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Abstract 
This paper intends to show how the fabled violation of Bell’s inequality by the 
probabilistic specifications of quantum mechanics derives from a mathemat-
ical error, an error of neglect. I have no objection to the probabilities specified 
by quantum theory, nor to the inequality itself as characterized in the formu-
lation of Clauser, Horne, Shimony, and Holt. Designed to assess conse-
quences of Einstein’s principle of local realism, the inequality pertains to a li-
near combination of four polarization products on the same pair of photons 
arising in a gedankenexperiment. My assessment displays that in this context, 
the summands of the relevant CHSH quantity ( )s λ  inhere four symmetric 
functional relations which have long been neglected in analytic considera-
tions. Its expectation ( )E s λ    is not the sum of four “marginal” expecta-

tions from a joint distribution, as quantum theory explicitly avoids such a 
specification. Rather, I show that ( )E s λ    has four distinct representations 

as the sum of three expectations of polarization products plus the expectation 
of a fourth which is restricted to equal a function value determined by the 
other three. Analysis using Bruno de Finetti’s fundamental theorem of previ-
sion (FTP) yields only a bound for ( )E s  within ( ]1.1213,2 , surely not  

2 2  at all as is commonly understood. I exhibit slices of the 4-dimensional 
polytope of joint P++  probabilities actually motivated by quantum theory at 
the four stipulated angle settings, as it passes through 3-dimensional space. 
Bell’s inequality is satisfied everywhere within the convex hull of extreme dis-
tributions cohering with quantum theoretic specifications, even while in 
keeping with local realism. Aspect’s proposed “estimation” of ( )E s  near to 

2 2  is based on polarization products from different photon pairs that do 
not have embedded within them the functional relations inhering in the rele-
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vant gedankenexperiment. When one actively embeds the restrictions into 
Aspect’s estimation procedure, it yields an estimate of 1.7667, although this is 
not and cannot be definitive. While my analysis supports the subjectivist con-
struction of probability as clarifying issues relevant to the interpretation of 
quantum theory, the error resolved herein is purely mathematical. It pertains 
to the reconsideration of Bell violation irrespective of one’s attitude toward 
the meaning of probability. 
 

Keywords 
Bell Inequality Defiance, CHSH Formulation, Fundamental Theorem of 
Probability, Probability Bounds, 4-Dimensional Cuts 

 

1. Introduction 

As brash as this may sound, claims that probabilistic specifications of quantum 
mechanics are inconsistent with local realism and defy Bell’s inequality are just 
plain wrong. This may be difficult to accept, depending on how wedded one is to 
the outlook that gives rise to defiance of the inequality as it is widely understood. 
In the eyes of the professional physics community, the matter is now closed. The 
eminent journal Nature [1] flamboyantly announced the “Death by experiment 
for local realism” as an introduction to its publication of ambitious experimental 
results achieved at the Technical University of Delft. These were proclaimed to 
have closed simultaneously all seven loopholes that had been suggested as possi-
ble explanations for the purported violations of the inequality. My claim is that 
the touted violation of the inequality derives from a mathematical mistake, an 
error of neglect. Moreover, consequences of the error run through both the ana-
lytical development of the defiance structure and the statistical assessment of re-
levant matters. Its recognition relies only on a basic understanding of functions 
of many variables and on standard features of applied linear algebra. This pres-
entation is prepared so to be read not only by physicists but by any sophisticated 
reader who has followed this issue at least at the level of popular description of 
scientific activity and who is not put off by equations per se. 

The defiance of Bell’s inequality is one of the seminal results underlying the un-
derstanding of quantum theory as it has developed over the past half century. More 
than seven thousand references to pertinent discussion can be found on Google 
Scholar, and I do not intend to review the corpus. Most physicists regard the in-
equality as a condition on freely determined expectation values and their estimates 
from physical experiments, calculated according to the QM formalism. I consider 
this viewpoint to be mistaken, for reasons I shall detail herein. However, while 
surely in a minority camp of objectors, my analysis can be situated within a litera-
ture of creditable researchers whose perspective I share. The recent review article of 
Kupczynski [2] surveys and references more than eighty technical publications in 
this vein, both longstanding and recent, notably recognized contributions of Fine 
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[3], Hess [4], Hess and Philipp [5], Khrennikov [6], and Kupczynski herself. The 
review provides many more references from these and other researchers. Of course 
many of these have been contested, particularly in the perspective of Mermin [7]. 
Nonetheless, I believe the assessment of the situation that I provide is truly novel, 
and augments the reservations that have been proposed within the dissenting camp. 

It is clear in his own writings that John Bell himself was puzzled by the impli-
cations of his inequality [8] [9] [10]. He suspected that something was wrong 
with the understanding that when coupled with local realism the probabilities of 
quantum mechanics seem to defy its structure, and he expressed undying confi-
dence that this error would be discovered in due time. I am proposing that I 
have found the error he sought. I accept all probabilistic assertions supported by 
quantum theory, and I shall exhibit their implied satisfaction of the inequality 
bounds which they are widely supposed to defy. 

I do not contest the experimental results of the Delft group, nor any of the re-
lated experimentation which has followed from the pathbreaking initial work of 
Alain Aspect and his group [11] [12]. I do contest the inferences they are pur-
ported to support. In this note I will first review the derivation of the inequality 
in the context to which it applies, featuring its relation to Einstein’s principle of 
local realism. The review will focus on the CHSH form of the inequality to which 
Aspect’s optical experimentation is considered to be relevant. Identifying the 
neglected functional relations that are involved in a thought experiment on a 
single pair of photons, I will show that claims to quantum defiance of the in-
equality are mistaken, and show how to derive the actual implications of quan-
tum theory for the probabilities under consideration. Further will be shown why 
Aspect’s computations (and all subsequent extensions) proposed to exhibit em-
pirical confirmation of the inequality defiance are ill considered, and how they 
ought to be adjusted. This demonstration relies on the computational mechanics 
of Bruno de Finetti’s fundamental theorem of probability. The results are dis-
played both algebraically and geometrically. 

2. The Physical Setup of Four Experiments Providing Context 
for Bell’s Inequality in CHSH Form: A 16-D Problem 

We shall review the setup of an optical variant of Bell’s experiment, designed by 
Alain Aspect in the 1980’s to take advantage of a formulation of the problem 
proposed by Clauser, Horne, Shimony, and Holt [13]. The original discussions 
of the inequality violation were couched in terms of observations of spins of 
paired electrons. Although specific algebraic details differ for the two types of 
experimental situation, the conclusions reached would be identical. 

An experiment is conducted on a pair of photons traveling in opposite direc-
tions along an axis, z, from a common source. As seen in Figure 1, the direction 
one of the photons travels toward detector A on the left is directly opposite to the 
direction its paired photon travels toward detector B on the right: A B= −z z . At 
the end of their respective journeys, each of the paired photons engages polariz-
ing material that either allows it to pass through or to be deflected.  
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Figure 1. Polarizing material is aligned at the detection stations of A and B, each with two 

possible choices of direction in the ( ),x y  dimension perpendicular to the z  direction 

of the incoming photon: direction a  or ′a  at station A, and b  or ′b  at station B.  
 

The detection of a photon that passes through the polarizer is designated by 
denoting the numerical value of 1A = + , while the detection of a photon as 
blocked is designated by the value of 1A = − . The polarizer addressed by pho-
ton A is oriented in a variable direction *a  in the ( ),x y  plane perpendicular 
to Az . It can be set in either of two specific directions designated as a  and ′a  
in the experimental setups we shall consider. Similarly, the direction of the pola-
rizer met by the photon at station B can be set at either b  or ′b  in its ( ),x y  
plane. Depending on the specific pair of polarization directions * *,a b  chosen 
for any particular experiment, we shall observe the paired values of either  

( ) ( )( ),A Ba b , or ( ) ( )( ),A B ′a b , or ( ) ( )( ),A B′a b , or ( ) ( )( ),A B′ ′a b . Since 
the observations of the A and the B photon detections can each equal either +1 
or −1 whatever the angle pairing might be, the chosen observation pair  

( ) ( )( )* *,A Ba b  will equal one of the four possibilities ( ) ( ) ( ), , , , ,+ + + − − + , or 
( ),− − , where the needless numeric values of 1 are suppressed in each designated 
pairing. 

Experimental choices of the two polarizing directions yield a specific relative 
angle between them at stations A and B in any given experiment. Using As-
pect’s notation that parentheses around a pair of directions denotes the rela-
tive angle between them, the experimental detection angle settings ( )* , Aa z  and 

( )* , Bb z  imply the relative angle between polarizers at stations A and B in the 
( ),x y  dimension as ( )* *,a b . Bell’s inequality is relevant to this context in which 
the two photon polarization directions can be paired at any one of four distinct 
relative angles, denoted by the parenthetic pairs ( ),a b , ( ), ′a b , ( ),′a b , or 
( ),′ ′a b . 

In order to view the relative angles we are talking about, mentally we would 
need to swing the ( ),x y  plane around by 180˚ as it is viewed by the photon di-
rected to station A, and superimpose it on the ( ),x y  plane as it is viewed by 
the photon directed to station B. In this manner we can understand the size and 
meaning of the relative angles between the various values of polarization orien-
tations *a  and *b  as seen here in Figure 2, which follows. 

The theory of quantum mechanics motivates specification of probabilities for 
the four observable outcome possibilities of the polarization experiment as de-
pending on the relative angle ( )* *,a b  between the direction vectors of the  
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Figure 2. Directional vectors of the polarization angle settings at the observation stations 
A and B, viewed in a common axis orientation. The specific relative angle size settings 
displayed are the extreme violation values, a feature to be discussed. 

 
polarizers at stations A and B. For any such relative angle pairing, the probabili-
ties specified by quantum theory for the four possible experimental observations 
{ }, , ,++ +− −+ − −  are 

( )( ) ( )( )
( )( ) ( )( ) ( )

* *

* * 2 * *

1 1

11 1   cos , ,
2

a b

a b a b

 = + = + 

 = = − = − = 

P A B

P A B
 

and 
( )( ) ( )( )
( )( ) ( )( ) ( )

* *

* * 2 * *

1 1

11 1   sin , .
2

a b

a b a b

 = + = − 

 = = − = + = 

P A B

A B
           (1) 

For efficiency in what follows, we shall denote the four probabilities appearing 
in Equations (1) by , ,P P P++ −− +− , and P−+  when the pertinent angle setting is 
evident. 

These four probabilities surely sum to equal 1, because the sum of 2 2cos sin+  
of any angle equals 1. A few properties of the joint probability mass function 
(pmf) they compose should be noticed. Firstly, the four probabilities can be spe-
cified by the value of any one of them. The equations (1) stipulate that no matter 
what the relative angle ( )* *,a b  may be, the values of P P++ −−= , and  
P P−+ +−= . Since the four probabilities do sum to 1 then, the specification of P++  
as the value p, for example, implies that the pmf vector [ ], , ,P P P P++ −− +− −+  
would be ( ) ( ), , 1 2 2, 1 2 2p p p p− −   . Another implication of this feature is 
that the probabilities for the paired detection outcomes depend only on the 
product of the two measurements. For both outcomes ++ and −− yield a product 
of +1 and both outcomes +− and −+ yield a product of −1. Thus, the QM-mo- 
tivated distribution for the experimental value of the polarization product 
( ) ( )* *A Ba b  is specified by ( ) ( ) ( )* * 2 * *1 cos ,P A B = + = a b a b  and  
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( ) ( ) ( )* * 2 * *1 sin ,P A B = − = a b a b . 
As will be important to recognize in what follows, the expected value (first 

moment) of this distribution for the detection product is 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

* * 2 * * 2 * *

2 * * 2 * * * *

  1 cos , 1 sin ,

  cos , sin ,   cos 2 ,

a b a b a b

a b a b a b

  = + + − 

= − =

E A B
      (2) 

according to standard double angle formulas. It is worthwhile reminding right 
here that “the expected value of a probability distribution” is the “first moment” 
of the distribution. Geometrically, it is the point of balance of the probability 
mass function weights when they are positioned in space at the places where the 
possible observations to which they pertain might occur. It is a property of a 
probability distribution for the outcome of a specific single observable variable. A 
final peculiarity of Equation (2) to be useful far down the road in this explication is 
that the expectation value ( ) ( )* *E A B 

 a b  can also be represented as 

( ) ( ) ( ) ( )* * 2 * * * *  2cos , 1  4 , 1a b a b a b++
  = − = − E A B P .        (3) 

For the value of ( )2 * *sin ,a b  appearing in the final line of Equation (2) can also 
be written as ( )2 * *1 cos ,− a b . Enough of this for now. 

Secondly, again no matter what the relative angle ( )* *,a b  may be, the mar-
ginal probability that the detection observation of the photon equals +1 at either 
observation station is equal to 1/2. For the standard margining equation for the 
result of a paired experiment yields 

( )( )
( )( ) ( )( ) ( )( ) ( )( )
( ) ( )

*

* * * *

2 * * 2 * *

1

 1

1

1 1 1

1 1 cos , sin ,   
2

2
2

a

a b a b

a b a b

 = + 
   = = + = + + = + = −   

= + =

P A

P A B P A B     (4) 

This result codifies a touted feature of physical processes at quantum scales of 
magnitude, that the photon behaviours of particle pairs are understood to be 
entangled. Since the probability for the joint photon behaviour  

( )( ) ( )( )* *1 1P A B = + = + a b  does not factor into the product of their mar-

ginal probabilities ( )( )* 1P A = + a  and ( )( )* 1P B = + b , the conditional  

distribution for either one of these events depends on the context of the condi-
tioning behaviour: 

( )( ) ( )( ) ( ) ( )( )* * 2 * * *1 | 1 cos , 1   1 2a b a b a   = + = + = ≠ = + =   P A B P A ,  (5) 

and ( )( ) ( )( ) ( )* * 2 * *1 | 1 sin ,P A B = + = − = a b a b , which is different still. 

We have concluded what we need to say at the moment about the prescrip-
tions of quantum theory relevant to quantum polarization behaviour of a single 
pair of prepared photons. Before proceeding to the specification of Bell’s inequa-
lity, we need to address three issues: what quantum theory professes not to say 
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on account of the uncertainty principle, the relevance of the principle of local 
realism, and a proposal regarding supplementary variables that may impinge on 
the experimental results. 

3. The Uncertainty Principle: What Quantum  
Theory Disavows 

The problem of quantum physics relevant to Bell’s inequality concerns the con-
sideration of what might happen in imagined designs of physical situations that 
are impossible to instantiate. In our developments to this point, we have identi-
fied a physical experiment on a pair of photons, polarizing them at one of four 
exclusive possible relative angle pairings, ( ),a b , ( ), ′a b , ( ),′a b , and ( ),′ ′a b . 
We could perform this polarization experiment on a specific pair of photons at 
any one of these angle pairings. Moreover, we could perform the experiment at 
all four angle settings if we generated different pairs of photons to engage each of 
them. However, we cannot perform all four experiments simultaneously on the 
same pair of photons. The theory of quantum mechanics recognizes this fact ex-
plicitly, avowing the uncertainty principle which abnegates all claims regarding 
the outcome of an experiment that cannot possibly be observed. Not only would 
any such claim necessarily evade empirical corroboration, but the theoretical al-
gebraic mechanism that is used to identify the quantum probabilities for the re-
sults of the polarization experiment embeds this impossibility into its protocol 
which we shall not detail here. In a word, two measurements of a physical sys-
tem are recognised to be jointly observable only if the product of the matrix op-
erators that characterise them commutes. Each possible polarization observation 
pair at a relative angle ( )* *,a b  is characterised by its own matrix operator H. 
Since we have four possible experimental designs under consideration, codified 
by the paired angle settings ( ),a b , ( ), ′a b , ( ),′a b , and ( ),′ ′a b , there are four 
distinct matrix operators, denoted by ( ),H a b , ( ),H ′a b , ( ),H ′a b , and ( ),H ′ ′a b , which 
codify our experimental measurement possibilities. It is a simple matter to de-
termine algebraically that no two of these proposed matrices commute. 

All this is to say that the technical manipulations of mathematical quantum 
theory instantiate formally just what we knew to begin with... that we cannot 
simultaneously perform the measurement observation of the polarization prod-
ucts at both angle settings ( ),a b  and ( ), ′a b  on the same pair of photons, not 
to speak of ( ),′a b  and ( ),′ ′a b  as well. Although quantum theoretical intrigue 
allows us to assert probabilities such as ( ) ( )( ) ( ), 1, 1P A B = + − a b  or what-
ever, it abstains from any prognostication of the form  

( ) ( )( ) ( ) ( ) ( )( ) ( ), 1, 1 and , 1, 1P A B A B ′= + − = + + a b a b . This would be a prob-
ability assertion regarding simultaneous outcomes of a jointly unobservable pair 
of events. 

Well, who would want to? We shall now find out. Although impossible to per-
form, we are surely permitted to think about what might happen if we could 
perform such simultaneous experiments. Enter the realm of a gedankenexperiment. 
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4. The Principle of Local Realism and Its Relevance to Bell 

A feature that will be found crucial to the touted violation of Bell’s inequality is 
that it pertains to experimental results supposedly conducted with a single pho-
ton pair at all four angle settings. This is very clear in the memorial article of 
Aspect [14] and many assessments of the inequality that properly recognize this. 
An example would be the article of Adenier [15]. Many discussants do not. How 
did such a context for the experiment arise? When the probabilistic pronounce-
ments of quantum theory were formalized, Einstein among others was puzzled 
by the fact that the conditional probability for the outcome of the experiment at 
station A depends on both the angle at which the experiment is conducted at 
station B and on the outcome of that experiment. This matter is codified by the 
conditional probabilities we have seen in Equations (5). This entanglement of 
seemingly unrelated physical processes was deemed by Einstein to be a matter of 
“spooky action at a distance”. Along with Podolsky and Rosen [16] he proposed 
a solution to this enigma, positing that there must be some other factors relevant 
to what might be happening at the polarizer stations A and B which would ac-
count for photon detections that are found to arise. As yet unspecified in the 
theory, he considered such factors to identify unknown values of “supplementa-
ry variables”. It was proposed that the probabilities inherent in the results of 
quantum theory must be representations of scientific uncertainty about the ac-
tion of these other variables on the two photons at their respective stations. This 
was their proposed way of accounting for the spooky action at a distance: the 
“state” of a photon in a polarization experiment, along with the condition of its 
attendant supplementary variables, involves its disposition to respond to the ex-
periment at any and every one of its relative angle settings. 

However, there is one aspect of the matter upon which Einstein wanted to in-
sist: this was termed “the principle of local realism”. Although it is central to 
matters under consideration in this problem, the applicable formulation of this 
principle, its meaning, and its relevance to the CHSH formulation of Bell’s in-
equality (which we are soon to address) have been matters of contention. In 
unembellished form, the locality principle merely asserts that physical mechan-
ics engaging at some particular location are not influenced by physical condi-
tions arising in another unconnected locale far removed in space. What this 
would mean precisely for a gedanken scenario such as we will be considering is a 
matter of published discussion, notably among Mermin [17], Hess and Philipp 
[18], and Mermin [19], though many more have been involved. The discussion 
concerns whether the principle of locality alone is sufficient to establish a facto-
rization that is involved in the CHSH form of Bell’s inequality, and how the 
principle might need to be extended. 

Whatever the precise form of its motivation relative to locality, the defiance of 
Bell’s inequality derives from a specific and precise mathematical condition that 
we will recognize in its development. Fair enough, quantum theory does stipu-
late the probability for photon behaviour at station A with its polarizer direction 
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a  as depending on whether the polarizer direction at B is set at b  or ′b  and 
on what happens there. However, in any specific instance of the paired experi-
ments conducted at a relative polarization angle ( ),a b , if the measurement ob-
servation at A happened to equal ( ), 1A = +a b , say, then in this instance the 
measurement at A would have to be the same in any simultaneous gedankenob-
servation, no matter whether the direction setting at station B were b  or ′b . 
That is to say, if the polarization observation ( ) 1A = +a  in a particular experi-
ment on a pair of photons measure in the paired angle design ( ),a b , then the 
value of ( )A a  would also have to equal +1 in a companion experiment on the 
same pair of photons if the polarization directions were set in the angle pairing 
( ), ′a b . The physical processes occurring at station A in any experimental run, 
uncertain though they may well be, are unrelated to those occurring far away at 
B. 

