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Abstract 

The substitution of Strontium on T'–structured Nd2CuO4 system has been carried out through solid state reaction tech-
nique. From the Powder XRD patterns, it is found that the compounds are formed in single phase and crystallizes in 
orthorhombic structure. The variation in lattice parameters with decreasing nature of volume of the prepared com-
pounds confirms the incorporation of lower atomic radii Strontium in Neodymium site. Surface morphology and ele-
mental composition studies are also carried out to know the nature of the compounds and effect of Strontium substitu-
tion in Nd2CuO4 system. The paramagnetic nature of all the prepared compounds has been identified through magneti-
zation studies and the results are correlated with the electron spin resonance studies by the way of variation in reso-
nance field and broad peak width. Increasing order of dielectric constant on higher doping concentration of Strontium 
and the least value of dielectric loss at higher frequencies confirms the improved surface transport properties of the 
prepared compounds. 

Keywords: Ln2CuO4, Structural Analysis, Powder XRD, Dielectric Studies, Magnetization, ESR Analysis 

1. Introduction 

The Ln2CuO4 oxides exhibit two different crystal struc-
tures with respect to the size of the Ln3+ ion (Ln, Lan-
thanide element) that differ mainly in the respective 
coordination number of cations. In the Nd2CuO4 system, 
two types of crystal structures are observed namely T/O 
and T'. The occurrence of superconductivity in the 
Ln2–xCexCuO4–y (Ln = Nd, Pr and Sm) family gives a 
new prospect for understanding the attractive forces as 
the valence of the Ce dopant suggests that the supercon-
ducting carriers are electrons rather than holes. In most 
high temperature superconducting compounds, CuO2 
layers are the fundamental structural units, in which the 
charge carriers responsible for superconductivity are 
localized. It is known that electron correlations play an 
important role in determining the physical properties of 
these materials. These correlations manifest themselves as 
two dimensional magnetic fluctuations, which are due to a 
strong super exchange interaction within the CuO2 layers. 

The magnetic properties of the Ln2CuO4 (Ln = Nd, Pr, 
Eu & Gd) compounds have attracted considerable inter-
est since the discovery of high-temperature superconduc-
tivity in these compounds when doped by Ce [1,2]. 
These compounds having tetragonal type structure (T'), 

in which the Ln3+ and Cu2+ ions are in eightfold and 
fourfold coordination respectively [3,4]. The structure of 
compounds in the Ln2CuO4 (where Ln = Nd, Pr, Eu, Sm) 
system is similar to the compounds in the La based cop-
per oxides [5]. The main difference arises due to the po-
sitions of the oxygen atoms, giving rise to an O2 layer 
instead of the La–O layer. The most important feature of 
Nd based materials derives the fact that superconductiv-
ity in this system is by electron conduction or n–type 
rather than hole conduction as in La based superconduc-
tors. The electron conducting (n–type) compound Nd1.85 

Ce0.15CuO4-y with TC = 24 K is the most studied material 
in this system [6]. The Nd1.85Ce0.15CuO4-y compound has 
the same crystal structure as of Nd2CuO4 [I4/mmm, a = 
3.945 Å and c = 12.17 Å] but has slight variation in lat-
tice parameters [a = 3.945 Å and c = 12.076 Å] due to 
the substitution of tetravalent Ce in the trivalent Nd lat-
tice [7,8]. It is therefore of high interest to study the 
structural characteristics of a divalent dopant (Sr2+) in 
Nd2CuO4 system and to assess influence on dielectric and 
magnetic properties of defective structures. 

In the Nd/Ce–Cu–O system, trivalent Nd3+ is replaced 
with tetravalent Ce4+ element which induces n–type su-
perconductivity and crystallizes in two different crystal 
structures as mentioned earlier namely T' and T/O. In the 
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present work, Strontium doped Nd2CuO4 system has 
been prepared by substituting Strontium (Sr2+) in Neo-
dymium (Nd3+) site inducing excess number of holes in 
the system which leads to p–type superconductivity in 
the prepared compounds. Structure identification, surface 
morphology with composition analysis, magnetic proper-
ties, electron spin resonance and dielectric studies have 
been carried out and the results are discussed. 

2. Experimental Model 

2.1 Sample Preparation 

The ceramic compounds Nd2–xSrxCuO4 (where x = 0.05 
to 0.2) have been prepared by carefully mixing stoichio- 
metric quantities of Nd2O3 (99.9% purity), SrCO3 

(99.99% purity) and CuO (99.99% purity) in an agate 
mortar with acetone as a mixing medium. Solid state 
reaction takes place during successive sintering sessions 
in alumina crucibles. The samples were precalcined ini-
tially at 850˚C for 24 hours and the calcined samples 
were once again ground thoroughly prior to heating at 
900˚C for 24 hours. The final processing of sintering was 
done thrice at 925˚C for 24 hours to obtain homogeneity 
and then slow cooled at a rate of 5˚C/hour down to 
300˚C. These hard sintered samples after final sintering 
were well ground and taken for characterization process. 

2.2 Powder X – Ray Diffraction  

The single phase formation of the compound was con-
firmed through powder XRD patterns which were re-
corded using PANalytical X’Pert PRO Diffractormeter 
with CuKα1 radiation (λ = 1.54056 Å). The diffraction data 
of the samples were collected with 0.02˚ 2θ steps and 1 sec 
count time per step for a 2θ range of 10˚ to 80˚. 

2.3 SEM and EDAX  

Micro structural surface morphology and elemental com- 
position of the prepared compounds were carried out 
using Scanning Electron Microscope (SEM) added with 
Energy Dispersive X–ray Analysis (EDX) facility. In the 
present work, microscopic imaging and energy disper-
sive X–ray analysis (EDX) were simultaneously carried 
out using Hitachi S–3400N instrument. The surface of 
the pelletized compounds were focused with 5 kV accel-
erating voltage under high vacuum condition. 

2.4 Magnetization Studies 

The variation in induced magnetic moment with respect 
to the applied magnetic field would be identified by Vi-
brating sample magnetometer (VSM) for the analysis of 
magnetic nature of the materials. In the present work, the 
magnetization experiment was carried out by employing 
LAKESHORE Vibrating Sample Magnetometer at room 
temperature (300 K) to categorize the magnetic property 

of all the prepared compounds. 

2.5 Electron Spin Resonance Studies 

Interaction of unpaired electron spins with respect to the 
external magnetic field yields the electronic nature of the 
source material utilized. Electron Spin Resonance (ESR) 
or Electron Paramagnetic Resonance (EPR) is a sophis-
ticated spectroscopic technique that detects free radicals 
of inorganic complexes by which electronic structure and 
magnetic nature may be identified. 

In the present work, ESR measurements were carried 
out using Varian E-4 spectrometer having X-band fre-
quencies (9.45 GHz). ESR spectra were recorded at room 
temperature and all the observations were performed 
with approximately 10 mW microwave power incident 
upon the sample cavity. The spectrometer was equipped 
with an electromagnet capable of producing a stable 
magnetic field from 0.001 T up to 0.8 T with the accu-
racy of 0.0001 T. The spectrum is the first derivative 
microwave absorption with respect to field (dP/dH). For 
each sample, the Hr resonant magnetic field [9] and the 
value of peak-to-peak line-width (ΔHpp) was computed 
as the difference between the extreme values H1 and H2 
of the magnetic field (the maximum and minimum of the 
resonance curves, respectively). The resonant magnetic 
field (Hr) was computed as (H1+H2)/2. In order to make 
better comparative analysis the spectra were recorded by 
keeping the instrument settings same for all the samples. 

2.6 Dielectric Studies 

The study on dielectric constant with respect to the ap-
plied a.c frequency enumerates the nature of the atoms, 
ions and its bonding in the material. It is a measure of 
polarization in the medium. In the present work, HIOKI 
3532–50 LCR HITESTER has been employed for the 
analysis of dielectric nature of the prepared compounds 
in pelletized form at room temperature condition with in 
the frequency range of 50 Hz to 5 MHz. Silver electrode 
pasting has been incorporated for to improve the surface 
conductivity of the prepared samples. 

3. Results and Discussion 

3.1 Powder X–ray Diffraction Analysis 

The observed powder X–ray diffraction patterns of the pre-
pared polycrystalline samples Nd2CuO4, Nd1.95Sr0.05CuO4–y, 
Nd1.9Sr0.1CuO4–y, Nd1.85Sr0.15CuO4–y and Nd1.8Sr0.2CuO4–y 

are shown in Figure 1(a) which reveals the single phase 
formation of the prepared compounds. Lattice parameters 
of the compounds were calculated through AUTOX–93, 
a program for auto indexing reflections from multiphase 
polycrystals [10]. The comparison of lattice parameters 
observed for the prepared compounds with the parent 
compound is given in Table 1. The calculated unit cell 
parameters shows that the crystal structure of all the pre- 
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pared compounds vary from the parent tetragonal structure 
to orthorhombic with least difference in magnitudes. Fig-
ures 1(b) and 1(c) show the shift in the higher intensity 
peaks of the prepared compounds with the formation of 
newer peaks (marked in * symbol) which reveals variation 
in the crystal system and lattice parameters of the prepared 
compounds. Due to the substitution of lower atomic radii 
element (Sr – 2.45 Å) in the higher atomic radii element 
site (Nd – 2.64 Å), the volume of the prepared compounds 
decreases with respect to the parent compound. Hence 
from the XRD patterns, it may be concluded that the 
Neodymium site is partly replaced with the Strontium 
atom. 

3.2 Surface Morphology and Elemental Analysis 

The surface morphology and crystallization nature of the 
samples were analyzed by scanning electron microscope 
images and the observed images for the prepared com-
pounds are shown in Figure 2. In the present work, the 
pelletized samples annealed at 925˚C were used for the 
surface morphology analysis.  

The images of the inner portion of the pellets show 
that all the compounds have regular crystallites with the 
size in the micrometer range. The regular arrangement of 
particles reveals that the compounds were formed in well 
crystalline nature without clustering. Some amount of 
agglomeration of particles in the parent compound may 
be due to low melting point of the same as compared 
with Strontium substituted compounds. The elemental 
composition analysis confirms the presence of Strontium 
in the host matrix of Nd2CuO4 system with increasing 
concentrations in the samples. The decrease in the con-
centration of Nd reveals the replacement of trivalent 
Neodymium with divalent Strontium element. 

3.3 Magnetization Analysis 

The observed magnetization nature of the prepared 
compounds is shown in Figure 3. It is observed that the 
intensity of magnetization varies linearly with the ap-
plied magnetic field for all the prepared compounds 
which reveals the paramagnetic nature of the resultant 

 
Table 1. Comparative statement of lattice parameters ob-
served for parent and substituted compounds 

Compound a (Å) b (Å) c (Å) 
Volum
e (Å3) 

Syst
em*

Nd2CuO4 3.945 3.945 12.17 189.2 T 

Nd1.95Sr0.05 

CuO4-y 
3.945(3) 3.927(6) 12.16(1) 188.6 O 

Nd1.9Sr0.1 

CuO4-y 
3.826(5) 3.943(3) 12.19(1) 184.1 O 

Nd1.85Sr0.15 

CuO4–y 
3.832(3) 3.946(2) 12.18(6) 184.3 O 

Nd1.8Sr0.2 

CuO4–y 
3.897(6) 3.901(6) 12.09(1) 183.9 O 

* T – Tetragonal and O – Orthorhombic 

 
(a) 

 
 

 
(b) 

 

 
(c) 

Figure 1. (a) Powder X–Ray Diffraction patterns of the 
prepared compounds; (b) Comparison of diffraction pat-
terns of the major intensity peak; (c) Comparison of dif-
fraction patterns of the 50% intensity peak 
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Figure 2. Surface Morphology and EDX spectrum of the prepared compounds 
 
compounds [11,12]. In the earlier reports, it is identified 
that the parent compound Nd2CuO4 exhibits paramag-
netic nature [13] and the same is obtained for both parent 
and prepared compounds now. The net magnetic moment 
attained by the prepared compounds is in very minimal 

level (memu/g) which exhibits the least possible mag-
netization of the prepared compounds and not more sig-
nificant changes on the magnetization nature are ob-
served on substitution of Strontium in Neodymium site. 
Hence it is confirmed that all the prepared compounds 
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are exhibiting paramagnetic nature at room temperature. 

3.4 ESR Analysis 

Figures 4(a) and 4(b) show the room-temperature X-band 
(9.45 GHz) ESR spectra of Nd2CuO4 samples with four 
different concentrations of Strontium. The room tem-
perature ESR spectrum shows an intense resonance sig-
nal for the Nd2CuO4 and Nd1.95Sr0.05CuO4–y compounds 
with both peak to peak line width (ΔHPP) and resonance 
field (Hr) that vary depending on the samples. The line 
width of the samples was calculated as 0.2852T and 
0.2892T for the samples Nd2CuO4 and Nd1.95Sr0.05CuO4–y 

respectively. The Lande factor of the samples with sharp 
resonance is calculated and the values are 2.37 and 2.33 
for Nd2CuO4 and Nd1.95Sr0.05CuO4–y respectively. The 
samples with an effective g value of around 2 shows the 
paramagnetic behavior which has a good agreement with 
results obtained from magnetic measurements (M vs H 
curves). Other three samples with higher Strontium con-
centration show no resonance absorption bands. But the 
intensity remains constant up to 3000 Gauss and then 
decreases exponentially. This condition implies the least 
magnetization nature of the prepared samples. The varia-
tion in ΔHPP with respect to Strontium substitution in the 
parent system may be due to the presence of inhomoge-
neities and differences in the chemical composition or in 
the oxygen stoichiometry [14,15]. 

3.5 Dielectric Analysis 

The dielectric studies have been carried out for the parent 
and the strontium substituted compounds. This study 
gives experimental values such as capacitance at parallel 
and dielectric loss for the frequency range between 50 
Hz to 5 MHz at the room temperature for the analysis of 

 
 

 

Figure 3. Magnetization nature of the prepared compounds 

 

 
(a) 

 

 

 
(b) 

Figure 4. Electron Spin Resonance nature of the prepared 
compounds 
 
dielectric behaviour of the prepared compounds. The 
dielectric constant was calculated from the formula; εr = 
(CP d)/(εo A) where CP is the capacitance in parallel (F), 
d is the thickness of the pellet (m) and A is the cross sec-
tional area of the pellet (m2).  

The plots of logf versus dielectric constant and dielec-
tric loss have been drawn (Figures 5(a) and 5(b)). It is 
observed that the parent compound has the highest di-
electric constant values than the strontium substituted 
compounds. It may due to the fact of introduction of 
holes in the host Nd2CuO4 system. At the same time, 
increasing order of dielectric constant on higher doping 
concentration of strontium shows the improved surface 
transport properties. The high value of dielectric constant 
at low frequencies may be associated with the establish-
ment of polarizations namely; space charge, orientational, 
electronic and ionic polarization. The low value of di-
electric constant at higher frequencies may be due to the 
loss of significance of these polarizations gradually. The 
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(a) 

 
 

 
(b) 

Figure 5. (a) Plots of dielectric constant of the prepared 
compounds; (b) Plots of dielectric loss of the prepared com-
pounds 
 
frequency dependence of dielectric loss exhibits inter-
esting results. At the lower frequencies, the dielectric 
loss reaches the instrumental saturation value (tan δ = 
9.9999) but at higher frequencies the value drops down 
from this saturation drastically. The low value of dielec-
tric loss at higher frequencies implies that all the samples 
possess superior optical quality and shows the possibility 
of using the prepared compounds for high frequency 
applications. 

4. Conclusions 

In the present work, the effect of partial substitution 
on Neodymium site in Nd2CuO4 system with Strontium 
was carried out. The ceramic compounds Nd2CuO4, 
Nd1.95Sr0.05CuO4–y, Nd1.9Sr0.1CuO4–y, Nd1.85Sr0.15CuO4–y 

and Nd1.8Sr0.2CuO4–y were prepared by solid state reac-
tion technique with high purity chemicals. Structural 
characterization was carried out by using powder X–ray 
diffraction technique and it was found that the parent 
compound crystallized in tetragonal structure and the 
other newly prepared compounds were crystallized in 
orthorhombic structure. Surface morphology confirms 
the high crystalline nature of the prepared compounds 
whereas increasing order of Strontium in the Nd2CuO4 
system is confirmed through elemental compositions 
using energy dispersive analysis. The magnetic nature of 
the compounds was identified with vibrating sample 
magnetometer and it was found that both parent and 
prepared compounds exhibit paramagnetic nature at 
room temperature. Increasing concentration of Strontium 
in the Nd2CuO4 system results in the decrease in net 
magnetization of all the prepared compounds. The same 
results are also identified in the electron paramagnetic 
resonance studies through the least resonance absorption 
intensity of the parent and the prepared compounds. In-
crease in dielectric constant on higher doping concentra-
tion confirms the incorporation of Strontium in the 
Nd2CuO4 system and the least value of dielectric loss at 
higher frequencies confirms the improved surface trans-
port properties of the prepared compounds. 
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Abstract 

The static electromagnetic fields are studied here based on the standard spaces of the physical presentation, and the 
modal equations of static electromagnetic fields for anisotropic media are deduced. By introducing a set of new poten-
tial functions of order 2, several novel theoretical results were obtained: The classical potential functions of order 1 
can be expressed by the new potential functions of order 2, the electric or magnetic potentials are scalar for isotropic 
media, and vector for anisotropic media. The amplitude and direction of the vector potentials are related to the anisot-
ropic subspaces. Based on these results, we discuss the laws of static electromagnetic fields for anisotropic media. 

