

Intelligent Information Management, 2010, 2, 343-390
Published Online June 2010 in SciRes (http://www.SciRP.org/journal/iim/)

Copyright © 2010 SciRes. IIM

TABLE OF CONTENTS

Volume 2 Number 6 June 2010

Status of Developers’ Testing Process

G. Jeppesen, M. Kajko-Mattsson, J. Murphy……………………………………………………………………………………343

Intelligent Optimization Methods for High-Dimensional Data Classification for Support
Vector Machines

S. Ding, L. Chen………………………………………………………………………………………………………..…………354

Steady-State Queue Length Analysis of a Batch Arrival Queue under N-Policy with Single
Vacation and Setup Times

Z. Yu, M. W. Li, Y. K. Ma………………………………………………………………………………………………………365

Study on Delaunay Triangulation with the Islets Constraints

D. Wei, X. H. Liu……375

The Line Clipping Algorithm Basing on Affine Transformation

W. J. Huang…….…………380

Experiments with Two New Boosting Algorithms

X. W. Sun, H. B. Zhou……………………….……………………………………………………………………………………386

Intelligent Information Management (IIM)

Journal Information

SUBSCRIPTIONS

The Intelligent Information Management (Online at Scientific Research Publishing, www.SciRP.org) is published monthly by

Scientific Research Publishing, Inc., USA.

Subscription rates:
Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: iim@scirp.org

Intelligent Information Management, 2010, 2, 343-353
doi:10.4236/iim.2010.26042 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

343

Status of Developers’ Testing Process

Gudrun Jeppesen1, Mira Kajko-Mattsson2, Jason Murphy3
1Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden

2School of Information and Communication Technology, Royal Institute of Technology, Stockholm, Sweden
3Nomadic Software, Nomadic City, Sweden

E-mail: gudrun@dsv.su.se, mekm2@kth.se, jasonleemurphy@hotmail.com
Received March 12, 2010; revised April 15, 2010; accepted May 17, 2010

Abstract

Even if recent methodologies bring more recognition to developers’ testing process, we still have little in-
sight into its status within the industry. In this paper, we study the status of developers’ testing process at
Nomadic Software. Our results show that the process is not uniformly executed. The company suffers from
lack of control over the methods used, lack of formal communication on requirements, lack of static testing
practice, and lack of testing process documentation.

Keywords: Dynamic Testing, Static Testing, Peer Reviews, Inspections, Debugging, Test Cases, Testing

Techniques

1. Introduction

Despite its importance, the overall testing process has for
many years been neglected both within research and in-
dustry [1-3]. Most of the effort has been spent on creat-
ing testing processes on the system level. Hence, we
have fairly good understanding of system testing and its
industrial status. Regarding the other levels, such as unit
(developer level testing), integration and acceptance
testing, little, if almost nothing, has been done both
within the academia and industry.

Recently, developers’, integration and acceptance tests
have received more recognition thanks to the agile
methods [4-7]. Agile methods treat testing as an integral
part of their processes. In these methods, no modification
or refactoring of code is complete until 100% of unit
tests have run successfully, no story is complete until all
its acceptance tests have passed successfully, and addi-
tions and modifications to the code are integrated into the
system on at least a daily basis. Despite this, we still
have little insight into the status of these three types of
tests. This insight is pivotal for providing feedback for
process improvement and for making the overall devel-
opment process more cost-effective [8,9].

In this paper, we study developers’ testing process at
Nomadic Software. Our goal is to establish its status
within the company and identify areas for potential im-
provements. The study is based on a testing model [10],
developed for a traditional heavyweight development
context.

The remainder of this paper is as follows. Section 2
presents our research method and the organization stud-
ied. Section 3 describes the developers’ testing model.
Section 4 presents the status of the testing process and
Section 5 makes final remarks.

2. Method

This section describes the research method taken in this
study. Subsection 2.1 presents the company studied.
Subsection 2.2 describes our research steps. Subsection
2.3 presents the questionnaire used in this study. Finally,
Subsection 2.4 motivates the sampling method.

2.1. Nomadic Software

We have studied one large Swedish organization. Due to
the sensitivity of the results presented herein, the com-
pany does not wish to disclose its name. For this reason,
we call it Nomadic Software.

Nomadic Software is the IT provider of IT services
within a larger group of companies, which we call The
Nomad Group. This group serves the global market with
world-leading products, services and solutions ranging
from military defense to civil security products. It is op-
erating in more than 100 countries with its headquarters
in Sweden.

2.2. Research Steps

Our research consisted of three phases. As shown in Figure

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

344

1, these are 1) Prefatory Study, 2) Pilot Investigation,
and 3) Main Investigation. Each of the phases consisted
of three consecutive steps: Planning, Investigation and
Analysis. Below, we briefly describe these phases.

In the Prefatory Study phase, we acquainted ourselves
with Nomadic Software by investigating its processes
and the roles involved in them. For this purpose, we
studied the organization’s internal documentation and
made informal interviews with four developers. Our
main purpose was to get background information about
the company such as its employees, their working pat-
terns and problems, and their opinions about their testing
process. This helped us identify a preliminary status of
the developers’ testing process and generate questions to
be used in later research phases.

After having acquainted ourselves with the company
and its process, we decided to make a small survey in the
Pilot Investigation phase. Here, we created a multiple
choice questionnaire based on the results achieved in the
former phase. The questionnaire was answered by the
same four developers who participated in the Prefatory
Study phase. Our purpose was to test questions and ac-
quire feedback on their variability and expected answers.
This helped us determine the appropriateness of the
questions and their level of inquiry.

In the Main Investigation phase, we first designed a
comprehensive questionnaire to be distributed to all the
developers within Nomadic Software. Our purpose was
to achieve a detailed description of the AS - IS situation
of the company’s developers’ testing process, its inherent
activities, information managed within the process, roles
involved and the tools used.

Even if the questionnaire consisted of multiple choice
questions, it became very detailed, and of considerable
size. Nomadic Software estimated that it would take
about one hour for each developer to answer it. Having
as many as about eighty developers, it would be too ex-
pensive. For this reason, we had to cut out many of its
questions and/or redesign others. We also had to split
parts of the questionnaire into two sub-parts: one study-
ing static testing and the other one studying dynamic
testing. All in all, we received answers from fifteen de-
velopers, where seven developers answered the dynamic
part and twelve developers answered the static part.

Figure 1. Research steps taken in this study.

2.3. Questionnaire

The questionnaire consists of two main sections: Back-
ground and Testing Process. It is shown in Figure 2.

2.3.1. Background Section
The Background section inquires about the respondents
and the underlying testing conditions within the company
studied. It covers the following:

1) Developers’ Background: This part inquires about
the developers, their testing experience and current re-
sponsibilities. It covers Questions 1-3. Our aim is to get
to know the developers’ background and provide a basis
for analyzing the results of this study.

2) Methods Used: This part inquires about the devel-
opment methods defined and used within the company. It
covers Questions 4-6. Our goal is to find out whether the
developers use the methods defined within the company
and the reasons behind using or not using them.

3) Scope and Effort of Testing: This part inquires
about the scope of the developers’ testing activities and
the effort spent on them. It covers Questions 7 and 8. The
goal is to find out what testing levels and activities the
developers are involved in, what is the effort spent on
them, and its distribution on manual and automatic test-
ing.

2.3.2. Testing Process Section
In the Testing Process section, we inquire about the
status within the testing phases such as Preparatory,
Write Code/ Change Code, Testing, Debugging, Evalua-
tion and Sign-Off (see Figure 2).

1) Preparatory Phase: This part inquires about the
planning of the developers’ work. It includes the follow-
ing parts:
 Documentation Part: This part inquiring about the

documents providing input to the implementation
phase. It covers Questions 9-11. Our goal is to find
out what documents are studied before the imple-
mentation, what measures are taken in cases when
they are defective, and elicit examples of the defects.

 Testing Plan: This part inquiring about the develop-
ers’ test plans. It covers Questions 12 and 13. The
goal is to find out what activities are included in the
implementation and testing phases and when they are
carried out.

 Testing Environment: This part inquiring about the
activities the developers conduct to create a testing
environment. It covers Question 14. The goal is to
find out what activities that the developers create
when setting up their own testing environments.

2) Write Code/Change Code Phase: This part inquires
about the basic code implementation activities. It covers
Question 15. Our aim is to assure that all the respondents
write and/or change code, and test it.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

345

Background Section

1) Does your current role entail programming of software?
2) Please state the number of years that you have been working with

testing in your current role (at your current employer and in total).
3) What type of activities are you currently involved in?

● Development of a completely new system;
● Development of a new feature in an existing system;
● Defect correction; ● Testing of your own code;
● Testing of other developers’ code; ● Writing your own test cas-
es; ● Writing other developers’ test cases; ● Other, please specify;

4) What test processes/methods do you follow?
● Rational Unified Process (RUP); ● Software Development
Process (NomadicRUP) in all your development; ● Software De-
velopment Process, not in your testing; ● Software Test Process (a
separate test process linked to NomadicRUP; ● Method that you
have brought in with you from your former company; ● An old
method that has been used earlier at Nomadic Software;
● Your own method; ● No method at all; ● Other, please specify;

5) If you use use the Software Development Process (Nomadi-
cRUP), does it contain enough information regarding unit and
unit integration test activities?

6) If you follow the Software Test Process, do you believe it to be
useful for increasing the code quality?

7) What is your weekly effort (in percentage) spent on manual and
dynamic testing?

8) Which types of testing are you involved in?
● Unit tests; ● Integrations test of you own units;
● Continuous integration of components; ● Functional tests;
● Security tests; Regression tests; ● Integrity tests;
● Other tests, please specify.

Testing Process Section

9) What documents do you study before coding and testing?
● Requirements specification; ● Design specification
● Program specification; ● Change request; ● Problem report;
● Nothing, everything is communicated orally;
● Other test, please specify;

10) If some of the documents have inconsistencies, need further clari-
fication or is missing information, do you report that it needs up-
dating?

11) Please, state which documents need updating and list some of the
problems identified in those documents.

12) Which of the activities do you include in your testing plan?
● Coding; ● Testing; ● Creating stubs and drivers;
● Preparing your testing environment; ● Modifying of your re-
gression test cases; ● Others, please specify;
● None, you do not create your own testing plan;

13) When exactly do you carry out those activities?
● Before coding; ● During coding; After coding;
● Never;

14) Do you create your own testing environment? If yes, what exactly
do you do?

15) Which activities do you perform in the Write Code/Change Code
phase?
● Write code; ● Change code; ●Link and compile code;
● Other, please specify;

Dynamic Testing Part

16) Which types of dynamic testing do you perform?
● Black-box tests; ● White-box tests; ● Grey-box tests;

17) Which role(s) does/do write your test cases?
● Another developer writes your test cases; ● An integrator writes
your test cases; ● A software architect writes your test cases,
● Other role writes your test cases, please specify which role it is;

18) Do your document your own test cases?
● Always; ● Very often; ● Half of them; ● Rarely;
● Never;

19) What are your testing coverage goals?
20) If you have not achieved your testing goals, what do you do?
21) Which method do you use when designing your input data?

● Equivalence partitioning; ● Boundary-value analysis;
● Cause-effect graphing; ● Error guessing; ● Statement coverage;
● Decision coverage; ● Conditions coverage;
● Decision/condition coverage; ● Multiple-condition coverage;

22) When comparing the received testing results with the expected
ones, what do you do when you find discrepancies?
● You make your own notes; ● You hand in a trouble report;
● Other, please specify.

23) Which roles do you get in contact with in the following situations?
● Who informs you about the functionality that you have to de-
velop? ● Who informs you about that you have to test other de-
veloper’s code? ● Who informs you about inconsistencies, needs
for clarification and missing information? ● Who do you inform
that you that you have updated your own test cases? ● Who do
your inform that requirements need to be updated? ● Who do you
inform about your testing results? ● Who do you inform that your
tests have been completed?

Debugging Part

24) If you are debugging code, what do you when you find discrep-
ancies
● Study the source code and correct it, if relevant;
● Study test cases(s) and correct it/them, if relevant;
● Study the requirements specification and take relevant measures,
if relevant; ● Study the design specification and take relevant
measures, if relevant; ● Others, please specify;

25) What tool(s) are you using for debugging?

Static Testing Part

26) Are you involved in reviews?
● You do reviews of your own code; ● You do walkthroughs (re-
view of a peer’s code); ● You do formal inspections; ● You do not
do any reviews, walkthroughs or inspections;

27) What is the purpose of your reviews?
● Code follows; ● Programming guidelines;
● Organizational standards; ● Other criteria, please specify;

28) Do you make notes documenting the results of the reviews?
29) Do you report discrepancies encountered during the reviews?

Sign-off Part

30) Do you sign-off your development and test results before deliv-
ering your code for integration or system testing?

31) Do you sign-off your development and test result, exactly which
artifacts do you sign-off?

Evaluation Part

32) If you look at how developer’s testing is being done today, please
state what can be improved and motivate your suggestions.

33) If you look at the way the developer’s testing is done today,
please state what is the best in today’s testing procedures and mo-
tivate way.

Figure 2. Our questionnaire.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

346

3) Testing Phase: This part inquires about the status

within the test execution phase. It includes the following
parts:
 Dynamic Test Execution Phase: This part inquires

about the status of the dynamic testing process, its
timing and results. It covers Questions 16-23. Our
aim is to find out whether dynamic testing activities
are conducted, how and when they are conducted,
what is their outcome and how they are communi-
cated among the roles involved.

 Static Test Execution Phase: This part inquires about
the status of the static testing process and its results.
It covers Questions 26-29. Here, we wish to find out
whether static testing activities are conducted, how
and when they are conducted, and what their outcome
is.

4) Test debugging phase: This part inquires about the
practice of debugging. It covers Questions 24 and 25. Our
aim is to find out what is done when defects are discov-
ered and what tools are used for localizing these defects.

5) Sign-Off Phase: This part finds out whether the de-
velopers sign off their results. It covers Questions 30 and
31. Our aim is to hear about whether the developers
sign-off their code and what artifacts they sign-off.

6) Evaluation Phase: This part inquires about the de-
velopers’ opinion about the testing process and their sug-
gestions for the process improvement. Our aim is to elicit
the developer’s recommendations on how to improve
their testing process and/or how to preserve its good ele-
ments. It covers Questions 32 and 33.

2.4. Sampling Method

Initially, we intended to achieve a full sampling coverage
of our respondents. However, as already mentioned, this
was considered to be too expensive by the company’s
management. Hence, only fifteen developers were in-
volved in this study. These individuals belonged to dif-
ferent projects, and they were chosen by their respective
project managers. We had no opportunity to influence
their selection. For this reason, we have no other choice
than to classify the sampling method used in this study as
a convenience sampling method.

The convenience sampling method does not allow us
to generalize our results with respect to the status of the
organization studied. However, it provides an indication
of what the status of the developers’ testing process
looks like.

3. Testing Model

There are not so many process models delineating the
developers’ testing process. One of the current ones is
illustrated in Figure 3 [10]. It provides a framework for
developers’ testing phases and their constituent activities.

It was developed in a traditional heavyweight context.
However, it is even relevant in the context of agile de-
velopment. By framework, we mean that it covers most
of the activities necessary for conducting unit and unit
integration tests.

As shown in Figure 3, the phases of the developers’
testing process are 1) Preparatory Phase, 2) Write Code/
Change Code Phase, 3) Testing Phase, 4) Debugging
Phase, 5) Evaluation Phase and finally, 6) Sign-off
Phase.

1) Preparatory Phase
The Preparatory Phase consists of two alternative

phases. Their choice depends on whether one writes new
code or changes an existing one. The changes may con-
cern changes requested by external customers or changes
to be conducted due to discovered defects in any of the
testing process phases. The activities for these two
phases are almost the same. One makes a new low-level
design or checks whether or how to make changes to the
existing one. One plans for the next testing iteration, that
is, one creates/modifies test cases, specifies/checks in-
puts and expected outputs, and creates stubs and drivers,
if necessary. The only difference is that one revises re-
gression test case base in cases when the code is
changed.

2) Write Code/Change Code Phase
During the Write Code/Change Code Phase, develop-

ers write or change their code and compile it.
3) Testing Phase
The Testing Phase consists of unit and unit integration

testing which, in turn, may be conducted dynamically
and statically. Dynamic testing implies testing software
through executing it. One starts by checking if the test
cases fulfil the given requirements, one creates additional
test cases, if needed, links the units and tests them. The
test results are then documented and compared to the
expected ones. Static testing, on the other hand, implies
testing software through reading it. It ranges from infor-
mal code reviews conducted by the developers them-
selves, to reviews conducted by peers, to formal inspec-
tions performed by a group of dedicated roles.

4) Debugging Phase
The Debugging Phase is conducted in parallel with the

other testing phases. Using the testing results, one local-
izes defects and removes them. It partly overlaps with
the activities within problem management process.

5) Evaluation Phase
The Evaluation Phase is conducted on two levels. The

first level is performed by developers. They evaluate
code before sending it for system integration. The second
level evaluates the development and testing routines with
the purpose of providing feedback for process improve-
ment.

6) Sign-off Phase
Due to the importance of unit and unit integration tests,
the developers should sign off that all the components

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

347

Figure 3. Developers’ testing process.

delivered for integration have been successfully tested.
We consider the Sign-off Phase important because it fi-
nalizes the developers’ tests. It adds pressure on the de-
velopers and hinders them from delivering untested code.
It also promotes higher level of accountability among the
developers.

The framework does not impose any particular se-
quence. Developers are free to adapt it to their own con-
text. Usually, before sending their components for inte-
gration, they may have to repeat many of its phases or
their parts. This is illustrated with a non-bold line in Fig-
ure 3. In addition, the framework suggests that the de-
velopers evaluate the testing process in the Evaluation
phase and provide feedback for process improvement.
This is illustrated with a bold arrow line in Figure 3.

4. Status within Nomadic Software

In this section, we present the results of the survey.
When reporting on them, we follow the order of the
questionnaire as defined in Subsection 2.3.

4.1. Respondents and their Background

All the respondents (100% of response coverage) are
involved in programming. As illustrated in Figure 4, in
average, they have been working with programming and
testing for 3.2 ± 3.2 years at Nomadic Software and for
7.4 ± 7.1 years in their career lives.

The respondents are involved in various lifecycle
phases; 53.3% are involved in developing new systems,

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

348

93.3% enhance existing systems with new features and
86.7% attend to software problems. Irrespective of the
phase, all the respondents are involved in writing and
testing their own code. Out of them, 46.7% write their
own test cases and 13.3% write test cases to be used by
other developers. Some of them (6.7%) also conduct
other unspecified activities.

4.2. Method Used

Nomadic Software has defined and established their own
development method. This method is based on RUP [11]
and it is called NomadicRUP. All the developers are re-
quired to follow it either standalone or in combination
with the Software Test Process, a process that has been
defined and established by Nomadic Software. Despite
this, as shown in Figure 5, only 33.3% of the respon-
dents follow it within all their development activities
(including testing).

Figure 4. Experience in testing.

Figure 5. Process/method followed.

Regarding the remaining respondents, 33.3% of them,
follow NomadicRUP within development but not within
testing; 6.7% utilize the Software Test Process, 6.7% use
a method that they have brought with them from an ear-
lier employer, and 20.0% use an old Nomadic method.
As many as 60 % use their own method and as many as
20.0% do not use any method at all. Finally, 13.3% of
the respondents use methods such as Scrum, XP and
ITM Process [12-14].

It is easy to recognize in Figure 5 that the majority of
the respondents follow more than one method. This is
proved by calculating the accumulated frequency which
is 193.3%.

Our respondents have admitted that they conduct de-
velopers’ tests in an ad hoc manner. They mainly use
common sense when testing their code. However, they
claim that they are more disciplined when performing
higher-level tests with respect to planning, testing and
follow up.

