry point on the patient's skull. The
design of the surgical arm is shown in Figure 5. It
consists of twolinks and threejoints as follows: (i) a
spherical joint 1; (ii) a revolute joint 2; and (iii) a
spherical joint 2. The Spherical-Revolute-Spherical
(SRS) armis illustrated in fully deployed configura
tion inorder to show its components and correspond-
ing function of each component. As shown, rod1 con
nects the SRSarm to thesurgical tableand rod 2, at
the other end, connects the navigation module to the
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Burr Hole
(Pivot point)

Surgical Tool Axial

+ “Pitch/Yaw

Target

Figure 6. The target, entry point, andthe needle.
SRSarm.

3. ROBOT CONTROL

3.1. Needlealignment

An entry point, a surgical tool and a target are
depicted in Figure 6. Required motions to align and
advance the surgical tool with respect to the target
are also shown. Thesurgical tool is rotated about the
burr-hole by Yaw and Pitch angles. Thispoint is also
called the pivot point. The conventional surgical tool
placement at an entry point includes the following
three tasks: (i) movethe needletip to the entry point
using 3 DOFs; (ii) orient the needle by pivoting
around the entry point using 2DOF (Y aw and Pitch
angles); and (iii) insert the needleinto thebody using
1 DOF (translaion along a straight trajectory). Using
the proposed tele-robotic system shown inFigure 1,
the brain biopsy procedurewould becarried out as fol-
lows:

(1)Preoperative imaging stage. The patient is
placed inside the MRI scanner and preoperative
images areobtained.

(2)Surgical planning stage. Based on the pre-
operative images, an entry point is determined and
the incisionis madeby asurgeon.

(3)Pre-alignment stage. The slave manipulator is
attached tothe surgical table, and the navigation mod-
ule and biopsy needle are manually located at the
entry point. Although this stage doesn't require high
accuracy in positioning, the slave hasto be locked
such that the surgical tool is positioned at the entry
point. Accurate alignment with respect to target will
be done inthe next stage;

(4)Real time navigation stage. The patientis moved
into the boreof MRI scanner. The navigation module
is maneuvered remotelyin order toalign the surgical
tool with the desired direction based on intra-
operative images.

(5)Intra-operative operation stage. The operation
is carried out by advancing the needle using intra-
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operative images asvisual feedback. When the nee

dle reaches thetarget, itis rotated by 180 degrees in
order to cutthe tissue specimen (tumor). Thenthe nee-
dleispulled out completing the operation.

(6)Final stage. The MRI tableis moved out the MRI

bore. The slave manipulator and head holder are
detached from the table and patient's skull respec-
tively.

3.2. Robot control architecture

As mentioned, the surgeon adjusts the orientation of
the surgical tool (yaw and pitch angles) based on
visual MR images through the master. The inverse
kinematics of thenavigation module isused to obtain
the desired length of each strutrelated to thedesired
position and orientation of the needlebiopsy.

The hydraulic/pneumatic circuit of the systemand
overall control system areshown inFigure 7 and Fig-
ur e 8respectively. Six MR-compatible hydraulic cyl-
inders are equipped with six fiber optic encoders to
feedback the actual length of each strut. Using
inverse kinematic of the navigation module, the
desired length of each strut of the navigation module
is determined. A PID controller providesa control sig
nal that drivesa hydraulic proportional valve in each
servo control loop. The hydraulic valve controls the
length of thestrut by regulatingthe flow from/toeach
hydraulic actuator. In addition, a pneumatic valve
(V7) is usedto control the tip position of the biopsy
needle. Thesemi-rotary pneumatic motoris also actu
ated by an on/off pneumatic valve (V8).

A block diagram of the control algorithm used in
the controller is shown in Figure 9. Theinputs are
six feedback displacement signalsfrom theslave side
(LA1, LA2, LA3,LA4, LAS5, and LABG), two signals
form master side including desired Yaw and Pitch
angels, and desired length of each strut (LD1, LD2,
LD3, LD4, LD5, and LD6). The outputs are control
signals (S1, S2, S3, $4, S5, and S6) to control the pro-
portional valves.

A PC-based supervisory controller is designed to
control entire systemasillustrated inFigure 10. The
trajectory of each joint is calculated based on the
inverse kinematics in a PC-based supervisory con-
troller and fed to each joint controller RS485Bus. As
shown in Figure 10, six optical encoders are used to
feedback the position signalsto six microprocessors.
Each actuator hasindividual microprocessor to con
trol its proportional valve.

4. CONCLUSIONAND FUTURE WORK

Wehave designed an MR-compatibletele-robotic sys
tem that can be used for orientation and advancement
of abiopsy needleon thebrain biopsy procedure. The
robot has been designed such that it will perform
desired tasks inside MR scanner GE Signa 1.5T. To
date, design and analysis of the entire system have
been completed. Material selection and thecontroller
architecture and its component have been finalized.
A physical prototype of the slave manipulator is in
the process of being constructed. Current and future
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Supervisory Controller PC

Rs485 Bus

Joint Control: Joint Control:

Microprocessor(1)

Proportional Proportional

Valve(V1) Valve(V2)

Optical Optical

Sensor(S1) Sensor(S2)
Joint 1 Joint 2

Figure 10. Supervisory control configuration.

work includes the development of the slave manipu-
lator and performanceof series of experimental tests
inside the MR scanner using thefirst physical proto-

type.
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