Keywords: Anisotropic Media, Static Electromagnetic Field, Standard Spaces, Modal Equation Formatting 

1. Introduction 

By the Maxwell’s electromagnetic field equations, we 
know that the electric and magnetic field are independent 
each other under the condition of static fields. The clas-
sical electromagnetic field theory also believes that the 
static electric field can be described by a scalar potential 
function, and the magnetic field by a vector one. Fur-
thermore, for the passive region, the magnetic field can 
also be described by a scalar potential function [1,2].  
But it should be pointed out that these results can only be 
obtained in the condition of isotropy, and are also only 
suit for the isotropic media. However, with the develop-
ment of material science, more and more anisotropic 
dielectric or magnetic materials are applied to various 
fields, such as electron devices, communications and 
sensors, even for the traditional geological structure, we 
also can see the electrically anisotropic media or mag-
netically anisotropic media. It is found by recent re-
search works that the limitations of classical static elec-
tromagnetic field theory have become obvious for these 
anisotropic media. For example, the above results for 
isotropic media don’t exist for anisotropic media, even 
we don’t know the definite form of the electric field po-
tential function or magnetic field potential function, 
which make a great difficulty in solving the problem of 
anisotropic static electric or magnetic fields [3-5]. Unlike 
the classical static electromagnetic field theory, which 
studies the Maxwell’s equations under the geometric 

representation, in this paper, the Maxwell’s equations are 
restudied under the physical representation. As the result 
of this, the modal equations of static electric or magnetic 
fields are deduced, which give the novel expressions for 
the potential functions of static electric or magnetic 
fields for anisotropic media, and bring to light the intrin-
sic laws of static electromagnetic field. 

2. Standard Spaces of Electromagnetic  
Media 

In anisotropic electromagnetic media, the dielectric per-
mittivity and magnetic permeability are tensors instead 
of scalars. The constitutive relations are expressed as 
follows 

D E                     (1) 

B H                     (2) 

where the dielectric permittivity matrix   and the 
magnetic permeability matrix   are usually symmetric 

ones, and the elements of the matrixes have a close rela-
tionship with the selection of reference coordinate. Sup-
pose that if the reference coordinates is selected along 
principal axis of electrically or magnetically anisotropic 
media, the elements at non-diagonal of these matrixes 
turn to be zero. Therefore, Equations (1) and (2) are called 
the constitutive equations of electromagnetic media un-
der the geometric presentation. Now we intend to get rid 
of effects of geometric coordinate on the constitutive 
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equations, and establish a set of coordinate-independent 
constitutive equations of electromagnetic media under 
physical presentation. For this purpose, we solve the fol-
lowing problems of eigen-value of matrixes 

 - 0I j                   (3) 

 - 0I                    (4) 

where  1,2,3i i   and  1,2,3ig i   are respectively 

eigen dielectric permittivity and eigen magnetic perme-
ability, which are constants of coordinate-independent. 

 1,2,3ij i   and  1,2,3i i   are respectively eigen 

electric vector and eigen magnetic vector, which show 
the electrically principal direction and magnetically prin-
cipal direction of anisotropic media, and are all coordi-
nate-dependent. We call these vectors as standard spaces. 
Thus, the matrix of dielectric permittivity and magnetic 
permeability can be spectrally decomposed as follows 

                    (5) 

                    (6) 

where  1 2 3, ,diag      and  1 2 3, ,diag      

are the matrix of eigen dielectric permittivity and eigen 
magnetic permeability, respectively.  1 2 3, ,j j j   and 

 1 2 3, ,     are respectively the modal matrix of 

electric media and magnetic media, which are both or-
thogonal and positive definite ones, and satisfy 

T I   ， T I   . 
Projecting the electromagnetic physical qualities of the 

geometric presentation, such as the electric field intensity 
vector E , magnetic field intensity vector H , magnetic 
flux density vector B  and electric displacement vec-
tor D , into the standard spaces of the physical presenta-
tion, we get 

* 1,2,3i iD j D i            (7) 

* 1, 2,3i iE j E i            (8) 

* 1, 2,3i iB B i             (9) 

* 1, 2,3i iH H i            (10) 

These are the electromagnetic physical qualities under 
the physical presentation. 

Substituting Equations (7)-(10) into Equations (1) and 
(2) respectively, and using Equations (5) and (6) yield, 
we have 

    * *D E                   (11) 

    * *B H                   (12) 

or 

* * 1, 2,3i i iD E i               (13) 

* * 1,2,3i i iB H i               (14) 

The above equations are just the modal constitutive 
equations in the form of scalar. 

3. Matrix form of Static Electromagnetic  
Field Equation 

The classical static Maxwell’s equations in passive re-
gion can be written as  

=0, =0E D                 (15) 

=0, =0H B                 (16) 

where  is a Hamilton operator. It is seen from the 
above equations that the electric field and magnetic field 
are not only independent, but also the same in the form 
of equation. So, it is undistinguishable to study the prob-
lems of electric field or magnetic field under the static 
condition. For this purpose, we consider here only the 
problem of electric field. 

From Equation (15), we can see that one is a vector 
equation, another is scalar one. It is well known that the 
vector equation can be written as the matrix one, but the 
scalar equation can not. By the first one of Equation (15), 
we have 

   0E                  (17) 

where 

 
0

0

0

z y

z x

y x

  
 

    
   

             (18) 

It is an operator matrix of order 1.  
In order get the matrix expression of static electromag-
netic equations, both of Equation (15) should be re-
formed in a suitable form.

 For dynamic electromagnetic fields, a matrix equation 
of electromagnetic waves be dedued by author [6] 

      2
tE E               (19) 

where 

    
 

 
 

zz yy xy xz

yx xx zz yz

zx zy xx yy

      
 
           
 
       

   (20) 

It is an operator matrix of order 2. For static electro- 
mag-netic fields, we have 

   0E                  (21) 

Now, rewriting the second one of Equation (15) in the 
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index form of tensor 

' 0i iD                    (22) 

Differentiating the above equation with index j , it 

become a vectorial one 

' 0i ijD                    (23) 

Rewritting it in the matrix form, we get 

   0D                  (24) 

where 

 
11 21 31

12 22 32

13 23 33

   
      
                   (25) 

In this paper,    and    is defined as the matrix 

of electic intensity and electic displacement operators 
respectively 

4. Eigen Equations of Static Electric Fields 

Now, we transform the matrix equations of static electric 
field into modal ones. 

Substituting Equation (7) into Equation (21), and mul-
tiplying it with the transpose of modal matrix in left, we 
have 

     * 0
T

E               (26) 

It be proved [6] that the matrix of electric intensity 
operator can also be spectrally decomposed, that is 

     *T                    (27) 

Thus, Equation (26) can be uncoulped and become 

 * * 0E                   (28) 

or 
* * 0 1,2,3i iE i                (29) 

in which 

   * * * 1,2,3
T

i i i i              (30) 

where 

      * T

i i i                 (31) 

In same way, substituting Equation (7) into Equation 
(24), and multiplying it with the transpose of modal ma-
trix in left, we have

 
     * 0

T
D               (32) 

let 

     *T                    (33) 

and substituting Equation (11) into Equation (32),we 
have 

  * * 0E                  (34) 

Comparing Equation.(34) with Eq.(28) ,we get 

 * *                         (35) 

It is seen that 
*    is also a diagonal matrix. We call 

it as eigen matrix of electric displacement operator. Thus, 
we have 

* * 0 1,2,3i iD i                (36) 

So, Equations (29) and (36) constitute of the eigen 
equations of static electric field. Different from the clas-
sical ones, they show the simplicity and symmetry of 
static electromagnetic law. 

5. General Solution of Eigen Equations of 
Static Electric Fields 

Let 
* * 1, 2,3i i iE i              (37) 

* * 1, 2,3i i iD i              (38) 

where   is an unknown row vector, which is new 

electric potential function of order 2. 
Substituting Equations (37) and (38) into Equations 

(29) and (36) respectively, a unified equation are ob-
tained as follows 

* * 0 1, 2,3i i i               (39) 

where,  * * * 1,2,3i i i i     is i th modal operator of 
electric field, and a differential operator of order 4. Def-
erent from the Laplce’s equation for the classical electric 
potential function of order 1, the new electric potential 
function of order 2 can be solved by the modal differen-
tial equation of higher order, and the classical electric 
potential function of order 1 can be expressed by the new 
electric potential function of order 2. Once the modal 
potential functions are solved from Equation (41), the 
electric intensity and electric displacement can be ob-
tained by the following conversion 

       * * *
1 1 1 2 2 2 3 3 3          E       (40) 

       * * *
1 1 1 1 2 2 2 2 3 3 3 3             D  (41) 

In order to get the classical electric potential function 
of order 1, we rewritting Equation (40) by using Equa-
tions (30) and (35) 

            * * * *T T

i i i i i i i i
i i

         E  (42) 
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let 

   * T

i i i i                     (43) 

It is just the electric potential function of order 1 for 
anisotropic media. Thus the electric intensity and electric 
displacement can be expressed by the electric potential 
function of order 1 as follows 

       * * *
1 1 2 2 3 3        E        (44) 

       * * *
1 1 1 2 2 2 3 3 3         D     (45) 

6. The Modal Boundary Condition of Static 
Electric Field 

It is seen from above that in order to get the solutions of 
the electric intensity and electric displacement, we can 
turn to solving the modal potential functions. So, the 
modal Equation (39) should have the corresponding mo-
dal boundary condition.  

An effective boundary case is: Electric displacement 
functions of two side of interface should be equal 

     1 2D D                (46) 

or 

   1 2 1,2,3i iD D i              (47) 

Rewriting Equation (46) in the modal form, we have 

         1 * 1 * 2 * 2 *                 (48) 

or 

       1 * 1 * 2 * 2 * 1,2,3i i i i i          (49) 

and 

           1 1 * 1 * 2 2 * 2 * 1, 2,3i i i i i i i         (50) 

7. Application 

In this section, we discuss the laws of static electric field 
only in anisotropic dielectrics. 

7.1. Isotropic Crystal 

The matrix of dielectric permittivity of isotropic dielec-
trics is following 

0 0

0 0

0 0












 
 
 
  

                 (51) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 11 11 11, ,diag                (52) 

1 0 0

0 1 0

0 0 1

 
   
  

                (53) 

We can see from the above equations that there is only 
one eigen-space in isotropic crystal, which is a triple- 
degenerate one, and the space structure is following 

   3
1 1 2 3, ,W   W              (54) 

The basic vector of one dimension in a triple-degenerate 
subspace is 

 *
1

3
1,1,1

3

T              (55) 

The eigen electric displacement operator of isotropic 
crystal are 

 * 2 2 2
1 1 2 3

1

3
                  (56) 

   *
1 1 2 3

3
, ,

3
                (57) 

Therefore, the static electric field equation in isotropic 
crystal can be written as below 

 22 2 2
1 0x y z               (58) 

Thus, the electric strength and electric displacement of 
isotropic crystal become 

     * 2 2 2
1 1 1 1 2 3 1

1

1

1

E   
 
          
 
     (59) 

     * 2 2 2
1 1 1 1 11 1 2 3 1

1

1

1

    
 
          
 
 

D

   (60) 

The classical electric potential function of order 1 is 

 1 1 2 3 i                  (61) 

So, the electric intensity and electric displacement of 
isotropic crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

  1

x

y

z

E 
 
 

   
  

             (62) 

or 

1 E                (63) 
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  11 1

x

y

z

D  
 
 

  
  

            (64) 

or 

11 1   D               (65) 

It is seen that Equations (62)-(65) are the same as the 
classical results, in which the electric potential is a scalar. 
But from the following analysis, we will see that only for 
isotropy we have same results as classical theory. 

7.2. Uniaxial Crystal 

The matrix of dielectric permittivity of uniaxial dielec-
trics is following 

11

11

33

0 0

0 0

0 0






 
 
 
  

                (66) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 11 11 33, ,diag                (67) 

1 0 0

0 1 0

0 0 1

 
   
  

                (68) 

We can see from the above equations that there are 
two eigen-spaces in uniaxial crystal, one of which is a 
double-degenerate space, and the space structure is fol-
lowing 

     2 1
1 1 2 2 3,W W   W          (69) 

The basic vectors in two subspaces are following 

 *
1

2
1,1,0

2
T              (70) 

 *
2 0,0,1

T               (71) 

The eigen electric strength qualities of uniaxial crystal 
are respectively shown as below 

* T
2 2 3E E  E =              (72) 

T * T *
1 1 2 2E E  E              (73) 

Multiplying Equation (57) with 2 ,
 
using T

2 1 0    

and  T 1 1, 2i i i    , we get 

   T* T * T * 2 2
1 2 2 2 2 1 2E E E E E    E E    (74) 

The eigen electric displacement operators of uniaxial 
crystal are respectively shown as below 

 *
1 11 22

1

2
                     (75) 

*
2 33                     (76)

   *
1 1 2

2
, , 0

2
                  (77) 

   *
2 30,0,                  (78) 

Therefore, the static electric field equation in uniaxial 
crystal can be written as below 

 22 2 *
1 0x y                   (79) 

4 *
2 0z                   (80) 

It is seen from Equations (79) and (80) that there are 
two static electric fields in uniaxial crystal. Thus, the 
electric intensity and electric displacement become 

     

 

 
 

* *
1 1 1 2 2 2

11 22 1 33 2

*
11 22 1

*
11 22 1

*
33 2

1 0

1 0

0 1

E    

 







   

   
           
   
   
   
      
 
  

          (81) 

     
 
 

* *
1 1 1 1 2 2 2 2

*
11 11 22 1

*
11 11 22 1

*
33 33 2

D      

 

 

 

   

   
      
 

  

          (82) 

The classical electric potential function of order 1 is 

 1 1 2 1

1

2
     

            (83) 

1 3 2                    (84) 

So, the electric intensity and electric displacement of 
uniaxial crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

 
1 1

2 1

3 2

E





 
    
  

              (85) 

 
11 1

11 1

33 2

x

y

z

D

 
 

 

 
 

   
  

            (86) 

It is seen that the electric intensity and electric dis-
placement of uniaxial crystal are quite different from 
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those in isotropic crystal, and there exist two kinds of 
modal electric potential functions in uniaxial crystal, so 
they become vectorial ones, this is also different from the 
classical results of static electric field. 

7.3. Biaxial Crystal 

The matrix of dielectric permittivity of biaxial dielectrics 
is following 

11

22

33

0 0

0 0

0 0






 
 
 
  

               (87) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 11 22 33, ,diag               (88) 

1 0 0

0 1 0

0 0 1

 
   
  

               (89) 

We can see from the above equations that there are 
three eigen-spaces in biaxial crystal, and the space struc-
ture is following 

           1 1 1
1 1 2 2 3 3W W W    W   (90) 

The eigen-qualities and eigen electric displacement 
operators of biaxial crystal are respectively shown as 
below 

* T
1 1 1E E  E =             (91) 

* T
2 2 2E E  E =             (92) 

* T
3 3 3E E  E =             (93) 

   * *
1 11 1 1,0,0

T           (94) 

   * *
2 22 2 20, ,0

T          (95) 

   * *
3 33 3 30,0,

T          (96) 

Therefore, the static electric field equation in biaxial 
crystal can be written as below 

4 *
1 0x                 (97) 

4 *
2 0y                 (98) 

4 *
3 0z                 (99) 

It is seen from Equations (97)-(99) that there are three 
static electric fields in biaxial crystal. Thus, the electric 
intensity and electric displacement become 

       * * *
1 1 1 2 2 2 3 3 3

* * *
1 1 2 2 3 3

11 1

22 2

33 3

1 0 0

0 1 0

0 0 1

E      

  







     

     
               
     
     
 
    
   

 (100) 

 
11 11 1

22 22 2

33 33 3z

D

 

 

 

 
    
   

            (101) 

The classical electric potential function of order 1 is 

1 1 1                  (102) 

2 2 2                  (103) 

3 3 2                  (104) 

So, the electric intensity and electric displacement of 
uniaxial crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

 
1 1

2 2

3 3

E





 
    
  

              (105) 

 
11 1

22 2

33 3

x

y

z

D

 
 

 

 
 

   
  

             (106) 

It is seen that the electric intensity and electric dis-
placement of biaxial crystal are quite different from 
those in isotropic crystal, and there exist three kinds of 
modal electric potential functions in uniaxial crystal, so 
they become vectorial ones, this is also different from the 
classical results of static electric field. 