There are many reasons to why NomadicRUP is not
used by all the developers. Some of: 1) the developers
have not even made an effort to get acquainted with the
method; hence, they do not use it, 2) the methods are too
general and it does not support their specific develop-
ment needs while the use of Scrum has substantially in-
creased progress and code quality, 3) the developers
have gone over to Scrum because they feel that by us-
ing NomadicRUP, they produce a lot of meaningless and
quickly outaging documentation instead of writing code,
4) the developers continue with the NomadicRUP’s
forerunner that was used to develop and that is still used
to maintain some of the existing applications, 5) the de-
velopers wish to decide by themselves on how to carry
out their own testing work.

As shown in Figure 5, 66.6% (33.3% + 33.3%) of the
respondents follow the NomadicRUP method but only
33.3% of them use it for testing purposes. Still, however,
63.7% of them are of the opinion that the method in-
cludes sufficient information about developers’ testing
process.

Regarding the Software Test Process, only 6.7% of the
respondents follow it (see Figure 5). Just as with the
NomadicRUP method, some of the respondents are of the
opinion that even this method includes sufficient infor-
mation about and guidelines for conducting developers’
tests and that it generates better code quality. Some other
respondents claim that the very abstract presentation
level of the method allows them to state that they follow
the method. In reality, however, they use common sense
when testing their components.

Irrespective of whether the developers follow the
software test process, some of them are of the opinion
that is it useful to have a formal testing process on a de-
velopers’ level. It forces the developers to create test
cases on different levels, imposes traceability among
them and facilitates future development and change.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

349

However, the main obstacle hindering the developers to
do the testing is time. They have little time assigned to
do the unit and unit integration tests.

4.3. Scope and Effort of Testing

Testing is mainly done manually at Nomadic Software.
The respondents had difficulties to estimate the effort
spent on the manual and automatic testing. This is be-
cause the effort varies from week to week or it depends
on the complexity of code. In average, however, as
shown in Figure 6, the respondents spend 0 ≤ 30.9% ≤
69.2% of their weekly working time (40 hours) on doing
manual tests and only 0 ≤ 2.4% ≤ 9.1% of their time on
doing automatic tests.

Developers conduct various tests. As shown in Figure
7, their testing activities range from unit tests (92.9%),
through unit integration tests (92.9%), functional tests
(71.4%), system regression tests (42.9%), and testing of
other developers’ integrated components (50.0%). In
addition, some of them are involved in tests such as us-
ability tests (28.6%), integrity tests (21.4%), and security
tests (21.4%). It is worth mentioning that not all the re-
spondents were familiar with all the test types mentioned
in the question.

4.4. Preparatory Phase

Various documents provide basis for starting the coding
activity. As shown in Figure 8, our respondents mainly
use 1) requirement specifications (80.0%), 2) design
specifications (73.3%), 3) change requests (86.7%), 4)
program specifications (53.3%), and 5) problem reports
(60.0%). The use of problem reports supports developers
in recreating reported problems and in finding deficien-
cies in the development and maintenance. However, as
many as 13.3% of the respondents use oral communica-
tion as a basis for their coding activities. This is because
the above-mentioned documents do not always exist.
Another reason is the fact that many of the above-men-
tioned documents are not always of satisfactory quality.
Hence, the respondents find it easier to use oral commu-
nication as a basis for starting their coding activities.

Figure 6. Effort spent on testing.

Figure 7. Test conducted.

Figure 8. Document.

When studying the above-mentioned documents, the
respondents often discover various defects concerning
inconsistencies and/or uncertainties. As shown in Table
1, the respondents that have answered this question find
defects ranging from missing information in design
specification to missing or outdated information in vari-
ous documents. These defects are then reported for cor-
rective measures by 92.9% of the respondents. The re-
porting is done for the purpose of updating the docu-
ments and not for the purpose of providing a basis for
improving the testing process. The remaining respon-
dents (7.1%) do not do any reporting at all.

Some of the respondents have not provided any in-
formation on what documents they use as a basis for
starting their coding and testing activities. They have
however provided us with the following opinions: 1) when

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

350

Table 1. Defect examples.

Document name Defect

Requirement
specification

A conditions has to few exits
Use Cases are on a too high-level
Missing business rules

Design specification Missing information or documents

Change report Common functionality is not common

Problem report Outdated information

designing the system I do not add any descriptions about
how to conduct unit and integration tests since it is not
requested by the organization, 2) I cannot remember a
document that does not include inconsistencies and/or
uncertainties, and 3) documentation is generally a bad
way of communicating information to the implementa-
tion process and to keep information about how things
work. Therefore, documented tests are a lot better if they
are combined with documentation easily extractable
from code.

The respondents were asked to list the activities that
they included in their testing plans. Only 71.4% of the
respondents plan their implementation and testing. In
their plans, they include 1) coding (90.0% of the respon-
dents), 2) testing (100%), 3) preparation of their own
testing environments (80.0%), and 4) modification of
regression test cases (40.0%). Very few of the respon-
dents (20.0%) include creation of stubs and drivers in
their testing plans. These plans, however, are made on an
informal basis. This is because the organization does not
promote planning of and documenting tests.

Regarding the activities included in the testing plan,
we inquired about the point in time when they were con-
ducted. Our aim was to find out whether they were con-
ducted 1) before coding, 2) during coding, 3) after cod-
ing, or 4) never. As shown in Table 2, the timing of
these activities varies in the following:

1) Stubs and drivers are created before and during cod-
ing.

2) Regression test cases are modified during and after
coding. However, the greater majority of the respondents
(83.3%) modify them after they have finished coding.

3) New functionality test cases are written throughout
the whole implementation process. The majority of the
respondents (75%), however, create them after coding.

We also inquired whether the respondents created their
own testing environments and exactly what they did
when doing it. Eighty percent of the respondents do cre-
ate their own testing environments. When doing it they
(1) test project code and run functional testing of their
own components, (2) change test data by making a copy
of production data, (3) use remote automatic tests when-
ever they are checking something in, (4) create a number

Table 2. Timing of some testing activities in percentage.

When

Activity
Before
coding

During
coding

After
coding

Another
time

Stubs and drivers 33.3 66.7 33.3 0.0

New functionality
test cases

41.6 41.6 75.0 16.7

Regression test cases 0.0 16.7 83.3 0.0

of settings to point out the resources required to run and
execute a build. In addition, the respondents have com-
mented that they have three environments: development,
test, and production. However, they only use the devel-
opment environment when conducting developer’s tests
(unit tests).

4.5. Write Code/Change Code Phase

All the respondents (100%) write new code and change
an existing code. However, 61.6% of the respondents
have to compile their code manually. The remaining re-
spondents get it automatically done via tools which both
check syntax and compile the code.

4.6. Dynamic Testing

The respondents were requested to list the dynamic test-
ing practices they used. The majority of them (85.7%)
conduct black-box and white box tests. Although grey-box
testing is not promoted at Nomadic Software, 42.9% of
the respondents have answered that they conduct grey-box
tests as well.

We inquired whether the respondents wrote test cases
by themselves or whether they got them written by some
other role. We also inquired if they documented their
own test cases. Our results show that all the respondents
claim that they write their own test cases, but on some
occasions, 14.3% of them use test cases written by other
developers. No other role than a developer role is in-
volved in writing test cases for our respondents.

We inquired whether the respondents documented
their own test cases. Our results show that 42.9% of the
respondents always document their test cases, 28.6% do
it very often, 14.3% do it rarely, and 14.3% never do it.
Some of the respondents have pointed out that one
mainly puts effort into documenting the integration test
cases instead. Other respondents have mentioned that
documentation is only in JavaDoc but that they can gen-
erate a report on all tests when they run them.

Developers’ tests are the most efficient tests to con-
duct. Because the cost of coverage is low, one should
strive to set a testing coverage goal as high as possible.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

351

We inquired about the developers’ coverage goals. Our
results are illustrated in Figure 9. As shown there, 1)
33.3% of the respondents test all main parts of code, 2)
50% test all code, 3) 16.7% test 60%-80% of all code 4)
16,7% test all features, and 5) 16.7% test all the archi-
tectural decisions. These results do not specify testing
coverage for any specific testing technique. This is be-
cause the coverage goals are not determined by the or-
ganization but by the developers themselves. However,
as Figure 10 shows, the white-box testing techniques
used by the respondents are 1) multiple-conditions cov-
erage, 2) decision/conditions coverage, 3) condition cov-
erage, 4) decision coverage, and 5) statement coverage.

Regarding the test cases involving input data, most of
the respondents (80% of them) use the boundary analysis
method, and 60% use error guessing. Some of them also
use equivalence partitioning (40%) and cause-effect
graphing technique (20%). In cases when the coverage
goals are not achieved, the respondents take measures
such as 1) discuss cost and revenue of further testing, 2)
ask the project manager for further measures, 3) decide
by themselves what to do next, or 4) they just checked in
code to the repository.

Figure 9. Test coverage goals.

Figure 10. Data input methods used.

Test results ought to be documented. For this reason,
we inquired whether the respondents recorded their test-
ing outcome and how they did it. Our results show that
57.1% of the respondents make their own informal notes
about the discrepancies between the expected and
achieved results and 28.6% hand in trouble reports, if
necessary. Some of the respondents (42.9%) not only
make notes or hand in trouble reports but also correct the
code by themselves. Finally, some of the respondents
just fix code without making either formal or informal
notes.

Developers come in contact with various roles in dif-
ferent situations. These are:

1) System Analysts and System Architects to discuss
new functionality to be developed, suggestions for their
updates and reports on inconsistencies in them, if any.

2) Business System Manager and End User to discuss
maintenance tasks and inconsistencies in them, if any.

3) Test Managers requiring that the respondents test
other developers’ tests. The respondents may also inform
the Test Managers about the completion of their tests and
their testing results.

4.7. Test debugging Phase

We inquired about how the developers tracked defects in
the Debugging phase and what tool support they used.
Our results show that all the respondents debug their
code, if needed. If they find defects, 100% of them cor-
rect them in source code and requirements, and 85.7%
correct them in design specifications and test cases. The
tools used during the Debugging phase are, for instance,
Visual Studio, IntelliJ, JProfiler and Jboss.

4.8. Static Testing

Given a set of static testing practices, the respondents
were requested to identify the ones they used. They had a
choice of 1) own reviews implying that they checked
their own code, 2) walkthroughs of peer code, and 3)
formal inspections. Our results show that 100% of the
respondents review their own code, 9.1% do walk-
throughs of peer code, and 18.1% are involved in inspec-
tions. The inspections, however, are very seldom per-
formed.

We inquired about the purpose of the reviewing activi-
ties. Irrespective of how the developers review their code
(own review or walkthroughs), at least 90.1% of the re-
spondents review it for the consistency with the require-
ments. When conducting own reviews, 63.6% of the re-
spondents also review for organizational standards, and
9.1% review for other criteria such as, for instance, in-
ternational standards. In the context of walkthroughs,
18.2% of the respondents review for organizational
standards only. In situations when the respondents con-

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

352

duct inspections, they only review for consistency with
requirements.

In static testing, it is imperative to document the test-
ing results. Hence, we inquired whether the respondents
recorded them. Our results show that very few respon-
dents, only 18.2% of all of them, document the results of
their own code reviews and no one documents walk-
through and inspection results.

We also inquired how the respondents documented the
discrepancies discovered during static testing. As illus-
trated in Table 3, the results span between 54.5% of the
respondents making own notes to 9.1% of the respon-
dents handing in trouble reports. The remaining discrep-
ancies are communicated on an oral basis.

4.9. Sign off

We asked the respondents whether they finalized their
implementation and testing activities in a formal or in-
formal way, for instance, by signing off their code. Only
9.1% of the respondents sign-off their work after they
have completed their tests. The artifact that is used for
signing-off is mainly a version management tool com-
plemented by an informal hand-shake among the deve-
lopers, testers and managers.

4.10. Evaluation

We also inquired about the best of the today’s testing
process. According to the respondents, the best parts of
the process are 1) the ability to conduct test review, 2)
freedom to use, for instance, Scrum/XP instead of, for
instance, NomadicRUP, 3) the ability to import produc-
tion data to be used as test data, 4) the ability to test your
own code, 5) automatic test framework, 6) the opportu-
nity to start testing early in the development cycle. Their
motivations are 1) system development using Scrum/XP
generates less defects, 2) test data can always be up to
date since it is possible to copy production data, 3) the
framework automatically conducts regression tests, 4) by
placing testing early in the development cycle, focus is
set on the actual problems and assures that test cases are
written, and finally, 5) the transfer of documents is sub-
stantially reduced.

Table 3. Recording Testing Results

Methods
I make

own notes

I hand in
trouble
reports

Other,
please
specify

I do not
document

Own Review 54.5 18.2 9.1 18.2

Walkthroughs 9.1 0 9.1 64.7

Inspections 27.2 9.1 9.1 45.5

5. Final Remarks

In this paper, we have studied developers’ testing process
at Nomadic Software. Our goal is to establish its status
within the company and identify areas for potential im-
provements. The study is based on a traditional testing
model elicited in [10]. The respondents involved in this
study are developers with solid programming back-
ground and experience.

Our results show that the developers’ testing process is
not uniformly performed within Nomadic Software.
Right now, the company suffers from the following
problems:

1) Lack of control over the methods used: Even if
Nomadic Software has put effort into defining and estab-
lishing a development and testing process, the majority
of the developers still use other methods and they con-
duct their tests in an ad hoc manner. Irrespective of the
reasons behind, Nomadic Software did not have insight
into what methods were used within the company before
this study. Neither did it have control over the status of
the developers’ testing process. Regarding the developers,
some of them are hardly acquainted with the company’s
testing method.

2) The organization does not assign enough time for
conducting developers’ tests. This leads to the fact that
developers’ tests get neglected. Developers are too much
in a hurry to deliver code for integration and system
tests.

3) Testing coverage goals are not clearly stated by the
organizations studied. Neither are they determined for
any specific testing technique. This implies that each
developer sets his own goals. This, in turn, may lead to
strongly varying code quality as delivered by various
developers.

4) Important requirements and defects in requirements
specifications are communicated orally: Quite a big por-
tion of requirements and problems are communicated
orally. These requirements and problems do not get
documented even after being implemented. This is a se-
vere problem that may substantially degrade the system
maintainability and contribute to quick software ageing
and lack of control over the development and mainte-
nance process [15].

5) Not all test cases get documented: This implies that
the company cannot determine whether the developers’
testing has been sufficiently performed. This also implies
that regression testing on the developers’ level practi-
cally does not exist.

6) Static testing is not practiced enough: Static testing
is performed on an informal basis. At its most, develop-
ers review their own code and sometimes their peers’
code. Formal inspections of critical code parts are con-
ducted very seldom.

7) Lack of testing guidelines: Lack of testing guide-

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

353

lines makes developers decide by themselves on how to
conduct their testing activities. This, in turn, leads to the
non-uniformity of the testing process execution.

8) Insufficient education within testing: The employ-
ees at Nomadic Software get a very short education on
development method, where testing is one of its parts.
Hence, they have not acquired sufficient knowledge.
This is clearly evident from the fact that the respondents
are not acquainted with some basic testing terms such as
integrity tests or they use the terms differently. A similar
phenomenon has been observed in our former study in
[16].

9) Lack of testing strategy: Nomadic Software lacks a
strategy aiding them in defining how to test in a cost-
effective and qualitative manner and designating test
types to be part of the testing process.

Due to the sampling method used in this study, we
cannot generalize the results presented herein. However,
we may still claim that our results strongly indicate that
just as Nomadic Software, many software companies are
in great need to revise their developers’ testing process,
put it in the context of its overall testing process and
make effort into improving it.

When studying the developer’s testing process at No-
madic Software, we have identified several problem ar-
eas related to the education of developers and the man-
agement and execution of the testing process. Specific
pains that we have observed are lack of control over the
testing methods used, lack of testing strategies and lack
of directives of what is expected from the developers. To
attend to these problem areas is not an easy task. It re-
quires many different measures ranging from creating
appropriate overall testing strategies in which devel-
oper’s testing strategy is clearly identified and specified,
defining testing processes in which developers’ tests play
an essential role, and monitoring that they are followed
by the developers. To realize them can be a long and
complex process. However, as an initial step towards
improving the developers’ testing process, we suggest
the software community create guidelines providing in-
structions and recommendations specifying what and
how developers’ tests should be done and what sort of
actions should be taken in particular testing circum-
stances.

6. References

[1] J. W. Cangussu, R. A. DeCarlo and A. P. Mathur, “A

Formel Model of the Software Test Process,” IEEE
Transactions on Software Engineering, Vol. 28, No. 8,
2002, pp. 782-796.

[2] L. Groves, R. Nickson, G. Reeves, S. Revves and M.
Utting, “A Survey of Software Pratices in the New Zee-

land Software Industry,” Proceedings of Australian Soft-
ware Engineering Conference, Queensland, 28-29 April
2000, pp. 189-201.

[3] S. P. Ng, T. Murnane, K. Reed, D. Grant and T. Y. Chen,
“A Preliminary Survey on Software Practices in Austra-
lia,” Proceedings of Australian Software Engineering
Conference, Melbourne, 13-16 April 2004, pp. 116-125.

[4] “Agile Software Development,” 2009. http://en.wikipedia.
org/wiki/Agile_software_development

[5] H. Gallis, E. Arisholm and T. Dyka, “An Initial Fram-
work for Research on Pair Programming,” Proceedings of
ISESE International Symposium on Empirical Software
Engineering, Rome, 30 September-1 October 2003, pp.
132-142.

[6] E. M. Guerra and C. T. Fernandes, “Refactoring Test
Code Safely,” Proceedings of ICSEA International Con-
ference on Software Engineering Advances, Cap Esterel,
25-31 August 2007, p. 44.

[7] P. J. Schroeder and D. Rothe, “Teaching Unit Testing
using Test-Driven Development,” 2005. http://www.testing
education.org/conference/wtst4/pjs_wtst4.pdf

[8] S. Koroorian and M. Kajko-Matsson, “A Tale of Two
Daily Build Projects,” Proceedings of International Con-
ference on Software Engineering Advances, Porto, 20-25
September 2009, pp. 245-251.

[9] G. J. Meyers, T. Badgett, T. M. Thomas and C. Snadler,
“The Art of Software Testing,” 2nd Edition, John Wiley
& Sons, Inc., Hoboken, 2004.

[10] M. Kajko-Mattsson and T. Björnsson, “Outlining Devel-
oper’s Testing Mode,” Proceedings of EUROMICRO
Conference on Software Engineering and Advanced Ap-
plications, Lübeck, 27-31 August 2007, pp. 263-270.

[11] B. Henderson-Sellers, G. Collins and I. Graham, “UML-
Compatible Process,” Proceedings of 34th Annual Ha-
waii International Conference on System Sciences, Maui,
Vol. 3, 3-6 January 2001, p. 3050.

[12] “ITM Process (IT-Product Maintenance Process),” Inter-
nal Documentation at Nomadic Software, 2009.

[13] R. Juric, “Extreme Programming and its Development
Practices,” Proceedings of 22nd ITI International Con-
ference Information Technology Interfaces, Pula, 13-16
June 2000, pp. 97-104.

[14] L. Rising and N. S. Janoff, “The Scrum Development
Process for Small Teams,” 2000. http://members.cox.net/
risingl1/Articles/IEEEScrum.pdf

[15] M. Kajko-Matsson, “Corrective Maintenance Maturity
Model: Problem Management,” Ph.D. Dissertation, Stock-
holm University and Royal Institute of Technology,
Stockholm, 2001.

[16] M. Kajko-Mattsson, “Common Concept Apparatus within
Corrective Software Maintenance,” Proceedings of In-
ternational Conference on Software Maintenance, Los
Alamitos, 30 August-3 September 1999, pp. 287-297.