Actually, our mathematical exposition of the probabilistic specifications of 
quantum theory has already deferred to such an understanding. We have been 
denoting the photon detection value at station A merely by ( )A a  rather than 
denoting it by ( ),A a b , even before we have now introduced consideration of 
this principle of local realism. In the context of locality, the importance of such 
simplification of the notation was stressed explicitly by Aspect [14]. In fact we 
had no need to denote the paired direction at B in our notation for ( )A a  earli-
er, because we can only do the experiment on a specific photon at one specific 
possibility pair determining the angle pairing ( )* *,a b . So we have merely de-
noted the observed results as ( )A a  and ( )B b , or as ( )A a  and ( )B ′b . Non-
etheless, the QM probabilities of Equation (1) stipulated that each of the paired 
results of the experiments does depend jointly on the relative angle between the 
two polarization directions. 

Despite this notational deference, we should now recognize and expressly 
declare that this principle of local realism is based upon a claim that lies outside 
the bounds of matters addressed by the theory of quantum physics. For, as we 
have noted, it is impossible to make a measurement of both the photon detection 
product ( ) ( )A Ba b  and the product ( ) ( )A B ′a b  on the same pair of photons. 
So quantum theory explicitly disavows addressing this matter directly, though it 
is surely a matter of relevance to the interpretation of quantum theoretic pre-
scriptions. 

We are ready to conclude this Section by proposing an experimental mea-
surement that lies at the heart of Bell’s inequality. We are not yet ready to assess 
it, nor to explain its relevance to the principle of local realism, but we shall 
merely air it now for viewing. Peculiar, it is considered to be the result of a ge-
dankenexperiment. 

Consider a pair of photons to be ejected toward stations A and B at which the 
pair of polarizers can be directed in any of the four relative angles we have de-
scribed. According to the detection of whether the photons pass through the po-
larizers or are deflected by them, Bell’s inequality pertains to an experimental 

https://doi.org/10.4236/jmp.2021.128067


F. Lad 
 

 

DOI: 10.4236/jmp.2021.128067 1118 Journal of Modern Physics 
 

quantity defined by the equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s A B A B A B A B′ ′ ′ ′≡ − + +a b a b a b a b         (6) 

Mathematically, we would refer to this quantity s as a linear combination of 
four polarization detection products. Any one of the four terms that determine 
the value of s could be observed in an experiment on a pair of prepared photons. 
Before we explain why this quantity is of interest, we should recognize right here 
only that we can observe the value of this quantity s if we are to conduct four 
component experiments on four distinct pairs of photons, each ejected toward 
stations A and B with the polarizers directed at a different relative angle pairing. 
However, we cannot observe the value of s if it were meant to pertain to all four 
experiments being conducted simultaneously on the same pair of photons. It just 
cannot be done, and quantum theory is very explicit about having nothing di-
rectly to say about its value. If we are to consider the value of s in such an expe-
rimental design, it could only be as the result of a “thought experiment”. Enough 
said for now. 

Why would we even be interested by such a “gedankenexperiment” as its per-
petrators called it, and what does the supposition of “hidden variables” have to 
do with the matter? 

5. Einstein’s Proposal of Hidden Variables  
Relevant to the Matter 

The famous paper [16] which addressed these matters presented ideas that had 
been brewing for many years [20]. It is now widely known merely as the EPR 
proposal. The ideas were opposed to those of others who were proclaiming that 
the experimental and theoretical discoveries of QM support the view that at its 
fundamental level of particulate matter, the behaviour of Nature is random, and 
that quantum theory had identified its probabilistic structure. Convinced that 
“he (the old one) is not playing dice with the universe”, EPR proposed that the 
formulation of quantum theory is incomplete, and quantum probabilities 
represent our uncertainty about the influence of unspecified supplementary va-
riables. The article stimulated a fury of healthy discussion and argument that I 
shall not summarize here. Well documented both in the professional journals of 
physics and in literature of popular science, the discussion has featured consid-
erations of the collapse of a quantum system when subject to observation that 
disturbs it, the non-locality of quantum processes, and esoteric formulations of 
the “many worlds” view of quantum theory. What matters for my presentation 
here is that Einstein’s views were widely relegated as a quirky peculiar sideline, 
and the recognition of randomness as a fundamental feature of quantum activity 
came to the forefront of theoretical physics. 

Enter John Bell. Interested in a reconsideration of Einstein’s view, he began 
his research with an idea to re-establish its validity as a contending interpreta-
tion of what we know. However, he was surprised to find this programme at an 
impasse when he discovered that if the principle of local realism is valid then the 
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probabilistic specifications of quantum theory which we have described above 
seem to defy a simple requirement of mathematical probabilities. In the context 
of a hidden variables interpretation of the matter, this seemed to require that the 
principle of local realism must be rejected. Reported in a pair of articles [8] [9], 
these results too stimulated a continuation of the flurry which has lasted through 
the 2015 publication in Nature of their apparently definitive substantiation by 
the research at the Delft University of Technology. 

The specification of Bell’s inequality can take many forms. The context in 
which it is addressed in the remainder of my exposition here was presented in an 
article by Clauser, Horne, Shimony, and Holt [13], commonly referred to as the 
CHSH formulation. This was the form that attracted still another principal in-
vestigator in this story, Alain Aspect. A young experimentalist, he wondered how 
could such a monumental result of quantum physics pertain only to a thought expe-
riment, devoid of actual physical experimental confirmation. He thought to have 
devised an experimental method that could confirm or deny the defiance of 
Bell’s inequality. My assessment of his empirical work follows directly from his 
clear and thoughtful explanation of the situation [14] reported to a conference 
organized to memorialize Bell’s work. My notation is largely the same as As-
pect’s. I adjust only the notation for expectation of a random variable to the 
standard form of ( )E X , replacing his notation of X  which has become 
standard in mathematical physics in the context of bra-ket notation which I 
avoid. Here is how it works. 

5.1. Explicit Construction of s with Hidden Variables 

Hidden variables theory proposes that the quantity s which we have introduced 
in Equation (6) should be considered to derive from a physical function of un-
observed and unknown hidden variables, whose values might be codified by the 
vector λ , viz., 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,

, , , , ,

s A B A B

A B A B

λ λ λ λ λ

λ λ λ λ

′≡ −

′ ′ ′+ +

a b a b

a b a b
             (7) 

for λ ∈Λ . The variable designated by λ  here could be a vector of any num-
ber of components identifying unknown features of the experimental setup that 
are relevant to the outcome of the experiment in any specific instantiation. The 
set designated by Λ  is meant to represent the space of possible values of these 
hidden variables. The status of these variables in the context of any particular 
experiment is supposed only to depend on the state of the photon pair and its 
surrounds, independent of the angle setting ( )* *,a b  at which the polarizers are 
directed. According to the deterministic outlook underlying physical theory re-
lying on hidden variables, if we could only know the values of these unspecified 
variables at the time of any experimental run and have a complete theoretical 
understanding of their relevance to the polarization behaviour of the photon 
pair, then we would know what would be the values of the polarization incidence 
detection of the photon pair at any one or all of the possible angle settings. 
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Now the personalist subjective theory of probability (apparently subscribed to 
by Einstein, and surely by Bruno de Finetti and by me) specifies that any indi-
vidual’s uncertain knowledge of the values of observable but unknown quantities 
could be representable by a probability density over its space of possibilities. As-
pect denotes such a density in this situation by ( )ρ λ . For any proponent of 
quantum probabilities it might well be presumed to be “rotationally invariant” 
over the full 360˚ of angles at which the photon may be fluttering toward the 
polarizer. That is to say, the probabilities for the possible values of the supple-
mentary variables do not depend on the angular direction in ( ),x y  dimensions 
of the photons along z  axes heading toward stations A and B, rather only on 
the size of the angle. 

Since we avowedly have no idea of what these hidden variables might be, much 
less what their numerical values may be relevant to any specific experimental 
run, we can only ponder the “expected value” of ( )s λ  with respect to the dis-
tribution specified by ( )ρ λ . The feature of rotational invariance implies that 
this expectation is the same no matter what be the rotational angle at which the 
photons flutter relative to their ( ),x y  plane detections. Let’s write this expecta-
tion equation down: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,

, , , , ,

E s E A B E A B

E A B E A B

λ λ λ λ λ

λ λ λ λ

′= −          
′ ′ ′+ +      

a b a b

a b a b
       (8) 

where expectation is assessed with respect to the density ( )ρ λ , yielding then 
more simply 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E s E A B E A B E A B E A B′ ′ ′ ′= − + +              a b a b a b a b
 

as an expectation relative to the random polarization products at these various 
angles. Equation (8) follows directly from Equation (7) because a rule of proba-
bility says that the expectation of any linear combination of random quantities 
equals the same linear combination of their expectations. Fortunately, we have 
already reported in Equation (5) that the probabilities of quantum theory iden-
tify the expected value of any polarization product at the variable relative pola-
rization angle ( )* *,a b  as ( ) ( ) ( )* * * *cos 2 ,E A B  = a b a b . So we are ready to 
proceed. 

5.2. Finally, Bell’s Inequality 

We have now arrived at a place we can state precisely what Bell’s inequality says. 
There is just a little more specificity to detail before we soon will have it. How-
ever, I should alert you that there is a little tic in the understanding of Equation 
(8) to which we shall return after we learn how the inequality is currently un-
derstood to be defied by quantum theory. But on the face of it, the validity of 
Equation (8) is plain as day. 

Now re-examining Equation (7), it is apparent that it can be factored into a 
simplified form: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
, , , ,

, , , , ,

s A B A B

A B A B

λ λ λ λ λ

λ λ λ λ

′≡ −

′ ′ ′+ +

a b a b

a b a b
 for λ ∈Λ , 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,A B B A B Bλ λ λ λ λ λ′ ′ ′= − + +      a b b a b b , and alternatively 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , .B A A B A Aλ λ λ λ λ λ′ ′ ′= + − −      b a a b a a             (9) 

It is important to notice that once again, in performing this simple factoriza-
tion of the components ( ),A λ a  and ( ),A λ ′a  in this second line, we have 
implicitly presumed the principle of local realism (and perhaps even more ac-
cording to the interpretations considered in the discussions among Mermin, 
Hess, Philipp and others to which we have alluded). For when we consider the 
first two summands of the first line, ( ) ( ), ,A Bλ λa b , and ( ) ( ), ,A Bλ λ ′a b , we 
should notice that the value of ( ),A λ a  in that first term is evaluated in an ex-
periment at which the paired polarization angle is ( ),a b , whereas in the second 
term from which it is factored it is evaluated in an experiment at the relative po-
larization angle ( ), ′a b . It is the principle of local realism or its extension, 
extraneous to any claims of quantum theory, that provides the observed value of 
( ),A λ a  must be identical in these two conditions which are impossible to in-

stantiate together. It is only under the condition of this assertion that we would 
be able to factor this term out of the two expressions. The same goes for the fac-
torization of ( ),A λ ′a . This is not a source of any worry. I am merely mention-
ing this so that we are all aware of what is going on. The same feature of suppo-
sition is pertinent to the alternative factorization of the terms ( ),B λ b  and 
( ),B λ ′b  in the third line from the terms of the first line. 
Having arrived at this factorization, it will now take just a little thought to 

recognize that if the value of the quantity s is supposed to be determined from a 
thought experiment on a single pair of photons, then the numerical value of s 
can equal only either +2 or −2. Of course, if we were to calculate the value of s 
from performing four component experiments with four different pairs of pho-
tons (something we can actually do), then the four component product values 
might each then equal either −1 or +1, so the value of s might equal any of 
{ }4, 2,0, 2, 4− − + + . However, in such a case the factorization we performed in 
Equation (9) would not be permitted. For each of the observed detection prod-
ucts appearing in the first line would pertain to a different pair of photons whose 
multiplicands would be free to equal either +1 or −1 as prescribed by experi-
ment. The same possibilities would be accessible if the principle of local realism 
were not valid. However, if the value of s were to be calculated from the results 
of a thought experiment on the same pair of photons, then its possibilities would 
be limited according to local realism (and perhaps its extension) merely to  
{ }2, 2− + . Here is how to recognize this. 

Suppose the values of ( ),B λ b  and ( ),B λ ′b  were both observed to equal 
+1. Then the first term in the factored form of the second line must equal 
( ) ( ) ( ), , , 0A B Bλ λ λ ′− =  a b b ; and furthermore, the second term in the fac-

tored representation would then be ( ) ( ) ( ), , ,A B Bλ λ λ′ ′+  a b b . The factor 
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( ),A λ ′a  equaling either +1 or −1 would then be multiplied by the factor 
( ) ( ), ,B Bλ λ ′+  b b  which would equal the number +2. Thus, the value of s 

could equal only either −2 or +2. Alternatively, suppose that the values of 
( ),B λ b  and ( ),B λ ′b  are both observed to equal −1. Then by a similar argu-

ment the value of the first factored expression would again equal 0 and the 
second expression would equal either −1 or +1 multiplied now by −2. Again the 
computed result of the value of s could equal only −2 or +2. I leave it to the 
reader to confirm the same result for the possible values of s if the values of 
( ),B λ b  and ( ),B λ ′b  were observed to equal either −1 and +1 respectively, or 

+1 and −1 respectively. 
The conclusion is indisputable. If the principle of local realism holds, then the 

value of s that would be instantiated as a result of a thought experiment on the 
same pair of photons in all four polarization angle settings can equal only −2 or 
+2. Thus, the expected value ( )E s  deriving from any coherent probability dis-
tribution over the four values of the component paired polarization experiments 
would have to be a number between −2 and +2. Stated algebraically and simply, 
without all the provisos explaining its content, Bell’s inequality is the require-
ment that ( )2 2E s− ≤ ≤ + . 

Well, what do the probabilities of quantum theory imply for the value of 
( )E s ? The answer universally presumed to be correct by proponents of the Bell 

violation is that when the design of the four experiments on a single pair of 
photons is constructed at a particular array of angle settings that we shall soon 
identify, then ( ) 2 2 2.8284E s = =  to four decimal places, a number that ex-
ceeds +2. (I shall present the details in the next paragraph.) Moreover, the expe-
rimental results of Aspect, as well as the more sophisticated experimentation of 
succeeding decades, is understood to corroborate this result to many decimal 
places. I will soon explain how this result is derived as well. However, I will insist 
on also showing you that not only is this theoretical derivation wrong, but that 
the calculations used to corroborate this result from experimental evidence are 
misdirected. Nonetheless, there is nothing at all wrong with the experimental 
results, which are what they are. 

5.3. The Mistaken Violation of Bell’s Inequality 

It turns out that Bell’s inequality is not deemed to be defied at every four-plex of 
possible experimental angle settings that we have characterised generically as 
( ),a b , ( ), ′a b , ( ),′a b , or ( ),′ ′a b . At some paired directional settings of the 
polarizers it seems not to be defied at all. Among other pairings at which it 
seems to be defied, it is apparently defied more strongly at some pairings than at 
others. Aspect had thought that if we were to find experimental evidence of the 
defiance, we should try to find it at the angle pairings for which the theoretical 
defiance is the most extreme. It is a matter of simple calculus of extreme values 
to discover that the most extreme violation of the equality should occur at the 
angle settings ( ), 8π= −a b , ( ), 8′ = π−3a b , ( ), 8′ π=a b , or ( ), 8π′ ′ = −a b . 
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(The angle measurements are expressed here in terms of their polar representa-
tions. In terms of degrees, the angle 8 22.5π− = −  , while 8 67.5− = −3π  , and 

8 22.5π+ = +  .) You may wish to examine our Figure 2 and notice that the an-
gles between the various polarization directions we depicted there correspond to 
these relative angles. For the record, doubling these angles yields the values of 

4 45±π = ±   and 4 135− = −3π   in these instances. And why does that mat-
ter?... 

Recall Equation (8) and the ensuing sentences. Evaluating ( )E s  according 
to this equation at the four angle settings just mentioned requires evaluating the 
summand component expectations. Each of them in the form  

( ) ( ) ( )* * * *cos 2 ,E A B  = a b a b , these would then be 

( ) ( ) ( ) ( ), , cos 2 , cos 4 1 2 ,E A Bλ λ = = − =  πa b a b         (10a) 

( ) ( ) ( ) ( ), , cos 2 , cos 4 1 2 ,E A Bλ λ ′ ′ 3π= = − = −  a b a b      (10b) 

( ) ( ) ( ) ( ), , cos 2 , cos 4 1 2 ,E A Bλ λ′ ′ π= = =  a b a b          (10c) 

     and ( ) ( ) ( ) ( ), , cos 2 , cos 4 1 2 ,E A Bλ λ′ ′ ′ ′= = − =  πa b a b       (10d) 
then apparently yielding  

( ) ( )  1 2 1 2 1 2 1 2   4 2   2 2λ = − − + + = =  E s . 
Voila! The expected value of s apparently equals 2 2 2.8284≈ , a real num-

ber outside of the interval [ ]2, 2− + , defying Bell’s inequality! What could be 
more simple, direct, and stunning? 

The answer is seen most simply by constructing and then examining a matrix, 
which in the jargon of the operational subjective theory of probability is called 
“the realm matrix of possible observation values” that could result from the per-
formance of the gedankenexperiment in CHSH form. I will display this entire 
matrix on the next page, in a partitioned form of its full extension as it pertains 
to every aspect of the problem we shall discuss. Then we shall discuss it, piece by 
piece. I should mention here that while the name “realm matrix of possibilities” 
has arisen from within the operational subjective construction of the theory of 
probability, the matrix itself is merely a well-defined matrix of numbers that can 
be understood and appreciated by any experimentalist, no matter what may be 
your personal views about the foundations of probability. In the jargon of quantum 
physics it might be called the ensemble matrix of possible observation vectors. 

6. A Neglected Functional Dependence 

In specifying the QM motivated expectation ( )E s λ    as they do in our Equa-
tion (8), Aspect/Bell fail to recognize a symmetric functional dependence among 
the values of the four proposed polarization products composing ( )s λ  as de-
fined in Equation (7), when it is meant to correspond to the result of the 4-ply 
thought-experiment on the same pair of photons. Perhaps surprisingly, the 
achieved values of any three products of the paired polarization indicators imply a 
unique value for the fourth product. We now engage to substantiate this claim. 
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6.1. The Realm Matrix of Experimental Quantities 

Consider the realm matrix of all quantities relevant to the observations that 
might be made in the proposed 4-ply gedankenexperiment on a pair of photons 
under investigation. On the left side of the realm equation is written the name 
( )R X , where X  is a partitioned vector of names of every quantity that will be 

relevant to the outcome of the experiment and what quantum theory asserts 
about it. You will already recognize those appearing in the first two partitioned 
sections. On the right side of the realm equation appears a matrix whose col-
umns exhaustively identify the values of these partitioned quantities that could 
possibly result from conducting the gedankenexperiment. We shall discuss them 
in turn. 

( )
( )
( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )

( )

( )

( )

( )

( )
( )

/ ,

/ ,

/ ,

/ ,

/ ,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1

a b

a b

a b

a b

a b

a
b
a
b

a b
a b
a b
a b

R a b

λ

′

′

′ ′

′ ′

 
− − − − − − − − 

  − − − −
 ′
 

′ 
 ∗∗∗∗∗ 
 
 ′ 
 ′
 ′ ′ 
 ∗∗∗∗∗
 

=′ ′ 
 ∗∗∗∗∗ 
 Σ 
 

Σ 
 

Σ 
 Σ 
 ∗∗∗∗∗ 
 
 
 
 
 

A
B
A
B

A B
A B
A B
A B

s
s 

 

1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3

− − − −
− − − − − − − −

− − − − − − − −

− − − − − − − −
− − − − − − − −

− − − − − − − −
− − − − − − − −

− − − − − − − −

− − − − − − − −
3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3
3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3
3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 4 0 2 2 0 0 2 4 2 2 0 0 2 2 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − − − − − − − 
 − − − − − − − −
 

− − − − − − − − 
 
 

− − − − − − − − 
 − − − − −  
 

 

The sixteen columns of four-dimensional vectors in the first partitioned block 
exhaustively list all the speculative 4 × 1 vectors of observation values that could 
possibly arise among the four experimental detections of photons at the four an-
gles of polarizer pairings. In order to observe the detection products at the four 
relative angles ( ) ( ) ( ) ( ) ( ) ( ), ,A B A B A B′ ′a b a b a b , and ( ) ( )A B′ ′a b , we would 
surely have to observe each of the four multiplicands involved in their specifica-
tion: ( ) ( ) ( ), ,A B A ′a b a , and ( )B ′b . Since each of these observation values 
might equal only either −1 or +1, there are sixteen possibilities of the 4-dimen- 
sional result of the 4-ply experiment. There are no presumptions made about 
these prospective quantity values: neither whether they “exist” or not prior to the 
conduct of the experiment at all, nor even whether they exist in any form after 
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the experiment is conducted. We have merely made a list of what we could pos-
sibly observe if indeed we were capable of conducting the proposed gedanke-
nexperiment on the same pair of photons. The observation vector would have to 
equal one of the 16 columns appearing in the top bank of the partitioned realm 
matrix. 

