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Abstract

The COVID-19 pandemic has experienced unprecedented limitations and
extraordinary scientific efforts to address this exceptional situation. Despite
blanket closures that have resulted in significant financial constraints and
losses around the world, research has an “unlimited” budget, with an excep-
tional concentration of medical and scientific care on a single topic: under-
standing the mechanisms for overcoming the disease. A large number of
clinical trials have been launched with different drugs that have been behind
different concepts and solutions. I would like to focus on the complexity as-
pect of COVID-19. Living systems are organized in a complex way, which
implies dynamic stochastic phenomena, and deterministic reductionism can
mislead research. When research focuses on individual molecules or path-
ways as products, it is distracted from the processes in which these products
operate, thus neglecting the complex interactions between regulations and
feedback controls. Common problems in product-oriented research are arti-
culated as “double-edged swords”, “Janus behavior”, “two-sided action”, with
a simple question: “friend or foe?” I focus on the missing complexity. I pro-
pose a bioelectromagnetic process that can maintain a complex approach, af-
fecting processes rather than products. This hypothetical proposal is not a
comprehensive solution. Complexity itself limits the overall effects of causing
“miracles”. Well-designed electromagnetic effects can support current efforts
and, in combination with intensively developed pharmaceuticals, bring us
closer to a pharmaceutical solution against COVID-19.

Keywords

SARS-Cov-2, Homeostasis, Feedback Mechanisms, Biophysical Selection,
Modulated-Electro-Hyperthermia, mEHT, Oncothermia,
Vaccination
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Graphical Abstract: Targeting the well-known and measured hallmarks of the infection
does not deliver a cure. The process which produces “hallmarks” has to be considered in
its dynamism. Instead of “products”, we have to concentrate on the “processes”.

1. Introduction

Human coronavirus-induced severe acute respiratory syndrome (SARS-CoV)
first appeared in March 2003 [1] [2]. The current global pandemic is a disease
called COVID-19. It is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). It is the third known coronavirus disease, probably zoonotic,
after SARS-CoV-1 and the Middle East respiratory syndrome (MERS). The new
coronavirus strain was recognized for the first time in Wuhan, China [3]. It is
classified as SARS-CoV-2, and the COVID-19 pandemic was declared on March
11 by the WHO [4]. The number of people affected by COVID-19 is exceptional.
The epidemiological investigation shows the validity of the networking com-
plexity (long-tail distribution). SARS-CoV-2 follows approximately the 80/20
law [5], which means that 80% of transmissions occur by 20% of infected indi-
viduals, “super-spreaders” contagious” [6]. The analyses of the network show
how “super-spreader” individuals spread the disease, locating “super-susceptible
sites” [7]. Viruses appear active for quite some time on various surfaces [8],
promoting the potency of pandemic danger [9]. The SARS-CoV-2 has much in
common with previous coronaviruses, but their essential characteristics clearly
differ [10]. The similarities allow us to use some experiences from previous vi-
ruses, such as slowing down the host’s inflammatory response or using some an-
tibodies or compounds that neutralize cytokines, but the essential challenge of
complete therapy remains unresolved today.

The tipping point of the COVID-19 pandemic was seriously underestimated
at the onset of the disease [11]. The SARS-CoV-V2 coronavirus behind the pan-
demic is a “great imitator” [12] showing symptoms of other simple diseases. You

may be asymptomatic, or you may have simple symptoms like a runny nose.
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However, it differs completely from an upper respiratory tract infection (URI).
Later, when the disease develops, you may have more severe symptoms such as
loss of smell, fatigue, vomiting, diarrhea, abdominal pain, muscle aches, and
even whole-body symptoms such as rashes or redness. Severe organic damage
(heart failure, kidney damage, liver damage, etc.) is also possible, which usually
occurs as a complication after the period of curative treatment. The long incuba-
tion period and mild symptoms of URI do not alert the patient, and many times
when the disease worsens, it is too late to avoid harm. It should be noted that the
relative “weakness” of SARS-Cov-2 compared to other viral infections that ma-
nifest its possible asymptomatic or misdiagnosed cold symptoms is also the
strength of this virus. Asymptomatic and unrecognized presymptomatic indi-
viduals promote viral shedding by improving community transmission. URIs’
symptoms do not alert the patient, and, many times, when the disease becomes
severe, it is too late to prevent transmission. Since the long, possibly asympto-
matic incubation period allows the virus to multiply in large numbers in the
subject, the virus will inadvertently spread to other people and accelerate the
pandemic.

Massive research has begun with the advent of the COVID-19 disease to un-
derstand the causal effects of SARS-CoV-2 and other related viruses [13]. The
goal of elucidating its infection mechanism is vivid, and, unfortunately, the solu-
tion is still waiting. 8764 publications (Aug. 10, 2020) had been published on the
subject [14], including the record start of several clinical trials [15], and 68 on-
going clinical trials (Sep. 27, 2020) are also attempting to develop appropriate
prevention and treatment [16]. Our knowledge is expanding day by day, and
probably when this article appears, we will have more vital information on the
subject than we have now. This is why I focus more on the general challenges,
mainly on the on-demand hypothesis of the paradigm shift of SARS research.

The central request for successful clinical therapy is an accurate understand-
ing of the infection mechanism, given its complexity, which is determined by the
interrelated physiological feedback mechanisms of human homeostatic regula-
tion. The human body has developed defense mechanisms to prevent the growth
and multiplication of invading pathogens. One of the oldest immune response
types is the termination of cells infected with bacterial pathogens by apoptosis
[17]. In plants, pathogens elicit a hypersensitivity response (HR), which induces
systemic acquired resistance (SAR) [18] as a form of apoptosis. In animals and
humans, dynamic homeostatic processes regulate the activation of apoptosis in a
highly controlled manner. In both animals and plants, apoptosis is promoted by
the production of anti-inflammatory molecules that are associated with tissue
development and homeostasis [19]. Despite the differences, both types of apop-
tosis are associated with the induction of similar morphological characteristics,
including membrane blowing, cytosolic fragmentation, nuclear condensation,
and fragmentation, as well as biochemical events such as degradation of genomic
DNA, proteolysis, and lipid redistribution of membrane [20] [21]. These

changes are mainly due to the activation of a family of cysteine proteases, cas-
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pases [22] [23]. Furthermore, infected host cells produce defensins, innate im-
mune host protection peptides [24], and induce anti-inflammatory cytokines
that play an important role in eliminating the invading pathogen.

Proper vaccination could be decisive in preventing infection and stopping the
pandemic, but it could also be an effective curative therapy tool for patients at
different stages of the disease. So far, many solutions have been proposed to
overcome the pandemic [25]. Many drugs are proposed for therapies [26], but
none have currently been shown to be successful. The use of various virus-specific
antibodies for active treatment is currently being tested more intensively [27].
Many companies compete in the race to develop antiviral drugs and vaccines to
defeat the pandemic [28]. Research on basic vaccines, such as nucleic acid-based
vaccines (RNA or DNA vaccine), recombinant protein vaccines, and viral vec-
tor-based vaccines, has not produced the results expected so far [14].

Inhibition of coronavirus cell penetration (e.g., Hydroxycoquine [29], Umife-
novir (arbidol) [30], etc.), inhibition of virus replication (e.g., Remdesivir [31]
[32], Ritonavir [33], Ribavirin [34], Oseltamivir (Tamiflu) [35], Favipiravir [30],
etc.), the synthesis of bacterial proteins, the use of antiparasitic agents (Ivermec-
tin), the rethinking of other drugs previously used against the virus (Lopinavir
[36], Ritonavir [37]), or plasma extracts from people who have recovered (im-
munoglobulins [38]), or monoclonal antibodies that enhance general immunity
(interferon) (for example, tocilizumab [39]), have achieved clinical phase. How-
ever, many of them fail to the point of expectations [14]. The method that had
superheated hopes, convalescent plasma from patients, who developed effective
antibodies and transferred it as passive antibody treatment to patients in the in-
tensive care unit (ICU), has not yet been tested [40], and the decision on the va-
lidity of the “hopes” could not be made [41]. The drug hydroxycoquine, despite
enormous political and financial support, was unable to produce satisfactory ef-
ficacy as the Cochrane meta-analysis had shown [42]. A new trend to develop
vaccines is related to interferons [43] [44]. The intranasal application of recom-
binant interferon (rINF-a-2b) effectively shortened the duration and reduced
the severity of coronavirus cold symptoms. A comprehensive summary of the
activities in vaccine development reviews the actualities [45].

Numerous drugs were tested in preclinical experiments with additional ex-
pectations, but most did not pass safety tests. One of the recent is that the Uni-
versity of Pittsburgh has published some fascinating information about its suc-
cess with one component (Ab8) of the antibody. It had been successfully tested
in animal experiments as a possible viral vaccine [46]. However, it has yet to
reach any human research, so in our opinion, the “news flash” is too early. Vec-
tor-based heterologous prime-boost immunization (Gam-COVID-Vac, [Sput-
nik-V]) is presently the first approved drug in the world [47]. The international
professional community has serious doubts about this approval for security rea-
sons [48]. Experts explain the irresponsible side of the decision to certify this
treatment [49]. Currently, we do not have enough knowledge about its effects,

but doubts are increasing. A promising drug (AZD1222) and its clinical trial de-
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veloped in collaboration with Astra-Zeneca and the University of Oxford [50].
However, the studies were stopped due to serious side effects [51] and then par-
tially reauthorized, but doubts remain [52].

The meta-analysis of the clinical trials of new, hopeful medications (Remdesi-
vir, Hydroxychloroquine, Lopinavir, and Interferon) had little or no effect on
hospitalized patients with COVID-19 [53]. The evaluation was based on overall
mortality, initiation of ventilation, and duration of hospital stay. No drug re-
duced the mortality (in unventilated patients or any other subgroup of entry
characteristics), initiation of ventilation, or hospitalization duration. 405 hospit-
als in 30 countries 11.266 adults were randomized, with 2750 allocated Remdesi-
vir, 954 Hydroxychloroquine, 1411 Lopinavir, 651 Interferon plus Lopinavir,
1412 only Interferon, and 4088 no study drugs were involved in the analysis.
Presently (middle of October 2020) two extensive clinical studies are on halt be-
cause of safety concerns [54] [55].

The currently known curative support (not vaccination) proven in clinical tri-
als are glucocorticosteroids and corticosteroids [28]. Dexamethasone (a corti-
costeroid) with respiratory support is the first drug that has been shown to im-
prove survival in COVID-19 disease [56]. These steroids are anti-inflammatory
immunosuppressants. Immunosuppression is required to suppress overstimu-
lated immune responses. This is very helpful against a cytokine storm that oc-
curs late in the disease. Despite the apparent contradiction to steroids’ success,
immune system support provides the best means when we consider the complex
integration of immune effects into the body’s regulatory system. The immune
effects could cause prevention to escalate the disease while blocking autoim-
mune reactions with steroids is needed in the severe stages when cytokine storm
appears to be the most challenging danger.

The task is to regulate the complex processes rather than control individual
molecular products. The disease’s complexity can only be managed through the
therapy’s appropriate complexity. With a unique molecular healing effect, a
“miracle drug”, we can expect total success, that hope is unrealistic. The possi-
bility of a paradigm shift lies in the tracking of physiological complexity, which
essentially seeks to restore control at the system level rather than control indi-
vidual threads. For this, the use of the immune system is more pronounced,

which can best be achieved by a combination of chemical and physical methods.

2. Challenges of the Complexity

Medical history strikes a balance between two comprehensive but competing sets
of methodologies: the inductive and deductive approaches. The inductive studies
the details of the system, like the organs, tissues, cells, organelles, etc. and builds
the whole body based on data from the parts and their function. The deductive
view focuses on the whole body as a unit, taking it into its environmental inte-
ractions and deduces from them the to the parts, to organs and their functions.
The two approaches build the diagnosis oppositely. The inductive is up from
parts to the whole, while the deductive is down, from whole to details. The in-
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ductive system builds the complete system as workers do; the walls are built with
bricks, while the engineer makes a general plan and breaks down deductively in
detail how to connect the bricks to a functional structure. Both processes require
professionals, and only together can they get the job done correctly. In medicine,
a very similar situation occurs when an organ specialist studies the organ to de-
termine a patient’s health. We are well aware that having perfect organs does not
mean that the system is organized healthily. Conversely, as the deductive practi-
tioner claims, having a perfectly organized system does not mean that all the
system’s organs are functioning properly. Both approaches and their cross-talks
and regulations are necessary to ensure healthy functioning, Figure 1.

Unfortunately, the current clinical paradigm is very unbalanced in terms of
inductive/deductive attitudes. Well-developed and educated medical knowledge
characterizes the organ and its functions in the description of professionally
well-trained organ specialists; but the whole system, the patient, does not receive
as much attention. The same can be observed in the field of therapies: the focus
is on the actual local disease drugs, paying less attention to the patient as a
whole.

Biological complexity is a well-proven fact based on physical and physiologi-
cal principles [57]. The stochastic approach is fundamental in biological dynam-
ism, including RNA polymerization and the most basic gene exchanges [58].
Darwin developed the uncertain (non-deterministic) idea through the theory of
evolution that introduces probability in biological species development. This
idea drives biological development everywhere. Contrary to the complexity of
human organisms, the paradigm of modern medical research loses it. The con-
cept of homeostasis is ignored, and reductionist attempts to become the central
dogma. This approach reduces the focus of medical actions to a set of the whole
in almost isolated parts, components smaller and simpler than network inter-

connections, and hoping that the sum of these parts can explain the complete

Figure 1. The complex thinking is the key to solve the problem of the present COVID-19
viral infection.
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system. This reductionism contradicts the concept of physiology and also science
in general.

The reductionist management and control of the disease are based on influen-
cing, inhibiting, or assisting molecular interactions, mainly leading to adequate
medication through the creation of the effects of known drugs or through phys-
ical intervention (such as ionizing radiation) to modify the chosen molecular
task. The forcing influence of certain molecules and signaling pathways strongly
determines the research’s objective; complex interactive network processes are
out of the majority of studies. However, living matter has a dynamic equilibrium
(homeostasis) that implies a balance of sensitively adjusted feedback controls,
showing the complexity of this highly organized material [59]. Complexity does
not mean complication, but the intertwining of processes, which at each step
seeks to have a dynamic and interconnected balance of suppressor-promoter
pairs of the regulatory process [60]. Predominantly negative feedback characte-
rizes these mechanisms. Homeostasis is often ignored and used as a static
framework for effects [61]. The challenge is the complexity of living organs, the
highly interconnected interactions between the parts. The demand to under-
stand and use dynamic equilibrium develops a new paradigm for investigating
the living matter, which requires a stochastic approach (probability of events
dependent on time) instead of conventional thinking that requires deterministic
changes [62]. The dynamic homeostatic equilibrium keeps the system in a stable
but constantly changing state. The first efforts to show this complexity were
made at the beginning of the last century by von Bertalanffy with general sys-
tems theory [63] emphasizing the openness of the living organisms, the deep

embedment in the environmental interactions, Figure 2. All living organisms

Figure 2. The viral infection is embedded in a complex network of interactions and spe-

cies.

DOI: 10.4236/0jbiphy.2021.111001

7 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111001

A. Szasz

are open systems, taking energy from the environment, and emitting waste
there. A living subject’s environment is a network of the non-living and living
objects that relate to the subject and connected with each other. The lives modify
the environment, and vice versa. The environment modifies the lives. The infec-
tions are excellent examples of this complex interconnection. The infected cells
are deeply embedded in the complex interactions, so the attempt to stop the in-
fection with a simple one-to-one deterministic approach is a mistake.

The research objective of drug development’s actions is to modify the imba-
lanced inhibitor-promoter system with agonist-antagonist molecules [64]. Tur-
ing’s pioneering work on complexity established the first exact discipline of the
life sciences, “decoded of the life, the mathematical biology [65]. The formula-
tion of morphogenesis was the first complex description, which could explain
the chemical basis of dynamical interactions, and successfully predicted the os-
cillating chemical reactions. Most of the pharma products miss Turing’s dynam-
ism, ignoring the fundamental complexity. Agonist ligands bind to a receptor,
while antagonist ligands prevent an agonist from binding to a receptor, trying to
balance a dynamic equilibrium. Most of the researches miss the dynamical feed-
back mechanisms which make the agonis/antagonist relations complex. One part
of the complex network appears in the adverse effects of the difference in agon-
ist-antagonist pair drugs.

In most cases, the enzyme inhibition could occur due to the modification of
homeostatic regulation [66]. The important principle is the feedback mechan-
ism, which controls the balance within a predetermined range around the refer-
ence value. It is usually well modeled with fuzzy logic, an approach to counting
“degrees of truth” rather than the usual “true or false” decisions [67]. This logic
governs homeostatic equilibria in all ranges of space and time in living systems.
This uncertain value is undoubtedly in a controlled reference interval, where
strongly interconnected negative feedback loops regulate the balance in the mi-
cro and macro ranges, forming the system’s dynamic stability. Due to this dy-
namism, the proposed paradigm shift towards the living system’s complexity is
not an easy turn.

The disease damages the network’s complexity in the human body, forming
local or systemic sub-units, which declines from the equilibrium of the entire
body. The homeostatic dynamic equilibrium is at least partially out of control.
Restoring healthy complex mechanisms requires a careful balance of actions.
The chosen treatment has to fit the complex challenges of the patient’s individu-
al conditions, the environmental loads, and the physiologic (homeostatic) con-
trol Figure 3. It is easy to make an agonist or antagonist change the faulty me-
chanisms, but it is not easy to keep the system’s balance. The unstable spa-
tio-temporal regulation and the variation of doses of infection destroy the ho-
meostatic balance of the healthy dynamics of the infected region. In this way, the
repairing process in a focused part of the system can induce adverse effects in
whole, challenging safety. Many experiments went through rigorous testing in
the preclinical phase, and some drugs made it possible for clinical trials. These
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Figure 3. The complex control of the living state has to be counted at the chosen treat-
ment.

trials require long periods of time because safety and side effects need to be mo-
nitored in a large patient cohort population and over a long follow-up period.
Furthermore, the dosing and practice protocol takes time to fix, considering that
“there is only one difference between the drug and the poison: the dose”.

Serious side effects can occur when drug rebalancing does not pay enough at-
tention to the relationships built into the balances, which are often dose-related.
The often serious side effects of chemotherapies depend in part on the imbalance
situation, and the risk/benefit ratio decides their applicability [68]. Pharmaco-
dynamics offers a mixed-effect agonist/antagonist (selective receptor modula-
tion) approach, acting as an agonist for some types of receptors or some tissues
and an antagonist for others. Correcting one side of the scale by a drastic regula-
tion, side effects appear as a whole because the unbalance appears in the unfo-
cused subsystem [69]. The need to move the paradigm towards the pharmaceut-
ical industry has also been explicitly articulated in Science Magazine [70].

A fundamental reason is why the transfer of research results cannot find a
faster path from laboratory to clinical applications. The problem is that the
present investigation paradigm is losing complexity due to our reductionism,
leading the investigation in the wrong direction. The question is addressed:
“where did the medicine go wrong” and in the response of B. West, the chief
scientist of the United States Army laboratory, formulates the necessary task:

“rediscover the path to complexity” [71].
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Our task is to assist the patient’s natural dynamic homeostasis, which again
underscores the importance of patient-oriented therapies. Patient orientation
involves using the patient’s homeostatic capacity, regulating the patient to drive
processes and establish general control. For this, it is not enough to administer
an agonist or antagonist; regulation of the processes is needed that balances the
dynamic agonist-antagonist balance in healthy control. The promoter-suppressor
circles characterize all the dynamical changes in the organism from the molecu-
lar to the systemic level. These controlling circles are deeply interconnected, and
a modification in one could affect multiple, directly not connected, but net-
worked regulations (Figure 4).

When the research identifies a defect of one of the particular regulating cir-
cles, a severe challenge occurs. Various solutions could be applied to correct the
damaged regulation in an isolated circle (Figure 5). Albeit the study and mod-
ification of one regulating ring in isolated conditions offer a relatively easy solu-
tion, the consequences in the complex network are unconditionally out of con-
trol. The lack of complexity in the research concepts in practice regularly shows
its negative side: it is easy to develop a drug that eradicates the virus. Unfortu-

nately, it is also often harmful to human lives. The reason is simple: when the

Figure 4. The regulation circle of promoter-suppressor balance guides all the processes in the body. These are intercon-

nected in a large complex network, and any individual change could cause an unexpected and unpredictable “avalanche”

of the changes.

Figure 5. The balancing corrections of one certain promoter/suppressor pair. (a) A healthy balance of a certain process (a part of

normal homeostasis); (b) A pair of promoter/suppressor is out-balanced; (c) Rebalancing of a certain process, but the extra

“weight” unbalances other regulatory pairs, where the promoters are also involved; (d) Resetting the reference value for rebalanc-
ing, but it disturbs all the regulatory links, connected to both, promoter and suppressor; (e) Rebalancing by catching the complex

process in a network, where the certain pair is involved.
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drug produces an imbalance in complex dynamic regulation, it could help in the
desired part (killing the viral infection), but the preference suppresses other
processes, and the system goes haywire.

Our research task starts being complex, and new ideas are necessary for going
over the obstacles. The focus changes. Re-establishing the regulation does not
work correctly when we make rebalancing by the kind of extra promoter (like in
Figure 5(c)), or by shifting the reference value of regulation (like in Figure
5(d)), due to the complex network reacts making the complete homeostatic
control effective. The physiological changes can cause unexpected consequences
and appear new symptoms, called adverse effects. The task is to correct the reg-
ulation by taking care of the complexity and re-establishing the regulation circle
smoothly with the natural homeostatic mechanisms (like in Figure 5(e)). Note
our aggressive actions based on the high scientific ego leads us to a dead-end.
We have to recognize the natural complexity and help these natural intercon-
nections to correct the regulatory fault. Ignoring this humble serving of natural
process forces the complex control to fight against the actual fault to repair and
against our aggressive “invasion”-like action.

We rarely recognize that the current dominant medical paradigm often ig-
nores patient homeostasis [61], even though it is the central theory of physiology
that unifies knowledge about the system’s self-regulatory processes. Hierarchical
process control enables a wide range of dynamic adaptation to changing internal
and external conditions. The center of the new paradigm is the homeostasis of
the organism. It is bad news that life’s dynamic processes are probabilistic, but
good news that this “chaos” is by no means the category that has no order [72].
The well-organized harmonic hierarchy of dynamic complexity manifests itself
well in the entire organism’s interconnectedness and follows a bioscaling [73],
which is universal for life [74].

The dominant universality shows multiple-scale behavior at all levels, from
the molecular to the organism [75], emphasizing the importance of intercon-
nected and interacting networks. The spatio-temporal self-similarity [76] creates
a self-organized network [77]. Learning this, a new science is emerging: the
“fractal physiology” [78] [79]. The fractal-based biological scale could serve as a
model of developmental dynamism by describing the main characteristics of the
clinical stages of viral disease [80]. Fractal analysis gives a structural idea of viral
rearrangement in infected tissue [81]. In a matter of time, dynamic interactions
have a long-range correlation time lag, composing harmony in the system [82].
External stimuli must conform to homeostatic harmony [83].

Instead of deterministic expectations of each molecular change, complex con-
siderations must focus on the dynamic process and not on the resulting or artifi-
cially introduced substances. Understanding the living dynamism of deeply in-
terconnected events implies a necessary paradigm shift in modern medicine,
moving from conventional deterministic methodology to complex approaches,
considering stochastic processes [84].

The missing homeostatic harmony disrupts the healthy state and leads to dis-
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ease. The homeostatic balance of promotion and inhibition is activated in paral-
lel “like twins” [85]. Deterministic “one-sided” actions alter homeostasis’s bal-
ance and reduce the chances of success by causing adverse reactions. Effective
therapy attempts to restore the lost dynamic balance in harmony with and
without imposing restrictions against natural personal abilities. This approach
allows individualized therapy, taking into account the specific characteristics of
the patient [85]. Proper diagnosis finds interrupted control of regulatory me-
chanisms and points to the damage of self-organizing mechanisms [62]. The
therapeutic intention launches modifications that help the natural repair me-
chanisms find the self-controlled and self-organized homeostatic state.

The medical task must be focused on controllable regulations, so thinking on
one side of the action could have serious consequences. Curing the patient as a
complete organism has to be in the center of medical efforts, and the local infec-
tion is only a part of it. The focus on the patient’s defective part should be
shifted to a patient-oriented approach (Figure 6). The patient is a complex sys-
tem, so medical therapy must concentrate on this dynamic equilibrium.

The missing complexity is well illustrated by the fluctuating evaluation of
AZD1222, [50] [51] [52]. We have to evaluate all sides of complex phenomena
before medical actions [86]. Similar challenges have appeared in other large, well

Figure 6. The main clinical focus has to be on the entire patient with their actual personal
conditions. The viral-oriented clinical approach must be shifted to the patient oriented
one, concentration of the developing processes more than on the developed products of
these.
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supported clinical trials [54] [55], too. The strictly deterministic clinical deci-
sions must be differentiated. Even though the symptoms are similar, the com-
plete unification of patients’ collected cohort does not result in success. The in-
dividual homeostatic regulation affects the actual principal treatment protocol,
and it could develop complications.

Here is a key issue. How can we ensure homeostatic equilibrium if we artifi-
cially interfere with a complex stochastic system’s functioning? How can we di-
rect natural processes towards the solution? The solution is probably to support
the existing complexity of the living matter, removing the complex balance dis-
order as harmoniously as possible. The treatment strategy has to be formed as
the army leads a war: Attacking the enemy’s weakest points and avoiding being
embroiled in a conflict with their most potent forces. In this medical “war”, we
could follow the winning strategy. The most powerful forces of the virus are in
its process of replication. Of course, it could be the goal of stopping replication
initiated within cells, as many of the drug developments (e.g. Lopinavir, GRL0617,
Ribavirin, Remdesivir, Favipiravir, Alisporivir, etc.). Thus drive the blocking of
various signal pathways intracellularly [87]; however, it is arduous work, and we
must expect many adverse effects due to unwanted changes in general cellular
mechanisms. We have to focus on processes rather than products [70]. It nicely
shows the problem of complexity when the successful use of immunosuppressive
steroids has caused some surprises when the mainstream of viral research favors
immune enhancement.

The expansion of COVID-19 clearly divides clinical actions into three inter-
connected parts. The first period of clinical care begins when the first symptoms
appear. In the first period of the infection the focus has to block the further ag-
gravation of the disease. The innate immune actions are in the front of the fight
against the virus. Intent to stabilize the patient’s condition was unsuccessful, and
the patient experiences a more severe illness, the task changes. The patient needs
medical help in severe symptoms like shortness of breath, fatigue, and other
quality of life suppressants. In the third period, when the previous two could not
block development, emergency medicine, mostly in the intensive care unit (ICU)
continues the treatment to prevent death. All three periods have some special-

ties, which we will discuss below in this article.

2.1. Challenges of the Physiologic Regulation and Control

The first coronavirus pandemic (SARS-CoV-1) had shown a fundamental role of
the angiotensin-converting enzyme-2 (ACE2) in the cellular invasion of the vi-
rus [88]. The same had also been observed in the SARS-CoV-2 virus [89] [90].
The enzyme ACE2 converts angiotensin I to angiotensin 1-9, just as ACE con-
verts angiotensin I to angiotensin II, which again ACE2 converts to angiotensin
1-7. ACE inhibitors generally block the conversion of angiotensin I to II, while
angiotensin receptor blockers (ARBs) block the angiotensin II receptor.

The invasion process towards internalization in cells fundamentally depends
on the peak glycoprotein (S) (fundamentally on the S1 subunit) of the SARS-CoV-2
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virus [91]. The cellular entry of SARS-CoV-2 is promoted by type II transmem-
brane serine proteases (TTSP) [92]. The participation of TTSPs is confirmed in
the viral entry of SARS-CoV-2 into cells. The participating TTSPs are the trans-
membrane serine protease isoform 2 (TMPRSS2) [93], the lysosomal endopep-
tidase cathepsin-L (CTSL) [94], the proprotein peptidase furin [95]. The heparan
sulfate proteoglycans [96] [97], which are potentially membrane-bound in
the glycocalyx layer of epithelial cells [98] could be involved as well, as it was
proposed earlier, before COVID-19 [99] [100]. Heparan sulfate could block
SARS-CoV-2 infection [101], and, consequently, the multiple clinical application
of heparin was proposed [102] [103] [104].

TTSPs, firstly TMPRSS2 [94], facilitate binding to ACE2. The virus mainly
uses the ACE2 receptor to enter the host cell, with the help of TMPRSS2. When
the receptor binds to the SARS spike protein (S), the process is preactivated by
furin, cleaving the spike to prepare it for membrane fusion with the host cell.
Furin’s assistance in binding is a special feature of SARS-CoV-2, which helps the
virus to penetrate the cell. These types of shared structures also appeared in
highly pathogenic viruses, such as avian influenza. The frequent mutation capa-
bility is another risk of SARS-CoV-2 infection, which is usual in cases of
RNA-based viruses.

Even though both SARS-CoV-1 and SARS-CoV-2 share the characteristic that
the main receptor for viral entry is ACE2, there are essential differences in in-
tensity. The binding affinity of human ACE2 to the receptor-binding domain
(RBD, which selectively recognizes ACE2) is significantly higher in CoV-2 than
in CoV-1 [105]. Interestingly, RBD’s position also differs in the two viruses. The
active state (standing) is more frequent in CoV-1 than in CoV-2, which appar-
ently could mean a lower virus binding efficiency in COVID19. Unfortunately,
higher binding compensates for hidden RBD, and more importantly, hidden
RBD allows immune evasion, greatly improving its binding efficiency [102]. A
significant part of the high SARS-CoV-2 infectivity connected with the new mu-
tations in the RBD and the acquisition of a TTSP cleavage site in the S-spike
protein. There are some formal, deterministic approaches to stop the viral repli-
cation by blocking the entry to the cells (Figure 7). These, however, could dras-
tically modify some key steps of the replication mechanisms by homeostatic reg-
ulation. These all have attempted to develop drugs without concerns about its
complex feedback effects. The feedbacks are considered as side effects only, and
so their applications are rather limited. The symptoms of infection or the side
effects of drugs correlate with the dysfunction of the complex homeostasis.