Intelligent Information Management, 2010, 2, 354-364
doi:10.4236/iim.2010.26043 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

Intelligent Optimization Methods for High-Dimensional
Data Classification for Support Vector Machines

Sheng Ding1,2, Li Chen1
1College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China

2School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
E-mail: dingwhu@gmail.com

Received March 2, 2010; revised April 3, 2010; accepted May 4, 2010

Abstract

Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM
shows its outstanding performance in high-dimensional data classification. In the process of classification,
SVM kernel parameter setting during the SVM training procedure, along with the feature selection signifi-
cantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods,
which simultaneously determines the parameter values while discovering a subset of features to increase
SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the
parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above
the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parame-
ters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and
PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experi-
mental results demonstrate that the classification accuracy by our proposed methods outperforms traditional
grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can ob-
tain higher classification accuracy than GA-FSSVM classification for hyperspectral data.

Keywords: Support Vector Machine (SVM), Genetic Algorithm (GA), Particle Swarm Optimization (PSO),

Feature Selection, Optimization

1. Introduction

Support vector machine (SVM) was first proposed by
Vapnik [1] and has recently been applied in a range of
problems including pattern recognition, bioinformatics
and text categorization. SVM classifies data with differ-
ent class labels by determining a set of support vectors
that are members of the set of training inputs that outline
a hyperplane in the feature space. When using SVM, two
issues should be solved: how to choose the optimal input
feature subset for SVM, and how to set the best kernel
parameters. Traditionally, the two issues are solved
separately ignoring their close connections, this always
leads low classification accuracy. These two problems
are crucial, because the feature subset choice influences
the appropriate kernel parameters and vice versa [2].
Therefore, obtaining the optimal feature subset and SVM
parameters must occur simultaneously.

Feature selection is used to identify a powerfully pre-
dictive subset of fields within a database and reduce the

number of fields presented to the mining process. By
extracting as much information as possible from a given
data set while using the smallest number of features, we
can save significant computational time and build models
that generalize better for unseen data points. Feature
subset selection is an important issue in building an
SVM-based classification model.

As well as feature selection, the proper setting of pa-
rameters for the SVM classifier can also increase classi-
fication accuracy. The parameters that should be opti-
mized include penalty parameter C and the kernel func-
tion parameters such as the gamma (γ) for the radial basis
function (RBF) kernel. To design a SVM classifier, one
must choose a kernel function, set the kernel parameters
and determine a soft margin constant C (penalty parame-
ter). As a rule, the Grid algorithm is an alternative to
finding the best C and gamma (γ) when using the RBF
kernel function. However, this method is time consuming
and does not perform well [3]. Moreover, the Grid algo-
rithm can not perform the feature selection task.

S. DING ET AL.

Copyright © 2010 SciRes. IIM

355

Both feature subset selection and model parameter set-
ting substantially influence classification accuracy. The
optimal feature subset and model parameters must be
determined simultaneously. Since feature subset and
model parameters greatly affects the classification accu-
racy.

To simultaneously optimize the feature subset and the
SVM kernel parameters, this study attempts to increase
the classification accuracy rate by employing two evolu-
tionary computing optimization-based approaches: ge-
netic algorithm (GA) and particle swarm optimization
(PSO) in SVM. These novel approaches are termed
PSO-FSSVM (Particle Swarm Optimization-Feature Se-
lection Support Vector Machines) and GA-FSSVM (Ge-
netic Algorithm-Feature Selection Support Vector Ma-
chines). The developed approaches not only tune the
parameter values of SVM, but also identify a subset of
features for specific problems, maximizing the classifi-
cation accuracy rate of SVM. This makes the optimal
separating hyperplane obtainable in both linear and
non-linear classification problems.

The remainder of this paper is organized as follows.
Section 2 reviews pertinent literature on SVM and the
feature selection. Section 3 then describes basic GA
concept and GA-FSSVM model of feature selection and
parameter optimization. Also, Section 3 then describes in
detail the developed PSO-FSSVM approach for deter-
mining the parameter values for SVM with feature selec-
tion. Section 4 compares the experimental results with
those of existing traditional approaches. Conclusions are
finally drawn in Section 5, along with recommendations
for future research.

2. Literature Review

Approaches for feature selection can be categorized into
two models, namely a filter model and a wrapper model
[4]. Statistical techniques, such as principal component
analysis, factor analysis, independent component analy-
sis and discriminate analysis can be adopted in filter-
based feature selection approaches to investigate other
indirect performance measures, most of which are based
on distance and information. Chen and Hsieh [5] pre-
sented latent semantic analysis and web page feature
selection, which are combined with the SVM technique
to extract features. Gold [6] presented a Bayesian view-
point of SVM classifiers to tune hyper-parameter values
in order to determine useful criteria for pruning irrele-
vant features.

The wrapper model [7] applies the classifier accuracy
rate as the performance measure. Some researchers have
concluded that if the purpose of the model is to minimize
the classifier error rate, and the measurement cost for all
the features is equal, then the classifier’s predictive ac-
curacy is the most important factor. Restated, the classi-

fier should be constructed to achieve the highest classi-
fication accuracy. The features adopted by the classifier
are then chosen as the optimal features. In the wrapper
model, meta-heuristic approaches are commonly em-
ployed to help in looking for the best feature subset. Al-
though meta-heuristic approaches are slow, they obtain
the (near) best feature subset. Shon [8] employed GA to
screen the features of a dataset. The selected subset of
features is then fed into the SVM for classification test-
ing. Zhang [9] developed a GA-based approach to dis-
cover a beneficial subset of features for SVM in machine
condition monitoring. Samanta [10] proposed a GA ap-
proach to modify the RBF width parameter of SVM with
feature selection. Nevertheless, since these approaches
only consider the RBF width parameter for the SVM,
they may miss the optimal parameter setting. Huang and
Wang [11] presented a GA-based feature selection and
parameters optimization for SVM. Moreover, Huang et
al. [12] utilized the GA-based feature selection and pa-
rameter optimization for credit scoring.

Several kernel functions help the SVM obtain the op-
timal solution. The most frequently used such kernel
functions are the polynomial, sigmoid and radial basis
kernel function (RBF). The RBF is generally applied
most frequently, because it can classify high-dimensional
data, unlike a linear kernel function. Additionally, the
RBF has fewer parameters to set than a polynomial ker-
nel. RBF and other kernel functions have similar overall
performance. Consequently, RBF is an effective option
for kernel function. Therefore, this study applies an RBF
kernel function in the SVM to obtain optimal solution.
Two major RBF parameters applied in SVM, C and γ,
must be set appropriately. Parameter C represents the
cost of the penalty. The choice of value for C influences
on the classification outcome. If C is too large, then the
classification accuracy rate is very high in the training
phase, but very low in the testing phase. If C is too small,
then the classification accuracy rate is unsatisfactory,
making the model useless. Parameter γ has a much
greater influence on classification outcomes than C, be-
cause its value affects the partitioning outcome in the
feature space. An excessively large value for parameter γ
results in over-fitting, while a disproportionately small
value leads to under-fitting. Grid search [13] is the most
common method to determine appropriate values for C
and γ. Values for parameters C and γ that lead to the
highest classification accuracy rate in this interval can be
found by setting appropriate values for the upper and
lower bounds (the search interval) and the jumping in-
terval in the search. Nevertheless, this approach is a local
search method, and vulnerable to local optima. Addition-
ally, setting the search interval is a problem. Too large a
search interval wastes computational resource, while too
small a search interval might render a satisfactory out-
come impossible.

S. DING ET AL.

Copyright © 2010 SciRes. IIM

356

In addition to the commonly used grid search ap-
proach, other techniques are employed in SVM to im-
prove the possibility of a correct choice of parameter
values. Pai and Hong [14] proposed an SA-based ap-
proach to obtain parameter values for SVM, and applied
it in real data; however, this approach does not address
feature selection, and therefore may exclude the optimal
result. As well as the two parameters C and γ, other fac-
tors, such as the quality of the feature's dataset, may in-
fluence the classification accuracy rate. For instance, the
correlations between features influence the classification
result. Accidental removal of important features might
lower the classification accuracy rate. Additionally, some
dataset features may have no influence at all, or may
contain a high level of noise. Removing such features
can improve the searching speed and accuracy rate.

It is worth underlining that the kernel-based imple-
mentation of SVM involves the problem of the selection
of multiple parameters, including the kernel parameters
(e.g., the γ and p parameters for the Gaussian and poly-
nomial kernels, respectively) and the regularization pa-
rameters C.

Studies have also illustrated that a radial basis kernel
yields the best results in remote sensing applications [15,
16]. We chose to use the radial basis kernel for SVM in
this study. The verification of the applicability of other
specialized kernel functions for the classification of re-
mote sensing data may be used in future studies. The
equation for the radial basis kernel is

() ()2, exp || ||i iK x x x xγ= − − (1)

where γ represents a parameter inversely proportional to
the width of the Gaussian kernel.

3. The Proposed GA-FSSVM and

PSO-FSSVM Models

3.1. Genetic Algorithm

The genetic algorithms are inspired by theory of evolu-
tion; it is type of an evolutionary computing. The prob-
lems are solved by an evolutionary process resulting in a
fittest solution in genetic algorithm. A genetic algorithm
(GA) is used to solve global optimization problems. The
procedure starts from a set of randomly created or se-
lected possible solutions, referred to as the population.
Every individual in the population means a possible so-
lution, referred to as a chromosome. Within every gen-
eration, a fitness function should be used to evaluate the
quality of every chromosome to determine the probabil-
ity of it surviving to the next generation; usually, the
chromosomes with larger fitness have a higher survival
probability. Thus, GA should select the chromosomes
with larger fitness for reproduction by using operations
like selection, crossover and mutation in order to form a

new group of chromosomes which are more likely to
reach the goal. This reproduction goes through one gen-
eration to another, until it converges on the individual
generation with the most fitness for goal functions or the
required number of generations was reached. The opti-
mal solution is then determined.

GA coding strategies mainly include two sectors: one
sector recommends the least digits for coding usage, such
as binary codes, another one recommends using the
real-valued coding based on calculation convenience and
accuracy. Binary codes are adopted for the decision
variables in solving the discrete problems, a suitable en-
coding scheme is needed to encode the chromosome of
each individual, in our study, an encoding scheme is
usually a binary string. We may define the length of bit
string according the precision.

3.2. GA-FSSVM Model

As mentioned before, a kernel function is required in
SVM for transforming the training data. This study
adopts RBF as the kernel function to establish support
vector classifiers, since the classification performance is
significant when the knowledge concerning the data set
is lacking. Therefore, there are two parameters, C and γ,
required within the SVM algorithm for accurate settings,
since they are closely related to the learning and predict-
ing performance. However, determining the values ex-
actly is difficult for SVM. Generally, to find the best C
and γ, a given parameter is first fixed, and then within
the value ranges another parameter is changed and cross
comparison is made using the grid search algorithm. This
method is conducted with a series of selections and
comparisons, and it will face the problems of lower effi-
ciency and inferior accuracy when conducting a wider
search. However, GA for reproduction could provide the
solution for this study. The scheme of an integration of
GA and SVM is shown in Figure 1, to establish a train-
ing and SVM classification model that can be used to
determine optimized SVM parameters and subset fea-
tures mask. Following the above scheme of the proposed
GA-FSSVM model, Figure 1 describes the operating
procedure in this study.

A fitness function assesses the quality of a solution in
the evaluation step. The crossover and mutation func-
tions are the main operators that randomly impact the
fitness value. Chromosomes are selected for reproduction
by evaluating the fitness value. The fitter chromosomes
have higher probability to be selected into the recombi-
nation pool using the roulette wheel or the tournament
selection methods. New population replaces the old
population using the elitism or diversity replacement
strategy and forms a new population in the next genera-
tion. The evolutionary process operates many genera-
tions until termination condition is satisfied.

S. DING ET AL.

Copyright © 2010 SciRes. IIM

357

Figure 1. System architecture of the integrated GA-FSSVM
scheme.

To implement our proposed approach, this research
uses the RBF kernel function for the SVM classifier be-
cause the RBF kernel function can analysis higher-di-
mensional data and requires that only two parameters, C
and γ be defined When the RBF kernel is selected, the
parameters (C and γ) and features used as input attributes
must be optimized using our proposed GA-based system.
Therefore, the chromosome comprises three parts: C, γ
and the features mask. However, these chromosomes
have different parameters when other types of kernel
functions are selected. The binary coding system is used
to represent the chromosome.

Figure 2 shows the binary chromosome representa-
tion of our design. In Figure 2, 1

cg ~ nc
cg represents the

value of parameter C, 1gγ ~ ng γ
γ represents the parameter

value γ, and 1
fg ~ n f

fg represents the feature mask. cn
is the number of bits representing parameter C, nγ is
the number of bits representing parameter g, and fn
is the number of bits representing the features. Note that
we can choose cn and nγ according to the calculation
precision required, and that fn equals the number of
features varying from the different datasets. In Figure 2,
the bit strings representing the genotype of parameter C
and γ should be transformed into phenotype. Note that
the precision of representing parameter depends on the

fnncn

f
i
ff

i
c

i
cc ggggggggg KKKKKK 111 γ

γγγ

Figure 2. The chromosome comprise three parts: C, γ and
the features mask.

length of the bit string, and the minimum and maximum
value of the parameter is determined by the user. For
chromosome representing the feature mask, the bit with
value ‘1’ represents the feature is selected, and ‘0’ indi-
cates feature is not selected. In our study, classification
accuracy, the numbers of selected features are the criteria
used to design a fitness function. Thus, for the individual
with high classification, a small number of features pro-
duce a high fitness value.

3.3. Particle Swarm Optimization

Particle swarm optimization (PSO) [17] is an emerging
population-based meta-heuristic that simulates social
behavior such as birds flocking to a promising position to
achieve precise objectives in a multi-dimensional space.
Like evolutionary algorithms, PSO performs searches
using a population (called swarm) of individuals (called
particles) that are updated from iteration to iteration. To
discover the optimal solution, each particle changes its
searching direction according to two factors, its own best
previous experience (pbest) and the best experience of all
other members (gbest). They are called pbest the cogni-
tion part, and gbest the social part. Each particle repre-
sents a candidate position (i.e., solution). A particle is
considered as a point in a D-dimension space, and its
status is characterized according to its position and ve-
locity. The D-dimensional position for the particle i at
iteration t can be represented as 1 2{ , , }t t t t

i i i iDx x x x= … .
Likewise, the velocity (i.e., distance change), which is
also an D-dimension vector, for particle i at iteration t
can be described as 1 2{ , , }t t t t

i i i iDv v v v= … .

Let 1 2{ , , }t t t t
i i i iDp p p p= … represent the best solution

that particle i has obtained until iteration t, and

1 2{ , , }t t t t
g g g gDp p p p= … denote the best solution obtained

from t
ip in the population at iteration t. To search for the

optimal solution, each particle changes its velocity ac-
cording to the cognition and social parts as follows:

() ()1
1 1 2 2

t t t t t t
id id id id gd idV V c r P x c r P x−= + − + − (2)

()

()()
1

1

1 1 1

1

1
1 0

t
id

t
id v

t t t
id id id

S v
e

if rand S v then X else X

+
+

−

+ + +

=
+

< = =
 (3)

d=1, 2,…, D where c1 indicates the cognition learning
factor; c2 indicates the social learning factor, and r1 and

S. DING ET AL.

Copyright © 2010 SciRes. IIM

358

r2 are random numbers uniformly distributed in U(0,1).
Each particle then moves to a new potential solution
based on the following equation: 1t t t

id id idX X V+ = + , d = 1,
2,…, D. The basic process of the PSO algorithm is given
as follows.

Step 1: (Initialization) Randomly generate initial par-
ticles.

Step 2: (Fitness) Measure the fitness of each particle in
the population.

Step 3: (Update) Compute the velocity of each particle
with Equation (2).

Step 4: (Construction) For each particle, move to the
next position according to Equation (3).

Step 5: (Termination) Stop the algorithm if termina-
tion criterion is satisfied; return to Step 2 otherwise the
iteration is terminated if the number of iteration reaches
the pre-determined maximum number of iteration.

Figure 3 shows the flowchart for PSO-SVM classifier.
Based on the rules of particle swarm optimization, we

set the required particle number first, and then the initial
coding alphabetic string for each particle is randomly
produced. In our study, we coded each particle to imitate
a chromosome in a genetic algorithm.

3.4. PSO-FSSVM Model

In this following of the section, we describe the proposed
SVM-PSO classification system for the classification of
high-dimensional data. As mentioned in the Introduction,
the aim of this system is to optimize the SVM classifier
accuracy by automatically: 1) detecting the subset of the
best discriminative features (without requiring a user-
defined number of desired features) and 2) solving the
SVM-RBF model selection issue (i.e., estimating the best
values of the regularization and kernel parameters). In
order to attain this, the system is derived from an opti-
mization framework based on PSO.

This study developed a PSO approach, termed PSO-
FSSVM, for parameter determination and feature selec-
tion in the SVM. Without feature selection, two decision
variables, designated C and γ are required. For the fea-
ture selection, if n features are required to decide which
features are chosen, then 2 + n decision variables must be
adopted. The value of n variables ranges between 0 and 1.
If the value of a variable is less than or equal to 0.5, then
its corresponding feature is not chosen. Conversely, if
the value of a variable is greater than 0.5, then its corre-
sponding feature is chosen. Figure 4 illustrates the solu-
tion representation. Pc = C, Pγ = γ, an = Feature n is se-
lected or not.

The following shows the while process for PSO-
FSSVM. First, the population of particles is initialized,
each particle having a random position within the
D-dimensional space and a random velocity for each
dimension. Second, each particle’s fitness for the SVM is

Figure 3. The process of PSO algorithm for solving optimi-
zation problems.

1 2 3 ………… n + 2

Pc Pγ a1 ………… an

Figure 4. Solution representation.

evaluated. The each particle’s fitness in this study is the
classification accuracy. If the fitness is better than the
particle’s best fitness, then the position vector is saved
for the particle. If the particle’s fitness is better than the
global best fitness, then the position vector is saved for
the global best. Finally the particle’s velocity and posi-
tion are updated until the termination condition is satis-
fied. Figure 5 shows the architecture of the developed
PSO-based parameter determination and feature selection
approach for SVM.

4. Experimental Results

To evaluate the classification accuracy of the proposed
system in different classification tasks, we tried two
real-world datasets: the UCI database [18] and hyper-
spectral benchmark data set [19]. These two data sets
have been frequently used as benchmarks to compare the
performance of different classification methods in the
literature.

Our implementation was carried out on the Matlab 7.0
development environment by extending the LIBSVM

S. DING ET AL.

Copyright © 2010 SciRes. IIM

359

Figure 5. The architecture of the proposed PSD-SVM based parameters determination and feature selection approach for
SVM.

which is originally designed by Chang and Lin [20]. The
empirical evaluation was performed on Intel Pentium
Dual-Core CPU running at 1.6 GHz and 2G RAM.

4.1. UCI Dataset

These UCI datasets consist of numeric and nominal at-
tributes. To guarantee valid results for making predic-
tions regarding new data, the dataset is further randomly
partitioned into training sets and independent test sets via
a k-fold cross validation. Each of the k subsets acted as
an independent holdout test set for the model trained
with the remaining k – 1 subsets. The advantages of cross
validation are that all of the test sets were independent
and the reliability of the results could be improved. The
data set is divided into k subsets for cross validation. A
typical experiment uses k = 10. Other values may be used
according to the data set size. For a small data set, it may
be better to set larger k, because this leaves more exam-
ples in the training set. This study used k = 10, meaning
that all of the data will be divided into 10 parts, each of
which will take turns at being the testing data set. The
other nine data parts serve as the training data set for
adjusting the model prediction parameters.

