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Abstract 
A fundamentally novel approach to the issue about existence of a general cri-
terion for autonomous discrimination of causal correlations from individual 
peculiarities and provisional correlations at stable complex systems is put 
forward. It is grounded on a recently proven by the author decomposition 
theorem whose subject has no cross section with the subject of the Central 
Limit Theorem. The fundamental advantage of that criterion lies in insensi-
tivity to the details of the underlying dynamics and to the details of the hie-
rarchical structure regardless of the nature of the corresponding system. It 
holds in an unspecified ever-changing environment. It also holds when in-
formation is incomplete and/or uncertain. Another advantage of the criterion 
is the ability to forecast a change in a system. The limitation of the criterion is 
substantiated as a ban over predictability whether that change would develop 
in an adaptation or in destruction. It is worth noting that while the criterion 
itself holds in the frame of the recently proposed theory of boundedness, the 
ban over prediction of the nature of a change is model-free. 
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1. Introduction 

Complex systems viewed as a single matter is relatively new subject of interdis-
ciplinary science. It encompasses a huge variety of systems such as social, bio-
logical, climate, ecological systems etc. They all share the answer to the question: 
how parts of a system give rise to collective behavior and how the system inte-
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racts with its environment. Thus, social systems are constituted by people; brains 
are constituted by neurons, and weather consists of flows of atoms and mole-
cules. The scope of this study encompasses all fields of traditional science as well 
as engineering, medicine and management.  

Such huge variety of systems and behaviors prompts to suggest that the com-
mon properties of the behavior of those systems must appear rather as general 
protocol than as a law and/or rule. To remind, a law in its traditional meaning 
implies specific relation among variables characterizing a given phenomenon 
which re-occurs on repetition. What is tacitly presupposed, however, is that the 
conditions must re-occur the same as well. The latter implies pre-determination 
of the environment and its permanent constancy. Thus, if exists, such general 
protocol must hold in an ever-changing environment and must be insensitive to 
the details of the underlying dynamics and structure of any system. Further, 
other properties of any such protocol must be its ability to distinguish between 
common and individual properties of the species. For example, such criterion, 
applied to DNA, must distinguish a common part, that part shared by all hu-
mans, from the part related to the peculiarities of any individual. A crucial re-
quirement for successful distinguishing between common and individual prop-
erties is whether such general protocol is able to eliminate provisional correla-
tions. A very illustrative example comes from the weather: when a short-term 
weather pattern implies climate change and when it is just a provisional fluctua-
tion. 

The major goal of the present paper is to demonstrate that such protocol does 
exist and it is a direct consequence of the basic theorem, called decomposition 
theorem, derived in the frame of recently put forward by the author theory of 
boundedness [1]. Its fundamental difference with the Central Limit Theorem is 
discussed below. Decomposition theorem is derived on account of another 
common property shared by all complex systems, that is, their stability. Indeed, 
we humans live in an ever-changing environment where changes vary from pi-
co-seconds to days and nights, up to several decades for individuals and more 
than 100,000 years as a kind. Thus, the decomposition theorem proves that there 
is presentation basis (Fourier transform of the autocorrelation function) where 
the power spectrum of any bounded irregular sequence (BIS) is decomposed in-
to 3 parts: specific discrete pattern, continuous band of universal shape ( )1 ff α  
where f  is the current component and ( ) 1fα =  for the first component and 
monotonically increases on the increase of the number of the component. The 3rd 
component is an irrational component which is always in the infra-red (to the 
most left in the power spectrum) and which originates from the highly non-trivial 
interplay between the discrete and the continuous band. A decisive property of 
that decomposition is that it is robust to the details of the variations in the cor-
responding BIS and it maintains constant accuracy of separation between dis-
crete and continuous band. This property prompts me to call the discrete band 
homeostatic pattern. A highly non-trivial consequence of the additivity of the 
decomposition implies that the specific properties of each and every homeostatic 
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pattern are robust to the individual responses and/or the current environmental 
impact. Another decisive property of that decomposition is that the provisional 
correlations drop out automatically since they are eliminated by definition from 
the autocorrelation function.  

To remind, the autocorrelation function is a measure of the average correla-
tion between any two points separated by an interval which is scanned to vary in 
an interval from zero to up to the length of the corresponding time series. An 
exclusive property of boundedness is that it provides correlations of radius equal 
to the length of time series because every “deviation” from the average inevitably 
“turns back” in a specific yet bounded interval. Further, major move forward is 
the assumption that all time scales contribute uniformly which yields lack of any 
special frequency to be signaled out. Put in other words, the power spectrum of 
such contribution would appear as a continuous band whose envelope smoothly 
approaches universal shape famous as 1 f  noise. It is worth noting, that the 
uniform contribution of all time scales is very different from random contribu-
tion which is characterized by lack of any systematic correlations. Then, the cor-
responding power spectrum consists of random lines, famous as “white noise”.  

At this point a question arises: how and why a specific discrete band (ho-
meostasis) appears and why it is superimposed over a band of shape 1 f  noise. 
Discrete band appears when the functionality in a system is synchronized so that 
to produce a stable pattern whose adaptability to an ever-changing environ-
ment is consistent with the boundedness of rates and amplitudes. Then, as 
proven in [1], the general condition for avoiding resonances (which is condition 
for avoiding “shaking up” a system beyond its thresholds of stability) yields ad-
ditive decomposition of the power spectrum to specific discrete band and a con-
tinuous band of shape ( )1 ff α . An exclusive for stable systems property of that 
decomposition is that both discrete band and the shape of the continuous band 
are insensitive to the statistics of environmental variations. This is easy to track 
out by means of taking time series of different length and partitioning in 
sub-time series of appropriate length. If no new line(s) appear, the correspond-
ing system is stable.  

In my previous paper [2] I have demonstrated that correlations presented in a 
homeostatic pattern are namely the causal relations in the corresponding system 
while the presence of a smooth continuous band implies that the corresponding 
individual peculiarities are consistent with notion of the corresponding kind. 
Needless to mention: provisional correlations are eliminated. An illustration 
why namely the homeostatic pattern represents the corresponding causal rela-
tion is presented in the next section. 

In order to make the above statement clear let me present an example of three 
raw time series representing temperature variations in the course of time in an 
experiment on HCOOH oxidation over Pt catalyst (Figure 1(a), Figure 2(a), Fig-
ure 3(a)) and their power spectra (Figure 1(b), Figure 2(b) Figure 3(b) corres-
pondingly). Details can be found in [3]. It is worth noting that the Fourier trans-
form of the autocorrelation function is applied to the raw time series themselves.  
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(a)                                                         (b) 

Figure 1. (a) Temperature variations (in relative units) in the time course (in relative units) of catalytic oxidation of HCOOH over 
Pt catalyst example 1; (b) Power spectrum of the temperature variations presented in (a). 

 

 
(a)                                                         (b) 

Figure 2. (a) Temperature variations (in relative units) in the time course (in relative units) of catalytic oxidation of HCOOH over 
Pt catalyst example 2; (b) Power spectrum of the temperature variations presented in (a). 

 

 
(a)                                                         (b) 

Figure 3. (a) Temperature variations (in relative units) in the time course (in relative units) of catalytic oxidation of HCOOH over 
Pt catalyst example 3; (b) Power spectrum of the temperature variations presented in (a). 

 
The power spectra are represented in relative units: each component in a power 
spectrum is divided to the first component of that power spectrum. The log-log 
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scale in Figure 1(b), Figure 2(b) Figure 3(b) makes apparent that the shape of 
the continuous band is ( )1 ff α  where ( ) 1fα =  for the first component and 
( )fα  gradually increases with the frequency. 
The comparison between the above raw time series and their power spectra 

reveal how inconclusive and deceptive is the judgement of the time series alone 
and what an unexpected behavior reveal the power spectra.  