The ACE2 receptor has a central role in developing the disease, being the door
to the virus’s cellular invasion. What would be the medical intervention? The
first logical deterministic answer is relatively straightforward: block the most
probable “gate” of the ACE2 receiver [106]. Consequently, the application of the
anti-ACE2 antagonist seems an optimal medication. In fact, viral infection in the

cell could be drastically suppressed by blocking “entry.” However, we learned
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Figure 7. The basic steps to inhibit: neutralize the spike-protein of the virus, block the
cellular entry of the virus, block the intracellular moving, bonding, block the RNA repli-
cation or block the egress of the newly produced virus from the cell.

that additional ACE2 inhibition could increase the imbalance, leading to the pa-
tient becoming critically ill. In many cases, it requires ICU care, and some of
these became fatal. Not only is ACE2 a helper for virus invasion, but its
double-edged actions address the question “Is it friend or foe?” [107]. The ap-
parent contradiction illustrates the limits of the reductive deterministic thinking
when the fundamental physiological knowledge of homeostatic regulation is not
involved in the concepts and consequent clinical actions [70].

The series of built-in negative feedback mechanisms ensure the complete
equilibrium of all participating molecules. ACE2 viral involvement dysfunction
induces an imbalance in the RAS and, through this, involves the immune system
(Figure 8). The immune connection was recognized at the beginning of the
pandemic in China [108]. The massive interconnection of regulatory networks
also points to the complexity of COVID and its interaction of the homeostatic
system unbalanced by a viral infection. The unbalanced participation of ACE2 in
SARS-CoV-2 explains why multiple symptoms can appear during infection, in-
volving different organs that express a considerable amount of ACE and
processes regulated by this enzyme.

As usual, in complex systems, ACE2 also has “two faces” [109], which are, in
fact, multiple functions, deeply connected to the homeostatic complexity, which
must be considered. The complex thinking takes attention to the participation of
ACE2 in a wide range of physiological processes [110]. The actions of ACE2 in-
clude protecting against inflammation [111], compromising immunity [112],
and protecting the active organ against hypertension, diabetes, and cardiovascu-

lar disease, as well as protecting against some types of acute lung injury [113].
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Figure 8. The complex RAS circle shows the interconnections and feedback of the various
involved products during the regulation process. The most frequent attack of SARS-CoV
is shown in influencing the ACE2 processes.

ACE2 plays an essential role in immune reactions that affect the innate and
adaptive immune systems through the action of macrophages and neutrophils
[114]. Inhibiting ACE2 could increase dangerous inflammation, grow reactive
oxygen species (ROS), create vasoconstriction, and lead to thrombosis. The
weakening of immune control could increase the risk of developing a critical
condition and need ICU.

The challenge of inhibitors of the ACE enzyme (ACEIs) or angiotensin recep-
tor blockers (ARBs) is reducing the severity of the consequences of virus inva-
sion, reducing their mortality rate [115] [116] or out of balance causing other
severe consequences (Figure 9). When the ACEI is administered in the wrong
time or wrong dose, the regulatory function of ACE2 decreases and the disease
may worsen. The patient could develop a severe or critical condition. However,
the angiotensin-converting-enzyme gene has polymorphisms [117] capable of
forming more than 160 versions [118]. This could cause inequalities in humans
in the level of ACE expression [119], requesting more detailed information and
consideration of the patient’s personal status. On the other hand, a large study
showed that ACEIs and ARBs were not associated with the infectivity of
SARS-CoV-2. When the dosing of these administered according to the standard
protocol for the patients suffering hypertension as comorbidity and had taken
the medication regularly as they did before, the viral infection does not exacer-
bate [120]. These findings support the continuation of ACEI or ARB II among
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Figure 9. Typical balancing is shown in the most frequently studied ACE2 receptors.
Their imbalance drives the RAS processes, which activate the connected KKS and CS cir-
cles too.

patients with coexisting hypertension, cardiovascular disease, and COVID-19
[121]. The ACE2 activation has a protective effect on lung injury, including
acute respiratory distress syndrome (ARDS), so it could be a potential curative
action in COVID-19 [122].

Current statistics show a correlation of COVID-19 with gender [123] [124],
and age [125] of infected patients. Comorbidities, such as hypertension [126],
diabetes [127], cardiovascular disease [128], asthma, chronic obstructive pul-
monary disease (COPD) [129] can lead to serious difficulties. Triggering of
comorbidities was also detected in SARS-CoV-1 infection in patients who did
not have such damage before [130]. The virus can activate comorbidities like
diabetes [131] [132], kidney disease [133] or induce cardiovascular damage
[134]. Furthermore, the risk of multi-organ infection by the virus remained a
challenge [135] too. An unhealthy lifestyle (such as smoking) and obesity are al-
so risk factors [136] due to weakening the body’s healthy physiological regula-
tions. These risks of coronavirus infections have the same root. The virus attacks
ACE2 receptors, which have high expression in these organs, causing an in-
creased risk of ACE2 damage.

One of the further challenges in the pathogenesis of SARS-CoV-2 is the im-
balance in RAS, which favors severe effects. Viral interstitial pneumonia and
diffuse alveolar lung damage appear in early pathologic changes in COVID-19,
and pulmonary edema is also commonly seen [137]. The possible extensive cy-
tokine storm could develop the patient’s critical condition, an acute lung injury
causing an irreversible impairment of restrictive lung function and death. The
RAS balance has complex actions on the immune system, and ACE2 may affect
antiviral immunity in this context [138]. ACE2 downregulation overstimulates
RAS [139], so ACE2 inhibition may decrease viral penetration potential, and al-
tered RAS needs to be balanced. RAS maintains electrolyte and fluid balance and

also regulates vascular resistance [140]. RAS imbalance could even cause oxida-
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tive stress alone [140], inducing many diverse diseases in clinical practice [141].

The impoverished ACE2 availability with the expansion of the infection or the
too intense ACEI/ARB activates the kallikrein-quinine system (KKS), counte-
racting the RAS [142], ie that is, any decrease or predominance causes the op-
posite corrective change in the paired system [143]. The counterbalance action
covers multilevel interactions [144]. The RAS-KKS system’s effect plays an im-
portant role in the entry of SARS-CoV-2 into cells [145]. The virus’s extensive
invasion causes a shortage of the ACE2 receptors, the widespread viral infection
developing the ACE2 dysfunction, and it plays a major role in the induction of
the fibrosis [146]. The altered RAS through KKS impacts on bradykinin [147],
inducing its overexpression, eliciting an overwhelming action [148]. The central
role of bradykinin in the worsening of symptoms as advanced infection binds to
ACE2 enzymes to such an extent that its lack can increase bradykinin level. In
this phase of the viral infection, the bradykinin leads to the disease’s progress,
the exhausted immune reaction, and the cytokine storm inevitable. The vast
bradykinin expression could cause pulmonary edema [149] and induce pulmo-
nary fibrosis, too [150]. Interestingly, bradykinin’s crucial role has recently been
“discovered” by programs running on supercomputers [151]. Clinical practice
shows that bradykinin-associated angioedema can recover rapidly when the
bradykinin pathway is blocked [152].

Another control in complex regulation is the contact system (CS), which is
part of the innate immune system and the inflammatory response mechanism
against artificial materials [153]. The decision proteins in CS are the members of
the coagulation cascades, factor XII (FXII, Hageman factor), prekallikrein (PK,
Fletcher factor) and high molecular weight kininogen (HK) that participates in
the initiation of the blood coagulation and in the generation of the vasodilator
bradykinin with regulation KKS. FXII acts as a growth factor. It promotes angi-
ogenesis and wound repair [154] in healthy conditions; however, pathologically,
it can promote pulmonary fibroblasts’ proliferation leading to pulmonary fibro-
sis [155]: COVID-19 can also progress to pulmonary fibrosis. Surfaces that are
recognized as “unusual” appear from damaged host cells and will activate CS.
Furthermore, damaged cells release characteristic molecules into the extracellu-
lar matrix (ECM), forming a damage-associated molecular pattern (DAMP) and
a pathogen-associated molecular pattern (PAMS), which could trigger a defense
reaction that includes CS activation. The three large regulating feedback me-
chanisms (RAS, KKS, and CS) are complex themselves and also complexly in-
terconnected, too, Figure 10.

It was also recognized that ACE2 alone is insufficient to explain the virus’s
invasion into the cell [156]. The metalloproteinase inducing receptor (basigin,
CD147) was discovered as a new alternative route [157], which is additional to
the invasion of ACE2 [157] [158]. Basigin (BSG) is a highly glycosylated single
transmembrane protein of the immunoglobulin superfamily. It is relatively
small; it has 50 - 60 kDa.
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Figure 10. The regulatory feedbacks are profoundly interconnected and undoubtedly
modifies the homeostatic balance.

The alternate route of entry of cells through BSG also participates in numer-
ous negative feedback controls, and thus its imbalance re-induces challenges.
BSG is widely distributed in the human body with various functions. It is in-
volved in a broad spectrum of interactions [159]: regulates angiogenesis through
VEGF, affects inflammation through Matrix metallopeptidases (MMPs), and
IL-6, it induces pro-inflammatory cytokines through TRAF6, it is involved in the
regulation of the cell cycle with P13K/AKT, etc. While ACE2 and TMPRSS2 are
co-expressed in epithelial cell membranes, BSG expression appears in both epi-
thelium and immune cells [136], so BSG inhibition may produce more conse-
quences than in ACE2. In the bronchial biopsy, in the cells of the bronchoalveo-
lar fluid (BAL) and the blood, a greater expression of genes related to ACE2 and
BSG was found; and in addition, genes related to BSG were positively correlated
with body mass index (BMI) [136].

On the other hand, BSG is involved in multiple physiological regulations. BSG
regulates cell proliferation, apoptosis, migration, metastasis, and differentiation
of tumor cells, especially under hypoxic conditions [160]. Inhibition of the BSG
protein prevents interleukin IL-17 and CD4+ and CD8+ memory T-cells in the
peripheral circulation [161]. The activity of BSG (CD147) increases under hy-
poxic conditions [160], which is usually generated by the massive use of ATP for
cellular viral infection. It is well-known that BSG appears in most of the malig-
nant processes [162] that are involved in the production of vascular endothelial
growth factor and can promote tumor cell invasion and metastasis. The BSG
protein appears to be a hallmark of cancer through metabolic reprogramming.
BSG improves glucose metabolism [163] and contributes to immunosuppression
by inhibiting the p53-dependent signaling pathway [164]. The BSG is a part of
the complex physiological regulation (Figure 11). The SARS-CoV-2 virus can
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Figure 11. The complex regulatory effects of BSG. BSG is an alternative of the SARS-CoV-2
entering into the host cell, but its presence and change broadly act in the entire body’s

physiology.

reprogram cell bioenergetics supporting its replication [165]. In such a way, the
SARS-CoV-2 virus shifts the cellular metabolic activity activating the simple
glycolysis, similarly to the malignant cells. The glycolytic shift induces hypoxia
triggering inflammatory changes in the lungs. This regulates the respiratory ac-
tivity creating hypoxemia, which could support the viral infection by a positive
feedback loop.

Importantly other feedback regulations help the extension of the viral infec-
tion [166]. The RAS-KKS-CS complex regulation has extensions with evading the
immune response (vicious viral loop, “sneaky virus”) gaining hyper-inflammation,
including T-cell lymphopenia and infiltration of macrophages and polymor-
phonuclear neutrophils (hyper-inflammatory loop, “gathering storm”), the
non-canonical RAS, the ACE2/angiotensin-1-7 loop involving platelet dysfunc-
tion and at the end vascular leakage, (loop of the “helpless lung”), and the
hypercoagulation loop developing fibrosis (“an epidemic within a pandemic”),
[166]. This interconnected networking shows the complexity of the COVID-19
processes, which must be considered in the therapy approaches.

Inhibition of the BSG protein (like the same for ACE) may be a useful strategy
in preventing or first-line treatment of infection by the SARS-CoV-2 virus, sup-
pressing the possibility of developing the disease to a severe phase. However, the
regulatory action needs a careful choice of the right time with the right dose;
otherwise, the treatment could seriously affect other connected functions, caus-
ing severe adverse effects or even directly opposite processes than the expected.
The involvement of various receptors in SARS-CoV-2 infection shows a wide
range in epithelial barriers and immune cells [63], so inhibition of a key player
could come at a price broadening the spectrum of the fights during the disease.

The spike proteins of the SARS-CoV-2 are the key in viral entry to the host
cell and in the induction of neutralizing-antibody and T-cell responses [167].

Blocking the S-spike protein with a polyclonal antibody is one of the promising
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prophylactic neutralizations of the possible viral penetration [168]. Various pep-
tides, antibodies, organic compounds, and short interfering RNAs are also other
anti-SARS-CoV therapeutics targeting the S protein [167], developing a vaccine
for the prevention of the infection. The S-block, together with the inhibition of
the main gates of cellular entries like ACE2 and BSG could be a successful strat-

egy in the early infection period.

2.2. Challenges of the Immune Regulation and Control

The patient-oriented approach involves the detailed measure of the personal pa-
tient features, taking care of their individual character. Patients are different in
their homeostatic control. Their pre-set “trained” immunity and complete regu-
latory system depend on the environmental conditions, modified by the diets
and habits, as well as the recognized or hidden comorbidities. Every living or-
ganism has intrinsic self-time defined by their individual features [169] [170].
One study compared the host immunity of SARS-infected patients directly at the
time of admission for care [171]. Differences in host immunity were found when
the patient developed mild or severe disease. Host values for ferritin, lactate de-
hydrogenase, and D-dimer increased as patients develop harsh conditions dur-
ing care.

Conversely, the absolute number of CD4+ helper T-cells and CD8+ killer
T-cells and B cells decreased significantly, and NK cells increased substantially
with increasing infection intensity. At the same time, their share-percentage did
not change so markedly. The CD4/CD8 cell ratio did not change, while the
CD4+ and CD8+ T cell activation markers (HLA-DR and CD45RO) increased,
and the costimulatory CD28 decreased as the disease worsened. The percentage
of natural regulatory (suppressor) T-cells (Tregs) decreased in the patients’ ex-
treme conditions. The rate of interferon-gamma (IFN-y), a soluble cytokine es-
sential for innate and adaptive immune reactions, is produced predominantly by
NK cells and promotes the development of CD8+ and CD4+ T-cells, increases
with the development of the illness. Cytokines IL-2R, IL-6, and IL-10 all in-
creased in host immunity in patients who developed extremely severe condi-
tions. Activation of dendritic cells (DC) and B cells decreased in extremely se-
vere stages from the patients. Interestingly, patients’ age in severe and extremely
severe disease stages did not have a significant influence. Another notable ob-
servation is that CD4+ and CD8+ T-cells are involved in the pathogenesis of an
extremely severe viral infection [164]. Genetic diversity studies show that muta-
tions interact with host CD8 and CD4 T-cells and could cause simultaneous in-
fections with different genetic compositions [172].

The SARS-CoV-2 virus down-regulates the ACE2 by developing the infection,
reducing the anti-inflammatory role of this enzyme. The early lymphopenia ob-
served was possibly associated with a reduction in CD4+ T-cells and some CD8+
cells, which could delay or suppress the immune response and viral shedding.
Macrophages and hyper-stimulated neutrophils can produce uncontrolled am-

plification of cytokine production [173]. Excessive autoimmune reactions wor-
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sen symptoms and could lead to a critical condition. A positive side of the inhi-
bition of ACE2 proteins is that their limited availability typically reduces the au-
toimmune effect [174] and suppresses the cytokine storm, and contributes to al-
leviating the disease in this way. From this point, the cytokine storm’s critical
state is highly dependent on the additional expression of bradykinin, regulated
by the KKS system as a counteraction of the RAS imbalance.

Most patients who are transferred to the ICU have severe cytokine storm. The
storm is an attempt to regulate body homeostasis that reacts to hyper inflamma-
tion induced by the SARS spike protein’s active binding to ACE2 [175]. The high
concentration of various pro-inflammatory interleukins such as IL-15, IL-4,
IL-5, IL-6, IL-17, IL-18, IL-21, IL-22, IL-23, etc. together with chemokines (such
as CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10 etc.) [176] and GM-CFS is re-
leased into the extracellular matrix and into the bloodstream. Due to attempts to
regulate weak physiological control, anti-inflammatory cytokines (such as IL10,
IL-13, M-CSF, etc.) are produced [177], but their presence is insufficient to re-
balance severe inflammatory overload. The situation, together with the blocked
ACE2, could lead to pneumonia and associated edema. SARS-CoV-2 develops
pulmonary [178] and laryngeal [179] edema associated with pneumonia, also
seen in SARS-CoV-1 infection [180]. However, the SARS-CoV-2-induced edema
and pneumonia differ from standard high-altitude pulmonary edema (HAPE)
[181] [182], even though they both meet the criteria for ARDS [183]. The dif-
ference is the vascular endothelial cell injury [184] that the COVID-19 infection
presents diffuse alveolar damage and airways inflammation. Medium and small
vessels dilate accompanied by perfusion abnormalities in the lung [185]. Both
types of ARDS have the risk of being lethal, but HAPE, for the most part, does
not need ICU treatment, whereas the consequence of COVID does, frequently
developing multiple organ failure [186], even heart failure [187]. Endothelial
cells’ role is essential in SARS-CoV-2 infection [188], characterizing COVID-19
as an endothelial disease [189].

Another side of the complexity shows the production of cytokines and che-
mokines. A subclass of cytokines, interferons (INFs, named for their interfering
actions) again have double-sided activities. On the one hand, IFNs are usually
active in antiviral defenses. IFNs are communication molecules between cells to
activate protective [190]. The automatic physiological control releases IFNs by
the cells infected “alarming” neighboring cells and prepares them for possible
viral invasion, helping the immune system destroy pathogens [191]. IFNs can
activate natural killer cells and macrophages, and promote antigen presentation
by increasing major histocompatibility complex (MHC) antigens. While IFNs
are perfect communicators that help organize a defense against viral infection, it
upregulates inflammatory symptoms (fever, muscle pain, flu symptoms) that are
also commonly present in COVID-19. The molecular basis for the frequently
observed progression of pulmonary fibrosis due to SARS-CoV-2 infection is not

yet fully clarified. It is most likely due to multifactorial causes [192]: direct viral
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effects, immuno-dysregulation, cytokines (MCP-1; IL-6, IL-8, TGF-g, TNF-a)
and increased oxidative stress [193]. IFNs along with IL-1, IL-6, IL-15, IL-17,
and tumor necrosis factor (TNF) are pro-inflammatory agents that orchestrate
various signaling cascades that lead to the induction of chemokines and, what is
more important, they trigger the production of other cytokines, which could
cause an emergency in the advanced stage of COVID infection.

Consequently, inhibiting these pro-inflammatory proteins could be one of the
winning strategies in the severe phase of COVID, when ARDS formation ap-
pears as the number one danger [194]. On the other hand, many cytokines, such
as IL-1, IL2, TNF, and colony-stimulating factor (CSF), can also enhance IFN
production [195]. Other problems appear to be that type I INF (IFN-I) produces
fibroblasts and monocytes, which could favor fibrotic processes in the disease’s
severe phase. On the other hand, the immediate and efficient production of the
same IFN-I helps the viral clearance in a mild or moderate state of COVID-19,
and its impaired production and weak activity lead to viral existence and further
development of the disease. Homeostatic feedback is also active here. The pro-
duction of IFN-a type I could be inhibited by IL-10. IL-12 acts directly on CD4+
T-cells to enhance the priming of type II IFN (known as IFN- y, as immune IFN)
[196], which could inhibit viral replication [197]. On the other hand, IFN-y can
spread intravascular coagulation and decrease serum protein, maintaining the
balance glucocorticoids regulate, inhibit IFN-y [198].

The regulatory system completely overlaps, and complex feedback signaling
maintains dynamism in balance in healthy homeostasis [199]. Patients’ whole
blood profile in COVID-19 indicates triggering of the highly dynamic immune
response even in early stages [200]. The starting disease dynamically induces most
the pro-inflammatory genes, causing a well detectable inflammatory response on
the SARS-CoV-2. The T cell involvement is likely while CD4 and CD8 are ex-
pressed as a part of the pro-inflammatory response, which could worsen the
disease or prolong the infection [200]. These findings could help to make prog-
nosis in the early stages and develop patient-oriented, host-directed therapies.

The interaction of several effects also has consequences in diagnostic strate-
gies, where complexity must be considered adaptively depending on the disease
[201] [202]. When we act on one side of the scale, this complex system could be
so seriously disturbed that it could not find dynamic equilibrium again through
the interaction of negative feedback loops’ mechanisms. In this way, the system
will be out of regulatory range, out of control, as if shown in the case of IL-17
inhibition [203]. For example, a drug such as azithromycin decreases the expres-
sion of BSG. It increases the levels of interferons and interferon-stimulated pro-
teins [203], which are effective antiviral inhibitors in the early phase of infection
but could cause a storm of severe cytokines in the second phase. Managing in-
flammatory processes could be the critical issue in the different stages of the
disease, again showing a complex tissue response behavior, requiring an adaptive
adjustment of therapies [204].

Interestingly, there is a cross-immunity that had been observed between the
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rhinovirus and SARS-CoV-2 [172]. Rhinovirus infection could prepare the im-
mune system’s mechanisms against other viral [205] [206] diseases. While possi-
ble prevention against common cold coronavirus (CCC) infection was shown
more than 30 years ago [207], this research was abandoned. It became a hot top-
ic to investigate again only today whether it has a possible cross-immunity con-
nection with SARS-CoV-2 [208]. The idea of CCC protection had been reex-
amined, and it was hypothesized that pre-existing immunity in COVID-19 was
primarily determined by previous CCC infection [209]. The research could con-
tain exposure to cold without viral load, which was expected to also prepare the
immune system for better performance against the viral infection [210] [211].
An exciting idea emerges that the Bacillus Calmette-Guerin (BCG), an atte-
nuated strain of Mycobacterium Bovis, applied against tuberculosis for a century
could decrease the mortality rate of COVID-19 [212] [213]. The cross-immunity
assumption goes even further. There are assumptions that other live vaccines
may have a role to prevent COVID-19 [214]. The mixed injection against
measles, mumps, rubella (MMR) or Polio vaccine [215] may be a practical addi-
tion to avoid the worst developments of COVID-19 [216]. These theories and
ideas well characterize how complex the infection and its consequences, and
how much these depend on various personal and conditional factors. Even the
oxytocin hormone level, which usually has a social and emotional bonding role,

may have part in the prevention [217].

3. The Hypothesis

We propose to apply electromagnetism to defeat coronavirus infection. This idea
fits well with the request to lock processes rather than remove some products
[70]. The suggested new technology is physical so that it could avoid the pitfalls
of the chemical approaches.

The conventional heating could affect the SARS-CoV. However, there is a
further challenge: This virus is heat resistant even at higher temperatures, while
other coronaviruses are heat sensitive. Complete inactivation of the virus re-
quires a reasonably high temperature, [218], with a phenomenon similar to a
phase transition at 56°C, which is well above the physiological limit of body
temperature. Nevertheless, the rising temperature could partially inactivate the
viral infection by a long-lasting fever. Fever could alter the complex homeostatic
regulation of the human body [219] [220].

We propose to use modulated electrohyperthermia (mEHT, trade name in
oncology “oncothermia”) [221] as a physical method complemented with ap-
propriate immunostimulants in oncology [222] [223]. This method is not simple
heating. It has a double role, heats and excites by absorbed energy of the electric
field. The mEHT process has already demonstrated its ability to elicit tu-
mor-specific and selective immune effects [224] and is widely applied in clinical
oncology [225]. It has only some contraindications [226] and its adverse effects

are minor [227]. The widely published preclinical and clinical [228] results on
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tumors clearly show healing processes driven by specific immune functions,
[229]. To our knowledge, we also expect successful treatment for viral infections
[230]. When the procedure is not effective in a particular virus-infected case, our
current experience suggests that we do not harm the patient. It does not increase
the intensity of the infection process at any stage. This implies that we expect
mEHT treatment to be extremely safe. However, since the method was applied
to viral infection by HIV/cancer [230] [231], the transposition of the results of
malignancy in COVID cases is hypothetical, although the processes listed con-
firm the practical applicability of the hypothesis. Technical details discussed
elsewhere [232], as well as the practical issues, are shown in detail in protocols
[233] [234].

The main task of cellular treatment is to select infected cells without damaging
healthy ones. The selection of mEHT uses biophysical differences between ma-
lignant and healthy cells [235]. Specialties of the SARS-CoV-2 infection cause
the biophysical differences presenting the selection possibility. The metabolic
rate of cells loaded with the virus remarkable grows because it needs extra ener-
gy to support the replication process [236]. The “hijacking” of the energy re-
sources of the host cell [237] [238] makes recognizable the infected cells from
the uninfected ones. The higher metabolic rate needs an intensive exchange of
ionic species, frequently forcing the cells to direct glycolysis. This accelerated
ATP production makes only two ATPs from the glucose. Still, this quick and
straightforward process delivers more ATP in a unit of time than the more com-
plicated citrate (Krebs) cycle in the mitochondria with its 36 ATP/glucose. The
result is a high concentration of lactate and other ions near virus-infected cells.
This makes the microenvironment of infected cells more conductive, recognized
by well-chosen radio frequency (RF) current flowing through the tissues. The
distinguished flow increases the electric current around the targeted cells and

could excite some transmembrane proteins (Figure 12).

Figure 12. The primary selection of virus infected cells by RF-current, flowing through the tissue. (a) The microenvironment of
infected cells is highly conductive due to the high metabolic rate of the cells. (b) The cellular membrane is an isolator (condens-
er) so the well-chosen current will flow mainly in the extracellular electrolyte. (c) The selected cells are excited by their trans-
membrane proteins, including the virus-entry points.

DOI: 10.4236/0jbiphy.2021.111001 25 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111001

A. Szasz

The method is centered on electromagnetic action, which synergistically com-
bines the heat and electromagnetic bio-effects on the targeted cells [239], like it
is proven and widely used in the similar conditions of malignant cells [240]
[241]. Conventional heating also has a general antiviral impact with its thermal
effect [242]. The challenge that it heats the tissue equally, but the temperature
alone is not selective. However, mEHT is certainly heterogeneous by the
non-isothermal electrothermal effect, [243], which precisely attacks only the mi-
croenvironments of the target cells [244]. The absorbed electromagnetic energy
on selected target cells partly heats them up while the electric field extrinsically
excites various signals. The cells’ heated microenvironment will increase their
conductivity, promoting the selection process in a positive feedback loop. The
applied bioelectromagnetic concept chooses the cells that are out of the ho-
meostatic regulation, recognizing where the dynamic equilibrium of homeostatic
control is changed. The combination of temperature-dependent and indepen-
dent factors could provide optimal treatment [245] [246]. Importantly, the
lung’s intensive cooling with breathing does not modify the process due to the
low dependence on the thermal factors.

The relatively low electrical impedance of infected cells’ microenvironment
allows selection deeply in the body (Figure 13); as occurs in cases of malignant
neoplasms [247] too.

Cell membranes contain numerous transmembrane proteins, which are con-
nected to the cytoskeleton on one side and act as receptors or intercellular con-
nections (cadherins, junctions) between cells. Some of the transmembrane pro-
teins with the interaction of membrane lipids clump together and form a clus-
tered group. The combination of glycosphingolipids, cholesterol, and protein
receptors is organized into lipid microdomains of glycolipoprotein. These clus-
ters (lipid rafts) in the plasma membrane have various functions [248], including
signal transmission by group receptors [249], and play an important role in
membrane dynamics [250]. Instead of chemical reagents to excite or block the

receptors, mEHT targets the selected cells’ lipid rafts directly [251]. The membrane

(a) (b)

Figure 13. The electric field directs the radiofrequency current which selects the infected
cells. (a) the current flows to the volume where the overall average conductivity is higher
(b) the selection could be multilocal, the current flows the electronic rules.
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rafts absorb most of the electromagnetic energy (Figure 14). It works in nano
targeting of the natural nano-units, the rafts [251].

Precise in silico models well describe the special energy absorption of the
membrane rafts of selected cells [252] (Figure 15).

In this way, the mEHT has a double-action (Figure 16): the thermal part of
mEHT [253] locally heats the membrane rafts of the target cells in the depth of
the body, [254], which could cause changes in their structure [255]. It is essential
to highlight that the lipid rafts of the cell membrane are involved in the cellular
invasion of SARS-CoVs [256] [257] [258], and could have an active reduction of
the infectivity of SARS-CoV-2, inhibiting the dependent binding of lipids to host
cells [259]. The viral surface’s weak temperature dependence could be an addi-
tional factor of mEHT action on the selected cellular microenvironments, where
the temperature could be locally high [243]. Measurements of viral load in spu-
tum show a small partial inactivation of viral load at 42°C for 15 min, [260]. Al-
though the virus can recover from severe mechanical disturbances and is un-

usually resistant to temperature, its surface is progressively stripped of spikes

Figure 14. The excitation process in steps: it starts with the transmembrane protein groups (lipid rafts) which absorb more energy
than the non-conductive lipid membrane, the proteins are excited in the chosen rafts and at the end the death receptor and its
complex molecular set start the apoptotic process.

(a) (b) (©)

Figure 15. The energy absorption can be calculated in silico, (ECM in upper, cytoplasm in lower parts of the figures divided by the
membrane, with a raft in the center: (a) the electric field; (b) the current density; (c) and the specific absorption rate values.
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Figure 16. The mEHT uses double effects. The absorbed electric field makes excitation
non-thermally, while the absorbed energy heats the absorber, and gives optimal condition
for the excitation process.

with thermal exposure. Its dynamism is reduced as measured by atomic force
microscopy [261]. Therefore, both the infectivity and the thermal sensitivity of
SARS-CoV-2 depend on the stenosis of the superficial peak and dynamics of the
virus, and so the growing temperature could decrease the replication speed. The
heat affected virus and the observed thermal aggregation may be one reason for
the suppressed activity of the SARS-CoV-2 virus by heat [262]. In addition to the
effects of the outside temperature, the infection process also generates heat. The
infection uses several metabolic pathways in the host, using large amounts of
energy, while ATP’s amount decreases as early as 3 hours after invasion [263].
This intensive consumption of ATP in a short time causes a sudden increase in
temperature, which could reach approximately 4°C - 5°C of the host cells [258],
which, together with the increase in ionic concentration in the neighboring
extracellular electrolyte, decreases impedance also supporting the mEHT selec-
tion mechanism.