The Grid search algorithm is a common method for
searching for the best C and γ . Figure 6 shows the
process of Grid algorithm combined with SVM classifier.
In the Grid algorithm, pairs of (C, γ) are tried and the
one with the best cross-validation accuracy is chosen.

After identifying a ‘better’ region on the grid, a finer grid
search on that region can be conducted. This research
conducted the experiments using the proposed GA-SVM
and PSO-SVM approaches and the Grid algorithm. The
results from the proposed method were compared with
that from the Grid algorithm. In all of the experiments
10-fold cross validation is used to estimate the accuracy
of each learned classifier.

The detail parameter setting for genetic algorithm is as
the following: population size 20, crossover rate 0.6,
mutation rate 0.05, single-point crossover, roulette wheel
selection, and elitism replacement, we set nc = 12, nγ = 15,
the value of nf depends on the experimental datasets
stated in Table 2. According to the fitness function and
the number of selected features, we can compare differ-
ent methods. The GA-FSSVM and PSO-FSSVM related
parameters is described in Table 3.

The termination criterion is that the generation number
reaches generation 100. The best chromosome is ob-
tained when the termination criteria satisfy. Taking the
German dataset, for example, over accuracy, number of
selected features for each fold using GA-FSSVM ap-
proach, PSO-FSSVM approach and Grid algorithm are
shown in Table 1. For GA-SVM approach, its average
accuracy is 87.08%, and average number of features is
11.46, and for PSO-SVM approach, the average accuracy
is 85.47% and average number of features is 10.92, but
for Grid algorithm, its average accuracy is 81.46%, and
all 24 features are used.

S. DING ET AL.

Copyright © 2010 SciRes. IIM

360

Table 1. Experimental result for German dataset using GA-based, PSO-based and grid algorithm approach.

Fold # GA-FSSVM PSO-FSSVM Grid algorithm

 overall accuracy selected features overall accuracy [%] selected features overall accuracy [%]

1 85 12 91 9 79

2 86 8 90 12 80

3 87 14 87 10 78

4 88 11 86 11 81

5 87 10 83 14 84

6 84 9 84 13 80

7 86 14 87 14 82

8 88 14 86 10 82

9 87 13 83 10 86

10 89 10 88 7 82

11 91 13 81 11 81

12 85 13 82 11 84

13 89 8 83 10 80

Average 87.076923 11.46153 85.461538 10.923076 81.461538

Table 2. Experimental results for test dataset.

Names GA-FSSVM PSO-FSSVM Grid algorithm

 overall accuracy selected eatures overall accuracy [%] selected features overall accuracy [%]

Australian 88.2 5.87 91.34 6.23 87.14

Heart disease 92.05 7.53 95.12 5.76 85.47

Vehicle 88.43 9.34 93.02 11.5 83.33

Sonar 96.26 18.23 98.24 16.25 95.19

breast cancer 95.87 1.39 98.9 1.2 94.67

Table 3. Parameters setting.

PSO-FSSVM GA-FSSVM Grid Algorithm

Parameter value Parameter Value Parameter Value

Population size 20 Population size 20 C 0…215

Number of generations 100 Number of generations 100 γ 2-15 …1

Vmax 4 Probability of crossover 0.6

C1,C2 2 Probability of mutation 0.05

S. DING ET AL.

Copyright © 2010 SciRes. IIM

361

Figure 6. Parameters setting using grid algorithm.

To compare the two proposed evolutionary computing

approaches with the Grid algorithm, as shown in Table 1.
Generally, compared with the Grid algorithm, the two
proposed approaches have good accuracy performance
with fewer features.

4.2. Hyperspectral Dataset

4.2.1. Dataset Description
To validate the proposed intelligent optimization meth-
ods, we also compare the two evolutionary computing
methods with traditional classification method for hy-
perspectral data classification. The classifier is used by
SVM.

The hyperspectral remote sensing image used in our
experiments is a section of a scene taken over northwest
Indiana’s Indian Pines by the AVIRIS sensor in 1992
[19]. From the 220 spectral channels acquired by the
AVIRIS sensor, 20 channels are discarded because af-
fected by atmospheric problems. From the 16 different
land-cover classes available in the original ground truth,
seven classes are removed, since only few training sam-
ples were available for them (this makes the experimen-
tal analysis more significant from the statistical view-
point). The remaining nine land-cover classes were used
to generate a set of 4757 training samples (used for
learning the classifiers) and a set of 4588 test samples
(exploited for assessing their accuracies) (see Table 4).
The origin image and reference image are shown in Fig-
ure 7.

4.2.2. Experiment Settings
In the experiments, when using the proposed intelligent
optimization methods, we considered the nonlinear SVM
based on the popular Gaussian kernel (referred to as
SVM-RBF). The related parameters C and γ for this ker-
nel were varied in the arbitrarily fixed ranges [10−3, 300]

Table 4. Number of training and test samples.

CLASS TRAINNING TEST TOTAL

ω1-Corn-no till 742 692 1434

ω2-Corn-min till 442 392 834

ω3-Grass/Pasture 260 237 497

ω4-Grass/Trees 389 358 747

ω5-Hay-windrowed 236 253 489

ω6-Soybean-no till 487 481 968

ω7-Soybean-min till 1245 1223 2468

ω8-Soybean-clean till 305 309 614

ω9-Woods 651 643 1294

Total 4757 4588 9345

(a) (b)

Figure 7. Hyperspectral image data. (a) Origin image; (b)
Ground truth image.

and [10−3, 3], so as to cover high and small regularization
of the classification model, and fat as well as thin kernels,
respectively. The experiments are implemented by
LIBSVM [20].

LIBSVM is widely used in SVM classifier, but the
value of RBF kernel parameters is always difficult to
define. The default values are as follows: C is 1, and γ is
the reciprocal of the dimension. In our experiment, the
dimension is the band number, so the parameter value of
γ is 0.005.In the same way, the default value of C of
SVM parameter in ENVI is 100, and γ is the reciprocal
of the dimension. In our experiment, the dimension is the
band number, so the parameter value of γ is 0.005. In
addition, we also select SVM parameters by grid algo-
rithm. In grid algorithm, according to reference [4], the
range of C and γ is [2-5, 215] and [2-15, 23], the step length
is 22.

Concerning the PSO algorithm, we considered the fol-
lowing standard parameters: swarm size S = 20, inertia
weight w = 1, acceleration constants c1 and c2 equal to 2,
and maximum number of iterations fixed at 300. The
parameters setting is summarized in Table 5.

S. DING ET AL.

Copyright © 2010 SciRes. IIM

362

In addition, for comparison purpose, we implemented
the three traditional methods and our two intelligent op-
timization methods for classification. The experimental
comparison results are shown in Figure 8 and Table 6.

We apply the PSO-FSSVM classifier to the available
training data. Note that each particle of the swarm was
defined by position and velocity vectors of a dimension
of 202. At convergence of the optimization process, we
assessed the PSO-FSSVM-RBF classifier accuracy on
the test samples. The achieved overall accuracy is 95.25%
corresponding to substantial accuracy gains as compared
to what is yielded either by the SVM classifier (with the
Gaussian kernel) based grid algorithm applied to all
available features (+4.27%) or by the GA-FSSVM clas-
sifier (+2.36) with 101 features. Moreover, by means of
this approach, the average subset feature number is 120,
which is fewer than original feature number 220. The
whole process is implemented automatically and without
user’s interface.

Table 6 illustrates the classification of different classi-
fiers. As can be seen our proposed classifier have better
accuracy than traditional classifiers. The LIBSVM de-
fault setting lead to the lowest accuracy, which is
52.79%.The best percentage of classification, is 95.25%
by PSO-FSSVM method. The results still confirm the
strong superiority of our proposed PSO-FSSVM over the
other classifiers, with a gain in overall accuracy +12.80%,
+4.27% and +2.36% with respect to the default SVM
classifier in ENVI, the grid algorithm, and the GA-SVM
classifiers (see Table 6).

From the obtained experimental results, we conclude
the proposed PSO-FSSVM classifier has the best classi-
fication accuracy account of its superior generalization
capability as compared to traditional classification tech-
niques.

5. Discussion and Conclusion

Feature selection is an important issue in the construction
of classification system. The number of input features in
a classifier should be limited to ensure good predictive
power without an excessively computationally intensive
model. This work investigated two novel intelligent op-
timization models that hybridized the two evolutionary
computing optimizations and support vector machines to
maintain the classification accuracy with small and suit-
able feature subsets. The work is novel, since few re-
searches have conducted on the GA-FSSVM and PSO-
FSSVM classification system to find simultaneously an
optimal feature subset and SVM model parameters in
high-dimensional data classification.

In this paper, we addressed the problem of the classi-
fication of high dimensional data using intelligent opti-
mization methods. This study presents two evolutionary
computing optimization approaches: GA-FSSVM and
PSO-FSSVM, capable of searching for the optimal pa-
rameter values for SVM and a subset of beneficial fea-
tures. This optimal subset of features and SVM parame-
ters are then adopted in both training and testing to obtain

Table 5. Parameters setting of different methods.

PSO-SVM GA-SVM Grid Algorithm

Parameter Value Parameter Value Parameter Value

Swarm size 20 Population size 20 C [2-5, 2-3,⋯ ,215]

Number of generations 300 Number of generations 300 γ [2-15, 2-13,⋯ ,23]

Vmax 4 Probability of crossover 0.6

C1, C2 2 Probability of mutation 0.05

C:0-300; γ:0-3 C:0-300; γ:0-3

Table 6. Classification result by different parameter selection methods.

Methods of selecting parameters C γ Band num Classification accuracy (%)

LIBSVM default 1 0.005 200 52.79

ENVI default 100 0.005 200 82.45

10–cross validation (grid search algorithm) 8 2 200 90.98

GA-FSSVM 157.89 0.243 101 92.89

PSO-FSSVM 223.32 0.9696 120 95.25

S. DING ET AL.

Copyright © 2010 SciRes. IIM

363

(a) (b)

(c) (d)

(e) (f)

Figure 8. Classification accuracy of different classifiers. (a)
Train data and test data; (b) LIBSVM 52.79%; (c) ENVI
82.45%; (d) Grid algorithm 90.98%; (e) GA-FSSVM 92.89%;
(f) PSO-FSSVM 95.25%.

the optimal outcomes in classification. Comparison of
the obtained results with traditional Grid-based approach
demonstrates that the developed PSO-FSSVM and
GA-FSSVM approach have better classification accuracy
with fewer features. After using feature selection in the
experiment, the proposed approaches are applied to
eliminate unnecessary or insignificant features, and ef-
fectively determine the parameter values, in turn im-
proving the overall classification results, and the PSO-
FSSVM approach is better than GA-FSSVM in most
datasets in our experiments.

Experimental results concerning a simulated dataset
revealed that the proposed approach not only optimized
the classifier’s model parameters and correctly obtained
the discriminating feature subset, but also achieved ac-
curate classification accuracy.

Results of this study are obtained with an RBF kernel
function. However, other kernel parameters can also be

optimized using the same approach. Experimental results
obtained from UCI datasets, other public datasets and
real-world problems can be tested in the future to verify
and extend this approach.

In the future, we need to further improve the classifi-
cation accuracy by using other evolutionary optimization
algorithm, such as Simulated Annealing Algorithm (SAA),
Artificial Immune Algorithm (AIA). In addition, we are
to optimize the SVM classifiers by several combinative
evolutionary optimization methods in the future.

6. Acknowledgements

The authors would like to thank the anonymous referees
for their valuable comments, which helped in improving
the quality of the paper. This research was supported by
National Natural Science Foundation of China under
Grant NO. 60705012.

7. References

[1] V. N. Vapnik, “The Nature of Statistical Learning The-

ory,” Springer Verlag, New York, 2000.
[2] H. Fröhlich and O. Chapelle, “Feature Selection for Sup-

port Vector Machines by Means of Genetic Algorithms,”
Proceedings of the 15th IEEE International Conference
on Tools with Artificial Intelligence, Sacramento, 3-5
November 2003, pp. 142-148.

[3] C. W. Hsu and C. J. Lin, “A Simple Decomposition
Method for Support Vector Machine,” Machine Learning,
Vol. 46, No. 3, 2002, pp. 219-314.

[4] H. Liu and H. Motoda, “Feature Selection for Knowledge
Discovery and Data Mining,” Kluwer Academic, Boston,
1998.

[5] R. C. Chen and C. H. Hsieh, “Web Page Classification
Based on a Support Vector Machine Using a Weighed
Vote Schema,” Expert Systems with Applications, Vol. 31,
No. 2, 2006, pp. 427-435.

[6] C. Gold, A. Holub and P. Sollich, “Bayesian Approach to
Feature Selection and Parameter Tuning for Support
Vector Machine Classifiers,” Neural Networks, Vol. 18,
No. 5-6, 2005, pp. 693-701.

[7] R. Kohavi and G. H. John, “Wrappers for Feature Subset
Selection,” Artificial Intelligence, Vol. 97, No. 1-2, 1997,
pp. 273-324.

[8] T. Shon, Y. Kim and J. Moon, “A Machine Learning
Framework for Network Anomaly Detection Using SVM
and GA,” Proceedings of 3rd IEEE International Work-
shop on Information Assurance and Security, 23-24 March
2005, pp. 176-183.

[9] L. Zhang, L. Jack and A. K. Nandi, “Fault Detection Us-
ing Genetic Programming,” Mechanical Systems and Sig-
nal Processing, Vol. 19, No. 2, 2005, pp. 271-289.

[10] B. Samanta, K. R. Al-Balushi and S. A. Al-Araimi, “Ar-
tificial Neural Networks and Support Vector Machines

S. DING ET AL.

Copyright © 2010 SciRes. IIM

364

with Genetic Algorithm for Bearing Fault Detection,”
Engineering Applications of Artificial Intelligence, Vol.
16, No. 7-8, 2003, pp. 657-665.

[11] C. L. Huang, M. C. Chen and C. J. Wang, “Credit Scor-
ing with a Data Mining Approach Based on Support
Vector Machines,” Expert Systems with Applications, Vol.
33, No. 4, 2007, pp 847-856.

[12] C. L. Huang and C. L. Wang, “A GA-Based Feature Se-
lection and Parameters Optimization for Support Vector
Machines,” Expert Systems with Applications, Vol. 31,
No. 2, 2006, pp. 231-240.

[13] C. W. Hsu, C. C. Chang and C. J. Lin, “A Practical Guide
to Support Vector Classification,” Technical Report, De-
partment of Computer Science and Information Engi-
neering, University of National Taiwan, Taipei, 2003, pp.
1-12.

[14] P. F. Pai and W. C. Hong, “Support Vector Machines
with Simulated Annealing Algorithms in Electricity Load
Forecasting,” Energy Conversion and Management, Vol.
46, No. 17, 2005, pp. 2669-2688.

[15] F. Melgani and L. Bruzzone, “Classification of Hyper-
spectral Remote Sensing Images with Support Vector

Machines,” IEEE Transactions on Geoscience and Re-
mote Sensing, Vol. 42, No. 8, 2004, pp. 1778-1790.

[16] G. M. Foody and A. A. Mathur, “Relative Evaluation of
Multiclass Image Classification by Support Vector Ma-
chines,” IEEE Transactions on Geoscience and Remote
Sensing, Vol. 42, No. 6, 2004, pp. 1335-1343.

[17] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimi-
zation,” IEEE International Conference on Neural Net-
works, IEEE Neural Networks Society, Perth, 27 No-
vember-1 December 1995, pp. 1942-1948.

[18] S. Hettich, C. L. Blake and C. J. Merz, “UCI Repository
of Machine Learning Databases,” Department of Infor-
mation and Computer Science, University of California,
Irvine, 1998. http//www.ics.uci.edu/~mlearn/MLReposi-
tory.html

[19] “Aviris Indiana’s IndianPinesl DataSet.” ftp://ftp.ecn.Pur-
due.edu/biehl/MultiSpec/92AV3C.lan; ftp://ftp.ecn.purdue.
edu/biehl/PCMultiSpeeThyFiles.zip

[20] C. C. Chang and C. J. Lin, “LIBSVM: A Library for Sup-
port Vector Machines,” 2005. http://www.csie.ntu.edu.
tw/~cjlin/libsvm

Intelligent Information Management, 2010, 2, 365-374
doi:10.4236/iim.2010.26044 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

Steady-State Queue Length Analysis of a Batch Arrival
Queue under N-Policy with Single Vacation and

Setup Times

Zhong Yu1, Mingwu Liu2, Yongkai Ma1
1School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China

2School of Management, Chongqing Jiaotong University, Chongqing, China
E-mail: liumingwu2007@yahoo.cn

Received March 10, 2010; revised April 20, 2010; accepted May 23, 2010

Abstract

This paper investigates the steady state property of queue length for a batch arrival queue under N-policy
with single vacation and setup times. When the system becomes empty, the server is turned off at once and
takes a single vacation of random length V . When he returns, if the queue length reaches or exceeds thresh-
old (1)N N , the server is immediately turned on but is temporarily unavailable due to a random setup time

U before offering service. If not, the server stays in the system until the queue length at least being N . We
derive the system size distribution and confirm the stochastic decomposition property. We also derive the
recursion expressions of queue length distribution and other performance measures. Finally, we present some
numerical examples to show the analytical results obtained. Sensitivity analysis is also performed.

Keywords: Queue Length, Recursion Expressions, N Policy, Setup

1. Introduction

This paper pays attention to a batch arrival queueing
system under N-policy with a single vacation and setup
times, which can model queue-like manufacturing/prod-
uction/inventory system. Consider a system of process-
ing in which the operation does not start until some pre-
determined number (N) of semi-finished products wait-
ing for processing. To be more realistic, the machine
need a setup time for some preparatory work before
starting processing. When all the semi-finished products
in the system are processed, the machine is shut down
and leaves for a vacation. The operator performs ma-
chine repair, preventive maintenance and some other
jobs during the vacation. After these extra operations, the
operator returns and checks the number of semi-finished
products in the queue determining whether or not start
the machine.

Queueing system with vacations has been attracted
considerable attention to many authors. It has effectively
been applied in computers and communication systems,

production/inventory system. Doshi [1] and Takagi [2]
presented an excellent survey of queueing system with
server vacations. One of the important achievements for
vacation queueing system is the famous stochastic
decomposition results, which was first established by
Fuhrmann and Cooper [3].

The N-policy was first introduced by Yadin and Naor
[4], which is a control policy turning the server on
whenever N (a predetermined value) or more customers
in the system, turning off the server when system is
empty. Lee et al. [5] successfully combined the batch
arrival queue with N-policy and obtained the analytical
solutions. Later, Lee et al. [6,7] analyzed in detail a
batch arrival Mx/G/1 queue under N-policy with a single
vacation and repeated vacation respectively. They de-
rived the system size distribution which confirmed the
famous stochastic decomposition property, and the opti-
mal stationary operating policy was also investigated. At
the present day, batch arrival queueing system under
N-policy with different vacation policies have been re-
ceived considerable attention because of its practical
implication in production/inventory system. A number of
searchers, such as Choudhury et al. [8-10], Ke [11,12],
and Reddy et al. [13], and many authors not be listed

The authors also thank the National Nature Science Foundation of
China for its support (contract: 70672104).

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

366

above have considered batch arrival queueing system
under N-policy with various vacation policies.

It is to be noted that few authors involved above con-
sidered the probability distribution of the number of cus-
tomers in the system for batch arrival queue under
N-policy with different vacations policies. Recently,
Wang et al. [14] analyzed the behaviors of queue length
distributions of a batch arrival queue with server vaca-
tions and breakdowns based on a maximum entropy ap-
proach [15,16]. Ke et al. [17] also used the maximum
entropy solutions for batch arrival queue with an
un-reliable server and delaying vacations. They all de-
rived the approximate formula for the probability distri-
bution of the number of customers in the system. Tang
and his co-author [18,19] paid attention to the queue
length distribution for queueing system, because it is an
important performance measure for the system design
and optimization. For example, the queue-length distri-
bution has been applied for the communication system
buffer design [20].

