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Abstract 
In metals, the non-adiabatic mechanism of charge separation into the elec-
tron, cation, and vacancy chains is considered. It includes: 1) the photoelec-
tric effect caused by bremsstrahlung caused by the scattering of conduction 
electrons by impurity ions lying at the ends of these chains and oscillating 
with the frequency of the local phonon mode; 2) knocking out from the metal 
cations of the matrix, sufficiently slow (in comparison with the conduction 
electrons) photoelectrons that pull these cations from the nodes, thereby not 
violating the electroneutrality condition in the model of a free electron gas as 
with the static state of the chains and at their motion (slipping, recrawling) in 
the absence of a thermal field; 3) induced radiation along the line of chains; 4) 
the formation of linear structures in the spatial lattice of octahedral interstitial 
sites. The conditions for the formation of quasistable bound states in the dis-
location core are considered. A hypothesis is advanced that the latent energy 
in the dislocation cores contains a component that is of an electromagnetic 
nature. 
 

Keywords 
Nonadiabatic Process, Bremsstrahlung, Photoelectric Effect, Photoelectrons, 
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1. Introduction 

It is known that in metals near edge dislocations there is a difference in bulk 
density above and below the slip plane [1] [2] [3]. For the ground state of a free 
electron gas in metals [4], the Fermi energy 2 3~F enε , where en  is the bulk 
concentration of conduction electrons, is the same at all points of the crystal. 
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Near the dislocation in the compacted sections above the slip plane, there is a 
lack of electrons, and in the rarefaction region there is an excess, which leads to a 
violation of electroneutrality and the appearance of an electric dipole with a di-
pole moment distributed along the dislocation line and directed along the nor-
mal to the slip plane. On the other hand, the solution of the problem of scatter-
ing of conduction electrons near the line of edge [5] and screw [6] dislocations is 
well known, where it was assumed that, firstly, the scattering of conduction elec-
trons by cations is elastic due to its large mass in comparison with the mass of 
the electron and, accordingly, the negligible recoil momentum and displacement 
of the cation at the lattice node during scattering, the energy of an electron in a 
collision can be assumed to be unchanged; secondly, the solution was obtained 
at large distances from the dislocation line 0 02 25a aρ ≈ ÷  ( 0a  is the lattice 
parameter) with the help of asymptotic wave functions and Friedel basis func-
tions [7]. 

Here it is shown that, first of all, regardless of the type of dislocation around 
its line, an oscillating distribution of the excess electric charge of the conduction 
electrons arises 5 2, ~scr edgq q r−  (r is the distance from the dislocation line to 
the collision point) in difference from scattering by a charged impurity ion: 

3~impq r− ; secondly, for an edge dislocation, ~ sin sin 2
4edg Fq kβ π ⋅ + 

 
, where  

Fk  is the modulus of the Fermi wave vector, β  is the angle between the Burg-
ers vector and the radius vector r , which corresponds to the deformation field 
of the defect 1r− ; for a screw dislocation ( )5 2~ cos 2scr Fq r k− +Φ , where Φ  
is the phase shift, which reflects the axial symmetry of the defect. However, the 
distribution ( ),scr edgq q r  [5] [6] caused by the deformation field of the defect 

1r−  in the region of a good crystal does not allow us to reliably determine 
( ),scr edgq q r  inside the cylindrical region around the defect line with the radius 

0.1 0.2 nmr ≈ ÷ , as well as the shape, height and width of the potential barrier in 
these nuclei. In addition, as noted by Friedel [7], the conduction electrons are 
fast particles and, when passing near the dislocation, they do not settle on the 
cations of the dislocation core, but only change the direction of their motion, 
creating a dynamic picture of charge redistribution. As an attempt to remedy the 
situation, work [8] is known, where in the tight-binding approximation, the so-
lution of the Schrödinger time equation was found by numerical methods for a 
two-dimensional distorted lattice of cross section perpendicular to the disloca-
tion line considered in the Peierls-Nabarro model. Here, the distribution of the 
local density of states ( )0N ε  of electrons on the energy scale ε  is obtained, 
which contains two pronounced high peaks, one of which is located in the re-
gion 0ε <  and the other at 0ε > , while the point 0ε =  divides the interme-
diate segment between the peaks, for example, for the s-s bond and the various 
spatial dependences of the transfer integrals ( )T R , ′= −R ρ ρ  in the near-
est-neighbor approximation: for the power 5~T R−  in the relation 1 (in 0ε > ) 
to 1.5 (in 0ε < ); at an exponential ( )~ exp 0.5 1.5T Rα− − . In the same time 
there is no interpretation of this form of ( )0N ε . The results of the numerical 

https://doi.org/10.4236/am.2020.118049


V. L. Busov 
 

 

DOI: 10.4236/am.2020.118049 741 Applied Mathematics 
 

calculation show the decisive role of the dislocation core for the electronic 
structure of the defect in comparison with the effect of the long-range part of the 
deformation potential [5] [6]. 

It is also known ([9], p. 99) that, in crystals of the NaCl type, edge dislocations in  

the { }111  plane with a Burgers vector 0 110
2
a

 and a linear (running) charge  

density NaCl 02Q e a= ±  are charged. In semiconductor crystals, particularly in 
n-type germanium and silicon, a chain of unpaired valence electrons along the 
dislocation line forms a negative charge density scQ , NaClm scQ Q Q< <  ([9], p. 
101). In metals, according to [10] [11], this density is ( ) 00.01 0.1mQ e a≈ − ÷  
in contrast to [5] [6], where the total charge of excess density ,scr edgq q  in vo-
lume around the dislocation line at dV →∞  tends to zero. 

The purpose of this paper is to identify the mechanism for separating the 
charges of electrons and metal cations, which allows the generation of disloca-
tion nuclei, and the formation of linear structures, as well as the determination 
of the conditions for the appearance of quasistable bound states in the disloca-
tion core. 

2. Theoretical Model 

First we note that the electric charge, as well as energy, momentum, etc. is the 
integral of motion ([12], p. 505) is preserved in space and in time. Generation 
of dislocations occurs mainly in a perfect crystal, where the total charge ii q∑  
in its individual volumes and in the entire volume is initially zero. Therefore, 
after generating the defect 0ii q =∑ . In addition, as a result of the movement 
(slipping, recrawling), a single defect leaves no trace in the crystal except for 
extrusions and intrusions on its free surface. If we consider the separation of 
charges as a short-lived state for a characteristic period of time T within the 
trial volume V, then the condition 0ii q =∑  must be softened, averaging it 
according to 

,
0ii V T

q =∑ .                         (1) 

On the other hand, the separation of charges in metals mainly occurs under 
the influence of an external electromagnetic field, penetration of which into the 
material is possible only within the skin layer. The question arises: “How does 
the charge separation occur when generating dislocation nuclei outside the skin 
layer?” Here it should be noted that practically all dislocation models, known in 
the literature, reflect adiabatic processes, i.e. at the beginning metal cations are 
shifted, and then electrons are “adjusted” for these displacements. In this paper, 
we abandon this approach and state hypothesis 1: The processes of generation 
and motion of the cationic chain, as well as of the entire core of the dislocation 
as a whole, are nonadiabatic. Here, we will use an intermittent field of electro-
magnetic nature as the generating field of defect nuclei. At the first stage, we 
shall single out the main scheme of the charge separation mechanism during 
generation, where as an intermittent field we take the bremsstrahlung of the 
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conduction electrons, which form the halo of the charge ,scr edgq q , when a 
charged impurity ion moves along a certain periodic law. Here, for simplicity, 
we use the harmonic oscillations cos tΩ  (Ω  is the frequency of the natural 
oscillations of the impurity ion as a local phonon mode ([13], p. 358). This radi-
ation can cause a photoelectric effect for electrons of internal L, K-shells, thus 
forming a sufficiently slow (in comparison with the conduction electrons) pho-
toelectrons, as well as induced radiation along the dislocation line and 
long-wavelength secondary photons that go to the region of a good crystal where 
they are elastically scattered on the metal cations. In other words, we arrive at the 
problem of scattering of bremsstrahlung photons on bound electrons L, K-shells, 
and in the absence of secondary photons to resonant scattering ([14], p. 384). 

To determine the initial generation conditions, let us use the experiment [15] 
to determine the electromagnetic emission (EME) in the process of intermit-
tent deformation in an AlMg6Mn aluminum alloy (Al-6.03 wt% Mg-0.5% Mn), 
where the samples were stretched at a constant rate of increase of the applied 
stress σ . This alloy is a solid solution of Mg and Mn in an aluminum matrix, 
and in the first stage the influence of Mn is neglected. The light impurity atom 
Mg ( Mg AlM M< ) gives both valence electrons to the subsystem of the collectivi-
zated conduction electrons of the whole alloy and forms an single impurity ion 
Mg2+ [16], which creates a local oscillation mode with a frequency [13] 

2
max 1Lω ω= −                         (2) 

at ( )Mg Al 1M M= −   and 0>  without taking into account the change in the 
force constant. We note that the axis along which the impurity ion oscillates has a 
stereographic projection equally distributed in a full solid angle and has a spherical 
polarization as t →∞ . Under the actual conditions of the alloy, the homogeneous 
distribution of the cations Mg2+ takes place on average, for which the average dis-
tance MgR  between them is much larger than the distance lmr  of the amplitude 
of the oscillations decrease to zero: Mg lmR r . If a weak impact (shock) is applied 
to the free surface of the alloy sample, the displacement of the ion Mg2+ is differ-
ent from the displacements of the surrounding cations Al3+ at 0t =  due to the 
difference in ionic radii ( )3Al 0.057 nmionr + =  and ( )2Mg 0.074 nmionr + =  
without taking into account the influence of the coordinate number ([17], p.75), 
which leads to the replacement of the spherical polarization of the oscillations by 
linear polarization. In addition, the main feature of [15] for 0 0,t constσ σ σ =⋅=    
is the linear increase in the EME pulse amplitude ( )EME tϕ  in time t, and the 
time intervals between neighboring pulses, especially in its central part are prac-
tically equidistant. We recall that the energy stored in the crystal as a result of 
pumping at time t is numerically determined by the area under the σ-ε curve, 
which allows us to replace the time coordinate of the energy coordinate: ( )EMEϕ ε . 

2.1. Bremsstrahlung 

Let us consider the law of conservation of energy and momentum ([14], p. 387) 
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in the scattering of conduction electron by an impurity ion  

( )1 2 0,1, 2,3p p k qµ µ µ µ µ− = − = ,                    (3) 

where 1 2, ,p p kµ µ µ  and qµ  are the 4-momentum of the incident electron, the 
scattered electron, the bremsstrahlung photon and the recoil of the ion nucleus, 
respectively. For the time components of these pulses, expression (3) is written 
in the form 

1 2 nrγε ε ε ε− = + ,                           (4) 

1 2, , γε ε ε  and nrε  are the kinetic energy of the initial and final states of the 
electron, the photon energy of bremsstrahlung and the recoil of the nucleus of 
the impurity ion, respectively. For the spatial components of 4-momenta 

1 2− = −p p k q .                          (5) 

In the limiting case of low energies of primary electrons from 3 10 eVFε = −  
in metals up to tens of keV in the problem of the continuous spectrum of x-rays, 
the photon momentum k  small compared with the momentum of the elec-
tron in view of the practically zero rest mass of the photon, and there fore 

( )22
1 2= −q p p .                          (6) 

In the nonrelativistic case, with the initial velocity of the electron e cv  , c is 
the speed of light, the differential bremsstrahlung cross section is equal to the 
product of the Rutherford elastic scattering cross section d sσ  by the photon 
emission probability dwγ  

d d ds wγ γσ σ ⋅= ,                         (7) 

where 

( )
( )

2

1 22

d
d d

2
e ew γ

γ
γ γ

εα ο
ε ε

 
= − 

π   

k v v ,                (8) 

and α  is the fine structure constant, 1 137α ≈ ; 1ev  and 2ev  are the velocity 
vectors of the primary and scattered electron; dο  is the solid angle element. 
Here, the radiation intensity I reaches a maximum in the direction perpendicu-
lar to the plane of motion of the electron ( )1 2,p p  i.e. when k  lies in this 
plane. In accordance with the classical theory of radiation, dwγ  is the ratio of 
the intensity of the dipole radiation dI  at low frequencies to the photon energy 

γε  equal to the average number of photons nγ  per unit time. We note that the 
representation of the bremsstrahlung cross section in the form (7), (8) is possible 
in all those cases in which low-frequency photons are emitted. In this connection, 
the theoretical spectrum of bremsstrahlung in a metal, for example, in aluminum 
([14], p. 398), is of interest in the form of the dependence dI  on eТγε  ( eТ  
is the kinetic energy of the primary electron), taking into account the electron 
shielding of the inner shells of the impurity ion, which allows one to eliminate 
the divergence as 0γε →  in the process of determining the total cross section 

γσ  with the help of (7), (8). Here, in the interval ( )0.2 0.8 eТγε = ÷ , the value 
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of dI  (in relative units) varies from 7 to 4, i.e. in engineering calculations is re-
placed by an average of 5.5, and for light elements of type Al screening is of little 
significance. It becomes clear from the expressions (3)-(8) that by changing the 
components of the 4-momentum of the impurity nucleus qµ  in time by an ex-
ternal action, leading to jumps [ ]0q  and [ ]q , wherein it is possible to achieve 
level jumps [ ]dI , where the jump [ ]q  creates a discontinuous displacement of 
the ion nucleus [ ]l  along an arbitrary axis l. To do this, we place single impur-
ity ion in an ideal crystal at a distance R from its free surface, with 0R a . We 
divide the entire space of the crystal into two half-spaces by a plane parallel to its 
free surface. Here we note that according to the theory of periodic chains of 
bonds between atoms and estimates of the surface energy of the free surface of 
the crystal ([18], p. 14), the crystallographic orientation of the crystal must 
correspond to the most densely packed crystallographic plane. In our case of 
metals with a face-centered lattice this is a family of slip planes { }111  in Al. 
Here, the light ion Mg2+ is in an octahedral interstitial site with six nearest 
neighbors—cations Al3+ ([3], p. 122). The total recoil momentum jj∑ q  that 
imparts to the impurity nucleus the conduction electrons scattered on it from 
the lower half-space ( )LHSjj∑ q  is equal in magnitude and opposite in sign to 
the analogous momentum transferred from electrons from the upper half-space 

( )UHSjj∑ q  without taking into account the influence of thermal oscillations 
and in the absence of external forces. As already noted, there exists a local mode 
of oscillations of the ion Mg2+ with a frequency Lω  by gap from the upper 
spectral phonon band. Here, the dipole moment of the charge system “impurity 
ion-distribution of scattered electrons” is equal to zero due to the symmetry of 
the lattice, while the stereographic projection of the ion oscillation axis is un-
iformly distributed in a full solid angle in time 2L Lt T ω= π . If a weak im-
pact (shock) is made on the free surface of the crystal along the normal to it, 
then the recoil momentum nrq  given to the nucleus of the single impurity is 
equal to the difference ( )LHSjj∑ q  (the coincidence of the directions of the 
external force action and the recoil of the ion nucleus from scattering electrons) 
and ( )UHSjj∑ q  (the above directions are opposite) 

[ ] ( ) ( )LHS UHSnr j jj j−≡ = ∑ ∑q q q q                (9) 

and arises in the form of a jump [ ]q . Here it should be noted that under the in-
fluence of the impact both the impurity ion and its nearest and subsequent ca-
tions Al3+ are displaced, where for the easy Mg2+ this displacement is obviously 
larger. As a result, such a impact (shock) lowers the point symmetry of the lattice 
to the axial symmetry near the impurity ion, but all the characteristics of a free 
electron gas under translational invariance must correspond to periodic boun-
dary conditions within a three-dimensional cube with the side 0L a , and the 
time interval e FL vτ ≈  ( Fv  is Fermi velocity) within the framework of this 
model is proportional to the relaxation time of the free-electron subsystem and 
plays the role of the time for its “adjustment” to the lattice change for a free path 
length of order L and collisions with one impurity ion. On the other hand, the 
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time interval for the amplitude shift of the impurity ion Mg 0 st a v∆ ≈  ( sv  is 
the sound velocity) for a perfect aluminum single crystal at 210 mL −≈  and 

F sv v , and for the intervals eτ  and Mgt∆ , the condition Mg et τ∆   is satis-
fied. In this case, the charged ion is displaced with respect to the spherically 
symmetric distribution of the excess density ,edg scrq q  of the charge of the con-
duction electrons, and a dipole moment of the system arises at the time Mgt t= ∆  

( ) Mg-Als m impP k k e z= − ⋅ ⋅∆ ,                    (10) 

where mk  and impk  are valences of matrix and impurity atoms, respectively; 

Mg-Alz∆  is the displacement amplitude of the Mg ion with respect to the nearest 
neighbors, ( )Mg-Al 00.01 0.1z a∆ ≈ ÷ ⋅ . Hence, the bremsstrahlung intensity dI  in 
the dipole approximation ([19], p. 206) for an single impurity is 

( ) ( )
22

24
Mg-Al33

m imp
d L

e k k
I z

c
ω

−
= ⋅ ⋅ ∆ .                (11) 

In a real aluminum polycrystalline with a grain dispersion of 10 ÷ 100 μm, the 
values of eτ  and Mgt∆  are of the same order Mg et τ∆ ≅ , but Mg et τ∆ > . Here, 
in the expression (11), the frequency Lω  should be replaced by the plasma fre-
quency pω  with implicit replacement of the mass ionM  by em , where the in-
tensity dI  increases by 5 - 6 orders of magnitude and the excitation of cation 
energy levels and knock out photoelectrons becomes possible.  

2.2. Photoelectric Effect 

Let us consider the scheme of the energy levels of the Mg atom ([12], p. 558), 
analogous to the scheme of the Al atom. Here we can distinguish two concepts: 
the binding energy iε  and the ionization energy iI . For an single atom iε  
coincides in absolute value with the length of a energy segment from zero to a 
level corresponding to a given s, p, d, ... electron in the region 0ε < , and the 
quantity i iI ε>  in the region 0ε >  corresponds to the electron state as 
r →∞ , r is the distance from the nucleus. In the crystal, the definition of iε  
remains unchanged, and the determination of iI  as a function of r essentially 
depends on the degree of screening by the conduction electrons. In dielectrics 
and semiconductors, the Coulomb interaction of the knocked out electron and 
the resulting cation can be neglected even at 0 010 100a r a< < . In metals, this 
interval is 0 05 10a r a< < . Consider the absorption of the bremsstrahlung pho-
ton brγ  by the electron of the internal L, K-shells of the cation Al3+ in the case 
when the photon energy γε  exceeds iε  and the knocked out electron passes 
to the continuous spectrum region for 0ε > , i.e. there is a photoelectric effect. 
In this case, the photoelectron in the nucleus of the dislocation must reach a re-
gion roughly 0 02a r a< < . 

The most accurate description of the photoelectric effect is given by quantum 
electrodynamics ([14], p. 360), where in the nonrelativistic case an angular de-
pendence of the differential photoelectric cross section for unpolarized incident 
photons brγ  
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2d ~ sinphefσ ϑ ,                         (12) 

where ϑ  is the angle between the polarization vectors of the photon γe  and 
the photoelectron momentum phep . For polarized incident photons brγ  is re-
placed by 

2 2 2 2sin cos sin cosϑ ϑ ϑ ϕ→ = ⋅ ,                  (13) 

where ϕ  is the angle between the planes ( ),phe γp k  and ( ),γ γk e  ( γk  is the 
wave vector of the incident photon brγ . Analysis (12), (13) shows that the ma-
jority of photoelectrons emerge in the direction of polarization vector γe  of the 
incident photon brγ  (condition*). The total cross section of the photoelectric 
effect on the K-shell in the Born approximation ([14], p. 362) has the form 

7 2
K KA γσ ε −⋅= ,                        (14) 

where ( )5 2
0 1 AlK iA A I⋅= ; 0 64 3 eA mα= ; ( )1 AliI  is the ionization energy of 

the Al atom on the K-shell. In the photoelectric effect on the L-shell, the total 
cross section breaks up into a cross section when it is absorbed by two 
2s-electrons 

4 5
1 2IL A Aγ γσ ε ε− −= ⋅ + ⋅ ,                     (15) 

and the cross section for absorption by six 2p-electrons 
5 5

3 4II IIIL L A Aγ γσ σ ε ε− −+ = ⋅ + ⋅ ,                  (16) 

where ( ) ( ) ( ) ( )31 2 4
1 2 2 2 3 2 4 2, , ,mm m m

i i i iA I A I A I A I  have the same structure as KA , but 
different numerical coefficients and exponents jm  for ( )2 AliI -the ionization 
energy of the Al atom on the L-shell, and ( ) ( )2 1Al Ali iI I< . Here it should be 
noted that when 0iγε ε− → , when the kinetic energy of photoelectrons is small 
in comparison with , iγε ε , resonance scattering takes place ([14], p. 384), where 
a narrow band is cut out from the continuous bremsstrahlung spectrum, which 
when knocking out photoelectrons from the internal L, K-shells of the cation 
Al3+ corresponds to the line absorption spectrum. This is indicated by a compar-
ison of the power dependences of the bremsstrahlung cross sections brσ  and 

,
nK Lσ σ  on γε  in (8) and (14)-(16). 

2.3. Induced Radiation 

According to the definition, the frequency, phase, polarization and direction of 
propagation of the electromagnetic wave incident on the metal cation coincide 
with the same characteristics as the absorbed cation, and after its excitation of 
the emitted wave. Hence, the energy of the induced radiation wave will be trans-
ferred from one cation Al3+ to the neighboring cation without losses, until the 
wave reaches an impurity ion Mg2+, in which another scheme of energy levels, 
which leads to elastic scattering back. If the normals of the effective scattering 
cross sections of two impurity ions lie within the same line, then a standing wave 
of stimulated or induced radiation arises. We assume that parallel to the free 
surface of aluminum is a slip plane, where at the nodes of the square grid of oc-
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tahedral interstices there are impurity ions and standing waves of induced radia-
tion appear in each section of grid cells under the influence of a weak shock and 
bremsstrahlung. 

2.4. Separation of Charges and Bound States in the Dislocation  
Core 

Let us consider the crystallography of one of the slip planes (111) of a 
face-centered lattice, which intersects the lines of the main diagonals of the cells 
of this lattice along the 111  directions normal to this plane within one cell. If 
the bremsstrahlung photon brγ  is transverse: its wave vector ( )111phe ⊥k n  
( ( )111n  is the unit vector of the normal to the (111) plane) lies in this plane, and 
its the polarization vector bre  is directed along [ ] ( )111111 n , then the photon 

brγ  can produce a photoelectric effect on the inner shells of the first cation Al3+, 
which intersects bre  on the main diagonal of the cell. The photoelectron phee  
ejected by the photon brγ  moves according to the condition (*) in the direction 

bre  and depending on the level of the kinetic energy pheT  obtained from the 
photon, it can settle on the first counter and on the subsequent interstitial sites. 
The possible states of photoelectrons are due to the joint influence of the Cou-
lomb attraction of the cation from which they were knocked out, and the spher-
ically symmetric potential of attraction of the octahedral interstice as a force 
center. To describe these states and the possible structure arising under the in-
fluence of bremsstrahlung, we use the definition of stable bound and quasistable 
bound states ([19], p. 671), where, for the particle system, in our case, the sys-
tems of metal cations and photoelectrons, first, their relative the motion is finite 
for a long time in comparison with the periods typical for the given system; 
second, for the formation of bound states, it is necessary to have attractive forces, 
which for cations and photoelectrons is natural. If the range of distances on 
which these particles are attracted is separated by an energy potential barrier 
from the region in which they repel, then the particles can form stable states. 
Such states lie in the energy region 0ε < , for 0ε >  they do not exist. However, 
in the region 0 bU Uε< <  ( 0U  is the depth of the potential well, bU  is the 
height of the potential barrier), for some values of ε  there can exist qua-
si-stable bound states, the lifetime of 1~qwsb ttwτ −  which is determined by the 
probability of the tunnelling transition ttw  through potential barrier. In this 
connection, we can disclose the physical essence of the local density of electron 
states ( )0N ε  [8], where a quasi-periodic sequence of shallow minima occurs 
between a high lower peak at 0ε <  and a high upper peak at 0ε >  for a 
power-law dependence of the transport integral. With the help of this sequence 
and the whole of ( )0N ε , we can qualitatively estimate the shape of the potential 
relief on the energy scale in the dislocation core if we symmetrically reflect the 
upper half-plane of the graph ( )0N ε  on its lower half-plane with respect to the 
energy axis or, more simply, turn the sheet with the graph by 180˚. Such model-
ing of the potential relief shows that the lower peak corresponds to a narrow po-
tential well of a rectangular shape with a depth of 01U , and the upper one cor-
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responds to the same well with a depth of 02U , and 02 01U U> . Inside the in-
termediate interval between the peaks, firstly, there is a weak growth of the reg-
ular component of the potential relief towards upper peak, and secondly, at the 
beginning and at the end of this energy interval, the Fourier components of the 
above sequence, oscillating against the background of the regular component, 
are substantially higher than analogous components within the interval. The li-
near structure along the 111  and bre  directions, which does not contradict 
the potential relief of the dislocation core obtained from the numerical calcula-
tion [8], is shown in Figure 1. Here at position A there is a site vacancy, at po-
sition B in octahedral interstice—cation Al3+, which passed from node A, to 
position near the node C—photoelectron, at position D—the nearest cation 
Al3+, displaced under the total influence of vacancy A, cation B and photoelec-
tron C. Note that the distance between the positions A and B is 0 0 22b a= ⋅ , 
between B and C does not exceed 0b≤ , and the distance CD is determined by 
the interval ( )3

0Alionr R b+ < < ; all of the matrix metal cations following posi-
tion D shift from the position C to the depth of the material in accordance with 
the law 1r− . 