Yet, this is not surprising when taking into account the fundamental differ-
ence between the Central Limit Theorem (CLT) and the decomposition theo-
rem. The fundamental difference lies in their subjects: while the subject of the 
Central Limit Theorem is independent random variables (yet unbounded), the 
subject of the decomposition theorem is bounded irregular variables (yet, not 
independent). Thus, they have no cross-section. The Central Limit theorem 
serves as grounds for the probabilistic theory which so far is the dominant con-
cept for modeling of any behavior exhibiting any form of variability. However, 
this scenario suffers a common setback: it lacks generality, that is, it requires 
specific modeling in each and every case which turns very sensitive to the details 
of that modelling. On the contrary, the most powerful advantage of the decom-
position theorem is insensitivity to the particularities of the dynamics let alone 
the system is bounded so that the amplitude of variations is confined to vary 
within specific margins and the rate of exchange of matter/energy/information 
with the environment is kept also permanently bounded. The most illustrative 
example of that power comes from application to social networks where the in-
put information is most probably uncertain. The latter comes from the fact that 
human behavior is rather irrational and because of the variety of reasons people 
are reluctant to say the truth. However, if a network as a whole is stable, it would 
reveal a steady pattern which could be substantiated by means of applying the 
proposed general criterion. Moreover, through making inverse Fourier trans-
form of the homeostatic pattern itself, that is, by means of removal of the conti-
nuous band from the corresponding power spectrum, one can find the pattern 
itself. In the next section it is presented the methodology of how to find out hie-
rarchy in any such pattern.  

The criterion could be applied to a large variety of systems where the current 
knowledge about it is incomplete, uncertain and/or clumsy, or hazardous to be 
obtained. Thus, the criterion is available for archeological data, meteorological 
data, medicine (EEG and EKG), urban engineering, financial engineering, DNA 
sequences, etc. To compare, the method of discrimination between competing 
models, based on the probability theory, does not provide qualitative difference 
between competing models and says nothing about the stability of any of them. 
On the contrary, the proposed by the author criterion provides not only a qua-
litative difference between different types of correlations but reveals their stabil-
ity as well. One way is to monitor the power spectrum and to see whether the 
pattern stays intact or some extra line(s) appear. If stays intact, the correspond-
ing system is stable even in an ever-changing environment, if extra line(s) ap-
pear it implies changes. At this point the major question arises whether these 
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changes yield adaptation or they yield destruction. In Section 3 I will demon-
strate that this is undecidable problem by any means of computation, neither by 
traditional algorithmic computing nor by proposed by me in [1] semantic com-
puting. 

Thus, the major goal of the present paper is to outline the general theoretical 
backgrounds for existence of that criterion and its limitations. 

2. Why Homeostatic Patterns Represent Causal Relations?  
How the Hierarchy Is Revealed in Homeostatic Patterns?  

The rigorous considerations why homeostatic patterns represent steady causal 
relations are represented in [2]. Here I will present them by means of a compar-
ison to the network theory.  

Up-to-now there is not established view on the difference between causal and 
provisional correlations but still pre-dominant view is to associate causality with 
the covariance in all variety of its forms. The weak point of that idea is the lack 
of general criterion allowing autonomous demarcation between causal relation, 
steady correlation and provisional ones. Indeed, the same physical mechanisms 
provide both causality and provisional correlations. Thus, up-to-now, complex 
networks, which serve as major implement for modelling complex systems, 
share common features the major of which consists in assigning probabilities 
and weights to both inputs and outputs. The role of dynamics and the environ-
ment is to rearrange those probabilities and/or weights. Yet, crucial flaw of this 
scenario is that it does not allow distinguishing causal correlations from provi-
sional ones. Indeed, the probabilistic approach considers causality as a system of 
binary asymmetric in succession relations. However, this viewpoint does not al-
low any discrimination between causal and provisional correlations since the 
latter is also supposed binary and there is no general rule about whether a provi-
sional or a causal relation comes next. So, a sequence of provisional and causal 
correlations exactly matches a random sequence of “0” and “1” thus justifying 
the application of CLT.  

However, the formal logic grounded on the idea that there exists steady state 
whose characteristics are defined as specific steady quantal relations among cer-
tain variables for each and every specific set of steady environment, is not able to 
decide whether any given sequence of corresponding “0” and “1” assigned to 
each and every sequence of “yes-no” answers is indistinguishable from a random 
sequence of “0” and “1” because there is no general criterion which provides that 
the answers are always true; moreover there is no general protocol which pro-
vides that questions are posed always correctly. 

The core of the problem is to be traced up to the Central Limit Theorem 
where the variables are supposed random independent ones. Thus, the very idea 
of long range ones is contradictive to the Central Limit Theorem. To compare, 
boundedness introduces long-range correlations of practically infinite radius 
while the correlations which are consistent with CLT are only those of bounded 
radius. 
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It is worth noting that the above setbacks of the CLT do not allow any robust 
to the environmental statistics additive separation of a power spectrum to a spe-
cific discrete band and universal continuous one. Indeed, the unboundedness of 
the random variables implies strong sensitivity of the shape of the corresponding 
power spectrum to the statistics of those variables. Thus, although the provision-
al correlations are eliminated, no discrimination between causal correlations and 
the individual peculiarities is available. In turn, the notions of an individual and 
the notion of a kind turn out blurred. Consequently, the latter renders pattern 
recognition (e.g. discrimination between cats and dogs) uncertain especially 
around the demarcation line between qualitatively different subjects (cat or dog).  

Outlining, the additive separation of a power spectrum to a specific discrete 
band and a universal continuous one so that both bands are robust to the statis-
tics of variations, is an exclusive property of the proposed by the author [1] con-
cept of boundedness.   

At this point the power of the proposed in the present paper discrimination 
criterion becomes evident: it is model independent in the sense that there is no 
need to know, for example, how exactly our bodies work in full details to be pos-
itive and certain whether a body is stable or not. Thus, the notion of homeostasis 
turns insensitive to all kinds of variations, daily variations of temperature for 
example. Alongside, it turns out that bounded within specific margins deviations 
from that homeostasis constitutes individual peculiarities in a way consistent 
with the notion of a kind. Moreover, the insensitivity of the shape of the conti-
nuous band to the environmental variations (which are associated with the indi-
vidual peculiarities) implies that all individuals sharing the same homeostatic 
pattern share the same evolutionary value as well. 

A very important matter in the study of complex systems such as societies, 
ecological systems and climate is the matter of their hierarchy and its stability. 
The question is what type of hierarchy is stable and how it is represented in the 
power spectra. So far, the dominant concept is that about one-directional hie-
rarchy. The latter serves as grounds for the reductionist approach which sits in 
the very core of the science: thus it implies that complexity goes from elementary 
particles to cosmological objects via self-organization. However, reductionist 
approach is not able to provide any qualitative difference among the subjects of 
self-organization: in the above example it represents emergent patterns in the 
same terms (in the example of reaction networks those are the concentrations of 
different sorts of output products compared to the concentrations of the input 
reagents).  

I explicate the qualitative difference between successive hierarchical levels by 
the use of general mechanism for leveraging the stability of complex systems. Its 
protocol is grounded on the idea that the environmental impact is distributed 
onto different levels so that to diminish the load on each level thus increasing 
the overall stability. Then, since the levels are interconnected by feedbacks (note 
that levels are parts of the same system), the hierarchy turns bidirectional: it goes 
both bottom up and top down. This is in sharp contrast with the reductionist 
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approach where the hierarchy is unidirectional: it goes only bottom up. Yet, the 
question remains: how different patterns occur on different levels and what is 
the condition for their stable consistency. 

The matter of self-organization is one of the most challenging problems in 
modern interdisciplinary science and is still far from resolution. My contribu-
tion to the problem consists of the fact that the structure of power spectra could 
reveal the presence of hierarchy and conditions for their stable consistency al-
though different patterns occur on different levels. 