To the best of our knowledge, fewer researchers have
derived the queue length distribution under N-policy
batch arrival queueing system. Although, the batch arri-
val under N-policy have been studied extensively, but the
exact analytical solutions for queue length distribution do
not be obtained. This motives us to develop an approach
for the queue length distribution of the N-policy batch
arrival queueing system. In this paper, we study the
steady state queue length for an Mx/G/1 under N policy
with single vacation and setup times. First, we derive the
system size distribution by the supplementary variables
method. Second, using the Leibniz formula of derivation
combing some knowing results, we obtain the additional
queue length distribution and the recursion expressions
of the queue length distribution. Finally, we present sev-
eral examples for application of these recursion expres-
sions. Also, the effect of different system parameters on
the queue length distribution is investigated.

2. The Mathematical Model and Notations

This paper considers an Mx/G/1 queueing system where
the arrival occurs according to a compound Poisson
process with random batch size X . Arriving customers
in the queue form a single waiting line and the service
discipline is assumed to be FCFS. The service time is an
independent and identically distributed random variable
with a general distribution function (), 0S t t , and with

finite mean service time. The server can only process one
customer at a time. The server is turned off each time if
there is no customer in the queue and leaves for a vaca-
tion of random length V . When he returns from the
vacation and finds the queue length is no less than N ,
the server starts to setup with random length U . Other-

wise, he stays in the system and does not start setup until
the customers reaches and exceeds N. When the setup is
completed, the server begins to serve the customers until
there is no customer in the system.

Throughout the analysis, the following notations and
the variables will be adopted.

N threshold (1N)
 mean arrival rate
 mean service rate

 E V mean vacation time

 E U mean setup time

S service time random variable
V vacation times random variable
U setup times random variable

 s x the probability density function S

 v x the probability density function V

 u x the probability density function U

 *S the laplace-Stieltjies transform (LST) of S

 *V the LST of V

*ˆ ()U the LST of U

 0S t remaining service time of the customer in ser-

vice at time t

 0V t remaining vacation time of the customer in

vacation at time t

 0U t remaining setup time of the customer in setup

at time t

 N t j , the number of customers in the queue at

time t

k probability that k customers arrival during a

vacation

 kg P X k , where 1, 2,k

1

k
k

k

X g z

z = , the p.g.f. of each batch size

 Y t 0 if the server is on vacation

1 if the server is in dormancy
2 if the server is in setup
3 if the server is busy

 traffic intensity, E X . In the steady

state should be assumed to be less than unity

 1 km k m m , the number of customers pre-

sents the sum of k batches of customers
1

1

1
[] 1 1 1

1
k

k

ii

k
m k j m m

and i i j

 , the sum of

k batches of customer equals to 1j .

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

367

3. Preliminary Formula for Mx/G/1
Queueing System

Before discussing our model, let us recall some results in

the ordinary Mx/G/1 queueing system. Let 0 limj
t

p P

 () , 0N t j j be the steady state queue length dis-

tribution for the Mx/G/1 queueing system. From Tang et
al. [19], the recursion expressions of queue-length dis-
tribution are as follows:

0
0 1p (1)

1

0

1 1

1 1 , 1
j s

j j j s i
s i

p g j

 (2)

where

 1

1 s

s

 ;
0

ts e dS t
 ;

1

1

1

0
1 [] 1

1

1 0
1 1 []

1
1

!

1
!

i

k

ij
t

j m m
i m i j

kj i i
t

j m m
i i m k k

t
g g e S t dt

s i

t
s g g e dS t

k

1j .

Let G z be the p.g.f. of the number of customers in

the queue at stationary. We have

z S X z

G z
S X z z

1- 1- -
=

-
 (3)

4. The System Size Distribution

This section, we set up the system equation for the sys-
tem size distribution at stationary and derive the p.g.f. of
the system size distribution. We introduce the supple-

mentary variables 0S t , 0V t and 0U t for obtain-

ing a Markov process ,N t t , where 0t V t

if 0Y t , 0t , if 1Y t , 0t U t , if

 2Y t and 0t S t , if 3Y t . Denote

 0, , , 0

0,1,
n

Q x t dt P N t n x V t x dt Y t

n

 , 1 , 0, , 1
n

R t P N t n Y t n N

 0, , , 2

0,1,
n

U x t dt P N t n x U t x dt Y t

n

 0, , , 3

0,1,
n

P x t P N t n x S t x dt Y t

n

Following the argument of Lee et al. [5-7], we can
easily set up the following steady state system equations
the supplementary variables technique.

 1 1 2 0
d

P x P x P s x
dx

 (4)

1

1
1

0 ,

2, , 1

n

n n n n k k
k

d
P x P x P s x P x g

dx

n N

(5)

1

1

1

() 0

0 ,

n n n

n

n k k n
k

d
P x P x P s x

dx

P x g U s x n N

 (6)

 0 0 1 0
d

Q x Q x P v x
dx

 (7)

1

,

1, 2,

n

n n n k k
k

d
Q x Q x Q x g

dx

n

 (8)

1

0

0N N N

N

k N k
k

d
U x U x Q u x

dx

u x R x g

 (9)

1

1

0

0

, 1,

n N

n n n k k n
k

N

k n k
k

d
U x U x U x g Q u x

dx

u x R g n N

(10)

 0 00 0R Q (11)

1

0 0 , 1, , 1
n

n n n k k
k

R Q R g n N

 (12)

Taking the LST of both sides of Equations (4)-(10),
we get

 1 1 1 20 0P P P P S (13)

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

368

1

1

1

0 0

,

2, , 1

n n n n

n

n k k
k

P P P P S

P g

n N

 (14)

*
1

1
*

1

0 0

(0) ,

n n n n

n

n k k n
k

P P P P S

P g U S

n N

 (15)

 0 0 0 10 0Q Q Q P V (16)

1

0 ,

1,2,

n

n n n n k k
k

Q Q Q Q g

n

 (17)

*

1
*

0

ˆ0 0

ˆ

N N N N

N

k N k
k

U U U Q U

U R g

 (18)

1

1

0

0

ˆ ˆ0 ,

1,

n N

n n n n k k
k

N

n k n k
k

U U U U g

Q U U R g

n N

 (19)

Noted that the LST of nP x , nQ x and nU x is

defined as follows:

0

x
n nP e P x dx

 ,
0

x
n nQ e Q x dx

 ,

0

x
n nU e U x dx

 .

Now, we define the following p.d.f.

1

, n
n

n

P z P z

 ,
1

,0 0 n
n

n

P z P z

0

, n
n

n

Q z Q z

 ,
0

,0 0 n
n

n

Q z Q z

 , n
n

n N

U z U z

 ,
0

(,0) (0) n
n

n

Q z Q z

1

0

N
n

n
n

R z R z

 .

From Equations (13)-(15), we have

 1

, ,0

,0
0 ,0

X z P z P z

P z
S P S U z

z

 (20)

Letting X z , we get

1,0 0

,0
zS X z U z P

P z
z S X z

 (21)

Substituting (21) into Equation (20), we have

1,0 0

,
z S X z S U z P

P z
z S X z X z

(22)

Similarly, from (16), (17) and (18), (19) respectively
and combining (11) and (12), we have

 1,0 0Q z P V X z (23)

1 0

,
P V X z V

Q z
X z

 (24)

ˆ,0

,0 1

U z U X z

Q z X z R z

 (25)

ˆ,

,0 1

U z U X z U

Q z X z R z

X z

 (26)

Let P z be the p.g.f. of the queue size at an arbi-

trary time epoch. Then,

 ,0 ,0 ,0P z P z Q z U z R z (27)

Using Equations (21)-(26) in P z , we have

1

1

ˆ1
0

ˆ

z S X z
P z

z S X z

V X z U X z
P

X z

U X z R z

 (28)

Following Lee et al. [7], we have

1

1
0

1
0

N
n

n
n

R z P z

 (29)

where 0 0 V ,

0

, 1
n

n i n i
i

n

 , 0 1 ,

and
1

, 1
n

n i n i
i

g n

 . n is the probability that

system state visit n during an idle period in the Mx/G/1/
N-policy queue [5].

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

369

Taking (29) into (28), we have

1

1

0

1
0

ˆ1

ˆ
N

n
n

n

z S X z
P z P

z S X z

V X z U X z

X z

U X z z

 (30)

From Equation (30) and (1) 1P , we get

1 1

0

1
0

N

n
n

P
E U E V

 (31)

Thus, the p.d.f. of the system size distribution in the
steady state becomes

 P z G z z (32)

where

1

0

1

0

1

ˆ1

1

ˆ

N

n
n

N
n

n
n

z
E U E V

V X z U X z

X z

U X z z

Remark 4.1

Note that for 0 1P U , 0E U and Û

 1X z , then the Equation (32) agrees with Equa-

tion (25) of Lee et al. [7].

Remark 4.2
Let 1N , our model can be reduced to the batch ar-

rival queue under a single vacation policy with startup.
In this case the result (32) coincides with Equation (30)
of Ke [21], in which the closedown time is assumed to be
zero.

5. The Queue Length Distribution

5.1. The Additional Queue Length Distribution

This section, we will derive the additional queue length
distribution. From (32), we see that the stationary queue
length distribution of the Mx/G/1queue under N policy

with a single vacation and setup times decomposes into
two independent random variables: one is the stationary
queue length distribution of the ordinary Mx/G/1 queue;
another is the additional queue length (aL) distribution
due to N policy with a single vacation and setup times.

From the definition of p.d.f., the additional queue

length distribution a
jp is given by

 0

1
|

!

j
a a
j zj

d
p P L j z

j dz
 (33)

Obviously, the probability of additional queue length
being zero is as follows

0 0 1

0

1
|a
z N

n
n

p z
E U E V

 (34)

When 1, , 1j N , we can get the probability dis-

tribution of the additional queue length aL j by di-

rect derivative of ()z .

1

0

1

0
0

1 1

!

ˆ1

1

ˆ |

j
a
j N j

n
n

N
n

n z
n

d
p

j dzE U E V

V X z U X z

X z

U X z z

 (35)

Following Leibniz formula, we have

1
0

0

1

0
0

1 1 1

! 1

ˆ1

ˆ | ,

1, , 1

kj
a
j N k

k
n

n

j k

j k

k j k N
n

n zk j k
n

j d
p

kj X zdzE U E V

d
V X z U X z

dz

d d
U X z z

dz dz

j N

(36)

First, let us define the following functions xf z

1

1 X z
, Vf z V X z and ˆ

ˆ
U

f z U

 X z . For sake of convenience, we note

 0| 0
k

k
X z xk

d
f z f

dz . It is to be noted that the fol-

lowing recursion expressions hold.

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

370

() ()1

0

(0) (0)
, 1

! !

n kn
x x

n k
k

f f
g n

n k

 (37)

() ()
ˆ

0

(0) (0,)
(), 1

! !

n n
tU

f y t
e dU t n

n n
 (38)

() ()

0

(0) (0,)
(), 1

! !

n n
tVf y t

e dV t n
n n

 (39)

where

1() 1

1
0

0, 0,1

! 1 !

n kn n

k
k

y t y tk
t g

n n n k

 ,

 , tX zy z t e .

Substitute (37)-(39) into (36), after some manipula-
tions, we have

()() ()1
ˆ

0 0

1

0

()()
ˆ

0
1

0

00 0

! ! !

00 ˆ1
! !

1, , 1

j k sk sj j k
X V U

k sa
j N

n
n

kj j
X U

j k
k
N

n
n

ff f

k s j k s
p

E U E V

ff
V U

j k

E U E V

j N

 (40)

When , 1,j N N , in the similar manner pro-

ceeding with (36), we get the following additional queue
length distribution.

()() ()1
ˆ

0 0

1

0

() 1
ˆ

0

1

0

00 0

! ! !

00 ˆ1
! !

, 1,

j k sk sj j k
X V U

k sa
j N

n
n

j kj N
X U

k
k

N

n
n

ff f

k s j k s
p

E U E V

ff
V U

j j k

E U E V

j N N

 (41)

With a direct method, we have derived the additional
queue length distribution presented by (34), (40) and (41).
Also, following the stochastic decomposition (32), the
analytical queue length distribution can be derived.

5.2. The Queue Length Distribution in

Equilibrium

Let jp P L j be the steady state probability dis-

tribution of queue length (L) for the Mx/G/1 queueing

system under N-policy with a single vacation and setup
times. From (32), (1) and (34), we have

0 0 1

0

1
| 1z N

n
n

p P z
E U E V

 (42)

When 1, , 1j N , the probability of queue length

L j is given by

0

0

0

0

1
|

!

k j kj

j zk j k
k

j
a

k j k
k

d G z d zj
p P L j

kj dz dz

p p

(43)

where a
j kp is given by (40).

When , 1,j N N , we first analyze the following

two cases:

1) If k j N , that is j k N , a
j kp is given by

(41).

2) If 1k j N , that is 1j k N , a
j kp is

given by (40).
So, the probability of queue length L j j N is

given by

0 0 0

0 0 1

j j N j
a a a

j k j k k j k k j k
k k k j N

p p p p p p p

 (44)

The recursion expressions (42), (43) and (44) present
the steady state queue length distribution for the Mx/G/1
queueing system under N-policy with a single vacation
and setup times. We can see that linking j with (37)-

(39) the queue length distribution could be calculated by
these recursion expressions.

6. Numerical Experiments

This section we try to illustrate the application of these
recursion expressions by taking several numerical exam-
ples. Here we assume that the batch size distribution is

displaced geometric distribution i.e. 11 ,k
kg p p

1k . From (37), we have () (0) ! 1 , 1n
xf n p n ,

which can be derived by the mathematical induction. The
service time distributions are assumed to follow the ex-
ponential distribution with mean [] 1E S . Further-

more, we take the vacation time distributions and setup
time distributions are 3-stage Erlang distribution with
finite mean [] 3E V v and 4-stage Erlang distribution

[] 4E U u respectively. For the sake of convenience,

we take 0.5, 2p and 10 . We will investi-

gate the effects of ,N v and u on the queue length
distribution with constant other system parameters.

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

371

We present the results of the queue length distribution
in Tables 1-3 with different ,N u and v . Observing the

Table 1, it is clear that: 1) the probability of the system

being empty (P0) decreases as N increases; 2) when
N is constant, the probability increases from P1 to P3
and then decreases and converges to zero.

Table 1. Queue length distribution vs the threshold N.

u = 10, v = 12

N 4 6 8 10 12 14

P0 0.1944 0.1504 0.1227 0.1036 0.0897 0.0791

P1 0.1469 0.1137 0.0928 0.0783 0.0678 0.0598

P2 0.1515 0.1172 0.0956 0.0808 0.0699 0.0616

P3 0.1526 0.1181 0.0964 0.0814 0.0704 0.0621

P4 0.0960 0.1180 0.0963 0.0813 0.0704 0.0620

P5 0.0720 0.1175 0.0958 0.0809 0.0701 0.0618

P6 0.0531 0.0732 0.0953 0.0805 0.0696 0.0614

P7 0.0387 0.0544 0.0946 0.0799 0.0692 0.0610

P8 0.0279 0.0398 0.0586 0.0795 0.0688 0.0606

P9 0.0200 0.0288 0.0433 0.0791 0.0684 0.0603

P10 0.0142 0.0206 0.0316 0.0488 0.0681 0.0601

P11 0.0102 0.0148 0.0229 0.0361 0.0680 0.0600

P12 0.0073 0.0106 0.0165 0.0264 0.0419 0.0598

P13 0.0053 0.0075 0.0118 0.0191 0.0310 0.0598

P14 0.0039 0.0054 0.0084 0.0137 0.0227 0.0368

P15 0.0031 0.0039 0.0060 0.0098 0.0164 0.0273

P16 0.0026 0.0029 0.0043 0.0070 0.0118 0.0199

P17 0.0022 0.0023 0.0032 0.0050 0.0085 0.0144

P18 0.0020 0.0019 0.0023 0.0036 0.0061 0.0104

P19 0.0018 0.0017 0.0019 0.0026 0.0044 0.0075

P20 0.0017 0.0015 0.0016 0.0020 0.0031 0.0053

EL 3.3376 4.0702 4.8892 5.7465 6.6072 7.7492

sum 0.2660 0.2693 0.4023 0.4126 0.4192 0.4216

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

372

Table 2. Queue length distribution vs the parameter u.

N = 6, v = 12

u 10 11 12 13 14 15

P0 0.1504 0.1523 0.1539 0.1552 0.1564 0.1575

P1 0.1137 0.1157 0.1175 0.1191 0.1204 0.1217

P2 0.1172 0.1190 0.1205 0.1219 0.1230 0.1240

P3 0.1181 0.1197 0.1210 0.1221 0.1231 0.1240

P4 0.1180 0.1194 0.1207 0.1217 0.1226 0.1234

P5 0.1175 0.1188 0.1200 0.1210 0.1218 0.1226

P6 0.0732 0.0719 0.0707 0.0696 0.0686 0.0676

P7 0.0544 0.0529 0.0515 0.0503 0.0492 0.0483

P8 0.0398 0.0383 0.0371 0.0359 0.035 0.0341

P9 0.0288 0.0275 0.0264 0.0254 0.0246 0.0239

P10 0.0206 0.0195 0.0186 0.0179 0.0172 0.0166

P11 0.0148 0.0140 0.0133 0.0127 0.0122 0.0117

P12 0.0106 0.0099 0.0094 0.0089 0.0086 0.0082

P13 0.0075 0.0070 0.0067 0.0063 0.0061 0.0058

P14 0.0054 0.0051 0.0048 0.0045 0.0043 0.0042

P15 0.0039 0.0037 0.0035 0.0033 0.0032 0.0030

P16 0.0029 0.0027 0.0026 0.0024 0.0023 0.0023

P17 0.0023 0.0022 0.002 0.0019 0.0019 0.0018

P18 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015

P19 0.0017 0.0016 0.0015 0.0014 0.0013 0.0013

P20 0.0015 0.0014 0.0013 0.0013 0.0012 0.0012

EL 4.0702 3.9953 3.9327 3.8797 3.8343 3.7948

sum 0.2693 0.3783 0.3711 0.3644 0.3591 0.3541

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

373

Table 3. Queue length distribution vs the parameter v.