Every other component quantity in the columns displayed in subsequent 
blocks of the realm matrix is computed via some function of these possibilities. 
Notice once again that the “exhaustiveness” of this list presupposes the principle 
of local realism, specifying for example that the value of ( )A a  identifying 
whether the photon passes through the polarizer at A or not, would be the same 
no matter whether the polarizer at which the paired photon engages station B is 
set at direction b  or at ′b . 

To begin the completion of the realm matrix, the second block of components 
identifies the four designated products of the paired polarization indicators that 
yield the value of the quantity s  as it is simply defined in Equation (6). The 
first row of this second block, identifying the product ( ) ( )A Ba b , is the com-
ponentwise product of the first two rows of the first block. The second row of 
this block, identifying the product ( ) ( )A B ′a b , is the componentwise product 
of the first and fourth rows of the first block, and so on. This second block lists 
exhaustively all the combinations of polarization products that we could possibly 
observe in the conduct of our gedankenexperiment. Examine any one of these 
columns of products, checking that in fact the value of each product in that 
column is equal to the product of the corresponding multiplicands appearing in 
the column directly above it. 

The first item to notice about this realm matrix is that, whereas the sixteen 
columns of the first block of polarization observations are distinct, the second 
block contains only eight distinct column vectors. Columns 9 through 16 in 
block two of the realm matrix reproduce columns 1 through 8 in reverse order. 
Moreover, examining the first three rows of this second block more closely, it 
can be recognized that the first eight columns of these rows exclusively exhaust 
the simultaneous measurement possibilities for the three product quantities they 
identify. These are the eight vectors of the cartesian product { }31, 1+ − , which 
are repeated in columns nine through sixteen in reverse order. Together, what 
these two observations mean is that the fourth product quantity in this second 
block of vector components is derivable as a function of the first three. What is 
more, any one of the product quantities identified in block two is determined by 
the same computational function of the other three! This is what I meant earlier 
when alluding that the photon detection products in the gedankenexperiment 
have embedded within them four symmetric functional relations. This can be 
seen by examining the columns of the fourth block of the matrix, which we shall 
do shortly. 

The third block of the realm matrix contains only a single row, corresponding 
to a quantity we designate as ( ) ( )′ ′a b  . This quantity takes values only of 
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±1, but it is logically independent of the product quantities appearing in the first 
three rows of block two. This is the quantity that Aspect/Bell think they are as-
sessing when they freely specify the quantum expectations for all four angle set-
tings as they do, seemingly defying Bell’s inequality. We denote its name with 
calligraphic type to distinguish it from the actual polarization product  
( ) ( )A B′ ′a b  whose functional relation to the other three products we are now 

identifying. Peculiar, this singular component of the fourth partition block is not 
an “Alice and Bob” observation quantity, but rather an “Aspect/Bell” imagined 
quantity. It is logically independent of the first three “Alice and Bob” products. 
This is to say that whatever values these products may be, the value of 

( ) ( )′ ′a b   may equal +1 in the appropriate row among the first eight col-
umns, or it may equal −1 in the corresponding column among the second eight. 
However, it does not represent the photon detection product ( ) ( )A B′ ′a b  in 
the four imagined experiments on a single photon pair. 

6.2. Specifying the Functional Form via Block Four 

Quantities in the fourth block of the realm matrix are designated with the names 

( )/ ,Σ a b , ( )/ , ′Σ a b , ( )/ ,′Σ a b , and ( )/ ,′ ′Σ a b . These quantities are defined by sums of 
column elements in those rows of the second block that are not marked behind 
the slash in the notational subscript. For examples, 

( ) ( ) ( ) ( ) ( ) ( ) ( )/ , A B A B A B′ ′ ′ ′Σ ≡ + +a b a b a b a b , and 

( ) ( ) ( ) ( ) ( ) ( ) ( )/ , A B A B A B′ ′ ′ ′Σ ≡ + +a b a b a b a b . 

The quantities ( )/ ,′Σ a b  and ( )/ ,′ ′Σ a b  are defined similarly. 
Next to notice is that the fourth row of the second matrix block, correspond-

ing to ( ) ( )A B′ ′a b , has an entry of 1 if and only if the fourth row of the fourth 
block, corresponding to ( )/ ,′ ′Σ a b , has an entry of −1 or +3 in the same column. 
When that entry is +1 or −3, the corresponding entry of the second block is −1. 
What this recognition does is to identify the functional relation of the fourth 
polarization product to the first three polarization products, viz., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )/ , / ,

, ,

1 or 3 1 or 3 .

A B A B A B A B

′ ′ ′ ′

′ ′ ′ ′=   

≡ Σ = − + − Σ = + −a b a b

a b G a b a b a b
       (11) 

Here and throughout this note I am using indicator notation in which paren-
theses surrounding a mathematical statement that might be true and might be 
false signifies the number 1 when the interior statement is true, and signifies 0 
when it is false. 

Some eyeball work is required to recognize the functional relationship (11) by 
examining the final row of block two and of block four together. It may take 
even more concentration to recognize that this very same functional rule identi-
fies each of the other three polarization products as a function of the other three 
as well! The four product quantities ( ) ( ). .A B  are related by four symmetric 
functional relationships, each of them being calculable via the same functional 
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rule applied to the other three! This surprising recognition identifies the source 
of the Aspect/Bell error in assessing the QM-motivated expectation for ( )s λ  in 
the way they do. 

It is surely true that ( )E s λ    equals a linear combination of four expecta-
tions of polarization products, as specified in Equation (8). Moreover, if the de-
finition of ( )s λ  in Equation (6) were understood to represent the combination 
of observed products from experiments on four distinct pairs of photons, then 
the possible values of ( )s λ  would span the integers { }4, 2,0,2,4− − ; the ex-
pectation of each product ( ) ( )* *E A B 

 a b  would equal 1 2−  or 1 2+  
as appropriate to the angle ( )* *,a b ; and ( )E s λ    would equal 2 2  as pro-
posed by Aspect/Bell. This involves no violation of any probabilistic inequality at 
all, and there is no suggestion of mysterious activity of quantum mechanics. 

However, when it is proposed that the paired polarization experiments at all 
four considered angles pertain to the same photon pair, then each of the prod-
ucts is restricted to equal the specified function value of the other three that we 
identified explicitly for ( ) ( )A B′ ′a b  in Equation (11) as ( )/ ,′ ′Σ a b  via the func-
tion ( ) ( ) ( ) ( ) ( ) ( ), ,A B A B A B′ ′  G a b a b a b . In this context, Aspect’s expected 
quantity would be representable equivalently by any of the following equations:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

, ,

, ,

E s E A B E A B E A B

E A B A B A B

E A B E A B E A B

E A B A B A B

λ ′ ′= − +              
′ ′+   
′ ′ ′= − +          
′ ′ ′+   

a b a b a b

G a b a b a b

a b a b a b

G a b a b a b
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

, ,

, ,

E A B E A B E A B

E A B A B A B

E A B E A B E A B

E A B A B A B

′ ′ ′= + +          
′ ′ ′−   

′ ′ ′ ′= − + +          
′ ′ ′ ′+   

a b a b a b

G a b a b a b

a b a b a b

G a b a b a b

       (12) 

The symmetries imposed on this problem would yield an identical result in 
each case, which would surely not yield 2 2  at all. This is the mathematical 
error of neglect to which the title of this current exposition alludes. What might 
the symmetries yield? 

The functional relation we have exposed in Equation (11) is not linear. If it 
were, then the specification of an expectation for its arguments would imply the 
expectation value for the function value. As it is not, the specification of expecta-
tion values for the arguments only imply bounds on any cohering expectation 
value for the fourth. These numerical bounds can be computed using a theorem 
due to Bruno de Finetti which he first presented at his famous lectures at the In-
stitute Henri Poincaré in 1935. He named it only in his swansong text [21]. It 
was first characterized in the form of a linear programming problem by Bruno 
and Gilio [22], and has appeared in various forms in recent decades. Among 
them are presentations in dual form by Whittle [23] [24] using standard formal-
ist notation and objectivist concepts. We shall review the content of de Finetti’s 
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theorem shortly, and then examine its relevance to assessing the expectation of 
( )s λ  motivated by considerations of quantum mechanics. We need first to air 

some further brief remarks about the final block of the realm matrix. 

6.3. The Remaining Block of Quantities and  
Their Realm Components 

The first row of block five of the realm matrix merely identifies the values of 
( )s λ  associated with the polarization observation possibilities enumerated in 

the columns of block one. Each component of this row is computed from the 
corresponding column of block two according to the defining Equation (1). It is 
evident that every entry of this row is either −2 or +2. This corresponds to the 
argument we have made following the factorization Equation (9) in Section 5. 
The second row of this block pertains to a quantity denoted as ( )/ ,s ′ ′a b  . Its 
value is defined similarly to Equation (6), but its final summand is specified as 
the Aspect/Bell quantity ( ) ( )′ ′a b   rather than the actual polarization prod-
uct quantity ( ) ( )A B′ ′a b  that appears in this equation defining ( )s λ . Again 
peculiar, its realm can be seen to include the elements { }4, 2,0,2,4− −  whereas 
the realm of ( )s λ  includes only { }2,2− . The fact that the possibilities for 

( )/ ,s ′ ′a b   include both −4 and +4 is what makes it not surprising that the expec-
tation of this quantity is 2 2  as pronounced by proponents of the Aspect/Bell 
analysis. 

The third row of block five is merely an accounting device, denoting that the 
“sure” quantity, 1, is equal to 1 no matter what the observed results of the four 
imagined optic experiments of Aspect/Bell might be. Its relevance will become 
apparent when the need arises to apply de Finetti’s fundamental theorem to 
quantum assertions. 

It is time for a rest and an interlude. It is a mathematical interlude whose 
complete understanding relies only on your knowledge of some basic methods of 
linear algebra. If you would like a slow didactic introduction to the subject, my 
best suggestion is to look at Chapter 2.10 of my book [25]. You may even wish to 
start in Section 2.7. Another purely computational presentation appears in the 
article of Capotorti et al. [26], Section 4. I will make another attempt here in a 
brief format, merely to keep this current exposition self-contained. What does 
the fundamental theorem of probability say? 

7. The Relevance of the Fundamental Theorem of Probability 

In brief, the fundamental theorem says that if you can specify expectation values 
for any vector of quantities whatsoever, then the rules of probability provide 
numerical bounds on a cohering expectation for any other quantity you would 
like to assess. These can be computed from the compilation of a linear pro-
gramming routine. If the expectations you have specified are incoherent (mean-
ing self-contradictory) among themselves, then the linear programming prob-
lems they motivate have no solution. This theorem is immediately relevant to 
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our situation here in which we have identified quantum-theory-motivated ex-
pectations for any three of the four detection products that determine the value 
of s for the gedankenexperiment. We wish to find the bounds on the cohering 
expectation for the fourth detection product which is restricted to equal a func-
tion value determined by these three. A discursive pedagogical introduction is 
available in Lad [[25], Section 2.10]. In brief, here is how the theorem works. 

Suppose you have identified the expectations for N quantities, and you are 
wondering what you might assert as the expectation for another one, call it the 
( )1 stN + . What you should do to assess your sensible possibilities is firstly to 
construct the realm matrix of possible values for the vector of all ( )1N +  quan-
tities. Let’s call the vector ( )T

1 1 2 1, , , ,N N NX X X X+ += X , and call its realm ma-
trix then ( )1+R XN . In general it will look something like the realm matrix we 
have just constructed for various aspects of our gedankenexperiment. It will have 

1N +  rows, and some number K columns. Just as an example, the realm matrix 
we have already constructed happens to have ( )1 16N + =  rows and 16K =  
columns. (Mind you, we have not yet specified expectation for the first N com-
ponents of the quantity vector to which this realm applies, but let’s not let that 
deter us. I am merely suggesting here an example of a realm matrix that could be 
considered to have ( )1N +  rows. Let’s continue with the general abstract speci-
fication.) 

Now any such vector of quantities can be expressed as the product of its realm 
matrix with a particular vector of events. The matrix equation, displayed in a 
form that partitions the final row, would look like this: 

1,1 1,2 1,( 1) 1,1

2,1 2,2 2,( 1) 2,2

3,1 3,2 3,( 1) 3,3

,1 ,2 ,( 1) ,

( 1),1 ( 1),2 ( 1),( 1) ( 1),1

K K

K K

K K

N N N K N KN

N N N K N KN

x x x xX
x x x xX
x x x xX

x x x xX

x x x xX

−

−

−

−

+ + + − ++

  
  
  
  
  
   =   
  
 
∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗∗∗  

     







    






( )
( )
( )

( )
( )

1 1

1 2

1 3

1 ( 1)

1

.

N

N

N

N K

N K

+

+

+

+ −

+

 =
 

= 
 

= 
 
 
 
 
 =
  = 





X x

X x

X x

X x

X x

 

On the left of this equation is the column vector of the quantity observations 
under consideration. To the right of the equality comes firstly the ( )1N K+ ×  
realm matrix whose K columns list all the possible columns of numbers that could 
possibly result as the observation vector. These K columns, each of which has 
( )1N +  components, correspond to vectors denoted as 

( ). . . .1 2 3 1
, , , ,

K −
x x x x , and 

. K
x . (The initial subscripted dot denotes that this is a whole column of numbers. 
The number that follows the dot denotes which of the columns of the matrix it is 
we are talking about.) This matrix is multiplied by the final 1K ×  column vec-
tor of events that identify whether the quantity vector 1N +X  turns out upon 
observation to be the first, the second,..., or the Kth of these listed columns. We 
shall denote this vector by ( )1N +Q X , and call it “the partition vector generated 
by 1N +X ”. One and only one of its component events will equal 1 and the rest 
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will equal 0. But we do not know which of them is the 1, because we do not 
know which column of possibilities in the realm matrix will be the one that 
represents the observed outcome of the vector of quantities 1N +X . 

We can represent this matrix equation more concisely and in a useful form by 
writing it in an abbreviated partitioned form: 

( )( )1
1 1

N N
N

N NX X +
+ +

   
=   

   

X X
R Q X . 

The payoff from constructing this matrix structure is that now every row of 
this partitioned equation has on its left-hand side the unknown value of a quan-
tity, iX . On the right-hand side in that row appears a list of the possible values 
of that quantity, each multiplied in a linear combination with the events that 
denote whether each of them is indeed the value of this quantity (in the context 
of the observed values of the other quantities shown in that column as well). 
Each row of this equation specifies how a different one of the quantities under 
consideration equals a linear combination of events. We have heard of that be-
fore. The expectation of a linear combination equals the same linear combina-
tion of expectations for those events, which would be their probabilities if we 
could specify values for them. This tells us that we can evaluate an expectation 
operator on this partitioned equation to yield the result that 

( )( )1
1 1

N N
N

N N

E P
X X +

+ +

     =        

X X
R Q X . 

Well, we have not mentioned anything about probability specifications ap-
pearing in the vector ( )( )1NP +

 
 Q X  on the right-hand side of this equality. 

The only restrictions of probability are that these must be non-negative numbers 
that sum to 1, since the vector ( )( )1N +Q X  constitutes a partition. We have 
mentioned only that expectations have been identified for the first N compo-
nents of the vector on the left-hand side, ( )NE X . Yet we can compute some-
thing important on the basis of this realization. The linearity of this equation 
ensures that the implied value for the expectation of the final unspecified com-
ponent ( )1NE X +  must lie within a specific interval. It is computable as the 

minimum and maximum values of ( )1N KX +R q  

subject to the linear restrictions ( ) ( )N K NE=R X q X , 

as required of the expectations that we have presumed to be specified, 

and where the components of Kq  must be non-negative and must sum to 1. 

Such a computation is provided by the procedures of a linear programming 
problem. The “solutions” to these linear programming problems are the vectors 

minq  and maxq  that yield these minimum and maximum values for ( )1NE X +  
subject to these constraints. The final row vector identifying ( )1NE X +  whose 
extreme values we seek is called “the objective function” of the problems. Its 
coefficients are the partitioned final row of the general realm matrix we identify 
as ( )1NX +R . Notice that that X is not bold. It represents merely the final quan-
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tity in the column vector 1N +X . The coefficients vector of the objective function 
is the final row vector of the realm matrix. 

Here are the specific details appropriate to our gedankenexperiment. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

8

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

A B
A B
A B
A B

   
   − − − −   
   ′ = − − − −
   ′ − − − −   

  ′ ′ − − − −  

a b
a bE q
a b
a b

      (13) 

I have listed the order of the quantities in the vector at left to begin with the 
sure quantity, 1, which equals 1 no matter what happens in the gedankenexpe-
riment. There follow the four summands of the CHSH quantity s, of which we 
have noticed that each one of them is restricted in the gedankenexperiment to 
equal a function value of the other three. That is why there are only eight 
columns in their realm matrix, as opposed to sixteen columns in the expansive 
realm matrix we have already examined. As to the components of the vector 

8q  at the right of the right-hand side, notice that quantum theory says noth-
ing at all about these, individually. Each of them would equal the probability 
that the 4-ply gedankenexperiment would yield detection products designated 
by a specific column of the realm matrix. However, these would involve the 
joint detection of photon products in four distinct measurements that are 
known to be incompatible. On account of the generalised uncertainty prin-
ciple, quantum theory eschews specification of such probabilities. Nonetheless, 
for any individual photon detection product in a specific experimental design, 
denoted on the left-hand side of the equation, quantum theory does specifies 
an expectation value of either 1 2  or 1 2− , as we have recognized. Since 
these four products are not all free to equal +1 or −1 at the same time, we may 
assert expectation values for any three of them, and use linear programming 
computations to find the cohering bounds on the expectation of the fourth 
that would accompany them, yielding bounds on the expectation Equation 
(13). 

7.1. The Result: Quantum Theory Identifies Restrictions  
on the Valuation of q8 

This is what we find. The columns of the matrix below display the computed re-
sults of the paired minq  and maxq  vectors corresponding to four linear pro-
gramming problems. Each of them determines a bound on an expected function 
value that appears in one of the four forms of the expectation value ( )E s λ    
which we displayed in Equation (12). The first pair of columns, for example, 
identify the fifth row of the matrix in Equation (13) as the objective function, 

( ),E A ′ ′  a b , constrained by QM-specified values of the expectations of the first 
four rows. The second pair of columns identify the fourth row of (13) as the ob-
jective function constrained by QM specifications of expectations for rows 1, 2, 
3, and 5, and display the appropriate solution vectors; and so on. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )min max min max min max min max

1

2

3

4

5

, , , , , , , ,
0 0.1464 0 0.1464 0.5607 0.7803 0 0.1464

0.7803 0.5607 0 0.1464 0.1464 0 0 0.1464
0.0732 0 0.0732 0 0 0.0732 0 0

0 0.1464 0.7803 0.5607 0.1464 0 0 0.1464
0 0.1464 0 0.14

q
q
q
q
q

′ ′ ′ ′ ′ ′ ′ ′a b a b a b a b a b a b a b a b

6

7

8

64 0.1464 0 0.7803 0.5607
0.0732 0 0 0 0 0.0732 0.0732 0
0.0732 0 0.0732 0 0 0 0.0732 0

0 0 0.0732 0 0 0.0732 0.0732 0

q
q
q

 
 
 
 
 
 
 
 
 
 
 
 
 
   

Each of these column vectors resides in 8-dimensional space, providing a co-
herent assessment of probabilities for the constituent event vector ( )8Q X , 
without specifying precise probabilities for any of them. In fact, quantum theory 
denies itself the capability of identifying such probabilities precisely. We will 
discuss this feature further, below. However the results of the linear program-
ming computations can and do specify possibilities for what might be specified 
in a way that would cohere with what quantum theory can and does tell us. The 
columns of this matrix identify some of them. In fact, these columns display ex-
treme values of what are possible. Any convex (linear) combination of them 
would cohere with quantum theory as well. Thus, geometrically the columns 
constitute vertices of a polytope of quantum-theory-supported possibilities for 

( )8P   Q X . This polytope is called “the convex hull” of these vectors. However, 
although we have found eight of them, the rank of the matrix of all of them is 
only four! That is, these eight-dimensional vectors all reside within a four-di- 
mensional subspace of a unit-simplex. Why is quantum theory not more specific 
in specifying the expectation of Bell’s quantity ( )E s ? We shall delay this dis-
cussion until we have clarified what we have learned from these results of  

( )* *
min ,q a b  and ( )* *

max ,q a b . 