In my previous paper [4] I have defined general condition for stable coexis-
tence of patterns that come from different hierarchical levels. In general, this is 
again the condition for avoiding resonances. To remind, the notion of a reson-
ance implies that a system is “shaken” up to very large amplitudes by means of 
relatively small driving force (not necessarily periodic). So there are two types of 
resonances: 1) those which keep the system within the current margins of stabil-
ity (that is adaptation); 2) those resonances which bring a system beyond current 
thresholds of stability (that is destruction). In order to avoid destruction, the 
general protocol applies and it consists of the requirement that the homeostatic 
patterns of a lower level appear as “satellite” lines superimposed onto each and 
every line of the higher level pattern.  

Then, stable systems reveal a specific “behavioral” pattern on applying opera-
tion of coarse-graining (that is partitioning of the corresponding spatio-temporal 
BIS into cells of almost equal size): it implies that the details of lower level struc-
ture are “smoothed out” and appear rather as broadening of the higher level lines 
so that the higher level patterns remain intact when the system is stable.  

Outlining, stable systems are characterized by power spectra which consist of 
specific steady homeostatic pattern and noise component of universal shape. The 
homeostatic patterns and the shape of the noise component remain intact on 
monitoring and/or applying coarse-graining. The latter operation allows reveal-
ing of stable self-consistent bidirectional hierarchy. 

Another advantage of the proposed general criterion is that causal relations 
(homeostatic patterns) are distinguishable for steady correlations ( ( )1 ff α  noise) 
regardless of the decoding algorithm. This is in fundamental opposition to the 
traditional algorithmic theory where the separation of causal, steady and provi-
sional correlations is impossible to be accomplished by any spontaneous natural 
mechanism in a non-ambiguous way; instead, it is subject to supervision of our 
human mind and thus it is highly subjective to current beliefs and understand-
ings of the decoding mind. Accordingly, the latter makes the classification highly 
sensitive to the ingenuity of the decoder. To compare, the boundedness provides 
self-sustaining boundedness of logical and quantal errors [5] in a long run which 
is expressed in a non-ambiguous separation of causal, steady and provisional 
correlations for each and every BIS substantiated by means of the general dis-
crimination criterion proposed in the present paper.  

Summarizing, a general criterion for discrimination between causal and steady 
correlations at stable complex systems is proposed. It consists of carrying out the 
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power spectra of any time series which monitor the behavior of a complex sys-
tem. The use of power spectra implies as well an automatic elimination of the 
provisional correlations presented in the corresponding time series. An exclusive 
property is of that criterion is the robustness to the details of the statistics of 
variations which appear as a response to an ever-changing environment. Anoth-
er exclusive property is provided by the constant in the time accuracy of separa-
tion of both bands in the power spectra. In turn, this suggests a new role of a 
homeostatic pattern, namely: it serves as bearer of identity for the functionality 
of the corresponding complex system. This yields a question how the appearance 
of a new line(s) affects the identity of a complex system in the sense whether it 
implies adaptation or destruction? 

3. Ban over Computation of Predictability of Whether a New  
Line(s) Is Adaptation or Destruction: Role of Human Mind  

In the Introduction it was mentioned that decomposition theorem gives rise to 3 
types of components in the power spectrum of a raw time series representing the 
behavior of a stable complex system. The first two components are a specific 
discrete pattern and a continuous component whose shape is universal. An ex-
clusive property of the decomposition theorem is that both the pattern and the 
shape of the continuous band are robust to both the length of the time series 
and/or the statistics of the environmental variations. This renders an enormous 
power of the discrimination criterion for discrimination of causal relations, en-
capsulated in the corresponding discrete pattern, and the steady correlations, 
encapsulated in the continuous band, which commence from the unique indi-
vidual response consistent with the “survival of the kind”. The discussion about 
the role of the 3rd component has been postponed to the present section since 
its computability plays a decisive role for the entire issue about computability of 
any prediction whether a new line(s) yields destruction or adaptation. The 3rd 
component comes as a result of highly non-trivial interplay between both other 
bands. It is a result of confinement of the variation not to exceed specific mar-
gins called thresholds of stability. Thus, the 3rd component appears as a result of 
that confinement and it is displayed at bounded distance to the left of the entire 
other parts of a power spectrum. And here comes a conundrum: from the point 
of view of stability, the condition for avoiding resonances renders the line to be 
irrational. However, another general aspect of the theory of boundedness claims 
that exchanged matter/energy/information with the environment, exerted by 
natural processes, is specific yet bounded. An immediate consequence of this claim 
is that the only computable numbers are those which are represented as bounded 
sequences of digits so that the precision is dictated by the boundedness. Another 
group of computable numbers is the zeroes of the unity, e.g. 3/7. The zeroes of 
unity are of use for the representation of Ramanujan sums which are in the 
grounds of Ramanujan-Fourier transform. The latter implements a spontaneous 
mechanism of processing Fourier transform by means of the feedback which 
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provides energy dissipation put forward in Chapter 3 of [1]. Their computability 
is explicitly provided by the Euclideanity of the functional metrics. These types 
of numbers are well-known under the name incommensurate numbers. Howev-
er, if the frequency of the 3rd component is incommensurate, it would yield an 
inevitable resonance which in turn yields either destruction or adaptation. The 
same problem arises when a new line appears: it is also incommensurate and 
thus one faces the same conundrum. 

It is worth noting that my previous result about self-sustained boundedness of 
logical and quantal error [5] is of no help here since it is derived for stable in an 
arbitrarily long run systems. Alongside, it is grounded on the fact the metrics of 
the functionality of a stable complex system are self-sustained to be Euclidean. 
Note that the latter property provides the means of computability since intervals 
obtained at different spatio-temporal locations are the same. In turn the latter 
provides grounds for comparing whether different numbers are equal or not. 
However, the appearance of a new line implies violation of the Euclideanity be-
cause of the reasons provided in [2].  

Another strategy is the use of traditional algorithmic computing. However, as 
it will be demonstrated now, it also does not assist resolving the conundrum. 
Indeed, a great advantage of modern computers is that, by means of hardware 
engineering, the precision could be made arbitrarily large. This comes at the 
price of enlargement of computation time, but by means of clever engineering of 
the software, an appropriate balance could be achieved. Yet, however, this does 
not solve the major problem posed above since the ingenuity in mastering the 
match between software and the hardware holds only for stable solutions. For 
unstable solutions, a question arises whether truncation error at Taylor series is 
insensitive to round-off error? However, the latter holds for stable solutions on-
ly: around unstable solutions each and every term counts in a long run and on 
repetition. In turn, it implies that the consistency between logical and quantal 
error is violated and in result the logical error becomes ill-defined (it could vary 
from minus infinity to plus infinity) for each and every quantal error, no matter 
how small it is!  

A notorious example for such behavior is the computing of periodic solutions 
which are neutral with respect to stability. Indeed, the computation of limit 
cycles as solutions of differential equations, is inevitably bound to degenerate 
into a motion on a spiral (ingoing or outgoing depending on any current realiza-
tion of computing) which produces qualitatively different result in a long run: 
instead of bounded cycling motion, it approaches either steady point or infinity. 
The inevitability of this behavior lies in the fact that each and every term in the 
corresponding Taylor series has equal contribution in a long run despite of its 
current value. The latter, however, just confirms the conundrum, since it turns 
out that the number of significant terms is infinite while the precision comprises 
always only bounded number of digits.  

Outlining, the conclusion is that modern day computing is unable to decide 
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with certainty whether a solution subject to resonance yields adaptation or de-
struction. 

It is worth noting that the self-sustaining of Euclideanity of the functional 
metrics renders negligible error between the semantic computing (grounded of 
the use of Ramanujan-Fourier transform) and the traditional Fourier transform 
(grounded on the expansion in truncated Taylor series).  