N = 6, u = 10

v 10 11 12 13 14 15

P0 0.1482 0.1494 0.1504 0.1513 0.152 0.1527

P1 0.1126 0.1132 0.1137 0.1140 0.1142 0.1144

P2 0.1172 0.1173 0.1172 0.1171 0.117 0.1168

P3 0.1184 0.1183 0.1181 0.1179 0.1178 0.1176

P4 0.1182 0.1181 0.1180 0.1179 0.1178 0.1178

P5 0.1175 0.1175 0.1175 0.1175 0.1175 0.1175

P6 0.0736 0.0734 0.0732 0.0731 0.0730 0.0729

P7 0.0547 0.0545 0.0544 0.0542 0.0541 0.0540

P8 0.0401 0.0399 0.0398 0.0396 0.0396 0.0395

P9 0.0291 0.0289 0.0288 0.0287 0.0286 0.0285

P10 0.0209 0.0207 0.0206 0.0205 0.0204 0.0204

P11 0.0151 0.0149 0.0148 0.0147 0.0146 0.0146

P12 0.0109 0.0107 0.0106 0.0105 0.0104 0.0103

P13 0.0079 0.0077 0.0075 0.0074 0.0074 0.0073

P14 0.0057 0.0056 0.0054 0.0053 0.0053 0.0052

P15 0.0042 0.0041 0.0039 0.0038 0.0038 0.0037

P16 0.0032 0.0030 0.0029 0.0028 0.0027 0.0027

P17 0.0026 0.0025 0.0023 0.0022 0.0021 0.0021

P18 0.0022 0.0021 0.0019 0.0018 0.0018 0.0017

P19 0.0020 0.0018 0.0017 0.0016 0.0015 0.0014

P20 0.0018 0.0016 0.0015 0.0014 0.0013 0.0013

EL 4.1328 4.0969 4.0702 4.0500 4.0343 4.0220

sum 0.2740 0.2714 0.2693 0.2676 0.2666 0.2656

Z. YU ET AL.

Copyright © 2010 SciRes. IIM

374

From Tables 2-3, one sees that 1) the probability of

the system being empty increases as u or v increases;

2) the probability P 1 1j j N increases as u or

v increases, while the probability Pj j N de-

creases as u or v increases; 3) the probability Pj

increases from 1P to 3P and then decreases and con-

verges to zero under constant u or v .
The mean queue length (EL) is also presented in Ta-

bles 1-3 respectively. It is shown that as N increases
mean queue length increases, while mean queue length
decreases as u or v increases. It is worth mentioning
that the mean queue length could not being the only one
performance measure for the system design and optimi-
zation. For example, when 8,N 10,u 12v , the
mean queue length is 4.8892, but the total of the prob-
ability (sum) when the queue length exceeding 5 is
0.4023, which could not be neglected.

7. Conclusions

In this paper we have derived the additional queue length
distribution and the recursion expressions of the queue
length distribution for the Mx/G/1 queueing system under
N-policy with a single vacation and setup times. Fur-
thermore, we present the numerical results of the queue
length distribution and the distribution properties are also
investigated. The results in this paper would be signifi-
cant and useful to system designers and others. The ap-
proach developed in this paper is powerful and can be
used to analyze more complex queueing system.

8. References

[1] B. T. Doshi, “Queueing Systems with Vacations–a Sur-

vey,” Queueing System, Vol. 1, No. 1, 1986, pp. 29-66.

[2] H. Takagi, “Queueing Analysis: A Foundation of Per-
formance Evaluation, Vacation and Priority System,” El-
sevier, Amsterdam, Vol. 1, 1991.

[3] S. W. Fuhrmann and R. B. Cooper, “Stochastic Decom-
positions in the M/G/1 Queue with Generalized Vaca-
tions,” Operations Research, Vol. 33, No. 5, 1985, pp.
1117-1129.

[4] M. Yadin and P. Naor, “Queueing Systems with a Re-
movable Service Station,” Operational Research Quar-
terly, Vol. 14, No. 3, 1963, pp. 393-405.

[5] H. W. Lee, S. S. Lee and K. C. Chae, “Operating Char-
acteristics of Mx/G/1 Queue with N-Policy,” Queueing
Systems, Vol. 15, No. 1-4, 1994, pp. 387-399.

[6] H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, “Analy-
sis of Mx/G/1 Queue with N Policy and Multiple Vaca-
tions,” Journal of Applied Probability, Vol. 31, No. 2,
1994, pp. 467-496.

[7] S. S. Lee, H. W. Lee, S. H. Yoon and K. C. Chae,

“Batch Arrival Queue with N Policy and Single Vaca-
tion,” Computers and Operations Research, Vol. 22, No.
2, 1995, pp. 173-189.

[8] G. Choudhury and M. Paul, “A Batch Arrival Queue with
an Additional Service Channel under N-Policy,” Applied
Mathematics and Computation, Vol. 156, No. 1, 2004, pp.
115-130.

[9] G. Choudhury and K. C. Madan, “A Two-Stage Batch
Arrival Queueing System with a Modified Bernoulli Sched-
ule Vacation under N-Policy,” Mathematical and Com-
puter Modelling, Vol. 42, No. 1-2, 2005, pp. 71-85.

[10] G. Choudhury and M. Paul, “A Batch Arrival Queue with
a Second Optional Service Channel under N-Policy,” Sto-
chastic Analysis and Applications, Vol. 24, No. 1, 2006,
pp. 1-21.

[11] J.-C. Ke, “The Control Policy of an Mx/G/1 Queueing
System with Server Startup and Two Vacation Types,”
Mathematical Methods of Operations Research, Vol. 54,
No. 3, 2001, pp. 471-490.

[12] J.-C. Ke, “Optimal Strategy Policy in Batch Arrival Queue
with Server Breakdowns and Multiple Vacations,” Ma-
thematical Methods of Operations Research, Vol. 58, No.
1, 2003, pp. 41-56.

[13] R. G. V. Krishna, R. Nadarajan and R. Arumuganathan,
“Analysis of a Bulk Queue with N-Policy Multiple Vaca-
tions and Setup Times,” Computers and Operations Re-
search, Vol. 25, No. 11, 1998, pp. 957-967.

[14] K.-H. Wang, M.-C. Chan and J.-C. Ke, “Maximum En-
tropy Analysis of the Mx/M/1 Queueing System with
Multiple Vacations and Server Breakdowns,” Computers
& Industrial Engineering, Vol. 52, No. 2, 2007, pp. 192-
202.

[15] J. E. Shore, “Information Theoretic Approximations for
M/G/1 and G/G/1 Queueing Systems,” Acta Informatica,
Vol. 17, No.1, 1982, pp. 43-61.

[16] M. A. El-Affendi and D. D. Kouvatsos, “A Maximum
Entropy Analysis of the M/G/1 and G/M/1 Queueing Sys-
tems at Equilibrium,” Acta Informatica, Vol. 19, No. 4,
1983, pp. 339-355.

[17] J.-C. Ke and C.-H. Lin, “Maximum Entropy Solutions for
Batch Arrival Queue with an Unreliable Server and De-
laying Vacations,” Applied Mathematics and Computa-
tion, Vol. 183, No. 2, 2006, pp. 1328-1340.

[18] Y. H. Tang, “The Transient Solution for M/G/1 Queue
with Server Vacations,” Acta Mathematica Scientia, Vol.
17, No. 3, 1997, pp. 276-282.

[19] Y. H. Tang and X. W. Tang, “The Queue-Length Distribu-
tion for Mx/G/1 Queue with Single Server Vacation,” Acta
Mathematica Scientia, Vol. 20, No. 3, 2000, pp. 397-408.

[20] Y. H. Tang, X. Yun and S. J. Huang, “Discrete-Time
Geox/G/1 Queue with Unreliable Server and Multiple
Adaptive Delayed Vacations,” Journal of Computational
and Applied Mathematics, Vol. 220, No. 1-2, 2008, pp.
439-455.

[21] J.-C. Ke, “Batch Arrival Queues under Vacation Policies
with Server Breakdowns and Startup/Closedown Times,”
Applied Mathematical Modelling, Vol. 31, No. 7, 2007,
pp. 1282-1292.

Intelligent Information Management, 2010, 2, 375-379
doi:10.4236/iim.2010.26045 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

Study on Delaunay Triangulation with the Islets
Constraints

Dong Wei1,2, Xinghua Liu2
1Computer College, Hefei University of Technology, Hefei, China

2Information Technology and Engineering College, Shenyang University of Technology, Shenyang, China
E-mail: dongweisut@126.com, xinghualiu21mg@163.com

Received March 16, 2010; revised April 18, 2010; accepted May 21, 2010

Abstract

Aiming at Delaunay triangulation with islets constrains in terrain simulation. A general Delaunay triangula-
tion algorithm for constrained data set with islets is proposed. The algorithm firstly constructs Constrained
Delaunay Triangulation with constraint polygons which are inner boundary of islets, then according to topo-
logical relations within edge, surface, arc segment, applies bidirectional search to find the triangle in islet,
lastly it carries on certain corresponding processing to complete the Delaunay triangulation algorithm with
islets. The analyses show the algorithm simple, fast speed. The algorithm can be used in 3-D terrain vision.

Keywords: Islets Constraints, Bidirectional Search, Delaunay Triangulation

1. Introduction

The triangulation has a wide range of applications in the
GIS, geology, computer graphics, virtual reality and so
on. Delaunay triangulation has the most performance in
the terrain simulation. The build Delaunay triangulation
technology taking into account the mandatory constraint
data in the establishment of high-quality DEM played a
decisive role [1]. At present, based on the points, line
segments constrained, the Delaunay triangulation (CDT)
has been a lot of algorithms. But the triangulation with
the islets constrained data field, due to the complex of
data constraint, it is necessary to satisfy the constraints
and the characteristics of Delaunay triangulation, so the
algorithm with great difficulty [2,3]. The existing trian-
gulation algorithm needs to determine the convex-concave
of nature polygon, or using connect bridge technology,
the algorithms or more complex, or the result is not De-
launay triangulation [4-8]. This paper proposes an algo-
rithm solution to the islets constrained, the algorithms is
simple, without determine the convex-concave of poly-
gon and geometric intersection Computing.

2. With Islets Constrained Triangulation
Algorithm

2.1. The Basic Concept of the Islets

Anyone of islet can be abstracted into polygon (convex-

concave polygon). The line of Constituted polygonal
called arc, polygon composed by arc is Islet, polygon
does not contain islet called a simple polygon, is sin-
gle-connected region, the polygon with islet called com-
pound polygon, is complex connected region. In the
complex connected region, including the outer boundary
and inner boundaries, the islet polygon is inner boundary.
The Polygons with islets was defined as follows: Set P1,
P2, ..., Pn (n > 1) are simple polygon, if the degrees of all
vertex of Pi (i = 1,2, ..., n) is 2, the edges without com-
mon vertex do not intersect, and one of polygons (set Pj,
1 ≤ j ≤ n) included all the other polygons, then the
polygon composed by P1, P2, ..., Pn is called islet poly-
gons (shown in Figure 1), P1 is called the outer polygon,
the other is called the inner polygon (islet or hole) [7].

Figure 1. Constrained triangulation segment.

D. WEI ET AL.

Copyright © 2010 SciRes. IIM

376

Triangulation with islets constraints is build delaunary
triangulation between the islets and outer boundary that
is with islets.

2.2. Classic Triangulation Algorithm with Islets

Constraints

For the Delaunay triangulation algorithm with islets con-
strained, according to occasion of islets constrained data
embedded, can be divided into the following categories:

1) Taking into account the impact of islets In the De-
launay triangulation, directly build Delaunay Triangula-
tion with islets constraint. Such as the Triangulation al-
gorithm with islets constrained data fields proposed by
Liu Shao-Hua [4].

2) First, without considering islets constraints, build-
ing Delaunay triangulation with all the vertex of islet
polygons and edges constraints, then delete the triangles
within constraints fields. Such as Reference [7,8]. These
algorithms are simple, compatible with non-constrained
Delaunay triangulation.

3. Improvement of Delaunary Triangulation

with Islets Constraints

3.1. Algorithm Theory

Two-dimensional Delaunay triangulation with islets con-
strained is described as: For the plane field D (P, Q), it
containing a set of points P and Q, Q = {Qi ∈ D|I = 1, n2}
is a points set that distributed in the boundary of islets, if
a triangulation of the point set P, Q is a Delaunay trian-
gulation (DT), delete the triangle within the islets, then it
is a Delaunay triangulation with islets constrained on the
plane field D (P, Q) [8].

Based on the above principle, we can build Delaunay
triangulation with islets constrained step by step. First,
without considering the nature of boundary points of
islets, building Delaunay triangulation with the P and Q,
then embedding edge constraint, the edges constrained
are boundary line segment of islets, shown in Figure 1.
Finally we found all the triangles inside the islets, ac-
cording to need to be deleted, or retained. Based on the
relationship between edges and triangles, this paper pro-
posed a bi-directional search method and found all the
triangles inside island, in order to complete with island
constraints DT division.

3.2. Data Structure

According to the algorithm needs to establish topological
relations among point, line, surface, and arc. This data
structure can preferably establish topology data model of
triangular mesh, and can be quickly index at the point,

edge, triangle, and arcs. The algorithm is program with
the Java, The data structure is as follows:

1) The point class:
public class Point{//class Point
public double x, y, z;
}
2) The edge class:
In order to finding two triangles that hane one and the

same edge quickly, so the class has the two neighbor
triangles.

Public class Edge {//Edge
private int [] pointNum = new int[2]
//the point number
private Triangle [] tri = new Triangle[2];
//Edges corresponding to two adjacent triangles
private boolean constrainEdge = false;
//is it binding edge
}
3) The triangle class:
In order to finding the edge of the triangle quickly, so

the class has the three edges.
Public class Triangle {//class Triangle
private int [] pointNum = new int [3];
//Triangle of three dots
private Edge [] edge = new Edge [3];
//Side of the object created by the three Edge
}
4) The islet class:
Storages a list of all inner border line segment of islet,

according to counter-clockwise storages.
Public class IsletArea {//Islet Class
private List <Edge> Pointlist = new LinkedList <Edge>

();
//the Island of arc
}
5) The Islets influence field class:
The internal class, record the edge within islet, and a

known triangle in a side of the edge a.
private class IsletDomain {
private Edge e; //Islands within the affected side of
private Triangle tri; //Islandsthathey affect a certain

edge e adjacent to a known triangle
}
Considering the deleted or retained the triangle within

Islands, in the algorithm, there is a list that stores the
triangular within islet.

3.3. Algorithm Implementation

Assume all the arcs that surround the inner border of
islets are counter-clockwise order, so the left side of
closed arcs is within the islets, the right is exterior the
islet, the triangle on the left of the arcs fall within the
islet. The key of algorithm is to find the triangle within
the islet, based on the relationship between the edges and

D. WEI ET AL.

Copyright © 2010 SciRes. IIM

377

the triangle, from a known triangle and a triangle edge
start to expend the other two edges of the known triangle
and the adjacent triangle both sides, until the find all the
triangles within the islets, the steps are as follows:

1) Doing Delaunay triangulation for the islets bound-
ary points and the other discrete points within the plane.

2) All the borders of the islets are as line segment con-
straints, embedded in the Delaunay triangulation, carried
out Delaunay triangulation with constraints, stored line
segment constraints into constraint edge list.

3) Order all line segment constraints in the constraint
edge list by counter-clockwise.

4) Pick-up any inner boundary arc (edge) e from any-
one islets, and two triangles both sides e, to find the
left side triangle t from these two triangles, building a
new IsletDomain object with e and t, push it into the
stack. Modify the topology of e, set the reference
(pointer) of e and t to null.

5) Pick-up the top element of the stack, that is a Islet-
Domain object. Store the member triangle of IslandDo-
main, tri, into triangle within islets list, and pick-up the

other two side edges of the tri, from the two direction to
search, there are three situation:
 Two edges are not in the constraint edge list;
 one edge is the constraint edge list, another edge is

not in the constraint edge list;
 Two edges are in the constraint edge list.
For three cases, if the edge is in the constraint edge list,

looking for adjacent triangle of the edge, building the
IsletDomain object, push stack; if the edge is not in the
constraint edge list, modify the topology of the edge, set
the reference (pointer) of the triangle that pointed to by
tri to null.

6) Redo step 5, until the stack is empty.
7) According to the needs, delete or retain elete the tri-

angles in the triangle within islets list.
Based on the above steps, the flow chart of Delaunay

triangulation with island constraint is Figure 2.
Based on the above steps to complete Delaunay trian-

gulation with islets constrained, the result shown in Fig-
ure 3.

Figure 2. Flow diagram of delaunay triangulation with islets constrained.

D. WEI ET AL.

Copyright © 2010 SciRes. IIM

378

Figure 3. Delaunay triangulation with an islet constrained.

4. Algorithms Analysis

Tang Wei proposed algorithm and Ma Hong-bin pro-
posed algorithm, simple, do not to determine the convex-
concave of polygon and geometric intersection opera-
tions. Tang Wei’s algorithm to find a triangle within is-
lets by the line segment constraints that enclosed the is-
lets, therefore, for the complex islets, there may be do
not find all triangles within islet. (a) and (b) of Figure 4 is

(a)

(b)

Figure 4. Tang Wei’s algorithm effect diagram. (a) Trian-
gular mesh based on lines list; (b) Triangular form based
on triangular mesh.

(a)

(b)

(c)

(d)

Figure 5. Delaunay triangulation with islets constrained. (a)
Two islands; (b) Three islands; (c) Four islands; (d) Five
islands.

D. WEI ET AL.

Copyright © 2010 SciRes. IIM

379

Table 1. Algorithms comparison.

Islets
number

This paper algorithm
(ms)

Triangle center of gravity
algorithm (ms)

2 2.5 4.5

3 3.8 5.7

4 4.5 6.6

5 5.3 8

based on the line list and triangles list the algorithm gen-
erated to form a Triangular mesh. Through the figure can
know that the algorithm can remove the extra line in the
line list, but can not remove the redundant triangles in
the triangle list.

For the algorithm of Ma Hong-bin, asked the three
vertices of all triangles in the triangulation are the vertex
of the polygon, that is restrictive conditions, is not suit-
able for large scattered set of points and more Islets.

The algorithm of Center of gravity location triangle
counts needs to determine all the triangles whether in the
polygon, and the need for geometric intersection opera-
tions. When the triangular mash is more large, and a lot
of Islets, it will waste too much resources when determi-
nation if the triangle is not within islets. Compared with
algorithm proposed in this paper, the data shown in Fig-
ure 5, the results of comparison is Table 1.

5. Conclusions

Through the studied and summarized for existing algo-
rithms, according to the topological relations between
edges and triangles, proposed a method of looking for

triangles within the islets, the algorithm simple, without
geometric intersection operations. The algorithms been
used in 3-D terrain model.

6. References

[1] Z. M. Ma and B. Luo, “Entire Optimized Triangulation

Algorithm of Delaunay Triangle Network for DEM Con-
struction,” Journal of Chang’an University (Natural Sci-
ence Edition), Vol. 28, No. 3, 2008, pp. 44-48.

[2] L. P. Chew, “Constrained Delaunay Triangulations,” ACM
Symposium on Computational Geometry, Springer-Verlag,
Berlin, 1987, pp. 215-222.

[3] L. X. Wu, Y. B. Wang and W. Z. Shi, “Integral Ear
Elimination and Virtual Point Based Updating Algo-
rithms for Constraint Delaunay TIN,” Science in China: E,
Vol. 51, No. S1, 2008, pp. 135-144.

[4] S. H. Liu, P. G. Cheng and H. H. Chen, “Study of Algo-
rithm for Triangulation of Restrained Data Set with Is-
lets,” Computer Application, Vol. 23, No. 4, 2003, pp. 96-98.

[5] S. G. Deng, M. Chen, et al., “Study on Algorithm for
Delaunay Triangular Irregular Network of Islets Con-
strained Data Field,” Science of Surveying and Mapping,
Vol. 32, No. 5, 2007, pp. 63-64.

[6] M. Lamot and B. Zalik, “A Fast Polygon Triangulation
Algrithm Based on Uniform Plane Subdivision,” Com-
puters and Graphics, Vol. 27, No. 2, 2003, pp. 239-253.

[7] H. B. Ma, J. T. Guo, et al., “Study on Delaunay Triangu-
lation Algorithm for Polygon with inside Islets,” Journal
of Northeastern University (Natural Science), Vol. 30,
No. 5, 2009, pp. 733-736.

[8] W. Tang, S. Z. Chen, et al., “An Approach to the Modi-
fication of the Triangulation Algorithm with Islets Con-
strains,” Hydrogeology & Engineering Geology, Vol. 33,
No. 5, 2006, pp. 58-60.