7.4. Monoclinic Crystal 

The matrix of dielectric permittivity of monoclinic di-
electrics is following 

11 12

12 22

33

0

0

0 0

 
 



 
 
 
  

                (107) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 1 2 33, ,diag                (108) 
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 

 

 

T

12 1 11

2 2 12
1 11 12

T

12 2 11

2 2 12
2 11 12

T

, 1, 0

1, , 0

0, 0,1

  
  

  
  



 



  
   
   

        

 







   (109) 

where 

   
2

11 22 2
1,2 11 22 12

1

2 2

 
   

       
 

3 33  (110) 

We can see from the above equations that there are 
also three eigen-spaces in monoclinic crystal, and the 
space structure is following 

           1 1 1
1 1 2 2 3 3W W W    W       (111) 

The eigen-qualities and eigen electric displacement 
operators of monoclinic crystal are respectively shown as 
below 

 
 * T

1 1 1 11 1 12 22 2
1 11 12

1
E E E  

  
     

 
 E =  

(112) 

 
 * T

2 2 12 1 2 11 22 2
2 11 12

1
E E E  

  
     

 
 E =

 
(113) 

* T
3 3 3E E  E =               (114) 

   

* 2 2
1 1 11 1 22 1 1 1 2

*
1 1 1 1 2 1 1 1 2

2

, ,0
T

a b a b

a b a b

       

       

     (115) 

   

* 2 2
2 2 11 2 22 2 2 1 2

*
2 2 1 2 2 2 1 2 2

2

, ,0
T

a b a b

a b a b

       

       

    (116) 

   * *
3 33 3 30,0,

T             (117) 

where 

 
1112

2 2 12
11 12

1, 2i
i i i

i

b a b i
 
  


  

 
 

Therefore, the static electric field equation in mono-
clinic crystal can be written as below 

 22 2 *
1 11 1 22 1 1 1 2 12 0a b a b            (118) 

 22 2 *
2 11 2 22 2 2 1 2 22 0a b a b              (119) 

4 *
3 0z                   (120) 

It is seen from Equations (118)-(120) that there exist 
also three static electric fields in monoclinic crystal, 
which is a little different from the results in biaxial crys-
tal because of the distortion of static electric fields. Thus, 
the electric intensity and electric displacement become 

       

 

* * *
1 1 1 2 2 2 3 3 3

1 1 1 2
2 2

1 1 1 2 1 11 1 22 1 1 1 2 12

0

E

a b

a b a b a b

     



      

   
          
 
 

 

 
2 1 2 2

2 2
2 1 2 2 2 11 2 22 2 2 1 2 2

33 3

2

0

0

0

1

a b

a b a b a b 



   
           
 
 
 
   
 
 

   (121) 

       

 

 

* * *
1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 2
2 2

1 1 1 2 1 1 11 1 22 1 1 1 2 1

2 1 2 2
2 2

2 1 2 2 2 2 11 2 22 2 2 1 2 2

3 33 3

2

0

2

0

0

0

1

D

a b

a b a b a b

a b

a b a b a b

        

 

 

 

      

   
          
 
 

   
           
 
 
 
   
 
 

 (122) 

The classical electric potential function of order 1 is 

   1 1 1 1 1 2 1 1 1 1 2 1a a b b a b              (123) 

   2 2 2 1 2 2 2 2 1 2 2 2a a b b a b              (124) 

3 3 3                   (125) 

So, the electric intensity and electric displacement of 
monoclinic crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

 
1 1 1 2 2 1 2 2

1 1 1 2 1 2 1 2 2 2 3

3

0

0

0 0

a b a b

E a b a b  
          

                   
         

 

(126) 
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 
1 1 1 2

1 1 1 1 2 1

2 1 2 2

2 2 1 2 2 2 33 3

3

0

0

0

0

a b

D a b

a b

a b

 

   

   
      
 
 

     
          
     

        (127) 

It is seen that the electric intensity and electric dis-
placement of biaxial crystal are aiso quite different from 
those in isotropic crystal. 

8. Conclusions 

In this paper, we construct the standard spaces under the 
physical presentation by solving the eigen-value problem 
of the matrixes of dielectric permittivity and magnetic 
permeability, in which we get the eigen dielectric per-
mittivity and eigen magnetic permeability, and the cor-
responding eigen vectors. The former are coordinate- 
independent and the latter are coordinate-dependent. Be-
cause the eigen vectors show the principal directions of 
electromagnetic media, they can be used as standard 
spaces. Based on the spaces, we get the modal equations 
of static electromagnetic fields by converting the classi-
cal Maxwell’s vector equation to the eigen Maxwell’s 
scalar equation, each of which shows the existence of an 
static electromagnetic field. For example, there is only 
one kind of static electromagnetic field in isotropic crys-
tal, which is identical with the classical result; there are 
two kinds of static electromagnetic fields in uniaxial 
crystal; three kinds of static electromagnetic fields in 
biaxial crystal and three kinds of distorted static electro-

magnetic fields in monoclinic crystal. All of these new 
theoretical results need to be proved by experiments in 
the future. 

After the text edit has been completed, the paper is 
ready for the template. Duplicate the template file by 
using the Save As command, and use the naming con-
vention prescribed by your conference for the name of 
your paper. In this newly created file, highlight all of the 
contents and import your prepared text file. You are now 
ready to style your paper; use the scroll down window on 
the left of the MS Word Formatting toolbar. 
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Abstract 

The empirical rule for calculation of electric charges of the elementary particles is offered. The given rule contains two 
parameters: full number of colors Nc of which color of the given particle is formed and a color index L - number of col-
ors which the given particle possesses. The offered rule allows calculating electric charges of all elementary particles - 
leptons, quarks and intermediate vector bosons. 

Keywords: Elementary Particles, Leptons, Quarks, Intermediate Vector Bosons 

1. Introduction 

As is well known [1] without antiparticles experimen-
tally opened 12 fermions (6 leptons and 6 quarks) and 
4 intermediate vector boson: carrier of strong interac-
tions (gluon-g), carrier of electromagnetic interactions 
(photon -), and carriers of weak interactions (the neu-
tral weak boson Z0 and charged weak bosons W, 
which are the antiparticles to each other). All these 
particles are elementary, i.e., at the present level of 
knowledge they do not consist of more elementary par-
ticles. Symbols designations and electric charges Q (in 
units of elementary charge) of these particles are 
shown in Table 1. 

In this paper we propose a generalized empirical rule 
for calculating the electric charges of all elementary par-
ticles - leptons, quarks and intermediate vector bosons. 

2. Some Preliminary Remarks 

As far as we know, currently there is no generalized rule 
for calculating the charge of all elementary particles, i.e. 
quarks, leptons and intermediate bosons. There is only 
a generalized formula of Gell-Mann-Nishidzhimy [2], 
whereby the electric charge of quark (in units of elemen-
tary charge) is expressed through the internal quantum 
numbers 

Q = Iz+(B+S+C-b+t)             (1) 

which define the so-called flavor quark. Here, Iz - the 
projection of the isotopic spin I, B - baryon number, S - 
strangeness, C - charm, b - beauty, t - the truth quark. 

Doubled value of the second term Y = B + S + C – b + t 
is called hypercharge. The values of quantum numbers 
and the resulting electric charge of quarks are given in 
Table 2. 

In the electroweak theory introduces the concept of 
“weak hypercharge” Yw distinguishing leptons left and 
right helicity. At the same time 1w

LY    for the “left” 

leptons and 2w
RY    for the “right” leptons. Such in-

troduction of the weak hypercharge and the assumption 
 

Table 1. Elementary particles 

Particles Symbols designations Q 

upper row e   0 
Leptons

bottom row e   –1 
upper row u c t +2/3 

Quarks
bottom row d s b –1/3 
upper row Z0 0 

g 0 Bosons
bottom row

W 1 
 

Table 2. Characteristics of quarks 

Aroma 
of quark

B I Iz S C b t Q 

u 1/3 1/2 +1/2 0 0 0 0 2/3 
d 1/3 1/2 –1/2 0 0 0 0 1/3 
c 1/3 0 0 0 1 0 0 2/3 
s 1/3 0 0 -1 0 0 0 –1/3 
t 1/3 0 0 0 0 0 1 2/3 
b 1/3 0 0 0 0 1 0 –1/3 
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that the isotopic spin I = 1/2 for the “left” lepton and I = 
0 for the “right” lepton can be used to calculate the 
charge leptons the same formula as for hadrons: 

2

w
w
z

Y
Q I  ,               (2) 

where w
zI  — the third component “of the weak isotopic 

spin” of the “left” leptons (Iz = –1/2 for Le
  and Iz = 

1/2 for eL ). 

In [3] proposed a formula whereby the electric charge 
of quark (in units of elementary charge) is expressed 
through the number of colors Nc: 

1 1
1 ,

2 c

Q
N

 
  

 
              (3) 

where the plus sign corresponds to the upper line of 
quarks (u, c, t) and the minus sign corresponds to the 
bottom line of quarks (d, s, b). Given Nc = 3 we obtain Q 
= +2/3 for quarks of upper line and Q = –1/3 for quarks 
of bottom line. 

3. Proposal Rule 

The Formula (3) allows calculating of electric charges 
only for quarks. We propose a generalized rule that the 
electric charge of quarks, leptons and intermediate bos-
ons is expressed in terms of the number of colors Nc 
(which make up the color of a given particle), the color 
index L (number of colors which the given particle pos-
sesses) and is given (in units of elementary charge) by 
the formula: 

3 1
1 .

6 2 1
c

c

N L
Q

L N

 
     

          (4) 

Here, L- is a certain color index, which is set L = 1 in 
the presence of one color, L = 2 in the presence of two 
color and L=0 in the absence of color of the particles. 
Plus sign corresponds to quarks and leptons of the upper 
line (u, c, t e,  ,), and the minus sign corresponds to 
quarks and leptons of the bottom line (d, s, b, e, , ). If 
we assume that the leptons are colorless, i.e. for them L= 
0 and Nc = 0, then from Formula (4) we obtain Q = 0 for 
leptons the upper line (plus sign) and Q = –1 for leptons 
bottom line (minus sign). For quarks L = 1 and Nc = 3. 
In this Formula (4) coincides with Formula (3) and for 
the charge of quarks we obtain the above values. 

Equation (4) also allows us to calculate the electric 
charges of the intermediate vector bosons , Z0, W–  and 
g. When L = 0 and Nc = 0 Formula (4) gives the value 
of Q = 0 and Q = –1, respectively for the intermediate 
bosons , Z0 (plus sign) and W– (minus sign). A gluon 
electric charge Q = 0 is obtained from (4) with the sign 
“minus” in parenthesis, if we assume that L = 2 and Nc 

= 3, since the gluon is not one, but two color index. 
In conclusion, we note that the electrical charges an-

tileptons, quarks and W+ boson can also be calculated by 
Formula (4), taken with opposite sign. 
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Abstract 

Spatial distribution of acoustic and elastic waves generated by an elementary vibration source at seismic profiling fre-
quencies in an infinite medium close to a layer inclusion, i.e., an extended layer, is numerically simulated. Point dipole 
radiation in a homogeneous infinite medium separated by a liquid layer of different medium density or acoustic wave 
velocity is considered. Transverse elastic SH-waves excited by an oscillating power source in a solid medium also lo-
cated close to the layer of different propagation velocity than the velocity of the vicinity are analyzed. Formulae for the 
spatial distribution of the wave field amplitude are derived and computer graphics of field distribution images is pre-
sented. Wave reflection, penetration deep into the layer inclusion, and transmittance through it are examined. Results of 
the analysis can be applied to seismoacoustic probing of geologic environment by the near field of a harmonic vibration 
source. 

Keywords: Seismoacoustic Probing, Vibration Source, Acoustic, Transverse Waves, Wave Field Amplitudes, Spatial 
Distribution, Inhomogeneity 

1. Introduction 

New methods of acoustic remote diagnostics of materials 
and vibroseismic probing of geologic environment are 
actively developing now. This research is eventually fo-
cused on solving the so-called inverse problems, i.e., 
problems of inversion or reconstruction of a medium by 
vibroseismic (acoustic) probing data [1,2]. Although some 
fundamental results have been achieved in developing the 
theoretical basis of these methods, the relation between the 
radiation field configurations at the distances of several 
tens of wavelengths from a vibration source to the pa-
rameters of a layered medium structure is not yet studied 
thoroughly [3]. The study of this relation is required for 
optimal solution of this problem; analytical results of the 
so-called direct problems can be used for this purpose. The 
existence of this relation was considered in previous pa-
pers devoted to the analysis of the near elastic-wave field 
configuration in a medium with an elementary plane lay-
ered structure [4-6]. It is assumed that at the distances of 
the order of several near-surface layer depths being simul-
taneously the probing inhomogeneity, the field configura-
tion strongly depends on the geometrical parameters of the 

layered structure and the acoustic parameters of the me-
dium. This informative relation decays, as the distance 
between the source and the receivers grows. Thus the 
problem analyzed in the paper can be formulated as nu-
merical simulation and visualization of the structural fea-
tures of the near field of a harmonic acoustic (vibration) 
source located close to a layer inclusion characterized by a 
jump of wave velocity or density relatively to the analo-
gous parameter of the ambient homogeneous medium. The 
results of the analysis can be of interest for solving the 
problem of productive layer probing in entrails of the earth 
using structural features of near seismoacoustic fields of 
vibration sources, similarly to “near-field” location of in-
homogeneities by pulse signals. If this probing is carried 
out by means of a vibration source operating in the har-
monic vibration mode, precisely field configurations 
should be considered as characteristic informative features. 
In this case, the problems solved by probing can be gener-
ally formulated as the localization of the nearest boundary 
of inhomogeneity relatively to the source location, the 
determination of the characteristic spatial scale of the re-
gion occupied by inhomogeneity, the estimation of con-
trast in densities or wave velocities of media in the region 
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of inhomogeneity (layer) relatively to internal and external 
regions. 

Analogous problems are set when determining produc-
tive layer features in the bottom marine environment, 
which are probably present in the characteristics of hy-
droacoustic signals recorded in shelf probing [1,2,7,8]. 

To extend the application area of the acoustic probing 
analysis and generalize it to solid media, we also set 
forth the results of numerical simulation of the amplitude 
distribution of elastic transverse SH-waves excited by an 
oscillating power source located analogously to that in 
the previous acoustic case, i.e., at some distance from the 
plane parallel layer inclusion having the thickness of one 
or several wavelengths. To describe the field of a scalar 
medium (liquid or gas), one scalar potential is sufficient, 
while the oscillation source is a point oscillating dipole. 
To describe elastic SH-waves in a solid medium in the 
two-dimensional formulation, we use one component of 
the vector potential; a harmonically oscillating power 
source uniformly distributed along an infinite line paral-
lel to the layer boundary has the same orientation of the 
momentum and radiates transverse SH-waves perpen-
dicular to this line. It is interesting to compare wave pat-
terns of acoustic and elastic-wave fields. First we con-
sider a scalar acoustic field and then results of transverse 
elastic wave analysis. 

2. Near Acoustic Field of a Point Dipole 
Located Close to a Layer Inclusion  
in a Homogeneous Infinite Medium 

The geometry of the problem is shown in Figure 1. 
Three-dimensional infinite space filled with a liquid or 
gaseous medium and characterized by the parameters 

Cand , i.e., the density and the acoustic wave veloc-
ity, is separated by a layer infinite in the andx y  di-

rections and enclosed in the limits h z h H    in the 
vertical z  direction; it has the same density   as the 

vicinity and differs only by the sound velocity 

c ( Cс  ). The source 0
0 ( ) ( ) i tF z r z e   

is a point 

dipole having the power (momentum) 0F  and the os-

cillation frequency  ; it is a perturbation in the form of 
 -functions of the radial r  and axial z  coordinates, 

oriented along the vertical axis ( 0z


is the corresponding 
unitary vector), and located at the distance h  twice 

larger than its thickness H relatively to one of the layer 
boundaries (this value is taken for definiteness of calcu-
lations). In Figure 1, the entire space is divided into four 
artificially isolated zones (numerated by 1, 2, 3, and 4). 
In these four calculation regions due to axial symmetry, 

 

Figure 1. Medium structure and source arrangement for 
the “scalar” problem 
 
the acoustic shift field can be described by the scalar 
potential   represented for each of them as Fou-

rier-Bessel integrals, i.e., by the following expressions 

(the factor tie   is omitted): 

 (1)

0
0

( ) i za k e J kr dk
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where  krJ 0  is the zero-order Bessel function, r is the 

radial coordinate, k is the radial wave number component, 

i.e., the integration variable, 222 kC   , 

222 kс   , and the indefinite coefficients 

dBBbba ,,,,,   are further calculated from the 

matching conditions of the z-component of the wave 

displacements zu and the acoustic pressure p at the 

boundaries of all the four isolated regions. 
The problem is based on the solution of a homogene-

ous acoustic wave equation: 

0
1

2
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2
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the source operation is written under the appropriate 
boundary condition instead of being written in the 
right-hand side of the wave equation: 
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The relation between the potential  , the acoustic 
pressure p , and the z-component of the wave dis-

placement zu  is commonly known: 

 2p , zu zz         (4) 

Since the explicit forms of the unknown coefficients 
are determined, the expressions for acoustic displace-
ments in all spatial regions are written using standard 
expansions: 
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Specifically, it follows from the latter formula that 

field )4(
zu transmitted through the layer does not depend 

on the distance h  from the source to the layer bound-
ary closest to it. The first and the last formulae describe 
the acoustic wave field traveling for small distances and 
also lengths much larger than the wavelength from in-
homogeneity and the source. In this case, the integrals in 
Formulae (5) can be asymptotically estimated, while the 
wave displacements corresponding to regions 1 and 4 
can be given by the expressions: 
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In Formula (7), cH , Ccc  , hH , 

and the angle   is measured from the vertical axis z. 