When cells are exposed to heat shock, they develop protective proteins (heat
shock proteins, HSP [264]) in response to exposure to stressful conditions.
These proteins also have very complex functions in the cell-life. It was discov-
ered as the protection of cells against thermal stresses [265]. Many HSPs are
“chaperones” to stabilize new proteins that fold properly or help to refold pro-
teins damaged by various cell stresses and are found in almost all living organ-
isms. In general, any stress develops HSP [266], including electromagnetic inte-
ractions without thermal effects [267]. Under healthy conditions, cell survival
modulated by the essential activity of HSP70, repairing the stress damages.

HSPs are very conservative proteins, which are part of general protection at
the cellular level. HSPs are involved in stress-induced damage repair mechan-
isms and are also involved in multiple signal pathways, including many apoptot-
ic signal transmissions. Various HSPs (indicated by their molecular weight in

kD) operate to correct the various stress consequences. The most important HSP
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members are the 60, 70, and 90 kD proteins (HSP60, HSP70, HSP90). These
chaperones are widely used in medicine [268]. Like heat stress induces most of
HSP70 [269]; respiratory hyperthermia induces a cytoprotective response to heat
shock in vesicular stomatitis virus [270] and rhinovirus-infected cells [271]. The
main functions of HSPs as chaperones help repair misfolded or unfolded poly-
peptides, protect cells from various types of toxic stress, and present immune
and inflammatory cytokines that support immune regulations. Merely speaking,
HSPs are the guardians of the real dynamic status quo of the system.

Viral infection generally triggers apoptosis or programmed cell death of the
infected cell [272]; the cell automatically activates its pathways for programmed
cell death [273]. As the oldest cellular immune defense, the natural self-destruction
of cells selected by apoptosis can be a significant point to eliminate the vi-
rus-infected cells. Despite the normal cellular reactions that induce apoptosis,
the “hostile behavior” of HSPs disrupts apoptotic processes, blocks the signal
pathways that keep infected cells active [274]. HSP70 has a belligerent activity in
viral infection with their protective functions, it cooperates with numerous vi-
ruses [275], keeping the host cell alive during the virus’s replication and exit. The
intrinsic mitochondrial pathway of apoptosis in cells infected with SARS-CoV-2
is positively correlated with the induction of viral pathogenesis of apoptosis and
virus replication [276] [277]. The caspase-dependent mitochondrial apoptosis is
active in viral pathogenesis [278]. We hypothesize that the complex cellular heat
shock and electrical shock presented by mEHT will aid [279] apoptosis of in-
fected cells and induce protective chaperone expression against viral invasion in
uninfected cells. The main action of apoptosis by mEHT uses an extrinsic apop-
totic pathway, exciting TRAIL (DR) death receptors on the surface of the mem-
brane selected cells [280]. The TRAIL can induce apoptosis in virus-infected
cells and can promote immune defense against viral infections [281]. On the
other hand, there is evidence of the complexity of the feedback-controlled func-
tion of TRIAL in the immune system, helping to kill virus-infected cells or pro-
moting their survival [282], showing the complexity of this effect. Furthermore,
the TRAIL is an IFN-dependent mediator. The balance of the IFN/TRIAL sig-
naling response has complex modulation and is essential to balance viral disease
promotion or suppression [282]. The IFN-y could help to develop antitumor
immunity in malignancies [283]. The mEHT therapy induces IFN-y proven in
vivo [284]. It was measured, that the number of IFN- y-secreting CD8+ T-cells in
mice that were co-treated with DC and mEHT significantly exceeded the cor-
responding numbers in mice that were treated with DCs alone. The development
of IFN- y supports the systemic abscopal effect of mEHT [285] and helps to avoid
the growth of the rechallenged tumor in the animal [284], and so it works like a
vaccination. The mEHT developed IFN-y could promote the appropriate im-
mune-response at the early stages of the viral infection too.

The TRIAL induced extrinsic apoptotic signal goes through caspase (CAS)
dependent (CAS-8 > CAS-3, or mitochondria > CAS-9 > CAS-3) and also in-
dependent (apoptosis-inducing factor, AIF) pathways [286]. The different apop-
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totic processes could usefully suppress viral replication, including the c-Jun
N-terminal kinases (JNK) as the dominant factors to induce apoptotic cell death
in mEHT [287]. Importantly the radioresistant cells could be forced for apopto-
sis with mEHT [288] The apoptosis is such a basic feature of mEHT, that its dose
could be measured by apoptotic rate [289].

The complex regulation of dynamic equilibrium of homeostatic regulation is
active in the role of HSPs too. Their guardian function is a double-edged sword.
Processes could express the HSPs on the cell membrane, [290] or release of HSP
to the ECM, or secreted in exosomes [291]. The HSPs’ function turns to the op-
posite direction when they are outside of the cytoplasm. In this situation, protec-
tion of the “status quo” by HSP activity takes on an opposite meaning outside
the cytoplasm: it supports systemic integrity and aids apoptosis of infected cells.
The selective stress of the mEHT method expresses HSP70 in the cell membrane
and releases these proteins to the ECM [292], well-proven in malignant cases
[293]. On this way, the HSP70 out of cytoplasm in oncology induces apoptosis
signals and promotes immune effects [294], as well as immune-mediated sys-
temic effects (abscopal) [295] and increases tumor-specific adaptive immune ac-
tivity [224] in addition to apoptosis. The beneficial immunogenic actions of
HSPs could be a helpful tool against COVID-19 too. HSP70 in ECM carries out a
transfer of information essential for the specific immune action against the virus.
HSPs are crucial components of antigen presentation [296] formed by anti-
gen-presenting cells (APC) and also cross-presentation [291] and autophagy
[297]. MEHT induces a complex process that creates a “damage-associated mo-
lecular pattern” (DAMP) in ECM [294]. As is usual for all complex regulators,
the DAMP has a two-sided behavior: it could be antiviral, causing apoptosis, in-
hibit virus reproduction, or it could be a promoter of the consequences of infec-
tion by enhancing the process of severe inflammation [298]. The DAMP created
by mEHT includes calreticulin (CRT), “high mobility group box protein 1”
(HMGB1), 70 kDa heat shock proteins (HSP70), and ATP. The members of the
pattern that appear in the ECM are separate information carriers: HSP70 carries
the genetic information, CRT is the “eat me signal” [299], HGMBI is the “dan-
ger signal” [300], and ATP provides the “find me signal”. These pieces of infor-
mation form a set of spatially and temporally harmonized immune processes in
the ECM [301], orchestrated primarily by CDs’ maturation to APC [302]. Note
the possible shift in DAMP’s regulatory direction from suppressor to a promo-
ter, because all the effects of the molecular components have connections em-
bedded in complex ways, and our positive actions could easily be reversed when
the system is out of balance. We have to apply mEHT in the mild or moderate
phase of the disease when the inflammation and cytokine production promote
immune activity and do not lead to an emergency cytokine storm condition.
Recurrent in the “double-edged sword” phenomenon also characterizes all ele-
ments of DAMP, shown for CRT [303] [304] and for HMGBI1 [305] and in
HSP70 [275]. ATP as an energy source for dynamic changes could also support

viral infection through its energy supply function. DAMP induces immunogenic
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cell death (ICD) generating APC [306], with the maturation of DCs [307]. The
APC formed by ICD carries specific information about the infected cell and
could produce virus-specific killer (CD8+) and helper (CD4+) T-cells (Figure
17). An interesting observation in cancer experiments, that mEHT treatment
enhances the yJT-cell migration towards tumor cells even as low temperature as
38°C [308]. The ydT-cells link the innate and adaptive immune systems, [309],
so could have effective participation in the developing of immune defenses
against SARS-CoV-2 invasion.

The virus uses the cell cytoskeleton for all its invasion, movements in the cy-
toplasm, and leaving the cell for replications [310]. The cytoskeleton compo-
nents provide a dynamic framework for viral trafficking in the cytoplasm. They
are involved in the entire process of the virus in the host, providing efficient eli-
mination, replication, and egress exit [311]. In the first step, the spike protein
binds to the cell surface. The docking strategy is universal; it works for all
mammals. The binding process rearranges the cytoskeleton in one hour [312].
After this initiation, the intracellular transport of the virus involves both the cy-
toskeletal filaments of actin and tubulin and their dynamic components dynein,
kinesin, and myosin [313]. After transport to the perinuclear region, the corona-
virus replicates. With the active promotion of microtubules, the virion is trans-
ported to the plasma membrane, “hijacking” the host’s cytoskeletal system [314]
and helping the viral replication exit. The applied electric field of mEHT also af-
fects intracellular components. The rearrangement of the cytoskeleton by the
modulated electric field signal suppresses the viral replication by limiting the
intracellular transport by modifying the necessary polymerizing components for
viral replication [315]. The structural reorganizing of the microtubules and actin
filaments and also limiting the dynamics of cytoskeletal “motors” dynein, kine-
sin, and myosin [316] distract the correct transports for virus replication.

The hypoxemia caused by the low oxygen availability in later stages of the vir-
al infection help many viruses replicates more easily. Hypoxia leads to inflamma-
tion and endothelial activation [317]. Cells adapt to hypoxia and induce cell survival

and specifically endothelial cell adaptation (migration, growth, differentiation)

Figure 17. The immunogenic process has a systemic feedback from the local excitement. The clue is the immunogenic action,

which makes the genetic information available for the immune-system. The “trained” immune mechanism produces adequate

cells (killer cells) to attack and kill the virus infected cells in all over the body.

DOI: 10.4236/0jbiphy.2021.111001

31 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111001

A. Szasz

[318]. The developing hypoxemia in COVID-19 upregulates the hypoxia-inducible
factor-1 (HIF-1a), increases the ACE protein expression, while counterbalancing
downregulates the ACE2 enzymes [319]. Due to the possible bradykinin over-
load, the process produces cytokine storm, evolving the patient state to critical.

On the other hand, the hypoxia at the onset of the COVID-19 helps avoid se-
rious infections because ACE2 is the main target of SARS-CoV-2 in pulmonary
epithelia. Clear epidemiologic fact among highlander populations supports the
positive role of hypoxemia in preventing the COVID-19 [320] [321]. This well
emphasizes the double-faces of HIF-1a which could help in prophylactics in
early infection stages [322], but oppositely active during development of the dis-
ease. A variety of viral pathogens may activate the HIF-1a, as well as the glyco-
lytic supported high metabolic rate, which is induced with viral infection in the
host cell, which promotes inflammation, and facilitates viral replication [323].
Suppression of HIF-1a [324] is an additional advantage of mEHT against the
development of the symptoms.

Other factors involving mEHT to COVID-19 treatments are that both mEHT
and bradykinin promote the activation of TRPV1 receptors [325], which can
trigger additional regulatory mechanisms and reduce pain sensation. Although
TRP channels have no role in healthy lung function, repair processes use them to
promote endothelial permeability, inducing inflammation for immune action,
which are normal helper processes. Still, again their activation could become
pathological [326], involved in asthma, COPD, and pulmonary fibrosis [327]
and pulmonary edema [328].

The KKS induced overregulation of bradykinin due to the RAS disbalance is
caused by dysfunctional or downregulated ACE2. This process can be partially
corrected by mEHT, producing vasodilation [329] without RAS control. This
bradykinin-free action would be a helpful option for the vasocontraction chal-
lenge, which additional advantage could be essential in the treatment of patients
in the ICU.

Fibrotic processes dangerously risk the survival of the patient and could cause
serious harm and reduce the quality of life of the patient even chronically after
successful antiviral therapy as well. Those who survived treatment the applied
aberrant and excessive treatment in the ICU, sometimes have hardly reversible
or irreversible lung damage and fibrosis, resulting in functional disability and a
significantly reduced quality of life [330] [331]. The worsening of symptoms
could also become chronic without further viral infection. The fibrotic damage
in patients during and after a viral infection may cause acute lung injury (ALI),
releasing fibrosis mediators [332]. The epithelial-mesenchymal transition (EMT)
[333] promotes fibrotic processes [334] [335] derailing the epithelial-fibroblastic
crosstalk [336]. The mEHT is feasible for treating fibrotic states due to its elec-
tric field effect, which could moderate the EMT [337], so we consider it to treat
certain fibrotic conditions. The successful anti-fibrotic effect of mEHT is proven
for patients with fibrosis of the penis (Peyronie’s disease) [338], and fibrosis of

the palm (Dupuytren’s contracture) [339]. Furthermore, mEHT treatment in
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malignant fibrosarcoma also showed a great benefit to the patient [340]. Note
that RF current is widely used for cellulite fibrosis [341], and skin laxity [342],
but only for areas near the surface. MEHT is active in deeply located tissues of
the body [247], so therefore the usual activity against fibrotic structures is ex-
pected anyway. Due to its repairing action, the mEHT therapy could be in the
healing process or also in the rehabilitation period when the infection does not
appear. Still, its consequences (primarily pulmonary fibrosis) need care.

Further possible impact of mEHT on fibrosis is developing HSP, which sup-
presses the fibrotic processes [343], like this is shown in wart healing [344]
[345]. Additionally, the positive impact of high-dose vitamin-C [346] may inhi-
bit fibrosis complementing with mEHT, using its intensive attack of viral in-
fected cells’ membranes. Clinical study shows successful complementary treat-
ment for lung cancer with high dose vitamin-C [347]. Lung effusion is also one
of the patient’s remaining negative states cured of the SARS-CoV-2 viral disease.
mEHT also offers a solution to this problem [348].

The above effects present the complex behavior of mEHT therapy. Low-frequency
modulation mEHT on a high-frequency carrier [232] allows penetration into the
entire lung, attacking the virally infected cells in. The demodulated signal pro-
motes the restoration of the cells’ homeostatic balance by loading the redistribu-
tion. It forces the process to maintain equilibrium [349] forms multiple regula-

tion loops to support the homeostatic control of the body (Figure 18).

4. Discussion

Like we learned in malignant diseases, the SARS-CoV-2 coronavirus infection
exhibits a complex phenomenon by upsetting the healthy homeostatic balance. It
means that the processes in developing conditions are stochastic (probabilities of
events dependent on time). They have promoters and suppressors, and their
equilibria decide the fate of the infection. The cumulative dose of viral exposure
and the efficacy of the local innate immune response (natural IgA and IgM an-
tibodies, mannose-binding lectin) form the most important equilibrium in the
first 10 - 15 days of infection. When the virus can block the primary innate de-
fense immunity, it could rapidly spread from the upper respiratory tract to the
alveoli, replicating without local protection. This phenomenon causes pneumo-
nia and clinically induces a high antigen concentration. The delayed and strong
adaptive immune response (high-affinity IgM and IgG antibodies) that follows
causes unstoppable inflammation and generates a cytokine storm, which re-
quires mainly intensive care and is fatal in some cases [176]. Balancing physical
activity also affects: low or moderate physical activity can be helpful, but extreme
action can facilitate the virus’s shedding. The same problem could arise in the
case of oral respiration with hyperventilation during the incubation processes.
The virus bypasses the immune barrier and determines the rapid development of
the disease. This well-presented spatio-temporal harmony (balance of the viral

load, repetitive infection, timing of immune actions, concurrent effects of personal
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Figure 18. The complexity of mEHT is its two balancing and interaction branches of actions. The conditional

heating (depends on square of the field strength) prepares the physiological and cellular conditions, while the

electric effects (linearly proportional with field strength) act on molecular level supporting the immune

processes.

immune regulations, etc.) of the development of infection decides the fate of the
patient.

Consequently, understanding the complex process of infection development is
essential for the medical care, prevention, treatment, and rehabilitation of pa-
tients. The COVID-19 disease has many unusual aspects compared to other res-
piratory viral infections. The severe lymphopenia, which causes a deficiency in
the immune regulation processes, and a cytokine storm with extensive activation
of cytokine-secreting cells with innate and adaptive immune mechanisms, is
special, leading to acute respiratory distress syndrome and multiple organ failure
[350]. Laboratory evidence from clinical patients showed that a specific T-cell
response against SARS-CoV-2 is essential for recognizing and destroying in-
fected cells [351], and the measurement of these could inform the design of
prophylactic vaccines and immunotherapy for the future.

Most of the current drug developments are strongly connected to some cho-
sen molecular products. My current proposal opens a new approach with the

bioelectromagnetic method. It supports the complex processes of regulation and
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control and the restoration of the natural homeostatic balance. This proposed
paradigm shifts from current drug-focused developments to bioelectromagnet-
ics. Besides, the change proposes a shift from the product-oriented to the
process-oriented approach. This strategic objective has historically been proven
in the fights against dangerous enemies. The winning strategy seeks out and at-
tacks the weak side of the “enemy” and avoids having too much confrontation
with their strong positions. Applying in the COVID-19 fight case, we must at-
tack the infection’s weak side (violation of collective regulation), instead of the
viral force (reproductive capacity). My new strategy proposal is biophysical. The
mEHT which composes novel advantages:

1) It “rides” the high-frequency carrier, which carries this information in
depth, which would not be possible only with this low frequency through the
insulating layers, including the tissues, applicators, and boluses.

2) The applied modulation uses appropriate time-fractal series, which pro-
mote the correct signal processes in cells after the plasma membrane demodu-
lates the signal. The time-fractal represents the spatio-temporal complexity of
healthy homeostasis, maintaining the necessary systemic equilibrium, despite
the disturbing local balances.

These novelties, as I described above, could solve many problems connected
to the complex control. The homeostatic balance of the immune system is essen-
tial. The flexible adaptability of SARS-CoV-2 avoids any homeostatic regulations
that make it complex indeed. Our task is supporting the natural processes to find
a way of repairing the lost control. The in situ generated ICD provides genetic
information for APC and forms CD8+ T-cells may be one of the solutions. The
transferred information is specific to the actual infected cell and, regardless of
the mutation, serves as a feedback mechanism to destroy it. This is an opportu-
nity to target and try to kill cells infected by viruses. Through this mechanism,
mEHT treatment could interrupt or at least slow down the rate of viral replica-
tion, the delay of which may be essential in preparing for adaptive immune de-
fense. Slower replication activity can retain mild disease does not evolve to se-
vere stages. The complex cooperation of mEHT with the innate and adaptive
immune system causes a systemic effect (abscopal) from the local treatment site
throughout the body [352]. The method had shown preclinically [353] and clin-
ically [225] eliciting an adaptive immune response in oncology. DAMP induces
targeted apoptosis leading to ICD by creating molecular clusters and systemic
effects (tumor vaccination, patented [354]). And expectedly could lead to vacci-
nation against viral infection, as occurs in malignant cases.

The inhibitory effect of mEHT against COVID-19 is hypothesized due to its
immunological and biophysical selection of cells that create apoptotic signal
transduction in infected cells. The process uses bioelectromagnetic effects and
takes into account complex regulatory needs. The actions of mEHT in the later
stages help the complex fight for healing. The method we propose can generate a

virus-specific immune response electromagnetically in situ.
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Challenges of the Therapeutic Paradigm and Management of
the Therapy

The clinical management of the disease is complex and needs right-time deci-
sions about the applied treatments [355]. The adequately sequenced treatment
series could synergistically increase the patient’s chance of cure. This is also re-
lated to the fact that when the treatment starts in the early stages of infection, it
may significantly slow down the infection’s exacerbation, which can provide suf-
ficient time to develop an adaptive immune response, which can be aided by
DAMP-ICD processes.

At the time of development, infection with the SARS-CoV-2 virus can be di-
vided essentially into two phases, separated by basic immune processes [350].
The two phases, innate and adaptive immune reactions [356], occur superim-
posed and accompanied by cytokine waves [357]. The applied mEHT must be
adjusted to the treatment periods (Figure 19). It is sometimes performed suc-
cessfully when the patient remains asymptomatic, or the symptoms are so mild
that the patient does not recognize them.

The clinical intention is to prevent the development of a severe disease even in
the first phase when the patient still shows mild symptoms. A problem arises
when the viral load dose is too high or the innate immune response is too weak
to exceed that dose. Then rapid progress of shortness of breath dominates the
symptoms [358]. When the disease worsens in the second stage, the adaptive
immune system’s activity will be decisive [356]. The immune-activated high cy-
tokine production in the second wave typically creates a cytokine storm that
primarily requires active medical attention and sometimes treatment in the pa-
tient’s ICU [359]. Leukocyte-mediated antiviral responses again need a balance
in a dual role, as they can help counter the effects of the SARS coronavirus and
cause severe pneumonia. The dose of the virus and the timing of the processes
can be crucial in preventing infection, which again requires only dynamic sto-
chastic considerations. The direct way considers the complex dynamism of using
the different drugs in their regulation of equilibrium. When the therapy uses
them in the appropriate time sequences and taking care of homeostatic regula-
tion and its temporal factors, success will not be lacking.

The INF-mediated immunological dynamics became the guiding factor [360]
to find the optimal and adaptive treatment. The favorable balance of DAMP in
antiviral activity requires close monitoring and patient adjustment. The dose to
form the various immuno-active molecules must be adjusted to cytokines’ con-
centration, which helps avoid over-regulation, leading to a septic storm. Devel-
oping fibrotic processes is one of the clinically most problematic tendencies. In
the intermediate stage of viral infection (weeks 2 - 5), fibrosis signs are already
shown: fibrin deposition and infiltration of inflammatory cells and fibroblasts in
the epithelial cells of the alveolar parts. In the later stage (weeks 6 to 8), the lung
tissue becomes very fibrotic with collagen deposits.

The fibrosis treatment could be artificial respiration in case of shortness of
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Figure 19. The distribution of the various characters of SARS-CoV-2 infection and treatment possibilities during
the infection. Note the distributions are probabilistic, do not cover individual cases. The individual conditions de-
pend on various factors, including the dose of the viral load, the patient’s environment, the habits and diets, the
“prepared” protection of the immune system, etc. Due to the considerable individual differences, the distributions
are normalized as much as was possible. The intervals are approximate like the distributors are also estimates. Dis-
tributions are composed in their most probable form using the results [199] [355] [361]-[369]. The disappearance
of antibodies against SARS-CoV-2 was also measured [370], but others measured the opposite; the antibody pro-
tection exists for at least two years [371].

breath. In less severe cases, this is done simply by intubation with tubular dosing

of oxygen, but in more severe cases with mechanically forced ventilation, “posi-
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tive end-expiratory pressure” (PEEP) is applied [372]. Although this procedure
saves lives, strong mechanical interaction can cause serious side effects [373].
Lung damage caused by mechanical ventilation can develop into additional ALI
[332]. These changes’ underlying mechanisms may be an epithelial-mesenchymal
transition (EMT), and the release of profibrotic mediators caused by cell stret-
ching and mechanical ventilation [335]. Aggravating ALI could also induce
pulmonary fibrosis. In the period of infection, the SARS-CoV-2 virus progres-
sively replicates in the upper respiratory tract. Extensive mechanical ventilation
can facilitate the direct penetration of high concentrations of the SARS-CoV-2
virus from the URI into the lower respiratory tract, eliciting the effects of neutra-
lizing possible antibodies on the mucosa. Intensive PEEP may be associated with
strong functional effects; hyperinflation, and significant hypercapnia (hypercar-
bia) caused by ventilation of dead parts and occurs to reduce hypoxia [374].
With ventilation, the risk of lung injury is high; most mechanically ventilated
patients develop severe ARDS [375]. The detrimental effects of mechanical ven-
tilation can further exacerbate the patient’s condition, which is mediated by cel-
lular, molecular mechanisms involved in mechanical stress-induced lung dam-
age. However, patient selection for PEEP treatment is also not straightforward,
as the additional extent of viral lung injury limits patients’ choice. In contrast,
pulmonary hypertension is usually not a clinically relevant factor in the screen-
ing process, causing physiological problems during treatment.

Due to the possible damages, the use of “preventive” PEEP is not recom-
mended [376]. Use it only in case when it is necessary indeed. After intubation
oxygen supply, an assisted breathing associated with intubation should be used.
In this phase, the patient could be treated by mEHT to ease the symptoms by
freeing the airways with dilatation and painless relaxing. Accordingly, PEEP
mechanical ventilation should only be used in insufficient critical respiration
and should be used as carefully as possible. The adverse effects of PEEP could be
severe, leading to worsening the patient’s condition. The risk/benefit ratio of
PEEP-induced lung injury may be higher than without this mechanical support.
The strategy has to be well adapted to the patient [377]. When necessary, the
PEEP treatment must be kept to the minimum, which enough for patient
breathing. The analysis of data shows attention to the technical data shows. This
usually means that the application of PEEP is airway occlusion pressure Py; < —4
cm H,O or the expected pressure generated by respiratory muscles P, > 15 cm
H,O0, or expected transpulmonary respiration > 17 cm H,0) [149]. The position
of the patient is also an important factor to evaluate in the actual case and stage.
The proposed prone position [378] needs to be applied in the proper time-
course [379]; otherwise, it could cause damages [380].

Approximately one-third of the patients experienced persistent lung abnor-
malities after being cured of SARS-CoV-1 and MERS’ acute disease. Further-
more, approximately one-third of patients infected with SARS-CoV-2 develop
acute idiopathic pulmonary fibrosis (IPF) even after improvement and discharge

from the hospital [381] [382]. Consequently, strict follow-up observation is ne-

DOI: 10.4236/0jbiphy.2021.111001

38 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111001

A. Szasz

cessary after 3 - 6 months of the healing process completed in the hospital to
warn of the potential hidden risk of developing IPF. Post-treatment care should
prevent, cure, or at least block the further development of the disease’s conse-
quences, mainly the problems of fibrotic processes. The antifibrotic treatment of
mEHT, like we shown above, could be considered during, as well as it could be a
useful approach in post-cure time (Figure 20).

In the second wave of the pandemic, more and more patients have relapsed
with persistent symptoms, especially myalgia, intense fatigue, a sensation of fev-
er, shortness of breath, chest tightness, tachycardia, headaches, and anxiety
[383]. Regardless of the severity of the disease, avoiding permanent ARDS, the
damage could significantly reduce the patient’s quality of life. The 8 - 12 weeks
after hospitalization complains are pretty common. 74% of patients had persis-
tent symptoms (notably breathlessness and excessive fatigue) [384] in the UK. In
an observational cohort study, 78% of patients who had recovered from
COVID-19 had abnormal findings on cardiovascular MRI (median of 71 days
after diagnosis), and 36% reported dyspnoea and unusual fatigue [385]. The
three or more weeks of primary care after the presence of symptoms have pro-
posed guidelines [386]. Nevertheless, the research on the reasons for the
long-term care is warranted, together with the rising questions about the conse-
quent morbidities like diabetes, metabolic disorder of interstitial lung-disease
[387].

The reinfection of cured patients is also possible [388], so follow-up is rea-
sonable. Returning to the analogy of military strategy: the possibility of winning
a war lies in the new technologies, the new weapons that are beyond the enemy’s

Figure 20. The possible rehabilitation treatment of mEHT. The treatment may be used successfully for the

convalescent period against the remaining fibrosis and edema.
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expectations. Chemical machinery is embedded and regulated in complex ways
in living objects, developed and optimized by evolution over millions of years.
We have to use those effects and technology against COVID, which is above
specially chosen chemical reactions. We need a deductive (holistic) approach,
which considers the system, and deduces the details from the complete unit

[389]. Our presented hypothesis below gives a proposal to solve this challenge.

5. Conclusions

The human system has a complex regulatory mechanism controlled by various
homeostatic actions to maintain the dynamic balance of the living organism.
The self-similar structuring [76] develops an intrinsic self-time [169], regulating
any developmental process’s complex effects in the organism. Responses must
consider this complexity, taking care of events’ timing and the formulation of a
balance. The balance determines the immune/autoimmune developments, the
viral dose’s effect concerning the immune developments, and the dangerous cy-
tokine storm. The mEHT method, with its fractal physiology considerations,
could help you find the best treatment option. I am convinced that the complex-
ity of the treatment could only manage the disease’s complexity. Expectations
about a “miraculous” and unique curative effect are not realistic.

According to our recent knowledge except us nobody presented bioelectro-
magnetic treatment proposal to treat the COVID-19 and its consequences in
convalescent period of time.

The mEHT method seems to be an optimal complementary treatment for
SARS-CoV-2 infection and its consequences. It has special bioelectromagnetic
steps to select for virus-infected cells, based on their markedly changed imped-
ance in their cellular microenvironments. Excitation of membrane rafts and re-
ceptors induces transmembrane signals that choose apoptotic pathways and
form DAMP and ICD, which develop virus-specific immune responses. An ap-
propriate time fractal amplitude modulation attempts to balance the unusual
systemic regulations. Time-fractal modulation drives processes in the direction
of healthy homeostatic balance, promoting the immune system for vigilance
[390]. Allometric fractal considerations help solve structural and metabolic
problems of SARS viruses [81]. Mechanistic investigations of the effects of
mEHT in related pulmonary fibrotic animal models can be effectively performed
using in vivo molecular imaging outcomes [391], and X-ray computed tomo-
graphy fractal dimension analysis [392]. The mEHT acts on the fractal complex-
ity [393]. It uses an allometric approach [394] for the self-similarity [76] of ho-
meostatic systems [59] [395], providing additional support for its action against
the formation of IPF.

The mEHT is a possible and feasible treatment to manage the complexity of
the therapy. It could be used for three purposes, encompassing all medical activ-
ities used in the epidemic. The method could be applied:

1) as prophylactics, when the infection is recognized, but symptoms have not
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developed or only weakly developed yet;

2) for the treatment of patients suffering from mild and severe symptoms;

3) for the recovery period, when the individual is discharged from the hospital
but needs rehabilitative care.

Our proposal is to use an adequate electromagnetic treatment, which can
solve numerous challenges in the SARS-CoV-2 viral infection and its conse-
quences, based on the results obtained by the mEHT applications that have
proven to be successful in malignant diseases [396]. We propose the application
of a broad set of mEHT actions for the treatment of SARS-CoV-2 infection and

its post-treatment syndrome.
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Abstract

A heuristic stochastic solution of the Pennes equation is developed in this
paper by applying the self-organizing, self-similar behaviour of living struc-
tures. The stochastic solution has a probability distribution that fits well with
the dynamic changes in the living objects concerned and eliminates the prob-
lem of the deterministic behaviour of the Pennes approach. The solution em-
ploys the Weibull two-parametric distribution which offers satisfactory deli-
very of the rate of temperature change by time. Applying the method to ma-
lignant tumours obtains certain benefits, increasing the efficacy of the distor-
tion of the cancerous cells and avoiding doing harm to the healthy cells. Due
to the robust heterogeneity of these living systems, we used thermal and bio-
electromagnetic effects to distinguish the malignant defects, selecting them
from the healthy cells. On a selective basis, we propose an optimal protocol
using the provided energy optimally such that molecular changes destroy the
malignant cells without a noticeable effect on their healthy counterparts.