Intelligent Information Management, 2010, 2, 380-385
doi:10.4236/iim.2010.26046 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

The Line Clipping Algorithm Basing on Affine
Transformation

Wenjun Huang
College of Math and Computer Science, Guangxi University for Nationalities, Nanning, China

E-mail: hwjart@126.com
Received March 20, 2010; revised April 25, 2010; accepted May 27, 2010

Abstract

A new algorithm for clipping line segments by a rectangular window on rectangular coordinate system is
presented in this paper. The algorithm is very different to the other line clipping algorithms. For the line
segments that cannot be identified as completely inside or outside the window by simple testings, this algo-
rithm applies affine transformations (the shearing transformations) to the line segments and the window, and
changes the slopes of the line segments and the shape of the window. Thus, it is clear for the line segment to
be outside or inside of the window. If the line segments intersect the window, the algorithm immediately (no
solving equations) gets the intersection points. Having applied the inverse transformations to the intersection
points, the algorithm has the final results. The algorithm is successful to avoid the complex classifications
and computations. Besides, the algorithm is effective to simplify the processes of finding the intersection
points. Comparing to some classical algorithms, the algorithm of this paper is faster for clipping line seg-
ments and more efficient for calculations.

Keywords: Computer Graphics, Line Clipping, Algorithm, Affine Transformation

1. Introduction and Previous Work

In computer graphics, line clipping is a basic and impor-
tant operation, and has many applications. For example,
extracting part of a defined scene for viewing must take
line clipping. The region that includes the part of the
defined scene is called a clip window. Generally, the
window is a rectangle or a general polygon.

The early and classical algorithms of line clipping are
Cohen-Sutherland Line Clipping algorithm [1], Cyrus-
Beck Line Clipping algorithm [2] and Nicholl-Lee-Nicholl
Line Clipping algorithm [3].

Cohen-Sutherland Line Clipping algorithm is one of
the oldest and most popular line-clipping procedures.
The algorithm uses a rectangle window with a coding
scheme to subdivide the two-dimensional space which
includes the graph. Then, each endpoint of a line seg-
ment of the graph is assigned the code of the sub-region
in which it lies. And according to the value of the “&”
and “|” which are made by the two codes of the two
endpoints of the line segment, the algorithm determines
the line segment to be inside of the widow or not. For the
simple situations (the line segments are completely in-

side or outside of the window), the algorithm can quickly
get the results. But for the line segments that cannot be
identified as completely inside or completely outside the
window by the scheme of the algorithm, the algorithm
has to make computations and turn the line segments
into the “simple situations”. Obviously, if the line seg-
ment is outside of the window, the computations are
waste.

Later, Cyrus-Becky proposed Cyrus & Beck algorithm.
The algorithm treats line in parametric form. The theo-
retical model of this algorithm is general. However, it is
rather inefficient. To clip a line segment which is neither
vertical nor horizontal and lies entirely within the win-
dow, it will perform 12 additions, 16 subtractions, 20
multiplications and 4 divisions [4]. Besides, for the gen-
eral case (the line segments will cross all the boundaries
of the window), the algorithm first makes computations
and find the parameters of the intersection points. Then,
according to the signs of the denominators of the pa-
rameters and the values of the parameters, the algorithm
determines which parts of the line segments are inside
the window. Clearly, if the line segment is outside of the
window, the computations are useless.

W. J. HUANG

Copyright © 2010 SciRes. IIM

381

In [3], Nicholl-Lee-Nicholl Line Clipping algorithm
makes four rays which pass an endpoint of the line seg-
ment and four vertexes of the window, and creates three
regions by the four rays. Then, the algorithm determines
which region that the line segment lies in, and determines
finding the intersections or rejecting the line segment.
Before finding the intersection points of the line segment
and the window, the algorithm first determines the posi-
tion of the first endpoint of the line segment for the nine
possible regions relative to the clipping window. If the
point is not in the one of the three especial regions, the
algorithm has got to transform the point to the one of the
three especial regions. To find the region in which the
other endpoint of the line segment lies, the algorithm has
got to compare the slope of the line segment to the slopes
of the four rays. So, for the algorithm, finding the inter-
section points are efficient, but finding the positions of
the two endpoints of the line segment are more compli-
cated than Cohen-Sutherland Line Clipping algorithm.

Independently, You-dong Liang, Brian A.Barsky, Mel
Slater offered a more faster algorithm [5,6]. This algo-
rithm is based on a parametric representation of the line
segment. The algorithm is somewhat complicated and
inefficient. To clip a line segment which is neither verti-
cal nor horizontal, it will perform 16 comparisons, 7
subtractions, and 4 divisions.

In [7], Vaclv Skala proposed a line clipping algorithm
for convex polygon window. The algorithm uses the bi-
nary search to find the intersections in the clipping win-
dow. The complexity is O (lg N). But for the rectangle
window, the algorithm does not have obvious advantage
in comparison with the Cyrus-Beck algorithm.

In [8], the authors proposed the Optimal Tree algo-
rithm. Based on the regions (there are nine regions sub-
divided by the four boundaries of the window) that the
endpoints of the line segment lies in, the authors pro-
posed five types of “Partition-Pairs”: the “window-side
or side-window” (including 8 cases), the “window-corner
or corner-window” (including 16 cases), the “side-side”
(including 20 cases), the “side-corner or corner-side”
(including 16 cases) and the “corner-corner” (including 4
cases). There are 64 cases in the five types of “Parti-
tion-Pairs” and the optimal tree includes these 64 cases.
The algorithm performed uniformly faster than all above
algorithms. But the algorithm is too complicated.

In [9], the author proposed an algorithm based on ho-
mogeneous coordinates. In the algorithm, the author as-
sumes a rectangular window P and a line p given as F(x)
= ax + by + c = 0. The line p subdivides the space into
two half-spaces as F(x) < 0 and F(x) > = 0. According to
the locations of all the vertexes of the window to the line,
the author makes out 16 possible cases and makes a table
storing the cases. To clipping a line, the algorithm makes
the calculations and determines the locations of all the
vertexes of the window to the line. Having compared the
locations with the cases in the table, the algorithm de-

termines which edges of the window intersect the line
and finds the intersection points by the cross products of
their homogeneous coordinates. The algorithm is ineffi-
cient. To clip a line segment which will cross the win-
dow, the algorithm first codes the two endpoints of the
line segment, and makes 4 comparisons and 2 cross
products (taking 12 multiplications). If turning the inter-
section points (xi, yi, w) into (xi/w, yi/w), the algorithm
still makes 4 divisions. So, in Euclidean space the com-
putational complexity of the algorithm is more than
Cohen- Sutherland algorithm.

In this paper, a new line clipping algorithm for a rec-
tangle clip window will be given. Comparing those algo-
rithms above, this algorithm makes the speed of line clip-
ping faster and makes the calculations more efficient.

2. Theorems

2.1. Theorem 1

In a plane, the necessary and sufficient conditions for
two line segments without any points of intersection are
that there are no any points of intersection of the two line
segments after applying an affine transformation to the
two line segments.

Proof. We suppose that there are two line segments

1L (the endpoints are 11p and 12p) and 2L (the end-

points are 21p and 22p) in a plane, and 1L 2L = .

Also, we suppose that there is a affine transformation T,
and we apply the affine transformation T to the two line
segments 1L and 2L :

T(1L) = '
1L (the endpoints are '

11p and '
12p),

T(2L) = '
2L (the endpoints are '

21p and '
22p).

2.1.1. The Sufficient Condition (Proof by

Contradiction)

If '
1L '

2L = A'(A'), we apply the 1T (1T exist

because T is an affine transformation) to '
1L and '

2L , and

have)('
1

1 LT = 1L ,)('
2

1 LT = 2L . The 1T is still an

affine transformation. According to the properties of
affine transformation, we get the conclusion: Straight
line 1L straight line 2L . So, we set the straight

line 1L The straight line 2L = A (A). Because

1L 2L = , so the point A the extension of the line

segment 1L or the line segment 2L . So

11p A/ 12p A > 0 or 21p A/ 22p A > 0.

But
'

11P A'/ '
12P A' < 0 and '

21p A'/ '
22p A' < 0.

W. J. HUANG

Copyright © 2010 SciRes. IIM

382

Those are contradictory in the properties of affine
transformation.

2.1.2. The Necessary Condition
The proof is as same as the proof of the sufficient condi-
tion.

From the theorem, two important inferences can be
derived:

1) On a plane, the necessary and sufficient conditions
for two line segments with a point of intersection are that
there is a point of intersection of the two line segments
after applying an affine transformation to the two line
segments.

2) On a plane, the necessary and sufficient conditions
for that a line segment is inside of a window (or outside
of the window, or across the window) are that the line
segment is inside of the window (or outside of the win-
dow, or across the window) after applying an affine
transformation to the line segment and the window.

2.2. Theorem 2

In a rectangular coordinate system, we suppose that the
slope of a straight line a (The endpoints are

),(111 aa yxA and),(222 aa yxA) is 1/c(c 0) and the

straight line b (The endpoints are),(111 bb yxB and

),(222 bb yxB) is vertical to the axis x (i.e. b the axis x).

If apply the affine transformation

xT : x' = x-cy, y' = y; ((x, y) is a point.)

to the line segments a and b, i.e.
a' = xT (a) and b' = xT (b).

There is a conclusion: The line segment a' the axis x
and the slope of b' = –1/c.

Proof. xT (a) and xT (b) are

 , , 1, 2, 1, 2i i i i ix x cy y y i a a b b .

1) 1 2a ax x

1 1 2 2

1 2 1 2

1 2 2 1 2 1 1 2

0

the axis

a a a a

a a a a

a a a a a a a a

x cy x cy

x x c y y

x x x x y y y y

a x.

2) The slope of b

2 1 2 1

2 1 2 2 1 1

2 1 2 1 2 1

2 1 2 10

1

b b b b

b b b b b b

b b b b b b

b b b b

= y y x x

y y x cy x cy

y y x x cy cy

y y cy cy

c

2.3. Theorem 3

In a rectangular coordinate system, we suppose that the
slope of a straight line a (The endpoints are 1A (1ax , 1ay)

and 2A (2ax , 2ay)) is c (c 0) and the straight line b

(The endpoints are 1B (1bx , 1by) and 2B (2bx , 2by)) is

vertical to the axis y (i.e. b the axis y). If apply the af-
fine transformation

yT : x' = x, y' = - cx + y; ((x, y) is a point.)

to the line segment a and b, i.e.
a' = yT (a) and b' = yT (b)

There is a conclusion: The line segment a' the axis y
and the slope of b'= –c.

Proof. yT (a) and yT (b) are

 , , 1, 2, 1, 2i i i i iy y cx x x i a a b b .

1) 1 2a ay y

1 1 2 2

1 2 1 2

1 2 2 1 2 1 1 2

0

the axis

a a a a

a a a a

a a a a a a a a

y cx y cx

y y c x x

y y y y x x x x

a y.

2) The slope of b

2 1 2 1

2 2 1 1 2 1

2 1 2 1 2 1

2 1 2 10

b b b b

b b b b b b

b b b b b b

b b b b

= y y x x

y cx y cx x x

y y cx cx x x

c x x x x

c

3. The Basic Idea of the Algorithm

We suppose that there are a rectangular window and
some line segments in a rectangular plane coordinate
system (see Figure 1).

Four types of the line segments are gotten by classify-
ing the line segments according to the positions against
the window.

The first are outside of the rectangular window (see
the line segment a in Figure 1(a)).

The second are inside of the rectangular window (see
the line segment b in Figure 1(a)).

The third are parallel or vertical to the edges of the
rectangular window and intersecting the rectangular win-
dow (see the line segment c in Figure 1(a)).

The fourth are the other line segments that do not be-
long to any types as above (see the line segments d, e,
and f in Figure 1(a)).

W. J. HUANG

Copyright © 2010 SciRes. IIM

383

(a) (b)

(c) (d)

In the Figure (a) and (d), the vertexes of the window are A (wlx , wty),

B (wrx , wty), C (wrx , wby) and D (wlx , wby).

In the Figure (b), the vertexes of the window are 'A ('

wltx , '

wty),
'B ('

wrtx , '

wty), 'C ('

wrbx , '

wby) and 'D ('

wlbx , '

wby).

In the Figure (c), the vertexes of the window are 'A ('

wlx , '

wtly),
'B ('

wrx , '

wtry), 'C ('

wrx , '

wbry) and 'D ('

wlx , '

wbly).

Figure 1. The process of the clipping. (a) Lines and window;
(b) Tx(d) and Tx(w); (c) Ty(d) and Ty(w); (d) The result.

For the first, the second and the third, we process them
with subtraction. For the fourth, we apply the affine
transformations to the line segments of the fourth and
apply the same affine transformations to the window
with the theorem 2 and the theorem 3, turning the fourth
into the line segments that are vertical or parallel to axis
x, and turning the window into a parallelogram that have
two edges which are vertical to the line segment (see
Figures 1 (b) and (c)). Now, according to theorem 1 ~
theorem 3, we can easily determine the line segment is
outside of the window or across the window.

After getting the intersections of the line segment and
the window, we apply the inverse transformations of the
affine transformations to the intersections, and the line
segment clipped by the window is gotten.

4. The Steps of the Algorithm

/*In the step (2), (3), (4) and (5), we process the first, the
second, the third and the fourth as above orderly.*/

1) Preparation:
Give a rectangular plane coordinate system xoy;
Give four edges of a rectangular window W:
float wlx , wrx , wty , wby , (wlx < wrx , wby < wty);

Give a line segment randomly:
float 1p (1x , 1y), 2p (2x , 2y); int flag: = 0;

float 11p (11x , 11y): = 1p (1x , 1y),

22p (22x , 22y): = 2p (2x , 2y);

int 1f : = (wlx 1x wrx) && (wby 1y wty);

int 2f : = (wlx 2x wrx) && (wby 2y wty);

2) if ((1x and 2x) wlx) || ((1x and 2x) wrx) ||

((1y and 2y) wby) || ((1y and 2y) wty), goto (7);

3) else if (1f && 2f), goto (6);

4) else if (1y = 2y) {

if (1x > 2x){ swap(1p , 2p); swap(11p , 22p);}

if (1x wlx) and (2x wrx)

{ 11x : = wlx ; 22x : = wrx ; goto (6);}

else if (1x wlx) and (2x wlx)

{ 11x : = wlx ; goto (6);}

else if (1x wrx) and (2x wrx)

{ 22x : = wrx ; goto (6);}

}
else if (1x = 2x) {

if (1y > 2y){ swap(1p , 2p); swap(11p , 22p);}

if (1y wby) and (2y wty)

{ 11y : = wby ; 22y : = wty ; goto (6);}

else if (1y wby) and (2y wby)

{ 11y : = wby ; goto (6);}

else if (1y wty) and (2y wty)

{ 22y : = wty ; goto (6);}

}
5) else{
5.1) c: = (2x - 1x)/(2y - 1y);

5.2) if (1y > 2y) {swap (1p , 2p); swap(11p , 22p);}
'
1p : = xT (1p); '

2p : = xT (2p); w':= xT (w);

/*After getting the affine transformation, the rectan-
gular window become a parallelogram having two edges

that parallel to axis x, and the line segment ('
1p , '

2p) is

vertical to the axis x. See Figure 1(b).*/

5.3) if (c >0) && (('
1x '

wrbx) || ('
1x '

wltx)) goto (7);

/*see Figure 1(b)*/

else if(c < 0) && (('
1x '

wrtx) || ('
1x '

wlbx)) goto(7);

/*refer to the Figure 1(b)*/
else {

if ('
1x '

wlbx) and ('
1x '

wrbx) {flag++;

if ('
1y '

wby) and ('
2y '

wby) '
1y = '

wby ;

11y = 1
xT ('

1y); 11x = 1
xT ('

1x);

}

if ('
1x '

wltx) and ('
1x '

wrtx) {flag++;

if ('
1y '

wty) and ('
2y '

wty) '
2y = '

wty ;

22y = 1
xT ('

2y); 22x = 1
xT ('

2x);

}
if (flag = 2) goto (6);

W. J. HUANG

Copyright © 2010 SciRes. IIM

384

/*“flag = 2” means that the line clipping have been
finished.*/

5.4) if (1x > 2x){swap(1p , 2p); swap(11p , 22p);} c: =

1/c; '
1p : = yT (1p); '

2p : = yT (2p); w' = yT (w);

/*After getting the affine transformation, the rectan-
gular window become a parallelogram having two edges

that parallel to axis y, and the line segment ('
1p , '

2p) is

vertical to the axis y. See Figure 1(c).*/

5.5) if ('
1y '

wbly) and ('
1y '

wtly) {flag++;

if ('
1x '

wlx) and ('
2x '

wlx) '
1x = '

wlx ;

11y = 1
yT ('

1y); 11x = 1
yT ('

1x);

}

if ('
1y '

wbry) and ('
1y '

wtry) { flag++;

if ('
1x '

wrx) and ('
2x '

wrx) '
2x = '

wrx ;

22y = 1
yT ('

2y); 22x = 1
yT ('

2x);

}
/*see Figure 1 (c)*/
}
6) Drawing the line (11x , 11y , 22x , 22y);

7) The end;

5. The Calculation Complexity

In the most complex case (the lines belong to the fourth
type as above), after using 2 divisions to get the slope
and the 1/slope of a line segment, the algorithm uses two
steps with 4 multiplications to make the clipping.

First, the algorithm translates the window and places
the “bottom edge” on the axis x, and makes the same
translation for the line segment. Then, it uses one multi-
plication to apply an affine transformation to the “top
edge” of the window and uses another multiplication to
get the intersection of the window and the line segment
(see Figure 1(b)).

Second, the algorithm translates the window and places
the “left edge” on the axis y, and applies the translation
to the line segment. Then, it uses one multiplication to
apply an affine transformation to the “right edge” of the
window and use another multiplication to get the intersec-
tion of the window and the line segment (see Figure 1(c)).

So, the algorithm at most uses 2 divisions and 4 multi-
plications to finish the clipping for a line segment (See
Table 1).

Here, we list the calculation complexities of the algo-
rithm and other algorithms in Table 1 for comparing.
Where “C-S algorithm”, “C-B algorithm”, “N-L-N algo-
rithm”, “L-B algorithm”, “VS algorithm” and “L-B-2
algorithm” indicate that the Cohen-Sutherland Algorithm
[1], the Cyrus-Beck Algorithm [2], the Nicholl-Lee-
Nicholl Algorithm [3], the Liang-Barsky-Slater Algorit-

hm [5,10], the O(lg N) Line Clipping Algorithm in 2E
[7] and the Optimal Tree Algorithm for Line Clipping [8]
orderly.

6. Results and Discussion

The algorithm in this paper has been realized with a
computer in C language with TC system. It is successful
for the algorithm to clip the random line segments (see
Figure 1(a)). We take the special situation like line seg-
ment d in Figure 1 for a sample to perform the process of
the clipping and to make comparisons. The comparisons
between the algorithm in this paper and Cohen-Suther-
land algorithm have been list in Table 2. In Table 2, the
first row give the numbers of the line segments, the sec-
ond row give the times of performing the algorithm in
this paper, and the third row give the times of performing
Cohen-Sutherland algorithm. We use the function cclok()
in TC to keep the times.

Some important facts are as follows:
1) The complexity of the algorithm in this paper is less

than VS algorithm, see Table 1;
2) L-B-2 algorithm is faster than C-S algorithm, L-B

algorithm, N-L-N algorithm and C-B algorithm [6,8];

Table 1. The calculation complexities.

Operations
Algorithms

× ÷ making codes

Our algorithm 4 2 0

C-S algorithm 4 2 6

L-B algorithm 4 4 0

N-L-N algorithm 1 6 0

C-B algorithm 12 2 0

L-B-2 algorithm 4 2 0

VS algorithm 7 2 0

Table 2. The times of the clipping.