The angular characteristics of wave radiation are ob-
tained by Formulae (6) and (7); they show the amplitude 
angular dependences for the far backscattered wave 

fields )1(
zu  and for the fields traveling forward )4(

zu . 
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The far field characteristics are displayed in Figures 2(а) 
and (b) (in curves 1, 2, and 3,  5.2,,2 ); 

these characteristics correspond to waveguide propaga-
tion in the layer, i.e., for 9.0c . It is seen that in the 
far zone, the angular pattern of backscattered waves 
changes as the frequency grows, while the directivity of 
the field transmitted through the layer remains un-
changed and close to the directivity of the dipole source 
oscillating in a homogeneous infinite medium. The cal-
culation results of antiwaveguide propagation for 

1.1c  are shown in Figures 3(а) and (b). There is a 
considerable difference in the angular dependences of the 
backscattered far field and the field scattered forward. 
The characteristic of the field traveling forward is the 
occurrence of sharply directed maxima with simultane-
ous presence of the central lobe describing the smooth 
dependence. The backscattered field pattern has only 
sharply directed maxima analogous to those mentioned 
above, as applied to the wave field transmitted through 
the layer, which exist there together with smooth lobes. 
They, probably, exist due to the so-called nonray waves 
[3-6].  

The spatial distribution of the acoustic field amplitude 
can be also analyzed by means of numerical calculation 
of the integrals in Formula (5); in this case, the calcu-
lated distances do not exceed the first tens of wave-
lengths. Since the numerical approach has been em-
ployed, the choice of integral signs eliminating ambigu-

ity in the variable k  on two-lobe surfaces and the 
choice of the integration methods essential in the ana-
lytical calculations are not discussed.  

Now we consider patterns of the spatial amplitude dis-
tribution of the z-component of wave displacements, 
which are obtained as a result of numerical simulation 
using Formula (5) for the same values of acoustic wave 
velocity jump in the media located inside and outside the 
layer, i.e., for the waveguide propagation c c C   

0.9  and for the antiwaveguide propagation c  

1.1Cc . Note that the actual pattern of the acoustic 

shift field is to be axially symmetrical relatively to the 
axis z and can be a set of interleaved axially symmetri-
cal bodies. However in graphical presentation of the am-
plitude field distribution, we use the isometric projection, 
in which the field level is represented as relief rising 
above the plane zr , . The calculated structure of the 

acoustic displacement field zu  is shown in Figures 

4(а), 4(b), 4(c) and 4(d) for 9.0 Cсc  and in 

Figures 5(а), 5(b), 5(c) and 5(d) for 1.1 Cсc .  

Figure 4(а) displays the field fragment corresponding 
to region 1 located behind the source on the opposite side 
of the layer region, i.e., for 0z ; thus it should be con-

sidered turned in the opposite direction along the vertical 
coordinate z and the corresponding axis in it is denoted -z. 
The same scale is used in both axes. The level decrease 
is accompanied by the presence of a fan-shaped structure 
in the field image over the entire plane, which means the 

oscillating dependence of zu on r  for constant z  or 

the oscillating dependence on z  for constant r . It fol-

lows from the dependence zu  on the coordinates that 

there is an acoustic radiation maximum directed at a 
small angle to the axis z , which is indicated by “eleva-  
tion” in the appropriate relief region inclined to this axis. 
As distinct from Figure 4(а), in Figures 4(b) and 4(c) 
the scale of the axis z is 100 times smaller than the 
scale of the axis r . The analyzed spatial interval along 
the vertical axis amounts to hz 0  in Figure 4(b) 
and to h z  h H  in Figure 4(c). In Figure 4(c) for 
more detailed consideration of the pattern in the radial 
r direction in the layer region, we used a 10 times 

smaller scale. In regions 2 and 3 at larger distances from 
the source, the field amplitude sharply decreases both in 
radius and vertical z - direction, which is seen in Fig-
ures 4(b) and 4(c). After deep minimum when the face 
boundary of the layer is approached, sharp decrease of 
the level is changed by the amplitude growth accompa-
nied by its oscillations. Oscillation amplitude decreases 
in region 3 are not strong, which indicates that there is 
the excitation of several interfering modes in the layer; 
each of the resonance frequencies of these modes being 
far from the chosen frequency of the source. In region 4 
(Figure 4(d)), one can see a comparatively rapid de-
crease of the field level; it is not so sharp as the level 
differences in Figures 4(b) and 4(c), if 100-fold scale 
difference along z axis in these figures is taken into 
account. The pattern of the near field in region 4 does not 
reveal details of the angular concentration of the acoustic 
field radiated beyond the layer and going to infinity. 
Therefore, the calculation data obtained from (7) and 
shown in Figure 3(a) supplement the entire field pattern. 
At the same time it is evident that even at small distances, 
the field backscattered by the layer has more peculiarities 
in its spatial configuration than the field transmitted 
through the layer outward has in its amplitude distribu-
tion. If it is assumed that the spatial configuration can be 
the informativeness parameter representing the charac-
teristics of the layer itself, then it is seen from compari-
son that the reflected field contains more information 
than the field transmitted on the opposite side. In conclu-
sion of this brief review of the wave pattern it can be 
assumed that amplitude oscillations along the radial and 
axial coordinates in the near backscattered field is the 
consequence of interference of the waves reflected from 
the nearest (face) and the second (external relatively to 
the source) boundaries. This statement is also applicable to 
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other cases considered below, although wave interference 
in the field transmitted outward is not always so strong.  

It follows from Figures 5(а) and 5(b), and c that for 
c c C   1.1 , the spatial distributions of the wave 
amplitudes corresponding to spatial regions 1, 2, and 3 
have the forms essentially analogous to those considered 
above. There is an apparent difference from the previous 
case only in the amplitude distribution in spatial region 4 
corresponding to the field transmitted through the layer 
(Figure 5(d)). In the first case, space-angular oscillations 
in the transmitted field level were absent; while in con-
sidered case, they are present in the three-dimensional 
image of amplitudes. This is indicated by the fan-shaped 
angular-periodic structure observed up to some angle to 
the vertical axis and similar to the structure shown in  

Figure 4(a); its angular periodic repetition is approxi-
mately the same as in region 1. The primary role here is, 
probably, played by nonray waves having a rather high 
level in the spatial region limited by the sector forming 
the angle  cCarccos  with normal to the bound-

ary [3-6]. 
Thus in the considered cases, there is some difference 

in the entire pattern of the spatial distribution of acoustic 
fields, which can be used for remote diagnostics of a 
probed inhomogeneity. It is evident that spatial ampli-
tude distributions of both the backscattered field and the 
field transmitted through the layer should be recorded, 
since the near field structure of the acoustic wave transmitted 
through inhomogeneity also represents the influence of  

 

 

Figure 2. Angular field characteristics (а) – (1)
zu , (b) – (4)

zu . Curves 1, 2, and 3 – Ω = , ,2 2.5   ,  0.9c   

 

 

Figure 3. Angular field characteristics: (а) – (1)
zu , (b) – (4)

zu . Curves 1, 2, and 3 –Ω = , ,2 2.5   ,  1.1c   
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Figure 4. Fragments of the amplitude distribution pattern of the field 
zu ; relief over the coordinate plane r z : (а) – Re-

gion 1; (b) – Region 2; (c) – Region 3; (d) – Region 4.  0.9c  ,  11.1 h C ,  5 H c  

 
the inhomogeneity parameters. 

The problems of the backscattered acoustic field of a 
dipole harmonic source and of the field transmitted 
through a layer inclusion into a homogeneous infinite 
medium (when the media differ only in density) are 
solved analogously to the stated above. If we consider 
the same geometry of the layer-medium structure as in  
the case of Figure 1, use the same arrangement of the  

source relatively to the boundaries ( h  is the distance  
between the source and the face boundary of the layer 
and H  is the layer thickness), and assume that the sound 
velocity C  is equal everywhere, the density of the me-
dium in the vicinity is 1 , while in the layer is 2 , it is 
easy to obtain the following expressions for the acoustic 
displacements in the reflected acoustic field )1(

zu and the 
acoustic field )4(

zu transmitted through the layer: 
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Figure 5. Fragments of the amplitude distribution pattern of the field 
zu ; relief over the coordinate plane r z : (а) – Re-

gion 1; (b) – Region 2; (c) – Region 3, and (d) – Region 4. c   ,  9.1 h C ,  5 H c  
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These formulae are employed to carry out numerical 

calculation and analysis of the near acoustic field struc-
ture for different density contrasts in the layer and in the 

Vicinity 2 1 2 11, 1     , enabling one to deter-
mine the influence of variations in the ratio of the densities 
in inhomogeneity and in its vicinity. Figures 6 and 7  
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Figure 6. Fragments of the amplitude distribution pattern of the field
zu :  10Ch ,  5CH , 9.012  ; (а) 

– Region 1; (b) – Region 4 
 

 

Figure 7. Fragments of the amplitude distribution pattern of the field zu : 10h C  , 5 C  , 2 1 1.1   ; (а) 

– Region 1; (b) – Region 4. 
 
 
 
 

deal with fragments of relief above the plane zr,  in 
regions 1 and 4, which are calculated by Formulae (8) 
and (9) using the same values of the density ratio as in 

the velocity ratio calculations, i.e., 2 1 0.9,    2 1   
1.1 . These fragments are much similar to those con-

sidered above; the same picture is observed in interme-  
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diate regions 2 and 3, thus neither appropriate fragments 
are shown nor are calculation formulas for these regions. 
It is seen in Figure 6(а) that if the media differ in density 
( 9.012  ), the distribution of the backscattered 

acoustic field is characterized (as in the previous case) by 
amplitude decrease and fan –shaped relief but of lower 
angular periodicity than that in Figure 4(а). The level of 
the field transmitted through the layer (see Figure 6(b)) 
decreases at larger distances from the external boundary 
but angular periodicity of amplitude values is absent. For 
a higher density contrast, i.e., for 1.112   (see 

Figures 7(а) and 7(b)), the amplitude distribution pat-
terns in reflected waves and waves transmitted through 
the layer remain practically invariable, which indicates a 
weak influence of the density contrast variation on the 
near acoustic field configuration in the layer – vicinity 
structure, as distinct from the previously considered ve-
locity jump. 

Generally, when comparing differentiation of media in 
density and velocity inside and outside the layer, we 
come to the conclusion that the sound speed jump in 
homogeneity causes a more pronounced variation of the 
near field configuration; thus the search system sensitiv-
ity to variation of this parameter is higher than the sensi-
tivity to density contrast variation. This is the main dis-
tinction of these cases, which should be taken into ac-
count in the search for inhomogeneities and can be con-
sidered as one of the diagnostic properties enabling one 
to differentiate “inhomogeneities in density” and “inho-
mogeneities in velocity”.  

Therefore, the obtained fragments of the near acous-
tic field of a dipole harmonic source operating close to 
a layer inclusion yield the entire field pattern in princi-
pally different cases of velocity and density contrasts 
inside and outside inhomogeneity. The revealed peculi-
arities provide qualitative information on their applica-
bility as informative attributes in the search for inho-
mogeneity. The distance from the source to the nearest 
(face) boundary of the layer, the thickness of the layer, 
and hence the sound speed (density) in region 3, i.e., in 
the zone occupied by probed inhomogeneity, is deter-
mined by the field configurations in regions 1, 2, and 4. 
Thus remote reading of the inhomogeneity parameters 
in the harmonic oscillation mode requires “reflection” 
and “transmittance” probing. More detailed numerical 
simulation of near fields will provide quantitative data 
on the relation of inhomogeneity contrast against the 
vicinity to the spatial structures of these fields in the 
parameters of density and sound speed. Finally, it can 
be noted that the illustrations confirm our statements 
only qualitatively; the problem of frequency choice 
optimization required for practical acoustic probing is 
not considered. 

3. Transverse SH-Wave Field Generated in  
an Infinite Medium by an Extended  
Oscillating Power Source Close to a Layer  
Inclusion (Two-Dimensional Problem) 

The considered vibration source tieyxzZ  )()(0
0


 

is the “force oscillating with the frequency ” (the force 

vector is parallel to the unit vector 0z


and has the am-

plitude 0Z ; the factor tie  is omitted as previously) is 

uniformly distributed along the axis z due to the 
two-dimensional approximation used in the analysis (see 
Figure 8). The source is omnidirectional relatively to 
radiated SH-waves, i.e., in the plane x, y oriented nor-

mally to the 0z


direction. Thus besides comparing 
acoustic and vibroseismic cases in this analysis, it is pos-
sible to study the influence of the source directivity on 
the near field characteristics. As in the previous case, the 
layer occupies the spatial region , x  h   

Hhy  ,  z . The vicinity is characterized 

by the transverse wave velocity 
tC  and differs from the 

analogous value ct inside the layer; both media have the 
same density  .  

It is shown in References [4-6] that to describe the wave 

displacements zu  in the two-dimensional problem, it is 

sufficient to introduce one component of the vector poten-
tial x  satisfying the homogeneous wave equation: 
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By analogy with the previous case of a dipole source 
in a scalar medium, the entire space is divided into four 
especially distinguished regions (see Figure 8); in each 
region the value x  is represented as the Fourier ex-

pansion, i.e., by the following expressions:  

dkekA ikxyi
x
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Hhyh   






 dkekD ikxyi
x

t)()4( ,  yHh  

where 222 kС tt   , 222 kctt   , 

tt candC  are the shear wave velocities in the vicinity 

and inside the layer and k  is the integration variable. 

The oscillation displacements zu and significant 

stresses in the considered waves 
yz  are expressed 

through x  using differential operations: 

yu xz  )4..1()4..1(  ,             (12) 

 

yuС ztyz  )4,2,1(2)4,2,1(  , yuс ztyz  )3(2)3(  , (13) 

where  is the density of the medium; the source opera-

tion is described by one of the conditions for 0y  

instead of appropriate expressions in the right-hand side 
of Equation (10). The boundary condition is: 

)()0()0( 0
)1()2( xZyy yzyz        (14) 

The unknown coefficients ( ), ( ), ( ),A k B k C k ( ),a k  

( ),b k ( )D k  are found by matching the indicated shift 

components and strains at the boundaries of the four dis-
tinguished regions. Omitting intermediate calculations, 
we write down the resultant expressions for the wave 
displacements: 
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It follows from (15) that similarly to the previous case 

with an acoustic dipole, the field )4(
zu  does not depend 

on the parameter h , i.e., the distance between the source 
and the nearest layer boundary, which is the consequence 
of the unlimited scale of inhomogeneity along the coor-
dinate x  and the absence of absorption in the medium. 
The obtained expressions are used in the numerical cal-
culation enabling one (by means of computer graphics) 
to visualize the spatial distribution of wave amplitudes at 
the distances of up to several tens of wavelengths from 
the source for the layer thickness of the order of or 
smaller than the wavelength and to analyze the peculiari-

ties of this spatial distribution. Specifically, these ex-
pressions are used to make calculations and obtain pat-
terns of the wave displacement field (in the isometric 
projection) for the relative distance from the source and 
the layer thickness assigned in the dimensionless form: 

 9tCh ,  5tcH . As previously, the calcu-
lations are carried out for two velocity jumps 

9.0tt Cc  and 1.1tt Cc . As the integral expres-

sions, each of the four fragments of the field pattern cor-
responds to its spatial region; the amplitude distribution 
is shown as a relief rising above the plane yx, .  

Figures 9(a), (b), (c), and (d) should be considered in 
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Figure 8. Mutual arrangement of the source and the layer 
scattering of shear SH-waves 

 
the following sequence: Figure 9(а) – region 1, Figure 
9(b) – region 2, etc., while for obtaining the entire field 
pattern in all the regions all the fragments should be 
joined. Since Figure 9(а) should be considered turned in 
the opposite direction along the transverse coordinate y, 
the corresponding axis in it is denoted -y. It follows from 
the given pattern that in region 1 at larger distances from 
the source, besides a decrease of the field )1(

zu  we ob-
serve periodic sequences of maxima occupying fan- 
shaped angular sectors, which pass into directional lobes 
in the far field. Note that the scale of the longitudinal 
coordinate x is the same in all the figures, while the scale 
of the transverse coordinate y in Figures 9(b) and 9(c) is 
two orders smaller than that in Figures 9(а) and 9(d), i.e., 
the unit length in the transverse direction y in Figures 

9(b) and 9(c) is 100 times larger than that in Figures 9(а) 
and 9(d). Taking into account the scale difference it can 
be concluded that at larger distances from the source and 
approach to the layer boundary in the second region, the 

amplitude of the field )2(
zu decreases even more abruptly 

than that in Figure 9(а). The amplitude of the field pe-
netrating into the layer is maximum in the region oppo-
site to the source, decreases abruptly when escaping 
along the coordinate x  (symmetrically on both sides), 
and oscillates along the coordinate y . It is seen in Fig-

ure 9(c) that waveguide conditions for excitation and 
propagation of several first modes of SH-wave occur 

inside the layer. The field )4(
zu outside the layer (see 

Figure 9(d)) also decreases rapidly and the amplitude 
distribution in region 4 differs considerably from the 
analogous one in region 1. A similar situation is consid-
ered in the first section for a dipole source in the scalar 

acoustic problem.  
To gain a better understanding of wave reflections 

occurred in near-field probing in the near region of the 
source, it is expedient to consider antiwaveguide propa-
gation for an inverse jump of SH-wave velocities inside 
the layer and in the vicinity, which equals, for example, 

1.1tt Cc . 