Under the influence of the bremsstrahlung causing the photoelectric effect, 
the subsequent formation of two systems of bound charges in the space lat-
tice of the octahedral interstices is taking place., where the first system con-
sists of a chain of photoelectrons near the nodes C with a linear charge den-
sity 0phe pheQ k e a− ⋅=  ( phek  is the number of knocked out photoelectrons, 

1,2,3phek = ) and chains of metal matrix cations in interstices B c linear density 
after the departure of photoelectrons from the inner shells of these cations 

0we pheQ k e a+ ⋅= . The second system in the model of a free electron gas (jelly 
model) contains an inhomogeneity in the form of a “ridge” of bulk density nδ  
with a linear density 03nQ e aδ = +  in the interstices B, and along the nodes A 
with 03vchQ e a= −  i.e. “valley” in the homogeneous distribution of a positive 
charge smeared in space, whose density is equal in magnitude and opposite in 
sign to the mean charge density of conduction electrons, so that the system of a 
free electron gas is always electrically neutral. Hence the total linear charge den-
sity of the cationic chain cch we nQ Q Qδ= + . 

To determine the mutual arrangement of the above chains in the 
face-centered lattice Al, we use the crystallography of the {111} slip plane and 
the system of the main diagonals {111} ([20], c. 24). We assume that translation-
al invariance is preserved along the dislocation line between the impurity ions 
bordering it. Hence, along the dislocation line, a periodic sequence of the above 
linear structures arises, both along the normal to the chosen plane (111), and in 
the plane itself along the normal to the dislocation line.  

The analysis shows that consideration of the Coulomb effect of cationic and 
vacancy chains with distributed linear charges on the photoelectron chain in the 
defect nucleus should be carried out together with the influence of the distri-
buted excess charge ,scr edgq q  of conduction electrons. The model representation  
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Figure 1. Linear structure in dislocation core in metals with face-centered lattice. A, B, C, 
D-positions of particles in octahedral interstitial sites. The axis Z is along the direction 

111    of the line of dislocation; axis Y along the direction [ ]111  on of the normal to 

the dislocation line and the plane (111). 
 
of the potential relief dV  in the core of the defect does not allow to obtain from 
the distribution ( )0N ε  a dependence ( ), ,dV zρ ϕ  on the cylindrical coordi-
nates with the help of [8]. 

A description of the dynamics of the above structure in the dislocation core 
and in a good crystal is possible using the theory of the LHOPS method ([2] [13], 
p.208) and [21] [22], in which cations and photoelectrons at positions B and 
near C, with taking into account their orbital, spin and total moments in the 
corresponding interstices and nodes. We carry out a detailed description of this 
dynamics in a separate work.  

3. Discussion of the Results 

The mechanism of charge separation and the formation of linear structures in 
the generation of the dislocation nucleus are more realistic than the known 
adiabatic elastoplastic models of the continual theory of individual dislocations, 
atomic models of dislocation nuclei as it includes the natural processes of 
bremsstrahlung, photoelectric effect, and Coulomb interaction. In the frame-
work of this model, we do not cut and do not move the material on both sides of 
the cut in the appropriate way, we do not remove or relax it after these opera-
tions, but we produce a natural weak shock on the free surface. Here we can 
consider standing electromagnetic waves not only between impurity ions, but 
between impurity ions and the free surface, intergranular, interphase boundaries, 
and also boundaries of deformation origin. In addition, the bremsstrahlung of 
photoelectron chains leads us to the plasma frequency of oscillations, the theory 
of solid-state plasma ([19], p. 539).  

The analysis in Figure 1 also shows that the boundary between the dislocation 
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core and the good crystal passes in the interval CD and is separated from the 
dislocation line on which the centers of impurity ions lie at a distance 

02corer b Y= + , where ( )3AlionY CD r +≤ −  has yet to be found. It is also of in-
terest to supplement the well-known statement for disordered media on the sta-
tistical homogeneity on the average [23] with statistical isotropy in the mean. In 
this case, the intermittent field must be periodic in time and create linear struc-
tures in two opposite directions. 

We compare the experimental dependence of the EME pulse amplitude 
( )EMEϕ ε  [8] with the current-voltage characteristic in the Frank-Hertz experi-

ment ([12], p. 542), where the accelerated cathode electrons undergo inelastic 
scattering by Hg atoms when the anode potential of the tube coincides with the 
critical potential Hg, and elastic scattering in the absence of this coincidence, i.e. 
the energy of the atoms varies discretely. In our case, with plastic deformation 

constσ = , the amplitude ( )EMEϕ ε , and together with it the energy accumu-
lated in the crystal, also varies discretely. The natural question arises: “How do 
the above described linear structures distributed between two impurity ions 
contribute to the accumulation of energy in the crystal?” The answer follows 
from the above: only thanks to the energy level scheme of the cation of the ma-
trix peculiar to him alone. Let us hypothesize 2: The latent energy of a crystal 
accumulated in dislocation cores contains a component that is of an electro-
magnetic nature. 

This raises a natural question: What is the relationship between 
bremsstrahlung intensity dI  and the recoil momentum of the impurity ion 

iiq  and cation matrix miq  on impact? Here we will use work [24] and con-
sider in the generalized space of rectangular pulses the effect of a rectangular 
pulse of the displacements L⎍u on the system “impurity ion—distribution of 
conduction electrons” at a certain point r  in the traveling wave regime, 
where L⎍ = ( ) ( )U x U x τ− −− +  is a linear operator of rectangular pulses; U−  

is jump operator. At the first stage L⎍u, at the time t, a dipole moment 
[ ] ( )0d e u tδ=  occurs, where [ ]u  is a jump in the displacement of the im-

purity ion relative to the surrounding cations of the matrix, then the halo of 
conduction electrons around the impurity ion is redistributed over relaxation 
time ( ) 14 15

00.01 0.03 10 10 sre Fb vτ − −≈ ÷ ≈ ÷ , 610 m sFv =  ( 0 00.7b a= ) before 

inverting [ ] ( )0 red e u tδ τ= +  to zero. Such relaxation at re repTτ   is a source 

of bremsstrahlung of an intermittent field, where the bremsstrahlung intensity is 

( ) 4~ exp ~re reI tγ τ ω− , where 
2

2 2
1 ;
c t

∂
= −

∂
   1

re reω τ −=  is the relaxation fre-

quency of the conduction electron subsystem. At the second stage L⎍u, with 
t τ+ , the radiation algorithm is repeated, but this field changes sign. Here 

Mg-Al Mg Al ~ ii miz u u∆ = − −q q . Hence ( )2 2
0~ ~if

d ii miI E Iγ ≈ −q q . In addition 

the vectors iiq  and miq  are collinear and have the same direction, and the ac-
celeration vectors of conduction electrons ea  and ii mi−q q  are also collinear, 
but directed towards each other, while it is well known from classical electrody-
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namics that 3~d eI a , where e F rev τ≈a . 

The process of charge separation and the formation of linear structures in the 
nuclei of linear defects can be described using a system of dynamic equations for 
the external currents of these charges according to [24] [25]. Here, for the colli-
sion of solids in the generalized space of rectangular impulses of shock loads, a 
discrete model of defect nuclei in crystalline materials is presented, where an 
undeformed perfect crystal is taken as Hilbert space of wave functions of the 
Schrödinger equation, and the core of a dislocation is the rigged Hilbert space of 
step functions as a combination of these functions of different sign, separated by 
a time interval. It was shown in [24] that a system of pairs of cations and pho-
toelectrons knocked out of these cations appears in the core of a linear defect, 
and an intermittent field 0

ifE  in the form of a periodic sequence ( )0
ifE tδ  and 

( )0
ifE tδ τ− +  with the pulse repetition frequency repω  in the standing wave 

regime can interact through the chains of photoelectrons with the electron sub-
system of the solid-state plasma. The features of the motion of charged particles 
and the interaction of chains of photoelectrons with the material's own plasma 
are taken out in a separate work. 
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Abstract 
Metabolisms play a vital role in thermoregulation in the human body. The 
metabolic rate varies with the activity levels and has different behaviors in 
nature depending on the physical activities of the person. During the activity, 
metabolic rate increases rapidly at the beginning and then increases slowly to 
become almost constant after a certain time. So, its behavior is as logistics in 
nature. The high metabolic rate during activity causes the increase of body 
core temperature up to 39˚C [1] [2]. The logistic model of metabolic rate is 
used to re-model Pennes’ bioheat equation for the study of temperature distri-
bution in three layered human dermal parts during carpentering, swimming 
and marathon. The finite element method is used to obtain the solution of the 
model equation. The results demonstrate that there is a significant change in 
tissue temperature due to sweating and ambient temperature variations. 
 

Keywords 
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1. Introduction 
1.1. Thermoregulation 

Thermoregulation is the process of transporting thermal energy through the bi-
ochemical process in the human body. It maintains its required internal temper-
ature. It keeps the body temperature in the equilibrium position. This process is 
applicable for diagnostic and therapeutic applications and involves either mass 
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or heat transfer. In the human body, the heat transfer is affected by blood vessel 
geometry, local blood flow rates, the thermal capacity of blood and produces 
metabolic energy. The Body regulates its temperature through internal metabolic 
processes and internally maintains a narrow range of internal temperature. Heat 
is usually generated by the metabolic process but under the condition of exces-
sive cold, the body generates heat by shivering. Heat is lost and gained through 
the process of convection, radiation, blood perfusion and conduction, while 
evaporation contributes only heat loss from the body to the environment. Total 
heat loss from body surface depends on the temperature difference between skin 
and environment. 

Hypothalamus is the main part of the brain that controls thermo-regulation. 
When it senses the internal temperature becoming too low or too high, it sends 
signals to different organs such as muscles, glands, and nervous. The body me-
chanism responds and helps to maintain the temperature to normal position. 
Different people have different thermal behaviors even in the same environment. 

The biochemical processes have been divided into three broad categories: hy-
pothermia, hyperthermia and cryobiology. Hypothermia is the phenomena in 
which the body core temperature falls to 35˚C or below it. This phenomenon 
can potentially lead to cardiac arrest, brain damage, or even death. In Hyper-
thermia, body core temperature rises to 42˚C or above it. Due to this phenome-
non, it can suffer brain damage or even death, where cryobiology is the blood 
subfreezing temperature period. The average healthy person has a normal body 
core temperature between 36.1˚C to 37.8˚C [3]. But temperature rising up to 
39.5˚C during the high intensity exercises doing on long period [1] [2]. Howev-
er, if the body temperature is extreme, it can affect the body’s ability to work. 
Thermo-regulation phenomena are affected by either environment or biological 
factors such as metabolic rate, dehydration, gender, etc. The internal tempera-
ture of the body rises due to fever, physical exercise and digestion of the food. 
Besides the internal temperature decreases due to use of alcohol, drug and some 
functioning of thyroid glands, etc. [4].  

1.2. Circulatory System 

The circulatory system also plays a vital role to maintain body temperature. The 
vasodilation and vasoconstriction are the two main processes which maintain 
heat and balanced the temperature of the body. If the body has a high tempera-
ture, the body controls the temperature and keeps in normal by occurring the 
mechanism of vasodilation and sweating. The blood flow rate to the skin in-
creases by expanding the wider blood vessels under skin and heat energy dissi-
pated by the radiation process. On the other hand, sweat glands lying under the 
skin surface release sweat in the form of water and vapour from the skin surface 
and maintain the body temperature is normal. If the body has a low tempera-
ture, it maintains the body temperature by the mechanism of vasoconstriction 
and thermo-genesis. The blood flow rate to the skin reduces by contracting the 
peripheral blood vessels lying under the skin surface and conserving heat 
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energy near the warm inner body and keeps the body temperature normal. Be-
sides body muscles, organs, glands and hormones also produce heat by their 
mechanism. 

Figure 1 represents the thermoregulation system in the human body. It 
shows that if the body has a low temperature, it maintains by the process of 
vasoconstriction and thermogenesis and if body temperature is high, it con-
trols by the process of vasodilation and sweating to keeps the body tempera-
ture is normal. 

1.3. Metabolism 

The metabolic rate of a person increases due to increases in the kinetic energy 
and helps on increasing the temperature of the body. Some of the hormones and 
thyroid gland releases hormones to increase metabolism. This increased meta-
bolism creates energy in the form of heat and maintains body temperature as 
normal. Basal metabolism is the minimum amount of energy release in the body 
to sustain life in the rest position. Body uses this energy for the circulation of 
blood, respiration and functioning of cells and different organs. The active per-
son has a more metabolic rate than a less active person [5]. In general, the me-
tabolic rate is proportional to the body weight and depends upon the type of ex-
ercises, body surface area, health, mental state, sex, thermal conductivity, age 
and atmospheric conditions, etc. Due to the hormones, the metabolic rate is 
highly increased in fever [6]. The metabolic heat produced by the exercising 
muscles is transported by the circulating blood to the surface of the body and 
released to the environment either by radiation and convection or by evapora-
tion of sweet appears in a hot environment. According to the conservation law 
of energy in a healthy body, the amount of heat gain is equal to the amount of 
heat loss, and is given by [7]  

M W R C E H= ± ± + +  

 

 
Figure 1. Schematic diagram of thermoregulation system in human body. 
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when the body is at rest, there is normal blood flow and metabolic activity how-
ever, during exercise there is abnormal blood flow and metabolic activity. When 
a person engaged in different types of physical activities, the body requires addi-
tional fuel which increases the metabolic rate and the rate of heat production [8]. 
The body must use its mechanism to remove the additional heat produced to 
keep the internal temperature at a healthy level. The body always produces heat, 
so the metabolic heat (M) is always positive, varying with the activity level. 
When environment temperature is lower than the body temperature, a thermal 
gradient is created which favors heat loss from the body core to the environ-
ment. That heat energy is transformed into the skin by convective blood flow 
and emitted by radiation, convection and sweat evaporation. The driving force 
of radiation and convective heat loss depends on the maintains of a large tem-
perature gradient between the environment and body. When the environment 
temperature exceeds than body temperature, the gradient for heat exchange is 
reversed and the body gains the heat. 

Different people have different thermal behavior even in the same environ-
ment. However, as environment temperature rises, sweat rate also increases. In a 
resting lightly clad man, the sweet begins at 29˚C environment while in the rest-
ing nude man sweating begins at the environment temperature at 31˚C [9]. 
Sweat evaporation becomes the primary means of heat dissipation when convec-
tive and radiative heat exchange is minimal. In a hot moist environment, a 
healthy man approximately 1.94 ml sweat losses from the body [10]. Being lost 
of heat through evaporation even an entirely high metabolic rate can also be li-
mited by the body mechanism. If the combined heat loss from the body is less 
than the metabolic heat rate production of the body, the excess heat must be 
store in the body, but storage heat energy (H) is always small because the body 
has a limited thermal storage capacity. This storage heat energy helps on bring 
the body temperature rise and when the metabolic heat is less than combine heat 
loss, the body temperature falls. 

During the mild exercises, the muscles are the main source of metabolic 
heat, and during intense exercise, it may occur up to 90% [11]. In heavy exer-
cises, the respiration process plays the role of increasing metabolism. In 
low-intensity exercises as sitting, typing, cooking, etc there is very little differ-
ence in the vascular system so the metabolic rate is similar to the basal meta-
bolic rate. While in high-intensity exercises, as marathon, wrestling, etc most of 
the organs come in movement with high kinetic energy so, there is a loss of 
energy. In moderate-intensity exercise as carpentering, driving, etc. helps on de-
creasing body weight by increasing cardiovascular exercise. 

From the experimental data, the average basal metabolic rate (BMR) of (30 - 
60) years old healthy man, of body weight 74 kg has 1737 kcal/day [12]. This 
shows that the BMR of the healthy human body has 1114 w/m3, but it may vary 
from person to person. On the contrary to the basal metabolic energy, the body 
produces additional metabolic energy during the activity period. From the next 
experimental data, the energy consumption during different activities carpen-

https://doi.org/10.4236/am.2020.118050


D. C. Shrestha et al. 
 

 

DOI: 10.4236/am.2020.118050 757 Applied Mathematics 
 

tering, swimming and marathon (athletics) by a man of 65 kg weight consumed 
16.7 kJ/min, (21 - 31.5) kJ/min, and 31.5 kJ/min energy respectively [13]. This 
data provides that the estimation value of the metabolic rate of carpentry person 
is 4198.08 w/m3 and the metabolic rate of the swimming person is 6598.79 w/m3. 
The scale of metabolic rate during various activities is shown in Table 1. 

1.4. Blood Perfusion 

Blood perfusion is the physiological term that refers to the process of delivery of 
arteries blood to a capillaries bed in the biological tissue. The arterioles and 
venous blood temperature may be different from the local tissue temperature. 
The rate of heat transfer between blood and local tissue is proportional to the 
product of a volumetric perfusion rate and the difference between the arterial 
blood temperature and the local tissue temperature [14]. This temperature may 
vary as a function of many transient and physiological and physical parameters. 
Pennes’ mathematical model describes the effect of blood perfusion and meta-
bolism on the energy balance within the tissue. These effects were incorporated 
into the standard thermal diffusion equation and modeled the bio-heat equation  

 ( ) ( ) ( )b b b A
Tc K T c w T T S t
t

ρ ρ∂
= ∇⋅ ∇ + − +

∂
             (1) 

Several computer simulated methods are developed for the estimation of 
temperature distribution in the human body. Saxena et al. [15] used a variational 
finite element approach with linear shape function to find one dimensional un-
steady temperature distribution in epidermis, dermis and subcutaneous tissues 
(SST) region assuming a rate of blood flow and rate of metabolic heat generation 
as a variable in the dermis part. Chao et al. [16] assumed two simple models and 
studied the temperature distribution curve in skin and subcutaneous tissue for 
certain paramaters values are constant. Agrawal [13] and Kenefick et al. [2] ex-
perimentally studied the amount of energy expenditure and blood flow rate 
during swimming and marathon. They estimated the maximum core tempera-
ture occurring 39.5˚C in the human body during the exercise period. Acharya et 
al. [17] divided the dermal part into six skin layers and studied the metabolic effect 
in thermoregulation on human males and females. The authors suggested that 
skin temperature in males has more than females. Khanday and Saxena [18] as-
sumed five layered skin in the human body and used one dimensional steady 
state model to the estimation of cold effect on the human dermal part. Saxena 
and Gupta [15] and Saxena and Arya [19] contributed the papers on the effect of  
 
Table 1. Metabolic rate of different exercises. 

Type of exercises Metabolic rate (w/m3) 

Carpentering 4198.08 

Swimming 6598.79 

Marathon (running) 7918.00 
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blood flow and heat flow in human skin and subcutaneous tissue by using varia-
tional finite element method. Kumari and Adlakha [20] developed a numerical 
model to study the temperature distribution in human peripheral regions in-
corporated the blood mass flow rate, thermal conductivity and metabolic heat 
generation rate were constants during and after the exercise. 

Gurung et al. [21] investigated the temperature distribution in three layers of 
a human dermal part in one dimensional unsteady state with quadratic shape 
function assuming that the outer skin is exposed to the atmosphere. Agrawal et 
al. [22] developed a model for the temperature distribution in a human limb by 
assuming an irregular tapered shaped limb with a variable radius and eccentrici-
ty. Khanday [23] explained the appearance of thermal stress on the human brain 
tissue in hypothermic conditions. Khanday and Sexana [18] studied the thermo-
regulation and fluid regulation in the human head and dermal region at cold en-
vironmental conditions by using variational finite element method. K.C. et al. 
[24] investigated the thermal effect of eyelid based on the properties of ambient 
temperature, evaporation rate, blood temperature and lens thermal conductivity 
in the human eye. 

Previously, developed models have not studied on the temperature distribu-
tion in the human dermal part during the exercise. So this mathematical model 
has presented to estimate the metabolic energy produces differently in various 
exercises. The main objective of this study is to investigate the temperature pro-
files of epidermis, dermis and subcutaneous tissues during exercise. Since the 
body is an irregular geometry, the finite element method is appropriate to han-
dle such an inhomogeneous discretized problem to get realistic values of tem-
perature of different layers. 

2. Model for Metabolic Energy 

During physical exercise, metabolic rate increases due to an increase in the rate 
of blood flow. The continuous increases in blood flow are controlled by the me-
chanism of the body by rapidly producing metabolic energy at the beginning of 
the exercise and become constant after a certain time so it is plausible to consid-
er the metabolic rate, increasing logistically in the form similar to the logistic 
curve. We consider the metabolic rate S(t) equation based on exercise as  

( ) ( )
0

0 1 e sit t

SS t S
β− −

−
= +

+

E  

Figure 2 represents the unsteady behavior of metabolic rates of the normal 
human body during the various activities in 30 minutes period. The graph shows 
the threshold metabolic value during the marathon is 7918 w/m3, during swim-
ming is 6598.79 w/m3 and during carpentering is 4198.08 w/m3 at 0.01 sβ = , and 

500 ssit =  with BMR = 1114 w/m3. 

3. Re-Model of Bioheat Equation 

Pennes’ [14] and Perl [25] established the simplified bio-heat transfer model  
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Figure 2. Metabolic rate behavior during different exercises. 

 
equation to describe the effect of conduction, perfusion and metabolism. During 
the exercise period, additional heat energy arises and dissipated from the body to 
the environment by its mechanism. The resulting bio-heat equation with meta-
bolic energy is re-formulated by  

 ( ) ( ) ( )
0

0
1 e sib b b A t t

E STc K T c w T T S
t β

ρ ρ
− −

−∂  = ∇ ⋅ ∇ + − + + ∂ + 
        (2) 

4. Discretization of Domain 

Skin is the main organ that keeps helping the temperature balance in the human 
body. If any illness occurs in the body, the first symptom is changing body tem-
perature [8]. In mathematical treatments of temperature distribution in the hu-
man dermal part, the skin layers can be regarded as a physical and physiological 
barrier with complex structures. The three natural layers of skin are epidermis, 
dermis and subcutaneous tissues (SST). The schematic diagram of the tempera-
ture distribution model in dermal parts of the human body is shown as in Figure 
3.  

Let 1l , 2 1l l− , and 3 2l l−  be the thickness of the layers of epidermis, dermis 
and subcutaneous tissue respectively. Let 0T , 1T , 2T  and 3T  be the respective 
nodal temperatures at a distance at 0x = , 1x l= , 2x l=  and 3x l=  meas-
ured from the outer surface of the skin. ( )1T , ( )2T  and ( )3T  be the tempera-
ture function of epidermis, dermis and subcutaneous tissues respectively.  

5. Solution of the Model 

The governing equation that characterized the heat regulation in in-vivo tissue 
of human body during exercises is given by the partial differential Equation (1), 
which we can write for 1D as;  
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Figure 3. Schematic diagram of three layered skin. 

 

 ( ) ( )
0

0 1 e siA t t

E ST Tc k M T T S
t x x βρ

− −

−∂ ∂ ∂   = + − + +   ∂ ∂ ∂  + 
          (3) 

where, ( )3J m s Cb b bM c wρ= ⋅ ⋅  
Boundary Conditions 
1) Boundary condition at 0x =  (skin surface) 
The outer surface of the skin layer is exposed to the environment during the 

exercise period. Therefore heat flux is dissipated for 0x =  and heat loss takes 
place from the outer surface due to conduction, convection, radiation and eva-
poration methods. So the net heat flux is calculated by mixed boundary,  

 ( )
0x

TK h T T LE
x ∞

=

∂
= − +

∂
                      (4) 

2) Boundary condition at 3x l=  (body core)  
During Exercise, due to the rapid movement of muscle mass and an increase 

in heart rate, the body produces a large amount of metabolic heat energy and 
cannot dissipate all energy instantaneously at that time. The rate of heat loss 
does not offset the rate of heat gain so some heat energy stores in the body. That 
excess (stored) heat energy helps to increase the body core temperature up to 
39˚C. So, the Dirichlet’s inner boundary condition during exercise period is 
taken as  

 ( )3 39 CbT l T= =                           (5) 

Using Euler-Lagrange formula, the variational integral form of Equation (3) 
and Equation (4) is given by  

 
( ) ( ) ( )

( )

2 2
2

2
0 0

1 d d, 2 d
2 d d

1
2

A
T TI T x t K M T T S t T c x
x t

h T T LET

ρ
Ω

∞

  = + − − +         

+ − + ⋅

∫
  (6) 

In the model, the physical and physiological parameters depending on the 
layers of dermal part and are considered as given in Table 2. 