Keywords

Self-Organizing, Self-Similarity, Avrami-Function, Weibull-Distribution,
Temperature, Specific Absorption Rate (SAR)

1. Introduction

Hyperthermia has had a long and bumpy history from the dawn of human med-
icine. The overall body temperature has long served as the basic reference by
which to measure the systemic hyperthermic effect of various conditions, in-
cluding natural and artificial impacts. Localized heating, however, was not so
easy to understand. The body’s thermal homeostatic control regulates the
blood-perfusion to prevent a sustained increase allowing for a rapid reduction in

temperature, provided no further energy was provided from a local ener-
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gy-source. The blood which has a cooling action on the local tissue, also has a
heating effect on the whole system as the heat is transferred through the circula-
tion to the rest of the body tissues

However, the process of heat distribution in the body is not a simple thermo-
dynamic process. Living organisms are highly heterogenic and have complex in-
terconnections and feedback regulations within. The non-linearly increasing
blood-flow (BF) [1] for the regulation of rising temperature does not only act as
a thermodynamical heat-exchanger. The blood delivers life-supporting mole-
cules, such as oxygen and nutrients, as well as various regulating species such as
circulation cells (like immune cells), proteins (like cytokines, chemokines, eryt-
hrocytes, etc.) and molecules (like carbon dioxide, various ions, etc.), for the
chemical actions required for the processes of living. The thus intensified oxygen
delivery supports the radiosensitivity of tissues. This effect is well established in
radiotherapeutics. Moreover, the vasodilation and better perfusion through the
vessel walls and the cell-membranes as a result of increased heat, together with
the increased reaction rate of the chemicals, supports the action of chemothera-
pies. On the other hand, in massive tumours, the neo-angiogenic arteries do not
vasodilate, as they lack musculature in their vessel walls [2].

The malignant tissues are different in their structure, cellular network, meta-
bolic processes, and energy- and alkaline balances from their healthy counter-
parts. These particular biophysical differences determine the reaction to heating
[3]. The bloodstream counteracts the overheating, regulating the flow capacity of
the vessels as a result of physiological feedback cycles. The elevation of the tem-
perature can cause vasoconstriction in certain tumours, reversing the develop-
ment of blood perfusion and modifying the heat conduction [4]. The same in-
crease in temperature in the neighbouring healthy tissue causes vasodilatation,
with a corresponding rapid growth in its relative blood perfusion and heat con-
duction [5]. The change of blood-perfusion can result in a heat trap [6], helping
us to selectively increase the temperature in the area of already-limited perfusion
[7] caused by the higher internal pressure of the tumour [8]. The blood-flow
(BF) of tumour tissue behaves in a different way with respect to temperature than
its healthy counterpart [9]. Due to the missing musculature of the neo-angiogenic
arteries, tumours are not able to react in the same way as the normal vessels in
an adult body, and so the BF can decrease as a result of heating [10]. The relative
BF can even drop below that of healthy vessels [11] and the dynamism of the
various tissues changes [12]. The increasing temperature can change local im-
mune-reactions and the immune-status of the heated volume. A temperature of
over 40°C downregulates the natural killer cell cytotoxicity [13], and other im-
mune actions can be weakened too [14].

A mandatory parameter of all medical interventions is dosage, by which the
desired effects and active changes are measured and controlled. Hyperthermia,
by definition, involves a temperature increase, so the use of the temperature as a

dosing parameter appears to be evident. However, for the regulative control of
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dose, we expect a volume/mass dependence of the applied unit, such that a
half-dose could be applied for half the mass, with the size of the target deter-
mining the applied dose. The challenge is that the temperature does not satisfy
this elementary supposition; it does not depend on the size of the target. If we
apply temperature as a dose and have a certain temperature in a volume, then
half of that volume will have the same temperature and, indeed, any portion of
the volume will also have the same value of temperature because the temperature
is the measure of an energy average. The challenge of dosage is a barrier to the
acceptance of hyperthermia in oncology [15]. The solution could lie in defining
a reference point [16] chosen for necrotic tissue damage. It is observed that a
temperature of 43°C causes satisfactory necrosis in vitro in cell-culture of Chi-
nese Hamster ovary tumour-cells [17].

The living object is a complex, mostly chemical piece of “machinery”, where
the temperature is one of the overall regulating factors. We can use the temper-
ature dependence of the general chemical reaction rate (Arrhenius law [18]),
which is also applicable in biology [19], where the Boltzmann distribution exists
[20]. The dose was chosen according to this concept [21], and was later defined
as “cumulative equivalent minutes at 43°C” (CEMA43°C). The location of a phase
transition within the cells is expected to be in the lipid membranes [22] [23]
[24]. This cellular phase transition supports the choice of 43°C, as the base tem-
perature is at approximately 42.5°C [25]. The break characterizing this phase
transition is observed clinically, too [26] [27].

While the challenge associated with the dose was overcome by fixing the dose
of hyperthermia, another barrier in the acceptance of hyperthermia was hig-
hlighted. The BF causes an unstable situation in the locally heated tumour due to
its active cooling as it travels from the unheated body through the tumour. Ad-
ditional to their extreme heterogeneity, most tumours create inhomogeneities in
temperature in the tumour which is increased by the competitive thermal ac-
tions between the external heating and the blood-cooling in the capillary levels
too. Isothermal equality, which is mandatory for the dosing, is therefore not
guaranteed. The solution was to add an additional measure to the CEM43°C unit
in which the character of the inhomogeneity is conveyed by a special notation,
Tx, denoting the percentage x in the target volume having temperature T
CEM43°C Tx. Presently this is the widely applied “official” dosage unit of hyper-
thermia applications in oncology. A new, temperature related dose is emerging,
the TRISE, which correlates with the complete remission of the patients [28].

2. Method

The temperature development (measured in °C) is interconnected with the spe-

cific absorption rate (SAR):

absorbed power [Watt W}

SAR = -
kg kg

(1)

mass which absorbsit

(The expressions in the [ ] brackets denote the SI units of the value). The energy
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absorption creates the increase in temperature, and the SAR characterizes the
dynamism of the absorbed energy
absorbed energy [ Joule J }

=W
second s

)

Power = — - -
time period of absorption

The temperature change (A7) depends on the absorbed energy in the heated
mass. The absorbed energy is determined by the absorbed power, the SAR mul-
tiplied by the duration of its action providing the energy absorption in the target,
so the absorbed energy is the sum of the products of the SAR and its actual dura-
tion:

energy t J
=27 _E(t)=) SAR.-7=SAR-t | — 3
mass ( ) ZO ‘ {kg} ©

where #is the duration of constant SAR value. The SAR = SAR(T) usually de-
pends on the time; consequently the energy is the integral of the SAR(T ) by
time until ¢application time:

E(t):_j)'SAR(r)dr Lﬂ @)

g
The energy absorption naturally depends on the specifics of the character of
the matter (¢ specific heat), showing how much energy is necessary to heat up 1

kg of given material by 1°C:

co energoy ’ Jo 5)
mass-C | kg-"C
Hence the temperature rise of the tissue with specific heat ¢ during the time
period Atis:
cAT ~ POWer | Wos_ T 6)
mass kg kg
and consequently
AT _power o p | W )
At mass kg

However, the heating situation is more complicated because the local heat is
conducted away by the BF which acts as a heat-sink of the absorbed SAR. The

specific heat of the blood is ¢, and the effective blood perfusion rate is

3
w, _m or 1 10 |, which is the blood flow through the vasculature
100 g-min 6 kg-s

of the given volume per unit tissue-mass per unit time. In most cases, the tissue is
considered to be equal in size to the complete volume of the micro-circulatory sys-

tem. According to this approximation, the unit of the blood-perfusion transferred

ml — = ! 1:l><10’31 . When we
100g-min 100x60s 6 s

is approximately described by {

m3

apply the above consideration for SI units, we get: {k
g-s s

=10 l} . The error in
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this is 22 < 1%, where p, and p are the density of the blood and the sur-
P

3

k
rounding tissue, respectively.) The blood density p,, {_g} sinks energy thus:
m

cooling = —¢, p, W, AT, {L—_C = _} (8)
kg-

Due to the regulatory role of the blood in thermal homeostasis, the W, de-
pends on the temperature: W, =W, (T). The thermal role of the BF requires a
massive thermal pool which keeps the base temperature constant (body temper-
ature, Ty = 36.5[°C] ). Various heat exchanges with the environment ensure
the stability of the base temperature. We can therefore introduce a parameter f
[29] such that:

1 when no heat loss
f ={ )

0 when only heat loss

The f =1 condition means all metabolic energy is used for the reactions as-
sociated with life, while f =0 means the metabolic energy does not support
life; it is radiated to the environment as heat. Naturally, both are extremes,
f =1 being impossible because the living state is an open system, and f =0
because life needs energy for itself. For human adults at rest f = 0.15 [30], so
the heat exchange is intensive enough even though there is intense local heating.
This is an important factor when the blood-cooling by BFis considered, the heat
being effectively radiated out, showing that the blood is able to maintain its
cooling efficacy.

A further complication is the heat-diffusion in the tissues, by which the tem-

perature spreads by time even without blood-circulation. This naturally depends

on the gradient of the temperature in the space, given by grad(T)= j—T , where
X

ar

dx’

directions (all directions being designated by the bold lettering). This gradient

°C
{—} is the temperature change d 7'in the space interval dx calculated in all
m

will be the driving force of the smearing of the temperature in the space, so its
change in the space characterizes the thermal diffusion:

d[ grad (T 2 2 : )
kM:k _df+2+g =va,{ ! 'ﬁ‘i} (10)
dx dx* dy® dz

mC m> m
where the sign “V” symbolizes the thermal diffusion process in all three

(X, y,Z) dimensions of the space, centred around the actually chosen x point,

and where k,{%} is the coefficient of the heat-diffusion. (“ VT ” therefore,
m .

demonstrates the temperature spreading in all three dimensions). One more

factor modifies the energy balance: the increased metabolic rate by temperature

3

W
~q,pl 141 {—} [31], where (, is the basal metabolic rate ¢, = BMR,L{E} .
m g
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The BMR has allometric scaling [32], which allows the determination of the
BMR depending on the body-mass [33].
Considering the above terms, the equation which describes the heating

process is: (Pennes equation [34])
oT
PRC = PSAR =G, (T)(AT) —k, V7T + G117 (11)

The analytical solution of this partial differential equation is a difficult task.
The first approach uses the Green-function [35] [36] and the Green heat kernel
function [37], and approaches an analytical solution [38]. The point source
Green function solution [39] can simulate the highly localised heating using a
nanoparticle or thin needle. Heating by 915 MHz from the skin’s surface was
calculated. Interestingly, when the BF has spatial inhomogeneity due to the
cooling bolus on the surface, it produces a bump in the temperature develop-
ment by depth [40].

Despite the possibility of the analytical solution of the Pennes equation, it is
not widely applied in practical use. Its complicated mathematics deters many
physicians from using it, but in fact, the complicated mathematical calculation is
not necessary. Numerical methods are precise enough for efficient use [41]. Us-
ing small differences (small steps of developing processes, denoted with A), in-
stead of the differential approach, is entirely compatible with the homeostatic
control, which does not allow sudden, very rapid changes, even when the con-
trolling signals are rapid. Clinical standards average the SAR in the MHz range
of frequencies over a six-minute period [42]. As a consequence, the differences
can be used instead of derivatives in practical approaches. Hence the complete

balance of treated healthy tissue is:

AT
P T PrSAR —C, oW, (T )(AT)

AT . AT . AT
Al —i+—j+—Kk (12)
AX Ay Az (aT)
-k, Ax +q,p1.1

where i,j and K are the unit vectors in the 3D dimensions x, y and z and
o . LW

the equation is written using the SI units | —|.

m

The characteristic constants used, collected from various pieces of literature,

k k
are: Pumoqur = Pt = 1050{ g}’ Poood = Py = 1060[;%},

m*
k w W
Preatty = P :1190[_%} a =368{—3} z0.37{—}, [43]; or
m m kg
w W J J
21| [ 21000 = |, [44]; ¢, =3639| —— |; ©, =3840] —— |, [45];
q° {kg} Lf} G Lgfc} " {kgfc} -
W W
¢ =3800] —— |, [46]; k, =0.56[—0} K, :0.56[—0}
kg-"C m-C m-C
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k: k:
Wo tumour = PoWor = 1-8Lngg.s} 5 Wh heaitny = PpWop = 3-6|: g } [47] [48]. Data

m’ s
may vary by organs [49].

It is evident that the BF can fundamentally modify the calculations. The mea-
surements of the BF in clinical practice give inconsistent results measured even
in the same patient. The person’s actual state, comfort level, stresses, and envi-
ronmental and social factors cause deviations in the skin condition, modifying

the results of the measurements, so the uncertainty is clinically inherent [50].

g

sources. The critical fact is that the electromagnetic non-ionizing heating

W
The SAR {k—} identifies the power intake per unit mass from outside energy

processes dominantly use electric fields, pumping considerable energy into the

1
larger target. The SAR depends on the conductivity (O{Q—}) and the allied
-m

v
electric field (2 {—} ):
m

PSAR = o Z° [EJ (13)
m

when the electric field is sinusoidal then its peak value has to be divided by V2
to obtain the average. Consequently, in practical use, [51]:
SAR ==’ {E} (14)
2p kg

The most substantial challenge in the calculation of the absorbed energy is the
high heterogeneity of the absorption process. The human target is heterogenic in
the thermal, electrical and structural aspects.

Additional to the static challenges, the heterogeneity appears in the dynamism
of the transports non-linearly, as well as in the various chemical reactions that
consume energy in the living target. Consequently, the parameters in (11) and
(14) are time (#) and space (x) dependent so the correct equations, taking into
consideration the heterogeneity in micro and macro ranges, are in reality very

complicated. The Pennes equation with spatiotemporal (X,t) dependences is:

o (x,t)c(x,t)%

= py (%) SAR(X,t) =, oW, (T, X, 1) (AT (x,1)) (15)
—ky (X)V2T (%) + Gy (x,t) p (x,)1.147)

and the external energy-pumped is:

SAR(x.t) = zi)((xx’ft)) : (x,t)[k—vﬂ (16)

[1]

Due to the complications, we usually simplify the situation with rational as-
sumptions:

1) The metabolic addition in the heating phases will be negligible compared to
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the incoming SAR, so it is not considered in most of the calculations. The neg-
lection can be explained according to the principal of the optimization of living
processes in their adaption to environmental challenges. The consequence of the
life-optimization of energy transfers via chemical reactions minimizes thermo-
dynamic losses [52] [53]. However, hyperthermia increases biochemical reaction
rates [54] and, therefore, the metabolic rate as well. The rapid growth and higher
metabolism of tumours typically yield tumour temperatures higher than the
surrounding healthy baseline temperature [55]. When the metabolic addition is
more than 5% on top of the SAR, we include it in the calculation.

2) In a tumour situation, the main macroscopic heterogeneity is between the
tumour and its healthy environment. The parameters at the surface of the tu-
mour do not jump but have a slope, depending on the kind of the tumour and its
stage. The gradient is mostly created by the homeostatic control of the BF.

3) The macroscopic spatiotemporal dependence of the densities (p), specific
absorption rates (¢) and conductivity (o) is weak, usually it is less than 5% in
both the tumorous and healthy tissues. Consequently, in practical calculations,
we consider these parameters as constants in the specific tissues, distinguishing
only the tumorous and non-tumorous mass. Detailed reviews and discussions on
tumour-blood-flow affecting the applied temperature are available [56] [57].

4) The largest heterogeneity, however, is microscopic. The tissue contains in-
herently different electrolytes separated by membranes and other structures
(such as vessel-walls, node-walls, etc.). In tumours, the malignant cells and their
microenvironment dominate the heterogenic behaviour. The microscopic hete-
rogeneity can be specially targeted, choosing the proper frequency for selection
[58] [59]. The frequency dispersion by the various components of the micro-
scopic tissue environments will be discussed later.

The homeostasic functions characterize the local stability of the living system,
having very complex feedback mechanisms which secure the stability against a
relatively wide-range of perturbations. The homeostasis is not static. It is a
self-organized dynamic process that has no static state at all. The system is ener-
getically open. Its rigid, static state is death. The complexity of the dynamic be-
haviour guarantees robust stability, so the system is in a homeodynamic position
rather than homeostatic.

The complexity of the dynamic interaction represents a feedback regulation of
the system at every level of its structure. The complex system cannot be consi-
dered as a sum of its distinct parts. The whole is more than the sum of the parts;
the interactions are largely non-linear; the system is energetically open and has
adaptive exchanges with its environment. The approach to describing it must be
analytic and not synthetic. Considerations regarding the complexity create huge
challenges in the development of the calculations, the attempted solutions to
which typically uses a synthesis of the parts, which could be calculated. However,

this calculation strategy does not work. The analysis must consider the complex-

ity.
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We could overcome the above difficulties by considering one of the robust beha-
viours of this complexity: the self-organization and its consequent self-similarity
[60]. The complexities of the living structures have a universal behaviour: they
are self-organized [61]. Recent decades have seen the development of various
approaches describing the complexity of systems on the basis of self-organization
[62] [63]. A great many studies deal with fractal physiology [64] [65], describing
biological self-organization [66]. This peculiar structure is built up according to
relatively simple rules based on self-similarity [67]. The dynamism of the struc-
ture is determined by the symmetries of the system [68], and constructs a
self-managed spatiotemporal fractal network [69] [70], leading to a common bi-
oscaling behaviour of living material [71]. As a result, the similarity of living
species [72] allows allometric scaling in 24 orders of magnitude from the smal-
lest to the largest bio objects [73].

Living systems are open dynamic structures, completing random stationary
stochastic self-organizing activities [74]. The self-organizing technique generates
a spatiotemporal fractal structure, which is self-similar both in space and time
[75]. The emerging fields of bio-scaling [32] [76] [77], and network analysis [78]
[79] extend detailed analyses. The characteristic stochastic (probability) beha-
viour of living matter is related to the intrinsic bifurcation in the entirety of the
living organization. The basic bifurcation mechanism could be represented by a
non-linear double-well potential of chemical reactions [80] [81], generating a
chaotic arrangement.

The self-organized self-similarity describes and defines living objects [82] ac-
cording to the universality of their complex feedback mechanisms to control the
actual dynamic equilibrium, that is, their homeostasis. The progression of life
involves non-linear and non-equilibrial thermodynamic and chemodynamic con-
sequences including fractal structures and phase transitions like in non-living sys-
tems. We may use the robust self-similar actions in solving the heating process
in a stochastic way.

To calculate the temperature development over time, let us introduce a stochas-
tic variable € defined by measurements on the cohort of individuals. @ is the time
taken to reach thermal homeostasis, a saturation in the temperature development

(the time to the stage when % = 0 ). The deterministic approach gives modelling

facilities for the interpretation of data, but the reality is stochastic, determined by
the probabilities of events, and no deterministic decisions can be made. Deter-
ministic models could give information about the large-scale average nature of
the dynamism, but the details will be hidden. The stochastic description de-
scribes the reality in a very general way and provides a good tool for the design

and analysis of experiments. The introduced & stochastically describes the personal

and individual differences in obtaining % =0 conditions during the time of

treatment. It shows the variation in the control of thermal homeostasis ( 7H) ac-

cording to the subject of an individual treatment; see Figure 1.
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Figure 1. The TH state fixes a temperature value 73, where the curve saturates, and the
AT
thermal homeostasis keeps the temperature constant (A_t; j The stochastic time-

parameter & of the individual heating characterizes the time when the 7H happens.

The distribution function of 7H is the probability of the &time being less than
or equal to time £ namely

Py () =P{O<t} (17)

Thus, the probability distribution of dynamic equilibrium (temperature de-
velopment function, the time of control of the development (C)) can be defined
by the probability of the equilibrium & time being higher than ¢, which can be
expressed in the form

Pe (1) =1 Py (1) = P{O> 1} (18)

The density function of the dynamic control distribution function is a derivative

of Pg (t):

dpe (t
f(t)= p;t() (19)

The f (t) is the density of the probability of & therefore, the average Ois:
(0)=[tf (t)dt =" pc (t)t (20)

Let us introduce a function of the rate at which a loss of control occurs at
(t+At): h(t). This failure-rate refers to when the thermal homeostasis cannot
control the heating process. It is a “hazard” that & does not describe the ho-
meostatic process. The h(t) is the “uncontrolled rate” or “out of control rate”.
The h(t)dt rate measures the probability of the failures during the ¢length of
control-time of the evolving process to 7H. Therefore, the probability that in the
case of a flength of time to 7H, loss of control occurs at (t+At ) is:

d Pc (1) d[l_ Pru (t)}
CPe(tAY) e o a0

pe (1) Pe (1) pe (1) P (t)

h(t)At=1
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Hence:

h(t)=-—3dL_ - ) (22)

It’s cumulative form is:

T
—
—
P
Il

o —_—

h(r)drz—ln(pC (t)) (23)

and consequently:
e (t) = e MO (24)

As we discussed above, the inherent property of living objects is self-organization
and the consequent self-similarity [60]. This could be the basis of the proper pa-
rameterization of homeostatic thermal control, and likewise of the control of the
TH. Taking this self-similarity into consideration, the failure rate in (22) must be

a self-similar time function [83], mirrored by a scaling, shown as follows:
h(t)=at’ (25)

Its self-similarity is obvious because it gives the same function by a magnifica-

tion of any number nz
h(mt)=a(mt)ﬁ =m’at” =m”h(t) (26)
The survival probability distribution function from (23) and (24) is:
pe (t) = e (27)

The self-similar failure rate (hazard function) is:

t
H(t)= Par =& o 28
(t) {ar T (28)

Substituting (28) with survival (27), we get:

Y

t
pe ()= 0 = A (29)
Introducing
1
n\n
t, :(—j and n=f+1 (30)
a
we hence arrive at:
o)
pe(t)=e (31)

which has two parameters for one curve, ¢, being the scale parameter, which is
the natural scale of the time-function variation, and n being the shape parameter.
Consequently, the thermal homeostatic distribution function Py (t) by (17)
and (18) is the well-known cumulative form of the two-parametric Weibull dis-
tribution (WA ¢)) [84]:
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t

Pru (t):W(t):l—e[‘O] =1-pc(t) (32)
with the additional conditions that t>0, W (t) =0 when t<0. The inverse
function, when the time ¢is calculated from a given probability p is:

1
t=W,, (p)=t,(~In(1-p))" (33)

The full regulation and controlling processes are essentially, inherently dy-
namic, so it is better to use the term “homeodynamics” instead of “homeostasis”
[85]. A broad-spectrum of self-organized structures could be described with the
W (t) function, among these structures gene expression data [86] and neural
networks [87]. A consequence of the widely applicable universality of behaviour,
general ontogenic growth [88] also allows the deduction of the Weibull distribu-
tion [89]. Importantly, the information traffic on networks also has self-similar
fractal behaviour as described by the Weibull distribution [90], which also allows
the self-organizing dynamic approach for the stabilizing regulation of the system.
We may conclude that self-organizing and self-similarity are universal laws fin-
gerprinted in the fractal description and can be described by a cumulative Wei-
bull distribution W (t).

Note, that we have preciously applied a mathematical transformation which
unified the physical models of biological processes and self-similar processes
with the help of an appropriate comparative function [83]. Choosing the Avra-
mi-like comparative function, the mathematical model of the processes will be
described by the Avrami-equation [91]. This unusual universality is a conse-
quence of the self-organized behaviour of the homeodynamic conditions of life,
and the general analogy of self-organized processes can be a fruitful heuristic
method in biological model-calculations. The Avrami describes some living
phenomena well [92] [93], and the equation is connected to the self-similarity
and dynamism of the living structures [87]. The Avrami-equation has the fol-
lowing form, which is identical to the Weibull distribution using Weibull func-
tion (WF):

1-W (t) =WF (1) = e[éj (34)

The shape parameter is usually n>1, having the same shape as the psycho-
metric function [94], a consequence of the Weber-Fechner law. In the case that
n=1, WFis a simple exponential function, and where n<1, the decrease is
faster than an exponential decrease.

The case in which n=1 is a simple, very frequently occurring behaviour of
stand-alone systems, satisfying the basic rule of self-regulation by negative feed-
back: the change of the property ® over time is negatively proportional to the

value of the property ®. In mathematical form:

do(t)
= C o(t) (35)
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The solution is exponential decay:
0(t)=0(0)c™ (36)

where cis a constant and @(0) is the starting @(t) value (t=0). When the
starting @(0) =0, then the solution is a decreasing function from ®(0) :

0 (t)=0(0)(1-*)=0(0) 1—5%] (37)

where t, = l This is the form of W (t) at n=1. By the growth of n>1, the
C

complexity of the interaction grows. The equation modifies, thus:

doO(t .
#:—cﬂ[ '(©(0)-0(t)) (38)
and the solution is:
0(t)=0(0) 1—e_[gj (39)

1

where t, = [ﬂj" . The solution in (39) is identical to that in (37) at the limit of

It is clear that the shape factor n characterizes the complexity of the function.
The initial change is a power function and is not linear. The changes in the
WF (t) function are shown in Figure 2. The limit lim _ WF (t) is a step

. . . ®(0) .
function at t=t,, while the lim __ WF (t) =—2>=0.368- @(0) is constant.
e

The mean, the median, and the inflection points are frequently used in the

practical evaluation, as shown in Figure 3:

Figure 2. The changes in WF (t) by 1, measured in self-time units (t, =1).
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Figure 3. The noteworthy points of WF, when t =1 and n=2. The reference point is

1 =0.37,when t=t,. The inflection point marks the mode, the change of the sign of the
e

growth of the derivative of the function.

1

median[ pg (t)]=t,[In(2)]"
rnean[pS (t)] :to_fo e X”dX:tOF(1+Hj (40)

mode[ ps ()] =t, {”—_1}”

n

The values of the median, mode and mean when t;=1 and n=2 are 0.5,
0.607 and 0.456, respectively. The quantile of the WFfunction is =0.632, and it is
independent from the value of n. All the notable points are proportional to £,
and consequently, t; =1 is chosen for the natural unit of the elapsed time. The
value of £ characterizes the self-time of the living system, which is responsible
for the individual complexity (personal variation) of the living unit [95]. Ther-
modynamic optimizing introduces variation in self-time, on the basis of constant

entropy production over time [96]. Self-time is connected to allometry [97], and
3
it scales with the allometric factor, which is usually o zz , the power rule of

which is strongly supported by various physiological times [98]. The real ob-
served coordination time and the self-time are strictly connected, and their val-
ues are transformed into each other [95]. The changes of self-time in the various

parameter-pairs of WFare shown in Figure 4.
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(a)

(b)

Figure 4. WF with various parameters: (a) changing # (scale parameter) in simple exponential conditions, (the shape parameter

is n=1); (b) the shape parameter differs from the exponential, containing extended complexity (n=3).

The energy absorption of living objects follows the rule of complexity, and the
temperature development depends on it. The complex structure determines the
heat-conduction, the dynamic feedback properties, and the steady-state satura-
tion and stabilization of the temperature, providing a constant SAR value. We
assume that the complex behaviour of the WZF describes the absorption and
wash-out processes well, and without a complicated solution of the Pennes Equ-
ation (15) we may describe the hyperthermia process by temperature develop-

ment in a complex system.

3. Results

The WF function is assumed to describe the complex heating process over time
in conditions of thermal homeostasis. Consequently, the entire velocity v; of the
change of the temperature could be described with the WF

AT

=V. 41
A (41)

WF (t)oc

The letter o means that v, behaves in the same way as WF (t) does. It
denotes only a character of heating and not equality, because the values of
WF (t) are limited (0 <WF (t) <1). The character v, is a multiplicative factor
of the real reaction when the system reaches its heating maximum at the 7/ in
time #;;, then WF ('[TH ) =1. In this approach, the development of the tempera-
ture behaves like the sum of WF (t)At terms:

> WF(t)At oc AT (42)

In analytical form, using (34) and referring to the body temperature (7},,,) as

the base-line:

0

T (t)—Tbody oc J.exp —(5] dr (43)
0

Hence Figure 5 shows the graphical measure of the temperature.
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Figure 5. The approximation of temperature development (solid line) by the WZF (dashed
line). The parameters are N=1.48 and t,=1. The unit of time is . The temperature
development is a relative form (it is normalized) of the real temperature, so it is denoted

by HT (t)H in the curve.

The normalization of ||T (t)" can be determined from the saturation value
(the T3, value) of the actual homeodynamic case. The 7H condition reduces the

Pennes Equation (11) thus:
¢, oW, (T)(AT ) +k,V>T = pSAR +q, p1.1*7) (44)

because in this state 86_-[ = % =0. As we discussed, the metabolic term
qopl.l(AT) is negligible compared to pSAR. The diffusion term is also small
compared to the BF, which is an effective heat exchanger. Hence these approx-

imative steps reduce (44) to:
PSAR

CbpbWb (T)(AT) = pSAR =T _Tb C’T(T)
b/~b™b

ody (45)

The density p characterizes the healthy (p,) or tumorous (p,) tissue, depending
on the absorption volume under investigation. Also, the BF changes as well, de-
pending on whether we consider a healthy (w;,) or tumorous (w,,) target. An
early study has shown that an internal temperature change (mild fever) causes a
sudden increase in the heat conductance of healthy tissues [99] due to, after
passing a threshold, the BF delivering seven times more power (up from 21 W/K
to 150 W/K with an increase in body temperature of <1°C). Later it was shown
that the development is not a step-function but a power function. For the tempera-
ture-dependent BF we use the results obtained by a nonlinear three-dimensional
heat-transfer model [100]. The obtained functions for prostate and surrounding
tissues are:

For healthy muscle

(T-45)) .
0.45+3.55exp| ————| if T <45
PomWorn (T) = 12 (46)

4 if T>45
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for healthy adipose tissue

(T—45)") .
0.36+0.36exp EET— if T <45

PoaWoa (T) = (47)
0.72 if T>45
for tumour tissue
0.833 if T<37
(T-37)"
Pt (T) =10833 == if 37<T <42 (48)
0.416 if T>42

The graphs of these solutions are shown in Figure 6. The vasoconstriction of
tumour-tissue is expected from finite elements calculations too, modelling the
human prostate [101].