7.2. Implied Bounds on Expected Detection Products  
and on ( ) ( ],E s ∈ 1.1213 2  

According to the prescription of Equation (12), each of these 8q  vectors ap-
pearing in Section 7.1 would identify a vertex of another polytope of cohering 
expectation vectors for the components of the CHSH quantity s. Followed at 
bottom by the expectation values ( )E s  they imply, these are 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 1.0000 0.1213

0.7071 0.7071 0.7071 0.7071 0.1213 1.0000 0.7071 0.7071

0.7071 0.7071 1.0000 0.1213 0.7071 0.7071 0.7071 0.7071

1.000

E A B

E A B

E A B

E A B

− −  
′ − − − − − −  

′ − −  
′ ′ −  

a b

a b

a b

a b

[ ]

.

0 0.1213 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

1.1213 2.0000 1.1213 2.0000 2.0000 1.1213 1.1213 2.0000E s

 
 
 
 
 
 − 
 
   

In any of these columns appear three values of ( ) ( )* *E A B 
 a b  specifica-

tions supported by quantum theory, and a fourth value which is either a lower 
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bound or upper bound on any cohering expectation for the fourth. (By the way, 
0.7071 is the value of 1 2  to four decimal places.) At the bottom of the col-
umn is the value of ( )E s  that would correspond to these four. The vectors of 
the four ( ) ( )* *E A B 

 a b  values are the vertices of the four-dimensional space 
of QM-supported expectation values of the gedankenexperiment, and the value 
of ( )E s  listed at bottom would be a quantum-theory-permitting assessment of 
( )E s , Bell’s quantity. All of their convex combinations lie within Bell’s reputed 

bounds of [ ]2, 2− + . There is more to be said about this, but let us first address 
now the question of why quantum theory leaves four dimensions of freedom 
unaccounted for in its prescriptions. 

7.3. Why are There Four Free Dimensions to the  
QM Specification of ( )E s ? 

Let’s just get down to it, without any prelude. Quantum theory specifies pre-
cise values for outcome probabilities of the photon pair detections at any 
choice of three angle settings of the gedankenexperiment. Consider for exam-
ple the polarization detection probabilities at the angles ( ),a b , ( ), ′a b , and 
( ),′a b . These have been identified in our Equation (1), while the correspond-
ing expectations of detection products appeared in Equation (2). If quantum 
theory were to specify a complete distribution for the outcome of this gedan-
kenexperiment, it would have to specify eight probabilities. These would in-
volve three corresponding to detection events at any one of the polarization 
angles, also jointly at any two of the three detection angles, and also at all three 
of the detection angles. But according to the uncertainty principle discussed in 
Section 3, the theory eschews commitments regarding the latter four of these 
probabilities: neither 

( )( ) ( )( ) ( )( ) ( )( ){ }1 1 1 1P A B A B   ′= + = + = + = +   a b a b , nor 

( )( ) ( )( ) ( )( ) ( )( ){ }1 1 1 1P A B A B   ′= + = + = + = +   a b a b , nor 

( )( ) ( )( ) ( )( ) ( )( ){ }1 1 1 1P A B A B   ′= + = + = + = +   a b a b , nor 

( )( ) ( )( ) ( )( ) ( )( ){
( )( ) ( )( ) }

1 1 1 1

1 1

P A B A B

A B

   ′= + = + = + = +   

 ′ = + = + 

a b a b

a b
. 

For each of these would amount to claims regarding the joint outcomes of in-
compatible measurements, characterised by Hermitian matrix operators that do 
not commute. Quantum theory explicitly avoids such claims. That leaves four 
dimensions of the eight-dimensional pmf over the four detection products un-
specified... explicitly! That is why quantum theory allows four unspecified di-
mensions to the expectations it provides regarding the four polarization prod-
ucts on the same pair of photons. 

Perhaps this comment does need a little bit more explication. You will need to 
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view Equation (13) while reading the following remarks. They concern asser-
tions that quantum theory does allow us to make, and those that it doesn’t. Re-
call that we are considering a linear programming problem in which quantum 
expectations are asserted for the polarization products at the angle settings 
( ),a b , ( ), ′a b , and ( ),′a b , and investigating coherent bounds for expectation 
of the product at the setting ( ),′ ′a b . Notice firstly that quantum theory does al-
low us to, and indeed insists that we assert 

( ) ( ) 1 2 3 4 5 6 7 8

1 2

E A B q q q q q q q q= + + + − − − −  

=

a b
 

Examining the corresponding columns of the realm matrix seen in (13), it is evi-
dent that these involve assertions regarding the outcomes of ( ) ( )( )1A B = +a b  
and ( ) ( )( )1A B = −a b  irrespective of the values of ( ) ( )A B ′a b  and  
( ) ( )A B′a b . For each of these events involve an outcome of the product  
( ) ( )A Ba b  summed over all four possible joint outcomes of the products  
( ) ( )A B ′a b  and ( ) ( )A B′a b . So these latter two incompatible observations 

would be irrelevant to the assertion of this expectation. The same feature would 
pertain to the required assertions of ( ) ( )E A B ′  a b  and ( ) ( )E A B′  a b  which 
are involved in the first LP problem. Neither of these involves any concomitant 
assertions regarding observations incompatible with them. On the other hand, 
an assertion of a probability for the joint occurrence of two pairs of polarization 
observations, such as  

( )( ) ( )( ) ( )( ) ( )( ){ }1 1 1 1a b a b   ′ ′= + = + = + = +   P A B A B  for example, would 
require specifications of the sum 1 3q q+ . Examining Equation (13) makes clear 
that it is only columns 1 and 3 of the matrix in which this joint event is instan-
tiated. Asserting a specific value for the sum 1 3q q+  would necessarily entail 
assessments of joint probabilities for incompatible events. The same would be 
true of any of the other three probabilities regarding joint events for which 
quantum theory eschews assessment. 

If one were to claim, as do the reigning proponents of Bell violations, that the 
probabilities of quantum theory support the valuation of ( ) 2 2E s λ =    ac-
cording to the derivation that concluded our Section 5, that would be just plain 
wrong. Full stop. 

Our next project is an amusing one, of actually envisaging the 4-dimen- 
sional polytope of quantum probabilities relevant to the gedankenexperiment. 
This will be achieved by passing the 4-dimensional quantum polytope we have 
identified through the 3-dimensional space in which we live. By this method 
we can view it, just as the inhabitants of 2-dimensional space in Abbott’s 
amusing story of Flatland [27] viewed the sphere passing through their lower 
dimensional world. It suddenly appeared as a point, which gradually expanded 
to circles of increasing diameter, and then diminished until they suddenly 
disappeared again. Let’s view what we can of our 4-dimensional quantum po-
lytope in this way. 
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7.4. Transforming the Expectation Polytope 
into Quantum Probabilities 

The expected photon detection products displayed in Section 7.2 can be trans-
formed into P++  probabilities by applying the transformation  

( ) ( )* * * *, , 1 4P E++
 = + a b a b  of Equation (3) to the eight vertices. This yields 

the vertices of another polytope in the space of the probability vector  
( ) ( ) ( ) ( ), , , , , , ,P P P P++ ++ ++ ++′ ′ ′ ′  a b a b a b a b  displayed below: 

( )
( )
( )
( )

, 0.4268 0.4268 0.4268 0.4268 0.4268 0.4268 0 0.2197
, 0.0732 0.0732 0.0732 0.0732 0.2803 0.5000 0.0732 0.0732
, 0.4268 0.4268 0 0.2197 0.4268 0.4268 0.4268 0.4268
, 0 0.2197 0.4268 0.4268 0.4268 0.4268 0.4268 0

P
P
P
P

++

++

++

++

′
′
′ ′

a b
a b
a b
a b

.

.4268

 
 
 
 
  
   

7.5. And Now Viewing It !... as It Passes through Our Space 

The convex hull of the 4-D column vectors shown in Section 7.4 can be visua-
lized through a sequence of 3-D intersections it affords with slices perpendicular 
to any one of its axes. Figure 3 displays such a sequence of slices perpendicular 
to the ( ),P++ ′ ′a b  axis at values increasing from 0 to 0.4268. When  

( ), 0P++ ′ ′ =a b , the intersection of the slice identifies only a single vertex point 
( )0.0732,0.4268,0.4268  which appears in the subplot ( )1,1 . See also column 
one of the matrix in Section 7.4. As the value of ( ),P++ ′ ′a b  for the slice level 
increases to a 0.1098 in subplot ( )2,1 , the intersection appears as a tetrahedron. 
The size of the intersecting tetrahedron increases further at the probability level 
0.2197 in subplot ( )3,1 . The tetrahedrons continue to increase in size as the 
level of the ( ),P++ ′ ′a b  increases still further to 0.2561 in subplot (1, 2), but a 
corner of their intersections begins to be cut off there. This clipped portion is cut 
more severely from the enlarging polytope as ( ),P++ ′ ′a b  increases further, dis-
played in subplots ( )2,2  through ( )3,2  which is our view of the polytope 
when it suddenly disappears. 

The symmetry of the configuration implies that slices along the other axes 
would create identical intersection sequences. 

8. What to Make of Aspect’s and Subsequent Empiricism 

Taken in by the alluring derivation of Section 5.3 which ignores the symmetric 
functional relations among the polarization products of the gedankenexperi-
ment, Aspect and followers were convinced that Bell’s inequality has been de-
fied, and that the theory of hidden variables must be rejected. This conclusion 
would support the assertion that quantum theory has identified the structure of 
randomness which supposedly inheres in Nature at its finest resolution. The be-
haviour of the photons is considered to be governed purely by a probability dis-
tribution. It remained only to devise some physical experiments that could verify 
the defiance of the inequality. 

According to the tenets of objective probability theory and its statistical pro-
gramme, probabilities are not observable quantities. What are observable are  
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Figure 3. Sequential intersections of the 4-D convex hull of vectors ( ) ( ) ( ) ( ), , , , , , ,P P P P++ ++ ++ ++′ ′ ′ ′  a b a b a b a b  

with slices perpendicular to the ( ),P++ ′ ′a b  axis, at levels increasing from 0 to 0.4268 as designated in the 

heading of each component figure. Read the display sequentially down the first column and then down the 
second column. 

 
outcomes of random variables which are generated by them. It is a matter of sta-
tistical theory to devise methods for estimating the unobservable probabilities 
and their implied expectations from carefully observed outcomes of the random 
variables they generate. Understood in this way, Equation (8) which I repeat 
here constitutes a structure requiring estimation if the violation of Bell’s inequa-
lity is to be verified: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .

E s E A B E A B

E A B E A B

λ ′= −          
′ ′ ′+ +      

a b a b

a b a b
 

Resorting to long respected statistical procedures, the unobservable expecta-
tions of detection products on the right-hand-side of this equation can be esti-
mated by the generally applicable non-parametric method of moments. Sup-
ported by the probabilistic law of large numbers, its validity as an estimating 
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procedure stems from the 1930’s. 
The programme for estimating Equation (8) would proceed as follows. To es-

timate the first component of ( )E s λ   , which is ( ) ( )E A B  a b , one would 
conduct N independent polarization experiments at the angle setting ( ),a b , and 
record the value of the polarization products ( ) ( )A Ba b  observed in each case, 
these being either −1 or +1. The average of these values would provide a method 
of moments estimate of the expectation ( ) ( )E A B  a b  which is common to all 
of these random experiments. A similar programme would be followed in esti-
mating the other three components of ( )E s λ   . 

Using the notation of Aspect [14] we would conduct N repetitions of the 
CHSH/Bell experiment with the relative polarizing angles set at ( ),a b , resulting 
in ( ),N++ a b  observations of ( ) ( )( ) ( ), ,A B = + +a b , ( ),N+− a b  observations 
of ( ),+ − , ( ),N−+ a b  observations of ( ),− + , and ( ),N−− a b  observations of 
( ),− − . An estimated version of equation (8) would then be expressed as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ,

E s E A B E A B

E A B E A B

λ ′≡ −          
′ ′ ′+ +      

a b a b

a b a b
          (14) 

where the component estimator ( ) ( )Ê A B  a b  is defined by 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,ˆ
, , , ,

N N N N
E A B

N N N N
++ +− −+ −−

++ +− −+ −−

− − +  ≡   + + +  

a b a b a b a b
a b

a b a b a b a b
,   (15) 

with a similar specification for the components of ( )Ê s λ    pertaining to the 
relative angles ( ),′a b , ( ), ′a b , and ( ),′ ′a b . The denominator of (15) is equal 
to N, the number of experiments run at this angle, merely displayed as the sum 
of its four component counts of ( ),N±± a b . 

The momentous results were published by Aspect et al. [11] [12], confirming 
the apparent defiance of Bell’s inequality to several decimal places. Through the 
following three decades the experimental setup was embellished so to account 
for a variety of various possible loopholes tendered as an explanation. 

8.1. Examining and Reassessing Aspect’s Empirical Results 

What are we to make of Aspect’s and subsequent empirical results? 
Aspect [[14], p.15], and [12] reports the estimation ( )Ê s λ    from experi-

mental data, using the method of moments as defined in Equations (14) and 
(15). Of course actually, it is impossible to conduct an experiment on a single 
pair of photons at all four angle settings, much less conduct a sequence of such 
experiments. Instead, experimental sequences of observations using different 
photon pairs were generated at each of four angle settings. These were presumed 
to provide independent estimates of the four expectations as they appear in Equ-
ation (15). These independent estimates were then inserted into Equation (14), 
yielding Aspect’s touted estimate ( )Ê s λ    near to 2 2 . 

Although experimentation protocols have subsequently been improved to ac-
count for the challenges of possible loopholes during the following thirty years, 
the estimation procedures using the improved data have been the same. Results 
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from several of the improved protocols have been reported only in the form of 
so-called p-values of significance for hypothesis tests posed as to whether  

( )E s λ    exceeds 2 or not. The results have been lionized, apparently quite 
impressive, and deemed to be decisive. 

We can now recognize the fault in Aspect’s estimation procedure which allows 
complete liberty in all four polarization product estimations ( ) ( )* *Ê A B 

 a b , 
using experimental incidence values of ( )* *,N±± a b  from many experimental 
runs with different photon pairs. Each of his experimental observations may be 
whatever value it happens to be at its experimental angle setting, identifying 
whatever value of polarization product that it does. However, if the estimation 
were meant to apply to the ontological understanding of ( )s λ  in the gedanke-
nexperiment within which he and Bell couch their theoretical claims, he would 
have to adjust this methodology. One might well pick experimental runs using 
three different photon pairs at any three angles one wishes, to simulate the beha-
viours ( ) ( )* *A Ba b  for any three polarization products of a single pair of pho-
tons. However, to be consistent with the Aspect/Bell problem as posed for this 
single pair of photons at all four relative angle settings, one then would need to 
compute the implied value of the polarization product observation for the fourth 
angle according to the functional form that we have identified in Equation (11). 
The same functional form connects the detection product at any one of the four 
angle settings to the other three. 

Statistical estimation values reported by Aspect as well as those by subsequent 
research groups over the past thirty years have no relevance to the estimation of 

( )E s λ    as it is understood to pertain to four spin products on a single pair of 
photons. It is perfectly reasonable to find estimation values exceeding the bounds 
of [ ]2, 2− +  as they have. For although these results could reasonably pertain to 
an estimate of ( )E s λ    with ( )s λ  defined as a combination of polarization 
products on four different pairs of photons, they do not pertain to Bell’s inequality 
which is relevant to a 4-ply gedankenexperiment on the same pair of photons at all 
four angle settings. In the context to which their experimental results are appro-
priate, ( )E s λ    is not bound by the Bell bounds of [ ]2, 2− + , but rather by 
the interval [ ]4, 4− +  which is unchallenged in this context. 

Nonetheless, Aspect’s empirical estimation programme might be adjusted to 
account for the symmetric functional relations that would necessarily characte-
rise the imagined results of the gedankenexperiment. In the next subsection I 
shall display the unsurprising results of such an adjusted methodology. They do 
not suggest any defiance of Bell’s inequality at all. The simulation I construct will 
mimic the way Aspect’s data needs to be treated, recognizing his data as the re-
sult of conditionally independent experiments on distinct pairs of photons at 
each of the four relative angle settings of the polarizers. 

8.2. Exposition by Simulation 

Because Aspect’s experimental observation data is not available in full, a method 
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for correcting his estimation procedure shall now be displayed using simulated 
data based on quantum theoretic specifications, along with a presentation of its 
numerical implications. To begin, four columns of one million (106) pseudo 
random numbers, uniform on [ ]0,1 , were generated with a MATLAB routine. 
These were then transformed into simulated observations of paired photon pola-
rization experiments at the four relative angles we have been studying. These 
transformations were performed using the QM probabilities based on calculations  

of ( )2 * *1 cos ,
2

a b  and ( )2 * *1 sin ,
2

a b  as described in our Equations (1). Each  

resulting simulated polarization pair was then multiplied together to yield a po-
larization product. In this way were created four columns of simulated observa-
tions corresponding to polarization products from one million experiments at 
each of the four angles: ( ) ( ) ( ) ( ), , , , , , ,′ ′ ′ ′a b a b a b a b . We shall refer to this ma-
trix of simulated polarization products below as the SIMPROD matrix. 

Aspect’s estimation Equation (15) was applied to each of these columns, 
yielding estimates of the expected polarization product pertinent to that column, 

( ) ( )* *Ê A B 
 a b . These appear in the first row of Table 1. These four estimates 

were then inserted into Equation (14) appropriately to yield an Aspect estimate 
( )ˆ 2.827738E s λ =   , appearing in the second row of the Table under each of 

these columns. This number is quite near to 2 2 2.828427≈ , as was Aspect’s 
reported empirical estimate, proposed as an evidential violation of Bell’s inequa-
lity. As we now know, the problem is that when the product observations are 
supposed to apply to the same photon pair, the observed value of the polariza-
tion product at any angle is required to be related to the product at the other 
three angles via the functional equation we specified in our Equation (11). The 
four of them may not all range freely in a gedankenexperiment, as they may in real 
experiments on different pairs of photons. Rather, they are required to be bound 
by the symmetric functional relation ( ). . ., ,G  that we have identified. The rows 
of the matrix SIMPROD do not respect this requirement, so the Aspect estimate 

( )Ê s λ    which they produce cannot be used to estimate the expected value of 
( )s λ  for the gedankenexperiment. We shall now endeavor to correct this error. 
The third row of Table 1 has been generated then by first applying the func-

tion ( ). . ., ,G  to each choice of three components of the rows of the SIMPROD 
matrix. Each result was entered into the same row of a companion matrix of the 

 
Table 1. Corrections to Aspect’s estimate of ( )E s λ   . 

( )* *,a b
 

( ),a b  ( ), ′a b  ( ),′a b  ( ),′ ′a b  

( ) ( )* *Ê A B  a b
 

0.707232 −0.706186 0.706840 0.707480 

Aspect [ ]Ê s  2.827738 2.827738 2.827738 2.827738 

Functional ( ) ( )* *Ê A B  a b  −0.353078 0.354348 −0.354766 −0.353934 

Corrected [ ]Ê s  1.767180 1.767204 1.765740 1.766964 
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same size, but placed into the column corresponding to the column entry that 
was not used in the evaluation of the G function. Let’s call this matrix by the 
name SIMGEN. Next, Aspect’s estimation Equation (15) was applied to each of 
the four columns of SIMGEN, and the result is printed in the third row of Table 
1, labeled “Functional ( ) ( )* *Ê A B 

 a b ”. These display estimates of  

( ). . ., ,E G 
   required for estimation of the four alternative expectation equa-

tions (12). In this way we can be considered to have generated 4 times 106 simu-
lated versions of the Aspect/Bell gedankenexperiment. Their component results 
can be taken to be any three simulation results from a row of SIMPROD along 
with the fourth result being the functionally generated result found in the same 
row and the appropriate fourth column of SIMGEN. Finally, the last row of Ta-
ble 1 presents the estimated values of ( )E s λ    deriving from these simulated 
experiments. They appear as “corrected estimates”, column by column, for each 
of which the ( ). . .ˆ , ,E G 

   is the one appropriate to that column while the other 
three expected polarization products are those appropriate to the other three 
columns of row 1 of the Table. The elements of this row display corrected esti-
mates of ( )E s λ    as they should be calculated with the simulated Aspect data. 
Each of these four estimates is slightly different from the others. Averaging them 
over the four ways of generating a column of polarization products from the 
other three columns of simulated products would yield a “Corrected estimate” of 

( )E s λ    as 1.766772, well within the Bell bounds of [ ]2, 2− + . 
Based on Aspect’s report of his experimental data, I feel quite sure that apply-

ing this same estimation procedure to his experimental data, considered as a si-
mulation of the impossible gedankenexperiment, would yield a similar result. 