Yet, in practice a lot could be done: by means of monitoring and/or by means 
of appropriate intervention after skillful complementary investigations, the re-
sonance could be postponed or even avoided. Yet, our intervention could be a 
double-blade razor: on the hand, we could postpone a resonance at a given hie-
rarchical level but this could invoke sooner a resonance on other hierarchical le-
vels. Thus everything is in the hands and abilities of our human mind to decide 
about our own future.  

An immediate consequence of the fact that our human imagination is able to 
distinguish between incommensurate and irrational numbers prompts to suggest 
that the matter about what is intelligence is still far from resolution. 

4. Conclusions 

A general criterion for autonomous discrimination of causal and provisional 
correlations is established. It is grounded on a completely novel general theorem, 
proven by the author and called by her decomposition theorem, which is fun-
damentally different from the Central Limit Theorem. It also allows autonomous 
discrimination of the correlations commencing from the individual peculiarities 
of current individual; let alone the latter belongs to the same kind. The criterion 
holds in an unspecified environment and is conclusive about stable complex 
systems of all variety of their origin: meteorological, ecological, social networks, 
archaeological etc. Its power is spread over systems where the information about 
the targeted behavior is uncertain, missing and/or hazardous to be obtained. 

Yet, the power of the criterion is limited to stable systems only because of the 
general impossibility for computing with certainty whether a given new line(s) 
yield destruction or adaptation. The flaw confirms once again after turning the 
fundamental difference between our human intelligence and all attempt to con-
struct an artificial one. Yet, the considerations presented in the present paper 
once again confirm the decisive role of the human mind and its ingenuity for 
solving problems ranging from diseases, to climate changes and ultimately to 
our knowledge about the Universe. And all this comes out from the simple ques-
tion what is a stable system and how it fits an unspecified environment. 
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Abstract 
In this paper, the asteroid “rockburst plus nuclear explosion” model of Tun-
guska explosion is proposed for the first time, and it is believed that the Tun-
guska explosion is a thermonuclear explosion in the air triggered by a “rock-
burst” after the asteroid entered the atmosphere, and all the abnormal phe-
nomena produced by the Tunguska explosion are explained by using this 
model. The “rockburst” is the sudden release of the stress potential energy 
formed by the expansion of atoms in solid objects caused by the cosmic ex-
pansion. According to the “rockburst plus nuclear explosion” model, the 
“rockburst” was firstly triggered by the heat produced by the friction between 
the asteroid and the atmosphere after it entered the atmosphere, and then the 
high temperature and high pressure generated by the “rockburst” ignited the 
fusion fuel inside the asteroid, resulting in a thermonuclear explosion. 
 

Keywords 
Tunguska Explosion, Rockburst, Meteorite Explosion, Thermonuclear  
Explosion 

 

1. Introduction 

The Tunguska explosion [1] [2] is an explosion event that occurred at 7:17 a.m. 
on June 30, 1908, over what is now Siberia’s evinci region in Russia. The explo-
sion occurred 800 kilometers northwest of Lake Baikal near the Tunguska river. 
The estimated explosive power is equivalent to 20 million tons of TNT, or the 
equivalent of 1000 Hiroshima atomic bombs! More than 80 million trees burned 
over 2150 square kilometers. In the morning, locals in the northwest of Lake 
Baikal reportedly observed a huge fireball as bright as the sun streak across the 
sky, which was illuminated a few minutes later by a bright flash of light. Later, 
shockwaves from the explosion shattered windows in the vicinity of 650 kilome-
ters, and the mushroom cloud was observed. The explosion was recorded by 
seismic monitoring sites across Europe and Asia, and the resulting atmospheric 
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instability was even detected by the barometrograph, which had just been de-
veloped by famous scientists in Britain at the time. In the days after the explo-
sion, the sky over Tunguska, 9000 miles away, was shrouded in a grim orange; 
the phenomenon of white nights continued in large areas and the night sky was 
dark red in Asia and Europe. A decrease in atmospheric transparency was also 
observed at the Smithsonian Astrophysics Station and Mount Wilson Observa-
tory in the United States for at least a few months. At the time of the explosion 
many lights went out in London, England, and the city was in darkness. The soil 
in the explosion area was magnetized. Trees in the explosion area grew faster; 
the width of the ring increased from 0.4 - 2 mm to more than 5 mm; genetic 
variation occurred in some animals; reindeer had a strange skin disease, jujube 
leper skin disease and so on. No impact crater was found. But Italian nuclear 
physicists found by heavy isotopes test that the fir trees destroyed in 1908 had 
higher levels of trace elements than in other years, and those trace elements 
could not come from earth. There was no sign of a radiation anomaly, indicating 
that it was not a natural nuclear fission explosion. 

A series of unknowns and doubts have given rise to various hypotheses over 
the past 100 years [3] [4], which can be summarized as the “meteorite impact 
hypothesis”, the “nuclear explosion hypothesis”, the “alien spacecraft explosion 
hypothesis”, the “antimatter hypothesis” and the “comet impact hypothesis”. 
Each hypothesis has a certain truth, and each hypothesis can’t stand up to scru-
tiny. So far, no very reasonable explanation has been found. 

The purpose of this study is to solve the mystery of the Tungus explosion and 
to give reasonable explanations for the various abnormal phenomena produced 
by the Tungus explosion. 

2. The Mechanism of Rock Burst 

1) What is rock burst? 
Rock burst is a phenomenon in which the elastic deformation potential energy 

accumulated in a rock mass is suddenly and violently released under certain 
conditions, causing the rock to burst and eject. Rock burst [5] [6] is one of the 
main safety hazards in deep well mines. A slight rock burst has only flaky rock, 
no ejection phenomenon, a severe rock burst can produce an earthquake with a 
magnitude of 4.6 and an intensity of 7 - 8 degrees, causing damage to ground 
buildings and accompanied by loud noises. Rockburst can occur instantly or for 
days to months.  

At present, the scientific community cannot give a reasonable explanation of 
the source of rock burst energy, which has become the bottleneck of rock burst 
mechanism research. In the process of studying the geodynamics, the author 
found that the cosmic expansion is the power source of the earth’s geological 
tectonic movement [7], and further found that rock burst is also a kind of pla-
netary geological tectonic movement, which is a universal natural phenomenon. 

2) The relationship between “rock burst” and cosmic expansion 
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From Formula (5.31) [8], it can be seen that the orbital radius of the electrons 
around the nucleus of the atoms or ions that make up the of the object increases 
with the decrease of the speed of the object moving in the ether. It can be seen 
that the atoms and ions (ions containing orbital electrons) that make up the ob-
jects become larger as the universe expansion slows down or the speed of the 
objects decreases relative to the cosmic ether system.  

The effects of cosmic expansion on planets composed of solid crust (lithos-
phere) and liquid magma are very rich, including orogeny, epeirogenic move-
ment, plate formation, earth expansion, sea floor spreading, continental drift, 
earthquake and volcanic eruption [7]. If we focus on the effect of cosmic expan-
sion on solid objects, it is not difficult to find that the so-called “rock burst” is 
the sudden release of elastic potential energy formed by the long-term influence 
of cosmic expansion on solid objects. This release of elastic potential energy can 
be either spontaneous or artificially induced. 

We can approximate the shape of the solid to the sphere for easy study. If the 
surface of a solid sphere remains unbroken (keeping the atoms next to each oth-
er), the surface area of the solid sphere is proportional to the square of the radius 
of the atoms forming the sphere, and the volume of the solid sphere is propor-
tional to the cube of the atomic radius. So, as the atoms expand, the volume of 
the solid ball increases faster than the surface area increases, the stress in the 
solid ball gets bigger and bigger, and the deeper in the ball, the bigger the stress. 