Figures 10(a), (b), (c), and (d) exhibit analogous frag-
ments of the spatial field distribution in the same format 
and in the same spatial regions as in the figure considered 
above. Comparison of the amplitude distributions with the 
analogous ones of the previous case (Figure 9) shows that 
the spatial dependence can be either the same or slightly 
different. The near field in the reflection region (Figure 
10(а) – region 1) has practically the same structure as in 
the previous case. The configurations of the amplitude 
distributions in region 2 (Figures 10(b)) in those cases are 
also similar. The field configuration in the layer (Figures 
10(c)), i.e., in region 3, differs by the absence of periodic 
structure indicating the excitation of SH-wave modes, in 
spite of the presence of a crest with undulatory amplitude 
modulation also typical of the previous case. In region 4 
immediately outside the layer limits (see Figures 10(d)), 
an increased-amplitude angular sector forms being similar 
to that in the scalar acoustic problem.  

The revealed peculiarities differentiating the structures 
of the near fields traveling in opposite directions from 
the layer in waveguide and antiwaveguide cases demon-
strate the possibility of remote diagnostics of elasticity 
jump in the media occupying the internal and external 
regions of the layer and enable one to accept them as 
informative diagnostic attributes applicable, specifically, 
for solving problems of remote diagnostics and medium 
structure retrieval. Hence the previously formulated 
statement on the necessity of reflected and transmitted 
wave recording for diagnostics of inhomogeneity in its 
near-field probing, which is similar to reflection and 
transmittance location, is valid. Generally, similar results 
on peculiarities of wave reflection and transmittance 
through a layer several wavelengths thick are typical of 
the scalar acoustic problem and the problem with a 
source exciting SH-waves in an elastic medium. 

4. Conclusions 

Numerical simulation of near-field probing of inho-
mogeneity (layer inclusion) in acoustic and seismic me-
dia is carried out, which has confirmed its applicability 
with the use of near acoustic and elastic fields of har-
monic sources and recording of waves reflected by in 
homogeneity and transmitted through it. The study is 
based on the analysis of the visual pattern of the spatial 
amplitude distribution in near and far wave fields calcu-
lated by the formulae derived in this paper. The simulta-
neously considered angular characteristics of the far 
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Figure 9. Fragments of the spatial distribution of wave amplitudes of an oscillating source for 0.9t tc C  , 11.1th C  , 

= 5tωH c : (а) – Region 1; (b) – Region 2; (c) – Region 3; (d) – Region 4 

  
acoustic field do not contradict the revealed peculiarities 
of the near field of elementary oscillation sources oper-
ating close to inhomogeneity. The employed values of 
inhomogeneity contrast characterize the relation of den-
sities and sound speeds in the layer and ambient acoustic 
medium. To predict the distance from the source to the 
layer inclusion and to estimate its thickness, the qualita- 

tive character of the dependence ChcH  ,  

( ,t tH c h C  ) should be studied. Complete investiga-
tions require numerical simulation of a number of definite 
values of the mentioned parameters in addition to the 
given calculations. At the same time, the near field pecu-
liarities found in this paper (even in a limited volume of 
simulation data) are useful for optimal arrangement of 
sources and recording receivers in design of experiments 
on seismic exploration of productive stratum in massif, 
characterized by an abrupt decrease of SH-wave velocity. 
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Figure 10. Fragments of the spatial distribution of the wave field for 1.1t tc C  , 9.1 th C  , = 5tωH c : (а) – Region 1; 

(b) – Region 2; (c) – Region 3; (d) – Region 4 
    
The structures of the near fields of a vibration source, 
which are backscattered or transmitted through inho-
mogeneity, should be considered as a set of informative 
basic characteristics indirectly indicating the presence of 
a stratum with deposit. Shelf investigations of sea bottom 
sediments containing gas condensate layers can be simi-
lar to the search for hydrocarbon accumulation in geo-

logic environment on land territories. In some cases, the 
search for inhomogeneities using harmonic oscillation 
sources can precede pulse location and determine only 
tentative information or boundary contours. In other cas-
es, it is expedient to employ near-field probing using 
harmonic sources to increase reliability of pulse echo-
sounding of geological structures or prediction accuracy 
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of their characteristics in remote diagnostics [9]. 
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Abstract 

The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically 
demonstrated. Then, exact, analytical solutions to the time-dependent Schrödinger equation in one dimension are 
developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact 
solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with 
appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability 
and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the 
particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential 
decay for all times; the probability decreases at large times as 3t . Other exact solutions found exhibit power law 
behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, 
numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence 
of non-exponential decay at short times. 
 
Keywords: Non-Exponential, Decay, Exact, Solutions 

1. Introduction 

The law of exponential decay is typically discussed in 
association with atomic transitions or resonances in 
scattering amplitudes. Even though the approximations 
made in order to arrive at exponential decay of excited 
states or resonances are well understood the mistaken 
impression that this law is universal and exact often 
prevails. This perception is reinforced by experiments 
often done in student laboratories geared towards 
studying the half-lives of radioactive nuclei or unstable 
particles and, very importantly, by numerous research 
publications and data tables in which exponential decay 
is tacitly assumed. The fact that these experiments 
measure counting rates during only finite time intervals 
and are focused on decays of quasi-stationary states is 
usually not discussed, let alone studied in detail. 

The history of this particular problem is quite interes- 
ting. Early on Khalfin [1] used dispersion relations to 

show that even quasi-stationary states with spectral 
functions that have a lower bound in their energy 
spectrum must decay non-exponentially at large times. 
Winter [2] examined the infinite wall plus repulsive delta 
function potential and obtained a single implicit solution 
in the form of an integral for the special case in which 
the initial wavefunction is an eigenfunction of the 
infinite square well of the same width and as a result it is 
a near-resonance (quasi-stationary) state of the actual 
potential. His analytic approximation to the integral in 
the limit of low barrier transmittance (large strength of 
the delta function) proved that the survival probability 
exhibits exponential decay in the (intermediate) time 
interval-when the dominant quasi-stationary resonance 
prevails inside the well-while at very large times it 
decays following the power law 3t . By means of 
numerical studies the same author found oscillations in 
the probability current at times before the power law sets 
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in if the initial state has a relatively wide energy spec- 
trum. 

The purpose of this article is to demonstrate explicitly 
the existence of systems that exhibit non-exponential 
decay at all times by developing exact, analytical, closed 
form solutions to the time-dependent Schrödinger equa- 
tion for a one-dimensional potential and non-quasis- 
tationary initial states as well as to illustrate non- 
exponential decay using numerical solutions to specific 
problems for which analytical solutions are not obtaina- 
ble. The clear advantage of the analytical approach 
without any approximations is that it yields an equation 
for the survival probability of the initial state that can be 
studied for any time interval and that is unequivocally 
non-exponential. The conclusions are easily generalized 
and the long-time behavior of the solutions is predicted 
and shown to follow an asymptotic power law. It is, thus, 
established that for a large class of systems, non-expo- 
nenential decay is the rule rather than the exception. 

This paper also elucidates and generalizes previous 
research work. Recently there has been increasing 
interest in the time dependent Schrödinger equation and, 
in particular, in the decay of physical systems. The 
equivalence of exponential decay of a perturbed energy 
eigenstate with Fermi's golden rule when the final 
density of states is energy-independent and with the 
Breit-Wigner resonance curve has been long known and 
presented in several papers [3] and textbooks [4]. 
Dullemond [5] has verified this behavior for a simple but 
exactly solvable model and found, however, that if 
final-state energy-dependence is introduced into this 
model a non-exponential decay pattern will dominate at 
large times. 

Oleinik and Arepjev [6] have shown that tunneling of 
electrons out of a finite potential well when a long-range 
electric field is suddenly switched on follows a 3t  
probability decay law at large times. Specific systems 
that may exhibit non-exponential decay include systems 
with non-local interactions [7], certain closed many-body 
systems [8], quasi-particles in quantum dots [9], polarons 
[10], and non-extensive systems [11]. Petridis et al., [12] 
have studied numerically a variety of systems in which 
the initial wave function is mostly or entirely set in a 
finite potential well and have observed rich behavior, 
including non-exponential decay into the continuum. 

Non-exponential decay was experimentally observed 
for the first time by Wilkinson et al., [13] in the 
tunneling of ultra-cold sodium atoms initially trapped in 
an accelerating periodic optical potential created by a 
standing wave of light. Kelkar, Nowakowski, and Khem- 
chandani [14] have reported evidence for the non- 
exponential alpha decay of Be8 . Rothe, Hintschich, and 
Monkman [15] have clearly measured non-exponential 
time-dependence in the luminescence decay of dissolved 

organic materials after pulsed laser excitation. 
Time-dependent quantum mechanical problems are 

usually addressed using time-dependent perturbation 
theory, adiabatic or sudden approximations as well as 
several numerical techniques. Exact analytical solutions 
to certain problems are highly desirable, especially in 
cases when the approximate methods may be inadequate 
to describe all aspects of the solutions or when numerical 
treatments do not explicitly reveal their mathematical 
properties. 

Burrows and Cohen [16] have developed exact 
solutions for a double-well quasi-harmonic potential 
model with a time-dependent dipole field. Cavalcanti, 
Giacconi, and Soldati [17] have solved the problem of 
decay from a point-like potential well in the presence of 
a uniform field and have indicated that, due to an 
infinitely large number of resonances, there may be 
deviations from the naively expected exponential time- 
dependence of the survival probability. 

In this article a well established method for solving 
time-dependent quantum mechanics problems is used to 
develop exact, analytical, closed-form solutions to the 
infinite wall plus repulsive delta function potential. The 
large-time non-exponential decay for three solutions to 
this system is established and the asymptotic power law 
behavior is explicitly demonstrated to be 3t  for the 
first two and 4t  for the third. It is also proven that this 
result, (or a higher negative power of t), is valid for all 
square-integrable solutions to this system. Furthermore 
numerical solutions are developed for finite-range po- 
tentials and shown to exhibit a rich, non-exponential 
decay behavior, including oscillations. 

2. The Exponential Decay Approximation 

The time-dependent wavefunction, ),( tx , can be 
expressed as a superposition of fixed energy states, 

)(xE , each evolving in time as iEte  , 

,)()(=),( dEexEtx iEt
E




           (1) 

where )( xE  are fixed-energy (stationary) solu- tions 

to the Schrödinger equation for the given Hamil- tonian 
and )( E  is an energy distribution or “spectral 

function”. It is important that this integral converge and 
the resulting wavefunction is square-integrable for the 
given boundary conditions (i.e., it belongs to the related 
Hilbert space). 

If the energy is non-negative and its distribution in the 
above integral has a dual-pole (resonance) structure in 
the complex plane, that is 

,
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where  iE00 = , and 
0<<<0 E , then )(E  is 

strongly peaked at 0E  and essentially only )(
0

xE  
contributes, i.e., to a good approximation 

.
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)(=),(
22

0
00

dE
EE

e
xtx

iEt

E 
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         (3) 

With the substitution  )/(= 0EEu , the integral 

becomes 
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Defining 0>= t  for forward evolution and 
0>/= 0 E  the above expression can be re-written as,  
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where  
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With uu ='  the first integral is  
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Similarly the second integral is  
'
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since the integrand in the first term is odd in u  and 
vanishes as || u . The wavefunction, therefore, 

becomes (dropping the primes on u )  
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At this stage the exponential-integral function  
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y

e
zE
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is useful. Clearly,  
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Upon defining the function  
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its derivative is calculated to be  
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Therefore, 
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Using the well-known expansion,  
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and keeping only the two first terms for large ||  i , 

the wavefunction becomes  














 


1
)(),(

2

0

0 





itiE

E

ei
e

e
xtx  

.)(=
22

0

00

0 

















 


E

e

t

i
e

e
x

tiE
t

tiE

E       (16) 

Thus, the probability density for times large relative to 
1/222

0 )( E  is 
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and it has a term decaying exponentially with constant 
2Γ plus a 2t  term dominating at very large times as 
well as an “intermediate” decaying oscillatory term. In 
this example not only is the rise of exponential decay 
shown to emerge for a spectral function exhibiting a 
resonance (dual-pole) structure but the departure from 
this behavior at large times is clearly elucidated, having a 
power-law dependence. It is noteworthy that the non- 
exponential behavior is related to the cut-off in the 
energy interval. If the energy were to vary over the entire 
real axis then the residue theorem would yield exponen- 
tial decay. The short time behavior is very complicated 
as Equation (9) indicates and it is also not exactly 
exponential. 

3. Infinite Wall and Delta-function Potential 

The method to be employed to address the problem of an 
infinite wall plus a delta-function potential is standard 
and consists of the following steps: a) The time- 
independent solutions to Schrödinger equation are found 
subject to the boundary conditions of the problem. These 
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are stationary solutions (energy eigenfunctions) that span 
the Hilbert space of the given Hamiltonian. b) Since any 
finite or infinite, discrete or continuous linear combina- 
tion of the stationary solutions (basis functions), as long 
as it is square-integrable, is also a solution belonging to 
the given Hilbert space, exact analytical solutions can be 
developed by a superposition of the eigenfunctions with 
energy-dependent spectral functions multiplied by the 
standard oscillatory time-dependence of the stationary 
states. It is, obviously, necessary that the superposition 
integral over the energy converge. Spectral functions for 
which the resulting integrals are tractable are chosen here. 
The convergence as well as the square-integrability 
(normalizability) of the resulting wave functions are 
verified. c) The survival probability, i.e., the probability 
for finding the particle inside the potential well is 
calculated and its properties are studied analytically. 

The problem is defined by the one-dimensional 
repulsive potential,  


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0 xLxV

x
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with 0>L  and 0>0V . The steps outlined above are 

followed. 
a) The solutions to the time-independent Schrödinger 

equation,  
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(with particle mass 1=m , 1= , and 0E  for this 
potential) are,  

(0) ( ) = 0, 0 ( "0"),E x x region          (20) 
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where Ep 2=  and 
1,2,3C  are constants in x. These 

functions obey the boundary conditions  

),(=)( )()( LL II
E

I
E                  (23) 

),(2=)()( )(
0

)()(

LVL
dx

d
L

dx

d I
E

II
E

I
E 




         (24) 

while the boundary conditions at 0=x  are automa- 
tically satisfied. The energy eigenfunctions, 

E , are not 

required to vanish at infinity since time-dependent func- 
tions, ),( tx , produced by Equation (1) for large x are 

acceptable solutions. Selecting C1 as the overall norma- 
lization constant, the boundary conditions at Lx =  
yield  
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rendering 2C  and 
3C  functions of the energy. The 

choice of 2C  or 
3C  as the normalization constant 

would introduce an energy-dependence in 
1C  and 

would effectively amount to different choices of spectral 
functions. 

The linearly independent energy eigenfunctions 
obtained are orthogonal under the inner product  
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with all wavefunctions in the defined Hilbert space 
identically vanishing for 0x . The orthogonality 
relation is  
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EE               (28) 

where Ep 2= , '' 2= Ep  and  
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The Dirac  -function representation used is  
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b) The solution to the time-dependent Schrödinger 
equation, 
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can be written as the energy-convolution integral,   

,)()(=),(
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dEexEtx iEt
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with )(E  a spectral function such that this integral is 

convergent for all x  and all t  and the resulting 
wavefunction is square-integrable. Note that square- 
integrability of ),( tx  also requires E  to be real. The 

overall normalization constant is, then, calculated from 

*

0
( , ) ( , ) = 1.x t x t dx 



             (33) 

The first choice of spectral function to be considered is  
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with K  a positive constant. This offers the advantage 
that the integrals above can be evaluated in closed form 
and the resulting wave function is square-integrable even 
without the presence of the convergence factor that 
appears in Equation (27). The time-dependent solution is, 
then,  
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is the overall normalization factor obtained by means of 
Equation (33). 

c) The probability density ),(),(= * txtx   can 

be calculated for the interior (region I) and the exterior 
(region II) of the potential well. It is presented in Figure 
1 at six times starting from 0=t , in increasing order. 
The initial wavefunction is not entirely localized inside 
the well. As time progresses the wavefunction spreads 
and tunnels through the potential barrier in both 
directions. The interference of the wave that propagates 
outwards through the barrier and the wave that is outside 
creates the observed ripples. Inside the well there are no 
ripples because the wavefunction is forced to be odd in 
x , having a node at 0=x . The centroid of the pro- 
bability density in region II at 0=t  is always located 
at L2 , regardless of the value of K . 