Lines

5000 10,000 20,000 30,000 60,000

T 0 0 0 0 1

Tc-s 0 1 1 1 3

1,200,000 1,500,000 1,800,000 2,100,000

18 23 28 31

56 70 85 98

W. J. HUANG

Copyright © 2010 SciRes. IIM

385

3) L-B-2 algorithm is 2.5 (the average) or 3.03 (the
maximum) times [8] as fast as Cohen-Sutherland algo-
rithm for the speed of line clipping.

4) The algorithm in this paper is 3.1 (the average) or
3.5 (the maximum) times as fast as Cohen-Sutherland
algorithm, see Table 2.

From the facts above, we derive the conclusion that
the algorithm in this paper is faster than the other algo-
rithms in Table 1 for line clipping.

7. Conclusions

For the special situation that the line segment or its ex-
tension (like the line segment d in Figure 1) intersects all
the edges or their extensions of the window, the clipping
speed of our algorithm is obviously faster than other al-
gorithms. But for the random situations, the average
clipping speed of our algorithm is a little bit faster than
other algorithms.

8. References

[1] D. Hearn and M. P. Baker, “Computer Graphics,” C Ver-

sion, 2nd Edition, Prentice Hall, Inc., Upper Saddle River,
1998, p. 226.

[2] M. Cyrus and J. Beck, “Generalized Two and Three Di-
mensional Clipping,” Computers and Graphics, Vol. 3,

No. 1, 1978, pp. 23-28.

[3] D. Hearn and M. P. Baker, “Computer Graphics,” C Ver-
sion, 2nd Edition, Prentice Hall, Inc., Upper Saddle River,
1998, p. 233.

[4] T. M. Nicholl, D. T. Lee and R. A. Nicholl, “An Efficient
New Algorithm for 2-D Line Clipping: Its Development
and Analysis,” Computers and Graphics, Vol. 21, No. 4,
1987, pp. 253-262.

[5] D. Hearn and M. P. Baker, “Computer Graphics,” C Ver-
sion, 2nd Edition, Prentice Hall, Inc., Upper Saddle River,
1998, p. 230.

[6] C. B. Chen and F. Lu, “Computer Graphics Basis,” Pub-
lishing House of Electronics Industry, Beijing, 2006, pp.
167-168.

[7] V. Skala, “O (lg N) Line clipping Algorithm in E2,”
Computers and Graphics, Vol. 18, No. 4, 1994, pp. 517-
527.

[8] Y. D. Liang and B. A. Barsky, “The Optimal Tree Algo-
rithm for Line Clipping,” Technical Paper Distributed at
Eurographics’92 Conference, Cambridge, 1992, pp. 1-38.

[9] V. Skala, “A New Approach to Line and Line Segment
Clipping in Homogeneous Coordinates,” Visual Computer,
Vol. 21, No. 11, 2005, pp. 905-914.

[10] Y. D. Liang, B. A. Barsky and M. Slater, “Some Im-
provements to a Parametric Line Clipping Algorithm,”
Technical Report No. UCB/CSD 92/688, Computer Sci-
ence Division, University of California, Berkeley, 1992,
pp. 1-22.

Intelligent Information Management, 2010, 2, 386-390
doi:10.4236/iim.2010.26047 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

Experiments with Two New Boosting Algorithms

Xiaowei Sun1, Hongbo Zhou2
1Software College, Shenyang Normal University, Shenyang, China

2Liaoning SG Automotive Group Co., Ltd., Shenyang, China
E-mail: junyaomail@163.com, hongbo.zhou@hotmail.com

Received April 2, 2010; revised May 5, 2010; accepted June 8, 2010

Abstract

Boosting is an effective classifier combination method, which can improve classification performance of an
unstable learning algorithm. But it dose not make much more improvement of a stable learning algorithm. In
this paper, multiple TAN classifiers are combined by a combination method called Boosting-MultiTAN that
is compared with the Boosting-BAN classifier which is boosting based on BAN combination. We describe
experiments that carried out to assess how well the two algorithms perform on real learning problems. Fi-
nally, experimental results show that the Boosting-BAN has higher classification accuracy on most data sets,
but Boosting-MultiTAN has good effect on others. These results argue that boosting algorithm deserve more
attention in machine learning and data mining communities.

Keywords: Boosting, Combination Method, TAN, BAN, Bayesian Network Classifier

1. Introduction

Classification is a fundamental task in fault diagnosis,
pattern recognition and forecasting. In general, a classi-
fier is a function that chooses a class label (from a group
of predefined labels) for instance described by a set of
features (attributes). Learning accurate classifiers from
pre-classified data is a very active research topic in ma-
chine learning and data mining. In the past two decades,
many classifiers have been developed, such as decision
trees based classifiers and neural network based classifi-
ers.

Boosting [1-4] is a general method for improving the
performance of any “weak” learning algorithm. In theory,
boosting can be used to significantly reduce the error of
any “weak” learning algorithm that consistently gener-
ates classifiers which need only be a little bit better than
random guessing. Despite the potential benefits of boost-
ing promised by the theoretical results, the true practi-
cal value of boosting can only be assessed by testing the
method on “real” learning problems. In this paper, we
present such experimental assessment of two new boost-
ing algorithms.

The first provably effective boosting algorithms were
presented by Schapire [5] and Freund [3]. Boosting
works by repeatedly running a given weak learning algo-
rithm on various distributions over the training data, and

then combining the classifiers produced by the weak
learner into a single composite classifier. More recently,
we described and analyzed AdaBoost, and we argued
that this new boosting algorithm has certain properties
which make it more practical and easier to implement
than its predecessors.

TAN [6] and BAN [7] are augmented Bayesian net-
work classifiers provided by Friedman and Cheng J. In
these papers, we treat the classification node as the first
node in the ordering. The order of other nodes is arbi-
trary; we simply use the order they appear in the dataset.
Therefore, we only need to use the CLB1 algorithm,
which has the time complexity of O (N2) on the mutual
information test (N is the number of attributes in the
dataset) and linear on the number of cases. The effi-
ciency is achieved by directly extending the Chow-Liu
tree construction algorithm [8] to a three-phase BN
learning algorithm: drafting, which is essentially the
Chow-Liu algorithm, thickening, which adds edges to the
draft, and thinning, which verifies the necessity of each
edge.

In this paper, multiple TAN classifiers are combined
by a combination method called Boosting-MultiTAN
that is compared with the Boosting-BAN classifier which
is boosting based on BAN combination. Section 2 de-
fines two classes of BNs, i.e., Tree augmented Naive-
Bayes (TANs) and BN augmented Naïve-Bayes (BANs),
and describes methods for learning each. Section 3 pro-
poses two new boosting algorithms, such as Boosting-

X. W. SUN ET AL.

Copyright © 2010 SciRes. IIM

387

MultiTAN classifier and Boosting-BAN classifier. Sec-
tion 4 presents and analyzes the experimental results.
These results argue that boosting algorithm deserve more
attention in machine learning and data mining communi-
ties.

2. Learning Bayesian Network Classifiers

Learning Bayesian network classifiers involves two steps:
structure learning and parameter (conditional probability
tables) learning. We will focus on structure learning
methods for different Bayesian network classifiers in the
subsections below.

2.1. Tree Augmented Naive-Bayes (TAN)

Letting X = {x1, …, xn, c} represent the node set (where c
is the classification node) of the data. The algorithm for
learning TAN classifier first learns a tree structure over
V\{c}, using mutual information tests. It then adds a link
from the classification node to each feature node in the
manner as we construct a Naive-Bayes (i.e., the classify-
cation node is a parent of all other nodes.) A simple TAN
structure is shown in Figure 1 (Note that features x1, x2,
x3, x4 form a tree).

The learning procedure can be described as follows.
1) Take the training set and X\{c} as input.
2) Call the modified Chow-Liu algorithm. (The origin-

nal algorithm is modified by replacing every mutual in-
formation test I(xi, xj) with a conditional mutual infor-
mation test I(xi, xj|{c})).

3) Add c as a parent of every xi where 1 ≤ i ≤ n.
4) Learn the parameters and output the TAN.
This algorithm, which is modified from the Chow-Liu

algorithm, requires O(N2) numbers of conditional mu-
tual information tests. This algorithm is essentially the
first phase of the BAN-learning algorithm. TAN classi-
fier is stable that can not be combined with a quite strong
learning algorithm by boosting.

2.2. BN Augmented Naive-Bayes (BAN)

BAN classifier has been studied in several papers. The
basic idea of this algorithm is just like the TAN learner
of Subsection 2.1, but the unrestricted BN-learning algo-
rithm instead of a tree-learning algorithm (see Figure 2).

Letting X = {x1, …, xn, c} represent the feature set
(where c is the classification node) of the data, the learn-
ing procedure based on mutual information test can be
described as follows.

1) Take the training set and X\{c} (along with the or-
dering) as input.

2) Call the modified CBL1 algorithm. (The original
algorithm is modified in the following way: replace every

C

x1 x2 x3 x4

Figure 1. A simple TAN structure.

x1

x2

x3 x4

C

Figure 2. A simple BAN structure.

mutual information test I(xi, xj) with a conditional mutual
information test I(xi, xj|{c}); replace every conditional
mutual information test I(xi, xj|Z) with I(xi, xj|Z + {c}),
where Z X\{c}.

3) Add c as a parent of every xi where 1 ≤ i ≤ n.
4) Learn the parameters and output the BAN.
Like the TAN-learning algorithm, this algorithm dose

not require additional mutual information tests, and so it
requires O(n2N) (where n is the number of node attrib-
utes; N is the number of training examples) mutual in-
formation tests. The longest time spent in the algorithm
is to calculate mutual information. In BAN structure, the
second step in the three-phase is used to sort mutual
information. The is a given small positive threshold,
it is not fixed, and can be changed in many times. By
setting different thresholds can construct many BAN
classifiers. BAN classifier is unstable that can be com-
bined with a quite strong learning algorithm by boosting.

3. Two New Boosting Algorithms

3.1. Boosting-MultiTAN Algorithm

GTAN [9] is proposed by Hongbo Shi in 2004. GTAN
used conditional mutual information as CI tests to meas-
ure the average information between two nodes when the
statuses of some values are changed by the condition-set
C. When I(xi, xj|{c}) is larger than a certain threshold

X. W. SUN ET AL.

Copyright © 2010 SciRes. IIM

388

value , we choose the edge to the BN structure to form
TAN. Start-edge and are two important parameters
in GTAN. Different Start-edges can construct different
TANs. GTAN classifier is unstable that can be combined
with a quite strong learning algorithm by boosting.

The Boosting-MultiTAN algorithm may be character-
ized by the way in which the hypothesis weights wi are
selected, and by the example weight update step.

Boosting-MultiTAN (Dataset, T):
Input: sequence of N example Dataset = {(x1, y1),…,

(xN, yN)} with labels yi ∈ Y = {1,…, k}, integer T speci-
fying number of iterations.

Initialize (1) 1/iw N for all i, TrainData-1 = Dataset

Start-edge = 1; t = 1; l = 1
While ((t ≤ T) and (l ≤ 2T))
1) Use TrainData-t and start-edge call GTAN, pro-

viding it with the distribution.

2) Get back a hypothesis ()tTAN X Y .
3) Calculate the error of TAN(t):

 () () ()

1

N
t t t

i i i
i

e w I y TAN x

 .

If e(t) ≥ 0.5, then set T = t – 1 and abort loop.

4) Set 1t t te e .

5) Updating distribution (1) () () st t t
i iw w , where

 ()1 t
i is I y TAN x .

6) Normalize (1)t
iw

, to sum to 1.

7) t = t + 1, l = l + 1, start-edge = start-edge + n/2T.
8) end While
Output the final hypothesis:

 ()
()

1

1
arg max log *

T
t

ty Y t

H x I y TAN x

3.2. Boosting-BAN Algorithm

Boosting-BAN works by fitting a base learner to the
training data using a vector or matrix of weights. These
are then updated by increasing the relative weight as-
signed to examples that are misclassified at the current
round. This forces the learner to focus on the examples
that it finds harder to classify. After T iterations the out-
put hypotheses are combined using a series of probabilis-
tic estimates based on their training accuracy.

The Boosting-BAN algorithm may be characterized by
the way in which the hypothesis weights wi are selected,
and by the example weight update step.

Boosting-BAN (Dataset, T):
Input: sequence of N example Dataset = {(x1, y1),…,

(xN, yN)} with labels yi ∈ Y = {1, …, k}, integer T speci-
fying number of iterations.

Initialize (1) 1 /iw N for all i, TrainData-1 = Dataset

Do for t = 1, 2,…, T
1) Use TrainData-t and threshold call BAN, pro-

viding it with the distribution.

2) Get back a hypothesis ()tBAN X Y .
3) Calculate the error of BAN(t):

 () () ()

1

N
t t t

i i i
i

e w I y BAN x

 .

If e(t) ≥ 0.5, then set T = t – 1 and abort loop.

4) Set 1t t te e

5) Updating distribution 1 () () st t t
i iw w , where

 ()1 t
i is I y BAN x .

6) Normalize (1)t
iw , to sum to 1.

Output the final hypothesis:

 ()
()

1

1
arg max log *

T
t

ty Y t

H x I y BAN x

4. The Experimental Results

We conducted our experiments on a collection of ma-
chine learning datasets available from the UCI [10]. A
summary of some of the properties of these datasets is
given in Table 1. Some datasets are provided with a test
set. For these, we reran each algorithm 20 times (since
some of the algorithms are randomized), and averaged
the results. For datasets with no provided test set, we
used 10-fold cross validation, and averaged the results
over 10 runs (for a total of 100 runs of each algorithm on
each dataset).

In our experiments, we set the number of rounds of
boosting to be T = 100.

The results of our experiments are shown in Table 2.
The figures indicate test correct rate averaged over mul-
tiple runs of each algorithm. The bold in the table show
that the classification is superior than another one obvi-
ously. From Table 2 in the 20 datasets, Boosting-BAN
did significantly and uniformly better than Boosting-
MultiTAN.

On the data sets “Car”, “Iris” and “LED”, the Boosting-
MultiTAN was inferior to the Boosting-BAN. The Boos-
ting-BAN correct rate was better than the Boosting-
MultiTAN correct rate in another 17 datasets. The reason
is, in these cases the rate of attributes and classes are less
than other Datasets. This reveals that the features in the
three datasets are most dependent to each other. These
weak dependencies can improve the prediction accuracy
significantly, as we see from Table 2. These experiments
also indicate that when the dataset is small and data loss,
the boosting error rate is worse.

X. W. SUN ET AL.

Copyright © 2010 SciRes. IIM

389

Table 1. Dataset used in the experiments.

No. Dataset Instances Classes Attributes
Missing
values

1 Anneal 898 6 38 √

2 Audiology 226 24 69 √

3 Breast Cancer 699 2 9 ×

4 Bupa 345 2 6 ×

5 Car 1728 4 6 ×

6 Cleveland 303 2 13 ×

7 Crx 653 2 15 √

8 German 1000 2 20 ×

9
House-votes-

84
435 2 16 √

10 Hypothyroid 3163 2 25 √

11 Iris 150 3 4 ×

12 Kr-rs-kp 3169 2 36 ×

13 LED 1000 10 7 ×

14 Mushroom 8124 2 22 √

15 Promoters 106 2 57 ×

16 Segment 2310 7 19 ×

17 Soybean Large 683 19 35 √

18 Tic-Tac-Toe 958 2 9 ×

19 Wine 178 3 13 ×

20 Zoology 101 7 16 ×

5. Conclusions

GTAN and BAN classifiers are unstable, by setting dif-
ferent parameters, we can form a number of different
TAN and BAN classifiers. In this paper, multiple TAN
classifiers are combined by a combination method called
Boosting-MultiTAN that is compared with the Boosting-
BAN classifier which is boosting based on BAN combi-
nation. Finally, experimental results show that the Boos-
ting-BAN has higher classification accuracy on most
data sets.

Table 2. Experimental results.

No. Dataset Boosting-MultiTAN Boosting-BAN

1 Anneal 98.3 99.2

2 Audiology 76.2 78.8

3 Breast Cancer 95.5 95.9

4 Bupa 58.5 59.8

5 Car 87.1 85.5

6 Cleveland 82.7 84.6

7 Crx 85.2 86.5

8 German 70.8 74.6

9 House-votes-84 94.9 95.8

10 Hypothyroid 99.1 99.8

11 Iris 93.8 90.5

12 Kr-rs-kp 93.3 99.3

13 LED 73.9 72.3

14 Mushroom 99.9 100

15 Promoters 89.3 91.7

16 Segment 94.3 96.4

17 Soybean Large 92.6 93.7

18 Tic-Tac-Toe 74.7 79.2

19 Wine 97.3 98.5

20 Zoology 96.8 97.7

When implementing Boosting classifiers, we were

able to calculate the value of c directly given our prior
knowledge. Of course, in a real situation we would be
very unlikely to know the level of class noise in advance.
It remains to be seen how difficult it would prove to es-
timate c in practice.

6. References

[1] Y. Freund and R. E. Schapire, “A Decision-Theoretic

Generalization of On-Line Learning and an Application
to Boosting,” Computational Learning Theory: 2nd Euro-

X. W. SUN ET AL.

Copyright © 2010 SciRes. IIM

390

pean Conference (EuroCOLT’95), Barcelona, 13-15 March
1995, pp. 23-37.

[2] R. E. Schapire, Y. Freund, Y. Bartlett, et al., “Boosting
the Margin: A New Explanation for the Effectiveness of
Voting Methods,” In: D. H. Fisher, Ed., Proceedings of
the 14th International Conference on Machine Learning,
Morgan Kaufmann Publishers, San Francisco, 1997, pp.
322-330.

[3] Y. Freund, “Boosting a Weak Learning Algorithm by
Majority,” Information and Computation, Vol. 121, No. 2,
1995, pp. 256-285.

[4] J. R. Quinlan, “Bagging, Boosting, and C4.5,” In: R. Ben-
Eliyahu, Ed., Proceedings of the 13th National Confer-
ence on Artificial Intelligence, Portland, 4-8 August 1996,
pp. 725-730.

[5] R. E. Schapire, “The Strength of Weak Learnability,”
Machine Learning, Vol. 5, No. 2, 1990, pp. 197-227.

[6] N. Friedman, D. Geiger and M. Goldszmidt, “Bayesian
Network Classifiers,” Machine Learning, Vol. 29, No.
2-3, 1997, pp. 131-163.

[7] J. Cheng and R. Greiner, “Comparing Bayesian Network

Classifiers,” In: K. B. Laskey and H. Prade, Ed., Pro-
ceedings of the 15th Conference on Uncertainty in Artifi-
cial Intelligence, Morgan Kaufmann Publishers, San Fran-
cisco, 15 October 1999, pp. 101-108.

[8] J. Cheng, D. A. Bell and W. Liu, “An Algorithm for Bayes-
ian Belief Network Construction from Data,” In: Pro-
ceedings of Conference on Artificial Intelligence and Sta-
tistics, Lauderdale, January 1997, pp. 83-90.

[9] H. B. Shi, H. K. Huang and Z. H. Wang, “Boosting-
Based TAN Combination Classifier,” Journal of Com-
puter Research and Development, Vol. 41, No. 2, 2004,
pp. 340-345.

[10] UCI Machine Learning Repository. http://www.ics.uci.
edu/~mlearn/ML.Repository.html

[11] Y. Freund and R. E. Schapire, “Experiments with a New
Boosting Algorithm,” In: L. Saitta, Ed., Proceedings of
the 13th International Conference on Machine Learning,
Bari, 3-6 July 1996, pp. 148-156.

[12] X. W. Sun, “Augmented BAN Classifier,” Proceedings of
International Conference on Computational Intelligence
and Software Engineering, Wuhan, 11-13 December 2009.

	iim 2.6 CONTENTS
	journal information iim
	1-8701044
	2-8701040
	3-8701035
	4-8701032
	5-8701036
	6-8701042