Results on the order of this peculiar number are quite stable over repeated 
runs of this simulation as described. Since the theoretical analysis reported in 
this article yields only an interval of cohering possibilities for ( )E s λ   , this 
simulation leaves us with a tantalizing problem of how to account for this stable 
result, which is quite near to ( )3 2 1 2 2 1.767766952966369 − ≈  . This 
specific result is a construct of the gratuitous independence feature embedded in 
the simulation results across each of the three angle pairings used to generate the 
function-bound simulation results. Such a feature would be highly suspect in 
Nature, given what we know now about quantum entanglement itself in a single 
experiment. I should mention that among all distributions in the polytope co-
hering with the prescriptions of quantum theory, the maximum entropy distri-
bution inheres an expectation value of ( ) 1.1522E s = . Discussion of its assess-
ment and related issues must await another forum. However, there can be no 
real empirical evidence on the issue, since it is impossible in principle to activate 
the setup of the four imagined simultaneous experiments on a single pair of 
photons. Thus, the physicists’ long interest in the fabled gedankenexperiment. 

8.3. A Comment on Empirical Work and Statistical Estimation 

While Aspect’s conception of statistical estimates appropriate to the photon de-
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tection problem is understandable, and corrections can be made to improve its 
relevance to the Aspect/Bell problem, developments of statistical theory and 
practice during the past fifty years have surely generated superior methods for 
evaluating the physical theory of quantum behavior. These rely on the subjective 
theory of probability which, under the leadership of Bruno de Finetti and re-
searchers adhering to his viewpoint, has gained substantial credibility from the 
past half-century of research in the foundations of probability and statistics. 
There are even some prominent physicists among its proponents, though not 
many. Proclaimers of inherent randomness in the physics of quantum behaviour 
have won the day for now, largely on the basis of the mistaken violation of Bell’s 
inequality that we have debunked in this article. In the very least, it is apparent 
that calls for open access to raw data [28] from several well-known research 
programs that publish summary results, usually in the form of discredited 
p-values, need to be heeded. 

9. Concluding Comments 

The mathematical structure of the Aspect/Bell problem and its resolution align 
well with the theory of subjective probability. This viewpoint is in keeping with 
Einstein’s interpretation of quantum mechanics, known by his famous adage 
that the old one does not roll dice. However, readers more comfortable with the 
standard realist interpretation of quantum mechanics may also consider the 
probabilities as ontic properties of the photons themselves without disturbing 
the mathematical issues we have engaged. Anyone who professes uncertain 
knowledge about the possible values of a quantum optical gedankenexperiment 
may assert whatever probabilities are deemed appropriate for the sixteen possi-
ble observation vectors displayed in block one of our experimental realm matrix. 
This may involve as many or as few expectations as one wishes, whether based 
on the accepted theory of quantum mechanics or not. These of course need to be 
assessed scientifically in the light of what evidence can be brought to bear. Simi-
larly, realist proponents of quantum theory may hypothesize whatever probabil-
ity values they think it prescribes. However, since the sixteen vectors of possible 
polarization observations listed in the realm matrix provide an exclusive and 
exhaustive list of possible gedankenexperiment results, the sum of these proba-
bilities must equal 1 for anyone who makes coherent assertions. This under-
standing is what resolves the conundrum posed by apparent violations of Bell’s 
inequality. 

As to the characterization of the theory of hidden variables, this is another 
endeavour that has been misconstrued in accepted literature, largely on the basis 
of the mistaken understanding of the defiance of Bell’s inequality which we have 
corrected here. I have examined this matter in a separate manuscript entitled 
“Resurrection of the principle of local realism and the prospects for supplemen-
tary variables.” Along with a manuscript on my reassessment of Mermin’s 
“quantum mysteries” [29], it is currently available only on my ResearchGate 
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page. For now I shall merely state that mathematically, the theory of supple-
mentary variables specifies the form of a mixing density ( )ρ λ  that can be 
made isomorphic to any coherent distribution over the empirical observations of 
polarization experiments whatsoever. It matters not whether they are the pre-
scriptions of quantum theory or not. At any rate, no coherent distribution over 
observable quantities supports the defiance of Bell’s inequality, whether consi-
dered to be a formalization of hidden variables theory or not. 

Virtually all discussion of quantum probabilities since the original work of 
Bell has supported the conclusion that probabilities pertinent to quantum beha-
viour can violate the seemingly innocuous inequality that he identified. The ma-
thematical error that has been discovered and reported here substantiates the 
end of an era of accepting this conclusion. The results we have aired will have 
ramifications for many published estimations based on more sophisticated expe-
rimentation as well. There are further consequences for a host of theoretical is-
sues that have been studied and discussed in the context of a mistaken under-
standing. These include related notions of hidden variables, entangled particles, 
and information transfer. Discussions of these topics do require philosophical 
attention to a variety of conceptual constructs in which they are imbedded. 
However, the analysis of Aspect/Bell presented here has nothing to do with phi-
losophical distinctions. It has identified a mathematical error in accepted work 
that must be recognized no matter what might be the philosophical positions of 
interested parties. Probabilistic forecasts motivated by quantum theory do not 
violate any laws of probability theory. 

Discussions of related issues proceeding henceforth will need to begin with 
this new recognition. Interestingly, this resolution was suspected in some way by 
Bell himself, though not the analytical detail. This was clearly evident in his 
musings on the hidden variables question in Bell [10] which he himself had re-
printed in a collection of his publications, Bell [30]. My discovery of the func-
tional relations involved among the components of the 4-ply gedanken quantity 
S and the 4-D polytope of their cohering quantum theoretic distributions is truly 
novel. 

A final reference relevant to this analysis is the article of Romano Scozzafava 
[31] on the role of probability in statistical physics. He discusses several issues 
that clarify fundamental matters in the context of the constructive mathematics 
of Bruno de Finetti’s operational subjective statistical method. 
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Abstract 
An intriguing quasi-relativistic wave equation, which is useful between the 
range of applications of the Schrödinger and the Klein-Gordon equations, is 
discussed. This equation allows for a quantum description of a constant 
number of spin-0 particles moving at quasi-relativistic energies. It is shown 
how to obtain a Pauli-like version of this equation from the Dirac equation. 
This Pauli-like quasi-relativistic wave equation allows for a quantum descrip-
tion of a constant number of spin-1/2 particles moving at quasi-relativistic 
energies and interacting with an external electromagnetic field. In addition, it 
was found an excellent agreement between the energies of the electron in 
heavy Hydrogen-like atoms obtained using the Dirac equation, and the ener-
gies calculated using a perturbation approach based on the quasi-relativistic 
wave equation. Finally, it is argued that the notable quasi-relativistic wave 
equation discussed in this work provides interesting pedagogical opportuni-
ties for a fresh approach to the introduction to relativistic effects in introduc-
tory quantum mechanics courses. 
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Quantum Mechanics, Schrödinger Equation, Klein-Gordon Equation, Dirac 
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1. Introduction 

Most physicists are familiar with the Schrödinger equation, which describes the 
movement of a spin-0 particle with mass (m) moving at speeds much smaller 
than the speed of light (c) [1] [2] [3] [4] [5]. The one-dimensional Schrödinger 
equation corresponding to a free particle is given by the following expression [1] 
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[2] [3] [4] [5]: 

( ) ( )
2 2

2, , .
2Sch Schi x t x t

t m x
ψ ψ∂ ∂

= −
∂ ∂



                  (1) 

In Equation (1),   is the Plank constant (h) divided by 2π  and Schψ  is 
the (scalar) wavefunction. Most Physics Ph.D. graduates know about the Klein- 
Gordon equation, which describes the movement of a spin-0 particle with mass 
moving at relativistic speeds [6] [7]. The one-dimensional Klein-Gordon eq-
uation corresponding to a free particle is given by the following expression [6] 
[7]: 

( ) ( ) ( )
2 2 2 2

2 2 2 2
1 , , , .KG KG KG

m cx t x t x t
c t x

ψ ψ ψ∂ ∂
= −

∂ ∂ 

           (2) 

In Equation (2), KGψ  is also a scalar wavefunction. Equation (2) is not a 
Schrödinger-like equation because in contrast to the Schrödinger equation, Equ-
ation (2) includes a second order temporal derivative. Introductory Quantum 
Mechanics courses often cover the Schrödinger equation [1] [2] [3] [4] [5]. More 
advance Quantum Mechanics courses often cover the Klein Gordon equation [6] 
[7]. This is done for introducing the readers to the consequences for quantum 
mechanics of taking seriously the concepts and ideas of Einstein’s Special Theory 
of Relativity [8] [9].  

Historically, while looking in 1926 for the right quantum equation, Erwin 
Schrödinger first explored, but did not publish, the equation that we today call 
the Klein-Gordon equation, which was also published in 1926 by Oskar Klein 
and Walter Gordon. Schrödinger was well-aware of the special theory of relativ-
ity; thus, he was looking for a Lorentz invariant wave equation [6] [7] [8] [9] 
[10]. The Schrödinger equation is not Lorentz invariant but Galilean invariant 
[10] [11]; therefore, a relativistic quantum mechanics cannot be based on the 
Schrödinger equation.  

A fully relativistic quantum theory requires to be founded on equations like 
the Klein-Gordon equation, which is valid for any two observers moving respect 
to each other at constant velocity [6] [7]. However, judging by its popularity 
among present physicists, Schrödinger took the correct decision. The solutions 
of the Klein-Gordon equation are plagued with several unwanted properties that 
made Equation (2) less easy to work with than using Equation (1) [6] [7]. Equa-
tion (1) describes a particle of mass (m), linear momentum (p), and kinetic 
energy (K) related by the classical relation 2 2K p m= , which is not valid at re-
lativistic speeds [6] [7] [11].  

Fortunately for Schrödinger, he was able to reproduce the results previously 
obtained by Bohr for the energies of the bounded states of the electron in the 
Hydrogen atom [1] [2] [3] [4] [5]. This was possible because the electron in the 
Hydrogen atom has non-relativistic energies [1] [2] [3] [4] [5]. However, elec-
trons are not spin-0 particles but spin-1/2 particles.  

Electrons moving at low velocities respect to c, can be approximately de-
scribed by a two-component vector wavefunction (spinor) [2] [6] [7]. The spinor 
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nature of the electron wavefunction produces experimentally detectable results 
when the electron interacts with an external electromagnetic field [4] [6] [7]. 
The Pauli equation, which was discovered by Wolfgang Ernst Pauli in 1927, is a 
Schrödinger-like equation; therefore, it is not a Lorentz-invariant. The Pauli eq-
uation describing the interaction of a free electron with a constant magnetic field, 
with magnitude extB  pointing in the z direction, can be written in the following 
way [4]: 

( ) ( ) ( )
2

2, , , .
2P P B ext z Pi t t B t

t m
ψ ψ µ σ ψ∂

= − ∇ −
∂



 r r r           (3) 

In Equation (3), 2∇  is the Laplace operator [1] [2] [3] [4] [5],  
( )2B e mcµ =   is the Bohr magneton [4], e  is the electron charge, and zσ  is 

the 2 × 2 Pauli matrix [2]: 

1 0
.

0 1zσ
 

=  − 
                         (4) 

Pψ  is not a scalar wavefunction but the two-component spinor wavefunc-
tion: 

( ) ( )
( )

,
, .

,
P

P
P

t
t

t
ψ

ψ
ψ

+

−

 
=  
 

r
r

r
                      (5) 

Consequently, Equation (3) is equivalent to a system of two independent 
Schrödinger equations for Pψ +  and Pψ −  that are only different in the sign of 
the last term in the right side of the equations. When 0extB = , both equations 
are equal to the three-dimensional version of Equation (1) [1] [2] [3] [4] [5]. The 
exact description of electrons moving at relativistic velocities requires a four- 
component (biespinor) wavefunction, and the solution of the Lorentz invariant 
Dirac equation [6] [7]. The Dirac equation of a free electron is given by the fol-
lowing equation [2] [6] [7] [12]: 

( ) [ ] ( ) ( )2 ˆˆ ˆ, , , .D D Di t C t mc t
t
ψ ψ βψ∂

= ⋅ +
∂
 r p r rα           (6) 

In Equation (6), each of the three components of the vector operator α  and 
the operator β  are 4 × 4 Dirac’s matrices [2] [6] [7] [14]. Each of the tree 
components of the linear momentum operator p is the differential operator [2] 
[6] [7] [12]. 

ˆ ,  , , .jp i j x y z
j
∂

= − =
∂
                       (7) 

Consequently, the Dirac equation is not a Schrödinger-like equation because 
only includes spatial derivatives of first order, while Equations (1) and (3) in-
clude spatial derivatives of second order. The bispinor Dψ  has four compo-
nents; therefore, it can be represented using two spinors in the following way [2] 
[12]: 

( ) ( )
( )

,
,

.,D

t
t

t
ϕ

ψ
χ

 
= 
 

r
r

r
                      (8) 
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Clearly, a price in mathematical complexity is paid for improving the relati-
vistic description of quantum particles. Consequently, from a purely pedagogical 
point of view, it would be convenient to be able to have a Schrödinger-like equa-
tion capable to describe quantum-particles at relativistic energies. Unfortunately, 
this is not in general possible [6] [7]. Nevertheless, it was recently found a 
Schrödinger-like equation capable to describe quantum-particles at quasi-relativistic 
energies [11] [13] [14] [15] [16].  

Rigorously, the number of particles may not be constant in a fully relativistic 
quantum theory [6] [7]. This is because when the sum of the kinetic and the po-
tential (U) energy of a particle with mass m doubles the energy associate to the 
mass of the particle, i.e., 22E K U mc′ = + = , then a pair particle-antiparticle 
could be created from E′  [2] [6] [7]. Consequently, the number of particles is 
constant at quasi-relativistic energies, i.e., when 2 2E K U mc′ = + < . At qua-
si-relativistic energies close to 2mc , the Schrödinger equation does not provide 
a good description of the states of the quantum particle because it assumes that 

2 2K p m= , while at relativistic speeds the correct relation between K, p, and 
the square of the velocity of the particle ( 2v ) is given by the following equation 
[8] [9] [11] [13] [14] [15] [16]: 

( )
2

2

2

1,  .
1

1
v

v

pK
m v

c

γ
γ

= =
+

−

                   (9) 

A free spin-0 particle can be (approximately) described by the following qua-
si-relativistic wave equation, which was first proposed by one of the authors of 
this work [11] [13] [14] [15] [16]:  

( ) ( ) ( )
2 2

2, , .
1v

i x t x t
t m x
ψ ψ

γ
∂ ∂

= −
∂ + ∂



               (10) 

Clearly, Equation (10) is a Schrödinger-like equation. Like in Equation (1), 
ψ  is a scalar wavefunction. Moreover, Equation (10) coincides with Equation 
(1) at low velocities when ~ 1vγ . However, Equation (10) describes a particle at 
quasi-relativistic energies because it implies the relation between K, p, and 2v  
given by Equation (9) [11] [13] [14] [15] [16]. Consequently, from a purely pe-
dagogical point of view, the quasi-relativistic wave equation (Equation (10)) is 
very interesting.  

Moreover, the quasi-relativistic wave equation can be solved following the 
same mathematical steps required for solving the Schrödinger equation in most 
of the problems often included in Introductory Quantum Mechanics courses. 
This includes a free particle [11], confinement of a quantum particle in box [11] 
[14] [15], reflection by a sharp quantum potential [15], tunnel effect [15], and 
the quasi-relativistic description of Hydrogen-like atoms [14] [15] [16]. There-
fore Equation (10) allows for a smooth introduction of special relativity concepts 
and ideas in Introductory Quantum Mechanics courses.  

The quasi-relativistic wave equation also enriches the accumulated physics 

https://doi.org/10.4236/jmp.2021.128068


L. G. de Peralta, H. Farooq 
 

 

DOI: 10.4236/jmp.2021.128068 1149 Journal of Modern Physics 
 

knowledge, and open new ways to tackle quantum problems involving particles 
at quasi-relativistic energies. Because Equation (10) is a Schrödinger-like equa-
tion, it permits to calculate probabilities like it is done for Equation (1) [11]. 
Moreover, Equation (10) allows for a quasi-relativistic description of mul-
ti-particle systems where the number of particles is constant [17]. This includes 
all problems in Chemistry where the number of electrons is constant and 

22E mc′ < . The energy of the most energetic electrons in heavy elements is qua-
si-relativistic. Therefore, often their description either involves a perturbative 
theory based on the Schrödinger equation [2] [4] [5], or a more precise but 
much more complicate quantum electrodynamic description [18].  

The quasi-relativistic wave equation potentially represents a novel non-per- 
turbative approach for tackling such problems without having to pay a heavy 
price in mathematical complexity, thus helping to grasp the essence of the con-
sequences of introducing the ideas and concepts of spatial theory of relativity in 
quantum mechanics.  

In this work, first, for completeness, the connection between Equation (10) 
and the Klein-Gordon equation will be summarized. Then, for the first time, a 
quasi-relativistic version of Equation (3) will be directly obtained from the Dirac 
equation. Finally, also for the first time, an equation giving the quasi-relativistic 
energies of the bound states of the electron in Hydrogen-like atoms will be ob-
tained using a perturbative approach based on the quasi-relativistic wave equa-
tion. The quasi-relativistic energies calculated in this way have a much better 
correspondence, with the energies calculated using the Dirac equation, than the 
energies calculated using a perturbative theory based on the Schrödinger equa-
tion.  

2. Relationship between the Klein-Gordon and the  
Quasi-Relativistic Wave Equations 

From the following well-known relativistic equations [8] [9] [15]: 

( )( )2 2 4 2 2 2 2 2 2.E m c p c E mc E mc p c− = ⇔ + − =            (11) 

And: 
2 2,  ,  .v vE mc p mV E K mcγ γ= = = +                 (12) 

One can formally obtain Equation (2) by substituting E  and p  in Equa-
tion (11) by the following energy and momentum quantum operators [1] [2] [3] 
[4] [6] [7]: 

ˆ ˆ,  .E i p i
t x
∂ ∂

= = −
∂ ∂
                        (13) 

The factor ( )2E mc+  in Equation (11) is always different than zero for 
0E > ; consequently, Equation (11) and the following algebraic equation are 

equivalents for 0E > : 

( ) ( )
2

2 .
1v

pK E mc
mγ

= − =
+

                   (14) 
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Then from Equations (13) and (14) follow the following differential equation 
[13] [14] [15]: 

( ) ( ) ( ) ( )
2 2

2
2, , , .

1KG KG KG
v

x t x t mc x t
t m x
ψ ψ ψ

γ+ + +
∂ ∂

= − +
∂ + ∂



       (15) 

A simple substitution in Equations (2) and (15) shows that the following plane 
wave is a solution of both equations for 0E > : 

( ) ( )
, e .

i px Et

KG x tψ
−

+ =                      (16) 

Moreover, the following wavefunction is a solution of Equation (10): 

( )
2

, e .,  miw t
KG m

mcx t wψ ψ += =


                (17) 

Therefore, Equation (17) allows finding a solution of Equation (2) with 
0E >  from a solution of Equation (10). This is the relationship between the free- 

particle Klein-Gordon and quasi-relativistic wave equations. This relationship is 
also valid when the particle is moving through a potential U [11] [13] [14] [15] 
[19]. For instance, the quasi-relativistic wave equation for a particle moving at 
quasi-relativistic energies through piecewise constant potentials is given by the 
following equation [15]: 

( ) ( ) ( ) ( ) ( )
2 2

2, , , .
1v

i x t x t U x x t
t m x
ψ ψ ψ

γ
∂ ∂

= − +
∂ + ∂



         (18) 

Looking for a solution of Equation (18) of the form: 

( ) ( ), e .,  
i Kt

x t X x K E Uψ
−

′= = −                 (19) 

It is obtained the time-independent quasi-relativistic wave equation [15]: 

( ) ( )

( ) ( ) ( )

2
2

2
d 0,
d

1 1 .11
v v

X x X x
x

p mK m E U

κ

κ γ γ+

+

= −+

=

′= =
  

         (20) 

At low velocities, when ~ 1vγ , Equation (1) coincides with the time-inde- 
pendent Schrödinger equation for the same problem [1] [2] [3] [4]. The allowed 
values of κ  are determined by the boundary conditions of the problem. From 
Equations (12) and (14) follows that [15] [17]: 

2 2 2
2 1 .