Suppose, 1I , 2I  and 3I  are the integral solutions of three layers epidermis, 
dermis and subcutaneous tissue, respectively with 1

n
iiI I

=
= ∑ . Solving the inte-

grals 1I , 2I  and 3I  with parameters as considered in Table 2, we obtain 1I , 

2I  and 3I  as functions of nodal values 0T , 1T , 2T , as given as below:  
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Table 2. Assumption parameters in model. 

Physical and 
Physiological 
parameters 

Epidermis 

0 1l x l≤ ≤  
Dermis 

1 2l x l≤ ≤  
Subcutaneous 

2 3l x l≤ ≤  

K 1K  2K  3K  

M 1 0M =  2M  3M  

AT  ( )1 0AT =  ( )2
A bT T=  ( )3

A bT T=  

( )S t  1 0S =  ( )0

0
2 0 1 e t t

E SS S β− −

−
= +

+
 ( )0

0
3 02

1 e t t

E SS S β− −

− = + + 
 

( )iT  
( )1 1 0

0
1

T TT T x
l

 −
= +  

 
 ( )2 2 1 1 2 2 1

2 1 2 1

l T l T T TT x
l l l l

 − −
= +  − − 

 ( )3 3 2 2 3 3 2

3 2 3 2

l T l T T TT x
l l l l

 − −
= +  − − 

 

 

( )2 2 2 2
1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1

d
d

I A B T D T E T FT T T T T T
t

α= + + + + + + +  

( )2 2 2 2
2 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 1 2

d
d

I A B T C T D T E T F T T T T T T
t

α= + + + + + + + +  

( )2 2 2 2
3 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 2 3

d .
d

I A B T C T D T E T F T T T T T T
t

α= + + + + + + + +  

where iA , iB , iD , iE , iF  and jC  with 1 3i≤ ≤  and 2 3j≤ ≤  are all 
constants whose values depend upon physical and physiological parameters of 
dermal part as given in Table 4. As a next step to finite element method, we  

differentiate 1I , 2I  and 3I  with respect to 0T , 1T  and 2T  and set d 0
d i

I
T

= ,  

for 0,1,2i = . On simplification, we obtain system of equations in matrix form  

 PT QT R+ =                           (7) 

where, 

( )
( )

1 1

1 2 1 2

2 3 2

2 0
2

0 2

D F
P F D E F

F D E

 
 = + 
 + 

, ( )
( )

1 1

1 1 2 2

2 2 3

2 0
2

0 2
Q

α α
α α α α

α α α

 
 = + 
 + 

 

0

1

2

T
T T

T

 
 =  
 
 

, 

0

1

2

d
d
d
d

d
d

T
t
TT
t

T
t

 
 
 
 =  
 
 
 
 

 , 
1

2

2 3 3 3

B
R B

C B F T

− 
 = − 
 − − − 

 

6. Numerical Results 

The threshold values of metabolic rate during physical activities: carpentering, 
swimming and marathon running are 4198.08 w/m3, 6598.79 w/m3 and 7918 
w/m3 respectively. The values of physical and physiological parameters used for 
numerical simulation are taken as shown in Table 3 and Table 4. 

In normal condition when the atmospheric temperature is below body core  
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Table 3. The thickness of human skin layers in normal position [9]. 

Skin layers Epidermis layer Dermis layer Subcutaneous layer 

Thickness (metres) 0.001 0.0035 0.005 

 
Table 4. Parameter values used in model [9] [21]. 

Parameter Value Unit 

L 2,420,220 J/kg 

1K  0.209 w/m∙˚C 

2K  0.314 w/m∙˚C 

3K  0.418 w/m∙˚C 

h 6.27 w/m2∙˚C 

2M  1254 w/m3∙˚C 

3M  1254 w/m3∙˚C 

1ρ  1050 kg/m3 

2ρ  996 kg/m3 

3ρ  1050 kg/m3 

1c  3469.4 J/kg∙˚C 

2c  1588.4 J/kg∙˚C 

3c  1588.4 J/kg∙˚C 

 
temperature, the tissue temperature increases from the skin surface towards the 
body core temperature. So we consider the tissue temperature ( ),0T x  in linear 
order given by the equations 

( ) 0,0T x T xµ= +                          (8) 

At normal atmospheric temperature, initial skin temperature is considered 
21˚C. The use of µ  in Equation (8) is constant, whose numerical value is de-
termined by taking the known value 3 39 CbT T= =   at 3x l= . We use the iter-
ative method and the Crank-Nicolson method to solve the Equation (10). The 
Crank -Nicolson method gives  

 ( ) ( )1

2 2
i it tQ P T Q P T tR+∆ ∆   + = − + ∆   

   
                 (9) 

Here, t∆  is the time interval and ( )0T  is the initial nodal temperature in 3 1×  
matrix form.  

For the steady case of the model, we obtain the following matrix form of the 
system of algebraic equations 

PT R=                             (10) 

Steady State Results 
The results of the analysis for dermal layers temperature distribution during 

marathon, swimming and carpentering in steady state are presented through 
Figures 4 to 6 and Table 5. 
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Figure 4. Estimation of epidermis, dermis and subcutaneous tissues temperature when 20.00004 kg m sE = ⋅  at ambient tem-
perature 15˚C, 25˚C and 35˚C during (a) carpentering, (b) swimming and (c) marathon.  

 

 
Figure 5. Estimation of epidermis, dermis and subcutaneous tissues temperature when 20.00004 kg m sE = ⋅  at ambient tem-
perature 15˚C, 25˚C and 35˚C (a) during carpentering and rest, (b) during swimming and rest (c) during marathon and rest. 

 

 
Figure 6. Estimation of epidermis, dermis and subcutaneous tissues temperature when 20 kg m sE = ⋅  and 20.00004 kg m sE = ⋅  
at ambient temperature 25˚C during (a) carpentering (b) swimming and (c) marathon. 

 
From the graph in Figure 4 it is observed that there are significant variations 

in temperature distribution in the layers of skin due to change in atmospheric 
temperature in carpentering, swimming and marathon. But no significant 
changes in temperature distribution are observed during these activities at a 
given atmospheric temperature.  
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Table 5. Steady state temperature of three layered skin during carpentering, swimming, 
marathon and rest position at 20.00004 kg m sE = ⋅ .  

Position 
Ambient 

temp. (˚C) 
Epidermis layered 

temp. (˚C) 
Dermis layered 

temp. (˚C) 
subcutaneous layered 

temp. (˚C) 

At rest 15 33.58 34.61 36.27 

During carpentering 15 35.48 36.56 38.29 

During swimming 15 35.54 36.63 38.33 

During marathon 15 35.58 36.66 38.36 

At rest 25 34.50 35.26 36.47 

During carpentering 25 36.40 37.21 38.49 

During swimming 25 36.46 37.28 38.53 

During marathon 25 36.50 37.31 38.56 

At rest 35 35.42 35.90 36.67 

During carpentering 35 37.32 37.85 38.69 

During swimming 35 37.38 37.92 38.73 

During marathon 35 37.42 37.95 38.76 

 
From the graph in Figure 5(a), it is observed that the epidermis layer has more 

temperature by 1.90˚C, the dermis layer has more temperature by 1.95˚C and 
subcutaneous tissue has more temperature by 2.02˚C at 20.00004 kg m sE = ⋅  
and at each ambient temperature 15 CT∞ =  , 25˚C and 35˚C during carpenter-
ing than rest position. 

From the graph in Figure 5(b), the result shows that the epidermis layer has 
more temperature by 1.96˚C, the dermis layer has more temperature by 2.02˚C and 
subcutaneous tissue has more temperature by 2.06˚C at 20.00004 kg m sE = ⋅  
and at each ambient temperature 15 CT∞ =  , 25˚C and 35˚C during swimming 
than rest position. 

From the graph in Figure 5(c), it is observed that the epidermis layer has more 
temperature by 2.00˚C, the dermis layer has more temperature by 2.05˚C and 
subcutaneous tissue has more temperature by 2.09˚C at 20.00004 kg m sE = ⋅  
and at each ambient temperature 15 CT∞ =  , 25˚C and 35˚C during marathon 
than rest position. 

From the graph in Figures 6(a)-(c), it is observed that each skin layer has 
more temperature at 20 kg m sE = ⋅  than at 20.00004 kg m sE = ⋅  at fixed 
environment temperature 25˚C in carpentering, swimming and marathon. This 
shows that temperature of dermal layer control by producing the essential sweat 
from the body when the environment temperature is high during the activities. 

In the present Table 5, the table shows the steady state temperature of three 
skin layered during different activities at various ambient temperatures. The 
temperature of each dermal layer during the marathon is more than swimming 
and carpentering at each ambient temperature 15˚C, 25˚C, and 35˚C. The tem-
perature of each dermal layer during swimming is more than carpentering due 
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to different metabolic rates at the same ambient temperature.  
Unsteady State Results 
The graphs of unsteady steady case for atmospheric temperatures, 15 CT∞ =  , 

25˚C and 35˚C are presented in Figures 7 to 9 and it’s numerical results are 
shown in Table 6 and Table 7. 

Figure 7 represents the tissue temperatures during the different activities at  
 

 
Figure 7. Estimation of the epidermis, dermis and subcutaneous tissue temperatures at 15 CT∞ =   and 20.00004 kg m sE = ⋅  
during (a) carpentering, (b) swimming and (c) marathon. 

 

 
Figure 8. Observation of the epidermis, dermis and subcutaneous tissue temperatures at 20.00004 kg m sE = ⋅  and 25 CT∞ =   
during (a) carpentering, (b) swimming and (c) marathon. 

 

 
Figure 9. Estimation of epidermis, dermis and the subcutaneous tissue temperatures at 20.00004 kg m sE = ⋅  35 CT∞ =   during 
(a) carpentering, (b) swimming and (c) marathon. 
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15 CT∞ =  . The results show the temperatures in the epidermis layer increased to 
35.48˚C, 35.54˚C and 35.58˚C, temperatures in the dermis layer increased to 
36.56˚C, 36.63˚C and 36.66˚C and temperatures in the subcutaneous tissue in-
creased to 38.29˚C, 38.33˚C and 38.36˚C at 20.00004 kg m sE = ⋅  during car-
pentering, swimming and marathon respectively.  

On observing Figure 8, at 25 CT∞ =   and 20.00004 kg m sE = ⋅ , the subcu-
taneous tissue temperature is greater by 3.20˚C than epidermis layer and is greater 
by 1.97˚C than dermis layer temperatures during carpentering. The subcutaneous 
tissue temperature is greater by 3.18˚C than the epidermis and is greater by 1.96˚C 
than dermis layer temperatures during swimming. During the marathon, the sub-
cutaneous tissue temperature is greater by 3.17˚C than the epidermis and is greater 
by 1.94˚C than dermis layer temperatures. These results exhibit that subcutaneous 
tissue temperature is higher than dermis and epidermis layers because subcutane-
ous tissue is nearer from the body core with constant body core temperature. 

Figure 9 reveals the temperatures variation between the dermis and subcuta-
neous tissue is higher than the temperatures variations between the epidermis 
and dermis layers at 35 CT∞ =   and 20.00004 kg m sE = ⋅  during carpenter-
ing, swimming and marathon. 

In present Table 6, the maximum temperatures of epidermis, dermis and 
subcutaneous tissue respectively are raised to 37.42˚C, 37.95˚C and 38.76˚C 
during the marathon, 37.38˚C, 37.92˚C and 38.73˚C during swimming and 
37.32˚C, 37.85˚C and 38.69˚C during carpentering at ambient temperature 35˚C 
and 20.00004 kg m sE = ⋅ .These results execute that the temperature of each 
skin layer increases due to the rise in the metabolic rate during the exercises. 
Table 7 represents the temperatures of epidermis, dermis, and subcutaneous 
tissue during different physical activities at different ambient temperatures and 

20.00008 kg m sE = ⋅ . The table shows the maximum temperatures of epidermis, 
dermis, and subcutaneous tissue respectively increase to 36.00˚C, 36.96˚C and 
38.45˚C during marathon, increase to 35.96˚C, 36.92˚C, and 38.42˚C, during swim-
ming and increase to 35.90˚C, 36.85˚C, and 38.38˚C during carpentering at ambient 
temperature 35˚. 

On comparing Table 6 and Table 7, the results exhibit that the temperature of 
the skin layers fall due to loss of more heat energy in the form of sweat at high sweat 
rate.  

 
Table 6. Estimation of the unsteady state skin layers temperature at 20.00004 kg m sE = ⋅  
during carpentering, swimming and marathon. 

Ambient 
temperature 

Temperature during 
carpentering 

Temperature during 
swimming 

Temperature during 
marathon 

( T∞ ) 0T  1T  2T  0T  1T  2T  0T  1T  2T  

15˚C 35.48 36.56 38.29 35.54 36.63 38.33 35.58 36.66 38.36 

25˚C 36.40 37.21 38.49 36.46 37.28 38.53 36.50 37.31 38.56 

35˚C 37.32 37.85 38.69 37.38 37.92 38.73 37.42 37.95 38.76 
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Table 7. Estimation of the unsteady state skin layers temperature at 20.00008 kg m sE = ⋅  
during carpentering, swimming and marathon. 

Ambient 
temperature 

Temperature during 
carpentering 

Temperature during 
swimming 

Temperature during 
marathon 

( T∞ ) 0T  1T  2T  0T  1T  2T  0T  1T  2T  

15˚C 34.06 35.56 37.98 34.13 35.63 38.03 34.16 35.66 38.05 

25˚C 34.98 36.21 38.18 35.05 36.27 38.23 35.08 36.31 38.25 

35˚C 35.90 36.85 38.38 35.96 36.92 38.42 36.00 36.96 38.45 

7. Discussion and Conclusion 

The metabolic rate increases due to increases of the oxygen consumption by the 
body during physical activities. It helps to increase the temperature of the body. 
When the environment temperature increases, the metabolic rate in the body 
decreases. In the human body, the normal core temperature is 37˚C so, on or 
above 37˚C, the body produces negligible metabolic heat [17]. In this model, the 
ambient temperatures 15˚C, 25˚C and 35˚C are taken. 

More active physical activity produces more sweat due to the fast movement 
of muscle mass. The analysis also shows, carpentering produces less metabolic 
energy than swimming and swimming produces less metabolic energy than the 
marathon. In this model sweat release rates on the exercises are taken as 0.00004 
kg/m2s and 0.00008 kg/m2s.  

Figures 7-9 exhibit that the temperatures of epidermis, dermis and subcuta-
neous tissue increase rapidly at the beginning and reach to the steady tempera-
tures after a certain period. These figures also reveal that the subcutaneous tissue 
temperatures reach earlier to steady temperatures than epidermis and dermis 
temperatures. This is due to increase of the metabolic rate on increasing the lean 
muscle mass and lose adipose fat tissue in subcutaneous tissue during activities. 
These results also demonstrate that the steady-state temperature of each dermal 
layer is achieved more during the marathon than swimming and carpentering 
due to more metabolic rate during the marathon. The unsteady and steady both 
results execute that the environment temperature gives significant changes in 
temperature in human dermal part.  

The above result suggests that the temperature of each node increases by de-
creasing the sweat evaporation rate and vice versa at the same ambient tempera-
ture. This shows that the sweat evaporation rate is the catalyst in the thermore-
gulation process. All of the previous researchers developed models have not de-
termined the temperature distribution in human dermal part by the computa-
tional method during the activity period. So this model is developed for the 
temperature distribution in dermal parts of human body during activities. The 
thermal effect of physical activities is quite significant. It also uses to develop 
models regarding physical work for labourers, military, other sports persons, etc. 
based on their physical and physiological characters.  
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Nomenclature  

H Metabolic heat produced during exercise 

W Heat amount used to perform external work 

R Heat radiation 

C Conductive and convective heat 

E Evaporative heat loss 

H Heat storage 

c Tissue specific heat capacity 

K Tissue thermal conductivity 

S(t) Metabolic rate during exercise 

L Latent heat capacity 

h Combined heat transfer coefficient due to convection and radiation 

1K  Thermal conductivity of the epidermis layer 

2K  Thermal conductivity of the dermis layer 

3K  Thermal conductivity of the subcutaneous tissue 

1c  Specific heat capacity of epidermis layer 

2c  Specific heat capacity of dermis layer 

3c  Specific heat capacity of subcutaneous tissue 

1l  Thickness of epidermis layer 

2l  Thickness of epidermis and dermis layers 

3l  Total thickness of skin and subcutaneous tissue 

1M  Blood mass flow in epidermis layer 

2M  Blood mass flow in dermis layer 

3M  Blood mass flow in subcutaneous tissue 

1S  Metabolic rate in epidermis layer 

2S  Metabolic rate in dermis layer 

3S  Metabolic rate in subcutaneous tissue 

bw  Blood perfusion rate 

bc  Blood specific heat capacity 

ρ  Tissue density 

bρ  Blood density 

1ρ  Density of epidermis layer 

2ρ  Density of dermis layer 

3ρ  Density of subcutaneous tissue 

Ω  Domain of layered skin 

β  Exercise controlled parameter 

T Tissue temperature 

AT  Arterial blood temperature 

T∞  Ambient temperature 

bT  Body core temperature 

0S  Basal metabolic rate 

E Exercise threshold metabolism 

t Exercise time period 

sit  Sigmoid’s mid point of the curve over the time for extensive exercise 
 

https://doi.org/10.4236/am.2020.118050


Applied Mathematics, 2020, 11, 771-778 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2020.118051  Aug. 24, 2020 771 Applied Mathematics 
 

 
 
 

Mean Difference and Mean Deviation of Tukey 
Lambda Distribution 

Giovanni Girone1, Antonella Massari2 , Fabio Manca3 , Angela Maria D’Uggento4*  

1Faculty of Economics, University of Bari, Largo Abbazia S. Scolastica, Bari, Italy  
2Department of Economics, Management and Business Law, University of Bari, Largo Abbazia S. Scolastica, Bari, Italy  
3Department of Education, Psychology, Communication, University of Bari, Bari, Italy  
4Department of Economics and Finance, University of Bari, Largo Abbazia S. Scolastica, Bari, Italy  

 
 
 

Abstract 
The purpose of this paper is to broaden the knowledge of mean difference 
and, in particular, of an important distribution model known as Tukey 
lambda, which is generally used to choose a model to fit data. We have ob-
tained compact formulas, which are not yet reported in literature, of mean 
deviation and mean difference related to the said distribution model. These 
results made it possible to analyze the relationships among variability index-
es, namely standard deviation, mean deviation and mean difference, regard-
ing Tukey lambda model. 
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1. Introduction 

The purpose of this work is to increase the methodological contributions on the 
mean difference and on the relationships of the mean difference with other va-
riability indexes [1] [2]. The studies on the mean difference, introduced by Cor-
rado Gini in 1912 as a measure of the variability of the characters according to 
the aspect of inequality, have aroused the interest of many scholars over years 
and also recently [3] [4]. The importance of mean difference is also due to the 
fact that the sample mean difference is a correct estimate of that of the popula-
tion distribution model and, therefore, functional for inferential purposes [5]. 
The theoretical contributions on the mean difference concern the main continuous 
distribution models (normal, rectangular, exponential, ...) [6], however, for other 
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distribution models, such as Tukey’s, no contributions are known in literature. 

2. Tukey Lambda Distribution 

Tukey lambda distribution is usually used to choose a distribution model to fit 
data and its direct use is less usual. In general, its characteristic is that neither its 
density function ( )f x  nor its cumulative function ( )F x  is known, but only 
the inverse of this latter ( )1F x− , that is the quantile function Q(p) [7] [8]. 

A complete Tukey distribution shape includes three parameters: one of posi-
tion, one of scale and one of shape [9] [10].  

In order to calculate the mean difference and the mean deviation, it is better 
to refer to a reduced distribution in which the position parameter is set to zero 
and the scale to one. Formulas of mean difference and mean deviation of com-
plete distribution are equal to the ones of reduced distribution multiplied by the 
scale parameter value. Tukey lambda distribution is defined by the quantile 
function  

( ) ( )1
, 0 1.

p p
x Q p p

λλ

λ
− −

= = < <                   (1) 

Said function is not always analytically invertible and, therefore, allows to ob-
tain cumulative function and density function only for some values of λ [11] 
which are 1,0,1 4,1 3,1 2,1,3 2,2,3,4λ = − . Cumulative functions of Tukey 
lambda distribution for such values are listed below: 

 ( )
22 41, ,

2
x xF x x

x
λ − + + +
= − = −∞ < < ∞               (2) 

 ( ) 10, ,
1 e xF x xλ −= = −∞ < < ∞
+

                   (3) 

( ) ( )2 6 4 41 1, 3584 17 1024 12 512 2 , 4 4
4 2 512

xF x x x x xλ λ= = + − − + + + − < < (4) 

( )
( )

( )

3 5

1 3
6 6

1 3
6 6

1 1 5,
3 2 216 72 5832 108 2916

5832 108 2916 , 3 3
72

x xF x
x x

x x x x

λ = = − +
+ + +

+ + + + − < <

        (5) 

( ) ( )21 1, 4 8 , 2 2
2 8

F x x x xλ = = − − − < <               (6) 

( ) 11, , 1 1
2

xF x xλ +
= = − < <                     (7) 

( )
( )

( )
1 32 4 32 2

1 34 32 2

3 ,
2

1 1 18 81 3 2 21 2 1 45 4 9 ,
2 2 2 3 381 31 45 4 9

2 2

x xF x x x x x
xx x x

λ =

 
 

  +
= − − + + − − + − + − < <  

    − − + − +    

(8) 
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( ) 1 2 1 12, ,
2 2 2

xF x xλ +
= = − < <                     (9) 

( )
( )

( )1 3
2

1 3
2

1 1 1 13, 1 6 1 36 ,
2 3 36 1 36

F x x x x
x x

λ

 
 
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2
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1 3 2

36 3 1 4321 1 1 14, 1 ,
2 4 433 36 3 1 432

x x
F x x

x x
λ

 + + 
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 

 (11) 

It is necessary to use numerical inversion of ( )Q p  to get a cumulative func-
tion for other λ values. 

Regarding Tukey distribution, some characteristic values as function of λ are 
known: average, mode, median, standard deviation, asymmetry index, disnor-
mality excess index, entropy, characteristic function. Expressions of mean dif-
ference and mean deviation are unknown.  

3. Variability Indexes of Tukey Lambda Distribution  

The variance of Tukey lambda distribution as a function of λ parameter [12] is 

( )
( )

2
2

2

12 1 1, .
1 2 2 2 2

λ
σ λ

λ λλ

 Γ +
= − > − 

+ Γ +  
                (12) 

By using the cumulative functions derived by the inversion of quantile func-
tions of Tukey lambda distribution, mean difference and mean deviation values 
are obtained and shown in Table 1. 

Mean difference values for integers from 1 to 10 are arranged exactly on a pa-
rabolic hyperbola 

( ) 2

4 , 1.
2 3

λ λ
λ λ

∆ = >
+ +

                     (13) 

Some values of Δ calculated numerically for other values of λ parameter are 
also all arranged over the said function, which can be then considered a general 
expression of the mean difference of Tukey lambda distribution. Said function 
takes not-negative finite values for 1λ > − , as it can be shown in Figure 1.  

Therefore, the mean difference in Tukey lambda distribution has a domain 
1λ > −  which is wider than the one of standard deviation 1 2λ > − . 

Let us now consider the mean deviation. First of all, we can see that the aver-
age of our distribution exists only for 1λ > −  and, therefore, said domain also 
applies to mean deviation. Mean deviation values for integers from 1 to 10 are 
arranged exactly over the function 

( )
( )
( )

12 2 1
, 1.

1

λ λ

δ λ λ
λ λ

− −
= > −

+
                   (14) 

Values of δ calculated numerically for other values of λ parameter are also all ar-
ranged exactly over the said function, which can be then considered the expression  
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Figure 1. Mean difference of Tukey lambda distribution as a function of λ parameter. 

 

 
Figure 2. Mean deviation of Tukey lambda distribution as a function of λ parameter. 

 
Table 1. Values of mean difference and mean deviation for some values of λ parameter in 
Tukey lambda distribution. 