Since some naturally forming solid objects in the universe, such as meteors or 
asteroids, have been formed for billions or even over 10 billion of years, the 
stress that accumulates in these solid objects after billions or 10 billion of years 
of expansion in the universe is very large and the solid object will explode when 
the stress is greater than the structural force of the solid object. This is why there 
are so many irregularly shaped meteors (meteorites) in the universe. Because the 
small planets completely solidified so early, as the universe expanded, the stresses 
inside the solid planets outweighed their structural forces and exploded (rock 
burst), resulting in the formation of large numbers of irregularly shaped rocks 
(meteorites or meteors). So we can predict that if the universe continues to ex-
pand, the moon and all the planets will eventually become solid and explode into 
rubble (this could be the last violent scene of the tectonic movement). 

As the atoms expand, the expanding force inside the rock increases and so 
does the surface tension of the rock. Once the surface tension exceeds the struc-
tural force, the surface of the rock will crack into powder or brittle pieces and fall 
off layer by layer. This is the process of desert formation. 

It’s not hard to explain why some meteorites explode when they enter the at-
mosphere. Because of the extremely fast running speed, when the meteorite falls 
into the atmosphere, it is heated by intense friction with the atmosphere, and 
when the temperature of the meteorite reaches the temperature that can release 
the stress potential energy inside the meteorite, these stress potential energy will 
be released in the form of explosion. Therefore, all naturally formed solid objects 
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in the universe contain stress internal energy, and the older a solid is formed, the 
higher the stress internal energy it contains. All the Earth’s crustal rocks contain 
stress, the longer the rock formation, the higher the stress. These stresses will not 
be released when the rock bed is not destroyed because of the protection of the 
surrounding rock mass, and will suddenly be released when the surrounding 
rock mass is destroyed (such as tunnel construction), which is the mechanism of 
the artificial “rock burst”. 

3. The “Rock Burst plus Nuclear Explosion” Model of the  
Tunguska Explosion 

Because of the enormous energy released by the Tunguska explosion (equivalent 
to 20 million tons TNT explosive, or 1000 Hiroshima nuclear bombs), the au-
thors suspect that the Tunguska explosion is a thermonuclear explosion trig-
gered by a “rock burst” triggered by the asteroid’s entry into the atmosphere. 

1) The “Rock burst plus nuclear explosion” model of the Tunguska ex-
plosion 

a) The principle and structure of the hydrogen bomb: 
A hydrogen bomb is a nuclear reactor that uses the nuclear fusion of hydro-

gen isotopes (deuterium and tritium) to release a large amount of energy in-
stantly. Since light nuclei that produce fusion reactions all carry positive charges, 
a significant fusion reaction can occur only when they move very fast to over-
come the electrostatic repulsion between positive charges. If the temperature of 
the thermonuclear loading is very high (only at temperatures above 14 million 
degrees ˚C, the reaction speed is large enough to achieve self-sustaining fusion 
reaction), the nuclei that make up the loading have a very high velocity (and 
thus a high kinetic energy). The fusion reaction that takes place using this me-
thod is called thermonuclear fusion reaction, or thermonuclear reaction. Because 
the hydrogen isotopes deuterium and tritium in light nuclei have the least repulsion 
between nuclei. Therefore, it is often chosen as the charge for hydrogen bombs. The 
main reaction mode between deuterium and tritium nuclei is as follows:  

D + T → 4He + n + 17.6MeT 

where, D, T, 4He and n represent the deuteron, tritium, helium and neutron re-
spectively. 

The general structure of the hydrogen bomb is shown in Figure 1. The shell of 
the hydrogen bomb contains deuterium and tritium or solid lithium deuteride 6 
(the nuclear material of hydrogen bombs), multiple atomic bombs, and detona-
tors made from ordinary explosives. The hydrogen bomb uses the high temper-
ature and high pressure generated during the explosion of the atomic bombs to 
ignite its thermonuclear material for nuclear fusion reaction (or thermonuclear 
reaction). When the detonator causes a conventional explosive to explode, it 
quickly compacts the separate blocks of nuclear material, creating fission reac-
tions known as the atomic bomb explosion. The explosion of the atomic bombs 
immediately produced the ultra-high temperature and pressure needed to fuse 
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Figure 1. The principle and structure of the hydrogen bomb. 
 
deuterium and tritium. Deuterium and tritium collide with each other at a speed 
of several hundred kilometers per second, and react quickly and violently to 
synthesize helium, releasing a lot of fusion energy, thus completing the whole 
explosion process of the hydrogen bomb. Since thermonuclear material loads 
have no critical mass limit, the hydrogen bomb can be made very large, with the 
average explosive power ranging from hundreds of thousands of tons to millions 
of tons, or even tens of millions of tons of TNT equivalent. 

b) How does an asteroid produce a nuclear explosion? 
The author suspects that the Tunguska explosion is a nuclear explosion in the 

air caused by an asteroid formed billions or ten billion of years ago with enough 
solid deuterium and tritium in its center, as shown in Figure 2. When the aste-
roid enters the atmosphere, it heats up because of friction with the atmosphere, 
which leads to the sudden release of the stress potential energy gathered inside 
the asteroid, or the occurrence of rock burst. The rock burst causes the pressure 
and temperature at the center of the asteroid to rise dramatically, causing deute-
rium and tritium at the center of the asteroid to explode in thermonuclear fusion 
reactions. The process of the asteroid entering the atmosphere is equivalent to 
the detonation of the atomic bomb in the hydrogen bomb, and the rock burst of 
the asteroid is equivalent to the explosion of the atomic bomb in the hydrogen 
bomb. Both ended up with deuterium and tritium fusing at high temperature 
and high pressure to produce a nuclear explosion. The debris created after the 
asteroid hydrogen bomb exploded continues to produce rockburst until it is 
completely turned into charged dust.  

Since all elements with a smaller atomic weight than iron can release energy in 
fusion reactions at high temperatures and pressures, the possibility that the as-
teroid’s nuclear explosion was caused by fusion reactions of other elements, ex-
cept deuterium and tritium, cannot be ruled out.  

Because hydrogen is the most abundant element in the universe and accounts 
for about 75% of its mass, asteroids or meteorites containing deuterium and tri-
tium should be ubiquitous in the universe.  
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Figure 2. How does an asteroid produce a nuclear explosion? 
 

A high-stress asteroid that is massive enough, and old enough to form, can 
produce a “rockburst” with the power comparable to that of an atomic bomb, so 
it can detonate a thermonuclear explosion. 

2) Using the model of “rock burst plus nuclear explosion” of the Tungus 
explosion to explain the abnormal phenomena produced by the Tungus ex-
plosion 

a) The energy released is huge: the estimated explosive power is equivalent to 
20 million tons TNT explosive, equivalent to 1000 Hiroshima atomic bombs! 

Answer: since there is no critical mass limit on the amount of thermonuclear 
material a thermonuclear bomb can contain, an asteroid thermonuclear bomb 
can be very large, with an explosive yield of tens of millions of tons of TNT or 
more. 

b) The sky was unusual: the 9000-mile-wide sky of the Tunguska region was 
shrouded in a gloomy orange color in the days following the explosion, with 
white nights appearing in large areas and dark red in the skies of Asia and Eu-
rope. A decrease in atmospheric transparency was also observed at the Smithso-
nian Astrophysical Station in the United States and the Mount Wilson Observa-
tory for at least a few months. 

Answer: because the asteroid was blasted into the atmosphere as electrically 
charged dust, the sky over the explosion area was covered in this dark orange 
color. Because the dust that pervades the atmosphere reflects the sunlight, the 
white night phenomenon appeared, and because the red light is the most pene-
trating, the night sky appeared dark red. Because the dust in the air is very small 
so it falls slowly, and because the dust fills a lot of space and reaches a high alti-
tude, it takes a long time for the dust to spread out, so the transparency of the 
atmosphere was reduced for several months. 

c) At the time of the explosion, many lights in London, England, suddenly 
went out and the city was dark; the soil in the explosion area was magnetized; 
trees in the explosion area grew faster; ring width increased from 0.4 - 2 mm to 
more than 5 mm; some animals developed genetic mutations, and reindeer de-
veloped a strange skin disease, such as date toadiness. 