With increasing temperature, the tumour serves as an effective heat-trap due
to the BF within barely increasing [102], so the heat-sinking effect seen in
healthy tissue is absent. The characteristic difference between the absolute BF of
a tumour and healthy tissue has been observed by others, too [103] [104]. Due to
the angiogenetic effect, the size of the tumour also affects the BF. This depends
on the tumour-weight by negative logarithmic function [105].

Equations (46)-(48) allow the determination of the 7}, from (45). When there
is forwarded power applied (7;,,), and the complete heated mass is M containing
m, and m,, tumour and healthy masses, then M =m, +m, . Assuming an equal
SAR throughout the volume of M, we may calculate the SAR taking into account
the reflected power (2., and the efficacy (7), which is calculated from the vari-

ous losses by the technical realization; we get:

Figure 6. The modelled blood flow by temperature variation [104]. Tumorous tissue
(solid line), healthy muscle (dotted line), healthy fatty tissue (dashed line).
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SAR = (war - IDrefl )77
m, +m,

(49)

Using (46) and (48) for muscle and tumour, respectively, we may calculate the
Ty, solving Equation (45). Denoting the roots of tumour and muscle 7 by 7,
and 7,, we can construct the final 7}, by supposing a complete isothermal 7H
condition:

-~ mT +mT,

T
H
m, +my

(50)

Knowing this 7}, value, the temperature gain is Tgain =T, _Tbody , and so, us-

ing the normalized [T (t)

| , the curve of temperature growth can be obtained:

I (0]

Ty

T (t) = Thoay + Tgain (51)

This curve captures all the complex interactions arising from the structure of
the heated volume. The two parameters n and £, contain the stochastic complex-
ity characterizing the WF of the system, so the diffusivity is also included in the
pool of the complexity.

Let us make the calculation for the capacitive coupling of modulated elec-
tro-hyperthermia (mEHT, trade name oncothermia [106]), with actual values of
WFparameters N=1.48 and t, =1. We will assume the following parameters:

The diameter of the applicator D,,, =0.2m, Py, =150 W,

P =3 W(2%), 1=0.85, depth of the tumour h, =0.1m, the size of the tu-
mor S, =0.1x0.05x0.1=0.5x10"m’ = 0.5/, the body thickness in the supine
position at the belly dy,,, =0.2 m, and size of the entire affected volume

s, =9.05x107m’ =9.05¢ .

The calculated values are: m, =0.595kg; m, =9.5kg; SAR= 12.377%.
The obtained 7}, temperatures T, =45.89°C; T, =40.32°C, and consequently
T, =40.65°C; hence T, =4.15°C. The metabolic addition has no role in this

approximation. The temperature grows as shown in Figure 7.

The metabolic addition is 381E3 = 0.38%, [43]. For simplicity, we count

m g

gain

the metabolic rate as equal in the tumour and healthy tissue, because the same
volume, where the tumour has less malignant cells due to the increased volume
of extracellular electrolyte [107], as well as its volume having certain necrotic
parts. Consequently, with the already higher than healthy metabolic rate of the
tumour-cells, their metabolic activity in the unit-volume is equal to that in the
healthy volume. The overall metabolic activity is 3% of the applied SAR, so it
could be counted in the calculation. In this case, the determined 7}, values are:
T, =47.10°C; T, =40.44°C, and consequently T, =40.85°C; hence

T,.in =4.35°C, which is 0.2°C higher with metabolic addition than without it. In

gain
AT (t)
At

a more general estimation, we use the metabolic part of the change:
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Figure 7. The temperature development of the tumour (right-hand axis) m, =0.595 kg
and m, =9.5kg by the WF approximation (n=1.48t =1) calculated for mEHT.
(P, =150W, P

[

o =3 W(Z%) , 1 =0.85). Other parameters in the calculation are in
the text.

pth(t) = Qo 11T 5 AT (1) = TPy 4870 g (52)
At PnC

In the case of a 6°C temperature increase during the entire t=1h period of
treatment, the metabolic addition is AT <0.5°C. Consequently, ignoring it is
correct.

The beginning of the heating process is quasi-adiabatic, due to the relatively
slow processes of the homeostatic feedback [108] [109]. This situation means
that at the beginning of the heating, the energy entirely heats the target without

other components of the energy balance.
92117 —c, pyw, (T) (AT )=k, V2T = 0 (53)

Hence the task at the start of the heating is to determine the slope of the
starting curve from (15):
AT _ SAR

At c 54

phc%r ~ P, SAR =

This approximation is allowed up until it reaches the non-linearity shown in
the curve, numerically calculated for the above data; see Figure 8.

The activation of the various feedback mechanisms, like the BF, the metabolic
rate, and the heat-conduction, causes the curve to deviate from the linear slope.
The variation of the forwarded power changes the curves, and the appropriate
equilibrium temperature is shown in Figure 9.

The change of the £ self-time changes the shape of the heating curve, but the

final temperature in equilibrium remains constant; see Figure 10.
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Figure 8. The linear slope of T (t) at start (dashed line, right-hand axis). The tempera-
ture development of the tumour m =0.595kg calculated for mEHT (P, =150 W,
P

refl

=3 W(2%), 1=0.85). Other parameters in the calculation are in the text.

Figure 9. The temperature development (solid lines) of the tumour m, =0.595kg by
various forwarded powers, calculated for mEHT (P, =3 W(2%), 1 =0.85). The slopes

are shown (dashed line). Other parameters in the calculation are in the text.

The change of the n shape-factor does not effect as robustly as the scale factor

did; see Figure 11.
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Figure 10. The temperature development (solid lines) of the tumour m, =0.595kg by
various time-constants, calculated for mEHT. (P, =100 W, P, =3W(2%), 1=0.85).

Other parameters in the calculation are in the text.

Figure 11. The effect of developing complexity by growing shape factor 1: (a) temperature development; (b) change to the starting,

quasi adiabatic slope value by n (P, =150 W, P, =3W(2%), 7=0.85).

The shape-factor n, which characterizes the complexity by (39), is distin-
guishable from the simple, single feedback mechanism (n=1). While complexi-
ty develops (n increases) the adiabatic slope starts changing considerably in the
1<n<3 interval, but afterwards the change is not considerable.

When the power is switched off, SAR =0, the system cools down as a result
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of its complex interactions, and Equation (11) reduces to the form where the
complex interactions in (54) derive the change of the temperature:

oT
PrC—

o ~Co oW, (T)(AT) =K, V°T + gyl 160 (55)

The washout time, driven by the BE is different for thermal processes and the
clearance of molecules (like radiofarmacons, tracers or blood-delivered mole-
cules or particles). The main difference is in the mechanisms of diffusion, which
are different for various blood-delivered particles or molecules and for heat. The
thermal washout is also a complex process mainly driven by the BF, but not de-
termined by it alone. In investigations of the clearance of tracers, it is clearly
shown that in reality the clearance (wash-out) tightly depends on BE but these
parameters are not equal, instantaneous mixing with metabolic changes and dif-
fusion breaking the unity. Also, the metabolic heat does not have a direct action
on the clearance, while the thermal washout is directly modified by it.

A “similarity” can be observed in the washout of tracers [110], which is a res-
caling of the time, showing similar scaling behaviour as we have seen in the
heat-up process. The scaling of washout “similarity” is present in the wash-in of
tracers as well [111]. An important observation in contrast material studies is
that the enhancement of the contrast material decreases with temperature
growth, while it increases with the thermal cooling coefficient; see Figure 12
[112]. The main message of this is that the high variability of the BF by tumour
entities, as well as the tumours having massively heterogenic BF, form a gradient
from the centre to the periphery.

In most of the examinations, the diffusion and metabolic parts are neglected
for simplicity, and the temperature dependence of the BF not being considered,
so the following equation remains to be investigated:

dT
PrC—

at —Cy oWy (T _Tbody) (56)

Figure 12. The effect of BF on the thermal coefficient and the steady temperature measured in different tumours. It is important

to note that the tumour-periphery has the highest BF. The BFwas measured with the concentration of the contrast material.
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The starting temperature is 73 and so the analytical solution is exponential:

t
Tt Coy
T(t)=(Ty —Tooay )€ © +Tpog, Where t, = (57)
( ° Y) Oy Cp P Wy

It is a simple exponential equation, which is a special case of WF, when n=1.
In general, neglecting the time-dependent metabolic addition, the thermal cool-
ing is exponential; see Figure 13. The initial slope of the curve characterizes the
quasi-adiabatic energy-take-off again, so it describes the given conditions deter-
mined by the blood flow.

The thermal washout (cooling rate) measurement validated Equation (57) in
the given circumstances, and the guessed washout time, (when the t=t;) is
about 6.5 min, cooling down from 42°C after 30 - 60 min microwave heating
[113]. This approximation was made based on the measurement of the first 3
min, while the cooling to the 7,,,, required a longer time. The washout depends
on the measured tissue and other conditions; see Figure 14.

The time of thermal washout can be modified by changing the metabolic rate
by lowering the temperature, causing a longer tail to the washout function in
time. Consequently, with a longer t; >t, the value will be added to the simple
exponential, which depends on the decreased metabolism resulting from the
cooling process. This additional effect will have a time-lag because of the actual
physiological time of metabolic reaction. Due to the physiological self-time,
which is approximated as the thermal washout physiological time, this time-lag
will be nearly 6 min.

The thermal self-cooling mechanism also has complex behaviour, because it
too depends only on the simple unchanged BF. The BF depends on the temper-
ature, as well as the heat-conduction, the surface cooling with the environment,

and other physiological factors (like sweating, control by the hair, stress-status).

Figure 13. The exponential thermal cooling (washout) of the heated target (solid line).
The quasi-adiabatic fit is shown (dashed line).
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Figure 14. The slopes of the linear fit of the blood-flow vs the washout time of various
tissues [117]. (@ slope of steady-state temperature vs thermal washout; = the slope of the

power
steady-state temperature vs ———————— .
theraml washout

The decreasing temperature causes slower BF and lessens the other regulatory
actions off the cooling rate, so the cooling will have a longer tail than the expo-
nential (WF n = 1) alone. This complexity again induces the application of the
integrative WF instead of the simple exponential. The integral of WF with the
parameter 11> 1 is shown in Figure 15.

The complete heat-up and cool-down temperature development are shown in
Figure 16. Both the heating and cooling have a quasi-adiabatic fit to the linear
slope covering the curve for pretty long sections. Still, the slopes differ, due to
the separate mechanisms and conditions. The heating starts from body temper-
ature, while the cooling starts higher, from the homeostatic one. The conditions
of the BF and other factors change, which cause the deviations from linearity
during the thermal processes. The heating linearity deviates by SAR-promoted
intensified activities of BF, heat-diffusion, and metabolic rate, so the thermal
conditions are forced by energy-absorption. In the cooling period, the system is
alone, and with no constraints, the BF, the metabolic rate, and the temperature
decrease. The heating has an n>1 condition, depending on the structure of the
target, and the self-organized network, which absorbs the energy, while during
cooling nN=1.

The curve changes characteristics with the applied SAR values. Calculating the
SAR from the power situation, we have temperature curves for different applied

power; see Figure 17.

4. Discussion

The original Pennes Equation (11) describes a non-equilibrial heat-flow when
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Figure 15. The long-tail washout function due to the complexity of cooling.

Figure 16. The complete temperature history of heating and the self-cooling by thermal
homeostasis after the switching off of power-absorption.

the temperature is the only driving force, and the parameters are constants, in-
dependent of the temperature. The temperature definition supposes a system in
which the participating units are independent, and only their mechanical energy
changes by growing energy-intake. This has a temperature distribution [114],
and supposes no interactions between the participating units (called an ideal gas).
The Pennes equation is correct and usable, since the internal energy depends ex-

clusively on the temperature, for which numerous model-calculations have been
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Figure 17. The temperature development by the applied power.

provided [115] [116] [117] [118]. To tackle time-dependent transient problems,
some solutions have been published [39] [119].

Nevertheless, in reality, these are temperature-dependent values, and fur-
thermore, their temperature functions are non-linear due to their complexly inter-
connected functions. The non-linear complexity of homeostasis is a game-changer
for the discussion of (11).

Naturally, living objects are not such systems. Interactions with homeostatic
functions must be considered, modifying the energy distribution in the heated
matter. This type of energy utilization is missing from the Pennes bioheat-equation,
leading to the above application of WFto represent the homeostatic complexity.
The main basic constants, the BF, the densities, the specific heat values, the coef-
ficient of the heat-diffusion and the metabolic rate represent the main constants
in (11), but as a consequence of the homeostatic interactions, these parameters
are also altered, which we denoted by the spatio-temporal functions in (15).

The complexity of the task is extended with the inhomogeneous breaks on the
curves when phase transition happens. As a consequence of energy-induced
structural changes, enzyme-assisted phase transitions are frequent in the ho-
meostatic system. The massive number of these structural transitions (entropy
changes in micro-environment of the molecules) gives us the possibility to han-
dle them as a distribution, and we are again in the realm of the self-similarity
self-ordering idea described by WF.

Hyperthermia in oncology is devoted to destroying the malignant cells as se-
lectively as possible. The Weibull distribution is used with success for the
self-organized malignancy in space and time [120]. Cancer breaks the network of
normal cells. The cooperative harmony of the tissue changes to non-cooperative

competitiveness. It forms a new complex structure non-linearly, far from ther-
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modynamic equilibrium, but also self-organized. It could be described as a dy-
namic phase transition from healthy to cancerous [121], described with a clear
analogy to phase transitions in a lifeless phenomenon. The self-organized bio-
logical development of tumours intrinsically developing in a healthy environ-
ment, the tumour-development deriving from that environment and showing
the universal law of growth [122] [123], W ('[) is preferred to describe malig-
nant diseases too.

The heating not only effects the temperature growth but also naturally causes
physical changes. The structure of the tissue will not remain the same as it was
before. The structural rearrangements will be temperature-dependent, and also
energy-consuming. When the energy causes the phase to change, the tempera-
ture does not change; only the structure changes. This is like when water is being
heated and it reaches 100°C, and for a period the system expends all its energy to
turn the liquid to gas (structural transition), while the temperature does not
change during this process. The process is naturally thermal, but the tempera-
ture does not change. When the structural rearrangement is complete, the tem-
perature starts to rise again as the energy intake continues. A similar effect oc-
curs with ionizing radiation therapy when we expect the breaking of the DNA
strands, which absorbs energy. The energy which is not used for this bonding
break causes an increase in temperature, which would be an adverse effect in
radiation therapy.

Some special papers have been devoted to modifying the Pennes-like equa-
tions [124] [125] [126] [127], but none have yet to consider the energy used in
the distortion of the actual arrangements. The energy could be used solely to
bring about chemical changes (distortion of the molecules and restructuring of
the arrangements) in oncological hyperthermia. The temperature will not be
changed locally when the energy is consumed for structural change. The tem-
perature is only a condition (when the change happens) but not a measure of the
change itself. The Pennes equation could be generalized [128] considering the
cellular destruction and the structural rearrangements [129].

The introduction of a WF assisted solution offers the possibility to measure
this structural change from the temperature development curve. The WF as the
velocity of temperature change (41) has a development which is described by the
probability distribution function (PDF) as the derivative of the WF which we

used:

[lJnl e{é]n if 130

if t<0

(58)

First, the velocity changes very rapidly and then, after a peak, it decreases;
with homeostatic control, the reaction of the body activates (Figure 18). This
distribution determines the change of temperature (the WF function), which

determines the temperature curve (the T (t) function), as shown in Figure 7.
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Figure 18. The power-density function of WF. The maximum of the PDF curve is the
approximate limit of the quasi adiabatic heating (see text).

The PDF curve shows the change in velocity of the temperature growth. The
curve starts with the rapid increase in temperature until reaching its peak. The
comparatively very rapid growth could be considered the quasi-adiabatic process,
which determines the starting slope in Figure 8, and so determines the certainty
of the slope.

A simple approach of WF parameters could be obtained from the measured
temperature plot by time [130]. Two helpful points have to be noted, as shown

in Figure 19. The point x,, marks the highest point where the linear fit of the

quasi-adiabatic slope (%) follows the measured curve, and x; is determined by

the point at which the temperature reaches a steady state (homeostatic equili-
brium). These are measured in real-time (in seconds), and are different of course
for tumorous and for healthy plots, which are denoted by the additional sub-
scripts tand A, respectively. We show these values in Figure 19.

The x,, point fits the mode of the distribution function because it corresponds
to the peak of the change of velocity (Figure 18), while the x, point denotes
when the WF decreased to below an error value, which we decide on as 1%. Re-

cognizing these values, we get:
AV In(-1n(0.01

=t, (n_lj and X, =t,exp ((—()) (59)
n n

Both parameters of the original WF could be determined from the two equa-
tions of (59). In doing this, we are able to use the original # units for exact eval-
uations. Note, x;; marks a point from the stochastic approach, which was denoted
by & at the introduction of the WF see Figure 1. The difference seen in Figure
19 between the tumorous and healthy temperature plots follows the selectivity of
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Figure 19. The measured temperature plot is a preclinical measurement [130].

the treatment, which can be quantified by the starting slopes as well as by the
specific differences of the parameters (th - th) and (XHt - XHh) .

The £, point can be determined by simple geometric fitting. We know that the
value of ¢, is always at the point where 1/e = 0.368, so having a slope with this
value on the temperature plot determines the position of £, as shown in Figure
20. The angle of the specific slope which we use is 0.353 [rad] or 20.2°. This sim-

ple approximation directly determines the conversion of time to Z. Note, the

dw (t
derivative of WF at the ¢, point dE ) = _(lJtﬂ = —0.368tﬂ differs by mul-
€ 0

tiplication with — from the same-point derivative of the temperature plot,
0

Mz{ljﬂ:_o%gﬂ
dt e)t, ot

The comparison of the results of Figure 10 and Figure 11 shows that the scale
factor £ causes a massive change in the quasi-adiabatic starting slope, while the
shape factor n causes only a minor change. The difference mirrors their roles in
homeostatic (homeodynamic) control: the # scale factor depends on the dynam-
ic processes in the regulation, principally on BF, while the n shape factor primar-
ily reflects the structural differences. In this way, the shape parameter follows
one of the major factors of the complexity in the temperature development, the
BF, which changes non-linearly with the temperature [131]. The non-Newtonian
behaviour [132], and the flow-state, which can cause the negative impedance of
BF[133], alters the non-linearity by temperature. The difference in angiogenesis
between the tumour and healthy vessel network [134] could also affect the tem-

perature dependence of the BF. The attractive idea of our present approach is the
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Figure 20. A simple geometric fitting to determine the £ unit (see text). Calculating with
(59) could perfectly control this approximate fit.

stochastic considerations, so these effects are well presented in the personal dif-
ferences in the heating reactions, which are considered in the personalized fit of
WEF approach; the complex package in WZF considers all, even small, modifica-
tions.

The assumption is ordinarily that the temperature reaches the homeostatic
state by a rigorously monotonic function. This could be incorrect, however,
when the homeostatic control is achieved too late, or when it does not have
enough cooling capacity to compensate for the heating energy [135]. When sa-
turation occurs earlier than the negative physiological feedback to regulate it, an
overshoot can happen, or an equilibrium may not be formed due to the massive
energy input (Figure 21). The uncontrolled absorption leads to ablation. Such
overshooting and ablation (burning) situations are beyond the possibilities of
these present considerations. The complexity described by WF is valid only in
near stationary developments.

When phase transition does not occur (like when heating water from 0°C to
100°C at normal pressure), the temperature plot is linear across its full range,
but keeping a constant temperature at the phase transition (100°C) and then
continuing linearly with another slope, corresponding to the thermal parameters
of the new phase (Figure 22).

Note the development of the temperature in the case of heating pure water.
Here a fraction of the power applied to humans in local hyperthermia could heat
up the same mass of the water from 36°C to 45°C (Figure 23).

Living objects, of course, do not have the same behaviour as pure water. The
water phantom is far from correct in comparison to a living reality. The water
phantom is homogenous, having only non-homogenous heating due to the ex-

ponential decay of the electromagnetic energy-absorption by depth [136], which
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Figure 21. Relation of the absorbed energy to the homeostatic thermal regulation. The
timing and the energy-compensation balance the actual shape of the temperature plot.

Figure 22. Heating of simple water phantom, temperature vs time. The phase transition
at 100°C happens at a constant temperature, while the elapsed time develops.

may initialize mas-transports by temperature gradient in the volume. The expo-
nential decay sharply, and inversely depends on the wavelength [137]. The at-
tenuation of the power absorption of human tissues differs from water [138];
nevertheless, the penetration remains exponential with various rates of decrease

in the variety of tissues.
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Figure 23. The heating of the water phantom only: (a) 124 W is applied (using 150 W forwarded but calculating 3% reflected
power and 85% efficacy of heating) and heats up ten litres of water from 36°C to 45°C in a duration of less than an hour, while a

volume of 1 litre needs only less than 5 min; (b) ten litres of water reaches the desired 45°C within one hour with 100 W absorbed

power, while one litre needs only 10 W to elevate the temperature from 36°C to 45°C.

A living structure represents an inherent decisional heterogeneity, having a
large number of electrolytes separated by various walls and membranes. Conse-
quently, both the thermal and electromagnetic parameters vividly change in the
macroscopic and microscopic ranges and the homogeneous SAR is illusory. The
self-organized structure drives the organization of the heterogeneity, forming
fractal behaviour [139]. The self-organized self-similar structure present both in
space and time [75], develops spatio-temporal behaviour of the tissues. The
concentration of the electrolytes dynamically changes due to their energetically
open structure, which initializes the dynamism of the system. The living dynam-
ism performs random stationary stochastic self-organizing processes [74] [140]
as a consequence of its self-similar stochastic behaviour. It fluctuates by a partic-
ular noise (called pink-noise, or temporal fractal noise) [141] [142], a fingerprint
of the self-organizing [143], representing a general behaviour of living bioma-
terial [70].

Together with the macro heterogeneity, the tumour is also massively diverse
on a microscopic level. The BF in the tumour has a threshold between the vaso-
dilation and vasoconstriction. The threshold depends on the temperature, and is
usually at an interval between 39°C and 43°C [11]. The angio-change is inde-
pendent of the general inhomogeneity of the tissue but depends on the type of
the tumour and its stage. The angio-reaction will change the temperature devel-
opment, due to the massive change of BF from the vasodilated situation to the
low- BF vasoconstriction. The drop in BF increases the temperature due to the
lowered cooling capacity. The quasi-adiabatic slope jumps in the vasoconstric-
tive stage of the tumour, and the same SAR generates a greater temperature de-

velopment per unit time [135].
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Further microscopic heterogeneity is observed on a molecular level. The struc-
tural disruption and rearrangements use a part of the energy without any consi-
derable change of temperature. Where the energy concentrates on the structural
order, the points on the temperature plot by time remain approximately at the
same temperature values, despite the continuously absorbed SAR accompanied
by the approximately constant temperature as we expect during phase transi-
tions. The SAR at these points is dominantly consumed by the structural energy
and not for the heating of the tumour’s environment.

The heterogeneities influence temperature development, and such a linear
temperature development, as we have in the case of water (Figure 23) is unrea-
listic in the human body. The macroscopic temperature is roughly like that seen
in Figure 8, presenting a linear slope only at the beginning of the heating when
the heat is not yet spreading intensively by diffusion, and the blood-flow regula-
tion has a lag. However, the simple picture has a fine-structure depending on the
dynamism of the heat-diffusion and the blood-flow and other regulating com-
ponents like metabolism. The initial linear slope starts curving downwards, and
after a maximum, the temperature decreases (Figure 24). The intensification of
the blood-flow causes this “bump” in temperature and it is visible only when the
time-lagging feedback appears at the end of the period of intensively rising tem-
perature. Note, the break of the linearity could be earlier in preclinical mea-
surements (see Figure 19), where the homeostatic reactions are quicker. The
thermal homeostatic function keeps the temperature unchanged (7,) and is the
first saturation period, where the vasodilatation/vasoconstriction transition bal-
ances approximately constant value in the tumour (see the tumour-curve up to
39°C in Figure 6), After this point, the temperature might stabilize at another
level for a short time due to the balance (7},), or, if the homeostatic regulation
cannot stabilize the equilibrium, it might start to grow continuously. The vaso-
constriction could easily develop additional necrotic volumes lacking blood-flow
regulation such that the temperature could grow in those regions rapidly. While
the forwarded SAR does not chage; its hetereogenic absorption changes, but va-
ries from the temperature development primarily because of the heterogeneity of
BF. The applied SAR is constant, while the absorbed energy grows but not as ra-
pidly as expected, because the blood-cooling takes energy away in the system.
The energy absorption changes at the vasodilatation/vasoconstriction transition.

The homeostatic “bump” modifies the temperature development at all varia-
tions of the power, too (Figure 25), but the slope of the quasi-adiabatic linear-fit
at the beginning does not change until the very slow temperature increase when
the time-lag of the homeostatic control modifies the starting slope as well. We
assume that the homeostatic cooling switches on smoothly by a Gaussian distri-

bution and with an amplitude factor A:

A t—u ’
| =& 60
o Znexp ( \/5) (60)
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Figure 24. The possible fine structure of the development of temperature in macroscopic
steps. The important factor of the figure is the time-lag of the various effects. Here all the
possible effects are shown, not all of which will necessarily be active in the actual ener-
gy-absorption.

Figure 25. The homeostatic regulation could become active with different time-lags .

which is equal with WF when 1, = o2 and n=2.The time-lag of the start of
this feedback is included in the g, and the “smoothness” is in the #. The shape
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does not change, N=2. The time-lag 4 =0.2 shows an early homeostatic
reaction, which regulation requires a high velocity of BF. In animal experiments
where the heart-rate is higher than in humans, because of the allometric scaling,
a short time-lag is frequent, as we see in preclinical experiments [130]; see Fig-
ure 19. Different time-lags have been used under various conditions in calcula-
tions [43].

The thermal and electromagnetic heterogeneity allow two different ways of
handling the energy-absorption of the living material: make a complete average
of the microscopic deviations, regarding this as equal in the target, or use the
biophysical differences accepting the micro-variations to select the malignant
cells. The first approach considers the entire volume in focus as being like ho-
mogeneous matter, and it is heated irrespective of the differences in the mi-
cro-environments, while the second one concentrates on malignant cells as the
direct aim of the study. The two approaches fundamentally define the perfor-
mance of the actual treatment. When the target is regarded as homogeneous, its
full mass represents the energy-absorber, requesting such energy as is enough for
this task. The micro-selection however demands much lower energy consump-
tion, the intended target of the energy absorption being only a fraction of that in
the homogeneous approach. The selection of the energy absorption specifies the
efficacy of the actual treatment.

The isothermal, homogeneous heating of a local tumour does not reach stable
thermal equilibrium, because the non-linear reaction of the feedback mechan-
isms opposes the heating action, so an instable equilibrium forms a steady-state
situation. In this process, the target develops new thermal inhomogeneities, be-
cause the cooling action of the blood is not equally distributed in the volume of
the focus. As a consequence, clinical practice divides patients into “heatable” or
“non-heatable” categories [144]. The selection is based on the possibility of the
temperature increase in the actual location by local/regional treatment failing to
reach the desired temperature in the target. The “non-heatable” cases could have
the same SAR as the “heatable” ones, but their intensive homeostatic control
blocks the marked temperature increase. We have to accept the real situation:
the technical difficulty of the focussing of temperature is not identical with that
of the focussing of SAR. The temperature depends on various processes, and
naturally changes by elapsed time, spreading over the neighbouring volume.

The final goal of the energy-absorption is not a simple heating; the intention is
to destroy the malignancy. Naturally, chemical and structural changes happen in
the process of the cell dying. An overall, isothermal heating could complete this
task, pumping much more energy into the target than necessary for the elimina-
tion of the cancer cells, heating up all the parts, even those which trigger the
counter-actions of the thermal control. The isothermal approach requires extra
energy to compensate for the forced physio-regulation attempting to restore
thermal homeostasis. The homogeneous heating induces intensive BF and so

risks the development of life-threatening micro and macrometastases, by the in-
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tensification of the delivery of the circulating tumour cells, worsening the
life-prognosis. Multiple isothermal hyperthermia studies have shown effective
and significant local control of the treated tumour, but at the same time present
a decreased overall survival among others for breast carcinoma [145] [146], for
non-small-cell lung cancer [147] [148], for uterine cervix cancer [149] [150], and
even for the easily “heatable” surface tumours [151].

However, the thermal and electronic parameters differ between the tumour
and the healthy environment, allowing the microscopic selection of biophysical
origin. The variation of these parameters modifies the macro and microstruc-
tures of the tissue, varying the heterogeneity of the energy absorption. Malignant
cells metabolize intensively, supporting their proliferation [152]. Their increased
glucose metabolism can be measured by positron emission tomography (PET)
[153]. The extra metabolic activity increases the ionic concentration in the vicin-
ity, increasing the conductivity of that region [154], also detectable by imaging
[155]. The changing of the networking arrangement microscopically causes the
loss of the healthy cooperative connections with neighbouring cells, constructing
a largely different fractal structure [156]. The malignant cells break their inter-
cellular bonds [157] and junctions [158], and individually “combat” all other
cells for metabolic energy. Measurement of the growing disorder in cancer came
with the first imaging of a lesion [159], proving the increase of the dielectric
constant in the microenvironment of the cells [160]. This decreases the complex
electric impedance of the microenvironment of the tumour cells, channeling the
radiofrequency (RF) current to their location [161], allowing their selection by
electromagnetic means [162].

The energy of the current primarily heats up the lipid rafts on the membrane
of the cancer cells [163]. The membrane rafts are groups of clustered transmem-
brane proteins fixed by lipid-protein interactions [164]. A dominant part of the
transmembrane proteins is clustered in raft domains. The rafts collect dynamic
proteins [165], and have high lateral mobility in the membrane [166]. The size of
these clusters is in the nano-range; depending on the ratio of protein to lipid
content, different ranges of their horizontal diameters have been measured: 10 -
100 nm [167]; 25 - 700 nm [168]; 100 - 200 nm [169]. The width of the mem-
brane is 5 nm [170], but the thickness of rafts, due to their transmembrane pro-
teins, is larger. An interesting result [216] is that the temperature increase of the
nanoparticle is proportional to the square of its radius, which gives an easy
comparison of the temperature using the sizes of the particles. The size of rafts is
6 - 50 nm, and the large rafts dominate the protein content of the membrane
[171]. The malignant cells lose their intercellular connections, and the formerly
connected transmembrane proteins form rafts, which are significantly denser in
the membrane of cancer-cells than in their noncancerous counterparts [172].