λ Δ Δ 

−1 ∞ ∞ 

−4/5 50/3 9.263764082403105 

−3/4 64/5 7.27245685874591 

−2/3 9 5.240144005205601 

−3/5 50/7 4.297623404313451 

−1/2 16/3 3.3137084989847696 

−1/3 18/5 2.339289449053423 

1 1 2 3 4 5

1

2

3

4

1 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0
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Continued 

−1/4 64/21 2.0182092266958453 

0 2 2log2 

1/4 64/65 1.018262942376231 

1/3 9/7 0.9283476330715509 

1/2 16/15 ( )4 2 2
3

−  

3/5 25/26 0.7088459262782351 

2/3 9/10 0.6660710550945809 

3/4 64/77 0.6177469599979266 

1 2/3 1/2 

3/2 16/35 0.34477152501692165 

2 1/3 1/4 

5/2 16/63 0.1881653270194103 

3 1/5 7/48 

4 2/15 3/32 

5 2/21 31/480 

6 1/14 3/64 

7 1/18 127/3584 

8 2/45 85/3072 

9 2/55 511/23040 

10 1/33 93/5120 

 
of mean deviation of the Tukey lambda distribution. Said function takes 
not-negative finite values for 1λ > −  as it can be shown in Figure 2.  

The mean deviation of Tukey lambda distribution has, therefore, a domain 
wider than the one of standard deviation.  

4. Relations between Variability Indexes of Tukey Lambda  
Distribution  

By inverting the expression of mean difference in Tukey lambda distribution as a 
function of λ parameter (13), the following two roots come out 

1
3 16

2
λ − ∆ + ∆ + ∆
=

∆
                     (15) 

and 

2
3 16 .

2
λ − ∆ − ∆ + ∆

=
∆

                     (16) 

The second solution, which is always negative, is not usable to obtain the rela-
tionship between ∆ and σ [13].  

By substituting the first solution 1λ  (15) in the standard deviation expression, 
it comes out an analytical relationship of the same one related to the mean dif-
ference of Tukey lambda distribution: 
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( )
212Γ 16 1 1

2 22
16 1 2 Γ 16 1 1

, 0.
16 1 3

σ

 ∆ + −  −
 ∆ + − ∆ + − = ∆ >

∆ + −
        (17) 

Said relationship is represented in Figure 3. 
As it can be seen, standard deviation increases quickly when mean difference 

increases. 
Let us, now, consider the relationship between mean difference and mean 

deviation.  
By substituting root 1λ  in the formula of mean deviation (14), it comes out 

the following analytical relationship  

( )

16 13
2 22 2 1

, 0.
16 41 1

δ

+
∆−

 
 

− 
 
 ∆ = ∆ >

+ − −
∆ ∆

                   (18) 

As shown in Figure 4, it is evident that the relationship between the two in-
dexes is almost linear. 

Finally, let us consider the relationship between mean deviation and standard 
deviation of Tukey lambda distribution.  

Since it is not possible to obtain λ  parameter as a function of mean devia-
tion, it is necessary to use a numerical procedure to calculate the two variability 
indexes values for a consistent set of λ parameter values and to represent pairs of 
values on a Cartesian axis.  

By choosing values of λ: −0.49, −0.48, ..., 5.00, it comes out a numerical rela-
tionship as shown in Figure 5. 

 

 
Figure 3. Analytical relationship between mean difference and standard deviation of Tu-
key lambda distribution. 

1 2 3 4 5
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Figure 4. Analytical relationship between mean difference and mean deviation of Tukey 
lambda distribution. 
 

 
Figure 5. Numerical relationship between mean deviation and standard deviation of Tu-
key lambda distribution. 
 

As it can be seen, the relationship between mean deviation and standard devi-
ation of Tukey Lambda distribution increases with slow acceleration. 

5. Conclusive Remarks 

In this work, the formulas of mean difference and mean deviation of Tukey 
Lambda distribution have been obtained. It is an original contribution aimed at 
increasing the knowledge about this distribution model. These results allowed us 
to investigate the relationships among the three main variability indexes, standard 
deviation, mean deviation and mean difference, regarding Tukey lambda model.  
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Abstract 
In this paper, Adomian decomposition method (ADM) is used to solve the 
Volterra-Fredholm integral equation. A number of examples have been pre-
sented to explain the numerical results, which is the comparison between the 
exact solution and the numerical solution, and it is found through the tables 
and the amount of error between the exact solution and the numerical solu-
tion, it is very small and almost non-existent and is also illustrated through 
the graph how the exact solution of completely applies to the numerical solu-
tion This proves the accuracy of the method, which is the Adomian decom-
position method (ADM) for solving the Volterra Fredholm integral equation 
using Maple 18. And that this method is characterized by ease, speed and 
great accuracy in obtaining numerical results. 
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1. Introduction 

The current research intends to the Adomian decomposition method for solving 
Volterra-Fredholm integral equation using Maple18.  

Integral equations are the basic sciences in our real life, and they explain 
physical, chemical, engineering, and medical phenomena, and more than that, 
they contribute greatly to reaching analytical and numerical solutions to these 
phenomena in various areas of our lives [1] [2]. There are several studies of 
Adomian decomposition metod, convergence and accuracy of Adomian’s de-
composition method for the solution of Lorenz equationsis studied in [3]. Solv-
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ing Riccati differential equation using Adomian’s decomposition method is giv-
en in [4]. An adaptation of Adomian decomposition for numeric-analytic inte-
gration of strongly nonlinear and chaotic oscillatorsis studied in [5]. The extended 
Adomian decomposition method for fourth order boundary value problems is 
given in [6]. The use of the Adomian decomposition method for solving multi-
point boundary value problems is mentioned in [7]. [8] developed a new algo-
rithm for evaluating Adomian polynomials. [9] studied an efficient algorithm for 
the multivariable Adomian polynomials. [10] found convenient analytic recur-
rence algorithms for the Adomian polynomials. A review of the Adomian decom-
position method and its applications to fractional differential equations is given in 
[11]. [12] covers a bibliography of the theory and applications of the Adomian de-
composition method. We find that solutions of nonlinear integral equations are 
more difficult to solve than linear integral equations and there are many analytical 
and numerical methods for solving linear and nonlinear integral equations men-
tioned in the references [13] [14] [15] [16]. We discuss the numerical solution of 
the integral Volterra equation of the second type using an implicit trapezoidal 
[17] [18]. The Adomian decomposition method of the Fredholm integral equa-
tion of the second kind using MATLAB and Maple is demonstrated in [19]. The 
Adomian decomposition method was applied to solve the Fredholm integral eq-
uation of the second kind [20]. Also, Modified analysis method for solving the 
Volterra integral equation of the second kind using Maple is discussed in [21]. 

In this article we have applied the Adomian decomposition method used by 
using the Maple algorithm by applying this algorithm to different examples, in-
cluding finding the approximate solution and then comparing it to the exact so-
lution and finding out the amount of error between the approximate solution 
and the exact solution. 

The main objective of this work is to use the Adomian decomposition method 
in solving the Volterra-Fredholm integral equation of the second kind using 
Maple18. 

The paper is arranged as follows: In Section 2, the Adomian decomposition 
method; in Section 3, numerical examples are also considered to show the ability 
of the proposed method, and the conclusion is drawn in Section 4. 

2. The Adomian Decomposition Method 

To clarify the basic idea of this method, we consider the following general 
non-linear differential equation: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, d , d .
x b

a a
u x f x K x t u t t K x t u t tλ λ= + +∫ ∫          (1) 

where L is assumed invertible and 1L−  is an inverse operator. 
The standard Adomian method defines the solution ( )u x  by the series  

( ) ( )0 nnu x u x∞

=
= ∑ .                         (2) 

The modified decomposition method  

( ) ( )0u x f x=                            (3) 
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( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 1 0 2 2 0, d , d ,

x b

a a
u x f x L K x t u t t L K x t u t tλ λ− −= + +∫ ∫    (4) 

( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 1 2 2, d , d .

x b

an n na
u x L K x t u t t L K x t u t tλ λ− −

+ = +∫ ∫       (5) 

The use of a modified decomposition method not only reduces the calcula-
tions but avoids the use of the human polynomial arrangement of boundaries in 
such cases. 

3. Numerical Examples 

In this section, we solve some examples, and we can compare the numerical re-
sults with the exact solution. 

Example 1. Consider the Volterra Fredholm integral equation  

( ) ( ) ( )3 1 2
0 1

1 d d ,
3

x
u x x x tu t t t u t t

−
= − + +∫ ∫                 (6) 

the exact Solution ( )u x x= . 
Applying the Adomian decomposition method using Maple18 we find (Table 

1 & Figure 1). 
Example 2. Consider the Volterra Fredholm integral equation  

( ) ( ) ( ) ( ) ( )
0 0

2sin cos d d
x

u x x x u t t u t t
π

= − − +∫ ∫              (7) 

the exact Solution ( ) ( )sinu x x= . 
Applying the Adomian Decomposition Method using Maple18 we find (Table 

2 & Figure 2). 
Example 3. Consider the Volterra Fredholm integral equation  

( ) ( ) ( )1

0
4

1
2 33 4 2 d d .

x
u x x x x x tu t t tu t t

−
= + − − − + +∫ ∫          (8) 

the exact Solution ( ) 23 4u x x x= + . 
 
Table 1. Approximation solution and exact solution of Volterra Fredholm integral equa-
tions for example 1. 

x u x=  Exact1 x=  Error Exact1 u= −  

0.10000 0.1000000 0.1000000 0.0000000 

0.20000 0.2000000 0.2000000 0.0000000 

0.30000 0.3000000 0.3000000 0.0000000 

0.40000 0.4000000 0.4000000 0.0000000 

0.50000 0.5000000 0.5000000 0.0000000 

0.60000 0.6000000 0.6000000 0.0000000 

0.70000 0.7000000 0.7000000 0.0000000 

0.80000 0.8000000 0.8000000 0.0000000 

0.90000 0.9000000 0.9000000 0.0000000 

1.00000 1.0000000 1.0000000 0.0000000 
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Figure 1. Plot of the solutions of Volterra Fredholm integral equation for example 1. 

 

 
Figure 2. Plot of the solutions of Volterra Fredholm integral equation for example 2. 

 
Table 2. Approximation solution and exact solution of Volterra Fredholm integral equa-
tions for example 2. 

Error Exact2 u= −  ( )Exact2 sin x=  u x 

0.0000870 0.0998334 0.0997464 0.10000 

0.0000463 0.1986693 0.1986230 0.20000 
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Continued 

0.0000235 0.2955202 0.2954967 0.30000 

0.0000113 0.3894183 0.3894071 0.40000 

0.0000050 0.4794255 0.4794205 0.50000 

0.0000021 0.5646425 0.5646404 0.60000 

0.0000008 0.6442177 0.6442169 0.70000 

0.0000003 0.7173561 0.7173558 0.80000 

0.0000001 0.7833269 0.7833268 0.90000 

0.0000000 0.8414710 0.8414710 1.00000 

 
Table 3. Approximation solution and exact solution of Volterra Fredholm integral equa-
tions for example 3. 

Error Exact3 u= −  2Exact3 3 4x x= +  u x 

0.0000002 0.3399998 0.3400000 0.10000 

0.0000002 0.7599998 0.7600000 0.20000 

0.0000004 1.2599996 1.2600000 0.30000 

0.0000006 1.8399994 1.8400000 0.40000 

0.0000012 2.4999988 2.5000000 0.50000 

0.0000024 3.2399976 3.2400000 0.60000 

0.0000052 4.0599948 4.0600000 0.70000 

0.0000117 4.9599883 4.9600000 0.80000 

0.0000269 5.9399731 5.9400000 0.90000 

0.0000625 6.9999375 7.0000000 1.00000 

 

 
Figure 3. Plot of the solutions of Volterra Fredholm integral equation for example 3. 
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Applying the Adomian Decomposition Method using Maple18 we find (Table 3 
& Figure 3). 

Example 4. Consider the Volterra Fredholm integral equation  

( ) ( ) ( ) ( )1

0 0
2 2 2e d d

xxu x x x t u t t xu t t= − − + + − +∫ ∫           (9) 

the exact Solution ( ) exu x x= . 
Applying the Adomian Decomposition Method using Maple we find (Table 4 

& Figure 4). 
Example 5. Consider the Volterra Fredholm integral equation  

( ) ( ) ( ) ( ) ( )5 1

0 0
3 9 1 1 d d

20 4 5
x

u x x x x x t u t t x t u t t= − − + + + + −∫ ∫      (10) 

the exact Solution ( ) 3u x x= . 
 
Table 4. Approximation solution and exact solution of Volterra Fredholm integral equa-
tions for example 4. 

Error Exact4 u= −  Exact4 exx=  u x 

0.0011984 0.1093187 0.1105171 0.10000 

0.0024176 0.2418630 0.2442806 0.20000 

0.0036788 0.4012789 0.4049576 0.30000 

0.0050039 0.5917260 0.5967299 0.40000 

0.0064158 0.8179448 0.8243606 0.50000 

0.0079393 1.0853320 1.0932713 0.60000 

0.0096006 1.4000262 1.4096269 0.70000 

0.0114287 1.7690040 1.7804327 0.80000 

0.0134553 2.2001875 2.2136428 0.90000 

0.0157157 2.7025662 2.7182818 1.00000 

 
Table 5. Approximation solution and exact solution of Volterra Fredholm integral equa-
tions for example 5. 

Error Exact5 u= −  3Exact5 x=  u x 

0.0002218 0.0007782 0.0010000 0.10000 

0.0003499 0.0083499 0.0080000 0.20000 

0.0010883 0.0280883 0.0270000 0.30000 

0.0019947 0.0659947 0.0640000 0.40000 

0.0030596 0.1280596 0.1250000 0.50000 

0.0042426 0.2202426 0.2160000 0.60000 

0.0054413 0.3484413 0.3430000 0.70000 

0.0064507 0.5184507 0.5120000 0.80000 

0.0069143 0.7359143 0.7290000 0.90000 

0.0062804 1.0062804 1.0000000 1.00000 
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Figure 4. Plot of the solutions of Volterra Fredholm integral equation for example 4. 

 

 
Figure 5. Plot of the solutions of Volterra Fredholm integral equation for example 5. 

 

Applying the Adomian Decomposition Method using Maple18 we find (Table 
5 & Figure 5). 

4. Conclusion 

In this paper, the Adomian decomposition method was applied to solve the 
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integral Volterra Fredholm equation using program Maple18. The results are 
obtained in the tables and drawn in the figures. Tables 1-5 show the correct so-
lution and the numerical solution. Tables 1-5 represent the exact and numerical 
results of the examples in this article. Figures 1-5 readily show the comparison 
of exact solution and ap-proximate solution. Comparing the numerical results, 
we find that the numerical solution is largely applied to the exact solution, which 
proves the efficiency of the method used and the ability to obtain the numerical 
solution corresponding to the exact solution easily and conveniently with a pro-
gram Maple 18. Moreover, the high accuracy of the results is obtained. 
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Abstract 
Previously we introduced a concise dose-response model for the heat-induced 
withdrawal reflex caused by millimeter wave radiation. The model predicts 
the occurrence of withdrawal reflex from the given spatial temperature pro-
file. It was formulated on the assumption that the density of nociceptors in 
skin is uniform, independent of the depth. The model has only two parame-
ters: the activation temperature of heat-sensitive nociceptors and the critical 
threshold on the activated volume for triggering withdrawal reflex. In this 
study, we consider the case of depth-dependent nociceptor density in skin. 
We use a general parametric form with a scaling parameter in the depth di-
rection to represent the nociceptor density. We analyze system behaviors for 
four density types of this form. Based on the theoretical results, we develop a 
methodology for 1) identifying from test data the density form of nociceptors 
distribution, 2) finding from test data the scaling parameter in the density 
form, and 3) determining from test data the activation temperature of noci-
ceptors. 
 

Keywords 
High-Energy Millimeter Wave Radiation, Heat-Induced Pain, 
Depth-Dependent Nociceptor Density In Skin 

 

1. Introduction 

The rapid development of applications such as wireless communications, secu-
rity scanning, tissue diagnosis, and non-lethal weapons for crowd control or peri-
meter security has considerably increased human exposure to high-frequency mil-
limeter waves (MMW) ranging from 30 to 300 gigahertz (GHz). For the purpose 
of biological risk assessment, it is vital to understand the effects of this irradia-
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tion on humans. 
Many experiments have shown that exposure to MMW at sufficiently high in-

tensities primarily produces fast heating near the surface of the skin [1]-[7]. The 
transmitted MMW power is absorbed in the skin to a depth of less than 0.5 mm 
at 100 GHz [8] and is attenuated exponentially as a function of skin depth. The 
skin generally consists of three different layers, namely epidermis, dermis, and 
hypodermis [9]. These layers have different thickness depending on the location 
of the skin. In particular, the epidermis is the outermost layer of skin containing 
both living and dead cells with thickness 0.075 - 0.15 mm. The dermis lies be-
neath the epidermis and is much thicker (1 - 4 mm). There are blood vessels and 
nerves in the dermis. The third layer is the hypodermis, which is composed of 
mainly subcutaneous fat. The hypodermis is about 1.1 - 5.6 mm in thickness. 
Studies performed at 60 GHz demonstrated that while the maximum value of the 
power density and specific absorption rate occurs at the epidermis, up to 60% of 
the incident power reaches the dermis, and only 10% gets to the hypodermis [10] 
[11]. Absorption of the MMW energy causes the local temperature of the skin to 
rise and can activate nociceptors [12] and consequently lead to a sensation of 
pain [13] [14]. 

Nociceptors are sensory nerve cells that respond to painful stimuli by send-
ing out signals to the spinal cord via a chain of nerve fibers. When the collec-
tive signal becomes strong enough, the withdrawal reflex is triggered and the 
subject moves away from the exposure [15] [16]. Previously, we formulated a 
dose-response model for the heat-induced withdrawal reflex from MMV radia-
tion [17]. The concise model predicts the occurrence of withdrawal reflex from a 
given spatial temperature profile of the skin. A prominent feature of the model is 
that it contains only two parameters. One key assumption in the concise model 
is that the nociceptor density in skin does not vary with the depth. In this paper 
we extend our earlier study by relaxing this assumption. Our goal is to determine 
the effect of depth-dependent nociceptor density on the heat-induced withdraw-
al reflex. 

2. Mathematical Formulation in the Case of Depth  
Dependent Nociceptor Density 

In this section, we study the mathematical formulation when the nociceptor 
density is a function of depth in the skin. We start by introducing proper ma-
thematical notations:  
• y: the depth coordinate (the skin surface is 0y = ).  
• r : 2-D coordinates on the skin surface; ( ), yr  is the 3-D coordinates.  
• ( ),T yr : 3-D spatial temperature profile of the skin.  
• actT : activation temperature of nociceptors; given ( ),T yr , the activation 

status of a nociceptor at ( ), yr  is governed by the indicator function  

( ) ( ) ( )
( )act

act

act

1, if ,
,

0, if ,T T

T y T
I y

T y T≥

 ≥≡  <

r
r

r
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• ( )yρ : nociceptor density at depth y (number per volume).  
• actX : total number of activated nociceptors in the skin,  

 ( ) ( ) ( )
actact , d dT TX y I y yρ ≥= ∫ r r  

• 0ρ : characteristic reference nociceptor density.  
When the nociceptor density is uniform, ( ) 0yρ ρ= , the activated volume is 

proportional to the number of activated nociceptors. In this case, we adopted the 
activated volume as the single metric predictor variable (the input dose) for pre-
dicting withdrawal reflex [17].  

Input dose in the case of uniform density:  

 ( ) ( )
act

, d dT Tz I y y≥≡ ∫ r r                       (1) 

The advantages of this input dose are 1) it makes the dose quantity indepen-
dent of the nociceptor density 0ρ , and 2) it shifts the effect of 0ρ  into the 
dose threshold cz . In the dose response model, withdrawal reflex occurs when 

cz z≥  where the effects of 0ρ  and all other factors are reflected the single me-
tric quantity cz . 

In the case of non-uniform nociceptor density, the activated volume is no 
longer proportional to the number of activated nociceptors, and thus is no long-
er a valid candidate for the input dose. We like to define the dose such that it 
contains (1) as a special case. For that purpose, we define the equivalent acti-
vated volume equz  based on reference density 0ρ , and use equz  as the input 
dose.  

Input dose in the case of non-uniform density:  

 ( )
( ) ( )

actequ act
0 0

1 , d dT T

y
z X I y y

ρ
ρ ρ ≥≡ = ∫ r r              (2) 

The dose response relation has the same form as in the case of uniform density.  

( ) ( )
( )

equ
equ

equ

1 withdrawal reflex , if
Outcome

0 no withdrawal reflex , if
c

c

z z
z

z z
≥=  <

 

In this study, we consider the hypothetical situation where the time of with-
drawal reflex and the spatial temperature profile at reflex are measurable in ex-
periments. With these two measurable entities, we explore the behaviors of sev-
eral parameterized nociceptor density types. The objectives of the study are 1) to 
distinguish these candidate density types from each other based on the measura-
ble entities, and 2) to infer the parameter values. 

The calculation of equz  defined in (2) requires only the relative density 
( ) 0yρ ρ . The effect of 0ρ  is contained in the dose threshold cz . When 
( ) 0yρ ρ  is given, the dose response model has only two unknown parameters: 

actT  and cz . In a test, the measured temperature profile ( ),T yr  at reflex pro-
vides a constraint on ( )act , cT z . Mathematically, we construct constraint func-
tion ( )actcz T  as follows. For any value of actT , by definition, the corresponding 
value of cz  is the value of equz  calculated based on actT  and ( ),T yr .  
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 ( ) ( )
( ) ( )

actact
0

, d dc T T

y
z T I y y

ρ
ρ ≥= ∫ r r                    (3) 

when ( ) 0yρ ρ  is given, function ( )actcz T  is completely determined by the 
measured ( ),T yr . Constraint functions ( )actcz T  based on ( ),T yr  measured 
at different test conditions are potentially distinct from each other. All these 
constraint functions have one common intersection, which gives the true values 
of ( )act , cT z . 

When the true relative density ( ) 0yρ ρ  is unknown, we work with a trial 
relative density ( ) ( )tryr y . We use ( ) ( )tryr y  to replace ( ) 0yρ ρ  in (3) and 
construct trial constraint function ( )actcz T  from the test data. Note that the 
true values of ( )act , cT z  satisfy only the true constraint function calculated using 
the true ( ) 0yρ ρ . When ( ) ( )tryr y  deviates from the true ( ) 0yρ ρ , the true 
values of ( )act , cT z  are not on the trial constraint curve calculated using 
( ) ( )tryr y . Consequently, for a pair of trial constraint functions calculated using 
( ) ( )tryr y  (based on measured ( ),T yr  of two distinct test conditions), their 

intersection is not at the true values of ( )act , cT z , and the intersection varies with 
the test conditions of the pair. The test-condition-dependence of the intersection 
serves as an indication that the trial density ( ) ( )tryr y  is incorrect. The specific 
behavior of test-condition-dependence of the intersection provides a venue for 
us to tune ( ) ( )tryr y  toward the true ( ) 0yρ ρ . 

We examine several types of parameterized density. We study the test-condition 
dependence of 1) the reflex time and 2) the intersection of a pair of trial con-
straint functions. The goal is to identify system behaviors that a) help us distin-
guish these density types from each other and b) guide us to tune the trial para-
meter toward its true value. 

We carry out the analysis in the idealized situation where  
• the electromagnetic heating is uniform over the beam cross-section (with 

area A) and it decays exponentially with depth y;  
• the initial temperature is uniform everywhere;  
• the heat conduction is included only in the depth direction.  

This is the same as case B in our previous study [17]. At any given time, the 
temperature inside the beam cross-section is a function of depth y only and it 
decreases with y. The time evolution of temperature distribution ( ),T y t  is go-
verned by  

( ) ( )

( ) ( )

2

m dep2

0
0

, ,
e

,
0 , ,0

y
p

y

T y t T y t
C K P

t y
T y t

T y T
y

µρ µ −

=

 ∂ ∂
= +

∂ ∂
∂ = = ∂

 

where  
• mρ  is the mass density of skin,  
• pC  is the specific heat capacity of the skin,  
• K is the thermal conductivity of the skin,  
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• µ  is the absorption coefficient of the skin,  
• depP  is the beam power density deposited on (absorbed into) the skin, and  
• 0T  is the initial temperature of the skin.  

In this idealized situation, the region of activated nociceptors ( ( ) actT y T≥ ) is 
a cylinder with depth acty  governed by ( )act actT y T= . By definition, actT , 

( )act reflex
y  and the reflex time reft  are constrained by the temperature distribu-

tion, which we assume is measurable.  