Answer: the asteroid was blasted into electrically charged dust, which, along 
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with the rapid fluctuations of the blast wave, produced a powerful electromag-
netic pulse that caused the electrical system in London, England, to trip, causing 
many lights to suddenly go out. It is this electromagnetic pulse, or the high-energy 
microwaves in it, that have caused the magnetization of the soil in the explosive 
area, the accelerated growth of the trees (the width of the rings has increased 
from 0.4 - 2 mm to more than 5 mm), and genetic variations in certain animals 
(e.g. strange skin disease of reindeer, jujube leper, etc.) 

d) No impact crater was found; but using heavy isotopes, Italian nuclear phy-
sicists measured that the amount of trace elements of fir destroyed in 1908 is 
higher than in other years, and these trace elements can’t come from earth, ob-
viously, the explosion is related to meteorites. Survey teams in the 1950s and 
1960s found tiny glass balls sprinkled on the ground in the area. Chemical analysis 
showed that the spheres contained large amounts of nickel and iridium—metals 
commonly found in meteorites—and determined that they came from beyond 
earth. 

Answer: because each point of the asteroid contains stress, under the heat of 
the main “rock burst” and “nuclear explosion”, the asteroid was blown into dust 
through a series of secondary” rock burst”, so there was no crater left. Because 
asteroids contain these trace elements, dust containing these trace elements at 
the time of the big explosion entered the destroyed fir under the action of the 
explosion shock wave. In the blast zone, the heat melted particles of glass in the 
soil, mixing them with the dust particles that formed in the explosion. After the 
explosion, the melted glass particles cooled and solidified to form tiny glass 
spheres containing nickel and iridium, the metallic elements commonly found in 
meteorites. 

e) There was no sign of a radiation anomaly, indicating that it was not a natu-
ral nuclear fission explosion. 

Answer: Because the nuclear fusion reaction in the asteroid is caused by “rock 
burst”, not by atomic bomb explosion, there is no nuclear fuel (radioactive ele-
ment) that produces nuclear fission reaction, so there is no radioactive pollution. 

4. Conclusions 

1) The Tunguska explosion may have been a thermonuclear explosion in the 
air after the asteroid entered the atmosphere, and the nuclear explosion may 
have been triggered by the high temperature and high pressure caused by a rock 
burst of the asteroid; the rock burst is triggered by the high temperature caused 
by the friction between the asteroid and the atmosphere.  

2) Since all elements with less atomic weight than iron can release energy in 
fusion reactions at high temperatures and pressures; the asteroid’s nuclear ex-
plosion may have been caused by fusion reactions involving elements other than 
deuterium and tritium. 

3) “Rockburst” is a physical phenomenon of sudden release of the stress po-
tential energy formed in a solid body under the long-term action of cosmic ex-
pansion. “Rock burst” is the inevitable (final) process in the evolution of solid 
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planets.  
4) As the universe expands, the atoms and ions (ions containing orbital elec-

trons) of everything in the universe keep getting bigger. Since the surface area of 
a solid is proportional to the square of the radius of the atoms that make up the 
solid, and the volume of the solid is proportional to the cubic of the radius of the 
atoms that make up the solid, the stress in the solid becomes larger as the atom 
expands, and the “rock burst” occurs when the stress in the solid is greater than 
the sum of the structural force of the solid and the external environmental pres-
sure. 

The Main Contributions and Key Novelties in the Paper 

1) This paper proposes for the first time that the Tunguska Explosion is a 
thermonuclear explosion caused by the high temperature and high pressure 
generated by the asteroid’s “rock burst”. 

2) In this paper, it is pointed out for the first time that “rockburst” is a physi-
cal phenomenon of sudden release of the stress potential energy formed in a 
solid body under the long-term action of cosmic expansion, and that “rockburst” 
is the inevitable (final) process in the evolution of solid planets. 

3) This paper presents for the first time the mechanism of “rockburst” forma-
tion: As the universe expands, the atoms and ions (ions containing orbital elec-
trons) of everything in the universe keep getting bigger. Since the surface area of 
a solid is proportional to the square of the radius of the atoms that make up the 
solid, and the volume of the solid is proportional to the cubic of the radius of the 
atoms that make up the solid, the stress in the solid becomes larger as the atom 
expands, and the “rock burst” occurs when the stress in the solid is greater than 
the sum of the structural force of the solid and the external environmental pres-
sure. 

Future Works 

1) Because any naturally formed solid object contains stress, and the older the 
solid object is formed, the greater the stress it contains, it is possible to see if an 
explosion will occur and measure the energy generated by the explosion by 
heating natural diamond or other relatively old solids, thereby experimentally 
verifying that the stress energy of “rock burst” is formed by the expansion of 
atoms caused by the expansion of the universe. 

2) Because asteroids like or more powerful than the asteroid that caused the 
Tunguska explosion should be widespread in the universe，monitoring asteroids 
that could meet the earth and detonating them artificially by laser or other 
means is an important task for humans to protect the earth from devastating 
disasters like the Tunguska explosion. 
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Abstract 
Using a novel wave equation, which is Galileo invariant but can give precise 
results up to energies as high as mc2, exact quasi-relativistic quantum me-
chanical solutions are found for the Hydrogen atom. It is shown that the ex-
act solutions of the Grave de Peralta equation include the relativistic correc-
tion to the non-relativistic kinetic energies calculated using the Schrödinger 
equation. 
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1. Introduction 

Quantum mechanics triumphed when physicists learned to describe the quan-
tum states of the electrons in the atoms by solving the Schrödinger equation [1] 
[2] [3] [4] [5]. However, the Schrödinger equation is not Lorentz invariant but 
Galilean invariant [6] [7]; therefore, a relativistic quantum mechanics cannot be 
based on the Schrödinger equation. A fully relativistic quantum theory requires 
to be funded on equations that are valid for any two observers moving respect to 
each other at constant velocity [8] [9]. In contrast, the Galilean invariance of the 
Schrödinger equation means that two such observers will only agree in the ade-
quacy of the Schrödinger equation for describing the movement of a massive 
free quantum particle when the relative speed between the observers is much 
smaller than the speed of the light in the vacuum (c). In practice, this is not a 
terrible limitation of the Schrödinger equation because up to today humans have 
been only able to travel at speeds much smaller than c. This is one of the prin-
cipal reasons why the Schrödinger equation is still relevant almost 100 years after 
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its discovery. Moreover, there is another important limitation of the Schrödinger 
equation: it describes a particle in which linear momentum (p) and kinetic 
energy (K) are related by a classical relation that is not valid at relativistic speeds 
[6] [7] [8] [9] [10]. Nevertheless, wave mechanics triumphed when Schrödinger, 
using his equation, was able to reproduce the results previously obtained by Bohr 
for the energies of the bound states of the electron in the Hydrogen atom. This was 
possible because the electron in the Hydrogen atom moves at non-relativistic 
energies [1] [2] [3] [4] [5]. Rigorously, the number of particles may be not con-
stant in a fully relativistic quantum theory [7] [8] [9]. This is because when the 
sum of the kinetic and the potential (U) energy of a particle with mass m equals 
the energy associate to the mass of the particle, i.e. 2Ę K U mc= + = , then a 
second particle with the same mass could be created from Ę. Consequently, the 
number of particles is constant when 2Ę K U mc= + < . This is what happens in 
atoms and molecules; thus, this explains why the results obtained using the 
Schrödinger equation are a good first approximation in chemistry applications 
[5]. In between the Galilean invariant Schrödinger equation and the fully relati-
vistic quantum mechanics, there is a quasi-relativistic region where Ę < mc2 but 
Ę is so large that it is necessary to use an equation that describes a particle hav-
ing a relativistic relation between p and K. In this work, the use of the Grave de 
Peralta equation is explored [7] [11], which is a quasi-relativistic wave equation, 
for describing the bounded states of an electron in a Hydrogen-like atom with 
atomic number Z. It is shown that the energies calculated using the Grave de 
Peralta equation are in excellent correspondence with the sum of the energies 
calculated using the Schrödinger equation plus the relativistic Thomas correc-
tion [12]. This demonstrates both the correctness and the usefulness of the pro-
posed approach at quasi-relativistic energies. In what follows, first, a brief sum-
mary of the Grave de Peralta equation and its basic properties is presented; then 
solutions of this equation are obtained for a central potential in general and for 
the Coulomb potential. Finally, the conclusions of this work are given in the last 
section.  