The extracellular matrix (ECM) and the cellular membrane absorb the main
part of the energy in the MHz region of RF[173]. The water content of the ECM

interacts with the membrane [174], having variant bonds [175], and importantly
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alters the membrane effect, showing a low SAR but high voltage drop [176],
which can help the signal’s excitation of the raft proteins [177]. The electrostatic
charge of the membrane attracts the ions from the ECM, the effect of which is
sufficient to establish a transmembrane potential [178].

The primary targets to absorb the well-chosen RF on the membrane of the se-
lected malignant cells are the transmembrane proteins located in the rafts. The
P/ 0 frequency dispersion [179] promotes the focusing of the energy on the li-
pid-protein interactions at the applied 10" Hz frequency range. Nearly ten times
higher conductivity was measured at transmembrane proteins [180]. Models of
added protein domains with different concentrations in the lipid layer showed
between one and three orders of magnitude higher conductivity in the presence
of protein fractions than the lipid membrane alone [181]. These electric imped-
ance differences guide the RF to the rafts [182]. The thermal effect is limited to
nanoscopic local “points”, the rafts, which are most sensitive to any lethal attack
on malignant cells, which is the basis of the mEHT method. The well-chosen RF
current [183] uses a 13.56 MHz carrier frequency according to the medical stan-
dards. An appropriate time-fractal modulation is applied [184], which is essen-
tial to obtaining the proper selection effect. (The technical description can be
found elsewhere [185] [186]). In this way, mEHT targets the lipid-protein inte-
ractions that can cause specific energy-absorption in the membrane rafts, which
carry many signal-receptors and are involved in multiple functional signal
pathways [182].

Many observations have been made on various electromagnetic ener-
gy-absorptions, aside from those regarding temperature changes. The electric
field promotes cellular fusion at low [187], and high [188] frequencies; a
field-strength-dependent haemolytic effect has been observed resulting from RF
exposure [189], as has the activation of ion-channels at the cellular membrane
[190], membrane-mediated Ca** signalling effects on the immune system [191],
and the induction of transmembrane Ca’* by alternating current (low-frequency
electromagnetic fields [LFEMF]) [192]. The biological effects of LFEMF have
rajsed significant interest and debate in the past. Numerous reviews [193] [194]
and articles report the responses of biological matter to LFEMF [195]-[203].
These observations realize the entropy change (structural and chemical altera-
tions), which due to the energy absorption, are clearly thermal, but the temper-
ature is only a condition and does not change during the process [204].

The strength of electric field E(t) determines the energy delivery by the
electromagnetic energy supplies, and determines the SAR in the media of p den-
sity and o conductivity (assuming homogeneous target):

o | W
SAR(t)=—ZE(t) L—g} (61)
Note, the o thermal conductivity varies non-linearly by temperature [205].

Radiating the homogeneous resistive media with R resistance by P power, and
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the thickness of the target being d, we may calculate the E(t) field:

E(t)= T{X} (62)

—
—

If the energy delivery is sinusoidal, the average of the (E) = f, so the effec-

tive electric field is:

eff (t):dﬂ\/zp

when the target resistance is R =50, and the applied power is P=150 W,
and 0 =0.75S/m=1/Q-m, the SAR from (61) and (62) is:

[1]

(63)

sAR(t)=Z RP ~ 45 {E} (64) (65)
2p d kg

The provided energy inversely depends on the mass of the target and linearly
by the duration of the SAR. For example, the energy in ablation techniques to
gain high temperature needs extremely high SAR (in the range of 10 - 100
kW/kg [206]), but it targets only a relatively small mass, so the absorbed energy
is small. Local hyperthermia with isothermal intent uses a relatively large SAR
compared to the selective method, to heat the mass as homogeneously as possi-
ble. However, these treatments can create unwanted hot-spots [207] depending
on the technical realization and the actual conditions of the patient, causing very
frequent complaints during the treatment [208].

In heterogenic matter, when we select the absorption target inside the volume,
and the mass ratio of the selected mass m to the total Mis & the SAR concentrates

m
on the selected part with a value of &= M higher. So when nanoparticles (NPs)

are chosen there, and its concentration is a 50 mg mass in 1 kg, the correspond-
ing SAR in our numerical example (65) is SAR_. =1.8x10’ % = 1801;—\:, and
when the energy pump is sinusoidally periodic, according to (63) it becomes
halved: 90 kW/kg.

Usually, the SAR value in nano-heating is even higher, ranging from 100 to
500 kW/kg [209]. These values are 1000 times higher than local hyperthermia
uses but correspond well with the absorbed power in a nano-selective heating
solution of membrane rafts.

The mEHT method could be used to heat injected artificial nanoparticles to-
gether with exciting the intrinsic membrane rafts. When injecting gold nanopar-
ticles in the tissue the energy absorption is focused on both nano-centres, and
the temperature grows by the diffuse heating from these [210]. However, the
apoptotic cell-distortion, which is the hallmark of mEHT action, was decreased,
probably because of the sharing of the energy between the membrane rafts and

the gold nanoparticles; however, the heating was active in both situations.
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The selective heating of mEHT uses the membrane’s peculiarities for the exci-
tation of the transmembrane proteins by energy absorption of the chosen cells.
The absorbed energy at the membrane sharply depends on the electric field con-
ditions in the membrane and its immediate vicinity. The double phospholipid
membrane structure modifies the applied electric field. The temperature gra-
dient is one of the driving forces of the signal propagation that starts at the outer
membrane of the cell as extrinsic excitation. The excitation requires energy ab-
sorption and changes the molecular structure, involving the bound water. The
effects cause thermal changes, but not in a temperature-dependent manner [128]
[211]. The action is like a first-order phase transition with latent energy ex-
change at constant (transition) temperature.

The absorbed bound water on the membrane has an important role in the
SAR and electric field distribution [176]. The modification distinguishes the in-
tra- and extracellular electrolytes and the membrane itself, as well as the outer
and inner sides of the membrane water-absorption layer [176]; see Figure 26.

Heating of the transmembrane protein clusters (rafts) shows different patterns
than in the phospholipid membrane [182]. The water bound to the protein in-
creases the altogether otherwise high average dielectric constant of the raft [212].
A precise model calculation [182] shows the electric loss density jump on the raft
(Figure 27) with a rapid change on the membrane surfaces on both sides. Two

calculations were made: in the homogenous approach the two sides of the raft

Figure 26. Comparison of the free membrane (solid lines) and membrane-bounded water (dashed line) electric field (a) and the
SAR (b) at 27 MHz in spherical cell-model (It is modified to same scales from [176]).
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(a) (b)

Figure 27. The electric energy loss density near the membrane of the cell in a spot of the raft under homogenous (solid line) and

complex heterogenic (dashed line) assumptions: (a) The environment of the membrane; (b) Enlarged membrane area.

are identical, while in the complex, heterogenic one, the outer side has higher
conductivity due to the difference of the electrolyte composition of the cytop-
lasm and the extracellular matrix (ECM), and the inner part has a lower dielec-
tric constant, due to the complex connections inside the cell. The energy loss
density is higher in the ECM.

The calculation used f =13.56 MHz frequency and assumed

\Y% \%
0+ =112% , consequently having 55 mV membrane potential
m nm

in the thickness of d

usually has, but the malignancy lowers the membrane potential in most cases

Epssomm, =1.1x1

membrane = O M . This potential is lower than the healthy cell
[213]. The heterogenic complexity decreases the jump of electric loss density,
which is clearly followed by the local SAR (Figure 28).

The temperature development on the surface of the membrane is the same on
both sides; but macroscopically (distant from the surface), the temperature is
lower in the ECM than in the cytoplasm (Figure 29).

The temperature of the rafts affects the ECM in its immediate vicinity only. A

\

similar size gold nanoparticle with radius r, =30nm, absorbing I, =10"—-
m

energy flux, was heated up by 4°C in surrounding water, and at a distance of 70
nm from its surface, the gain of temperature practically vanished [214]. This
rapid disappearance of the temperature in the vicinity of the nanoparticle sup-
ports the approximation in which we ignored the diffusion part of the Pennes
equation, to simplify its solution. This approach is valid in nanoscopic ener-
gy-absorption only, which is realized in the mEHT too.

The excitation of the rafts needs extra energy, and structural changes happen,
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Figure 28. The provided SAR to the membrane area, in a spot of the raft under homo-
genous (solid line) and complex heterogenic (dashed line) assumptions.

(a) (®)

Figure 29. The developed temperature in a spot of the raft under homogenous (solid line) and complex heterogenic

(dashed line) assumptions: (a) The environment of the membrane; (b) Enlarged membrane area.

which rearranges the giant membrane vehicles [215] and could modify the cell
membrane [216]. The membrane phase transition can be modelled experimen-
tally too, when the Arrhenius dependence breaks in both the resistivity and ca-
pacity parts of the lipid bilayer [217] (Figure 30). This again needs a local, mi-
croscopic increase in the absorbed energy, which appears microscopically.

The energy absorption of membrane rafts realizes heterogenic energy absorp-
tion, which follows the natural heterogeneities of the living matter. While the
homogeneous concept intensifies the quick physiological regulation, the hetero-

genic selection has less strength to trigger the immediate feedback of regulation
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Figure 30. Arrhenius-like plots of the resistance and capacity of the membrane. It shows
a phase transition at the temperature of 39.5°C (e The capacitive x the resistive plot).

mechanisms. The physiological reaction appears later when the small heated
substances heat up their environment, attracting the reaction of the general con-
trol. The temperature development in the microscopic range has many similari-
ties with the macroscopic pattern but has a certain difference in the absorbed
SAR (Figure 31). The absorbed SAR transfers one state to the other one, and the
change of temperature is a “side effect”: the excess part of the constant systemic
SAR heats up. The spread of heat energy by time keeps the energy-replacement
macroscopic, and gradually less energy will be selectively taken by the rafts,
which constitute only a minimal fraction of the total mass of the tumour. There
are two possible phase transitions that happen: one is for the chemical changes
to produce signals and its structural consequences; the other one is the phase
transition of the lipid membrane. Their temperatures are denoted by 7, and
T men» Tespectively. Both transitions are temperature-dependent, so when the raft
does not heat up to the transition temperatures, these will not occur. When the
transition happens, the temperature remains constant until it finishes. After-
wards, the temperature increases as usual until the SAR switches off. When the
rafts absorb the constant average, which heats the entire mass, its temperature
will be equal to its environment. The selection disappears due to the homeostatic
equilibrium. However, in this state, the energy-absorption in the target acts only
to replace the energy being carried away by heat-exchange with the environment
of the target and also the environmental conditions of the human body.

The constant SAR is macroscopic; the active absorption at the microscopic
level is different, being deducted from the average SAR, and the remaining pow-
er heating the lesion, as is shown in a hypothetical situation in Figure 31. The

SAR value which is required to maintain a chosen temperature changes. The
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Figure 31. The temperature development and the SAR in the microscopic range (For ex-
planation, see the text).

continuously growing temperature reaches definite values at which the energy
requirement is higher than the general adiabatic need, as we showed by time de-
velopment in Figure 31. The points at which the required micro (mSAR)
changes, in order to energize the micro processes, are: the chemical phase transi-
tion 7., the membrane phase transition 7,,,, and the switching off of the supply
after reaching the 7, homeostatic equilibrium, Figure 31. The first, chemical
phase transitions, modify the microscopic energy consumption through chemi-
cal processes (signal excitation, signal transduction, protein structural changes),
and usually we do not take the temperature so high as that at which the mem-
brane phase transition happens (>42°C). The change of mSAR vs temperature
development shows a double peak pattern when the temperature goes over 42°C,
and afterward, the temperature grows directly with the constant average SAR in
the target (Figure 32; it becomes a homogenous situation, the rafts having the
same average SAR as the wider environment, which is in thermal equilibrium.
The system temperature grows until reaching the homeostatic point and remains
at this temperature until the switching off of the SAR. This is the stage at which
the system has constant temperature due to the constant SAR replacement of
lost energy.

Changes of mSAR by temperature depend on the demand for energy in the
studied region. This changes not only with the phase transitions but also due to
the homeostatic mechanisms, and in the end, the raft is heated in the same way
as its environment.

Understanding these heating processes, the optimal strategy is to keep the growth
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Figure 32. The required SAR values vs temperature in the micro-region of selectively
heated rafts. The red dot before the switching off of the SAR represents the equilibrium
when both the SAR and the temperature are constant. The provided absorbed energy is
only replacing the loss by cooling to the environment.

of temperature continuous, so to maintain the condition where % = %SAR .
The well-developed treatment protocol makes use of step-up heating when the
linear % slope dominates (Figure 33).

When the temperature development deviates from the slope, going to be sta-

tionary another so called constant perfusion rate model could be introduced,

when the Pennes’ Equation (11) reduced to:

oT
PrCh i PrSAR—c, W, (T)(AT) (66)
The solution of (66):
_ ;]
AT = LSAR | [’W (67)
Cy 0o Wy (T )
where
Ch Pn
T, = (68)
® o CoW, (T)

Is the time-constant of the constant perfusion model, and 7, =t, when ¢is

large, corresponding with the stationery solution of (57). Using realistic para-

meters we get 7., =7 min. So the temperature rise will be different, Figure 34.

In the case of gradual step-up heating the simplified Pennes equation:

oT
pCE"‘CbpbWb (T _Tb): p(t),pCECbpb, (69)

p(t)=p, (H, (t)+H, (t-0)+H, (t-20)+---+H, (t-nO))
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Figure 33. The temperature development by the step-up in the time period, when the
curve is in the quasi-adiabatic line.

Figure 34. The temperature development by the step-up in the period out of the constant
perfusion model, Note, at the end the temperature could grow higher than in Figure 33.
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where H, ('[) is the Heaviside unit-jump function, p, is the jump of SAR (as-
sumed equal tranches!) and © is the time between the two jumps on.
So, we get:
t
aA_T + l AT = M R
ot ¢ ele (70)

T=W, !
Using Laplace transformation:

T 1
AT =—
(s) pCl+st

p(s).

p(S): poé(l_{_e—S@ +e—52® +“.+e—sn®)

(71)

We get by inverse Laplace transformation the time-function of the temperature

rise:

oC
120 _t-n®
J{l—e g JH](t—2®)+---+(l—e g JHl(t—nG):l

Note, p, =SAR, in simple one-step heating, like it was used in (54). This is

AT (t)=—p, Hl—e_;jHl(t)+[l—e_tf®jHl(t—@)

(72)

physically simple: in every ® time a new exponential function starts and added
to the previous time-function Figure 35.

The time-derivative function of (72) is:

dAT &|: ot -0 =20

i pe e "H ()+e * H (t-0©)+e * H, (t-20)+--

(73)

_t—n@
+e * H, (t—n@)}

The right-side derivatives of the time-dependent temperature of (72) show the

newly started targeting:

[©]
Tl _p Tl a7
dt t=+0 pC dt t—>+0 pC
dAT P o ® _ 7
— :—O(He T4e T +eete fj
dt t—>+n® pC

It is simply the identical restart of the SAR process, when the time ® is longer
than the 7blood-perfusion time-constant. In this case all the jumps could be de-

scribed independently. Using the practical units in physiology:

t
=Lp0 I-e” ;&
=0 PC pC

{Co/min[]

AT)
t

(75)

. . . AT
in practical units : —|

c 67

t=0

SAR[W/ke] SAR[W/kg]}
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Figure 35. The time-function of temperature in case of step-up jumps of SAR.

with the above calculated (75).
When the incident power is terminated, the blood-perfusion starts to cool the

target (clearance of temperature). This could be described by the Pennes equa-

tion too:
o(T-T,) 1 _
o +;(T _Tb) = 0, (76)
r=w,'
Its solution is:
t
r _t
AT (t)=(T-T,)=— T, 77
(t)=(T-T,) o e (77)

From AT (t) function the 7 blood-perfusion time-constant could be deter-
mined, and so we get w; too by (57) and (70). The clearance temperature (the
speed of cooling) is:

dAT
dt

—_Po (78)

t=0 pC

which is in its absolute value identical with (54) (after stationary heating, and so
the target is in thermal-equilibrium). Using again the physiology units, we get:

SAR|W/k
{Co/min[]—[é’]/ g]

dAT

i (79)

t=0

The results have to be generalized, recognizing, that the living target changes
during the heating in its multiple parameters, including the thermal and the
electrical ones. This changes the blood-perfusion as well as the complete tem-
perature rise, despite the constant power provided, the SAR will change too. Due

to this instead of (72) we use
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AT (t):i{% po[l—eiJHl (t)+7,p, (1—etf®]Hl(t—®)

t-20

+12p2(1—e_ i jHl(t—2®)+--~ (80)

_t-n®
+7,p, [l—e i JHl(t—nG))}

and consequently instead of (73):

daT 1 L 2
_ {poe H()5pe T H(t-0)

dt  pc
_I—ZG) _t—n@) (81)
+pe © H(t-20)+--+pe - Hl(t—n®)}
The right derivatives of the curve in (81):
(€]

E :&,E :& 1+e*g TR

dt t=+0 pC dt t—>+0 PC
dAT 6 20 _ne (82)
— Pl e e 1 g

dt t—>+n® pC

And again, when the switching time ® is much longer the largest blood-perfusion

time-constant, than we may use again the approximation (75):

dat {Co L [W/kg]}

dt t=+0,--,+nO 67

dAT o/ . - SAR[W/kg]

| om]
dat {Co A [W/kg]}

dt |, 67

The realization of the strategy of blocking the development of thermal spreading

could be more effective when the linear period of % is carefully managed

and the system cooled down before the spread of the heat starts. The concept
could be completed by the cutting of the heating curve, which could be done at
various points of the temperature development (Figure 36).

The straight-line sided triangle at the early cut looks the most controllable
situation, stopping the heating at the end-point when the linear slope fits. Tech-
nically the appropriate pulsing of the SAR follows the optimizing rule well
(Figure 37). This protocol does not change, or changes by only a little, the over-
all temperature, so all the energy is concentrated on the selected rafts.

Note, the selective, non-isothermal energy-absorption is similar to the ioniz-
ing radiation concept when the selection is directed at the breaking of DNA. The
heat and temperature gain which they produce during treatment are adverse ef-

fects, and the protocols try to avoid them. The dose in the ionizing radiation is
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Figure 36. The temperature development terminated in different stages of the process.

Figure 37. Temperature development by the appropriately pulsed power, providing step-up: (a) Terminated before the non-linear
period starts; (b) Terminated after the non-linear period starts.

the Gray Gy = J/kg, which is the measure of the absorbed energy, by (3), and in
time-dependent power by (4). The dose of the radiotherapy treatment-cycle is
the sum of the fractional doses in the process. We may introduce the same in
hyperthermia with regard to the absorbed energy:
N i
Egese (t:) = 2. [ SAR(7)dz (84)

i=l o

where N is the number of treatments in the actual cycle, ¢, is the time of the /-th

treatment and
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N
t,o =t +t +o Lty =Dt (85)
i=1

is the entire treatment time in the cycle.

The evaluation of SAR(T ) in a selective mode of hyperthermia counts the
energy absorbed in the target irrespective of the kind of source, so the specific
energy unit Gy could be applied in the non-ionizing radiation too. The energy
which is provided by ionizing radiation (IR) triggers biological mechanisms,
which are mostly the rupturing of DNA, while the desired effects are different in
non-ionizing applications (nIR). We may observe contrary interests in using the
absorbed energy in these therapies [3]. In the ionizing strategy, the distortion of
the DNA strands is the goal, and the heat-production during this process is an
adverse effect. In nIR hyperthermia, it is the other way round, and the heat pro-
duction becomes the goal of the treatment. While the IR treatment is of short
duration, the nIR is significantly longer, and while the physiological control
mechanisms have no role in IR, these have an important role in nIR applications.
Both treatments are electromagnetic, but IR has a frequency a few billion times

higher and also has much shorter duration of treatment than nIR.

5. Verification

The preclinical verification of the dose and its temperature dependence shows

the practical applicability of the above model-calculation. Phantom experiments
[218], and in vitro cell-culture measurements show the apoptotic efficacy [219]

[220] of mEHT, and the temperature mapping gives also a hint, that the above

considerations are realistic [221]. The pulsed power application is measured [222]
and verifies the advantage of the increased efficacy of such heating method [223].
The clinical applications have a well-defined protocol [224] and guideline [225]

with the step-up heating requirements, and the clinical results validate the usage

of the step-up heating model [226].

The present considerations are valid for solid tumours, where the Pennes-
equation is effective. The selective activation of the haematological cancers is in

progress.

6. Conclusion

Considering the homeostatic self-similarity, we have shown a stochastic heuristic
solution of the Pennes equation and its applicability in hyperthermia treatments
in oncology. Weibull parametric distribution with satisfactory refinement can
solve the problem of the description of the heating of the body, without the
complications involved in solving the Pennes equation. This solution is stochas-
tic, having a probability distribution which fits much more to the dynamic
changes in the living objects, and eliminates the problem of the deterministic
behaviour of the Pennes approach. The introduced selective heating allows fo-
cusing upon the malignant cells using the thermal and bioelectromagnetic hete-

rogeneity of the tumorous lesions. The solution allows the introduction of a

DOI: 10.4236/0jbiphy.2021.111002

117 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002

0. Szasz, A. Szasz

protocol that most optimally uses the provided energy for molecular changes,
destroying the malignant cells without a noticeable effect on their healthy coun-
terparts. The present considerations are valid for solid tumors, where the
Pennes-equation is effective. The selective activation of the haematological can-

cers is in progress.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Vaupel, P. and Hammersen, F. (1982) Mikrozirkulation in malignen Tumoren.
Karger, Basel.

[2] Vaupel, P. (1990) Pathophysiological Mechanism of Hyperthermia in Cancer
Therapy. In: Gautherie, M., Ed., Methods of Hyperthermia Control, Biological Basis
of Oncologic Thermotherapy. Clinical Thermology (Subseries Thermotherapy),
Springer Verlag, Berlin, Heidelberg, 73-134.
https://doi.org/10.1007/978-3-642-74939-1_2

[3] Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State
and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and
Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18

[4] Vaupel, P., Kallinowski, F. and Okunieff, P. (1989) Blood Flow, Oxygen and Nu-
trient Supply, and Microenvironment of Human Tumours: A Review. Cancer Re-
search, 49, 6449-6465.

[5] Song, C.W., Choi, I.B., Nah, B.S., Sahu, S.K. and Osborn, J.L. (1995) Microvascula-
ture and Perfusion in Normal Tissues and Tumours. In: Seegenschmiedt, M.H.,

Fessenden, P. and Vernon, C.C., Eds., Thermoradiometry and Thermochemothe-
rapy, Vol. 1, Springer-Verlag, Berlin Heidelberg, 139-156.
https://doi.org/10.1007/978-3-642-57858-8_7

[6] Takana, Y. (2001) Thermal Responses of Microcirculation and Modification of
Tumour BF in Treating the Tumours. In: Kosaka, M., Sugahara, T., Schmidt, K.L.
and Simon, E., Eds., Theoretical and Experimental Basis of Hyperthermia. Ther-
motherapy for Neoplasia, Inflammation, and Pain, Springer Verlag, Tokyo, 408-419.
https://doi.org/10.1007/978-4-431-67035-3_45

[7] Song, C.W., Park, H. and Griffin, R.J. (2001) Theoretical and Experimental Basis of
Hyperthermia. In: Kosaka, M., Sugahara, T., Schmidt, K.L., et al, Eds., Thermothe-
rapy for Neoplasia, Inflammation, and Pain, Springer Verlag, Tokyo, 394-407.
https://doi.org/10.1007/978-4-431-67035-3_44

[8] Wu, M., Frieboes, H.B., McDougall, S.R., et al (2013) The Effect of Interstitial
Pressure on Tumor Growth: Coupling with the Blood and Lymphatic Vascular Sys-
tems. Journal of Theoretical Biology, 320, 131-151.
https://doi.org/10.1016/1.jtbi.2012.11.031

[9] Song, C.W., Lokshina, A., Rhee, ].G., et al (1984) Implication of BF in Hyperther-
mic Treatment of Tumours. JEEE Transactions on Biomedical Engineering, 31, 9-16.
https://doi.org/10.1109/TBME.1984.325364

[10] TJain, R.K. (1988) Determinants of Tumor Blood Flow: A Review. Cancer Research,
48, 2641-2658.

DOI: 10.4236/0jbiphy.2021.111002 118 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1007/978-3-642-74939-1_2
https://doi.org/10.4103/jrcr.jrcr_25_18
https://doi.org/10.1007/978-3-642-57858-8_7
https://doi.org/10.1007/978-4-431-67035-3_45
https://doi.org/10.1007/978-4-431-67035-3_44
https://doi.org/10.1016/j.jtbi.2012.11.031
https://doi.org/10.1109/TBME.1984.325364

0. Szasz, A. Szasz

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]
(21]

(22]

(23]

(24]

(25]

(26]

(27]

Song, C.W. (1984) Effect of Local Hyperthermia on Blood Flow and Microenvi-
ronment: A Review. Cancer Research (Suppl.), 44, 4721s-4730s.

Dudar, T.E. and Jain, R.K. (1984) Differential Response of Normal and Tumour
Microcirculation to Hyperthermia. Cancer Research, 44, 605-612.

Hietanen, T., Kapanaen, M. and Kellokumpu-Legtinen, P.L. (2016) Restoring Nat-
ural Killer Cell Cytotoxicity after Hyperthermia Alone or Combined with Radio-
therapy. Anticancer Research, 36, 555-564.

Beachy, S.H. and Repasky, E.A. (2011) Toward Establishment of Temperature
Thresholds for Immunological Impact of Heat Exposure in Humans. International
Journal of Hyperthermia, 27, 344-352.
https://doi.org/10.3109/02656736.2011.562873

Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Ther-
mal Dosimetry: The Key to Hyperthermia’s Future. International Journal of Hyper-
thermia, 22, 247-253. https://doi.org/10.1080/02656730600765072

Fatehi, D., van der Zee, J., van der Wal, E., et al (2006) Temperature Data Analysis
for 22 Patients with Advanced Cervical Carcinoma Treated in Rotterdam Using Ra-
diotherapy, Hyperthermia and Chemotherapy: A Reference Point Is Needed. Inter-
national Journal of Hyperthermia, 22, 353-363.
https://doi.org/10.1080/02656730600715796

Separeto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer
Therapy. International Journal of Radiation Oncology, Biology, Physics, 10, 787-800.
https://doi.org/10.1016/0360-3016(84)90379-1

Arrhenius, S. (1915) Quantitative Laws in Biological Chemistry. G. Bell, London.
https://doi.org/10.5962/bhl.title.22817

Jackson, M.B. (2006) Molecular and Cellular Biophysics. Cambridge University
Press, Cambridge. https://doi.org/10.1017/CBO9780511754869

Nelson, P. (2004) Biological Physics. WH Freeman and Company, New York.

Perez, C.A. and Sapareto, S.A. (1984) Thermal Dose Expression in Clinical Hyper-
thermia and Correlation with Tumor Response/Control. Cancer Research, 44,
4818s-4825s.

Feo, F., Canuto, R.A. and Garcea, R. (1976) Lipid Phase Transition and Breaks in
the Arrhenius Plots of Membrane-Bound Enzymes in Mitochondria from Normal
Rat Liver and Hepatoma AH-130. FEBS Letters, 72, 262-266.
https://doi.org/10.1016/0014-5793(76)80982-9

Overath, P., Schairer, H.U. and Stoffel, W. (1970) Correlation of in Vivo and in Vi-
tro Phase Transitions of Membrane Lipids in Escherichia coli. Proceedings of the
National Academy of Sciences, 67, 606-312. https://doi.org/10.1073/pnas.67.2.606

Watson, K., Bertoli, E. and Griffiths, D.E. (1975) Phase Transitions in Yeast Mitho-
chondrial Membranes. Biochemical Journal, 146, 401-407.
https://doi.org/10.1042/bj1460401

Dewey, W.C., Hopwood, L.E., Sapareto, S.A., et al (1977) Cellular Response to
Combination of Hyperthermia and Radiation. Radiology, 123, 463-474.
https://doi.org/10.1148/123.2.463

Lindholm, C.-E. (1992) Hyperthermia and Radiotherapy. PhD Thesis, Lund Uni-
versity, Malmo.

Hafstrom, L., Rudenstam, C.M., Blomquist, E., et al (1991) Regional Hyperthermic
Perfusion with Melphalan after Surgery for Recurrent Malignant Melanoma of the
Extremities. Swedish Melanoma Study Group. Journal of Clinical Oncology; 9,

DOI: 10.4236/0jbiphy.2021.111002

119 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.3109/02656736.2011.562873
https://doi.org/10.1080/02656730600765072
https://doi.org/10.1080/02656730600715796
https://doi.org/10.1016/0360-3016(84)90379-1
https://doi.org/10.5962/bhl.title.22817
https://doi.org/10.1017/CBO9780511754869
https://doi.org/10.1016/0014-5793(76)80982-9
https://doi.org/10.1073/pnas.67.2.606
https://doi.org/10.1042/bj1460401
https://doi.org/10.1148/123.2.463

0. Szasz, A. Szasz

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

2091-2094. https://doi.org/10.1200/JC0O.1991.9.12.2091

Franckena, M., Fatehi, D., de Bruijne, M., Canters, R.A.M., van Norden, Y., Mens,
J.W., van Rhoon, G.C. and van der Zee, J. (2009) Hyperthermia Dose-Effect Rela-
tionship in 420 Patients with Cervical Cancer Treated with Combined Radiotherapy
and Hyperthermia. European Journal of Cancer, 45, 1969-1978.
https://doi.org/10.1016/j.ejca.2009.03.009

Ballesteros, F.J., Martinez, V.]., Luque, B., et a/ (2018) On the Thermodynamic Ori-
gin of Metabolic Scaling. Scientific Reports, 8, Article No. 1448.
https://doi.org/10.1038/s41598-018-30973-x

Zotin, A.L. (2010) Thermodynamic Bases of Biological Processes. Cambridge Univ.
Press, Cambridge.

Matay, G. and Zombory, L. (2000) Physiological Effects of Radiofrequency Radia-
tion and Their Application for Medical Biology. Muegyetemi Kiado, Budapest, 80.