 ( )( )act act refreflex
,T T y t=                       (4) 

We consider a general 1-parameter form for the relative density of nociceptors  

( ) ( )
0

y
f y

ρ
β

ρ
=  

where ( )f s  can be any positive function. The activated depth acty  and the 
dose equz  both vary with the activation temperature actT , and are related by 
Equation (2) as  

 ( ) ( )act
equ act0

d
y Az A f y y F yβ β

β
= =∫                  (5) 

 equ1
act

1 z
y F

A
β

β
−  

=  
 

                       (6) 

where A is the beam spot area, ( ) ( )
0

d
s

F s f z z≡ ∫ , and ( )1F u−  is the inverse 
function of ( )F s . Since ( )f s  is positive, function ( )F s  is monotonically 
increasing and the inverse function ( )1F u−  is well-defined over the range of 
( )F s . By definition, functions ( )F s  and ( )1F u−  satisfy ( )0 0F =  and 
( )1 0 0F − = . Recall that the dose threshold is defined as 

( )equ reflexcz z≡ . Equa-
tion (6) gives  

 ( )
1

act reflex

1 cz
y F

A
β

β
−  =  
 

                     (7) 

Equation (4) in combination with (7) provides a constraint on actT , cz , β  
and reft , which can be used for different purposes, depending on which para-
meters are known. When reft  and ( ),T y t  are measured, (4) gives us a con-
straint on cz , actT  and β . On the other hand, when cz , actT  and β  are 
given, (4) can be viewed as a governing equation for reft . This is useful, for ex-
ample, for examining the behavior of reft  vs. A. 

In the analysis of subsequent sections, we need the expansions of ( )f s  and 
( )F s , ( )1F u−  and their derivatives. We now derive these expansions. We first 

write out the Taylor expansion of ( )f s  around 0s = .  

( ) ( ) ( )
2

0 1 2 where 0
2!

k
k

sf s a a s a a f= + + + =  

( ) ( )
2 3

0 1 20
d

2! 3!
s s sF s f z z a s a a≡ = + + +∫   

The expansion of ( )1F u−  is derived from that of ( )F s  using an iterative 
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method. It depends on which term in the expansion of ( )F s  is the leading 
non-zero term. Let ( )u F s≡ . The inverse function ( )1F u−  maps u back to s. 
We discuss two cases.  
• Case 1: ( )0 0f ≠ . Function ( )u F s=  has the expansion  

( ) ( )
2

0 1 where 0
2!

k
k

su a s a a f= + + =  

Based on that, we built an iteration formula:  

2
1 1 0

0

1 1 , 0
2!j js u a s s

a+
 = − = 
 

 

The iteration gives us expansions of ( )1F u−  and ( ) ( )1F u− ′   

 ( ) ( )1 21
3

0 0

1 for 0 0
2
aF u u u f

a a
− = − + ≠              (8) 

 ( ) ( ) ( )1 1
3

0 0

1 for 0 0
aF u u f

a a
− ′ = − + ≠              (9) 

• Case 2: ( )0 0f =  but ( )0 0f ′ ≠ . Function ( )u F s=  has the expansion  

( ) ( )
2 3

1 2 where 0
2! 3!

k
k

s su a a a f= + + =  

Based on that, we construct an iteration formula for 2s :  

( )3 22 2 2
1 2 0

1

2 1 , 0
3!j js u a s s

a+
 = − = 
 

 

which yields the expansion of 2s  in terms of u  
1 2

2 2

1 1 1

2 2 21
6
as u u

a a a

  
 = − ⋅ +    

  

Taking square roots of both sides, we obtain  

 ( ) ( ) ( )1 2
2
11

1 22 for 0 0 but 0 0
3
aF u u u f f
aa

− ′= − + = ≠     (10) 

 ( ) ( ) ( ) ( )1 2
2
1

1 2

1

1 for 0 0 but 0 0
32
aF u u f f
aa

− −′ ′= − + = ≠    (11) 

with the mathematical results above, we study the behavior of reft  vs A. 

3. Analysis of Reflex Time vs. Beam Spot Area 

When actT , cz  and β  are given, (4) with (7) governs reft  vs A. In our pre-
vious study [17], we scaled and shifted the physical temperature distribution to 
the normalized non-dimensional temperature ( )nd nd,H y t .  

 
( )( ) ( )0

nd nd
dep

,
,

T y t T K
H y t

P
µ−
=                   (12) 

where the non-dimensional depth ndy  and the non-dimensional time ndt  are 
defined as  
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2

nd nd
m

,
p

Ky y t t
C
µµ

ρ
≡ ≡  

The normalized temperature ( )nd nd,H y t  has the expression  

 ( ) ( )
0

, , d
t

H y t G y s s≡ ∫  

 ( ) 1 2 1 2, erfc e erfc e
2 24 4

t y t yt y t yG y t
t t

− +− +   
≡ +   

   
        (13) 

It is important to notice that the normalized temperature ( ),H y t  is parame-
ter-free. The non-dimensional version of (4) with (7) has the form  

 
( ) ( )act 0

act,nd ref ,nd
dep

,
T T K

H y t
P

µ−
=               (14) 

2
1

act,nd nd ref ,nd ref
nd m

, ,
c p

A Ky F A t t
A z C

µ β µ
β µ µ ρ

−  
≡ ≡ ≡ 

 
 

In the above, nd
c

AA
zµ

≡  is the non-dimensional beam spot area. In the limit of 

A →∞ , we have act,nd 0y →  and the equation for ref ,ndt  becomes  

( ) ( )act 0
ref ,nd

dep

=
A

T T K
h t

P
µ

→∞

−
 

where ( ) ( )nd nd0,h t H t≡ . Let 
( )act 01

0
dep

T T K
t h

P
µ−

 −
≡   

 
. We have ref ,nd 0A

t t
→∞

= .  

We examine the asymptotic behavior of this convergence. We seek an expansion 
of the form  

 ( )ref ,nd nd 0
nd

11 At A t c
A

α  
 = + + 
   

                (15) 

Expanding ( )nd nd,H y t  around ( )00, t  and substituting (15), we get  

 ( ) ( ) 22
0 0 1

0 2
nd nd

0, 0,1 10 =
2A

H t H t
t c F

t A Ay

α
µ β
β µ

− ∂ ∂   
+      ∂ ∂    

   (16) 

Exponent α  and coefficient Ac  are determined using the leading term ex-
pansion of ( )1F u− . The result depends on whether the nociceptor density at the 
skin surface is zero.  
• Case 1: ( )0 0f ≠ .  

The expansion of ( )1F u−  given in (8). Substituting it into (16), we have  

 
( )( )

( )
( )

0

0

0

2
00

1 erfc e12,
erfc e2 0

t

A t

t
c

tt f
α

−
= = ⋅               (17) 

Here we have used 
( ) ( ) 00

0

0,
erfc etH t

t
t

∂
=

∂
 and 

( ) ( ) 0

2
0

02

0,
erfc e 1tH t

t
y

∂
= −

∂
 

derived in our previous study.  
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• Case 2: ( )0 0f =  but ( )0 0f ′ ≠   
The expansion of ( )1F u−  given in (10). Substituting it into (16), we arrive at  

 
( )

( )
( )

0

0

0

0 0

1 erfc e
1,

0 erfc e

t

A t

t
c

t f t
µα

β

−
= = ⋅

′
              (18) 

Returning to the physical quantities before the non-dimensionalization, the ref-
lex time vs beam spot area is given by  

 ( ) ( )0 m act 01
ref 02

dep

1 ,p c
A

t C T T Kz
t A c t h

A PK

αρ µµ
µ

−
   − = + + =           

    (19) 

4. Analysis of Constraint Functions on ( )cT zact ,  

When reft  and ( )ref,T y t  are measured, (4) with (7) serves as a constraint on 

actT , cz  and β  with beam spot area A as a parameter describing the test con-
dition. We denote the constraint function as ( )act ; ,cT z Aβ  and use (4) to write 
it as  

 ( ) 1
act

1 1; , ;c
c

z
T z A F

A A
β

β
β

−  = Φ  
  

               (20) 

where ( ) ( )( )ref; , 1y v T y t vΦ  is the temperature profile at reflex with beam 
spot area 1A v= . We represent the effect of A via variable 1v A=  since reft  
is a smooth function of 1v A=  as A →∞ . To facilitate the discussion, we in-
troduce two sets of mathematical notations. These two sets of notations are used 
to distinguish a quantity’s true value from its role as a variable in a function.  
• *β : true value of coefficient β .  
• β : a trial value of coefficient β .  
• ( )* *

act , cT z : true values of model parameters actT  and cz .  
• ( )act ; ,cT z Aβ : constraint function (20) calculated using trial value β ; in 

( )act ; ,cT z Aβ , cz  denotes the independent variable, and actT  the depen-
dent variable.  

Note that the data is generated with the true value *β . In the calculation con-
straint function (20), we use the measured data and a trial value β  since *β  
is unknown. When *β β= , the constraint function shares one common inter-
section for all values of A:  

 ( )* * *
act act; , for allcT z A T Aβ =                 (21) 

when *β β≠ , in general ( )* *
act , cT z  is not on constraint curve ( )act ; ,cT z Aβ , 

and the intersection of a pair of constraint functions varies with the test condi-
tions (values of A). We study the behavior of the intersection vs A. We make use 
of (21) and expand ( )act ; ,cT z Aβ  around ( )* *,cz β . For conciseness, we introduce  

cz
A
β

ε ≡  and write (20) as:  

( ) ( ) ( ) ( )1
act

1 1; , ; , , , , c
c c

z
T z A F z

A A
β

β ξ ξ β ε ε ε β
β

− = Φ ≡ ≡ 
 
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We apply the chain rule to calculate partial derivatives.  

 ( ) ( )1act 1 1;
c

T
F

z y A A
ξ ε−∂ ∂   ′= Φ ∂ ∂  

                   (22) 

 

( ) ( ) ( )

( ) ( )

( )

( ) ( )

1
1act

1

1
act

1

1 1; 1

where 1

c

c

c

FT z
F

y A A F

FT z
z F

ε
ξ ε

β β ε ε

ε
η η

β ε ε

−
−

−

−

−

 
∂ ∂    ′= Φ ⋅ − +   ∂ ∂ ′    

 
∂  ≡ ⋅ ≡ − + ∂ ′  

        (23) 

Using these derivatives, we write out the expansion of ( )act ; ,cT z Aβ .  

 ( )
( )

( ) ( ) ( )* *
* *

* * *act
act act ,

,

; ,
c

c

c c c z
c z

T
T z A T z z

z β
β

β η β β
∂  = + ⋅ − + − ∂  

    (24) 

The slope of ( )act ; ,cT z Aβ  vs. cz  is 
( )* *

act

,cc z

T
z

β

∂
∂

, which is given in (22). In Ap-

pendix A, we show that the slope converges to zero as A →∞ . It follows that  

 ( ) *
act act; , for allcT z A Tβ β= ∞ =                 (25) 

(25) shows that in the limit of A →∞ , the constraint curve is a horizontal line 

at *
actT , independent of cz  and β . For finite A, act 0

c

T
z

∂
≠

∂
 and actT  in (24)  

varies with cz  and β . We consider the intersection of ( )act ; ,cT z Aβ  and 
( ) *

act act; ,cT z Tβ ∞ ≡ . The actT -coordinate of the intersection is *
actT . Let  

( ) ( ),I
cz Aβ  denote the cz -coordinate of the intersection. Solving for  
( ) ( ),I
cz Aβ  from (24) and (25) leads to  

 ( ) ( ) ( ) ( )* *
* *

,,
c

I
c c zz A z

β
β η β β= − −                  (26) 

The dependence of ( ) ( ),I
cz Aβ  on A is contained in ( )* *,cz β

η  given in (23). Using 

the expansion of 
( )

( ) ( )

1

1

F

F

ε

ε ε

−

− ′
 derived in (73) in Appendix A, we investigate 

the behavior of η  at large A.  

• Case 1: ( )0 0f ≠ .  

( )
( )

( ) ( )
( )( )

* *

* *

2*
1
2 2,
0 ,

0 1 for large
2 2 0c

c

cc
z

z

z fz a A
Aa fβ

β

η ε
β

′− 
= − = ⋅ 

 
 

In case 1, as A →∞ , the intersection ( ) ( ),I
cz Aβ  given by (26) converges to the 

true value *
cz  regardless of trial value β .  

( ) ( ) *lim , for allI
c cA

z A zβ β
→∞

=  

The residual in convergence is proportional to ( )* Aβ β−  and has the same 
sign as ( )( )*0f β β′ − . More specifically, we have  
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 ( ) ( )
( ) ( )

( )( )

2* *
*

2

0
, for large

2 0

cI
c c

z f
z A z A

Af

β ββ
′ −

= + ⋅        (27) 

• Case 2: ( )0 0f =  but ( )0 0f ′ ≠   

 

( )
( )

( )
( )( )

* *

* *

1 2
3 2

3 2

2
,

1 ,

* ** *

* *

2
1

3

2 0 11 for large
3 0

c

c

c
z

z

cc c

z a
a

z fz z
A

Af

β
β

η ε
β

β
β β

 
= − −  

 

 ′′ − = − − ⋅ →
 ′ 

    (28) 

In case 2, as A →∞ , the intersection ( ) ( ),I
cz Aβ  given by (26) converges to  

( ) ( ) ( )
*

* * *
* *lim ,I c

c c cA

z
z A z z ββ β β

β β→∞

 −
= − − = 

 
 

which is proportional to trial value β . The residual in convergence is propor-
tional to ( )* Aβ β−  and has the same sign as ( )( )*0f β β′′ − . Asymptoti-
cally, ( )I

cz  is  

 ( ) ( )
( )
( )

( )
( )( )1

3 2* *
*

* 3 2* 2

2 0
, for large

3 0

cI
c c

z f
z A z A

Af

β β ββ
β β

′′ −
= + ⋅ ⋅

′
  (29) 

with the analytical preparations above, we examine four types of parametric 
form for nociceptor density vs depth, depicted in Figure 17. 

5. Type 1 Nociceptor Density: ( ) yy 0e
−= βρ ρ   

For type 1 nociceptor density, the relative density takes the parametric form  

 ( ) ( ) ( )
0

, where e sy
f y f s

ρ
β

ρ
−= =               (30) 

The graph of type 1 ( )f s  is plotted in Figure 17. It has the properties  

( ) ( ) ( )
0

0 1 0, 0 1, max 1
s

f f f s
≤ <∞

′= ≠ = − =  

5.1. Reflex Time 

The reflex time vs beam spot area is given by (19) and (17), namely,  

 ( )
( )
( )

0

0

2
00 m

ref 2
0 0

1 erfc e
1 ,

2 erfc e

t
p c

A A t

tt C z
t A c c

AK t t

ρ µ
µ

−  = + + =  
   

    (31) 

As A increases, reft  converges to its limit with the residual proportional to 1/A2:  

( ) ( )ref ref 2

1~t A t
A

− ∞  

Figure 1 plots the relation between reft  and A in two ways. Left panel: reft  vs 
A. Right panel: reft  vs. 1/A. In particular, the right panel confirms that the re-
sidual in the convergence of reft  decays faster than 1/A for large A, as predicted 
in the analysis above.  
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Figure 1. The relation between reflex time ( reft ) and beam spot area (A) for type 1 nociceptor density (30) with 

* 1β = . Left panel: reft  vs A. Right panel: reft  vs 1/A. 

 
It is interesting to notice that expansion (31) is independent of *β . Conse-

quently, the measurements of ( )reft A  vs. A do not contain any information for 
estimating *β .  

5.2. Constraint Function ( )cT z Aact ; ,β  

We consider the intersection of the pair ( )act ; ,cT z Aβ  and ( ) *
act act; ,cT z Tβ ∞ ≡ . 

The cz -coordinate of the intersection, ( ) ( ),I
cz Aβ , is generally described by 

(26). For type 1 density, we have ( ) e sf s −= , ( )0 1 0f = ≠  and ( )0 1f ′ = − , 
and the specific expression of ( ) ( ),I

cz Aβ  is given by (27).  

 ( ) ( )
( ) ( )

2*
* * 1,

2
cI

c c

z
z A z

A
β β β= − − ⋅                 (32) 

At *β β= , the intersection ( ) ( )* *,I
c cz A zβ =  is independent of A. When 

*β β≠ , the trend of ( ) ( ),I
cz Aβ  vs. A tells us whether *β β>  or *β β< .  

• For *β β> , ( ) ( ),I
cz Aβ  ascends toward *

cz  from below as A increases.  
• For *β β< , ( ) ( ),I

cz Aβ  descends toward *
cz  from above as A increases.  

Figure 2 displays simulated ( )act ; ,cT z Aβ  for several values of A, respectively 
for *β β>  and for *β β< . Here constraint function ( )act ; ,cT z Aβ  is based 
on test data (which is generated with true value * 1β = ) and is calculated using 
formulation (20) with trial value β . The trend of ( ) ( ),I

cz Aβ  vs A is illustrated 
in Figure 3. The simulation results in Figure 2 and Figure 3 confirm the theo-
retically predicted trend above.  

When it is known that the nociceptor density has the parametric form of type 
1 given in (30), we can tune the trial value β  down or up toward the true value 

*β  depending on whether the calculated ( ) ( ),I
cz Aβ  increases or decreases 

with A.  

5.3. Constraint Function Calculated Using the Uniform Density 

We now consider the situation where the type of parametric form of ( ) 0yρ ρ   
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Figure 2. Constraint curves for type 1 density (30). ( )act ; ,cT z Aβ  is based on test data generated with true value * 1β = , and cal-

culated using (20) with trial value β . Left panel: *β β> . Right panel: *β β< . 
 

 

Figure 3. ( ) ( ),I
cz Aβ  vs. A, respectively for *β β>  and for *β β< . Here ( ) ( ),I

cz Aβ  

is the intersection of ( )act ; ,cT z Aβ  and ( ) *
act act; ,cT z Tβ ∞ ≡  from Figure 2. 

 
is unknown. With no information on the type of density form, we use the uni-
form density as the trial density in calculating the constraint function. Let 

( )act,uni ;cT z A  denote the constraint function based on the test data (which is 
generated using type 1 density (30) with true value *β ) and calculated using 
framework (20) with the uniform trial density ( ) 0 1yρ ρ ≡ . Notice that the 
uniform density is a member of type 1 family (30) with 0β = . Thus, the two 
constraint functions ( )act,uni ;cT z A  and ( )act ; ,cT z Aβ  are related by  

( ) ( )act,uni act; ; 0,c cT z A T z Aβ= = . Let ( ) ( ),uni
I

cz A  denote the cz -coordinate of the 
intersection of the pair ( )act,uni ;cT z A  and ( ) *

act,uni act;cT z A T= ∞ ≡ . Setting 
0β =  in (32), we obtain  
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 ( ) ( )
( )2*

* *
,uni

1
2
cI

c c

z
z A z

A
β= + ⋅                     (33) 

Since the uniform density is parameter-free, the calculation of constraint func-
tion ( )act,uni ;cT z A  and intersection ( ) ( ),uni

I
cz A  is based solely on the test data. It 

does not require any input parameter or knowledge of the function form of the 
true density. Once the test data is available, ( )act,uni ;cT z A  and ( ) ( ),uni

I
cz A  can be 

calculated. When the true underlying density is type 1 given in (30), result (33) 
predicts that ( ) ( ),uni

I
cz A  converges to *

cz  as A →∞  with the difference pro-
portional to 1/A. Figure 4 compares simulated ( ) ( ),uni

I
cz A  and ( ) ( ),I

cz Aβ . The 
simulation results validate the theoretical prediction. In particular, ( ) ( ),uni

I
cz A  

varies linearly with 1/A. We fit function 0 1c c A+  to data of ( ) ( ),uni
I

cz A  vs 1/A. 
The fitting coefficients give us  

* * 1
0 2

0

2
,c

cz c
c

β= =  

Before we end this section, we clarify that result (33) predicts the behavior of 
constraint function ( )act,uni ;cT z A  calculated using the uniform trial density 
when the true underlying density affecting the test data is type 1 given in (30). 
When the true underlying density is of a different type, the behavior will be dif-
ferent. One objective of examining ( )act,uni ;cT z A  and ( ) ( ),uni

I
cz A  is to identity 

the type of nociceptor density from the observed behavior of ( ) ( ),uni
I

cz A  vs A, 
based on the theoretically predicted behaviors for a list of density types. In the 
subsequent sections, we will study more density types. 

6. Type 2 Nociceptor Density: ( ) ( ) yy y 1
0 e −= ⋅ βρ ρ β  

For type 2 nociceptor density, the relative density has the parametric form  

 ( ) ( ) ( ) 1

0

, where e sy
f y f s s

ρ
β

ρ
−= =                (34) 

 

 

Figure 4. Simulated results of ( ) ( ),uni
I

cz A  for type 1 density given in (30). Here ( ) ( ),uni
I

cz A  is based on the data from the true density 

(with * 1β = ) but is calculated using the uniform trial density. Left panel: ( ) ( ),uni
I

cz A  vs A. Right panel: ( ) ( ),uni
I

cz A  vs. 1/A. 
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The graph of type 2 ( )f s  is shown in Figure 17. It is straightforward to see 
that  

( ) ( ) ( ) ( )
0

0 0, 0 e 0, 0 2e, max 1
s

f f f f s
≤ <∞

′ ′′= = ≠ = − =  

6.1. Reflex Time 

The reflex time vs beam spot area is described by (19) and (18).  

 ( )
( )( )
( )

0

0

00 m
ref 2 *

0 0

1 erfc e
1 ,

e erfc e

t
p c

A A t

tt C z
t A c c

AK t t

µρ µ
µ β

− = + ⋅ + =  
     (35) 

As A increases, reft  converges to its limit with the difference proportional to 
1/A.  

( ) ( )ref ref
1~t A t
A

− ∞  

Figure 5 plots the relation between reft  and A in two ways. Left panel: reft  
vs A. Right panel: reft  vs 1/A. In particular, the right panel confirms that reft  is 
linear with respect to 1/A for large A, as predicted in the analysis above. This is 
in contrast with the convergence of 1/A2 for type 1 nociceptor density (30). To 
distinguish between these two density forms, we introduce an auxiliary quantity 
Q  

 
( ) ( )
( ) ( )

ref ref

ref ref

2
2 4

t A t A
Q

t A t A
−

≡
−

                    (36) 

The theoretical prediction above tells us  

 
( ) ( )
( ) ( ) ( )

0
1

0

4 if e type 1
2 if e type 2

y

y

y
Q

y y

β

β

ρ ρ
ρ ρ β

−

−

 == 
= ⋅

            (37) 

In (35), coefficient Ac  does contain *β . However, in (35) *β  is tangled with  
 

 
Figure 5. The relation between reflex time ( reft ) and beam spot area (A) for type 2 nociceptor density (34) with * 1β = . Left panel: 

reft  vs A. Right panel: reft  vs 1/A. 
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other parameters. It is not possible to extract the value of *β  unless all other 
parameters are known.  

6.2. Constraint Function ( )cT z Aact ; ,β  

We consider the intersection of the pair ( )act ; ,cT z Aβ  and ( ) *
act act; ,cT z Tβ ∞ ≡ . 

The cz -coordinate of the intersection, ( ) ( ),I
cz Aβ , is generally described by 

(26). For type 2 density, we have ( ) 1e sf s s −= , ( )0 0f = , ( )0 e 0f ′ = ≠  and 
( )0 2ef ′′ = − , and the specific expression of ( ) ( ),I

cz Aβ  is given by (29).  

( ) ( )
( ) ( )

3 2*
* *

* *

2 1,
3 e

cI
c c

z
z A z

A
ββ β β
β β

= − − ⋅  

At *β β= , the intersection ( ) ( )* *,I
c cz A zβ =  is independent of beam spot area 

A. When *β β≠ , the trend of ( ) ( ),I
cz Aβ  vs A tells us whether *β β>  or 

*β β< .  

• For *β β> , ( ) ( ),I
cz Aβ  ascends toward *

*cz β
β

 as A increases.  

• For *β β< , ( ) ( ),I
cz Aβ  descends toward *

*cz β
β

 as A increases.  

The increase/decrease trend of ( ) ( ),I
cz Aβ  vs. A is qualitatively the same as 

that for type 1 density given in (30). There are two differences. For type 2 density  

(34), we have 1) ( ) ( ) *
*lim ,I

A c cz A z ββ
β→∞ = , which varies with trial value β ,  

and 2) the residual in convergence is proportional to 1 A , instead of 1/A. 
Figure 6 shows simulated ( )act ; ,cT z Aβ  for several values of A, respectively 

for *β β>  and for *β β< . Here constraint function ( )act ; ,cT z Aβ  is based 
on test data (which is generated with true value * 1β = ) and is calculated using 
formulation (20) with trial value β . The trend of ( ) ( ),I

cz Aβ  vs A is shown in 
Figure 7. The simulation results in Figure 6 and Figure 7 confirm the theoreti-
cally predicted trend above. 

 

 
Figure 6. Constraint curves for type 2 density (34). ( )act ; ,cT z Aβ  is based on test data generated with true value 

* 1β = , and calculated using (20) with trial value β . Left panel: *β β> . Right panel: *β β< . 
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Figure 7. ( ) ( ),I
cz Aβ  vs. A, respectively for * 1β β> =  and for *β β< . Here ( ) ( ),I

cz Aβ  

is the intersection of ( )act ; ,cT z Aβ  and ( ) *
act act; ,cT z Tβ ∞ ≡  from Figure 6. 