2. The Grave de Peralta Equation  

Formally, the one-dimensional (1D) Schrödinger equation for a free quantum 
particle with mass m can be obtained from the classical relation between K and p 
for a free particle when its speed (V) is much smaller than the c [1] [2] [3] [4] 
[5]:  

2

, .
2
pK p mV
m

= =                          (1) 

Then, substituting K and p by the following energy and momentum quantum 
operators [1] [2] [3] [4]: 

ˆ ,ˆ ˆ .K pE i i
t x
∂ ∂

= = = −
∂ ∂
                       (2) 
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In Equation (2), ℏ is the Plank constant (h) divided by 2π, results [1] [2] [3] [4] 
[5]: 

( ) ( )
2 2

2, , .
2Sch Schi x t x t

t m x
ψ ψ∂ ∂

= −
∂ ∂



                   (3) 

However, Equation (1) does not give the correct relation between K and p 
when the particle moves at faster speeds. Correspondingly, the Schrödinger equ-
ation (Equation (3)) is not Lorentz invariant but Galileo invariant [6] [7]; thus, 
only should be used for particles moving slowly. At larger particle’s speed, one 
should use the following well-known relativistic relations [10]: 

( )( )2 2 4 2 2 2 2 2 2 .E m c p c E mc E mc p c− = ⇔ + − =            (4) 

And: 
2 , .V VE mc p mVγ γ= =                        (5) 

Here, E = K + mc2 is the total relativistic energy of the free particle, and [10]:  

2

2

1 .

1
V

V
c

γ =

−

                           (6) 

One can then formally proceed as it is done for obtaining the 1D Schrödinger 
equation, and use Equation (2) for assigning the temporal partial derivative op-
erator to E in the first expression of Equation (4) [7] [8] [9]. In this way, one can 
formally obtain the 1D Klein-Gordon equation [8] [9]: 

( ) ( ) ( )
2 2 2 2

2 2 2 2

1 , , , .KG KG KG
m cx t x t x t

c t x
ψ ψ ψ∂ ∂

= −
∂ ∂ 

           (7) 

The Klein-Gordon equation is Lorentz invariant and describes a free quantum 
particle with mass m and spin-0 [8] [9]. In contrast to the Schrödinger equation, 
a second-order temporal derivative is present in Equation (7). This determines 
that Equation (7) has solutions with positive and negative energy values while 
Equation (3) has only solutions with positive energies, which is in correspon-
dence with K having only positive values in Equation (1) but E having positive 
and negative values in Equation (4). The factor (E + mc2) is always different than 
0 for E > 0; consequently, Equation (4) and the following algebraic equation are 
equivalents for E > 0: 

( ) ( )
2

2

1V

pE mc
mγ

− =
+

                       (8) 

Each member of Equation (8) is just a different expression of the relativistic 
kinetic energy of the particle [7]. Assigning the temporal partial derivative oper-
ator in Equation (2) to E in Equation (8) results in the following differential eq-
uation [11]: 

( ) ( ) ( ) ( )
2 2

2
2, , , .

1KG KG KG
V

i x t x t mc x t
t m x
ψ ψ ψ

γ+ + +
∂ ∂

= − +
∂ + ∂



      (9) 

A simple substitution in Equation (7) and Equation (9) shows that the follow-
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ing plane wave is a solution of both equations for E > 0: 

( ) ( )
, e .

i px Et

KG x tψ
−

+ =                          (10) 

The plane wave ψKG+ has an unphysical phase velocity equal to c2/V > c [7] 
[11]. However, one can look for a solution of Equation (9) of the following form: 

( )
2

, e , .miw t
KG m

mcx t wψ ψ += =


                   (11) 

Such that ψ has a phase velocity smaller than c [7] [11]; thus: 

( ) ( )
, e .

i px Kt
x tψ

−
=                          (12) 

Substituting ψ given by Equation (11) in Equation (9) results in the 1D Grave 
de Peralta equation [7] [11]: 

( ) ( ) ( )
2 2

2, , .
1V

i x t x t
t m x
ψ ψ

γ
∂ ∂

= −
∂ + ∂



                 (13) 

Equation (13) clearly coincides with the Schrödinger equation at low particle’s 
speeds. Moreover, a positive probability density can be defined for the solutions 
of Equation (13) by analogy of how it is defined for the solutions of the Schrödin-
ger equation and, like the Schrödinger equation, Equation (13) is Galilean inva-
riant for observers traveling at low speeds respect to each other [7]. Despite this, 
Equation (13) can be used for obtaining precise solutions of very interesting 
quantum problems at quasi-relativistic energies [7] [11], where a particle moves 
at so large speeds that it is necessary to use the correct relativistic relation be-
tween p and K, but where the particle should not be moving too fast so that the 
number of particles remains constant. When the particle moves through a 1D 
piecewise constant potential U(x), Equation (13) should be generalized in the 
following way [11]: 

( )
( )

( ) ( ) ( )
2 2

2, , , .
1V

i x t x t U x x t
t xx m
ψ ψ ψ

γ
∂ ∂

= − +
∂ ∂+  




      (14) 

Often, one looks for solutions of Equation (14) corresponding to a constant 
value of the energy Ę = K + U, where Ę is not the total relativistic energy of the 
particle (E) but Ę = E – mc2. At quasi-relativistic energies, the number of par-
ticles is constant; therefore, Ę is constant whenever E is constant. For a 1D 
piecewise constant potential Ę, K, γV, and V2 are constants in each x-region 
where U is constant. In contrast to Ę, however, K, γV and V2 have a discontinuity 
wherever U(x) has one. Consequently, in Equation (14) γV is a function of x be-
cause, in general, the square of the particle’s speed (V2) depends on the position 
[11]. Nevertheless, for 1D piecewise constant potentials, one can look for a solu-
tion of Equation (14) with the following form in each of the regions where K, γV, 
and V2 are constants [1] [2] [3] [4] [11]:  

( ) ( ), e ,
i Ęt

K Ęx t K UX xψ
−

= = +                  (15) 
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XK is a solution of the following equation [1] [2] [3] [4] [11]: 

( ) ( )
2

2
2

d 0, .
d K K

pX x X x
x

κ κ+ = =


                (16) 

And [11]: 

( ) ( ) ( )1 11 1 .V V
p mK m Ę Uκ γ γ= = + = + −
  

          (17) 

Consequently, κ and XK are not determined by the values of Ę but by the val-
ues of K = Ę – U. Once the allowed values of κ are determined from Equation 
(16) and the boundary conditions, the allowed values of the relativistic kinetic 
energy of the particle K = Ę – U are given by:  

( )
2 2

.
1V

K
m

κ
γ

=
+
                          (18) 

As expected, when γV ~ 1, Equation (18) gives the non-relativistic values of 
the particle’s energies at low speeds, ( )2 2~ 2K mκ  [1] [2] [3] [4]. Moreover, 
from Equation (18) and the relativistic equation, ( ) 21VK mcγ= − , follows that 
[11]: 

2
2 21 , , .C
V C

h
mc

λ
γ λ λ

λ κ
π = + = = 

 
                (19) 

In Equation (19), λC is the Compton wavelength associate to the mass of the 
particle [8] [10], and λ is the De Broglie wavelength of the wavefunction given 
by Equation (7) and Equation (10) [1] [2] [3] [4]. Substituting Equation (19) in 
Equation (18) allows obtaining an analytical expression of the precise qua-
si-relativistic kinetic energy of the particle: 

2 2

2
.