1 1
v

k K
mc

k m
mc

κγ  = + ⇒ =    
+ + 

 

 



            (21) 

At low velocities, when 1vγ   and mcκ  , Equation (21) gives  
2 2  2K mκ=  , which is the non-relativistic relation between K  and κ  [1] [2] 

[3] [4]. It is worth noting that Equations (10) and (18) are not linear equations 
[11] [13] [14] [15]. This may rise some objections due to the importance of the 
superposition principle in quantum mechanics [1]-[7] [11] [13] [14] [15]. How-
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ever, it should be noted that, if X1 and X2 are two solutions of the time-independent 
quasi-relativistic wave equation (Equation (20)), respectively corresponding to 
different kinetic energies K1 and K2, then the following wavefunction is a solu-
tion of the Klein-Gordon equation: 

( ) ( ) ( ) ( ) ( )2 2
1 2

1 2 e ., e
i iK mc t K mc t

KG x t X x X xψ
− + − +

+ = +            (22) 

From this point of view, the time-independent relativistic wave equation 
should not be considered a fundamental equation, but a useful auxiliar equation 
for finding solutions of a fundamental Lorentz invariant wave equation satisfy-
ing the superposition principle [14]. 

3. The Quasi-Relativistic Wave Equation of a Free Electron  

The wavefunction in Equations (1), (2), (10), and (18) are scalars, thus describe 
the state of a spin-0 particle with mass. However, electrons are not spin-0 par-
ticles but spin-1/2 particles. Equation (6) gives the correct relativistic equation of 
a free electron. However, as it is shown below, a spinor quasi-relativistic wave 
equation can be obtained when E > 0. Proposing a solution of Equation (6) of 
the following form [2]: 

( ) ( )
( )

, e .
i Et

D t
ϕ

ψ
χ

− 
=  
 



r
r

r
                   (23) 

Substituting Equation (23) in Equation (6), and considering that for a free 
electron 2E K mc= + , allows for rewriting Equation (6) as the following system 
of two time-independent spinor equations [2]: 

[ ] ( ) [ ] ( )2 2ˆ ˆˆ ˆ,  .c E mc K c E mcχ ϕ ϕ ϕ χ⋅ = − = ⋅ = +p pσ σ        (24) 

In Equation (24), each of the three components of the vector operator σ  is a 
2 × 2 Pauli’s matrix [2] [6] [7] [14]. 2 0E mc+ >  when 0E > , thus when 

0E > , the second equation of Equation (24) can be rewritten in the following 
way: 

[ ]
( )

[ ]
( )2

ˆ ˆˆ ˆ
1v

c
mcE mc

χ ϕ ϕ
γ

⋅ ⋅
= =

++

p pσ σ
                (25) 

Substituting Equation (25) in the first equation of Equation (24) results in the 
following equation: 

[ ]
( ) ( )

2 2
2ˆˆ

.
1 1v v

K
m m
ϕ ϕ ϕ

γ γ
⋅

= − ∇ =
+ +



pσ
              (26) 

Therefore, when 0E > , each one of the two components of ϕ  exactly satis-
fies the same time-independent quasi-relativistic wave equation, which corres-
ponds to a free spin-0 particle with kinetic energy K . Consequently, when 

0E > , the three-dimensional version of Equation (10) is the time-dependent 
quasi-relativist wave equation corresponding to each component of ϕ  in Equa-
tion (26). 
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4. The Pauli-Like Quasi-Relativistic Wave Equation 

The Schrödinger-like Pauli equation given by Equation (3) can be obtained from 
the Dirac equation for an electron interacting with an external electromagnetic 
field [2]. Following the same procedure, a quasi-relativistic version of Equation 
(3) can be obtained. When an external electromagnetic field interact with the 
electron, Equation (24) should be modified in the following way [2]: 

( ) ( )2 2ˆ ˆˆ ˆ,  .o o
e ec E mc eA c E mc eA
c c

χ ϕ ϕ χ   ⋅ − = − − ⋅ − = + −      
p A p Aσ σ (27) 

In Equation (27), oeA−  is the electron electrostatic energy and the vector po-
tential A is associated to an external magnetic field [2] [8]. When  

( )2 0oE mc eA+ − > , the second equation of Equation (27) can be rewritten in 
the following way: 

( )2

ˆˆ
.

o

ec
c

E mc eA
χ ϕ

 ⋅ −  =
+ −

p Aσ
                     (28) 

The Schrödinger-like Pauli equation can be obtained doing 2E E mc′= +  
and assuming 2

oE eA mc′ −  . Therefore, the fraction ( )2 2oc E eA mc′ − +  in 
Equation (28) can be developed in powers of ( )oE eA′ −  and Equation (28) can 
be approximated by the following expression [2]: 

1 ˆˆ .
2

e
m c

χ ϕ ≈ ⋅ −  
p Aσ                     (29) 

Substituting Equation (29) in the first equation of Equation (27) allows ob-
taining the Schrödinger-like time-independent Pauli equation [2]: 

( )

2

ˆ
ˆ .

2 o B

e
c eA B E
m

µ ϕ ϕ

  −     ′+ − ⋅ = 
 
  



p A
σ             (30) 

For a free electron moving through a constant magnetic field, with magnitude 
Bext pointing in the z  direction, Equation (30) can be approximated as:  

( ) ( )
2

2 .
2 B ext zB
m

Eϕ µ σ ϕ ϕ− ∇ − = ′ r r                (31) 

Which is the time-independent Pauli-equation corresponding to Equation (3). 
However, if one assumed that 2

oeA E mc− + , then the fraction  

( )22oc eA E mc′− + +  in Equation (28) can be developed in powers of oeA−  
and Equation (28) can be approximated by the following expression: 

( )
1 ˆˆ .
1v

e
mc c

χ ϕ
γ

 ≈ ⋅ − +  
p Aσ                  (32) 

Substituting Equation (32) in the first equation of Equation (27) allows ob-
taining the following time-independent Pauli-like quasi-relativistic wave equa-
tion: 
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( ) ( ) ( )

2

ˆ
2 ˆ .

1 1
B

o
v V

e
c

m
EeA µ ϕ ϕ

γ γ

  −     + − ⋅ = + + 
 

′



p A
Bσ              (33) 

For a free electron moving through a constant magnetic field, with magnitude 

extB  pointing in the z  direction, Equation (33) can be approximated as: 

( ) ( ) ( ) ( )
2

2 2 .
1 1

B
ext z

v v

B E
m

µϕ σ ϕ ϕ
γ γ

∇ − =
+

−
+

′ r r             (34) 

Equation (34) is the quasi-relativistic version of Equation (31). When the 
electron moves slowly, 1vγ  , thus Equation (34) coincides with Equation (31). 
Equation (34) includes two corrections to Equation (3). First, includes the cor-
rect relativistic relation between K and p. Second, as shown in Figure 1, the 
energy difference corresponding to the two components of ϕ  is not indepen-
dent of K, as suggested by Equation (31), but decreases by a factor of twice 
( )2 1vγ +  at quasi-relativistic energies. This relevant result could be easily 

tested experimentally. 

5. Relativistic Corrections to the Energies of the Bounded  
States in Hydrogen-Like Atoms  

For Hydrogen-like atoms, we can assume the vector potential in Equation (27) is 
null, and: 

( )
2

.
4o C

o

e ZeA U r
rπε

= = −                    (35) 

In Equation (35), CU  is the Coulombic electrostatic energy, Z  is the 
atomic number, and oε  is the electric permittivity of vacuum [2] [4] [13] [15]. 
The exact Dirac’s energies of the bound states of the electron in Hydrogen-like 
atoms are given by the following equation [2]: 

1
2 2

2 2

2 21 .
1 1
2 2

ZE
n j j Z

c c
α

µαµ

−
  
  
  ′ +       − + + + −         

= −



       (36) 

 

 
Figure 1. Plot oftwice ( )v2 1γ +  as a function of K  in 2mc  units. 
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In Equation (36), 1,2,n =  ; ( )0,1, , 1l n= − ; 1 2j l= ± ,  
( ) ( )2

o1 4 c 1 137eα πε= × ≈  is the fine structure constant,  
( ) ( )e n e nm m m mµ = +  is the reduced mass of the electron in a Hydrogen-like 

atom with a nucleus of mass nm , and em  is the electron mass [2]. Often the 
following approximation to Equation (36), which is valid when 2E mc′

 , is 
obtained using a perturbative approach based in the Schrödinger equation [2] 
[12]: 

( ), , ,1 .Sch K Sch D Sch SO SchE E E E E′ = + ∆ + ∆ + ∆              (37) 

In Equation (37), SchE  gives the values, of the bounded energies of the elec-
tron in Hydrogen-like atoms, obtained using the Schrödinger equation [1] [2] [3] 
[4] [5] [14]: 

22 2 2 2 2

2 2 2 .
4 42Sch

o

e Z c ZE
n n

µ µ α
πε

  
 = − = − 
   

             (38) 

,K SchE∆  is the relativistic correction to the kinetic energy, which is given by 
the following expression [2] [11] [12] [13] [14]: 

2

2

2

,
3 .14

2

K Sch Sch
nE E

n
Z

l

α
 
 

∆ = − − 
 +
 

                (39) 

,D SchE∆  is the so-called the Darwin correction, which is only not null when 
0l =  [2] [12]: 

2

2 2

, .D Sch Sch
ZE E

n
α

∆ = −                      (40) 

Finally, ,SO SchE∆  is the so-called spin-orbit correction, which is only not null 
when 0l ≠  [2] [12]: 

( ) ( )

( )

2 2

,
1 1 3 4

12 1
2

.D Sch Sch
j j l l

E E
n l l

Z

l

α + − + +
∆ = −

 + + 
 

           (41) 

From Equations (38) to (41) follows the relativistic corrections are much 
smaller that SchE  when ( )2 1Z nα  . One should expect the energies calcu-
lated using Equation (37) sensibly differ from the exact Dirac’s energies for the 
lowest energy states (smallest n-values) of heavy Hydrogen-like atoms. At this 
point, however, no one should be surprised by the fact that following a similar 
procedure than the used for obtaining Equation (37), but using a perturbative 
approach based in the quasi-relativistic wave equation (details shown in the 
Appendix), one can find a much better approximation to Equation (36), which 
is valid until quasi-relativistic energies: 

( ), ,1 .QR D QR SO QRE E E E′ = + ∆ + ∆                   (42) 

In Equation (42), QRE  gives the energies of the bounded states obtained us-
ing the quasi-relativistic wave equation for Hydrogen-like atoms [15]: 
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( )
2

2 .QR
cE nµ  = − Ξ − + ∆ Ξ Ξ

                  (43) 

In Equation (43), ( ),l Z∆ = ∆ and Ξ  are given by the following equations 
[15]: 

2 2 2 2.4 4 4n Z nαΞ = + + ∆ + ∆                    (44) 

And: 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2 2

2 2 4 4
2 2 2

3

, 1 1 2 4 2 1 ,

2 21 2 4 1 2 .
1 2 1 2

l Z l Z l

Z Zl Z l
l l

α

α αα

 ∆ = + + − − +  

+ − ≈ + − −
+ +

          (45) 

In some cases, for heavy Hydrogen-like atoms with 1Z  , the term inside 
the square root in Equation (45) could be negative; in these cases, the approxi-
mation to the square root included in Equation (45) should be used. As should 
be expected, ( ),1QR Sch K SchE E E≈ + ∆  when 2E mc′

  [15]. It is worth noting 
that QRE  is identical to the positive energies calculated for the Hydrogen atom 
using the Klein-Gordon equation [19]. ,D QRE∆  is the new Darwin correction, 
which also is only not null when 0l = : 

( )
2 2

1
, ,  .1

n
n

D QR D QR D vE k E k
n
Z γα

+∆ = − = +              (46) 

,SO QDE∆  is the new spin-orbit correction, which also is only not null when 
0l ≠ : 

( ) ( )

( )

( )5/21

,

2 2
31 1 14

12 21
2

,  .
n l

V
D Sch SO QR SO

j j l l
E k E k

n l l l

Zα γ − − ++ − + + + ∆ = − =     + + 
 

 (47) 

The energies of the ground state ( 1n = , 0l = , 1 2j = ) of the Hydrogen atom 
( 1Z = ) calculated using Equations (36), (37), (38), (42), and (43) are E′  = 
−13.6022, −13.6022, −13.6020, −13.6019, and −13.6029 eV, respectively. All 
these values are within a 0.005% error respect to the exact Dirac’s energy. This is 
because 2E mc′

  when 1Z = . A comparison between the calculated values of 
the energy difference between two emission lines ( LE∆ ) of the Hydrogen atom 
are shown in Table 1. LE∆  was calculated using the following equation: 

2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1

1 1, , , ,
2 2

1 1, , , , .
2 2

L E n l j l E n l j l

E n l j l E n l

E

j l

    ′ ′= + − = +        
    ′ ′− = − − = +

∆

        

=
          (48) 

E′  was evaluated using Equations (36), (37), and (42). For the α-Lyman 
doublet, we used 2 2n = , 2 1l =  and 1 1n = , 1 0l =  [2] [12]. For the α-Balmer 
doublet, we used 2 3n = , 2 1l =  and 1 2n = , 1 0l =  [2] [12]. The last column 
of Table 1 corresponds to 2 3n = , 2 2l =  and 1 2n = , 1 1l = . It was chosen as 
an instance where both 2l  and 1l  are not zero. In all instances in Table 1, 
there is an excellent correspondence between the calculated values. Again, this is 
because 2E mc′

  when 1Z = .  
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Table 1. Calculated values of ΔEL (in meV) for the Hydrogen atom obtained using Equa-
tions (36), (37), and (42) for (a) α-Lyman doublet, (b) α-Balmer doublet, and (c) corres-
ponding to the energy difference between two others emission lines. 

ΔEL (meV) α-Lyman α-Balmer Other 

Equation (36) 0.0452718 0.0134139 0.00447118 

Equation (37) 0.0452703 0.0134134 0.00447114 

Equation (42) 0.0452715 0.0134138 0.00447119 

 

 

Figure 2. Dependence on Z of ΔEL (in meV) calculated using (red, continuous) 
Equation (36), (black, dot-dashed,) Equation (37), and (blue, dashed) Equation 
(42) for (a) α-Lyman doublet, (b) α-Balmer doublet, (c) another example cor-
responding to the last column of Table 1.  

 
More importantly, Equation (42) provides a better approximation than Equa-

tion (37) to the values of LE∆  calculated using Equation (36). This is con-
firmed by the plots shown in Figure 2 showing the dependence on Z of LE∆ . 
Clearly, as expected, at quasi-relativistic energies ( 1Z  ), Equation (42) 
(dashed blue curve) provides a much better approximation than Equation (37) 
(dot-dashed black curve) to the values of LE∆  calculated using the exact Di-
rac’s energies (continuous red curve). 

6. Conclusion 

It was shown that the time dependent Equations (1) and (18), and the time-in- 
dependent Equation (20) are very useful equations which are directly related to 
the Klein-Gordon equation, thus allowing a quantum description of a constant 
number of spin-0 particles moving at quasi-relativistic energies. It was presented 
and discussed, for the first time, a Pauli-like quasi-relativistic wave equation 
which is directly related to the Dirac equation, thus allowing for a quantum de-
scription of a constant number of spin-1/2 particles moving at quasi-relativistic 
energies and interacting with an external electromagnetic field. Finally, using a 
perturbative approach based on the quasi-relativistic wave equations discussed 
in this work, it was found and validated, also for the first time, an equation giv-
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ing the energies of the bounded states in Hydrogen-like atoms. The authors hope 
we have been able to motivate the curiosity of the readers. Undoubtedly, the eq-
uations and methods discussed here enrich the accumulated physics knowledge, 
and open new ways to tackle quantum problems involving a constant number of 
particles at quasi-relativistic energies. This also provides interesting pedagogical 
opportunities for a fresh approach to the introduction of relativistic effect in in-
troductory quantum mechanics courses. 
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Appendix 

Equations (37) and (42) can both be obtained from Equation (27) with a null 
vectorial potential (A) and oeA  given by Equation (35). For obtaining Equation 
(37), Equation (28) should be approximated in the following way [2]: 

[ ]2
1 ˆˆ1 .

2 2
CU

mc mc
Eχ ϕ− ≈ − ⋅ 



′


pσ                   (A1) 

Then, substituting Equation (A1) in the first equation of Equation (27) results 
[2]: 

[ ] [ ] ( )2
1 ˆ ˆˆ ˆ1 .

2 2
C

C
E U U r

m mc
Eϕ ϕ− ⋅ − ⋅ = −

′
    

′p pσ σ           (A2) 

Or:  

( ) [ ] ( ) [ ]
2

2
2

1 ˆ ˆˆ ˆ ' .
2 2 2

C
C

U r
U r E

m m mc
E

ϕ ϕ ϕ ϕ
 −    − ∇ + − ⋅ ⋅ =   
     

′



 p pσ σ    (A3) 

The time-independent Schrödinger equation for Hydrogen-like atoms is equal 
to Equation (A3) after excluding the term between curls in the left size of Equa-
tion (A3) [1] [2] [3] [4] [5]; therefore, the relativistic corrections to the energies 
calculated using the Schrödinger equation are contained in this term [2]. How-
ever, if Equation (28) is approximated in the following way: 

( ) ( ) [ ]2
1 ˆˆ1 .
1 1

C

v v

U
mc mc

χ ϕ
γ γ

 
≈ + ⋅  + + 

pσ               (A4) 

Then, substituting Equation (A4) in the first equation of Equation (27) results: 

( ) [ ] ( ) [ ] ( )2
1 ˆ ˆˆ ˆ1 .
1 1

C
C

v v

U U r
m

E
mc

ϕ ϕ
γ γ

 
⋅ + ⋅ −     + +

′


p pσ σ       (A5) 

Or: 

( ) ( ) ( ) [ ] ( )
( ) [ ]

2
2

2
1 ˆ ˆˆ ˆ .

1 1 1
C

C
v v v

U r
U r

m m mc
Eϕ ϕ ϕ ϕ

γ γ γ

     − ∇ + + ⋅ ⋅ =    + + +        
′



 p pσ σ  

(A6) 

The time-independent quasi-relativistic wave equation for Hydrogen-like 
atoms is equal to Equation (A6) after excluding the term between curls in the left 
size of Equation (A6) [12]; therefore, the relativistic corrections to the energies 
calculated using the quasi-relativistic wave equation are contained in this term. 
In Equation (A3), the term between curls produces three relativistic corrections 
to the energy, which are given by Equations (39) to (41) [2]. It can be shown, 
following the same procedure [2], but using the wavefunctions satisfying the qu-
asi-relativistic wave equation for Hydrogen-like atoms [14] [16], that the term 
between curls in Equation (A6) produces two relativistic corrections to the 
energy, which are given by Equations (46) and (47). 
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Abstract 
The original online version of this article (Miyashita, T. (2021) Various Em-
pirical Equations to Unify between the Gravitational Force and the Electro-
magnetic Force, Journal of Modern Physics, Vol. 12, 859-869.  
https://doi.org/10.4236/jmp.2021.127054) unfortunately contains the very 
important mistakes. The author discovered the possible problem in Equation 
(26) shown in Appendix. To fix the problem, the author wishes to change 
Equation (2) and make it more accurate. 
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1) Page 2 Equation (2) should be revised to the following: 
2

2

0

4.5 C 11
2π J m 1 kg

4π

p eGm m
hc

ee
ε

 
= × × × × ⋅ 

                 (2) 

where h is the Planck constant.  
2) So, the following Equation (12) cannot be used. 
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0 04π π
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ε µ
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                      (12) 

Then, 
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31
25 36

19

9.1094 10 1.9864 10 1.1294 10
1.6022 10

em
hc

e

−
− −

− =× ××
×
×

× =           (B) 

Regarding the factor of 9/2, we used 4.48870 instead of 4.5. Regarding the fac-
tor of π, we used 3.13189 instead of 3.14159. So, 

4.48870 71661
2 3.13189

4.5 0.
2π

= =
×

                     (C) 

36 3771661 1.1294 104.5 0.
2π

8.0936 10em
hc

e
− −× × × = ×× =           (D) 

Equation (D) is equal to Equation (A). Therefore, the compensation method is 
perfect. 