 
When it is known that the nociceptor density has the parametric form of type 

2 given in (34), we can tune the trial value β  down or up toward the true value 
*β  depending on whether the calculated ( ) ( ),I

cz Aβ  increases or decreases 
with A.  

6.3. Constraint Function Calculated Using the Uniform Density 

When the type of parametric form of ( ) 0yρ ρ  is unknown, we like to design a 
method to identify the true underlying density type among a set of candidate 
density types based on test data measured in experiments. In the analysis of ref-
lex time above, we used quantity Q defined in (36), with behaviors described in 
(37), to distinguish between type 1 and type 2 densities. Now we look into using 
constraint functions as a tool for that purpose. With no information on the den-
sity type, we use the uniform density as the trial density in calculating the con-
straint function. 

Let ( )act,uni ;cT z A  denote the constraint function based on the test data 
(which is generated using type 2 density (34) with true value *β ) and calculated 
using framework (20) with the uniform trial density ( ) 0 1yρ ρ ≡ . We select 
the uniform density to make the calculation of constraint function parame-
ter-free, based solely on the test data. 

Note that the uniform density is not a member of type 2 family (34). Conse-
quently, constraint function ( )act,uni ;cT z A  is not a special case of ( )act ; ,cT z Aβ . 
To study the behavior of ( )act,uni ;cT z A , we try to connect it to ( )*

act ; ,cT z Aβ , 
the true constraint function. Both ( )act,uni ;cT z A  and ( )act ; ,cT z Aβ  are con-
structed from the same test data generated with the true underlying density (34). 
Each of them is calculated in framework (20) using a different type of trial den-
sity, and has different features:  
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• ( )*
act ; ,cT z Aβ  is the constraint function calculated using the correct density 

type (34) with the true parameter value *β . Operationally, the calculation of 

( )*
act ; ,cT z Aβ  is not realistic unless we know *β . The theoretical advan-

tage of ( )*
act ; ,cT z Aβ  is that it shares a common intersection ( )* *

act,cz T  for 
all values of A.  

• ( )act,uni ,uni ;cT z A  is the constraint function calculated using the uniform trial 
density. Operationally, we can always calculate ( )act,uni ,uni ;cT z A  from test data. 
However, the point ( )* *

act,cz T  in general is not on the curve ( )act,uni ,uni ;cT z A .  
The two constraint functions above are unified in ( );1y AΦ  via acty , as de-

scribed in (4).  

 act act
1;T y
A

 = Φ 
 

                      (38) 

The mapping between acty  and cz , however, depends on the trial density. As a 
result, variable cz  is related to acty  differently in the two constraint functions. 
For clarity of the discussion, we use ,unicz  to denote the variable in  

( )act,uni ,uni ;cT z A , and use cz  for the variable in ( )*
act ; ,cT z Aβ . The difference 

lies in the trial density used in the formulation. For the true density, cz  is re-
lated to acty  in (5). For the uniform density, ,uni actcz A y= ⋅ . Expressing acty  
in terms of cz  or ,unicz , we obtain  

 
( ) ( )

( )

*
*

1 * 1
0*

act

,uni
0

1 for e

for 1

yc

c

z
F y y

Ay
z

y
A

ββ
ρ ρ β

β

ρ ρ

− −  
=  

  = 


=

       (39) 

Combining (39) and (38), we write out ( )act,uni ,uni ;cT z A  and ( )*
act ; ,cT z Aβ   

( )
*

* 1
act *

1 1; , ;c
c

z
T z A F

A A
β

β
β

−  
= Φ     

 

 ( ) ,uni
act,uni ,uni

1; ;c
c

z
T z A

A A
 

= Φ 
 

                 (40) 

Since ( )*
act ; ,cT z Aβ  is calculated using the true density, it satisfies  

* *
* 1

act *

1 1; for allcz
T F A

A A
β

β
−  

= Φ     
 

Taking the limit as A →∞  yields  

( )
* *

* 1
act *

1 1lim ; 0;0c

A

z
T F

A A
β

β
−

→∞

  
= Φ = Φ     

 

In (40), letting A →∞  and using ( ) *
act0;0 TΦ = , we obtain  

( ) *
act,uni ,uni act;cT z T∞ =  

Let ( ) ( ),uni
I

cz A  denote the intersection of the pair ( )act,uni ,uni ;cT z A  and  

( ) *
act,uni ,uni act;cT z T∞ ≡ . Both ( ) ( ),uni

I
cz A  and ( ) ( )* *,I

c cz A zβ ≡  are calculated by 
first mapping *

actT  to *
acty  and then mapping to ( )I

cz . Given the measured 
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temperature profile at reflex, Equation (38) maps *
actT  to a unique *

acty , inde-
pendent of the trial density. It follows that in (39), line 1 with ( ) ( )* *,I

c cz A zβ ≡  
and line 2 with ( ) ( ),uni

I
cz A  are both equal to *

acty .  
( ) ( )*
,uni1 * *

act*

1 I
c

c

z A
F z y

A A
β

β
−  

= = 
 

 

Therefore, ( ) ( ),uni
I

cz A  and *
cz  are related by  

 ( ) ( )
*

1 *
,uni *
I

c c
Az A F z

A
β

β
−  

=  
 

                    (41) 

For type 2 density (34), the expansion of ( )1F u−  is given in (10) with 
( )1 0 ea f ′= =  and ( )2 0 2ea f ′′= = − . Substituting the expansion of ( )1F u−  

into (41) yields  

 ( ) ( ) * *
,uni *

2 2
3ee

I
c c c

Az A z z
β

= +                   (42) 

Figure 8 compares simulated ( ) ( ),uni
I

cz A  and ( ) ( ),I
cz Aβ . The simulation re-

sults confirm the theoretical prediction. In particular, ( ) ( ),uni
I

cz A  varies linearly 
with A . We fit function 0 1c c A+  to the data of ( ) ( ),uni

I
cz A  vs A . The 

fitting coefficients give us  

* * 0
0 2

1

33e ,
2c

c
z c

c
β= =  

( ) ( ),uni
I

cz A  is the intersection of two constraint functions calculated from test da-
ta using the uniform trial density. Given the test data, the process of calculating 

( ) ( ),uni
I

cz A  is parameter-free. However, ( ) ( ),uni
I

cz A  depends on the test data, which 
is affected by the underlying true density. When the true density has the type 2 
form given in (34), result (42) predicts that ( ) ( ),uni

I
cz A  increases linearly with 

A , unbounded as A →∞ . Result (42) for type 2 density is in sharp contrast  
 

 

Figure 8. Simulated results of ( ) ( ),uni
I

cz A  for type 2 density given in (34). Here ( ) ( ),uni
I

cz A  is based on the data from the true density 

(with * 1β = ) but is calculated using the uniform trial density. Left panel: ( ) ( ),uni
I

cz A  vs A. Right panel: ( ) ( ),uni
I

cz A  vs. A . 

https://doi.org/10.4236/am.2020.118053


H. Y. Wang et al. 
 

 

DOI: 10.4236/am.2020.118053 806 Applied Mathematics 
 

with the situation for type 1 density, described in (33) of Section 5, where 
( ) ( ),uni
I

cz A  converges to the true value *
cz  as A →∞ . This difference in the be-

havior of ( ) ( ),uni
I

cz A  vs. A provides another mechanism of distinguishing be-
tween type 1 and type 2 densities, in addition to the method of examining quan-
tity Q, described in (37). 

7. Type 3 Nociceptor Density: ( ) ( )y y y0 0= ⋅ −ρ ρ θ   

We write type 3 density in the same parametric form as that of types 1 and 2.  

 ( ) ( ) ( ) ( )
0 0

1, 1 ,
y

f y f s s
y

ρ
β θ β

ρ
= = − ≡             (43) 

where ( )sθ  is the Heaviside step function.  

 ( )
0, 0
1, 0

s
s

s
θ

<
=  ≥

                        (44) 

The graph of type 3 ( )f s  is shown in Figure 17. Type 3 density (43) is differ-
ent from types 1 and 2 in that the nociceptor density jumps from 0 to 0ρ  at 
depth 0y . Because of the discontinuity, the Taylor expansions of ( )F s  and 

( )1F u−  derived in Section 3 are no longer valid. We write out ( )F s  and 
( )1F u−  directly  

( ) ( )
0

0, 1
1 d

1, 1
s s

F s s s
s s

θ
<

= − =  − ≥
∫  

( )1 1 for 0F u u u− = + >  

The mapping between acty  and cz  is described by (7) and has the specific ex-
pression  

 ( )
1

act 0reflex
0

1 1,c cz z
y F y

A A y
β

β
β

−  = = + ≡ 
 

         (45) 

7.1. Reflex Time 

With the expression of acty  in (45), Equation (14) for ref,ndt  becomes  

( ) ( )act 0
act,nd ref,nd

dep

,
T T K

H y t
P

µ−
=  

act,nd act 0 nd
nd

1 , cz
y y y A

A A
µ

µ µ≡ = + ≡  

In the limit of A →∞ , we have act,nd 0y yµ→  and the equation for ref,ndt  
converges to  

( ) ( )act 0
0 ref,nd

dep

,
A

T T K
H y t

P
µ

µ
→∞

−
=  

Consider ( ) ( )| ,h t q H q t≡  as a function of t with q as a parameter. Let  

( )1 |h u q−  be the inverse of ( )|h t q  and ( ) ( )act 01
0

dep

T T K
q h q

P
µ

τ −
 −
 ≡
 
 

. As 
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A →∞ , we have  

( )ref,nd 0 0A
t yτ µ

→∞
=  

By definition, ( )0 qτ  satisfies ( )( ) ( )act 0
0

dep

,
T T K

H q q
P

µ
τ

−
= . We expand func-

tion ( )nd nd,H y t  around ( )( )0 0 0,y yµ τ µ  and write the equation for ref,ndt  as  

 
( )( ) ( )( ) ( )( )0 0 0 0 0 0

ref,nd 0 0
nd

, , 10
H y y H y y

t y
t y A

µ τ µ µ τ µ
τ µ

∂ ∂  
= − +  ∂ ∂  

 (46) 

Substituting ( ) ( )ref,nd nd 0 0
nd

11 At A y c
A

α

τ µ
  
 = + + 
   

  into (46) to calculate α  

and Ac , and then mapping back to the physical quantities, we obtain  

( ) ( )

( )( )

( )
( )( )

0 0 m
ref 2

0 0 0

0 0 0
0 0

1 ,

,

,

p c
A

A

y C z
t A c

AK

H y y
yc

H y y
y

t

τ µ ρ µ
µ

µ τ µ

µ τ µ
τ µ

  = + +  
  

−∂

∂
=

∂

∂



 

As A increases, ( )reft A  converges to its limit with the residual proportional to 
1/A.  

( ) ( )ref ref
1~t A t
A

− ∞  

This behavior is similar to that of type 2 density. For both type 2 and type 3, the 
nociceptor density is zero at the skin surface. Figure 9 plots the relation between 

reft  and A in two ways. Left panel: reft  vs A. Right panel: reft  vs 1/A. In par-
ticular, the right panel confirms that reft  is linear with respect to 1/A for large 
A, as predicted in the analysis above.  
 

 

Figure 9. The reflex time ( reft ) as a function of beam spot area (A) for type 3 nociceptor density (43) with *
0

1
2

y = . Left 

panel: reft  vs A. Right panel: reft  vs. 1/A. 
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7.2. Constraint Function ( )cT z y Aact 0; ,  

For type 3 density, it is more sensible to use 0y  as the parameter since it has the 
clear physical meaning of the depth at which the nociceptor density jumps from 
0 to 0ρ . In the unified parametric form in (43), the generic parameter is 

01 yβ ≡ . Mathematically, working with 01 yβ ≡  allows us to use general re-
sults of the unified parametric form obtained in previous sections. In the analy-
sis below, we will go back and forth between 0y  and β . 

We adopt the general convention of using *
0y  to denote the true value and 

0y  to represent the variable. The general form of constraint function with trial 
value β  is given in (20). Using 01 yβ =  and ( )1 1F u u− = + , we write it as  

 ( )act 0 0
1; , ;c

c
z

T z y A y
A A

 = Φ + 
 

                 (47) 

In the limit of A →∞ , ( )act 0; ,cT z y A  converges to a horizontal line  

( ) ( )act 0 0; , ;0cT z y A y= ∞ = Φ  

At *
0y , the constraint function shares the common intersection ( )* *

act,cz T  for all 
A.  

( )
*

* * * *
act 0 0 act

1; , ; for allc
c

z
T z y A y T A

A A
 

= Φ + = 
 

 

In particular, we have ( )* *
0 act;0y TΦ = . We expand 0

1;cz
y

A A
 Φ + 
 

 around 

*
*
0

1;cz
y

A A
 

+ 
 

 and expand ( )0 ;0yΦ  around ( )*
0 ,0y  to write them respective-

ly as  

 
* *

* * *
0 act 0 0 0

1 1; ;c c c cz z z z
y T y y y

A A y A A A
  −∂ Φ + = + Φ + + −    ∂    

    (48) 

 ( ) ( )( )* * *
0 act 0 0 0;0 ;0y T y y y

y
∂

Φ = + Φ −
∂

             (49) 

Let ( ) ( )0 ,I
cz y A  denote the cz -coordinate of the intersection of ( )act 0; ,cT z y A  

and ( )act 0; ,cT z y ∞ . ( ) ( )0 ,I
cz y A  is governed by equating the RHSs of (48) and 

(49).  

( )( )
* *

* * * *
0 0 0 0 0 0

1; ;0c c cz z z
y y y y y y

y A A A y
  −∂ ∂

Φ + + − = Φ −  
∂ ∂  

 

Solving for ( ) ( )0 ,I
cz y A  yields  

 ( ) ( )
( )

( )
*
0

* *
0 0 0*

*
0

;0
, 1

1;

I
c c

c

y
yz y A z A y y

z y
y A A

 ∂ Φ
∂ = + − −  ∂ Φ +  ∂   

      (50) 

We expand 
*

*
0

1;cz
y

y A A
 ∂

Φ + 
∂  

 with respect to 1
A

 into the form  
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 ( )
*

* * 1 2
0 0 2

1; ;0 1cz b by y
y A A y A A

 ∂ ∂  Φ + = Φ + + +   ∂ ∂   
          (51) 

Substituting the expansion into (50), we obtain  

 ( ) ( ) ( ) ( )* 2 *
0 1 1 2 0 0

1,I
c cz y A z b b b y y

A
 = + − + − − 
 

          (52) 

In Appendix B, we show that the coefficients satisfy  

 ( )2
1 1 20 and 0b b b> − >                     (53) 

At *
0 0y y= , the intersection ( ) ( )* *

0 ,I
c cz y A z=  is independent of beam spot area 

A. When *
0 0y y≠ , the trend of ( ) ( )0 ,I

cz y A  vs A implies whether *
0 0y y<  or 

*
0 0y y> .  

• For *
0 0y y< , ( ) ( )0 ,I

cz y A  ascends toward ( )* * *
1 0 0c cz b y y z− − >  as A in-

creases.  
• For *

0 0y y> , ( ) ( )0 ,I
cz y A  descends toward ( )* * *

1 0 0c cz b y y z− − <  as A in-
creases.  

In terms of 01 yβ ≡ , the increase/decrease trend of ( )I
cz  vs A for type 3 

density (43) resembles that for type 2 density (34). Both types of densities share 
the common feature that the nociceptor density is zero at skin surface: 
( )0 0ρ = . 
Figure 10 depicts simulated ( )act 0; ,cT z y A  for several values of A, respec-

tively for *
0 0y y<  and for *

0 0y y> . Here constraint function ( )act 0; ,cT z y A  is 
based on test data (which is generated with true value *

0 0.5y = ) and is calcu-
lated using formulation (47) with trial value 0y . The trend of ( ) ( )0 ,I

cz y A  vs A 
is shown in Figure 11. The simulation results in Figure 10 and Figure 11 con-
firm the theoretically predicted trend above. 

When it is known that the nociceptor density has the parametric form of type 
3 given in (43), we can tune the trial value 0y  up or down toward the true value  
 

 
Figure 10. Constraint curves for type 3 density (43). ( )act 0; ,cT z y A  is based on test data generated with true value *

0 0.5y = , 

and calculated using (47) with trial value 0y . Left panel: *
0 0y y< . Right panel: *

0 0y y> . Notice that for type 3 density, 

( )act 0; ,cT z y ∞  is a horizontal line, whose height varies with 0y . 
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Figure 11. ( ) ( )0 ,I
cz y A  vs A, respectively for *

0 0 0.5y y< =  and for *
0 0y y> . Here 

( ) ( )0 ,I
cz y A  is the intersection of ( )act 0; ,cT z y A  and ( )act 0; ,cT z y ∞  from Figure 10.  

 
*
0y  depending on whether the calculated ( ) ( )0 ,I

cz y A  increases or decreases 
with A.  

7.3. Constraint Function Calculated Using the Uniform Density 

When the type of parametric form of ( ) 0yρ ρ  is unknown, we apply the uni-
form trial density in calculating the constraint function and use it as a tool for 
probing the density type. This approach has the advantage of being operationally 
practical. Once the test data is available, the calculation of constraint function 
does not require any input parameters. 

Let ( )act,uni ;cT z A  denote the constraint function based on the test data 
(which is generated using type 3 density (43) with true value *

0y ) and calculated 
using framework (47) with the uniform trial density ( ) 0 1yρ ρ ≡ . For type 3 
parametric family (43), the uniform density is a special case at 0 0y = . However, 
expansions (48) and (49) are only for the case of 0y  near *

0y , away from the 
skin surface. At 0 0y = , the expansions will be different because of the insulated  

boundary condition ( )0, 0t
y
∂
Φ =

∂
. At 0 0y = , we have  

( )act,uni
1; ;c

c
z

T z A
A A

 = Φ 
 

 

( ) ( )act,uni ; 0;0cT z ∞ = Φ  

We expand 1;cz
A A

 Φ 
 

 around ( )0;0 . It follows that  

( ) ( ) ( )

( ) ( )

22

2 2

2 2

2 2 2

1 1 1; 0;0 0;0 0;0
2

1 10;0 0;0
2

c c

c

z z
A A v A y A

z
y vv A A

∂ ∂ Φ = Φ + Φ + Φ  ∂ ∂ 
∂ ∂

+ Φ + Φ +
∂ ∂∂


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Let ( ) ( ),uni
I

cz A  denote the intersection of ( )act,uni ;cT z A  and ( )act,uni ;cT z ∞ . It sa-
tisfies  

( )( )( ) ( ) ( )2
,uni ,uni2 2 0I I

yy c yv c v vvz A z A AΦ + Φ + Φ +Φ + =  

All derivatives are evaluated at ( )0;0 . Solving for ( ) ( ),uni
I

cz A , we obtain  

 ( ) ( ),uni

2 yvI v
c

yy yy

z A A
ΦΦ

= ⋅ + +
−Φ −Φ

               (54) 

Result (54) predicts that when the true underlying density is type 3 given in (43), 
( ) ( ),uni
I

cz A  increases linearly with A , unbounded as A →∞ . This behavior is 
similar to that for type 2 density. Both type 3 and type 2 share the common fea-
ture of ( )0 0ρ = . Figure 12 compares simulated ( ) ( ),uni

I
cz A  and ( ) ( )0 ,I

cz y A . 
The simulation results confirm the theoretical prediction.  

8. Type 4 Nociceptor Density: ( ) ( )( )y y y0 0 2= 1− −ρ ρ θ   

We represent type 4 density in the same parametric form as that of types 1 - 3.  

 ( ) ( ) ( ) ( )
0 0

1 1, = 1 1 ,
2

y
f y f s s

y
ρ

β θ β
ρ

= − − ≡         (55) 

where ( )sθ  is the Heaviside step function defined in (44). The graph of type 4 
( )f s  is shown in Figure 17. Type 4 relative density (55) has value 1 in [ ]00, y , 

and drops down to value 0.5 for 0y y> . When beam spot area A is sufficiently 
large, only a small depth of the skin needs to reach the activation temperature in 
order to trigger the withdrawal reflex. Thus, for large A, the behaviors of type 4 
density are the same as those of the uniform density. For the purpose of reveal-
ing the effect of density jump at 0y y= , we examine the reflex time and the 
temperature profile at reflex in an intermediate range of A corresponding to the 
situation where the activated depth is around the density jump ( 0y y= ).  
 

 

Figure 12. Simulated results of ( ) ( ),uni
I

cz A  for type 3 density given in (43). Here ( ) ( ),uni
I

cz A  is based on the data from the true den-

sity (with *
0 0.5y = ) but is calculated using the uniform trial density. Left panel: ( ) ( ),uni

I
cz A  vs. A. Right panel: ( ) ( ),uni

I
cz A  vs A . 
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8.1. Reflex Time 

Because of the discontinuity in density profile (8), the Taylor expansions of 
( )F s  and ( )1F u−  derived in Section 3 are no longer valid. We write out 
( )F s  and ( )1F u−  directly.  

( ) ( )
( )0

, 1
11 1 d 12 1 , 1

2

s
s s

F s s s
s s

θ
<

 = − − =   + ≥  
∫  

 ( )1 , 1
2 1, 1
u u

F u
u u

− <
=  − ≥

                     (56) 

The activated depth at reflex given in (7) has the expression  

 ( ) ( )
0

1
act 0reflex

0
0 0

,

2 ,

c c

c

c c

z z
yz A Ay A y F

z zy A y y
A A

−

 <  = =  
   − ≥



          (57) 

The non-dimensional reflex time ref,ndt  is related to A via ( )acty A  in Equation 
(14).  

 
( ) ( )( )act 0

act ref,nd
dep

,
T T K

H y A t
P

µ
µ

−
=                (58) 

Conventionally, we view ref,ndt  as a function of A since in experiments the beam 
spot area is prescribed in test design and the corresponding reflex time is ob-
served. To facilitate the mathematically analysis, we view A as a function of 

ref,ndt . We study function ( )ref,ndA t  for type 4 density and connect it to its 
counterpart for the uniform density. Let  
• ( ) ( )tp4

ref,ndA t : function A vs. ref,ndt  for type 4 density  
• ( ) ( )uni

ref,ndA t : function A vs. ref,ndt  for the uniform density  
• ( ) ( )tp4

ref,nd 1t A : function ref,ndt  vs. 1/A for type 4 density  
• ( ) ( )uni

ref,nd 1t A : function ref,ndt  vs. 1/A for the uniform density.  
For any given value of ref,ndt , the corresponding ( )act ref,ndy t  is completely 

determined by Equation (58), independent of the nociceptor density. We use 

( )act ref,ndy t  to connect ( ) ( )tp4
ref,ndA t  and ( ) ( )uni

ref,ndA t . For type 4 density, 
( )( )tp4

acty A  is given in (57). Its inverse function is  

 ( ) ( )
act 0

acttp4
act

0 act
act 0

act 00

,
1

2
,

c

c

c

z
y y

yz
A y

zy y y yF
y yy

 <
= ⋅ = 

   ≥   + 

        (59) 

For the uniform density, ( ) 1f s = , ( )F s s= , and ( ) ( )uni
actA y  is given by  

 ( ) ( )uni
act

0 actact

0

1c cz z
A y

y yyF
y

= ⋅ =
 
 
 

                (60) 

Combining (59) and (60), we can express ( )uni1 A  in terms of ( )tp41 A .  
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 ( )

( ) ( )

( ) ( )

0
tp4 tp4

uni
0 0

tp4 tp4

1 1,
1

2 1,

c

c c

y
zA A

y yA
z zA A

 <
= 
 − ≥


               (61) 

(61) described the relation between ( ) ( )tp4
ref,nd1 A t  and ( ) ( )uni

ref,nd1 A t . Now 
we treat ref,ndt  as the dependent variable and view it as a function of 1/A. (61) 
leads to  

 ( ) ( )

( ) ( )

( )

uni 0
ref,nd

tp4
ref,nd

uni 0 0
ref,nd

11 ,

1
2 1,

c

c c

y
t A

A z
t A

y y
t

A z A z

 <
=    − ≥   

             (62) 

Equation (62) reveals that ( ) ( )tp4
ref,nd 1t A  is obtained from ( ) ( )uni

ref,nd 1t A  by a piece-
wise linear scaling on the independent variable 1/A. Function ( ) ( )uni

ref,nd 1t A  is 
smooth. After the piecewise linear scaling, ( ) ( )tp4

ref,nd 1t A  has a discontinuity in 
derivative. Figure 13 plots the relation between ( )tp4

reft  and A in two ways. Left 
panel: reft  vs. 1/A. Right panel: derivative of reft  vs. 1/A. In particular, the 
right panel verifies that reft  vs. 1/A has a discontinuity in derivative, as pre-
dicted in the analysis above.  