Brown, J.H., West, G.B. and Enquist, B.J. (2005) Yes, West, Brown and Enquist’s
Model of Allometric Scaling Is Both Mathematically Correct and Biologically Rele-
vant. Functional Ecology, 19, 735-738.
https://doi.org/10.1111/j.1365-2435.2005.01022.x

Fristoe, T.S., Burger, J.R., Balk, M.A,, ef al. (2015) Metabolic Heat Production and
Thermal Conductance Are Mass-Independent Adaptations to Thermal Environ-
ment in Birds and Mammals. PNAS, 112, 15934-15939.
https://doi.org/10.1073/pnas.1521662112

Pennes, H.H. (1948) Analysis of Tissue and Arterial Blood Temperatures in the
Resting Human Forearm. Journal of Applied Physics, 1, 93-122.
https://doi.org/10.1152/jappl.1948.1.2.93

Deng, Z.-S. and Liu, J. (2012) Analytical Solutions to 3-D Bioheat Transfer Prob-
lems with or without Phase Change. In: Heat Transfer Phenomena and Applica-
tions, Intech, Rijeka, Chapter 8, 205-242. https://doi.org/10.5772/52963

Giordano, M.A., Gutierrez, G. and Rinaldi, C. (2010) Fundamental Solutions to the
Bioheat Equation and Their Application to Magnetic Fluid Hyperthermia. /nterna-
tional Journal of Hyperthermia, 26, 475-484.

Cundin, L.X., Roach, W.P. and Millenbaugh, N. (2009) Empirical Comparison of
Pennes’ Bio-Heat Equation. Proceedings of SPIE, 7175, 717516-717519.
https://doi.org/10.1117/12.805577

Lakhssassi, A., Kengne, E. and Semmaoui, H. (2010) Modified Pennes’ Equation
Modelling Bio-Heat Transfer in Living Tissues: Analytical and Numerical Analysis.
Natural Science, 2, 1375-1385. https://doi.org/10.4236/ns.2010.212168

Gao, B., Langer, S. and Corry, P.M. (1995) Application of the Time-Dependent
Green’s Function and Fourier Transforms to the Solution of the Bioheat Equation.
International Journal of Hypertension, 11, 267-285.
https://doi.org/10.3109/02656739509022462

Van der Gaag, M.L., De Bruijne, M., Samaras, T., van der Zee, J. and Van Rhoon, G.
(2006) Development of a Guideline for the Water Bolus Temperature in Superficial
Hyperthermia. International Journal of Hyperthermia, 22, 637-656.
https://doi.org/10.1080/02656730601074409

Liu, K.-C. and Tu, F.-J. (2019) Numerical Solution of a Bioheat Transfer Problem
with Transient Blood Temperature. International Journal of Computational Me-
thods, 16, Article ID: 1843001. https://doi.org/10.1142/50219876218430016

(2006) IEEE C95.1. IEEE Standard for Safety Levels with Respect to Human Expo-

DOI: 10.4236/0jbiphy.2021.111002

120 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1200/JCO.1991.9.12.2091
https://doi.org/10.1016/j.ejca.2009.03.009
https://doi.org/10.1038/s41598-018-30973-x
https://doi.org/10.1111/j.1365-2435.2005.01022.x
https://doi.org/10.1073/pnas.1521662112
https://doi.org/10.1152/jappl.1948.1.2.93
https://doi.org/10.5772/52963
https://doi.org/10.1117/12.805577
https://doi.org/10.4236/ns.2010.212168
https://doi.org/10.3109/02656739509022462
https://doi.org/10.1080/02656730601074409
https://doi.org/10.1142/S0219876218430016

0. Szasz, A. Szasz

(43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]
(55]

[56]

sure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE Std
C95.1-2005. IEEE, Piscataway.

Ma, ], Yang, X,, Sun, Y., ef al (2019) Thermal Damage in Three-Dimensional Vivo
Bio-Tissues Induced by Moving Heat Sources in Laser Therapy. Scientific Reports,
9, Article No. 10987. https://doi.org/10.1038/s41598-019-47435-7

Thermal Conditions, CUErgo, Cornell University Ergonomics Web.
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondn
otes.html

Van Haaren, P.M.A., Hulshof, M.C.C.M., Kok, H.P., et al. (2008) Relation between
Body Size and Temperatures during Locoregional Hyperthermia of Oesophageal

Cancer Patients. International Journal of H) lypertension, 24, 663-674.
https://doi.org/10.1080/02656730802210448

Giering, K., Lamprecht, I. and Minet, O. (1996) Specific Heat Capacities of Human
and Animal Tissues. Proceedings of SPIE— The International Society for Optical
Engineering, Vol. 2624, 178-188. https://doi.org/10.1117/12.229547

de Greef, M. (2012) Loco-Regional Hyperthermia Treatment Planning: Optimisa-
tion under Uncertainty. Dutch Cancer Society, Amsterdam.

ESHO Taskgroup Committee (1992) Treatment Planning and Modelling in Hyper-
thermia, a Task Group Report of the European Society for Hyperthermic Oncology.
Tor Vergata, Rome.

Kok, H.P., Van Haaren, P.M.A., Van de Kamer, ].B., ef a/ (2005) High-Resolution
Temperature-Based Optimization for Hyperthermia Treatment Planning. Physics in
Medicine and Biology, 50, 3127-3141. https://doi.org/10.1088/0031-9155/50/13/011

Newman, W.H., Lele, P.P. and Bowman, H.P. (1990) Limitations and Significance
of Thermal Washout Data Obtained during Microwave and Ultrasound Hyper-
thermia. International Journal of Hypertension, 6, 771-784.
https://doi.org/10.3109/02656739009140824

Kodera, S. and Hirata, A. (2018) Comparison of Thermal Response for RF Exposure
in Human and Rat Models. International Journal of Environmental Research and
Public Health, 15, 2320. https://doi.org/10.3390/ijerph15102320

Vincze, Gy. and Szasz, A. (2011) On the Extremum Properties of Thermodynamic
Steady State in Non-Linear Systems. In: Pirajan, J.C.M., Ed., Thermodynam-
ics— Physical Chemistry of Aqueous Systems, IntechOpen, London, 241-316.

http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueou

s-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-line

ar-systems
https://doi.org/10.5772/21871

Vincze, Gy. and Szasz, A. (2019) New Look at an Old Principle: An Alternative
Formulation of the Theorem of Minimum Entropy Production. Journal of Ad-
vances in Physics, 16, 508-517. https://doi.org/10.24297/jap.v16i1.8516

Weiss, T.F. (1996) Cellular Biophysics. Transport, Vol 1. MIT Press, Cambridge.

Head, J.F., Wang, F., Lipari, C.A., et al (2000) The Important Role of Infrared Im-
aging in Breast Cancer. /EEE Engineering in Medicine and Biology Magazine, 19,
52-57. https://doi.org/10.1109/51.844380

Baronzio, G.F., Gramaglia, A., Baronzio, A., et al (2006) Influence of Tumor Mi-
croenvironment on Thermoresponse: Biologic and Clinical Implications. In: Baron-
zio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment. A Primer,
Landes Bioscience, Springer Science, New York, 62-86.

DOI: 10.4236/0jbiphy.2021.111002

121 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1038/s41598-019-47435-7
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondnotes.html
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondnotes.html
https://doi.org/10.1080/02656730802210448
https://doi.org/10.1117/12.229547
https://doi.org/10.1088/0031-9155/50/13/011
https://doi.org/10.3109/02656739009140824
https://doi.org/10.3390/ijerph15102320
http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-linear-systems
http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-linear-systems
http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-linear-systems
https://doi.org/10.5772/21871
https://doi.org/10.24297/jap.v16i1.8516
https://doi.org/10.1109/51.844380

0. Szasz, A. Szasz

(571

(58]

(59]

(60]

(61]

[62]

(63]

[64]

(65]

[66]

[67]

(68]

[69]

(70]
(71]

(72]

(73]

(74]

(75]

Kelleher, D.K. and Vaupel, P. (2006) Vascular Effects of Localized Hyperthermia.
In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment. A
Primer, Landes Biosceince, Springer Science, New York, 94-104.

Schwan, H.P. (1957) Electrical Properties of Tissue and Cell Suspensions. Advances
in Biological and Medical Physics, 5, 147-2009.
https://doi.org/10.1016/B978-1-4832-3111-2.50008-0

Pethig, R. and Kell, D.B. (1987) The Passive Electrical Properties of Biological Sys-
tems: Their Significance in Physiology, Biophysics and Biotechnology. Physics in
Medicine and Biology, 32, 933-977. https://doi.org/10.1088/0031-9155/32/8/001

Kurakin, A. (2011) The Self-Organizing Fractal Theory as a Universal Discovery
Method: The Phenomenon of Life. Theoretical Biology and Medical Modelling, 8, 4.
https://doi.org/10.1186/1742-4682-8-4

Walleczek, J. (2000) Self-Organized Biological Dynamics & Nonlinear Control.
Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511535338

Haken, H. (1987) Self-Organization and Information. Physica Scripta, 35, 247-254.
https://doi.org/10.1088/0031-8949/35/3/006

Sornette, D. (2000) Chaos, Fractals, Self-Organization and Disorder: Concepts and
Tools. Springer Verlag, Berlin, Los Angeles.

Deering, W. and West, B.J. (1992) Fractal Physiology. IEEE Engineering in Medi-
cine and Biology;, 11, 40-46. https://doi.org/10.1109/51.139035

West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Sin-
gapore, London.

Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in
Evolution. Oxford University Press, New York, Oxford.
https://doi.org/10.1007/978-94-015-8054-0_8

Brummer, A.B., Savage, van M. and Enquist, B.J. (2017) A General Model for Me-
tabolic Scaling in Self-Similar Asymmetric Networks. PLOS Computational Biology,
13, €1005394. https://doi.org/10.1371/journal.pcbi.1005394

Ochiai, T., Nacher, J.C. and Akutsu, T. (2018) Symmetry and Dynamics in Living
Organisms: The Self-Similarity Principle Governs Gene Expression Dynamics.

Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology.
Oxford Univ. Press, New York, Oxford. https://doi.org/10.1007/978-1-4614-7572-9

Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press, Amsterdam.

Glazier, D.S. (2014) Metabolic Scaling in Complex Living Systems. Systems, 2,
451-540. https://doi.org/10.3390/systems2040451

Scheffer, M. and Nes, V.E.H. (2006) Self-Organized Similarity, the Evolutionary
Emergence of Groups of Similar Species. PNAS, 103, 6230-6235.
https://doi.org/10.1073/pnas.0508024103

West, G.B., Woodruf, W.H. and Born, J.H. (2002) Allometric Scaling of Metabolic
Rate from Molecules and Mitochondria to Cells and Mammals. Proceedings of the
National Academy of Sciences of the United States of America, 99, 2473-2478.
https://doi.org/10.1073/pnas.012579799

Li, W. (1989) Spatial 1/f Spectra in Open Dynamical Systems. Europhysics Letters,
10, 395-400. https://doi.org/10.1209/0295-5075/10/5/001

Schlesinger, M.S. (1987) Fractal Time and 1/f Noise in Complex Systems. Annals of
the New York Academy of Sciences, 504, 214-228.

DOI: 10.4236/0jbiphy.2021.111002

122 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1016/B978-1-4832-3111-2.50008-0
https://doi.org/10.1088/0031-9155/32/8/001
https://doi.org/10.1186/1742-4682-8-4
https://doi.org/10.1017/CBO9780511535338
https://doi.org/10.1088/0031-8949/35/3/006
https://doi.org/10.1109/51.139035
https://doi.org/10.1007/978-94-015-8054-0_8
https://doi.org/10.1371/journal.pcbi.1005394
https://doi.org/10.1007/978-1-4614-7572-9
https://doi.org/10.3390/systems2040451
https://doi.org/10.1073/pnas.0508024103
https://doi.org/10.1073/pnas.012579799
https://doi.org/10.1209/0295-5075/10/5/001

0. Szasz, A. Szasz

(76]

(77]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(871

(88]

(89]

[90]

[91]

[92]

(93]

https://doi.org/10.1111/j.1749-6632.1987.tb48734.x

Brown, J.H. and West, G.B. (2000) Scaling in Biology. Oxford University Press, Ox-
ford.

West, G.B. and Brown, J.H. (2005) The Origin of Allometric Scaling Laws in Biolo-
gy from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Bio-
logical Structure and Organization. Journal of Experimental Biology, 208, 1575-1592.
https://doi.org/10.1242/jeb.01589

Aon, M.A., Saks, V. and Schlattner, U. (2014) Systems Biology of Metabolic and
Signaling Networks: Energy, Mass and Information Transfer. Springer Series in Bi-
ophysics No. 16. Springer, Berlin. https://doi.org/10.1007/978-3-642-38505-6

Song, C., Havlin, S. and Makse, H.A. (2005) Self-Similarity of Complex Networks.
Letters to Nature, 433, 392-395. https://doi.org/10.1038/nature03248

Frohlich, H. (1983) Coherence in Biology. In: Frohlich, H. and Kremer, F., Eds.,
Coherent Excitations in Biological Systems, Springer Verlag, Berlin, Heidelberg,
1-5. https://doi.org/10.1007/978-3-642-69186-7_1

Frohlich, H. (1988) Biological Coherence and Response to External Stimuli. Sprin-
ger Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73309-3

Camazine, S., Deneubourg, J.L., Franks, N.R., ef al (2003) Self-Organization in Bi-
ological Systems. Princeton Studies in Complexity. Princeton Univ. Press, Prince-
ton, Oxford.

Szasz, O., Szigeti, Gy.P. and Szasz, A. (2017) On the Self-Similarity in Biological
Processes. Open Journal of Biophysics, 7, 183-196.
https://doi.org/10.4236/0jbiphy.2017.74014

Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability.
Journal of Applied Mathematics, 18, 293-297.

Lloyd, D., Aon, M.A. and Cortassa, S. (2001) Why Homeodynamics, Not Homeos-
tasis? The Scientific World, 1, 133-145. https://doi.org/10.1100/tsw.2001.20

Wang, H., Wang, Z., Li, X,, et al (2011) A Robust Approach Based on Weibull Dis-
tribution for Clustering Gene Expression Data. Algorithms for Molecular Biology;
6, 14. https://doi.org/10.1186/1748-7188-6-14

Hesse, J. and Gross, T. (2014) Self-Organized Criticality as a Fundamental Property
of Neural Systems. Frontiers in Systems Neuroscience, 8, 166.
https://doi.org/10.3389/fnsys.2014.00166

West, G.B., Brown, J.H. and Enquist, B.J. (2001) A General Model for Ontogenetic
Growth. Nature, 413, 628-631. https://doi.org/10.1038/35098076

Pugno, N.M. (2005) On the Statistical Law of Life.
https://arxiv.org/ftp/q-bio/papers/0503/0503011.pdf

Sharkovsky, S. and Grab, E. (2011) Modelling Self-Similar Traffic in Networks. RTU
52nd International Scientific Conference, Riga, 13-15 October 2011.

Avrami, M.A. (1939) Kinetics of Phase Change. I General Theory. The Journal of
Chemical Physics, 7, 1103.

Cope, F.W. (1977) Detection of Phase Transitions and Cooperative Interactions by
Avrami Analysis of Sigmoid Biological Time Curves for Muscle, Nerve, Growth,
Firefly, and Infrared Phosphorescence, of Green Leaves, Melanin and Cytochrome
C. Physiological Chemistry and Physics, 9, 443-459.

Cope, F.W. (1980) Avrami Analysis of Electrical Switching in Hydrated Melanin
Suggest Dependence on a Phase Transition. Physiological Chemistry and Physics,

DOI: 10.4236/0jbiphy.2021.111002

123 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1111/j.1749-6632.1987.tb48734.x
https://doi.org/10.1242/jeb.01589
https://doi.org/10.1007/978-3-642-38505-6
https://doi.org/10.1038/nature03248
https://doi.org/10.1007/978-3-642-69186-7_1
https://doi.org/10.1007/978-3-642-73309-3
https://doi.org/10.4236/ojbiphy.2017.74014
https://doi.org/10.1100/tsw.2001.20
https://doi.org/10.1186/1748-7188-6-14
https://doi.org/10.3389/fnsys.2014.00166
https://doi.org/10.1038/35098076
https://arxiv.org/ftp/q-bio/papers/0503/0503011.pdf

0. Szasz, A. Szasz

(94]

[95]

[96]

(97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

12, 537-538.

May, K.A. and Solomon, J.A. (2013) Four Theorems on the Psychometric Function.
PLoS ONE, 8, €74815. https://doi.org/10.1371/journal.pone.0074815

Szasz, O., Szigeti, G.P. and Szasz, A. (2019) The Intrinsic Self-Time of Biosystems.
Open Journal of Biophysics, 9, 131-145.

Andresen, B., Shiner, J.S. and Uehlinger, D.E. (2002) Allometric Scaling and Maxi-
mum Efficiency in Physiological Eigen Time. Proceedings of the National Academy
of Sciences of the United States of America, 90, 5822-5824.
https://doi.org/10.1073/pnas.082633699

Brown, J.H. and West, G.B. (2000) Scaling in Biology. Oxford University Press, Ox-
ford.

Gunther, B. and Morgado, E. (2005) Allometric Scaling of Biological Rhythms in
Mammals. Biological Research, 38, 207-212.
https://doi.org/10.4067/50716-97602005000200010

Benzinger, T.H. (1959) On Physical Heat Regulation and the Sense of Temperature
in Man. Proceedings of the National Academy of Sciences of the United States of
America, 45, 645-659. https://doi.org/10.1073/pnas.45.4.645

Erdmann, B., Lang, J. and Seebass, M. (1998) Optimization of Temperature Distri-
butions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model.
Annals of the New York Academy of Sciences, 858, 36-46.
https://doi.org/10.1111/j.1749-6632.1998.tb10138.x

Tompkins, D.T., Vanderby, R., Klein, S.A., Beckman, W.A., Steeves, R.A., Frey,
D.M. and Palival, B.R. (1994) Temperature-Dependent versus Constant-Rate Blood
Perfusion Modelling in Ferromagnetic Thermoseed Hyperthermia: Results with a
Model of the Human Prostate. International Journal of Hyperthermia, 10, 517-536.
https://doi.org/10.3109/02656739409009355

Guy, A.W. and Chou, C.K. (1983) Physical Aspects of Localized Heating by Ra-
dio-Waves and Microwaves. In: Storm, K.F., Ed., Hyperthermia in Cancer Therapy,
GK Hall Medical Publishers, Boston, 279-304.

Gottstein, U. (1969) Stérungen des Hirnkreislaufes und zerebralen Stoffwechsels
durch Hypoglykdmie. In: Quandt, J., Ed., Die zerebralen Durchblutungsstorungen
des Erwachsenenalters, Volk und Gesundheit, Berlin, 857-867.

Hahn, G.M. (1987) Blood-Flow. In: Field, S.B. and Franconi, C., Eds., Physics and
Technology of Hyperthermia, NATO ASI Series, Series E: Applied Sciences, Marti-
nus Nijhoff Publishers, Dordrecht, Boston, Lanchester, No. 127, 441-446.
https://doi.org/10.1007/978-94-009-3597-6_19

Pence, D.M. and Song, C.W. (1986) Effect of Heat on Blood-Flow. In: Anghileri, L.J.
and Robert, J., Eds., Hyperthermia in Cancer Treatment, Vol. II, CRC Press Inc.,
Boca Raton, 1-17. https://doi.org/10.1201/9780429266546-1

Szasz, A., Szasz, O. and Szasz, N. (2010) Oncothermia—Principles and Practices.
Springer Verlag, Dordrecht, Heidelberg. https://doi.org/10.1007/978-90-481-9498-8

Silbernagl, S. and Despopoulos, A. (2015) Color Atlas of Physiology. 7th Edition,
Georg Thieme Verlag, Stuttgart/New York. https://doi.org/10.1055/b-005-148942

Wildeboer, R., Southern, P. and Pankhurst, Q.A. (2014) On the Reliable Measure-
ment of Specific Absorption Rates and Intrinsic Loss Parameters in Magnetic Hyper-
thermia Materials. Journal of Physics D: Applied Physics, 47, Article ID: 495003.
https://doi.org/10.1088/0022-3727/47/49/495003

Woust, P. (2005) Thermoregulation in Humans—Experiences from Thermotherapy.

DOI: 10.4236/0jbiphy.2021.111002

124 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1371/journal.pone.0074815
https://doi.org/10.1073/pnas.082633699
https://doi.org/10.4067/S0716-97602005000200010
https://doi.org/10.1073/pnas.45.4.645
https://doi.org/10.1111/j.1749-6632.1998.tb10138.x
https://doi.org/10.3109/02656739409009355
https://doi.org/10.1007/978-94-009-3597-6_19
https://doi.org/10.1201/9780429266546-1
https://doi.org/10.1007/978-90-481-9498-8
https://doi.org/10.1055/b-005-148942
https://doi.org/10.1088/0022-3727/47/49/495003

0. Szasz, A. Szasz

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Conference in Stuttgart, Nov. 21, 2005.

Bassingthwaighte, J.B. (1977) Physiology and Theory of Tracer Washout Tech-
niques for the Estimation of Myocardial Blood Flow: Flow Estimation from Tracer
Washout. Progress in Cardiovascular Diseases, 20, 165-189.
https://doi.org/10.1016/0033-0620(77)90019-6

Bassingthwaighte, J.B. (1974) Organ Blood Flow, Wash-In, Washout, and Clearance
of Nutrients and Metabolites. Mayo Clinic Proceedings, 49, 248-255.

Feldmann, H.J., Molls, M., Hoederath, A., et al (1992) Blood Flow and Steady State
Temperatures in Deep-Seated Tumors and Normal Tissues. International Journal of
Radiation Oncology, Biology, Physics, 23, 1003-1008.
https://doi.org/10.1016/0360-3016(92)90906-X

Samulski, T.V., Fessenden, P., Valdagni, R., et al (1987) Correlations of Thermal
Washout Rate, Steady State Temperatures, and Tissue Type in Deep Seated Recur-
rent or Metastatic Tumors. International Journal of Radiation Oncology, Biology,
Physics, 13, 907-916. https://doi.org/10.1016/0360-3016(87)90106-4

Mandl, F. (2008) Statistical Physics. 2nd Edition, Manchester Physics, John Wiley &
Sons, Hoboken.

Liu, J. (2000) Temperature Monitoring and Heating Optimization in Cancer
Hyperthermia. Progress in Natural Science, 10, 787-793.

Deng, Z.-S. and Liu, J. (2002) Analytical Study on Bioheat Transfer Problems with
Spatial or Transient Heating on Skin Surface or inside Biological Bodies. Journal of
Biomechanical Engineering, 124, 638-649. https://doi.org/10.1115/1.1516810

Wren, J., Karlsson, M. and Loyd, D. (2001) A Hybrid Equation for Simulation of
Perfused Tissue during Thermal Treatment. International Journal of Hypertension,
17, 483-498. https://doi.org/10.1080/02656730110081794

Davalos, R.D., Rubinsky, B. and Mir, L.M. (2003) Theoretical Analysis of the Ther-
mal Effects during in Vivo Tissue Electroporation. Bioelectrochemistry, 61, 99-107.
https://doi.org/10.1016/j.bioelechem.2003.07.001

Bagaria, H.G. and Johnson, D.T. (2005) Transient Solution to the Bioheat Equation
and Optimization for Magnetic Fluid Hyperthermia Treatment. International Jour-
nal of Hyperthermia, 21, 57-75. https://doi.org/10.1080/02656730410001726956

Izquierdo-Kulich, E. and Nieto-Villar, J.M. (2013) Morphogenesis and Complexity
of the Tumor Patterns. In: Rubio, R.G., Ryazantsev, Y.S., Starov, V.M., Huang,
G.-X., Chetverikov, A.P., Arena, P., Nepomnyashchy, A.A., Ferrus, A. and Moro-
zov, E.G., Eds., Without Bounds. A Scientific Canvas of Nonlinearity and Complex
Dynamics. Understanding Complex Systems, Springer-Verlag Berlin Heidelberg,
657-691. https://doi.org/10.1007/978-3-642-34070-3_48

Davies, P.C.W., Demetrius, L. and Tuszynski, J.A. (2011) Cancer as a Dynamical
Phase Transition. Theoretical Biology and Medical Modelling, 8, 30.
https://doi.org/10.1186/1742-4682-8-30

Bru, A., Albertos, S., Subiza, J.L., Garcia-Asenjo, J.L. and Bru, I. (2003) The Univer-
sal Dynamics of Tumor Growth. Biophysical Journal, 85, 2948-2961.
https://doi.org/10.1016/S0006-3495(03)74715-8

Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P. and Deisboeck, T.S. (2003)
Does Tumor Growth Follow a “Universal Law”? Journal of Theoretical Biology,
225, 147-151. https://doi.org/10.1016/5S0022-5193(03)00221-2

Wissler, E.H. (1998) Pennes’ 1948 Paper Revisited. Journal of Applied Physiology,
85, 35-41. https://doi.org/10.1152/jappl.1998.85.1.35

DOI: 10.4236/0jbiphy.2021.111002

125 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1016/0033-0620(77)90019-6
https://doi.org/10.1016/0360-3016(92)90906-X
https://doi.org/10.1016/0360-3016(87)90106-4
https://doi.org/10.1115/1.1516810
https://doi.org/10.1080/02656730110081794
https://doi.org/10.1016/j.bioelechem.2003.07.001
https://doi.org/10.1080/02656730410001726956
https://doi.org/10.1007/978-3-642-34070-3_48
https://doi.org/10.1186/1742-4682-8-30
https://doi.org/10.1016/S0006-3495(03)74715-8
https://doi.org/10.1016/S0022-5193(03)00221-2
https://doi.org/10.1152/jappl.1998.85.1.35

0. Szasz, A. Szasz

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]
[138]

[139]

[140]

Nelson, D.A. (1998) Invited Editorial on “Pennes’ 1948 Paper Revisited”. Journal of
Applied Physiology, 85, 2-3. https://doi.org/10.1152/jappl.1998.85.1.2

Charny, C.K., Weinbaum, S. and Levin, R.L. (1990) An Evaluation of the Wein-
baum-Jiji Equation for Normal and Hyperthermic Conditions. Journal of Biome-
chanical Engineering, 112, 80-87. https://doi.org/10.1115/1.2891130

Najarian, S. and Pashaee, A. (2001) Inprovement of the Pennes Equation in the
Analysis of Heat Transfer Phenomenon in Blood Perfused Tissues. Biomedical
Sciences Instrumentation, 37, 185-190.

Szasz, A. and Vincze, Gy. (2006) Dose Concept of Oncological Hyperthermia:
Heat-Equation Considering the Cell Destruction. Journal of Cancer Research and
Therapeutics, 2, 171-181. https://doi.org/10.4103/0973-1482.29827

Szasz, A. and Vincze, Gy. (2007) Hyperthermia, a Modality in the Wings. Journal of
Cancer Research and Therapeutics, 3, 56-66.
https://doi.org/10.4103/0973-1482.31976

Kim, J.-K., Prasad, B. and Kim, S. (2017) Temperature Mapping and Thermal Dose
Calculation in Combined Radiation Therapy and 13.56 MHz Radiofrequency
Hyperthermia for Tumor Treatment. Proceedings SPIE 10047, Optical Methods for
Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic
Therapy XXVI, Vol. 10047, Article ID: 1004718. https://doi.org/10.1117/12.2253163

http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163%0rigin_id=x431

8

Boldrini, J.L., Viana, M.P., dos Reis, S.F., et al. (2018) A Mathematical Model for
Thermoregulation in Endotherms Including Heat Transport by Blood Flow and
Thermal Feedback Control Mechanisms: Changes in Coat, Metabolic Rate, Blood
Fluxes, Ventilation and Sweating Rates. Letters in Biomathematics, 5, 129-173.
https://doi.org/10.1080/23737867.2018.1497458

Vincze, Gy., Szigeti, Gy.P. and Szasz, O. (2016) Non-Newtonian Analysis of Blood
Flow. Journal of Advances in Physics, 11, 3470-3481.
https://doi.org/10.24297/jap.v11i5.6834

Vincze, Gy., Szigeti, Gy.P. and Szasz, O. (2016) Negative Impedance Interval of
Blood Flow in Capillary Bed. Journal of Advances in Physics, 11, 3482-3487.
https://doi.org/10.24297/jap.v11i5.365

Szasz, O., Vincze, Gy., Szigeti, Gy.P., et al. (2018) An Allometric Approach of Tu-
mor-Angiogenesis. Medical Hypotheses, 116, 74-78.
https://doi.org/10.1016/j.mehy.2018.03.015

Szasz, O., Szigeti, Gy.P. and Szasz, A. (2016) Connections between the Specific Ab-
sorption Rate and the Local Temperature. Open Journal of Biophysics, 6, 53-74.
https://doi.org/10.4236/0jbiphy.2016.63007

Rao, N.N. (1994) Elements of Engineering Electromagnetics. Prentice Hall Interna-

tional, London.
Jackson, J.D. (1999) Classical Electrodynamics. John Wiley & Sons Inc., New York.

Polk, C. and Postow, E. (1996) Handbook of Biological Effects of Electromagnetic
Fields. CRC Press, New York, London, Tokyo, 15.

Dissado, L.A. (1990) A Fractal Interpretation of the Dielectric Response of Animal

Tissues. Physics in Medicine and Biology, 35, 1487-1503.
https://doi.org/10.1088/0031-9155/35/11/005

Goldberger, A.L., Amaral, L.A., Hausdorff, .M., et al (2002) Fractal Dynamics in
Physiology: Alterations with Disease and Aging. PNAS Colloquium, 99, 2466-2472.