Equation (2) should be changed, but any other equations can be unchanged. 
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Abstract 
Oxygenations are highly exergonic, yet combustion of organic matter is not 
spontaneous in an atmosphere that is 21% O2. Electrons are fermions with a 
quantum spin number s of 1/2ħ. An orbital containing a single electron with s 
= 1/2 is fermionic. Orbitals can contain a maximum of two electrons with an-
tiparallel spins, i.e., spin magnetic quantum numbers ms of 1/2 and −1/2. An 
orbital filled by an electron couple has s = 0 and bosonic character. The mul-
tiplicity of a reactant is defined as |2(S)| + 1 where S is the total spin quantum 
number. The Wigner spin conservation rules state that multiplicity is con-
served. The transmission coefficient κ of absolute reaction rate theory also 
indicates the necessity for spin conservation. Burning is fermionic combus-
tion that occurs when sufficient energy is applied to a bosonic molecule to 
cause homolytic bond cleavage yielding fermionic products capable of reac-
tion with the bifermionic frontier orbitals of triplet multiplicity O2. Neutro-
phil leucocytes kill microorganisms by bosonic combustion and employ two 
mechanisms for changing the multiplicity of O2 from triplet to singlet. Mi-
croorganisms, composed of bosonic singlet multiplicity molecules, do not di-
rectly react with bifermionic O2, but are highly susceptible to electrophilic at-
tack by bosonic electronically excited singlet molecular oxygen ( 1

2O∗ ). Hy-
dride ion (H−) transfer is the common mode of cytoplasmic redox metabol-
ism. Bosonic transfer of an orbital electron couple protects from damage by 
obviating fermionic reaction with bifermionic O2. Bosonic coupled electron 
transfer raises the consideration that quantum tunneling might be involved in 
facilitating such redox transfer. 
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1. Introduction and Background  

A wavefunction (ψ) defines a quantum system. An orbital is described by , , ln l mψ  
where n is the principle quantum number, l is the azimuthal or angular mo-
mentum quantum number, and ml is the magnetic quantum number. An elec-
tron occupying an orbital is described by the wave function , , , ,l sn l m s mψ  where 
the electron-spin quantum number s describes the total spin and the spin mag-
net quantum number ms describes each electron spin as 1/2 or −1/2 [1] [2].  

According to the exchange principle, a pair of particles, a and b, can be de-
scribed by a wavefunction ψ(a, b). Exchanging the particles generates a new wa-
vefunction ψ(b, a). If particles are identical and indistinguishable, their probabil-
ity distributions will be identical, ψ2(a, b) = ψ2(b, a), regardless of the orientation 
of the particles. When the square roots of the probability distributions yield the 
wavefunctions ψ(a, b) = ψ(b, a), exchange is symmetric and the particles are bo-
sons. When the wavefunctions ψ(a, b) = −ψ(b, a), exchange is antisymmetric and 
the particles are fermions. Bosons obey ordinary commutation. Rotating a boson 
through 360 degrees returns it to its original state, 360ψ ψ→ . Bosons are 
symmetric particles with integral spin. Photons are bosons with zero mass and 
integer spin, fermions anti-commute, Rotating a fermion through 360 degrees, 

360ψ ψ→− , changes the sign or phase of the fermion, but does not return the 
particle to its original state. An additional 360 degrees rotation, 360ψ ψ− → , 
is required to return the antisymmetric particle to its original state. Electrons, 
protons and neutrons are fermions with mass.  

Bosons differ from fermions with regard to quantum spin. The natural unit of 
quantum spin is the reduced Planck’s constant (h-bar or ħ), where ħ = h/(2π). 
Bosons have spins with integer values. Photons are bosons with a spin value of 
1ħ. Fermions have spins that are 1/2 integers. Electrons are fermions with a spin 
of 1/2ħ. Electrons possess intrinsic spin described by the quantum number s. 
Such spin is independent of orbital motion and is without analogy in classical 
physics. The spin magnetic quantum number ms has two spin possibilities: 1/2 
(spin up, ↑) or −1/2 (spin down, ↓). The multiplicity of an atom or molecule 
equals |2(S)| + 1 where S is the total spin.  

2. Fermionic and Bosonic Orbitals 

Fermions can combine to yield a wavefunction with bosonic character. An alpha 
particle made up of four fermions is bosonic [3]. An electron is a fermion. As 
such, an orbital filled by a single electron has an s = 1/2 and fermionic character 
[4] [5]. An orbital filled by an antisymmetric electron couple has s = 0 and bo-
sonic character. The frontier orbitals of atoms and molecules are directly in-
volved in reaction chemistry and include the lowest unoccupied (LU(A)MO), 
the highest occupied (HO(A)MO), and the single electron occupied (SO(A)MO) 
atomic (A) or molecular (M) orbitals [6]. 

The vast majority of reactions observed in organic and biochemistry involve 
singlet multiplicity reactants. Reactions involve frontier LUMO and HOMO are 
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bosonic. Free radical reactions involve fermionic frontier orbitals, i.e., SO(A)MO. 
Reaction chemistry can be approached from a fermionic-bosonic orbital pers-
pective. 

Consistent with the fermion nature of electrons, Pauli’s exclusion principle 
limits an orbital to a maximum of two antiparallel electrons, i.e., ms of 1/2 (↑) 
and −1/2 (↓). In Figure 1, note that the lower energy 1s and 2s orbitals of atomic 
N each contain two antiparallel electrons, i.e., an orbital couple with s = 0. These 
orbitals are closed to reaction chemistry. The frontier orbitals of atomic N in-
clude the three 2p orbitals. These 2p orbitals are degenerate, i.e., each orbital has 
the same energy. Each 2p orbital contains a single fermionic electron. Hund’s 
maximum multiplicity rule states that the electrons in degenerate singly occu-
pied orbitals will have parallel spins [7]. As such, each of the three 2p frontier 
orbitals of N have an s = 1/2 and the S of N is 3(1/2). The spin multiplicity, i.e., 
|2(S)| + 1, for N is thus |2(3/2)| + 1= 4. Stated differently, atomic nitrogen is a tri-
radical with quartet spin multiplicity. Each 2P orbital of N is a SOAO, and as 
such, atomic N is trifermionic. As depicted in Figure 1 and stated in Table 1, the 
product of reacting two quartet multiplicity N atoms is singlet multiplicity N2.  

The lower energy 1s and 2s orbitals of N all contain coupled antiparallel elec-
trons with s = 0. These non-frontier bosonic orbitals do not participate in reac-
tion. Likewise, the sigma bonding (σ) and antibonding (σ*) orbitals of N2, de-
rived from the 1s and 2s orbitals of the atomic N’s, are bosonic and closed to 
reaction chemistry. The frontier π bonding orbitals of N2 are both filled by an 
electron couple with s = 0 and have bosonic character. In its ground state, N2 is 
singlet multiplicity, triple bonded and bosonic. 

 

 
Figure 1. Orbital diagrams for atomic nitrogen (N), shown on left and right sides of 
the figure and separated by dashed vertical lines. The resulting molecular orbital 
diagram for N2 is shown in the center. The filled σg and πu bonding orbitals, shown 
above the dashed horizontal line, are responsible for the triple bond of N2. 
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Table 1. Conservation of spin multiplicity from a fermionic-bosonic orbital perspective. 

Reactant A Reactant B Reaction Complex 

Singlet bosonic Singlet bosonic Singlet bosonic 

Singlet bosonic Doublet fermionic Doublet fermionic 

Singlet bosonic Triplet bifermionic Triplet bifermionic 

Singlet bosonic Quartet trifermionic Quartet trifermionic 

Doublet fermionic Doublet fermionic Singlet bosonic 

Doublet fermionic Triplet bifermionic Doublet fermionic 

Doublet fermionic Quartet trifermionic Triplet bifermionic 

Triplet bifermionic Triplet bifermionic Singlet bosonic 

Triplet bifermionic Quartet trifermionic Doublet fermionic 

Quartet trifermionic Quartet trifermionic Singlet bosonic 

3. Spin Conservation 
3.1. Transmission Coefficient of Absolute Reaction Rate Theory 

Absolute reaction rate theory states that the rate of a chemical reaction requires 
that reactants first combine to form an activated complex, 

( ) *k kT h Kκ=  

where k is the rate, κ is the transmission coefficient, kT/h has the dimensions of 
frequency and K* is the equilibrium constant for the activated complex. The 
transmission coefficient, κ, for typical reactions approximates unity, i.e., each ac-
tivated complex yields product, but not every activated complex at the poten-
tial-energy barrier will cross over to product [8]. The value of κ decreases by 
several orders of magnitude in reactions involving change in spin state [8]. 

3.2. Wigner Spin Conservation from a Fermionic-Bosonic  
Perspective 

The Wigner spin conservation rules state that a reacting system resists any 
change in spin angular momentum, i.e., multiplicity [9] [10]. The total spin 
number, S, of an atom or molecule defines its multiplicity; i.e., |2S| + 1 = multip-
licity. When S = 0, the multiplicity is singlet, when S = 1/2, the multiplicity is 
doublet, when S = 1/2 + 1/2, the multiplicity is triplet, et cetera. Reactions in-
volving change in multiplicity have transmission coefficient, κ, values of less 
than 10−4. The spin states or multiplicities of the reactants determine the spin 
state or multiplicity of the activated complex, and are conserved in the spin 
states or multiplicities of the resulting product or products. For example, if the 
impossibility of orbital overlap is ignored and reaction is assumed to involve a 
bosonic singlet multiplicity molecule and a bifermionic triplet multiplicity mo-
lecule, then the activated complex must have a bifermionic triplet multiplicity, 
and bifermionic triplet multiplicity must be conserved in the product or prod-
ucts. These and other possibilities are described in Table 1.  
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With regard to multiplicity, singlet-singlet reactions are allowed and yield 
singlet products. From a frontier orbital perspective, bosonic HOMO-LUMO 
interactions are allowed and yield bosonic products. For example, reaction of 
singlet multiplicity hypochlorite (OCl−) with singlet multiplicity hydrogen pe-
roxide (H2O2) yields singlet multiplicity water (H2O), singlet multiplicity chlo-
ride (Cl−) and electronically excited singlet multiplicity molecular oxygen ( 1

2O∗ ). 
Singlet multiplicity reactants produce singlet multiplicity products. Spin con-
servation requires 1

2O∗ , not triplet multiplicity 3O2, as the product of the 
H2O2-OCl− reaction. Production of 1

2O∗  is required for spin conservation, but 
violates Hund’s maximum multiplicity rule [11], and as such, 1

2O∗  is electroni-
cally excited with a lifetime of about a microsecond [12]. As illustrated in Figure 
2, 1

2O∗  relaxes to its triplet ground state by emitting a near infrared photon 
[13]. 

Bosonic frontier orbital interactions make up the vast majority of organic and 
biochemical reaction. Reactions involving a singlet with either a doublet, triplet 
or quartet multiplicity molecule must conserve spin. If bosonic-fermionic reac-
tion occurs, the reaction product will retain the multiplicity of the fermionic 
reactant. Relative to frontier orbital considerations, such reactions require highly 
improbable LUMO-SOMO interaction. However, reactions involving doub-
let-doublet, triplet-triplet and quartet-quartet multiplicity reactants all yield 
singlet multiplicity products. Based on frontier orbital considerations, these fer-
mion-fermion, bifermion-bifermion, and trifermion-trifermion reactions in-
volve SOMO-SOMO interactions and produce bosonic products. The unfavou-
rability of singlet-triplet, i.e., bosonic-bifermionic, reaction is well illustrated by 
considering the reaction of ground state triplet multiplicity (S = 1/2 + 1/2 or 
−1/2 + −1/2) molecular oxygen (3O2) with a singlet multiplicity (S = 0) substrate 
molecule.  

As illustrated in Figure 2, 3O2 has two singly occupied frontier orbitals. As de-
fined by Hund’s maximum multiplicity rule, the lowest energy or ground state of 
3O2 is achieved when both of its pi antibonding ( gπ ∗ ) frontier orbitals have one 
electron, i.e., each gπ ∗  orbital has the same ms, i.e., 1/2 + 1/2 or −1/2 + −1/2 
[11]. Since the two frontier orbitals of 3O2 are both fermionic, 3O2 is described as 
bifermionic. Oxygen is the second most electronegative element, and as such, 
organic oxygenation reactions are highly exergonic, but frontier orbital interac-
tion are highly improbable, and combustion is not spontaneous. 

Radicals react with radicals. Frontier orbital interactions involving SOMO-SOMO 
reactants are easily conceived. The products of such doublet-doublet reactions 
are singlet. In SOMO-SOMO reaction, the fermionic electrons of each SOMO 
couple to produce a bosonic product. For example, frontier orbital interaction of 
the fermionic gπ ∗  SOMO of doublet multiplicity hydroperoxyl radical (2HO2) 
with the fermionic gπ ∗  SOMO orbital of doublet multiplicity superoxide radical 
( 2

2O− ) yields singlet multiplicity hydrogen peroxide (H2O2) and electronically 
excited singlet multiplicity molecular oxygen ( 1

2O∗ ) [14]. 
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Figure 2. The frontier orbitals of electronically excited 1
2O∗  violate 

Hund’s maximum multiplicity rule (left) and has a microsecond life time 
relaxing to ground state 3O2 (right) by near-infrared photon (1270 nm) 
emission. 

 
The role of 3O2 in quenching the phosphorescence from relaxation of elec-

tronically excited triplet multiplicity dye (3dye*) is explained by triplet-triplet 
annihilation yielding bosonic products. This same triplet-triplet quenching is 
responsible for photodynamic action. Reaction of the electronically excited trip-
let dye (3dye*) with 3O2 returns the dye to its ground state (1dye) and photody-
namically generates 1

2O∗  [15] [16]. 

4. Combustion 

Combustion, defined as an act or instance of burning, requires fuel and molecu-
lar oxygen, and produces heat and light. The organic molecules that serve as fuel 
are of singlet multiplicity and present bosonic frontier orbitals that are unreac-
tive with the bifermionic frontier orbitals of 3O2. Consistent with absolute reac-
tion rate theory and the spin conservation rules, such reactions are not sponta-
neous. 

4.1. Fermionic Combustion 

To initiate burning, a sufficient amount of energy, e.g., a flame, must be applied 
to cause homolytic bond cleavage of the singlet multiplicity fuel molecule. Each 
homolytic cleavage yields two doublet multiplicity SOMO products. These fer-
mionic products can directly react with the bifermionic frontier orbitals of 3O2. 
Radicals react with radicals. As described in Table 1, reaction of a doublet mul-
tiplicity (i.e., S = 1/2) radical with triplet multiplicity (i.e., S = −1/2 + −1/2) mo-
lecular oxygen yields doublet multiplicity (S = −1/2) product, heat and light. In 
turn, the doublet multiplicity (S = −1/2) product can now react with another 
triplet multiplicity (S = 1/2 + 1/2) 3O2, et cetera, resulting in reaction propaga-
tion, i.e., burning. Note that fermionic-fermionic reaction yields bosonic prod-
uct, and that fermionic-multifermionic reaction yields the least fermionic prod-
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uct. 

4.2. Bosonic Combustion 

The neutrophil leukocyte, a phagocytic white blood cell, is tasked with defending 
the host animal against a vast variety of pathogenic microorganisms [17]. Fifty 
years ago, I pondered the possibility that phagocytic leukocytes kill microbes by 
changing the multiplicity of molecular oxygen from triplet to singlet [18]. From 
a frontier orbital perspective, changing bifermionic 3O2 to bosonic 1

2O∗  opens 
the possibilities for bosonic electrophilic reaction with the bosonic molecular 
composition of microbes, i.e., bosonic combustion. Conventional fermionic 
combustions involve highly exergonic oxygenation reactions that generate elec-
tronically excited carbonyls that relax by emitting photons in the visible spec-
trum. The bosonic combustions of neutrophil leukocyte microbicidal action also 
involve highly exergonic oxygenations that generate electronically excited car-
bonyls with relaxation by photon emission. Light is emitted when neutrophil 
leukocytes phagocytose and kill opsonized microbes, and the photon emission or 
chemiluminescence is proportional to 3O2 consumption and to glucose metabol-
ism via the hexose monophosphate metabolic (HMP) shunt. As described in the 
section below, neutrophil leukocytes employ two mechanisms for the conversion 
of bifermionic 3O2 to bosonic 1

2O∗ . The first involves fermionic-fermionic anni-
hilation, and the second involves myeloperoxidase-mediated bosonic-bosonic 
reaction. 

4.3. Neutrophil Combustive Microbicidal Metabolism 

Neutrophil reduced nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase controls HMP metabolism by accepting two reducing equivalents 
from NADPH thus liberating the oxidized NADP+ that is required for glu-
cose-6-phosphate (G-6-P) dehydrogenase metabolism of glucose. Biochemical 
dehydrogenations involve hydride (H−) transfer. The bosonic character of such 
redox exchange will be considered subsequently. The riboflavin prosthetic group 
of NADPH oxidase facilitates decoupling of the bosonic electron pair. Riboflavin 
mediated separation allows fermionic expression of the separated electrons and 
results in reactive electron capture by bifermionic 3O2 [14]. The product of such 
univalent reduction is the doublet multiplicity hydroperoxyl radical (2HO2). 
2HO2 is an acid with a pKa of 4.8 that dissociates yielding a proton (H+) and 
doublet multiplicity superoxide radical ( 2

2O− ). The reaction of fermionic 2HO2 
and fermionic 2

2O−  is a radical-radical annihilation yielding bosonic singlet 
multiplicity hydrogen peroxide (1H2O2) and bosonic electronically excited singlet 
multiplicity molecular oxygen ( 1

2O∗ ) [19]. As described in Table 1, reactions of 
fermions yield bosonic products. 

Neutrophils contain abundant myeloperoxidase (MPO). The haloperoxidase 
action of MPO provides an additional mechanism for generation of bosonic 
1

2O∗ . MPO consumes the H2O2 and acid (H+) products of NADPH oxidase ac-
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tivity to oxidize chloride (Cl−) to hypochlorous acid (HOCl) or its conjugate base 
hypochlorite (OCl−). All of the reactants and products of MPO haloperox-
idase action are singlet multiplicity and present bosonic frontier orbitals. The 
HOCl/OCl− produced can further react non-enzymatically with additional H2O2 
producing Cl− and 1

2O∗  [20]. MPO can catalyze classical peroxidase activity 
involving radials, but such activity is distinct from the acid haloperoxidase ac-
tion involved in microbicidal action [17].  

Generation of 1
2O∗  violates Hund’s maximum multiplicity rule; i.e., the elec-

tronic configuration with highest multiplicity has the lowest energy. The greater 
the number of wave functions possible for a system, the lower the energy. Higher 
multiplicity states produce greater nuclear-electron attraction and are of lower 
energy [11]. As such, 1

2O∗  is metastable with a lifetime of about a microsecond. 
This lifetime restricts its potent electrophilic reactivity to within a radius of 
about 0.2 microns (µm) [12]. Upon phagocytosis, the microbe becomes the locus 
of neutrophil microbe killing. Generation of the bosonic reactant 1

2O∗  within 
the phagolysosome space of the neutrophil directly focuses its potent electro-
philic reactivity to the target microbe and minimizes collateral damage. Purified 
MPO selectively binds all gram-negative bacteria tested and can bind and inac-
tivate endotoxin even in the absence of haloperoxidase function [21]. Selective 
MPO binding to microbes correlates with selective MPO-mediated microbicidal 
action. Bosonic combustion is limited by the lifetime of 1

2O∗ . Such reactive re-
strictions have the advantage of selectively focusing and confining combustive 
action to the microbe while avoiding bystander injury to host cells [22].  

5. Bosonic Transfer of Reducing Equivalents 

Cytoplasmic redox transfers, i.e., pre-cytochrome electron transfers, typically 
involve the movement of two reducing equivalents from one singlet multiplicity 
molecule to another, and is described as H− transfer. Such hydride transfer in-
volves the movement of a proton plus an orbital couple of antiparallel electrons. 
The orbital couple has a s = 0, and as such, transfer is singlet multiplicity and 
bosonic.  