8.2. Constraint Function ( )cT z y Aact 0; ,  

For type 4 density, it is more sensible to choose 0y  as the parameter since it has 
the clear physical meaning of the depth at which the nociceptor density drops 
sharply from 0ρ  to 0 2ρ . In the unified parametric form in (55), the generic 
parameter is 01 yβ ≡ . We adopt the general convention of using *

0y  to denote 
the true value and 0y  to represent the variable. The general form of constraint 
function with trial value β  is given in (20). Using 01 yβ =  and ( )1F u−  
given in (56), we write it as  
 

 
Figure 13. The relation between reflex time ( reft ) and beam spot area (A) for type 4 density (55) with *

0 0.25y = . Left 
panel: reft  vs 1/A. Right panel: derivative of reft  vs. 1/A. 
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( )
0

act 0

0 0

1; ,
; ,

12 ; ,

c c

c
c c

z z
y

A A A
T z y A

z z
y y

A A A

  Φ <  
  = 

 Φ − ≥   

           (63) 

when beam spot area A is sufficiently large to make 
*

*
0

cz
y

A
< , (57) gives *

act 0y y<   

and the measured data for type 4 density is the same as that for the uniform 
density. Constraint function (63) is based on the data for true value *

0y  and is 
calculated with trial value 0y . For any positive trial value 0 0y >  and a finite 
interval of cz  near *

cz  in consideration, when A is sufficiently large, we have  

( )*
0 0

Interval of
min ,cz

y y
A

<  and  

( )act 0
1; , ; for largec

c
z

T z y A A
A A

 = Φ 
 

 

Here 1;cz
A A

 Φ 
 

 is the constraint function based on the data for the uniform 

density and is calculated using the uniform trial density. 1;cz
A A

 Φ 
 

 is inde-

pendent of trial value 0y , and passes through ( )* *
act,cz T  for all values of A.  

*
*

act
1; for allcz

T A
A A

 
Φ = 
 

 

In the limit of 1 0A → , we have ( ) *
act0;0 TΦ = . Let ( ) ( )0 ,I

cz y A  denote the 

cz -coordinate of the intersection of ( )act 0; ,cT z y A  and ( )act 0; ,cT z y ∞ . Our 
analysis above shows that  

• For any 0y , ( )act 0
1; , ;c

c
z

T z y A
A A

 = Φ 
 

 when A is sufficiently large.  

• For any 0y , ( ) ( ) *
act 0 act; , 0;0cT z y A T= ∞ = Φ = .  

• For any 0y , ( ) ( ) *
0 ,I

c cz y A z=  when A is sufficiently large.  
More specifically, to have ( ) ( ) *

0 ,I
c cz y A z= , we only need  

( )act 0
1; , ;c

c
z

T z y A
A A

 = Φ 
 

 for cz  near *
cz . The condition  

( )*
0 0

Interval of
min ,cz

y y
A

<  becomes 
( )

*

*
0 0min ,

cz
A

y y
> . We conclude that  

 ( ) ( ) ( )
*

*
0 *

0 0

, for
min ,

I c
c c

z
z y A z A

y y
= >               (64) 

Thus, for large A, ( ) ( )0 ,I
cz y A  is independent of 0y . To probe the position of 

trial value 0y  relative to true value *
0y , we need to examine the behavior of  

( ) ( )0 ,I
cz y A  for 

( )
*

*
0 0max ,

cz
A

y y
< . In this range of A, constraint function (63) 

takes the form  
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( )act 0 0
1; , 2 ;c

c
z

T z y A y
A A

 = Φ − 
 

 

At true value *
0y , ( )*

act 0; ,cT z y A  shares the common intersection ( )* *
act,cz T  for 

all A.  
*

* *
0 act

12 ;cz
y T

A A
 

Φ − = 
 

 

We expand 0
12 ;cz

y
A A

 Φ − 
 

 around 
*

*
0

2 1,cz
y

A A
 

− 
 

.  

( )
* *

* * *
0 act 0 0 0

1 12 ; 2 ; 2c c c cz z z z
y T y y y

A A y A A A
  −∂ Φ − = + Φ − − −    ∂    

 

Setting the LHS to *
actT  and solving for cz , we obtain ( ) ( )0 ,I

cz y A   

 ( ) ( ) ( ) ( )
*

* *
0 0 0 *

0 0

, for
2 max ,

I c
c c

zAz y A z y y A
y y

= + − <          (65) 

For *
0 0y y<  and 

* *

*
00

c cz z
A

yy
< < , the activated depth at reflex is 

*
*
act 0

cz
y y

A
= > . 

Substituting the expression of *
acty  into (57) and solving for cz , we have  

 ( ) ( ) ( )
* *

* *
0 0 *

00

1, for
2

I c c
c c c

z z
z y A z z Ay A

yy
= − − < <            (66) 

For *
0 0y y>  and 

* *

*
0 0

c cz z
A

y y
< < , the activated depth at reflex is 

*
* *
act 02 cz

y y
A

= − . 

This *
acty  may or may not be beyond depth 0y . The case of *

act 0y y>  corres-

ponds to 
*

*
0 0

2 cz
A

y y
<

+
. Substituting the expression of *

acty  into (57) and solving 

for cz  yields  

 ( ) ( ) ( )
* *

* *
0 0 0 *

0 0 0

2
, for

2
I c c

c c
z zAz y A z y y A
y y y

= + − < <
+

         (67) 

Similarly, the case of *
act 0y y<  corresponds to 

*

*
0 0

2 cz
A

y y
>

+
. We get  

 ( ) ( ) ( )
* *

* * *
0 0 * *

0 0 0

2
, forI c c

c c c
z z

z y A z z Ay A
y y y

= + − < <
+

        (68) 

Summarizing results for various cases, we write out a complete description of 
( ) ( )0 ,I
cz y A .  
The case of *

0 0y y< , 

( ) ( )

( )

( )

*
* *

0 0 *
0

* *
* *

0 0 *
00

*
*

0

for
2

1, for
2

for

c
c

I c c
c c c

c
c

zAz y y A
y

z z
z y A z z Ay A

yy

z
z A

y


+ − <


= − − < <


 >

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The case of *
0 0y y> , 

 ( ) ( )

( )

( )

*
* *

0 0 *
0 0

* *
* * *

0 0 * *
0 0 0

*
*

*
0

2
for

2

2
, for

for

c
c

I c c
c c c

c
c

zAz y y A
y y

z z
z y A z z Ay A

y y y

z
z A

y


+ − < +

= + − < <
+


 >


       (69) 

At *
0 0y y= , we have ( ) ( )* *

0 ,I
c cz y A z=  for all A. When *

0 0y y≠ , ( ) ( )0 ,I
cz y A  

has non-trivial dependence on A. The trend of ( ) ( )0 ,I
cz y A  vs A tells us whether 

*
0 0y y<  or *

0 0y y> .   
• When *

0 0y y< , from small A to large A, ( ) ( )0 ,I
cz y A  starts below *

cz , de-
creases further below *

cz , and then reverts rapidly back to *
cz  and stays 

there.  
• When *

0 0y y> , from small A to large A, ( ) ( )0 ,I
cz y A  starts above *

cz , in-
creases further above *

cz , and then reverts rapidly back to *
cz  and remains 

there.  
Figure 14 shows simulated ( )act 0; ,cT z y A  for several values of A, respective-

ly for *
0 0y y<  and for *

0 0y y> . Here constraint function ( )act 0; ,cT z y A  is 
based on test data (which is generated with true value *

0 0.25y = ) and is calcu-
lated using formulation (63) with trial value 0y . The trend of ( ) ( )0 ,I

cz y A  vs A 
is shown in Figure 15. The simulation results in Figure 14 and Figure 15 con-
firm the theoretically predicted trend above. 

When it is known that the nociceptor density has the parametric form of type 
4 given in (55), we can tune the trial value 0y  up or down toward the true value 

*
0y  depending on the behavior of the calculated ( ) ( )0 ,I

cz y A  vs. A.  

8.3. Constraint Function Calculated Using the Uniform Density 

When the type of parametric form of ( ) 0yρ ρ  is unknown, we use the uniform  
 

 
Figure 14. Constraint curves for type 4 density (55). ( )act 0; ,cT z y A  is based on test data generated with true value 

*
0 0.25y = , and calculated using (63) with trial value 0y . Left panel: *

0 0y y< . Right panel: *
0 0y y> . 
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Figure 15. ( ) ( )0 ,I
cz y A  vs A, respectively for *

0 0 0.25y y< =  and for *
0 0y y> . Here 

( ) ( )0 ,I
cz y A  is the intersection of ( )act 0; ,cT z y A  and ( )act 0; ,cT z y ∞  from Figure 14.  

 
trial density in calculating the constraint function. The goal is to use the result-
ing constraint function as a tool to probe the underlying unknown density type. 

Let ( )act,uni ;cT z A  denote the constraint function based on the test data 
(which is generated using type 4 density (55) with true value *

0y ) and calculated 
using framework (63) with the uniform trial density ( ) 0 1yρ ρ ≡ . For type 4 
parametric family (55), the uniform density is a special case with large 0y .  

It follows that the behavior of ( )act,uni ;cT z A  is the same as that of 
( )act 0; ,cT z y A  for large 0y , which we analyzed in the previous subsection. 

Let ( ) ( ),uni
I

cz A  denote the intersection of the pair ( )act,uni ;cT z A  and  
( ) *

act,uni act;cT z T∞ ≡ . Intersection ( ) ( ),uni
I

cz A  has the same behavior as ( ) ( )0 ,I
cz y A  

for large 0y . Based on result (69) for ( ) ( )0 ,I
cz y A  in the previous subsection, 

we conclude for ( ) ( ),uni
I

cz A  that  

 ( ) ( )
( )

*
* * *

0 *
0

,uni *
*

*
0

for

for

c
c c

I
c

c
c

z
z z Ay A

y
z A

z
z A

y


+ − <

= 
 >

              (70) 

Result (70) predicts that when the true underlying density is type 4 given in 
(55), ( ) ( ),uni

I
cz A  starts at slightly below *2 cz  for small A; decreases linearly  

toward *
cz as A increases; arrives at *

cz  at 
*

*
0

cz
A

y
=  and stays there for 

*

*
0

cz
A

y
> .  

The qualitative behavior of ( ) ( ),uni
I

cz A  converging to *
cz  for large A is similar 

for type 1 and type 4 densities. Figure 16 compares simulated ( ) ( ),uni
I

cz A  and 
( ) ( )0 ,I
cz y A . The simulation results confirm the theoretical prediction. 
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Figure 16. Simulated results of ( ) ( ),uni
I

cz A  for type 4 density given in (55). Here ( ) ( ),uni
I

cz A  

is based on the data from the true density (with *
0 0.25y = ) but is calculated using the 

uniform trial density. 

9. Summary 

In this study, we investigate the nociceptor density of the form: ( ) ( )0y f yρ ρ β= , 
and its effect on heat-induced withdrawal reflex. We examine 4 types of ( )f s  
illustrated in Figure 17. Each ( )f s  shown has a characteristic length 1. When 
scaled in the depth direction by parameter β , each ( )f s  yields a family of 
density profiles.  

We consider the situation where the reflex time and the temperature profile at 
the reflex are measurable in tests. We build the mathematical formulation for 
extracting 3 key parameters from test data:  
• the activation temperature actT  for heat-sensitive nociceptors,  
• the critical threshold cz  on the equivalent activated volume, and  
• the parameter β  in the relative density.  

Our general strategy is to identify distinct behaviors for different densitytypes 
and distinct behaviors for different regions of parameter values. We compare 
these theoretical patterns with the observed patterns from test data to pinpoint 
the underlying unknown density type. We inspect the behavior calculated using 
a trial parameter value in the parametric form to determine whether the trial 
value is below or above the true value. Then we use that information to tune the 
trial value up or down accordingly toward the true value. The process is repeated 
with the new trial value until convergence. To best illustrate each key module 
individually in its own setting, we divide the task of finding the density type and 
the parameter value into stages and consider several problems. Mathematically, 
we proceed from the simplest problem to the realistic one in which both the 
density type and the parameter value are unknown. The solution of a simpler 
problem provides the building blocks for solving a more complicated problem. 
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Figure 17. Four types of nociceptor density vs. depth. Each type has been transformed into the standard form of 
maximum density 1 and characteristic depth 1.  

 
Problem 1: 
When both the density type ( )f s  and the true scaling parameter *β  are 

known for the nociceptor density, the test data allow us to construct true con-
straint functions on ( )act,cz T . Multiple constraint functions, obtained from tests 
at different values of beam spot area A, share a common point at the true value 
of ( )act,cz T . Parameters cz  and actT  are determined by finding the intersec-
tion of these distinct constraint functions. 

Problem 2: 
When the density type ( )f s  is given but the true scaling parameter *β  is 

unknown, we construct trial constraint functions using trial values of β . Let 
( )act ; ,cT z Aβ  denote the trial constraint function that is based on the measured 

data (which is generated with true value *β ) and that is calculated using the 
given parametric form with trial value β . When the trial value β  is different 
from the true value *β , in general, the true value ( )* *

act,cz T  is not on trial con-
straint functions, and trial constraint functions at different values of beam spot 
area A do not share a common intersection. The behaviors of trial constraint 
functions ( )act ; ,cT z Aβ  are demonstrated for the 4 density types, respectively 
in Figure 2, Figure 6, Figure 10, and Figure 14. We look at the intersection of 
a pair of trial constraint functions: ( )act ; ,cT z Aβ  and ( )act ; ,cT z β ∞ . Let 

https://doi.org/10.4236/am.2020.118053


H. Y. Wang et al. 
 

 

DOI: 10.4236/am.2020.118053 820 Applied Mathematics 
 

( ) ( ),I
cz Aβ  denote the intersection of the pair, which is affected by the trial value 
β  used in calculating the trial constraint functions and by the beam spot area A 
used in tests. Given a trial value β , we examine the trend of ( ) ( ),I

cz Aβ  vs A. 
For each of the 4 density types, as the beam spot area A increases, ( ) ( ),I

cz Aβ  vs 
A demonstrates distinct trend of increasing or decreasing, respectively when 

*β β>  and when *β β< . The trend of ( ) ( ),I
cz Aβ  vs. A is illustrated for the 

4 density types, respectively in Figure 3, Figure 7, Figure 11, and Figure 15. 
Depending on the given density type and the observed trend of ( ) ( ),I

cz Aβ  vs. 
A, we tune the trial value β  accordingly to approach the true value *β . At the 
true value *β , ( ) ( )* *,I

c cz A zβ ≡  is independent of A. Once we arrive at the true 
value *β , the subsequent procedure of finding parameters cz  and actT  is the 
same as described in Problem 1 above: the intersection of ( )*

act ; ,cT z Aβ  and 

( )*
act ; ,cT z β ∞  gives us the true value of ( )act,cz T . 
Problem 3: 
When both the density type ( )f s  and the true scaling parameter *β  are 

unknown, we construct trial constraint functions using the uniform trial density 
( ) 0 1yρ ρ ≡ , which is parameter-free. The trial constraint function using the 

uniform density is denoted by ( )act,uni ;cT z A . When the true density is not the 
uniform density, the true value ( )* *

act,cz T  is not on trial constraint function 
( )act,uni ;cT z A , and for different values of A trial constraint functions ( )act,uni ;cT z A  

do not share a common point. Similar to what we did on trial constraint func-
tions ( )act ; ,cT z Aβ  in Problem 2 (where the density type is given), here we look 
at the intersection of a pair of trial constraint functions: ( )act,uni ;cT z A  and 

( )act,uni ;cT z ∞ . Let ( ) ( ),uni
I

cz A  denote the intersection of the pair, which is af-
fected only by the beam spot area A used in tests. Given a collection of measured 
data sets at several values of A, we examine the trend of ( ) ( ),uni

I
cz A  vs. A. The 

trend behavior of ( ) ( ),uni
I

cz A  vs. A is displayed for the 4 density types, respec-
tively in Figure 4, Figure 8, Figure 12, and Figure 16. The behaviors of 

( ) ( ),uni
I

cz A  vs. A for types 1 and 4 are distinct from each other and are distinct 
from those for types 2 and 3. In addition to examining the trend of ( ) ( ),uni

I
cz A  vs. 

A, we also check the convergence pattern of reflex time reft  as beam spot area 
A increases, which is shown for the 4 density types, respectively in Figure 1, 
Figure 5, Figure 9, and Figure 13. Again, the patterns of reft  vs. A for types 1 
and 4 are distinct from each other and are distinct from those for types 2 and 3. 
Density types 2 and 3 have similar behaviors in both ( ) ( ),uni

I
cz A  vs. A and reft  

vs. A. This is not completely surprising since both density types share the com-
mon feature of having zero nociceptor density at the skin surface. When we are 
presented with the task of identifying the underlying nociceptor density from 
among the 4 density types, it is still a challenge to distinguish between type 2 and 
type 3 based on the trend of ( ) ( ),uni

I
cz A  vs. A or the trend of reft  vs. A. We need 

to explore other formulations and analytical tools for differentiating types 2 and 
3. One possibility is to use alternative standardized parameter-free forms other 
than the uniform density as the trial density in calculating the trial constraint 
function. Another possibility is to use the trend of system behaviors vs. varying 
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applied beam power, in addition to varying beam spot area. Once the density 
type is selected, the remaining task of determining the true values of parameters 
β  and ( )act,cz T  is the same as described in Problem 2 above. 

The goal of our study is to develop a methodology that utilizes test data to 1) 
identify the density type for the underlying nociceptor density, 2) find by trial 
and error the true scaling parameter in the parametric form, and 3) determine 
the activation temperature of nociceptors and the critical threshold on the 
equivalent activated volume. The results of 1) and 2) basically specify the noci-
ceptor density profile vs depth. We assume the test data available include mea-
surements of the reflex time and of the spatial temperature profile at reflex. 
Combining the procedures outlined in Problems 1, 2 and 3 above, we obtain 
such a methodology exactly for this purpose. 
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Appendix A 

Derivation of ( ) *
act actlim ; ,A cT z A Tβ→∞ =  in (25) 

We show the convergence in three steps.  

Step 1: We first look at the factor ( ) ( )1 1F
A

ε− ′  in the expression of 
( )* *

act

,cc z

T
z

β

∂
∂

  

in (22). As A →∞  we have 0ε → . We expand ( ) ( )1F ε− ′  as 0ε → . In 
both cases 1 and 2, we have ( ) ( )1

0lim 0Fε ε ε−
→

′ ⋅ = . It follows that  

 ( ) ( ) ( ) ( )1 1

0

1 1lim lim 0
A

c

F F
A zε

ε ε ε
β

− −

→∞ →

′ ′= ⋅ =               (71) 

Step 2: Next we look at the factor ( );1 A
y

ξ∂
Φ

∂
 in the expression of 

( )* *

act

,cc z

T
z

β

∂
∂

 in (22). With lim 0A ξ→∞ =  and the insulated boundary condition 

( )0,
0

T t
y

∂
=

∂
, we have  

 ( )( )ref0

1lim ; lim , 0
A

T t A
y A yε

ξ ξ
→∞ →

∂ ∂ Φ = = ∂ ∂ 
             (72) 

Taking the limit as A →∞  in (22), and using results (71) and (72), we con-
clude  

( ) ( )1act 1 1lim lim ; 0
A A

c

T
F

z y A A
ξ ε−

→∞ →∞

∂ ∂   ′= Φ = ∂ ∂  
 

Step 3: We show that the term ( )* *,cz β
η  in (24) is bounded as A →∞ . In the  

expression of η  in (23), we look at 
( )

( ) ( )

1

1

F

F

ε

ε ε

−

− ′
, the component that varies  

with ε . Using expansions (8) and (9) in case 1 or expansions (10) and (11) in 
case 2, we get  

 
( )

( ) ( )

1
21
0

1 1 22
3 2
1

1 for case 1
2

2
2 for case 2

3

a
aF

aF
a

ε
ε

ε ε ε

−

−

 + +
= 

′  + +





          (73) 

In both cases, we have 0lim finiteε η→ = .  
Combining the results of three steps above, we conclude that for any trial val-

ue β , as A →∞ , the constraint function converges to *
actT , as described in (25) 

in the main text. 

Appendix B 

Derivation of property (53) 
Property (53) describes coefficients in the expansion of 

*
*
0

1;cz
y

y A A
 ∂

Φ + 
∂  

 
with respect to 1 A . Recall that ( ) ( )( )ref; , 1y v T y t vΦ ≡  where 1v A≡ . 
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Function ( ),T y t  as given in (12) and (13), has the properties below  

1) ( ),T y t
y
∂
∂

 is always negative.  

2) At any given depth y, the absolute value of ( ),T y t
y
∂
∂

 increases with time 

t.  

3) At any given time t, the absolute value of ( ),T y t
y
∂
∂

 start with 0 value at  

0y = , increases with y until the inflection point at ( )y tκ= , and then decreas-
es to zeros beyond the inflection point. The depth of inflection point ( )y tκ=  
increases with t.  

We consider the situation of ( )*
0 0y tκ< . That is, the nociceptor density jump 

occurs before the inflection point of temperature profile at reflex. Combining 
properties 1 and 3 of ( ),T y t  with ( )*

0 0y tκ< , we have  

 ( ) ( )( )
*

* *
0 ref 0 ref

positivepositive

, , for allcz
T y t A T y t A A

y A y
 ∂ ∂

− + > − 
∂ ∂ 





       (74) 

As beam spot area A increases ( )reft A  decreases and is bounded from below by 
( ) ( ) ( )*

ref ref 0 0t A t A yτ µ≥ = ∞ = . In turn, ( )*
0 0yτ µ  is bounded by  

( ) ( )*
0 0 0 00 0y tτ µ τ≥ = > , reflecting that the presence of a skin layer with no no-

ciceptor delays the occurrence of withdrawal reflex. Thus, we have  

( ) ( ) *
ref ref 0 00 independent of andt A t A t A y≥ = ∞ ≥ >  

Applying property 2 of ( ),T y t  to (74) with ( ) ( )ref reft A t A≥ = ∞ , we obtain  

 ( )
*

* *
0 0

1; ;0 0cz
y y

y A A y
 ∂ ∂

− Φ + > − Φ > 
∂ ∂ 

             (75) 

The first part of (53), 1 0b > , follows from inequality (75) and definition of 1b  
in (51). The second part of (53), ( )2

1 2 0b b− > , is verified in simulations. 
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Abstract 
Urbanization and living comfort have revolutionized the construction indus-
try. Many techniques and strategies have been used to improve the overall ef-
ficiency of construction and to reduce waste during and after the construction 
activity; some are cost effective and some not. Sustainable construction strat-
egies have addressed these issues by proposing relatively more cost effective 
and environment-saving solutions. One strategy is to select sustainable con-
struction materials at the building design stage. This article involved a ques-
tionnaire survey to collect data about local technical stakeholders’ (architects, 
designers, engineers, estimators, and managers) awareness of environmental 
sustainability and current practices for selecting construction materials. A 
sustainability index (SI) was developed using SPSS (Statistical Package for the 
Social Sciences) for the complex statistical analysis. These data were used to 
develop a decision support system (DSS) using the multi-criteria decision 
making (MCDM) technique, the TOPSIS. The support system was validated 
by applying it to sustainable roof products in a pilot case study—these mate-
rials are frequently used in local markets for residential construction in West 
Australia. So the main objective was to get insight to local market trends and 
features involved in construction materials selection. Data analysis was car-
ried out to develop a decision support system to help technical stakeholders 
in construction materials selection process. 
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1. Introduction 

In the past the global construction industry has developed rapidly in terms of 
advanced technology and the incorporation of safety and sustainability. Similar-
ly, the Australian construction industry now considers sustainability as a vital 
factor for maintaining a balance in preservation and consumption of natural re-
sources. To investigate the local trends and general procedures in the selection 
process for materials in residential building construction, a questionnaire survey 
was developed and circulated among the leading construction companies in 
Western Australia. 

Survey response rate and validity: Data were collected in three survey for-
mats: postal, online, and self-administered surveys. A total number of 52 survey 
questionnaires were sent to construction companies with a cover letter and a 
form for participant consent. From these, 11 responses were received (response 
rate = 21.15%; Figure 1). This response rate was considered adequate because 
other researchers in the construction industry also reported response rates for 
postal surveys between 20% and 30% [1] [2] [3]. 

For the online surveys, 35 company representatives were sent a uniform re-
source locator (URL) link to access the survey and record their responses. The 
response rate was 48.57% (17 responses). Face-to-face, self-administered surveys 
were also conducted with 7 company representatives (23 companies sent request; 
30.43% response rate). This method of data collection is considered the best; 
complete responses are received through this method. All survey responses were 
evaluated before analysis to verify that all questions were answered; missing val-
ues were adjusted in the analysis with SPSS (Statistical Package for the Social 
Sciences, (version 24)). Some irrational responses and suggestions were received 
but most responses were relevant based upon the work experience of the res-
pondents. 