DOI: 10.4236/0jbiphy.2021.111002

126 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1152/jappl.1998.85.1.2
https://doi.org/10.1115/1.2891130
https://doi.org/10.4103/0973-1482.29827
https://doi.org/10.4103/0973-1482.31976
https://doi.org/10.1117/12.2253163
http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163?origin_id=x4318
http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163?origin_id=x4318
https://doi.org/10.1080/23737867.2018.1497458
https://doi.org/10.24297/jap.v11i5.6834
https://doi.org/10.24297/jap.v11i5.365
https://doi.org/10.1016/j.mehy.2018.03.015
https://doi.org/10.4236/ojbiphy.2016.63007
https://doi.org/10.1088/0031-9155/35/11/005

0. Szasz, A. Szasz

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

https://doi.org/10.1073/pnas.012579499

Szendro, P., Vincze, G. and Szasz, A. (2001) Pink Noise Behaviour of the Bio-Systems.
European Biophysics Journal, 30, 227-231.
https://doi.org/10.1007/s002490100143

Szendro, P., Vincze, G. and Szasz, A. (2001) Bio-Response on White-Noise Excita-
tion. Electromagnetic Biology and Medicine, 20, 215-229.
https://doi.org/10.1081/JBC-100104145

Bak, P., Tang, C. and Wieserfeld, K. (1988) Self-Organized Criticality. Physical Re-
view A, 38, 364-373. https://doi.org/10.1103/PhysRevA.38.364

Jones, E., Dewhirst, M. and Vujaskovic, Z. (2003) Hyperthermia Improves the
Complete Response Rate for Superficial Tumours Treated with Radiation: Results of
a Prospective Randomized Trial Testing the Thermal Dose Parameter CEM 43°T90.
International Journal of Radiation Oncology, Biology, Physics, 57, S253-5254.
https://doi.org/10.1016/S0360-3016(03)01088-5

Vernon, C.C., Hand, J.W., Field, S.B., Machin, D., Whaley, ].B., van der Zee, J., van
Putten, W.L.J., van Rhoon, G.C., van Dijk, ].D.P., Gonzalez Gonzalez, D., Liu, F.-F,,
Goodman, P. and Sherar, M. (1996) Radiotherapy with or without Hyperthermia in

the Treatment of Superficial Localized Breast Cancer: Results from Five Rando-
mized Controlled Trials. International Journal of Radiation Oncology, Biology,
Physics, 35, 731-744. https://doi.org/10.1016/0360-3016(96)00154-X

Sherar, M., Liu, F.-F,, Pintilie, M., et al (1997) Relationship between Thermal Dose
and Outcome in Thermoradiotherapy Treatments for Superficial Recurrences of

Breast Cancer: Data from a Phase III Trial. International Journal of Radiation On-
cology, Biology, Physics, 39, 371-380.
https://doi.org/10.1016/S0360-3016(97)00333-7

Mitsumori, M., Zeng, Z.F., Oliynychenko, P., et al (2007) Regional Hyperthermia
Combined with Radiotherapy for Locally Advanced Non-Small Cell Lung Cancers.
International Journal of Clinical Oncology, 12, 192-198.
https://doi.org/10.1007/510147-006-0647-5

Shinn, K.S., Choi, I.B., Kay, C.S., et al (1996) Thermoradiotherapy in the Treatment
of Locally Advanced Nonsmall Cell Lung Cancer. Journal of the Korean Society for
Therapeutic Radiology and Oncology, 14, 115-122.
https://doi.org/10.1016/0169-5002(96)85955-1

Vasanthan, A., Mitsumori, M., Park, J.H., et al (2005) Regional Hyperthermia
Combined with Radiotherapy for Uterine Cervical Cancers: A Multi-Institutional
Prospective Randomized Trial of the International Atomic Energy Agency. Interna-
tional Journal of Radiation Oncology, Biology, Physics, 61, 145-153.
https://doi.org/10.1016/j.ijrobp.2004.04.057

Zolciak-Siwinska, A., Piotrkowicz, N., Jonska-Gmyrek, J., et al (2013) HDR Bra-
chytherapy Combined with Interstitial Hyperthermia in Locally Advanced Cervical
Cancer Patients Initially Treated with Concomitant Radiochemotherapy—A Phase
III Study. Radiotherapy and Oncology; 109, 194-199.
https://doi.org/10.1016/j.radonc.2013.04.011

Jones, E.L., Oleson, J.R., Prosnitz, L.R., et a/ (2005) Randomized Trial of Hyper-
thermia and Radiation for Superficial Tumors. Journal of Clinical Oncology, 23,
3079-3085. https://doi.org/10.1200/JC0O.2005.05.520

Vaupel, P.W. and Kelleher, D.K. (1996) Metabolic Status and Reaction to Heat of
Normal and Tumour Tissue. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon,

C.C., Eds., Thermo- Radiotherapy and Thermo- Chemotherapy. Biology, Physiology

DOI: 10.4236/0jbiphy.2021.111002

127 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1073/pnas.012579499
https://doi.org/10.1007/s002490100143
https://doi.org/10.1081/JBC-100104145
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1016/S0360-3016(03)01088-5
https://doi.org/10.1016/0360-3016(96)00154-X
https://doi.org/10.1016/S0360-3016(97)00333-7
https://doi.org/10.1007/s10147-006-0647-5
https://doi.org/10.1016/0169-5002(96)85955-1
https://doi.org/10.1016/j.ijrobp.2004.04.057
https://doi.org/10.1016/j.radonc.2013.04.011
https://doi.org/10.1200/JCO.2005.05.520

0. Szasz, A. Szasz

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

and Physics, Vol. 1, Springer Verlag, Berlin Heidelberg, 157-176.
https://doi.org/10.1007/978-3-642-57858-8_8

Oehr, P., Biersack, H.J. and Coleman, R.E. (2004) PET and PET-CT in Oncology.
Springer Verlag, Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-18803-9

Foster, K.R. and Schepps, J.L. (1981) Dielectric Properties of Tumor and Normal
Tissues at Radio through Microwave Frequencies. Journal of Microwave Power, 16,
107-119. https://doi.org/10.1080/16070658.1981.11689230

Seersa, 1., Beravs, K., Dodd, N.J.F., et al (1997) Electric Current Imaging of Mice
Tumors. MRM, 37, 404-409. https://doi.org/10.1002/mrm.1910370318

Landini, G. and Rippin, J.W. (1993) Fractal Dimensions of the Epithelial-Connective
Tissue Interfaces in Premalignant and Malignant Epithelial Lesions of the Floor of
the Mouth. Analytical and Quantitative Cytology and Histology;, 15, 144-149.

Wong, S.H.M, Fang, C.M., Chuah, L.-H., et al (2018) E-Cadherin: Its Dysregulation
in Carcinogenesis and Clinical Implications. Critical Reviews in Oncologyl Hematology,

121, 11-22. https://doi.org/10.1016/j.critrevonc.2017.11.010

Knights, A.J., Funnel, A.P., Crossley, M. and Pearson, R.C.M. (2012) Holding Tight:
Cell Junctions and Cancer Spread. Trends in Cancer Research, 8, 61-69.

Damadian, R. (1971) Tumor Detection by Nuclear Magnetic Resonance. Science,
171, 1151-1153. https://doi.org/10.1126/science.171.3976.1151

Szentgyorgyi, A. (1968) Bioelectronics. A Study on Cellular Regulations, Defense
and Cancer. Academy Press, New York, London.

Szasz, A., Vincze, Gy., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extra-
cellular Hyperthermia. Magneto- and Electro- Biology, 22, 103-115.
https://doi.org/10.1081/JBC-120024620

Blad, B. and Baldetorp, B. (1996) Impedance Spectra of Tumour Tissue in Compar-
ison with Normal Tissue; a Possible Clinical Application for Electric Impedance
Tomography. Physiological Measurement, 17, A105-A115.
https://doi.org/10.1088/0967-3334/17/4A/015

Vincze, Gy., Szigeti, Gy., Andocs, G. and Szasz, A. (2015) Nanoheating without Ar-
tificial Nanoparticles. Biology and Medicine, 7, 249.

Thomas, S., Preda-Pais, A., Casares, S. and Brumeanu, T.D. (2004) Analysis of Lipid
Rafts in T Cells. Molecular Immunology; 41, 399-409.
https://doi.org/10.1016/j.molimm.2004.03.022

Nicolau, D.V., Burrage, K., Parton, R.G. and Hancock, J.F. (2006) Identifying Op-
timal Lipid Raft Characteristics Required to Promote Nanoscale Protein-Protein
Interactions on the Plasma Membrane. Journal of Molecular Cell Biology, 26,
313-323. https://doi.org/10.1128/MCB.26.1.313-323.2006

Nicolson, G.L. (2014) The Fluid—Mosaic Model of Membrane Structure: Still Rele-
vant to Understanding the Structure, Function and Dynamics of Biological Mem-
branes after More than 40 Years. Biochimica et Biophysica Acta, 1838, 1451-1466.
https://doi.org/10.1016/j.bbamem.2013.10.019

Gramse, G., Dols-Perez, A., Edwards, M.A., Fumagalli, L. and Gomila, G. (2013)
Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in
Aqueous Solutions with Electrostatic Force Microscopy. Journal of Biophysics, 104,
1257-1262. https://doi.org/10.1016/j.bpj.2013.02.011

Dharia, S. (2011) Spatially and Temporally Resolving Radio-Frequency Changes in
Effective Cell Membrane Capacitance. PhD Theses, University of Utah, Salt Lake
City.

DOI: 10.4236/0jbiphy.2021.111002

128 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1007/978-3-642-57858-8_8
https://doi.org/10.1007/978-3-642-18803-9
https://doi.org/10.1080/16070658.1981.11689230
https://doi.org/10.1002/mrm.1910370318
https://doi.org/10.1016/j.critrevonc.2017.11.010
https://doi.org/10.1126/science.171.3976.1151
https://doi.org/10.1081/JBC-120024620
https://doi.org/10.1088/0967-3334/17/4A/015
https://doi.org/10.1016/j.molimm.2004.03.022
https://doi.org/10.1128/MCB.26.1.313-323.2006
https://doi.org/10.1016/j.bbamem.2013.10.019
https://doi.org/10.1016/j.bpj.2013.02.011

0. Szasz, A. Szasz

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Pike, L.J. (2003) Lipid Rafts: Bringing Order to Chaos. The Journal of Lipid Re-
search, 44, 655-667. https://doi.org/10.1194/jlr.R200021-JLR200

Andersen, O.S., Koeppe, LI. and Roger, E. (2007) Bilayer Thickness and Membrane
Protein Function: An Energetic Perspective. Annual Review of Biophysics and
Biomolecular Structure, 36, 107-130.
https://doi.org/10.1146/annurev.biophys.36.040306.132643

Nicolau Dan, V., Burrage, K, Parton, R.G. and Hancock, J.F. (2006) Identifying Op-
timal Lipid Raft Characteristics Required to Promote Nanoscale Protein-Protein
Interactions in the Plasma Membrane. Molecular and Cellular Biology, 26, 313-323

Staunton, J.R., Wirtz, D., Tlsty, T.D., et al (2013) A Physical Sciences Network
Characterization of Non-Tumorigenic and Metastatic Cells. Scientific Reports, 3,
Article No. 1449. https://doi.org/10.1038/srep01449

Kotnik, T. and Miklavcic, D. (2000) Theoretical Evaluation of the Distributed Power
Dissipation in Biological Cells Exposed to Electric Fields. Bioelectromagnetics, 21,
385-394.
https://doi.org/10.1002/1521-186X(200007)21:5<385::AID-BEM7>3.0.CO;2-F

Pething, R. (1979) Dielectric and Electronic Properties of Biological Materials. John
Wiley and Sons, New York.

Volkov, V.V., Palmer, D.J. and Righini, R. (2007) Distinct Water Species Confined
at the Interface of a Phospholipid Membrane. Physical Review Letters, 99, Article
ID: 078302. https://doi.org/10.1103/PhysRevLett.99.078302

Liu, L.M. and Cleary, S.F. (1995) Absorbed Energy Distribution from Radiofre-
quency Electromagnetic Radiation in a Mammalian Cell Model: Effect of Mem-

brane-Bound Water. Bioelectromagnetics, 16, 160-171.
https://doi.org/10.1002/bem.2250160304

Hendry, B. (1981) Membrane Physiology and Membrane Excitation. Croom Helm,
London. https://doi.org/10.1007/978-1-4615-9766-7

Ma, Y., Poole, K., Goyette, J., et al (2017) Introducing Membrane Charge and
Membrane Potential to T Cell Signaling. Frontiers in Immunology; 8, 1513.
https://doi.org/10.3389/fimmu.2017.01513

Martinsen, O.G., Grimnes, S. and Schwan, H.P. (2002) Interface Phenomena and
Dielectric Properties of Biological Tissue. Corpus ID: 41679856.
https://www.semanticscholar.org/paper/INTERFACE-PHENOMENA-AND-DIELE
CTRIC-PROPERTIES-OF-Martinsen-Grimnes/96e2f6¢14dbba2ae5537a8a637b52d4
86b3925ef

Banerjee, S., Vandenbranden, M. and Ruysschaert, J. (1981) Interaction of Tobacco
Mosaic Virus Protein with Lipid Membrane Systems. FEBS Letters, 133, 221-224.
https://doi.org/10.1016/0014-5793(81)80510-8

Schubert, D., Bleuel, H.,, Domninc, B. and Wiedner, G. (1977) Protein-Induced
Conductivity Changes in Black Lipid Membranes and Protein Aggregation. FEBS
Letters, 74, 47-49. https://doi.org/10.1016/0014-5793(77)80749-7

Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Mem-
brane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Bi-
ophysics, 7, 216-229. https://doi.org/10.4236/0jbiphy.2017.74016

Szasz, A., Szasz, O. and Szasz, N. (2001) Electro-Hyperthermia: A New Paradigm in
Cancer Therapy. Deutsche Zeitschrift fur Onkologie, 33, 91-99.
https://doi.org/10.1055/s-2001-19447

Szasz, O. and Szasz, A. (2013) Burden of Oncothermia: Why Is It Special? Confe-

DOI: 10.4236/0jbiphy.2021.111002

129 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1194/jlr.R200021-JLR200
https://doi.org/10.1146/annurev.biophys.36.040306.132643
https://doi.org/10.1038/srep01449
https://doi.org/10.1002/1521-186X(200007)21:5%3C385::AID-BEM7%3E3.0.CO;2-F
https://doi.org/10.1103/PhysRevLett.99.078302
https://doi.org/10.1002/bem.2250160304
https://doi.org/10.1007/978-1-4615-9766-7
https://doi.org/10.3389/fimmu.2017.01513
https://www.semanticscholar.org/paper/INTERFACE-PHENOMENA-AND-DIELECTRIC-PROPERTIES-OF-Martinsen-Grimnes/96e2f6c14dbba2ae5537a8a637b52d486b3925ef
https://www.semanticscholar.org/paper/INTERFACE-PHENOMENA-AND-DIELECTRIC-PROPERTIES-OF-Martinsen-Grimnes/96e2f6c14dbba2ae5537a8a637b52d486b3925ef
https://www.semanticscholar.org/paper/INTERFACE-PHENOMENA-AND-DIELECTRIC-PROPERTIES-OF-Martinsen-Grimnes/96e2f6c14dbba2ae5537a8a637b52d486b3925ef
https://doi.org/10.1016/0014-5793(81)80510-8
https://doi.org/10.1016/0014-5793(77)80749-7
https://doi.org/10.4236/ojbiphy.2017.74016
https://doi.org/10.1055/s-2001-19447

0. Szasz, A. Szasz

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

rence Papers in Medicine, 2013, Article ID: 938689.
https://doi.org/10.1155/2013/938689

Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia.
In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press,
Taylor & Francis Group, London, 323-336.

Szasz, A. (2014) Oncothermia: Complex Therapy by EM and Fractal Physiology.
LEEE General Assembly and Scientific Symposium (URSI GASS), 2014 21th URSI,
Beijing, 16-23 August 2014, 1-4. https://doi.org/10.1109/URSIGASS.2014.6930100

Sowers, A.E. (1984) Characterisation of Electric Field-Induced Fusion in Erythro-
cyte Ghost Membranes. The Journal of Cell Biology, 99, 1989-1996.
https://doi.org/10.1083/jcb.99.6.1989

Marszalek, P. and Tsong, T.Y. (1995) Cell Fission and Formation of Mini Cell Bo-
dies by High Frequency Alternating Electric Field. Biophysical Journal, 68, 1218-1221.
https://doi.org/10.1016/S0006-3495(95)80338-3

Cleary, S.F., Liu, L.-M. and Garber, F. (1985) Erythrocyte Haemolysis by Radiofre-
quency Fields. Bioelectromagnetics, 6, 313-322.
https://doi.org/10.1002/bem.2250060311

Liu, D.-S., Astumian, R.D. and Tsong, T.Y. (1990) Activation of Na+ and K+ Pump-
ing Modes of (Na,K)-ATPase by an Oscillating Electric Field. The Journal of Bio-
logical Chemistry, 265, 7260-7267. https://doi.org/10.1016/50021-9258(19)39108-2

Walleczek, J. (1992) Electromagnetic Field Effects on Cells of the Immune System:
The Role of Calcium Signalling. FASEB Journal, 6, 3177-3185.
https://doi.org/10.1096/fasebj.6.13.1397839

Cho, M.R., Thatte, H.S., Silvia, M.T., et al (1999) Transmembrane Calcium Influx
Induced by AC Electric Fields. FASEB Journal, 13, 677-683.
https://doi.org/10.1096/fasebj.13.6.677

Ho, M.-W., Popp, F.-A. and Warnke, U. (1994) Bioelectrodynamics and Biocom-
munication. World Scientific, Singapore, London. https://doi.org/10.1142/2267

Bernardi, P. and D’Inzeo, G. (1989) Physical Mechanisms for Electromagnetic Inte-
raction with Biological Systems. In: Lin, J.C., Ed., Electromagnetic Interaction with
Biological Systems, Plenum Press, New York, London, 179-214.
https://doi.org/10.1007/978-1-4684-8059-7_9

Markov, M.S. (1994) Biological Effects of Extremely Low Frequency Magnetic Fields.
In: Ueno, S., Ed., Biomagnetic Stimulation, Plenum Press, New York, London, 91-104.
https://doi.org/10.1007/978-1-4757-9507-3_7

Bauerus, K.C.L., Sommarin, M., Persson, B.R., ef al (2003) Interaction between
Weak Low Frequency Magnetic Fields and Cell Membranes. Bioelectromagnetics,
24, 395-402. https://doi.org/10.1002/bem.10136

Benett, W.R. (1994) Cancer and Power Lines. Physics Today, 23-29.
https://doi.org/10.1063/1.881417

Portier, C.J. and Wolfe, M.S. (1998) Assessment of Health Effects from Exposure to
Power-Line Frequency Electric and Magnetic Fields. National Institute of Environ-
mental Health Sciences, Research Triangle Park, NIH Publication No. 98-3981.

Harland, J.D. and Liburdy, R.P. (1997) Environmental Magnetic Fields Inhibit the
Anti-Proliferation Action of Tamoxifen and Melatonin in a Human Breast Cancer
Cell Line. Bioelectromagnetics, 18, 555-562.
https://doi.org/10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1

Ahlbom, A., Day, N., Feychting, M., et al (2000) A Pooled Analysis of Magnetic

DOI: 10.4236/0jbiphy.2021.111002

130 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1155/2013/938689
https://doi.org/10.1109/URSIGASS.2014.6930100
https://doi.org/10.1083/jcb.99.6.1989
https://doi.org/10.1016/S0006-3495(95)80338-3
https://doi.org/10.1002/bem.2250060311
https://doi.org/10.1016/S0021-9258(19)39108-2
https://doi.org/10.1096/fasebj.6.13.1397839
https://doi.org/10.1096/fasebj.13.6.677
https://doi.org/10.1142/2267
https://doi.org/10.1007/978-1-4684-8059-7_9
https://doi.org/10.1007/978-1-4757-9507-3_7
https://doi.org/10.1002/bem.10136
https://doi.org/10.1063/1.881417
https://doi.org/10.1002/(SICI)1521-186X(1997)18:8%3C555::AID-BEM4%3E3.0.CO;2-1

0. Szasz, A. Szasz

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

Fields and Childhood Leukaemia. British Journal of Cancer, 83, 692-698.
https://doi.org/10.1054/bjoc.2000.1376

Greenland, S., Sheppard, A.R., Kaune, W.T., et al (2000) A Pooled Analysis of Mag-
netic Fields, Wire Codes, and Childhood Leukaemia. Epidemiology, 11, 624-634.
https://doi.org/10.1097/00001648-200011000-00003

Blackman, C.F., Benane, S.G. and House, D.E. (2001) The Influence of 1.24T, 60Hz
Magnetic Fields on Melatonin- and Tamoxifen-Induced Inhibition of MCF-7 Cell
Growth. Bioelectromagnetics, 22, 122-128.
https://doi.org/10.1002/1521-186X(200102)22:2<122::AID-BEM1015>3.0.CO;2-V

Glaser, R. (2005) Are Thermoreceptors Responsible for “Non-Thermal” Effects of
RF Fields? Edition Wissenschaft Forschungsgemeinschaft Funk e. V. G 14515. Issue
No. 21. December 2005.

Zotin, A.A. and Zotin, A.I. (1996) Thermodynamic Bases of Developmental Processes.
Journal of Non- Equilibrium Thermodynamics, 21, 307-320.
https://doi.org/10.1515/jnet.1996.21.4.307

Lakhssassi, A., Kengne, E. and Semmaoui, H. (2010) Investigation of Nonlinear
Temperature Distribution in Biological Tissues by Using Bioheat Transfer Equation
of Pennes’ Type. Natural Science, 2, 131-138. https://doi.org/10.4236/ns.2010.23022

Chang, I. (2003) Finite Element Analysis of Hepatic Radiofrequency Ablation
Probes Using Temperature-Dependent Electrical Conductivity. BioMedical Engi-
neering OnLine, 2, Article No. 12. https://doi.org/10.1186/1475-925X-2-12

Kok, H.P., Navarro, F., Strigari, L., et al (2018) Locoregional Hyperthermia of
Deep-Seated Tumours Applied with Capacitive and Radiative Systems: A Simula-
tion Study. International Journal of Hypertension, 34, 714-730.
https://doi.org/10.1080/02656736.2018.1448119

Canters, R.A.M., Franckena, M., van der Zee, J. and van Rhoon, G.C. (2011) Opti-
mizing Deep Hyperthermia Treatments: Are Locations of Patient Pain Complaints
Correlated with Modelled SAR Peak Locations? Physics in Medicine and Biology,
56, 439-451. https://doi.org/10.1088/0031-9155/56/2/010

Dutz, S. and Hergt, R. (2013) Magnetic Nanoparticle Heating and Heat Transfer on
a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia
for Tumour Therapy. International Journal of Hypertension, 29, 790-800.
https://doi.org/10.3109/02656736.2013.822993

Chen, C.-C., Chen, C.-L., Li, J.-J., et al (2019) The Presence of Gold Nanoparticles
in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia.
ACS Applied Bio Materials, 2, 3573-3581. https://doi.org/10.1021/acsabm.9b00453

Szasz, A. (2007) Hyperthermia, a Modality in the Wings. Journal of Cancer Re-
search and Therapeutics, 3, 56-66. https://doi.org/10.4103/0973-1482.31976

Guest, W.C., Cashman, N.R. and Plotkin, S.S. (2011) A Theory for the Anisotropic
and Inhomogeneous Dielectric Properties of Proteins. Physical Chemistry Chemical
Physics, 13, 6286-6295. https://doi.org/10.1039/c0cp02061c

Yang, M. and Brackenbury, W.]. (2013) Membrane Potential and Cancer Progres-
sion. Frontiers in Physiology, 4, 185. https://doi.org/10.3389/fphys.2013.00185

Govorov, A.O. and Richardson, H.H. (2007) Generating Heat with Metal Nanopar-
ticles. Nanotoday; 2, 30-39. https://doi.org/10.1016/S1748-0132(07)70017-8

Johnson, S.A., Stinson, B.M., Go, M.S., et al (2010) Temperature-Dependent Phase
Behavior and Protein Partitioning in Giant Plasma Vehicles. Biochimica et Biophy-
sica Acta, 1798, 1427-1435. https://doi.org/10.1016/j.bbamem.2010.03.009

DOI: 10.4236/0jbiphy.2021.111002

131 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1054/bjoc.2000.1376
https://doi.org/10.1097/00001648-200011000-00003
https://doi.org/10.1002/1521-186X(200102)22:2%3C122::AID-BEM1015%3E3.0.CO;2-V
https://doi.org/10.1515/jnet.1996.21.4.307
https://doi.org/10.4236/ns.2010.23022
https://doi.org/10.1186/1475-925X-2-12
https://doi.org/10.1080/02656736.2018.1448119
https://doi.org/10.1088/0031-9155/56/2/010
https://doi.org/10.3109/02656736.2013.822993
https://doi.org/10.1021/acsabm.9b00453
https://doi.org/10.4103/0973-1482.31976
https://doi.org/10.1039/c0cp02061c
https://doi.org/10.3389/fphys.2013.00185
https://doi.org/10.1016/S1748-0132(07)70017-8
https://doi.org/10.1016/j.bbamem.2010.03.009

0. Szasz, A. Szasz

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

Veatch, S.L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A., Holowka, D. and
Baird, B. (2008) Critical Fluctuations in Plasma Membrane Vesicles. ACS Chemical
Biology, 3, 287-295. https://doi.org/10.1021/cb800012x

Langner, M., Komorowska, M., Koter, M. and Gomulkiewicz, J. (1984) Phase Tran-
sitions in Spherical Bilayer Membranes Prepared of Bulk Erythrocyte Membrane
Lipids. General Physiology and Biophysics, 3, 521-526.

Hossain, M.T., Prasad, B., Park, K.S., et al (2016) Simulation and Experimental
Evaluation of Selective Heating Characteristics of 13,56 MHz Radiofrequency
Hyperthermia in Phantom Models. International Journal of Precision Engineering
and Manufacturing, 17, 253-256. https://doi.org/10.1007/s12541-016-0033-9

Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015)
Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the
Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using
U937 Cell Suspension Model. Biology and Medicine, 7, 1-9.
https://doi.org/10.4172/0974-8369.1000247

Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T.
(2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and
Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Dis-
covery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39

Prasad, B., Kim, S., Cho, W., et al. (2018) Effect of Tumor Properties on Energy
Absorption, Temperature Mapping, and Thermal Dose in 13,56-MHz Radiofre-
quency Hyperthermia. Journal of Thermal Biology, 74, 281-289.
https://doi.org/10.1016/j.jtherbio.2018.04.007

Portoro, I., Danics, L. and Veres, D. (2018) Increased Efficacy in Treatment of
Glioma by a New Modulated Electro-Hyperthermia (mEHT) Protocol. Oncother-
mia Journal, 24, 344-356.

Kao, P.H.-J.,, Chen, C.-H., Chang, Y.-W., et al. (2020) Relationship between Energy
Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Scientific
Reports, 10, Article No. 8936. https://doi.org/10.1038/s41598-020-65823-2

Fiorentini, G., Sarti, D. and Casadei, V. (2019) Modulated Electro-Hyperthermia
(mEHT) [oncothermia®] Protocols as Complementary Treatment. Oncothermia Jour-
nal, 25, 85-115.

Szasz, A.M., Arkosy, P., Arrojo, E.E., et al (2020) Guidelines for Local Hyperther-
mia Treatment in Oncology. In: Szasz, A., Ed., Challenges and Solutions of Onco-
logical Hyperthermia, Ch. 2, Cambridge Scholars, Cambridge, 32-71.

Szasz, A.M., Minnaar, C.A., Szentmartoni, Gy., et al (2019) Review of the Clinical
Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the
Practicing Oncologist. Frontiers in Oncology; 9, Article No. 1012.
https://doi.org/10.3389/fonc.2019.01012

DOI: 10.4236/0jbiphy.2021.111002

132 Open Journal of Biophysics


https://doi.org/10.4236/ojbiphy.2021.111002
https://doi.org/10.1021/cb800012x
https://doi.org/10.1007/s12541-016-0033-9
https://doi.org/10.4172/0974-8369.1000247
https://doi.org/10.1038/cddiscovery.2016.39
https://doi.org/10.1016/j.jtherbio.2018.04.007
https://doi.org/10.1038/s41598-020-65823-2
https://doi.org/10.3389/fonc.2019.01012

Call for Papers

Open Journal of Biophysics

ISSN Print: 2164-5388 ISSN Online: 2164-5396
il https://www.scirp.org/journal/ojbiphy

Open Journal of Biophysics (OJBIPHY) is an international journal dedicated to the latest
advancement of biophysics. The goal of this journal is to provide a platform for scientists and
academicians all over the world to promote, share, and discuss various new issues and
developments in different areas of biophysics.

Subject Coverage

All manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review
process. Accepted papers will immediately appear online followed by printed hard copy. The journal
publishes original papers including but not limited to the following fields:

e Bioelectromagnetics e Membrane Biophysics
e Bioenergetics e Molecular Biophysics and Structural Biology

e Bioinformatics and Computational Biophysics e Physical Methods

e Biological Imaging * Physiology and Biophysics of the Inner Ear
e Biomedical Imaging and Bioengineering e Proteins and Nucleic Acids Biophysics

e Biophysics of Disease * Radiobiology

*Biophysics of Photosynthesis * Receptors and lonic Channels Biophysics
e Cardiovascular Biophysics e Sensory Biophysics and Neurophysiology
e Cell Biophysics e Systems Biophysics

e Medical Biophysics e Theoretical and Mathematical Biophysics

We are also interested in: 1) Short Reports—2-5 page papers where an author can either present an
idea with theoretical background but has not yet completed the research needed for a complete paper
or preliminary data; 2) Book Reviews—Comments and critiques.

Notes for Intending Authors

Submitted papers should not have been previously published nor be currently under consideration
for publication elsewhere. Paper submission will be handled electronically through the website. All
papers are refereed through a peer review process. For more details about the submissions, please
access the website.

Website and E-Mail
https://www.scirp.org/journal/ojbiphy E-mail: ojbiphy@scirp.org



What is SCIRP?

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide
range of academic disciplines. SCIRP serves the worldwide academic communities and
contributes to the progress and application of science with its publication.

What is Open Access?

All original research papers published by SCIRP are made freely and permanently accessible
online immediately upon publication. To be able to provide open access journals, SCIRP defrays
operation costs from authors and subscription charges only for its printed version. Open access
publishing allows an immediate, worldwide, barrier-free, open access to the full text of research
papers, which is in the best interests of the scientific community.

e High visibility for maximum global exposure with open access publishing model
e Rigorous peer review of research papers

* Prompt faster publication with less cost

e Guaranteed targeted, multidisciplinary audience

‘0:0 Scientific
Research
0.:. Publishing
Website: https://www.scirp.org
Subscription: sub@scirp.org
Advertisement: service@scirp.org




	Front Cover
	Inside Front Cover-Editorial Board
	Table of Contents
	Journal Information
	1-A Bioelectromagnetic Proposal Approaching the Complex Challenges of COVID-19
	68-Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology
	Inside Back Cover-Call for Papers
	Back Cover