The survival probability is, then, defined to be  
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0
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This yields the closed-form result  
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A plot of the survival probability versus time is given in 
Figure 2. (0)inP  is controlled by K . It decreases as K  

increases, i.e., as the momentum spectrum becomes 
sharper. For example, if 3=L , (0)inP  is 0.9615 for 

0.1=K , 0.5 for 0.5=K , and 0.1468 for 1.2=K . A 
physical interpretation of this effect is that at 0=t  
some decays have already happened. On the other hand 
the decay becomes slower as K  increases. The 
expansion of 

inP  in inverse powers of time includes 

only odd terms with alternating signs. At large times the 
leading term, that has a positive sign, is proportional to 

3t , a clearly non-exponential behavior. 

4. Corrections to the Exponential Decay Law 

The law governing the decay of physical systems is 
typically assumed to be a simple exponential time- 
dependence of the number )(tN  of the systems that 

have not decayed until time t , i.e., ( ) = (0)N t N  
e ( )xp t , where   is the decay constant. As 
mentioned earlier this simple law is consistent with the 
Breit-Wigner curve and Fermi's golden rule if the final 
density of states is energy independent. It refers to the 
survival probability of a given initial energy resonance 
(quasi-stationary state). For the choice of spectral 
function given by Equation (34) the initial state is not a 
resonance state. If a very large number of systems is 
assumed to be initially described by ,0)(x  and a 
system is said to have decayed if the particle has exited 
the potential well, then the number of surviving systems 
is proportional to the probability inP , i.e., 
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The differential decay law is  
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where,   is, in general, dependent on time. Substi- 
tution from Equation (41) gives  
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In the case studied, Equation (40) yields  
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where 24/= tKKLz  . This function is plotted versus 
time in Figure 3. 

The decay parameter   peaks in time. Its maximal 

value, max , is smaller as K  or L  increases but does  
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Figure 1. The probability density for a potential consisting of an infinite wall and a repulsive delta function and using the 
spectral function given by Equation (34) at six times (from the upper panel in the left colume to the lower panel in the right 
column, = 0.0,0.3,0.6,0.9,1.2,1.5t ). In this plot = 3L , 

0 = 1V  and = 1 / 2K  

    
not depend on 0V . The peak and the small time interval 
around it correspond to an almost exponential decay. 
This, however, cannot be directly associated with the 
dominant (lowest energy) resonance that this potential 
accommodates. Resonances in the energy can be iden- 
tified as the maxima of the function [18] 
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plotted in Figure 4 for 3=L  and 1=0V . It can be  
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seen that the resonances are not exactly of the Breit- 
Wigner shape, therefore they do not decay exactly 
exponentially. The dominant (lowest peak energy) 
resonance has a width at half maximum of 0.1  
corresponding to a “life-time” of 10 . In a resonant 
decay the width in energy is expected to be equal to the 
value of the decay constant. Clearly, the width here is 
very different from 1.3max  (Figure 3). The reso- 

nance peak energy and width depend only on the strength 
and the geometry of the potential, while max  also 

depends on the spectral function. The choice )(1 E  used 

 

 

Figure 2. The survival probability for a potential consisting 
of an infinite wall and a repulsive delta function and using 
the spectral function given by Equation (34) versus time 
(solid line). In this plot = 3L , 0 = 1V  and = 1 / 2K . The 

dashed line represents the exponentially decaying function, 
( ) =f t  exp( )a bt , fitted to data points, calculated from 

the actual solution, in the range = 2t  to 4. The 2  per 

degree of freedom is of order 610-  
 

 

Figure 3. The decay parameter   for a potential 
consisting of an infinite wall and a repulsive delta function 
and using a spectral function that is exponential in the 
energy versus time. In this plot = 3L  and = 1 / 2K . 
There is no dependence on 

0V  

 

Figure 4. Energy resonances for the infinite wall plus 
repulsive delta function potential for = 3L  and 0 = 1V  

 
here does not give this resonance a large weight (as 
opposed to Winter’s choice which involves an initial 
state very close to the resonance for large 0V ). The 
lower energy components of the wavefunction indeed 
dominate and tunnel through the barrier at a slow rate 
smearing the resonance effect. Therefore, the limited 
quasi-expo- nential behavior observed in this study is not 
of a resonance nature. 

The expansion of   in inverse powers of time 
includes only odd terms with alternating signs. At large 
times the leading term, that has a positive sign, is 
proportional to 1t , affirming the non-exponential 
behavior. At very large times the change of   with 
time is rather slow. A fit to inP  at large times with an 
exponential curve in a finite time interval (as it is done in 
experiments) gives a very small value of 2  per degree 
of freedom (of order 610 ) so that the distinction 
between inP  at large times and a simple exponential 

decay function is numerically minute (Figure 2). 

5. Generalization 

Exact, closed-form, analytical solutions to the time- 
dependent Schrödinger equation for the potential con- 
sisting of an infinite wall and a repulsive delta function 
have been obtained by the authors of this article for other 
spectral function choices. For example, the choice  
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yields a square-integrable wavefunction. In the absence 
of the delta function at Lx =  this would produce an 
effectively square density pulse at 0=t  located 
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between 0=x  and /2= Lx . Due to the actual boundary 
conditions at Lx =  this spectral function also produces 
a cusp centered at Lx 2= . The survival probability is 
readily expressible in terms of Fresnel sine and cosine 
integrals [19]. Its asymptotic large time behavior is 3t . 

A question that naturally arises at this point is whether 
the asymptotic time behavior can be generalized to other 
possible solutions to this problem. This question was first 
addressed by Khalfin [1] specifically for the case of 
quasi-stationary initial states. Here a detailed answer is 
provided for non-resonance cases employing the general 
requirements of convergence and square-integrability. 
There is a one-to-one correspondence between spectral 
functions and square-integrable wavefunctions. This can 
be seen upon projecting the wavefunction at = 0t  on 
an energy eigenfunction and employing the orthogonality 
condition of Equation (28):  

.,0)()(
)(

1
=)( *

0
dxxx

Ew
E E  

        (47) 

Given an initial wavefunction the corresponding 
spectral function can, in principle, be constructed. 
Schrödinger’s time-dependent equation then produces 
the wavefunction at any later (or earlier) time. 

Convergence of the energy superposition integral in 
region (II) requires that the spectral function be finite at 

0E . In addition, in order for ),( tx  to be 

square-integrable, )(E  must vanish at large energies. 

This requirement can be made precise by inserting 
Equation (32) into Equation (33) and applying Equation 
(28) to obtain 

1.=|)(|)( 2

0
dEEEw 


         (48) 

Inspection of the function )(Ew , given in Equation 

(29), leads to the conclusion that |)(| E  must vanish 

for E  faster than E1/  due to a constant term 
in )(Ew . 

Assuming that )(E  satisfies the convergence condi- 

tions and has no resonance structure, its contribution to 
the energy superposition integral giving ),()( txI , in 

region (I), comes mostly from low energies. Again, this 
situation must be contrasted to the case studied by 
Winter [2]. Then at any x  in region (I) the wave- 
function can be approximated as  

( )( )
1 0

( , ) (0) 2 .
E tmaxI iEtx t C E x e dE     (49) 

The upper limit of the integration is chosen as follows: 
the factor )(exp iEt  oscillates more rapidly as a 

function of the energy as t  increases. At very large 

times these oscillations eventually lead to a vanishing 
contribution to the integral. Therefore, the integral can be 
cut off at a point )(tEmax  whose first order term in the 

expansion in powers of t1/  is tymax/ , where maxy  is 

constant in t . At low energies )(E  is replaced by its 

(finite and non-zero) value at 0=E  and the function 

)2(sin Ex  is replaced by its argument at a given x . 

Then, the variable change Ety =  yields  

.2(0)
0

3/2
1

)( dyeytxC iymaxyI       (50) 

For small maxy  the integral is approximately 

3/22 [(2 / 3) maxy
5/2(2 / 5) ]maxi y . The wavefunction in region 

(I) is to the first non-vanishing order 

,(0)),( 3/2
1

)(  tMxCtxI           (51) 

where M is a constant and the survival probability 

(Equation (39)) decreases with time as 3t . Therefore, 
in order for the wavefunction to be square-integrable, the 
spectral function must be finite at 0E  and decrease 

at large E  faster than E1/ . Then, if 0(0)  , 

necessarily, the survival probability asymptotically 
decreases as 3t . 

This argument can be extended to any finite value of 
x  including region (II) since the coefficients 2C  and 

3C  are at most of (1)O  for small E . Therefore, the 

integral of the probability density over any finite range of 
x  is finite (even without the convergence factor present 

in Equation (27)) and it decreases asymptotically as 3t . 
The constant M  in Equation (51) can be exactly 

evaluated if )(E  decreases at large E  faster than 

E1/ . Then if )(E  is analytic in the fourth quadrant of 

the complex E -plane the contour integral of ( ) sinE  

( 2 )x E e ( )xp iEt along a closed path, consisting of the 

positive real axis from R to 0, the negative imaginary 
axis from 0 to iR  and a quarter-circle,  , of radius R, 
is zero (Figure 5). The integral along   is bounded by 
a constant times kR1/  with |=| ER  and 1>k  and, 

consequently, vanishes in the limit R . Then the 
integration over the real axis gives the same result as that 
over the imaginary axis. The variable change iyE =  

with y real, then, yields  

 ( )
1 0

( , ) = ( )sin 2 .I ytx t iC iy x iy e dy 
    (52) 

For large times only small values of y  contribute to 

the integral. The spectral function is substantially 



Exact Analytical and Numerical Solutions to the Time-Dependent Schrödinger Equation for a 
One-Dimensional Potential Exhibiting Non-Exponential Decay at all Times 

Copyright © 2010 SciRes.                                                                                 JMP 

132 

different from zero only close to the origin and can be 
replaced by (0)  and be pulled out of the integral 

while the sine function can be approximated by its 
argument in a finite range of x . The remaining integral 
is evaluated as a gamma function and gives  

3/2/43
1

)( /2(0)),(  texCtx iI    (53) 

confirming the earlier result. 
The survival probability, 

inP , discussed thus far refers 

to the presence of the particle inside the potential well. 
As has been shown in the previous section the spectral 
function of Equation (34) produces non-zero probability 
density outside the well at 0=t  for 0>K . If the 
“interior” of the well is defined to extend to x  much 
larger than L2  (without moving the delta function from 

Lx = ) then at 0=t  the probability to find the particle  
“inside” can be arbitrarily close to unity. Specifically the 
“extended” survival probability )(4LPin  can be defined 

by extending the integral of Equation (39) to Lx 4= . 
This integral has been evaluated analytically and is 
plotted in Figure 6 as a function of time. As predicted 
and verified by an expansion of )(4LPin  in inverse 
powers of time, its asymptotic time dependence is 3t . 
An interesting feature of this plot is the presence of a 
step-wise behavior which can be attributed to inter- 
ference between waves moving in opposite directions. 

The spectral function  

0 0
3

( ) i 0
( ) =

0 o ,

E V E f E V
E

therwise


  



         (54) 

has also been investigated. This yields an exact, closed 
form result which is square integrable [19]. In this case 

0=(0)3  so that the survival probability does not vary 

as 3t . Rather, it varies as 4t . A variation of the above 
analysis shows this to be the expected behavior. It should 
be clear that the lowest order non-vanishing term in an 
expansion of the spectral function about zero will control 
the behavior. 

6. Numerical Examples 

The discussion in the previous sections indicates that if 
the initial wavefunction is not near a resonance state of 
the given potential, exponential decay of the survival 
probability should not be expected. However, analytical, 
closed form solutions can only be obtained for a small 
number of potentials and initial states. A numerical 
approach is, then, needed to study arbitrary potentials 
and initial functions. To this end the time-dependent 
Schrödinger equation can be solved using the staggered 
leap-frog method on a grid of spatial points of lattice 

constant x  and with an appropriate time-step t . 
The method consists of computing the wavefunction at 
time tt  2  starting with the function at time t  and 
updating it with the Hamiltonian at tt  , as follows: 

)].,()(ˆ[2),(=)2,( ttxxHtitxttx    (55) 

This method being time-symmetric can be made very 
stable for a time step that is much smaller than the 
spacial lattice constant and, on a fine grid, it is also very 
accurate. The spatial derivative in the Hamiltonian, 

)(/1/2=ˆ 22 xVdxdH  , is computed using a spatially 

symmetric formula. The spatial grid is chosen to be 
much larger than the dimensions of the problem and on 
its edges reflecting boundary conditions are applied (i.e., 

 

 

Figure 5. The complex plane contour used to calculate the 
integral over E. 

 

 

Figure 6. The “extended” survival probability for a 
potential consisting of an infinite wall and a repulsive delta 
function and using the spectral function given by Equation 
(34) versus time. In this plot = 3L , 0 = 1V  and = 1 / 2K . 
The step-wise behavior is due to interference of waves 
moving in opposite directions 
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the wavefunction is forced to be 0 there). This ensures 
that no probability density leaks out of the grid but 
requires that the reflected waves not interfere with the 
wavefunction in the region of interest. Therefore, when 
such interference starts (inevitably) occurring at appre- 
ciable levels the computation is stopped. The Schrö- 
dinger equation is self-dispersive and does not obey 
relativistic causality. As a result, very fast moving or 
even superluminal components of the wavefunction can 
occur and reflect on the grid boundaries. The stability of 
the numerical solution is checked by evaluating the norm 
of the wavefunction at regular intervals to ensure it is 
equal to 1. This is achieved with 910   precision. Seve- 
ral cases, such as free gaussian wavepackets (spreading 
with time) or a harmonic oscillator potential with an 
initial wavefunction that is a linear combination of 
eigenstates, have been solved to verify that the method 
accurately reproduces known analytical results. 

The numerical technique is used to study the short- 
time behavior of a wavefunction that is initially set in a 
potential well of finite size and strength and then tunnels 
through its walls. Two simple potential functions are 
used to this end. The first one is a cut harmonic oscillator 
potential, 





 

,o0
2

||i)(
2

1
=)( 0

2
0

therwise

B
xxfxxxV           (56) 

and the second is a cut linear potential,  





 

.o0
2

||i||=)( 00

therwise

B
xxfxxkxV            (57) 

The initial wavefunction is chosen to be a gaussian 
with no initial central momentum. Results for the 
survival probability, inP , defined as the integral of the 

density inside the potential well, for the case of the cut 
harmonic oscillator potential are shown in Figure 7. 
Here cT  indicates the classical period corresponding to 
the infinite harmonic oscillator potential with 1=m . 
There is a distinctive step-wise decay due to oscillations 
of the wavefunction. Each time the probability drops 
sharply a wavepacket is emitted on either side of the well. 
The derivative of inP  with respect to time is also shown 
to illustrate that it approaches 0 periodically. The 
qualitative features of the decay are not sensitive to the 
ratio of the standard deviation of the gaussian to the 
value of B . In the same manner results for the cut 

 

 

Figure 7. Results for a cut harmonic oscillator potential given by Equation (56) ( = 0.0001  and B = 200) with an initially 
gaussian wavepacket and 0 central momentum. Upper: the survival probability versus time exhibiting periodic flat regions; 
Lower: the derivative of the survival probability. The negative peaks occur when wavepackets emitted from the potential. cT  
is the period for the infinite harmonic oscillator potential with spring constant, α. This behavior is similar to that seen with a 
cut linear potential 
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Figure 8. Results for a cut linear potential given by Equation (57) with an initially gaussian wavepacket having 0 central 
momentum. Upper: the survival probability versus time exhibiting periodic flat regions; Lower: the derivative of the survival 
probability. The negative peaks occur when wavepackets are emitted from the potential. This behavior is similar to that seen 
with a cut harmonic oscillator potential 

 

 

Figure 9. Results for a cut harmonic oscillator potential given by Equation (56) ( = 0.0001  and B = 200) with an initially 
gaussian wavepacket that is the ground state of the infinite potential, having non-zero central momentum = 1.0p . Upper: 

the survival probability versus time exhibiting periodic flat regions; Lower: the derivative of the survival probability. The 
negative peaks occur when wavepackets emitted from the potential    
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Figure 10. The probability density for a cut harmonic 
oscillator potential given by Equation (56) ( = 0.0001  and 
B = 200) with an initially gaussian wavepacket that is the 
ground state, 0u , of the infinite potential, having non-zero 
central momentum, = 1.0p , captured at about 2.5 
classical periods of the infinite potential. The classical 
amplitude of oscillations is = 100cA . All quantities are 
expressed in natural units. Wavepackets are periodically 
emitted from the non-zero potential region, propagate 
outwards and spread out. The first emitted packet is 
traveling to the right and at this time frame is centered at 

3500x . The second emitted packet is traveling to the left 
and at this moment is centered at 900x . The interior 
wavefunction is hitting the left wall of the potential well at 
this moment 
 
linear potential are shown in Figure 8 with similar initial 
conditions. Again the decay is non-exponential with a 
step-wise behavior. To illustrate this result further an 
initial gaussian with non-zero central velocity, 0v , is set 
in a cut harmonic oscillator potential. This is accom- 
plished by multiplying the initial gaussian by )(exp ipx , 
where 0=p mv  is the central momentum. The results 
are shown in Figure 9. In this case inP  decays in larger 
steps. The emission of wavepackets is shown in Figure 
10,where the probability density is plotted versus x at a 
particular time. 