We used a Likert scale in our survey, which is considered reliable to investigate 
the overall perceptions and experiences of a group of relatively homogeneous  
 

 
Figure 1. Survey response rate. 

Postal
21%

Online
49%

Face to face (Self-
administered)

30%

Survey Response Rate  
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individuals of similar backgrounds and trades [4]. Using a multi-criteria deci-
sion making (MCDM) technique, we processed the data to develop a sustaina-
bility index (SI) for ranking the most appropriate and sustainable building con-
struction materials. The system was validated by running a pilot analysis on local 
sustainable roofing materials from two major material suppliers. 

Margin of error: For an inferential statistical analysis, researchers agree a 
sample size (n) of more than 30 is required to obtain an accurate value [5] [6] [7] 
[8]. Prior research validated that minimum threshold value to rank a data ac-
ceptable is 30. We got the response from more than 30 construction firms, hence 
our sample size (n = 36) is acceptable for statistical analysis with the appropriate 
analysis tool to get acceptable and reliable results. 

2. Statistical Data Analysis 

SPSS (Statistical Package for the Social Sciences, version 24) was used to analyze 
the data. Frequencies, percentages, averages were calculated. All values are used 
for open-ended questions. Data were collected on the organization profiles (i.e. 
type, size, and age of organization; area of building projects, focus, and main 
client type) to obtain overall snapshots of the organizations.  

2.1. Level of Awareness of Environmental Issues  

All company representatives and technical stakeholders were somewhat aware of 
environmental parameters, but only 33.34% of the 36 were extremely aware. 
Almost 20% were only slightly aware; most of these respondents had a trade 
background, with no higher education degree in construction (Table 1). 

Considering environmental issues at the conceptual design stage 
A large body of literature describes the importance of addressing environ-

mental issues at the first step in the construction process, the conceptual design 
stage [9] [10]. To investigate the degree of agreement or disagreement regarding 
this practice, respondents were asked “Is it important to consider the environ-
mental issues at the conceptual stages?” A seven-point Likert scale recorded their 
viewpoint (1 = Strongly disagree, 7 = Strongly agree); the extended Likert scale 
was used to canvass the full spectrum of opinions and current general practice in 
the local market (Table 2). 

 
Table 1. Level of awareness of environmental issues in building construction. 

Awareness scale Frequency Percent Cumulative percent 

Extremely aware 12 33.34 33.34 

Moderately aware 8 22.23 55.57 

Somewhat aware 9 25.0 80.57 

Slightly aware 7 19.45 100.0 

Total  100.0  

Source: Analysis of survey data (2018). 
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Table 2. Consideration of environmental issues at conceptual design stage. 

Agreement scale Frequency Percent Cumulative percent 

Strongly disagree 0 0 0 

Disagree 0 0 0 

Somewhat disagree 0 0 0 

Neutral 3 8.33 8.33 

Somewhat agree 6 16.66 24.99 

Agree 15 41.66 66.65 

Strongly agree 12 33.33 100 

Total  100  

Source: Analysis of survey data (2018). 

 
Table 2 shows that most (about 75%) of the respondents (75%) agreed or 

strongly agreed that the best time to consider environmental or and sustainabil-
ity issues is at the conceptual stage. Other researchers report similar findings as 
well [11]. Considering all these environmental and sustainability issues at the 
start of the process allows us to change our design accordingly, and the capital 
cost can be well managed and minimized. 

2.2. Building Design Priorities 

The analysis showed that the decision makers were aware of the importance of 
using environmentally friendly and sustainable construction materials. The res-
pondents were asked to prioritize their objectives to gauge the level of impor-
tance they assigned to project objectives, including environmental impacts and 
sustainable construction materials (Table 3).  

The following formula was used to calculate the values in Table 3: 

RI w
A N

=
×∑                        (a) 

where RI = relative index, w = weighting given by respondents (range 1 - 7), A = 
highest weight (i.e. 7), N = total number of respondents. The value of the relative 
index ranges from 0 to 1. 

The respondents’ highest priority was to satisfy the client’s specifications 
(Table 3), which indicates that most of the time efforts are made to reduce the 
cost as well. 

3. Sustainability Considerations  

The implementation of sustainability depends upon the knowledge and aware-
ness of technical stakeholders (e.g. architects, designers, engineers, estimators, 
and managers). 

Although the respondents stated they were aware of sustainability and its im-
portance in construction, 52.77% had only an average knowledge of the sustain-
able products available in the market. Moreover, the proportion of respondents  
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Table 3. Ranking of project objectives. 

Project Objective Weighted total RI Rank Mean Value 

Satisfy Client Specifications 140 0.778 1 3.889 

Meet Project Deadline 134 0.744 2 3.722 

Meet Building Regulation 134 0.744 3 3.722 

Sustainability Criteria 130 0.722 4 3.611 

Environmental Impacts 126 0.700 5 3.500 

Minimize the Cost 125 0.694 6 3.472 

Source: Analysis of survey data 2018. 

 
with poor knowledge (22.22%) exceeded the proportion with good knowledge 
(16.66%) (Table 4). Hence, the major stakeholders need to learn about sustaina-
ble products and their efficacy and adaptability. Most respondents thought that 
clients or their representatives are less concerned about this factor than about 
other considerations, and so they pay less attention to this issue. The small per-
centage of respondents with excellent knowledge (8.33%) all belonged to 
well-established, large organizations.  

3.1. Sustainability Assessment  

In contrast, most respondents (88.88%) agreed that it is important to select sus-
tainable materials for building construction (Table 5); only one respondent 
(2.77%) provided any reasons for not doing so (cost and lack of skilled labor). 

Despite the respondents’ prior claim of knowing about sustainability and its 
importance, the analysis showed that the percentage of their projects in which 
sustainability was considered important was low (Table 6). 

A majority of respondents (36%) completed projects without considering sus-
tainability as an important factor for building construction, although imple-
menting sustainability activities can give competitive advantage over rival firms 
that are reluctant to implement those activities [12].  

3.2. Constraints in Selecting Sustainable Materials  

The building industry uses large quantities of raw materials and energy in all 
stages from construction to operation. This means choosing materials with high 
content in embodied energy involve in high energy demand at construction 
stage and vice versa in operational phase [13] [14]. 

To gauge the real-world problems or obstacles faced by the technical stake-
holders in selecting sustainable materials, respondents were asked to rank such 
issues on a 5-point Likert scale (1, low; 5, high). The degree of agreement, calcu-
lated as Kendall’s W, was 0.248 (Table 7). This value indicates that almost all of 
the technical stakeholders face the same obstacles, with some exceptions. 

The degree of agreement is calculated Kendall’s W = 0.248 which shows al-
most all technical stakeholders are facing the same obstacles with some excep-
tions.  
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Table 4. Knowledge of sustainable design.  

Knowledge Scale Frequency Percent Valid Percent Cumulative Percent 

Excellent 3 8.33 8.33 8.33 

Good 6 16.66 16.66 25 

Average 19 52.77 52.77 77.76 

Poor 8 22.22 22.22 100 

Total  100 100  

Source: Analysis of survey data 2018. 

 
Table 5. Importance of sustainable materials in building development.  

Knowledge scale Frequency Percent Valid Percent Cumulative percent 

Yes 32 88.88 88.88 88.88 

No 3 8.33 8.33 97.21 

If no, give reason 1 2.77 2.77 100 

Total  100 100  

Source: Analysis of survey data (2018). 

 
Table 6. Projects considering sustainability important.  

Projects Frequency Percent Cumulative Percent 

<10% 13 36.11 36.11 

10% - 20% 10 27.77 63.88 

21% - 30% 5 13.88 77.76 

31% - 40% 2 5.55 83.31 

41% - 50% 4 11.11 94.42 

>50% 2 5.55 100 

Total  100  

Source: Analysis of survey data (2018). 

 
Table 7. Constraints in sustainable material selection. 

Stakeholder influence RIa Rank 

Lack of information 0.73 2 

Uncertainty in liability of work 0.67 7 

Maintenance concern 0.73 3 

Building code regulations 0.65 6 

Lack of tools and data 0.70 5 

Perception of extra cost being incurred 0.76 1 

Perception of extra time being incurred 0.72 5 

Perception that sustainable materials are low in quality 0.45 11 

Aesthetically less pleasing 0.55 10 
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Continued 

Project will be delayed 0.67 9 

Limited suppliers 0.68 6 

Low flexibility in alternatives 0.65 5 

Unwilling to adopt the change 0.66 6 

Kendall’s W (0.248) 

aRelative index. Source: Analysis of survey data (2018). 

4. Development of Criteria for Sustainable Material  
Selection  

The gap between information and implementation can be reduced by developing 
systems and IT features that are easy to use. This is a combined responsibility of 
all sectors involved in the construction industry. It is a mutual responsibility of 
government and the private sector to introduce and implement regulations for a 
“greener” and safer environment for future generations (Raynsford, 2000). 

The criteria for sustainable material selection that were investigated were di-
vided into three categories: environmental criteria, socio-economic criteria, and 
technical criteria (Table 8). 

The respondents were asked to rank the sub-criteria for importance and the 
data were analyzed (Table 9). 

Aesthetics was ranked first in the socio-economic category (RI = 0.88; Table 
9). This criterion was designated as high importance as per our predefined val-
ues: all factors with an RI > 0.8 were considered of high importance and those 
with an RI < 0.8 considered of medium to high importance. 

A decision model will help technical stakeholders to select from a wide range 
of options, either classical or innovative. We used the above sustainability crite-
ria for computational analysis in order to formulate the best combination of al-
ternative construction materials. Six major criteria were used (Figure 2). These 6 
criteria were further divided into 23 sub-criteria (Table 10). 

5. TOPSIS-Based Approach for Prioritized Aggregation 

An aggregated MCDM environment means combining the values of a set of 
attributes to represent a single value for the entire set of attributes. Much work 
has been done to introduce the prioritization in aggregation method using the 
TOPSIS. The derivation of our MCDM model using this prioritization approach 
is described below. 

A sustainability index framework basically helps the decision makers to inte-
grate the issues of sustainability while selecting the available construction mate-
rials. Selecting sustainable construction materials from the pool of alternative 
sustainable materials is a time consuming and difficult practice. Applying the 
MCDM technique is the best method for integrating objective and subjective 
weights of various conflicting criteria in order to choose the most appropriate 
sustainable material. However, the process is challenging.  
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Table 8. Criteria for sustainable material selection for construction professionals. 

Environmental criteria Socio-economic criteria Technical criteria 

E1: Potential for reuse S1: Disposal cost T1: Maintainability 

E2: Environmentally favorable disposal 
options 

S2: Health and safety T2: Buildability 

E3: Air quality impacts S3: Maintenance cost T3: Resistance to decay 

E4: Ozone depletion potential S4: Aesthetics T4: Fire resistance 

E5: Environmental impact during  
manufacturing 

S5: Use of local materials T5: Life expectancy 

E6: Less toxicity S6: Capital cost T6: Energy saving 

E7: Regulatory compliance S7: Skilled labor availability  

E8: Reduce pollution   

E9: Wastage in production   

E10: Raw materials extraction process   

Source: Analysis of survey data (2018). 

 
Table 9. Ranking of criteria for sustainable material selection for construction professionals. 

Performance criteria   Valid percentage 

 Valid percentages of scores 

Environmental criteria 1 2 3 4 5 RIa Ranking Importance 

E1: Potential for reuse 0.0 11.1 13.9 44.4 30.6 0.79 23 M-Hb 

E2: Environmentally favorable disposal options 2.8 8.3 27.8 30.6 30.6 0.72 17 M-H 

E3: Air quality impacts 2.8 8.3 33.3 33.3 22.2 0.69 18 M-H 

E4: Ozone depletion potential 5.6 8.3 41.7 16.7 27.8 0.76 15 M-H 

E5: Environmental impact during manufacturing 2.8 13.9 33.3 19.4 30.6 0.67 13 M-H 

E6: Less toxicity 2.8 11.1 30.6 25 30.6 0.86 7 Hc 

E7: Regulatory compliance 5.6 5.6 27.8 33.3 27.8 0.84 10 H 

E8: Reduce pollution 0.0 5.6 19.4 50.0 25.0 0.85 5 H 

E9: Wastage in production 4.4 15.4 31.9 37.4 11.0 0.79 20 M-H 

E10: Raw materials extraction process 5.6 19.8 45.1 20.9 8.8 0.77 19 M-H 

Socio-economic criteria         

S1: Disposal cost 2.8 8.3 16.7 44.4 27.8 0.78 21 M-H 

S2: Health and safety 0.0 8.3 27.8 33.3 30.6 0.80 9 H 

S3: Maintenance cost 0.0 5.6 22.2 38.9 33.3 0.81 8 H 

S4: Aesthetics 0.0 5.6 36.1 36.1 22.2 0.88 1 H 

S5: Use of local materials 0.0 8.3 33.3 41.7 16.7 0.76 16 M-H 

S6: Capital cost 2.8 27.8 36.1 36.1 33.3 0.81 14 H 

S7: Skilled labor availability 5.5 16.5 39.6 29.7 8.8 0.64 22 M-H 

Technical criteria         

T1: Maintainability 0.0 5.6 27.8 44.4 22.2 0.86 2 H 

T2: Buildability 0.0 0.0 9.9 53.8 36.3 0.85 6 H 
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Continued 

T3: Resistance to decay 0.0 8.3 27.8 30.6 33.3 0.79 4 M-H 

T4: Fire resistance 0.0 8.3 27.8 30.6 33.3 0.84 11 H 

T5: Life expectancy 0.0 5.6 25.0 30.6 38.9 0.78 12 M-H 

T6: Energy saving 0.0 2.8 38.9 30.6 27.8 0.84 3 H 

aRelative index. bmedium to high. chigh. Source: Analysis of survey data (2018). 

 

 
Figure 2. Conceptual framework for sustainable material selection. 

 
The first step is to determine the most suitable aggregation method, usually 

from two major types: the crisp aggregation method, which is used to aggregate 
the real values; and the fuzzy aggregation method, which is used to aggregate the 
linguistic labels [15]. 

The second, most complicated, step is to define the boundary condition. The 
boundary condition compels the result of an aggregation function f(x). The limit 
is defined as the minimal and maximal boundaries of possible output. 

( )0, ,0 0f =  and ( )1, ,1 1f = , where [ ]0,1x∈            (1) 

The commutativity property states that ordering/ranking of arguments does 
not matter when there is equal importance or no relationship is considered 
among the different criteria. 

( ) ( ) ( )1 2 2 1 2 1, , , , , , , , ,n n nf x x x f x x x f x x x= =   , x S∈         (2) 
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Table 10. Criteria and sub-criteria grouped with type. 

Criteria Sub-criteria Description Criteria & type 

1. Life cycle cost 

1.1 Capital cost Initial purchasing cost of material −C1 

1.2 Maintenance cost Total repair cost during whole lifecycle of material –C2 

1.3 Discarding cost Demolition and disposal cost of material –C3 

2. Resource efficiency 

2.1 Raw material extraction Source of raw material –C4 

2.2 Environmental effect of extraction 
process 

Quantitative detrimental effects during the extraction –C5 

2.3 Wastage expectancy Probability of wastage during extraction +C6 

2.4 Contained energy 
Total amount of energy dedicated to providing the  
sustainable, renewable energy 

+C7 

3. Waste minimization 

3.1 Sustainable disposal options 
How favorable to create sustainable disposal options (e.g. carbon 
burial, incineration) 

+C8 

3.2 Potential for reuse and recycling of 
material 

Capacity for reuse and amount of total wastage during recycling +C9 

4. Environmental 
impact 

4.1 Legislation compliance capability Capability to comply with local and international legislation +C10 

4.2 Pollution control Overall ability to contribute to pollution control +C11 

4.3 Air quality maintenance Level of maintaining air quality using potential material +C12 

4.4 Ozone layer influence Level of impact to protect the ozone layer +C13 

4.5 Toxicity Level of generating the toxic materials (e.g. asbestos) −C14 

5. Performance  
capacity 

5.1 Resistance to decay Level of durability and sustainable age +C15 

5.2 Fire resistance Level of resistance against fire-related damage +C16 

5.3 Thermal insulation capacity Level of maintaining inner temperature of residential building +C17 

5.4 Durability Level of reliability and effective resistance again deterioration +C18 

5.5 Buildability Easiness of use and execution +C19 

6. Social benefit 

6.1 Usage of local material 
Local material usage, saving transportation cost and using local 
workforce 

+C20 

6.2 Aesthetics Level of visual attractiveness and comfort for use +C21 

6.3 Health and safety concerns Level of internal environmental and air pollution control +C22 

6.4 Labor availability Level of local skilled workforce +C23 

 
The continuity condition means that the aggregation function does not 

change markedly’ if small changes were made to the attributes considered in the 
aggregation process. 

Ux∈S[0,1]x→[0,1] is a continuous aggregation function if: 

( ) [ ] [ ]: 0,1 0,1xf x →                          (3) 

The monotonicity condition implies that aggregation functions are monoton-
ic, that is, the aggregation function shows a “non-decreasing” relationship be-
tween the criteria and the aggregation maneuvers. 

i ix x′ > , then ( ) ( )i if x f x′ >  where x S∈             (4) 

The idem-potencies condition is an algebraic property that belongs to the bi-
nary operation and displays the relationship if: 

( ), , ,f x x x x=  where x S∈                    (5) 
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The associativity condition is the ability of the aggregation function to reta-
liate against the choice of group, which should not influence the overall result of 
the aggregation process. 

( )( ) ( )( )1 2 1 2 , , ,  , , ,n nf f x x x f f x x x=  , x S∈  [16]         (6) 

Many applications require the evaluation of a set of criteria with prioritized 
relationships within the set in order to reach a conclusion. [17] [18] [19].  

The TOPSIS is an approach that originates from the geometric concept of dis-
placed ideal point, which means that the criterion under investigation must be 
situated between the positive (most favorable) and negative (least favorable) lo-
cations [20]. 

Determining the weights and criteria ranking: Previous studies have dis-
cussed many methods for criteria ranking and weight determination [21] [22] 
[23]. There are two primary methods. The “direct choice of weights” method di-
rectly assigns weights based on the opinions and consensus of a group of experts. 
The “weights determination from data” method derives the weights of criteria 
from the data available in the same domain for aggregation purposes. We used 
the first method to get our weighted data set. 

6. Application and Validation of Sustainability Model 

Considering the complexity of the data-collection process and the research out-
put, we conducted an empirical inquiry using a real-world, practical scenario. 
We collected data on roofing materials that are specifically used in residential 
buildings in Western Australia and are available from the two major suppliers of 
roofing tiles. 

This validation involved the application and evaluation of two suppliers with 
six tile options. This hypothetical case study was based on the roofing tiles from 
different suppliers and different options depending on the type of material se-
lected for the test run and the type of structure implemented. Cost was one of 
the factors considered; however, the most important factors were the six main 
criteria and related sub-criteria (see Table 10). The details and physical charac-
teristics of the materials are presented in Table 11. 

This model analyzes and ranks the sustainable options by using mathematical  
 

Table 11. Roofing tile options. 

 Roof type Building Structural location Roof tile size Roof pitch 

Option 1: 
two alternatives, from 
two different suppliers 

Timber truss 
pitched roof 

Residential 
Treated timber trussed roof with anti-con underlay, 

batts insulation, & concrete interlocking tiles 
418 mm × 260 mm 18 - 20 degrees 

Option 2: 
two alternatives, from 
two different suppliers 

Timber truss 
pitched roof 

Residential 
Treated timber trussed roof with anti-con underlay, 

batts insulation, & clay terracotta tiles 
418 mm × 260 mm 18 - 20 degrees 

Option 3: 
two alternatives, from 
two different suppliers 

Timber truss 
pitched roof 

Residential 
Structurally insulated roofing panels with anti-con 

underlay & designer ceramic tiles 
418 mm × 260 mm 18 - 20 degrees 
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implications with the MCDM technique. The data for this pilot study were col-
lected as part of the survey questionnaire. The experts ranked the different al-
ternatives from the suppliers based on the criteria and sub-criteria provided to 
them. These values were tabulated in an MS ExcelTM spreadsheet and analyzed 
by running the TOPSIS model. The main factors that drive the selection of roof-
ing materials are: 

1) Compliance with Australian building codes and local estate building codes. 
2) House type, orientation, and building construction. 
3) Local council requirements. 
4) Energy management, insulation selection, and the overall anatomy of the 

building roof. 
Roof types have different pitch values depending on building type and house 

style. The most common pitches for roofing in Australia are 18 - 20 degrees, de-
pending on the materials used. The prime reason for selecting roofing material 
for the case study is that it can be tailored at the design stage and plays an im-
portant role in maintaining the overall sustainability ranking of building. 

The three options in Table 11 were tested against six alternatives from the two 
major suppliers in the Australian construction industry. The alternatives have 
various competitive advantages over each other. 

The tabulated values in the Excel spreadsheet assigned the sub-criteria with 
positive or negative signs: criteria with an inverse relationship to sustainability 
are marked as negative and criteria that enhance the sustainability are marked as 
positive. The six alternatives were tested against the 23 sub-criteria related to 
those main six. The MCDM technique with TOPSIS gives a final ranking of 
these criteria and sub-criteria based on expert opinion [24]. 

Yoon and Hwang introduced the TOPSIS method, which proposes that the 
best alternative has the shortest distance to the ideal solution [25] [26]. The 
attribute which favors an alternative material is called the best attribute and the 
other is called the worst attribute. The goal of this approach is to find the Eucli-
dean space from the ideal solution [27]. TOPSIS comprises six major steps, 
which are described as follows using our hypothetical problem of roofing ma-
terial (roof tiles) from the two major suppliers of roof tiling. 

Step 1: Calculate the normalized matrix. 
The normalization is calculated using Equation (7) [28]: 

2
1

n
ij ij ijjX X X

=
= ∑  where 1,2, ,i n=   and 1,2, ,j m=         (7) 

In a matrix, the i and j belong to the first row and first column value.  
Step 2: Calculate the weighted normalized matrix. 
The normalized matrix is then multiplied with the weighted value as per equ-

ation (8); 

ij ij jV X W= ×  [27] [29]                      (8) 

Step 3: Calculate the ideal best and ideal worst value. 
In this step, the ideal best value is the value which suits the criteria, represented 

by the maximum value; the ideal best negative value which opposes the agree-
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ment of criteria is represented by the minimum value. 
Step 4: Calculate the Euclidean distance from ideal best value. 
This distance will be the closest value to ideal best value, using the Equation (9): 

iS + = ( )
0.52

1
n

ijj J
V V +=

 −  ∑                      (9) 

Step 5: Calculate the Euclidean distance from ideal worst value. 
This distance will be the closest value to ideal worst value, using Equation (10): 

iS − = ( )
0.52

1
n

ijj J
V V −=

 −  ∑  [30]                (10) 

Step 6: Calculate the relative closeness to the ideal solution.  
The relative closeness to the ideal solution is calculated using Equation (11): 

i i i iC S S S− + −= +                       (11) 

The final calculated values rank the alternatives, with 1 being the best alterna-
tive (Table 12). The MCDM can be used to solve the problem of material selec-
tion where an infinite number of alternatives exist. 

Tables 13-17 show the calculations in the Excel spreadsheet. The weighted 
 
Table 12. Ranked list of criteria. 

Ranked list of criteria 

C1 Capital cost 

C2 Maintenance cost 

C3 Discarding cost 

C4 Raw material extraction 

C5 Environmental effect of extraction process 

C6 Wastage expectancy 

C7 Contained energy 

C8 Sustainable disposal option 

C9 Potential for reuse and recycling of material 

C10 Legislation compliance capability 

C11 Pollution control 

C12 Air quality maintenance 

C13 Ozone layer influence 

C14 Toxicity 

C15 Resistance to decay 

C16 Fire resistance 

C17 Thermal insulation capacity 

C18 Durability 

C19 Buildability 

C20 Usage of local material 

C21 Aesthetics 

C22 Health and safety concerns 

C23 Labor availability 
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Table 17. Relative closeness and final ranking table. 

Si+ Si– Ci Rank 

0.0269 0.0372 0.5801 1 

0.0325 0.0252 0.4372 3 

0.0364 0.0272 0.4272 4 

0.0260 0.0343 0.5686 2 

0.0310 0.0215 0.4095 5 

0.0399 0.0209 0.3440 6 

 
values are used to give the best and worst alternatives for each criterion. 

The values in Table 15, were calculated using the formula 8, the weights were 
determined using the data ranking and weights awarded by the experts accord-
ing to their practical experience. 

7. Conclusion 

The results obtained agree with the TOPSIS ranking technique. Alternative 1 is 
ranked at first position: this is the best alternative available if we consider all of 
the 23 criteria weighted by the experts. The remaining alternatives are ranked 
accordingly considering the rest of criteria the best suitable for those materials. 
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