Biological systems are exposed to an atmosphere with abundant O2. The bo-
sonic character of biochemical systems provides protection against direct reac-
tion with bifermionic O2. As previously considered, any biologic transfer in-
volving a single fermionic electron would open the possibility for direct fermio-
nic reaction with O2. The resulting fermionic-bifermionic reaction would pro-
duce a fermionic product and the possibility for further fermionic-bifermionic 
propagation. 

Redox transfer of a bosonic orbital electron couple might offer additional ad-
vantage. The bosonic nature of the alpha particle facilitates quantum tunneling 
from the nucleus [23]. The bosonic nature of a Cooper pair of electrons facili-
tates superconductivity [24]. Alpha particle radiation and Cooper pairing in su-
perconductivity are very different from each other, and both phenomena are 
very different from biochemical redox electron transfer. However, the commo-

https://doi.org/10.4236/jmp.2021.128070


R. C. Allen 
 

 

DOI: 10.4236/jmp.2021.128070 1170 Journal of Modern Physics 
 

nality of bosonic pairing in quantum tunneling raises suppositions with regard 
to a possible role in facilitating biological redox transfer.  

6. Summary and Conclusion 

Reaction chemistry involves frontier orbital interactions. An orbital is fermionic 
if occupied by a single electron, and bosonic if occupied by an electron pair. 
With regard to orbital reactivity, bosonic orbitals react with bosonic orbitals ge-
nerating bosonic products, fermionic orbitals react with fermionic orbitals ge-
nerating bosonic products, and fermionic orbitals react with bifermionic mole-
cules generating less fermionic products. Fermionic-bosonic reactions are im-
probable, but the products of any such reaction must conserve the fermionic 
character of the reaction complex. As a general observation, all reactions favor 
bosonic products. Burning or fermionic combustion is initiated by homolytic 
bond cleavage producing fermionic products that react with bifermionic triplet 
O2. The bosonic combustion of neutrophil leukocytes is initiated by changing 
the multiplicity of O2 from triplet to singlet allowing bosonic electrophilic dio-
xygenation. With the exception of cytochrome chain transfer, intermolecular 
redox reactions involve transfer of an orbital electron pair and are bosonic. Such 
transfer obviates the possibility for fermionic reaction with bifermionic O2 and 
additional fermionic propagation. As a supposition, quantum tunneling might 
facilitate intermolecular redox transfer of a bosonic orbital electron couple.  
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Abstract 
This study proposes, from the theoretical point of view, the calculation of the 
gravitational constant G, made starting from the charge and the electron 
mass, taking the constant of the Fine Structure into examination. In the emp-
ty space, couples of virtual positron electrons dematerialize, giving virtual 
photon origin. They, at their time, will become electrons, positrons and so on. 
These transformations are made keeping the board of their “amount of 
movement” and when they meet the matter, these couples come, reissued de-
pending on the field and on the matter mass. The matter is the change of the 
trend of their gyromagnetic movement relationship which puts under pres-
sure. In presence of two masses, this gyromagnetic movement relationship is 
already partially oriented towards the other mass. From here a force is estab-
lished between these two masses that give as calculated constant equal to 
6.678532. This value of G, obtained leaving from the charge and the electron 
mass, is very near the experimental values estimated in these last decades re-
gard the value of the gravitational constant of G. 
 

Keywords 
Electron, Positron, Gravitational Constant, String Theory, Theory of  
Everything, Fine Structure Constant 

 

1. Introduction 

This study stems from a reflection on the quantum vacuum. The vacuum field, 
according to the quantum concept, can have no null energy states. The question 
is to answer, at a theoretical level, what is the mechanism and what are the poss-
ible causes that generate energy. The real nature of the physical vacuum is a de-
bated topic and is the basis of modern cosmology and represents a tool to un-
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derstand the foundations of physics. In this study, it is believed that the energy 
produced in the vacuum field comes from pairs of electrons and positrons. The 
electron-positron dipoles, in addition to interacting with each other producing 
virtual photons, affect neighboring dipoles by transferring to them “amount of 
motion”. The contribution of this study is that, when electron and positron pairs 
meet particles of matter, they exert a pressure on it transferring energy that, hy-
pothetically, is manifested as electromagnetic fluctuation. Keeping a holistic 
view of the physical phenomena discussed in this study and combining elec-
tron-positron electromagnetic interactions with Newtonian dynamics, it has 
come to the calculation of the gravitational constant G, resulted close to modern 
values calculated in the laboratory. 

The Law of Universal Gravitation represents a milestone of scientific know-
ledge to the main thread of this study is represented by the calculation of the 
Gravitational Constant G, starting from the interaction between electron and 
positron. The calculation of G was carried out on an atomic scale, instead of 
considering the large masses predicted by Newton’s equation. We wonder if this 
constant can represent a common denominator between the behavior of par-
ticles, the structure of matter and the dynamics of celestial masses and if, at 
theoretical level, the constant G can be considered a “mediator” between General 
Relativity, the forces of the Standard Model of particles and String Theory. The 
Law of Universal Gravitation represents a milestone of scientific knowledge to 
interpret celestial mechanics and a cornerstone of predictive science. In New-
ton’s formulation and in the field equation of general relativity appears the pro-
portionality coefficient G, independent of the physical location and masses used 
to determine it experimentally. In the last two and a half centuries, there have 
been experiments for the approximate calculation of G, from the eighteenth 
century to the present with increasingly refined methods and instruments [1] [2]. 
Recently, a team of quantum physicists from the University of Vienna and the 
Austrian Academy of Sciences realized for the first time in the laboratory a mi-
niature version of the Cavendish experiment using millimeter-order masses. A 
result that opens new perspectives for the possible connection between gravita-
tional and quantum physics [3] [4] [5] [6]. In this study, contrary to the tech-
niques used in the past, such as the torsion balance or based on the principle of 
the pendulum, is proposed the calculation of the constant of gravitation G start-
ing from the charge and the electron mass. The calculation, expressed in theo-
retical form, was conducted by the Belgian physicist Fernand Léon Van Rutten, 
and presented posthumously, having disappeared in 2016. This is a written me-
moir that Belgian Physicist left to his daughter as a scientific testament. The cal-
culation of the constant of G, in the Van Rutten point of view, originates from 
the “bricks” of the matter rather than start her big masses of the celestial bodies, 
according to the Newtonian concept. A universal constant being of G, his esti-
mated value, leaving from the electron positron interaction with respect to the 
big masses, therefore represents a point of connection among the concept of 
“micro” and “macro” cosmos, and nominates himself as unifying element be-
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tween the fine matter and the gravity. The costing of gravitational or constant 
universal gravitation strength of G, is in fact the same one for all the bodies 
equipped with mass, be they as big as the stars or as little as sand grains. And, in 
the universe everything reduces himself to particles. Studying the world at 
smaller scales, on the order of the Angstrom, provides an opportunity to under-
stand what we observe at larger scales. Of course, for each of these scales the be-
havior of matter is different.  

The idea of a “hierarchy of universes” is not new. It, in fact, was already alive 
in Democritus of Abdera, understood as “scale factors”, while new concepts were 
taken up in 1761 by J.H. Lambert and gradually developed until today, through 
H. Alfvén, O. Klein, D.D. Ivanenko and others [7]. Over the centuries, the need 
of physicists to find a formula or mechanism that brings together the four forces 
that interact on matter, gravity, electromagnetism, strong interaction and weak 
interaction, has been a common thread and an ambitious goal in the world of 
Physics. Recently, the study of gravity has been extended to include antimatter 
[8]. A holistic approach that associates physical structures, apparently different 
as gravity and electromagnetism, had been studied in the beginning by Michael 
Faraday (1849-1950) and then resumed, after about half a century by Weyl (1918) 
[9] and from the ‘20s by Albert Einstein with the “Unified Field Theory”. But, 
after the innovations of the late 1800s and early 1900s, the search for a universal 
theory that encompassed the four forces that interact on matter became an in-
sistent goal in the scientific world and among Physicists. The goal was, and is, to 
conceive a new theory, the “Theory of Everything”, initially coined by J. Ellis 
(1986) [10] and pursued by Stephen Hawking [11]. Among the best-known em-
pirical observations, the relationship between the gravitational universe and the 
universe of elementary particles stands out, the result of which concurs to hypo-
thesize the existence of a similarity in a geometric and physical sense between 
macro universes and strong micro universes [12]. The adjective “strong” must be 
however contextualized in the scale physics, where the strong nuclear force that 
helps to keep together the matter is far superior to the other three fundamental 
forces: gravity, electromagnetism and weak nuclear forces. The calculation of G, 
leaving from the electron-positron analysis proposed in this study, reaches the 
surprising result to combine the electromagnetism with the gravity, Fine Struc-
ture with the String Theory, through a deterministic physical principle and not a 
mathematical formulation with the limit already highlighted by the Gödel’s 
Theorem of Incompleteness [13]. A question, that of unifying the fundamental 
interactions of physics, which does not cease to arouse interest in research, also 
discussed in recent publications [14] [15] [16]. 

2. Constants and Variables 

Etymologically and conceptually, the term “constant” ensures that some quanti-
ties remain so over time. However, in spite of their current use, the origin of 
“constants” is still an open question, not only in the world of Physics. Their im-
portance cannot certainly be neglected, since different values of physical con-
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stants would radically change the knowledge of physical phenomena known up 
to now. In this study, the value of the Constant G has been deduced using other 
physical constants, such as the speed of light, mass, the fine structure constant 
[17] [18], Plank’s constant, the inverse of the fine structure constant multiplied 
by 0.75, and fundamental quantities such as the electron charge. Unlike the con-
stants used for the calculation of this work, as known validated by observation 
and experiment, the Gravitational Constant G derived from the interaction be-
tween electron-positron, is instead theoretical in nature. Its value, however, was 
found to be very close to both G of Newton’s gravity, and to that recently calcu-
lated in the laboratories.  

The variables in the calculation, however, are represented by the gyromagnetic 
orientation of the dipole electron-positron, which exerts pressure on matter 
when it intercepts it, and the distance electron-positron, which in this case must 
be much greater than the wavelength. From the outcome of this study, the value 
of the constant G can be considered for the different scales of mass magnitude, 
from the subatomic to the cosmic universe and vice versa and, in perspective, 
contribute to a better definition of the value of the constant G in the Interna-
tional System. 

3. Method 

The Method used to calculate the G constant is based on the concept of the 
“circumstantial paradigm” [19] associated with the deductive method, i.e., guid-
ing the logical procedure from hypothesis to conclusion. In this case, the “clue” 
coincides with the hypothesis that there exists a particle responsible for gravity, 
produced due to the interaction between electron-positron and their formation 
and destruction processes over time. 

The procedure to realize the calculation of the constant G involves the use of 
other physical constants and is divided into two phases. The first considers an 
electromagnetic interaction in the electron-positron pairs; the second phase 
concatenates, through the gyromagnetic ratio of dipole, electromagnetic interac-
tions with Newtonian dynamics, from which it is possible to obtain the value of 
gravitational constant G. 

4. Discussion 

In this study, we will try to show that the gravitational constant of G could be the 
result of a relationship between other physics constants. To explain the Univer-
sal Attraction Law, it was often assumed that a particle called graviton exists [20] 
[21] [22] [23]. In this study, we will show that a particle responsible for the grav-
ity exists indeed. The space is not completely empty, it contains neutrinos, elec-
tromagnetic waves and fields, like the electromagnetic field and the gravitational 
field. The importing thing more, according to the cosmologists, is that the space 
contains most of the energy of the cosmos [24]. In this study we will show, as he 
says A.V. Rykov [25], that this energy could be formed by virtual couples of the 

https://doi.org/10.4236/jmp.2021.128071


V. Straser 
 

 

DOI: 10.4236/jmp.2021.128071 1176 Journal of Modern Physics 
 

electron and positron that arise and, they disappear, forming photons imme-
diately [26] [27] [28]. These couples [29] could be the Strings of the last ap-
proaches to physics [30] [31] [32]. In fact, Heisemberg’s uncertainty principle 
states that the uncertainty of energy of a particle multiplied by the uncertainty of 
its lifetime must be greater or equal to the Plank constant divided by 4π, because 
these particles to be measurable. 
- Below this value, these particles are imperceptible and so-called virtual. 
- The encounter of virtual particles is not new. 

Already the Lamb effect [33] can only be explained by a process in which a 
nucleon issues a virtual meson which interacts electromagnetically with the 
atomic electron and is subsequently reabsorbed by the nucleus [34]. 

These mesons are virtual electron-positron couples or photons to high energy.  
We will afterwards do the following hypotheses: 
1) The space is height of these virtual couples or dipoles. 
2) These virtual electron and positron couples do not disappear, but are anni-

hilated giving virtual photon which, at their time, rematerialize in electrons and 
positrons origin and so away, giving the appearance of a movement of the elec-
tron and positron couple which travels in the space. 

3) During their short life duration, these dipoles affect the near dipoles, 
transmitting them part of their “Momentum”. These interactions between di-
poles determine, hypothetically, electromagnetic fluctuations in the empty space. 

4) But above all, when they meet a matter particle, are sent to following the 
particle field back and therefore exercise a pressure on the matter itself. 

We will say that these pairs form and destroy sinusoidally over time. There-
fore, the segment which joins these two charges is crossed by a current I and in 
complex notation, will have in Equation (1): 

e I jω=                            (1) 

e, it is the electron charge and 2ω ν= π , dove ν it is the oscillation frequency. 
In a distant r point from the dipole, the delayed potential is express as in Equ-

ation (2): 

4

j r
cµIA e

r

ω
−

π
Γ

=                          (2) 

(µ, is the magnetic permeability of the medium, Γ the distance between the 
electron and the positron, c the light speed). 

This takes, cross the classical reasoning [35], to the average flow of the vector 
of Poynting in direction of the dipole. If we integrate between 0 and π we get in 
Equation (3): 

( )
2 2 2 2

2
2

sin d
4 3

8 sin d

I
I c

c

θ

λε λ θ

Ω Γ = π Ω 

Γ


∫
∫

                (3) 

(Ω is the solid angle, d 2 sin dθ θ= πΩ , and λ is the wavelength of the oscilla-
tion, ε = 1/4π). 

This relation is only valid if the distance is large, that is for r λ . 

https://doi.org/10.4236/jmp.2021.128071


V. Straser 
 

 

DOI: 10.4236/jmp.2021.128071 1177 Journal of Modern Physics 
 

If we substitute I2 for its value j2ω2e2 in Equation (4), we get the energy ra-
diated during the lifetime of the dipole, that is, a time equal to 1/ν: 

2 2
24 4

3
2E he e

c
ν ν

λ
νΓ π = π =

 
                   (4) 

Because, after its short life, the dipole transforms into two photons hν so we 
get in Equation (5):  

2

2

3
8

hc
e

α
λ
Γ = =  π 

                         (5) 

α is a constant, the inverse of the constant of Fine Structure, multiplied by 
0.75. Max Born insists on the importance of this constant: the only one which 
can be formed from e, while c and h indicate a deeper relation between electro-
dynamics and quantum theory [36]. 

Now we find out what the gyromagnetic ratio g0 of the dipole will be. Since 
the current in the dipole is I = ejω, the magnetic moment will be eωΓ2 and λ be-
ing the wavelength of the oscillation, its angular momentum will be mωλ2 and 
the gyromagnetic ratio becomes ( )0 0g e m α γ α= ± = ± . 

The orientation of these γ0 is determined by the direction from which they 
come, and we will say that, whatever their sign, these γ0 exert pressure on the 
particles of matter they encounter. 

If we take a reference axis, with respect to this axis, each of these electrified 
particles arrives to an angle ϑ, the projection of their gyromagnetic on this axis 
relationships will be: γαcosϑ, and the variations on this axis will be in Equation 
(6): 

d sin dγ γα ϑ ϑ=                         (6) 

If we integrate between γ0 and γ we get: γ in Equation (7) 

( )0log cos constantγ γ α ϑ= − +                   (7) 

If we place the constant = 0, γ becomes in Equation (8): 
cos

0e
α ϑγ γ −=                          (8) 

We take now in Equation (9) a particle of mass M and we will say that the 
number of electrons positrons received with a solid angle dΩ at any time is pro-
portional to: 

cos deA α ϑ− Ω                          (9) 

A is determined by the total number of electrons positrons present. 
γ in the solid angle it will be in Equation (10): 

co
0

s dA e α ϑγ − Ω                        (10) 

If we integrate the ratio of these two relations we obtain γ = γ0. 
So, in relation to a given axis, on a half-face because of γ0 dipole coming from 

all directions, seen from this face, this mass M will be subjected to a pressure 
that tries to push it back and its force applied will be described in Equation (11): 

1 0f M Eγ=                         (11) 
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E, has the dimensions of an electric field. This field may be due to the virtual 
electrons and positrons surrounding the mass M, and we will not make any oth-
er assumptions about this field. 

Following the reaction action principle, for two particles at a distance r, on the 
invisible faces of the other particles, the force that tends to bring them together 
will be in Equation (12):  

( )2 2
2 1 2 0f M M r γ=                       (12) 

On the other faces, that is, those of the other mass, γ0 of the dipole coming 
from this other mass undergoes an average orientation perpendicular to the sur-
face of this other mass.  

Their orientation is no longer anisotropic and because, in relation to their size, 
these masses are very distant from each other. In first approximation, γ0 is af-
fected by the other particle, it can simply be multiplied by cosϑ. 

So, we’ll have for the force that tries to repel these particles, described in Equ-
ation (13):  

( )
cos

2 2
3 2 co1 0 s

cos d

d
f M M r

e

e

α ϑ

α ϑ
γ

θ −

−

⋅ Ω

Ω
= ∫

∫
               (13) 

If we integrate f3 between 0 and π/2, in Equation (14) we obtain for average γ2 
of the force that moves away the two particles:  

2
2 0

11 1

1

e

e

α

α

α
αγ γ

−

−

 − ⋅ + 
 =
−

                    (14) 

in Equation (15) as 1e α−
  we can neglect it to the denominator and doing f2 

– f3, we get the force both between the two masses, and for the gravitational con-
stant of G: 

2 2 11 1 1G e m e αα
α

− −=


+ + 
 


 
 

                 (15) 

If we take e2/m2 = 2.7801987 E32 and α = 102.7770278 we obtain the gravita-
tional constant of G = 6.678532 × 10−11 m3·kg−1·s−2. 

This gravitational constant of G is very close value the experimental values 
obtained in these last decades. In a conference about the value of G in the 1998, 
the average not weighed up on 10 results is [37]: 6.6772 × 10−11 m3·kg−1·s−2. 

Jan Gundlach and Stephen Merkowitz [38] found in 2000: 

( ) 11 3 1 26.674215 0.000092 10 m kg s− − −± × ⋅ ⋅  

In Zurich the professor Schlamminger [39] found: 

( ) 11 3 1 26.67404 0.00021 10 m kg sG − − −= ± × ⋅ ⋅  

More recently, Rosi and colleagues found the value [40]: 
( ) 11 3 1 26.67191 99 10 m kg sG − − −= × ⋅ ⋅  [Relative uncert.: 150 ppm] 

While Mohr, Newell, and Taylor, proposed the value of G equal to [41]: 
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CODATA (2014) ( ) 11 3 1 26.67408 31 10 m kg sG − − −= × ⋅ ⋅  [Relative std. uncert.: 
4.7 × 10−5]. 

5. Conclusions 

We conclude that the calculation of G is revealed to be compatible with other 
experimental measures of the gravitational constant of G, obtained by other au-
thors with theoretical and experimental methods. 

We advanced various hypotheses with this work: 
• The Strings are virtual electrons positrons dipoles. 
• These dipoles pressing the matter. 
• The validity to add the three quarters of the constant of the Fine Structure in 

the projection calculation of ƴ on axis. 
The hypothesis formulated in this study has our permission to make a first 

fine approach to calculate the constant of gravitation G to leave only from the 
charge and the mass of the electron and from the Fine Structure constant. The 
calculation of G, made leaving from the mass and from the electron charge, 
avoids making instrumental mistakes for his determination. This study clearly 
shows the relationship between gravity and the electromagnetism and the Fine 
Structure, besides to offer, at hypothesis level, also a reflection on the antimatter 
and add the new pieces to the complex mosaic of “Theory of Everything”. 
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