7. Conclusions 

Exponential time-dependence has been shown to be only 

an approximation to any real decay process even in the 
case of commonly encountered resonance states. For 
resonances, at large times a 2t dependence emerges 
preceded by some oscillations. The time-dependent 
Schrödinger equation for non-resonance initial states has 
been solved utilizing the eigenfunctions for a given 
Hamiltonian. It has been applied to the case of a potential 
consisting of an infinite wall and a repulsive delta 
function. Exact, analytical, normalized solutions have 
been obtained in closed form. In the case specifically 
exhibited, i.e., the choice spectral function )(1 E  
(Equation (34)), the survival probability, which is exactly 
detailed in Equation (40), exhibits a non-exponential 
behavior at all times. At large times it decays as 3t . To 
ensure square- integrability the spectral function must be 
finite at 0E  and decrease to 0 at large energies 
faster than E1/ . It was shown that this behavior 
pertains to all square-integrable wavefunctions that are 
solutions to this problem for which (0) 0  . Other 
spectral functions result in decays varying as t –n with n 
greater than 3. With the appropriate choice of spectral 
functions which, due to linear independence need not be 
the same for waves propagating in different directions, 
the method could be applied to a variety of potentials. 
Numerical studies of finite potential wells show that 
non-exponential decay prevails at short times and can 
exhibit an interesting step-wise behavior. In conclusion 
quantum mechanics predicts non-exponential decay for 
all systems studied. 
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Abstract 

In this paper, it showed that the orthodox version of quantum mechanics contradicts the idea that conservation laws are 
valid in individual processes of measurement. 

Keywords: Conservation Laws, Orthodox Quantum Mechanics, Measuring Problem 

1. Introduction 

The Schrödinger evolution of a system leads, in some 
circumstances, to coherent superpositions of macros- 
copically distinct states. This is dramatically illustrated in 
Schrödinger’s cat paradox, and constitutes the great puzzle 
of quantum measurements. 

To explain this fact, several hypotheses have been 
proposed. The best known is the projection postulate, an 
ingredient of the so-called orthodox interpretation of 
quantum mechanics (due to von Neumann), which is at 
present almost the only version taught. The projection 
postulate establishes that when a measurement is per- 
formed, the system’s state jumps to an eigenstate of the 
operator representing the dynamical variable measured, 
and the pointer of the measuring device is led to a definite 
position; i.e., it breaks down the coherent superposition of 
macroscopically distinct states. 

This postulate has been criticized on several grounds:  
– it introduces a subjective element into the theory [1,2],  

– it conflicts with the Schrödinger equation [2,3], and 
– it implies a kind of action-at-a-distance [2,4]. 

The traditionally opposed approach faces the conceptual 
difficulties of the measurement problem by assuming that 
the state function |S is no more than a tool to calculate 
probabilities. Differing from the orthodox version, in this 
view |S is not an attribute of an individual system S but 
of an ensemble; hence a process state reduction is not 
required [1]. Nevertheless, many physicists think that |S 
refers to an individual system, so the ensemble inter- 
pretation of |S that allows rejection of the projection 
postulate is, paradoxically, the main reason that this 
approach is frequently discarded. 

In order to find a solution to the measuring problem 
keeping as valid the individual interpretation of |S, other 
theories close to, but different from, quantum mechanics 
have been proposed. In these theories, the Schrödinger 
equation is modified in a way that leads to spontaneous 
collapses. This is the case of those developed by Ghiradi, 
Rimini and Weber [5], Diosi [6], and Joos and Zeh [7]. 

Ballentine [8] has demonstrated that these theories violate 
energy conservation and are incompatible with the ex- 
istence of stationary states. 

Several authors [9-13] have studied the role of conser-
vation laws in quantum measurements. It has been shown 
that the presence of an additive conserved quantity im-
poses restrictions on the measurement of dynamical vari-
ables incompatible with this quantity. The main object of 
the present paper is to point out an even deeper conflict 
between conservation laws and the orthodox version of 
quantum mechanics: if the individual interpretation of |S 
and the projection postulate are taken as valid, then con-
servation laws cannot be satisfied in measurement proc-
esses, except in cases where the initial state of S is an ei-
genstate of the operator representing the quantity to be 
measured. 

2. Conservation Laws in Processes Involving  
an Individual System 

In the framework of classical physics, in principle, the 
application and test of conservation laws does not present 
any difficulty. This is mainly due to the fact that physical 
quantities have definite values. So if the numerical value a 
of a physical quantity A does not change during the whole 
process, we can assert that A is conserved in this process. 
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The same is valid in the statistical version of quantum 
mechanics [1]. 

On the contrary, in the framework of orthodox quantum 
mechanics, in general, dynamical variables (or physical 
quantities) are not sharp. “A popular working rule of 
pragmatic quantum mechanics says that an observable has 
no value before a measurement.” [14] But nobody has 
stated, to our knowledge, in which way a conservation law 
should be applied or tested in those cases where the 
dynamical variable A does not have a definite value. So if 
the orthodox interpretation is adopted, it is not evident in 
which way it could be decided whether A is conserved or 
not. This means that in this version of quantum mechanics, 
a priori it does not make any sense to say that a dynamical 
variable which is not sharp, is conserved, even if the 
process follows the Schrödinger equation.  

This radical conclusion can be avoided in the following 
way: If the operator AS represents the dynamical variable 
AS referred to the individual system S and HS is its 
Hamiltonian, in processes that are ruled by the Schrödinger 
equation, the conditions 

AS/t = 0                  (1) 

and 

[AS, HS] = 0                 (2) 

ensure that 

AS = S|AS|S                (3) 

remains a constant in time for every state |S of S.  
Messiah postulates that the mean value of the 

dynamical variable AS is AS [15]. Taking into account 
this postulate we shall claim that if AS is conserved, then 
AS cannot change with time for every state |S of S. 
Hence, in those processes that are governed by the 
Schrödinger equation, the statement “AS is conserved” can 
be given a meaning, whether AS is sharp or not. 

On one hand, let us stress that a necessary condition for 
the dynamical variable AS to be conserved is that AS be a 
constant (observe, nevertheless, that this does not imply 
that AS takes on the value AS). On the other hand, it 
should be emphasised that in the framework of the version 
of quantum mechanics that we are analysing, both |S 
and AS refer to the individual system S. As a consequence, 
the quantity AS given by (3) cannot concern something 
different from this individual system. This quantity is 
called expectation value by some authors and mean value 
by other authors. Since some people do not conceive that a 
mean value can be related to an individual system, let us 
quote some orthodox authors saying that AS refers to an 
individual system.  

a) According to von Neumann, the main architect of 
orthodox quantum mechanics, “everything which can be 
said about the state of the system must be derived from its 
wave function . What pronouncements can now be made 

regarding a system which is in the state ?... For the 
expectation value of R in the state , we have (R, ) [= 
|R|] (emphases added).” [16] 

b) In Messiah’s words, “the mean value of the 
dynamical variable A when the system is in the dynamical 
state defined by the [normalised] function  is A = , 
A (emphasis added).” [15]  

c) Merzbacher calls expectation value the quantity X = 
|X|. This author points out that “in quantum mechanics 
the term ‘expectation value’ is preferred when it is 
desirable to emphasise... the fact that the behaviour of a 
single particle is involved rather than that of an ensemble 
of particles (emphasis added).” [17] 

d) Cohen-Tannoudji et al. use expressions like “the 
mean value X(t) of the position of the particle at time 
t...” and “the mean value of the energy of the particle in 
the state |(t)... (emphases added).” [18] 

The precedent list of authors considering that the ex-
pectation (or mean) value refers to an individual system is 
not exhaustive. But it suffices, we think, to show that in 
general authors adopting the individual interpretation of 
|S assert that AS = S|AS|S refers also to the indi-
vidual system S. In the following we are going to use the 
term mean value for individual systems, and the term av-
erage when some set or ensemble is involved. 

3. Conservation Laws in Processes of  
Measurement (Case of a Discrete  
Spectrum) 

Now we shall address the problem of the validity of 
conservation laws when a measurement of AS is performed. 
In this section we shall deal with the discrete case and, in 
the next one, with the continuous case. Let ak (k = 1, 2,…) 
be an eigenvalue of AS, g its degree of degeneracy and 

i
k| a   (i = 1. 2,… g) an eigenvector corresponding to the 

eigenvalue ak. We shall assume that |m0 represents the 

initial state of a measuring device M of AS, and i
k| ψ   the 

orthonormal states of S+M when the measurement process 
is over. In the ideal measurement scheme, the transition 

i i
k 0 k| a | m | ψ                    (4) 

has a probability of one. This scheme is supposed to be 
valid in cases where the measured dynamical variable is 
compatible with every conserved quantity referred to S+M 
[9-13]. 

Let A be the operator representing a dynamical variable 
A referred to S+M, and H be its Hamiltonian. We can then 
write 

H = HS + HM + Hint               (5) 

where HM refers to M, and Hint is due to the interaction 
between S and M. We assume that the conditions  
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A/t = 0                     (6) 

and 

[A, H] = 0                    (7) 

are fulfilled.  
To ensure that measurements of AS can be performed 

according to the ideal scheme, we suppose that AS 
commutes with every operator representing another 
conserved quantity referred to S+M; and, since the 
transition (4) has a probability of one, it can be assumed 
that it is a result of the Schrödinger evolution. 

If at t0 (when the interaction between S and M starts) it 
is possible to write 

A = AS + AM                   (8) 

(where AM refers to M), we have 
i i i
k 0 k S k 0 M 0 k 0 M 0A (t ) a A a m A m a m A m           

(9) 

And, since at tf (when the interaction between S and M is 
over) 

i i i
k f k kA (t ) ψ A ψ                  (10) 

the validity of (6) and (7) implies that i
k fA (t )    

i
k 0A (t )  , and hence 

i i
k k k 0 M 0ψ A ψ a m A m               (11) 

for every i. As i i
k kψ A ψ   does not depend on i, it can 

be written  

Ak(tf) = i
kA  (tf) = ak + m0|AM|m0      (12) 

This relation must necessarily be fulfilled in the ideal 
measurement scheme. As a consequence, it can be said 
that in those cases where the initial state of S is an 
eigenstate of the operator AS representing the dynamical 
variable AS to be measured, the corresponding con- 
servation law is valid. This result can also be seen as a 
natural consequence of the hypothesis that the process 
described by (4) is governed by the Schrödinger equation. 

Now, if the initial state of S is  

i i
s r rr,i

t c a  0（ ）                 (13) 

(where at least two coefficients cr
i and cr'

i’ with r  r’ are 
non-null) and the Schrödinger equation rules the 
measurement process, then the Hamiltonian H, referred to 
S+M, induces the evolution  

i i
r r 0r,i

c a m  i i
r rr,i

c ψ           (14) 

Making  

A(t0) = (S(t0)| m0|) A (|S(t0) |m0)     (15) 

and  

, ,

,
i* i i i

f r r rr i r r
A c ψ | c | ψ  ， ’，i’

(t )=（ ）A( )   (16) 

the validity of (6) and (7) allow us to ensure that A(t0) = 
A(tf). Nevertheless, the linear superposition on the r.h. of 
(14), mentioned in Section 1, constitutes the great puzzle 
of quantum measurements.  

On the contrary, the projection postulate states that in 
measurement processes coherent superpositions break 
down. According to this postulate, the evolution of S+M is 
not given by (14) and the transition 

i i i i
r r 0 k kr,i i

c a m c ψ               (17) 

has probability 2i
ki

c to happen. In this last case,  

2i
0 k r 0 M 0i

A (t ) c a m A m          (18) 

and, as stated in (12),  

Ak(tf) = ak + m0|AM|m0            (19) 

As a consequence, it results 

A(t0)  Ak(tf)                 (20) 

for every k, even though conditions (6) and (7) are fulfilled.  
It is worth noticing that inequalities (20) are obtained 

under the assumptions that the individual interpretation of 
the state vector and the projection postulate are valid. In 
this case the condition that A be a constant, a necessary 
condition for A to be conserved, is not satisfied. We are 
thus forced to conclude that if the initial state of S is not an 
eigenvector of AS, the dynamical variable A is not 
conserved in processes of measurement of AS. In other 
articles we have given examples of processes of measure- 
ment of the type analyzed in this section [19-22]. 

A similar conclusion resulting from a different analysis 
has been obtained by Pearle [23]. He says that “it should 
first be noted that quantum theory itself, with the reduction 
postulate indiscriminately applied, does not necessarily 
satisfy the conservation laws...” In his view, “this is a 
serious problem for quantum theory with a reduction 
postulate.” 

We have said that A(t0) =  r,i
2i

rc  ar + m0|AM|m0. 

Now we are going to calculate the average of Ak(tf) 
when the process of measurement of AS is repeated N 
times. Let fk be the frequency corresponding to the 
possible results ak (k = 1, 2,…) and to the mean value 
Ak(tf). If the process is repeated N times, the resulting 
average is 

Ā = k fk Ak(tf)               (21) 

and, taking into account (19), 

Ā = k fk ak + m0|AM|m0.           (22) 

Now, if N is big enough, we can assert that fk ≈
2i

ki
c . 

As a consequence, we obtain 
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2i
k k 0 M 0k i

A c a m A m  ，
           (23) 

2i
0 k k 0 M 0k i

A (t ) c a m A m  ，
        (24) 

and 

Ā ≈ A(t0)                  (25) 

So we can say that conservation laws still have a statistical 
sense. 

4. Conservation Laws in Processes of  
Measurement (Case of a Continuous  
Spectrum) 

Let α be an eigenvalue included in the continuous part of 
the spectrum of AS; we shall assume that α can take any 
value in the interval (0, ∞). If the ket |α is 

/2
/2 dac a a 

  
  （ ）              (26) 

where δ is a small interval in the α semi-axis (if ∆α is the 
error in the measurement of α, the condition δ < ∆α should 
be fulfilled), we shall say that |α is a “quasi-eigenstate” of 
AS corresponding to the eigenvalue α. We shall call |m0 
the ket that represents the initial state of a measuring 
device M of AS, and |(α) the orthonormal states of S+M 
when the process of measurement is over. If the initial 
state of S is |α, according to the ideal measurement 
scheme, the transition 

|α |m0  |(α)                (27) 

has a probability of one. 
Let A be the operator representing a dynamical variable 

A referred to S+M, and H be its Hamiltonian. We can then 
write 

H = HS + HM + Hint              (28) 

where HM refers to M, and Hint is due to the interaction 
between S and M. As previously, we assume that the 
conditions (6) and (7) are fulfilled.  

If at t0 (when the interaction between S and M starts) it 
is possible to write 

A = AS + AM                 (29) 

(where AM refers to M), we have 

Aα(t0) = α|AS|α + m0|AM|m0        (30) 

And since at tf (when the interaction between S and M is 
over) 

Aα(tf) = (α)|A|(α)             (31) 

the validity of (6) and (7) implies that Aα(tf) = Aα(t0), 
and hence 

Aα(tf) = α|AS|α + m0|AM|m0         (32) 

This relation must necessarily be fulfilled in the ideal 
measurement scheme. As a consequence, it can be said 
that in cases where the initial state of S is a “quasi- 

eigenstate” of AS, the corresponding conservation law is 
valid. 

Now, if the initial state of S is  

s 0t dac a a  0（ ） （ ）              (33) 

where c(a)  0 outside the interval (α-δ/2, α+δ/2), and the 
Schrödinger equation rules the measurement process, then 
the Hamiltonian H induces the evolution  

0 0 0dac a a m dac a ψ a  （ ） （ ） （ ）  

/2 /2
0 /2dac a ψ a dac a ψ a   

 
 

  （ ） （ ） （ ） （ ）  

/2dac a ψ a 

 （ ） （ ）                    (34) 

As a consequence, making 

A(t0) = (S(t0)| m0|) A (|S(t0) |m0)     (35) 

and 

f 0 dac* a ]A ψ a （) [ ）= （( ）t 0 da c a ψ a ] ’ （ ’） （ ’）  

       (36) 
the validity of (6) and (7) allow us to ensure that A(t0) = 
A(tf). But, as it happened in the case of the discrete 
spectrum, we obtain a linear superposition in the r.h. of 
(34), previously mentioned, and that constitutes the great 
puzzle of quantum measurements. 

On the contrary, the projection postulate states that in 
measurement processes coherent superpositions break 
down. According to this postulate, the evolution of S+M is 
not given by (34), and the transition 

/2
0 0 /2dac a a m dac a ψ a 

 
 

 （ ） （ ） （ ） 0
  

(37) 

has a probability close to |c(α)|2 δ to happen. So, since 

A(t0) = 0
 da |c(a)|2 a + m0|AM|m0     (38) 

and  

Aα(tf) = /2
/2

 
 

 da |c(a)|2 a + m0|AM|m0 

= α + m0|AM|m0                 (39) 
it results 

A(t0)  Aα(tf)                (40) 

for every α, even though conditions (6) and (7) are fulfilled. 
It is worth noticing that inequalities (20) and (40) are 

obtained under the assumptions that the individual 
interpretation of the state vector and the projection 
postulate are valid. In this case the condition that A be 
a constant, a necessary condition for A to be conserved, 
is not satisfied. We are thus forced to conclude that if the 
initial state of S is not an eigenvector of AS (in the 
discrete case) or a “quasi-eigenvector” of AS (in the 
continuous case), the dynamical variable A is not 
conserved in measurement processes of AS. The proof 
that also in this last case conservation laws still have a 
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statistical sense is straightforward. 

5. Concluding Remarks 

We have seen that during Schrödinger evolutions, the 
validity of (6) and (7) ensures that the expectation value 
A referred to the individual system S and its measurement 
device M remains constant in time. But if the rule governing 
the process is replaced with a law different from 
Schrödinger equation, the validity of conservation laws 
cannot be guaranteed a priori [19-24]. Ballentine points 
out that some theories that modify the Schrödinger 
equation in order to include spontaneous state reductions 
lead to the non-conservation of the energy [8]. Our study 
shows that projections induced by measurements, as they 
are considered in the framework of orthodox quantum 
mechanics, conflict with the conservation laws.  

However, the results of these two analyses have a 
difference worth noticing. In the theories Ballentine refers 
to, energy is continuously gained, although its magnitude 
is too small to be detected [8]. In collapses occurring in 
the framework of orthodox quantum mechanics, the 
change A(tf) - A(t0) is not necessarily small but, when 
the process of measurement of AS is repeated many times, 
the average of A(tf) is close to A(t0). This is why we 
claim that in measurement processes, conservation laws 
still have a statistical sense. 

In an approach to quantum mechanics previously 
formulated we have included, as an essential ingredient, a 
postulate that ensures the statistical sense of conservation 
laws in every process involving projections [25,26]. In this 
approach no reference to the subject or to measurement 
devices is made. We there assume that in nature two kinds 
of spontaneous processes occur: those ruled by the 
Schrödinger equation, which is a deterministic equation, 
and those ruled by the rules of probability, where 
projections happen. 

Let us conclude by pointing out that, in our view, there 
is nothing sacred about conservation laws. Like every oth-
er scientific law, they could be false. The same is true of 
the orthodox interpretation of quantum mechanics. The 
intent of our contribution is to show that there is a contra-
diction between these two ideas, both of which are 
adopted, perhaps, by the majority of physicists. 
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ABSTRACT 

Adiabatic collapse solutions of uniform density sphere have been discussed by so many authors. An analysis of these 
solutions has been done by considering the baryonic conservation law and the no heat transfer condition. We have ex-
amined whether the pressure can remain finite or not during the collapse. 

Keywords: Genral Relativity, Astrophysics, Collapse 

1. Introduction 

Radial adiabatic motion of perfect fluid spheres of uni-
form density, E = E(t), but non-uniform pressure were 
discussed by Bonnor and Faulkes [1], Thompson and 
Whitrow [2,3] and Bondi [4] under various assumed re-
lationships between central pressure and density. These 
authors discussed the problem of collapse and bounce 
under two assumptions: first, that the motion is isotropic 
or shear-free; and second, that the density is uniform. But 
Mishra and Shrivastava [5] showed that the condition of 
uniform density and regularity at the centre necessarily 
lead to the isotropic motion.  

The theme of this paper is rather different from that of 
the other authors. We have examined whether the pres-
sure can remain finite or not. We have considered the 
no-heat transfers (NHT) conditions (explained in the text) 
and baryon conservation law during the collapse. It is 
shown that if the fluid is isentropic or (and) the surface 
temperature remains constant during the collapse the 
pressure can not remain finite (it vanishes). On the other 
hand if the fluid is neither isentropic nor the surface 
temperature remains constant during the collapse, then 
the results obtained by earlier authors (Bondi, 1969) are 
found to be inconsistent with the baryonic conservation 
and NHT condition. 

2. The Metric and Uniform Density Sphere 

Vanishing shear implies that one can simultaneously  

 
introduce isotropic and co-moving coordinates 

2 2 2 2 2 2( + )ds y dt R dr r d             (1) 

2 2 2 2( , ), ( , ), siny y r t R R r t d d d        

It is assumed that the fluid’s viscosity vanishes, and 
the adiabatic flow condition makes T10 component of 
energy momentum tensor vanish in the co-moving coor-
dinates. The energy momentum tensor can thus be writ-
ten as 

( )T P E U U Pg                (2) 

where E and P are energy density and pressure, respec-
tively and the four-velocity, 

( ,0,0,0)U y                  (3) 

The hydrodynamic equations,  

; 0T
   and ; 0U T

   , and the equation of baryon 

conservation, ;( ) 0nU
   (where n = number density) 

give us (Misner and Sharp) [6], (Demianski) [7]  

( / ) / ( )y y P P E                   (4) 

and 

, 0U s
   or 0s   and 0s           (5) 

( )  partial differentiation w.r.t. r; ; ( )r   partial dif-

ferentiation w. r. t. t. 
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3. The Boundary Condition and 
Thermodynamic Relation 

For the exterior solution some authors have chosen 
Schwarzschild vacuum solution while others have cho-
sen Vaidya’s radiative solutions in the exterior. In the 
later case the heat flow is given by Kramer [8] 

2( / )( )q K yR Ty    

Here, K is thermal conductivity. But in the cases 
where the exterior solution is chosen as Schwarzschild 
solution we get NHT conditions (q = 0) given by either 

( ) 0,Ty    that is, b bTy T y  where ( )b bT T r r  (6) 

Or 0T   (for cold stars)           (7) 

Or 0K                    (8) 

The basic law of thermodynamic change is  

(1/ )Tds dU Pd n               (9) 

nTds dE hdn   and ( / )nE s nT      (10) 

where, U  specific internal energy, s  specific en-
tropy and ( ) /h P E n    specific enthalpy. The units 

of n are chosen so that, 0, ,P E n   and 1h  . 

Writing Bondi’s results (1969) in the present notations, 
one gets 

3 ( )nR B r                     (11) 

2/ (1 )R r    and 3 ( )nR B r           (12) 

/y FR R                     (13) 

2 2/ ( / ) / (1 )R R r r                 (14) 

/ ( ) /
3b

E R
y y P E E

E R
   



         (15) 

And 
2 2

2 2

( )
/

(1 )[ ( )]
b

b

r r
P E

r r


   




  



        (16) 

( ), ( ), ( ), ( ),b b bt t F F t y y r r r r          at the 

boundary. 
Since = ( )E E t  or 0E  , we write [using Equation 

(10)] 
2( / ) / ( )n n Ts P E                (17) 

( / ) [using Equation (15)]bTy Ey s          (18) 

4. Collapse of Uniform Density Sphere 

The collapse of uniform density sphere is discussed un-
der various physical conditions. [We have assumed that 

( ) any arbitrary function of A t t  and B(r)   any arbi-

trary function of r] 

4(a) using NHT condition (6a): 
Using Equation (6) in (18) one gets, 

2/ ( / )bn n T E s    or 

( / ) 1 ( )b bE n T s s               (19) 

( )b bs s r r  . 

It is obvious from Equation (19) that the entropy of 
an adiabatic uniform density sphere is minimum at the 
boundary. 

4(a) (i): Isentropic case: Let the entropy be constant 
throughout the sphere, that is, s = constant = sb. Equation 
(19) gives 

E n                   (20) 

[Using Equation (11)]  

3 ( )ER B r  ( ) ( )R A t B r             (21) 

/ ( )R R A t  

[From Equation (13)] 
y =A(t) or 0y              (22) 

[From Equation (4)]  

0,P   or P=P(t)             (23) 

Since, ( ) 0 ( )bP r r P t   , the pressure vanishes 

within the sphere. Hence, an isentropic uniform sphere 
undergoes a collapse with vanishing pressure only. 

4(a) (ii) Non-isentropic case with constant surface 
temperatures: We assume that the surface temperature 
remains constant during the collapse. This is very likely 
because there is no energy loss to the surrounding from 
the surface of the sphere. With Tb = constant during the 
collapse one gets 

/ [1 ( )] ( ) ( )b bn E T s s A t B r            (24) 

[From Equation (11)] 

( ) ( )R A r B r                  (25) 

Arguments similar to those in 4(i) show that the pres-
sure vanishes inside the sphere. 

Hence, an adiabatic uniform density sphere with con-
stant surface temperature collapses with vanishing pres-
sure. 

4(a) (iii) General case: Neither the fluid is isentropic 
nor the temperature of the surface remains constant. In 
this case 

[1 ( )]b bE n T s s    

On differentiating with respect to time we obtain 
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( )

1 ( )
b b

b b

T s sE n

E n T s s


 

 

 

            (26) 

For an adiabatic motion the total mass energy is a con-
stant of motion, that is, 

3(4 / 3) constantbM ER   or / 3 /bE E R R    (27) 

Using Equations (11), (14), (26) and (27) we get 
0 22

2 2

2 2

2 2

2 2

2 2 2 2 2

( ) 33

1 ( ) 1 1

3 ( )

(1 )(1 )

3 ( )
                     

1 ( )

b b b

b b b

b

b

b

b b

T s s rr

T s s r r

r r

r r

r r

r r r r


 


 


 


 

   




 




  







      (28) 

No choice of functions ( ),s s r  ( )t   and Tb = 

( )bT t  can satisfy this equation. The solutions obtained 

by various authors for collapsing/expanding uniform 
density [with Schwarzschild exterior solutions] are in-
consistent with the conservation law and NHT. 

4(a) (iv) Explanation of inconsistency: Equation (10) 
shows that ( / ) ,nE s nT   but from Equation (19) we 

see that ( / )n bE s nT   . Therefore, bnT nT  or T = 

bT . Since, b bTy T y  [from Equation (6)] we get y = 

( )by A t . 

Hence, 0y   or [from Equation(4)] 0P   P   

( ) 0bP r r   

The pressure vanishes throughout the sphere. 

4(b) using NHT condition (7): 
When T = 0 Equation (14) gives 0n   or ( )n n t  or, 

(t) ( )R A B r   [from Equation (9)]. As shown in 4(a) (i) 

the pressure vanishes inside the sphere. 

4(c) using NHT condition (8): 
When thermal conductivity K = 0, it seems that all the 
relations of Bondi’s paper are consistent. However, let us 
analyse this condition in some details. From Equation 
(10) we can see that  

/ / ( )n n E P E    and / / ( ) ( / )n n E P E T h s      

(29) 

And for ( )E E t , ( / ) /T h s n n             (30) 

When K = 0, no heat enters or leaves any layer within 
the structure during the collapse that is we can consider 
temperature of each layer to be independent of time or T 
= T (r). 

Eliminating n from the twin Equations (29) we obtain 
(Nariai ) [9] 

0
T E P P E

s
h P E

        

  

 for ( )
E P

E E T
P E


 





 (31) 

or 

( / ) ( / )nT T h P E P s               (32) 

It can be seen from Equation (16), that the right hand 
side of Equation (32) can not be made zero in any case. 

Now, we consider a hypothetical case that during the 
collapse, though K = 0, somehow the temperature of 
each layer changes with time making T = T (r, t), but at 
the surface the temperature will not change with time, 

that is, 0bT  . It can be seen that 

[ ( / ) ] br rbET E P s P T              (33) 

The right hand side of equation can not be made zero. 

5. Conclusions 

After studying adiabatic collapse of a uniform density 
sphere using baryon conservation law and NHT condi-
tion it is concluded that, a uniform density sphere [with 
Schwarzschild geometry in the exterior] always collapses 
adiabatically with vanishing pressure. Collapse with pre- 
ssure will involve violation of either the baryonic con-
servation law or the no-heat flow condition. Or we can 
say that when the exterior geometry is defined by Sch- 
warzschild vacuum solution then the solution given by 
Oppenheimer and Snyder [10] is the only valid solution 
for the collapse of a uniform density sphere. 
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Abstract 

How many dimensions are there in the universe? Currently, there is confusion about the number of dimensions in the 
universe. Empirical relations about the number of dimensions in theoretical physics with the concept of common space- 
time 4 dimensions and unshared dimensions are described in this report. 

Keywords: Kaluza-Klein, Superstring, Super gravity, Nambu String, Unshared Dimensions 

1. Introduction 

Einstein discovered space-time 4 dimensions. In order to 
complete the theory of everything (TOE), the numbers of 
dimensions have been increased. Currently, there is con-
fusion about the number of dimensions in the universe. 
There is a simple question, “How many dimensions are 
there in the universe?” 

The concept of “unshared dimensions” is very suitable 
solution. Unshared dimensions belong to each particle 
and the numbers of unshared dimensions are different 
between the different kinds of particles. 

This paper presents empirical relations about the 
number of dimensions in theoretical physics with the 
concept of common space-time 4 dimensions and un-
shared dimensions. 

2. Empirical Relations about the Number of 
Dimensions in Theoretical Physics 

2.1 The Concept of Unshared Dimension 

There are two kinds of dimensions. One is common space- 
time 4 dimensions and the other is unshared dimensions 
which belong to each particle. The common space-time 4 
dimensions are entirely same dimensions which Einstein 
discovered. 

Unshared dimensions are something internal dimen-
sions in each particle. The concept of unshared dimen-
sions is discovered empirically. So, the mathematical 
explanation of “unshared dimensions” is the next stage 
argument. It is important that even the space has one 

unshared dimension. So, the definition of the space is 
different from the common space-time 4 dimensions. 

2.2 Empirical Relations about the Number of 
Dimensions in Theoretical Physics 

The number of unshared dimensions can be expressed 
empirically as:  

Unshared dimension = 4 × (4 – N + 1)/N       (1) 
N is the number related with the symmetry. Calculated 

unshared dimensions are shown in Table 1. Empirical 
relations about the number of dimensions in theoretical 
physics are shown in Table 2.  

When N = 3, then unshared dimensions are 8/3. In this 
case, explaining for quarks is difficult. 8 and 1/3 is re-
lated with a quark, because the number of gluon is 8 and 
a quark must exist with three particles. 

Simple evidences supported unshared dimensions can 
be shown in the next section. 

3. The Evidence of Unshared Dimensions 

3.1 Empirical Relations between the Masses of 
Leptons 

If leptons have 6 unshared dimensions, the mass of lep-
tons are expected like this. 

76

7
x

k
dxxkM               (2) 

Here, M, k and x are the mass of lepton, constant co-
efficient and the value of unshared dimensions. 
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1









m

M
y                      (3) 

Here, m and y are the mass of electron and the seventh 
power root of ratio with electron. The calculation results 
are shown in Table 3.The square of correlation coeffi-
cient between the generation and the seventh power root 
of mass ratio is 0.9996 shown in Figure 1. It is impossi-
ble that this result is only coincidence. The expected 
mass of the forth lepton and the fifth lepton are 14.3 GeV 
and 70.5 GeV respectively. The peak of 14.3 eV was 
reported [1] and there remains the possibility of the forth 
lepton. 

The expected leptons which have larger generation 

number should be very unstable, since they cannot be 
discovered still yet. But there are many experimental 
reports about the reactions around the expected energy. 
The reports published in the internet are much more than 
those around the unexpected energy. 

3.2 The Mass of Weak Boson 

Weak boson is related with electrons and neutrino. Then, 
the number of unshared dimension is 26 (= 10 + 20 – 4). 
The 27th power root of ratio between Weak boson and 
electron are shown in Table 4. The result is near the 
generation number 2. If the generation number is 3, the 
mass of Weak boson is 4 × 106 TeV and it is impossible 
to observe. 

 

 

Figure 1. Empirical Relation about the mass of lepton 

 
Table 1. Calculated unshared dimensions 

N 4 3 2 1 (0) 
particle The space quark lepton neutrino consciousness 

Unshared dimension 1 8/3 6 16 infinite 

 
Table 2. Empirical relations about the number of dimensions in theoretical physics 

Theory common The space quark lepton neutrino total 
Kaluza-Klein 4 1 - - - 5 
Superstring 

(~1980s) 
4 - - 6 - 10 

Super gravity 4 1 - 6 - 11 
Nambu string 4 - - 6 16 26 

Superstring (~2000s) 4 1 - 6 16 27 

 
Table 3. The seventh power root 

 Generation mass (MeV) Mass ratio The seventh power root of mass ratio 
electron 1 0.51099906 1 1 
Muon 2 105.6 206.6540005 2.141653053 
Tauon 3 1776.99 3477.481935 3.20549411 

4th 4 14371.76031 28124.82729 4.321 
5th 5 70548.8140 138060.5555 5.424 
6th 6 257713 504331 6.526 
7th 7 768658 1504226 7.629 
8th 8 1977637 3870138 8.732 
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Table 4. The 27th power root 

 Generation mass (MeV) Mass ratio The 27th power root of mass ratio 
electron 1 0.51099906 1 1 
W-boson 2 80398 157334.9274 2.021601712 
Z-boson 2 91187.6 178449.6433 2.036632582 

 
 

4. Summary 

The concept of common space-time 4 dimensions and 
unshared dimensions are discovered empirically. Simple 
evidences supported unshared dimensions can be shown 
from the mass of particles. It is very useful concept to 
answer for the question, “How many dimensions are 

there in the universe?” 
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