1 1 C

K

m

κ

λ
λ

=
   + +     



                    (20) 

As expected, Equation (20) match the non-relativistic expression of the par-
ticle’s kinetic energy when p = h/λ is very small because Cλ λ . However, in 
each region where the value of U is constant, the values of K and then Ę = K + U 
calculated using Equation (20) are smaller than the ones calculated using the 
Schrödinger equation. 

3. Movement in a Central Potential 

A quantum state of a particle with mass m moving at quasi-relativistic energies 
in a central potential, U(r), is a solution of the following 3D Grave de Peralta 
equation [7]: 

( )
( )

( ) ( ) ( )
2

2, , , .
1V

i t t U r t
t r m
ψ ψ ψ

γ
∂

= − ∇ +
∂ +  



 r r r        (21) 

In Equation (21), γV and V2 depend only on the radial variable (r) because the 
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potential is a central potential. In spherical coordinates, the Laplacian operator 
in Equation (21) is given by the following expression [1]: 

( )
2

2 2
,2 2

1 1 .r
r r r θ ϕψ ψ ψ∂

∇ = + ∇
∂

                    (22) 

In Equation (22): 
2

2
, 2 2

1 1sin .
sin sinθ ϕ θ

θ θ θ θ ϕ
∂ ∂ ∂ ∇ = + ∂ ∂ ∂ 

               (23) 

Using Equation (22) and Equation (23) allows for rewriting Equation (21) in 
the following way [7]:  

( )
( )

( )
( )

2 2 2
2

,2 2 .
1 1V V

i r U r
t rr mr r mr θ ϕψ ψ ψ ψ

γ γ
∂ ∂

= − − ∇ +
∂ ∂+ +      

 


  (24) 

The second term of the right size of Equation (24) corresponds to the rota-
tional energy of the particle. For a quantum rotor, which describes a particle 
moving in a sphere, r is constant [2] [5]. This allows for simplifying Equation 
(24) in the following way [7]: 

( )
( )

( )
2

2
,2, , .

1V

i
t mr θ ϕψ θ ϕ ψ θ ϕ

γ
∂

= − ∇
∂ +



             (25) 

The explicit absence of a potential in Equation (25) determines that it has so-
lutions with constant values of Ę, K, γV and V2 [7]. However, one should expect 
to have solution of Equation (24) with constant values of Ę, but all K, γV and V2 
depending on r. Looking for a solution of Equation (24) as in Ref. [1]:  

( ) ( ) ( ), , , , e .
i Ęt

r t R rψ θ ϕ θ ϕ= Ω                  (26) 

Results: 

( ) ( )2
, , , .θ ϕ θ ϕ η θ ϕ∇ Ω = Ω                    (27) 

And:  

( )
( )

( )
22

2 2 2

11 d .
d

V r mr RrR Ę U r R
r r r

γ
η

+  + − = −  


         (28) 

Equation (27) is the well-known equation for the spherical harmonic func-
tions [1] [2] [3] [4] [5], which solutions are: 

( ) ( ) ( ) ( ), , , ; 1 ; 0,1, 2, ; , 1, ,0,1, , .m
l m lY l l l m l l lθ ϕ θ ϕ ηΩ = = + = = − − +   (29) 

Here, ( )m
lY  are the spherical harmonic functions [1] [2] [3] [4] [5]. Substi-

tuting η given by Equation (29) in Equation (28) and looking for a solution of 
the form R(r) = χ(r)/r as in Ref. [4], then results the following equation: 

( )
( )

( ) ( )
2

2 2

1d 0.
d

V r m
r Ę W r r

r
γ

χ χ
+  + − =  



          (30) 

In Equation (30): 

( ) ( )
( )

( )2

2

1
.

1V

l l
W r U r

rr mγ

 +
= + 

+    



             (31) 
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The radial equation, Equation (30), is then formally identical to Equation (16) 
with: 

( ) ( ) ( ) ( ) ( ) ( )1 11 1 .V V

p r
r r mK r r m Ę W rκ γ γ= = + = + −          

  

   (32) 

At low particle speeds, γV(r) ~ 1, thus Equation (30) coincide with the radial 
equation that can be obtained when solving the same problem using the Schrödin-
ger equation [1] [2] [3] [4] [5]. However, at quasi-relativistic energies, γV de-
pends on r; therefore, in general, the solutions of Equation (30) are different 
than the solutions of the radial equation for the Schrödinger equation. A notable 
exception is the infinite spherical well problem for l = 0 where U(r) is given by 
the following expression [4]: 

( )
0,

,
o

o o

r r
U r

U r r→

<
=  +∞ ≥

                    (33) 

In this case ( ) 0W r ≡ ; thus K, γV, and V2 are constant inside the well. Equa-
tion (30) can then be solved as it is done for the Schrödinger equation. Conse-
quently [4]: 

( )
2

2
2 .

1n n
V o

hĘ K n
mDγ

= =
+

                    (34) 

In Equation (34), Do = 2ro and n is a positive integer number. From Equation 
(34) and the relativistic equation ( ) 21VK mcγ= −  follows that: 

2
2 21 , .C
V C

o

hn
D mc
λ

γ λ
 

= + = 
 

                  (35) 

Substituting γV given by Equation (35) in Equation (34) results: 
22

2

2
.

1 1

C
n

o
C

o

nĘ mc
Dn

D

λ

λ

 
=  
     + +     

               (36) 

As expected, γV ~ 1 when n = 1 and o CD λ ; thus, Equation (36) coincides 
with the energies of the infinite spherical well calculated using the Schrödinger 
equation [4]. In contrast, when the diameter of the well is close to λC, the mini-
mum particle energy is quasi-relativistic; therefore, Equation (36) must be used. 
For instance, 2 2Vγ = , V ~ 0.7c, and K ~ 0.4mc2 when Equation (35) is evaluated 
for n = 1 and Do = λC. However, 2 5Vγ =  and K ~ 1.2mc2 when n = 1 and Do = 
λC/2. The number of particles may not be constant at these energies. Conse-
quently, the Grave de Peralta equation establishes a fundamental connection 
between quantum mechanics and especial theory of relativity: no single particle 
with mass can be confined in a volume much smaller than 31 8 Cλ  because when 
this occurs, K > mc2 and the number of particles may not be constant anymore; 
therefore, a single point-particle with mass cannot exist. Point-particles with 
mass can only exist in fully relativistic quantum field theories where the number 
of particles is not constant. This is true for an electron, a quark, and probably 
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may also be true for a black hole and the whole universe at the beginning of the 
Big Bang. This is consistent, for instance, with the confinement of an electron in 
the Hydrogen atom because for an electron λC ~ 2.4 × 10−3 nm, which is ~ 20 
times smaller than the Bohr radius of the Hydrogen atom, rB ~ 5.3 × 10−2 nm [1] 
[2] [3] [4] [5]. It should be noted that strictly speaking, the problem corres-
ponding to the potential defined by Equation (33) is a relativistic problem be-
cause 2

oU U mc∆ =   and thus the number of particles may not be constant. 
Nevertheless, the non-relativistic and quasi-relativistic infinite well problems 
could be considered approximations to the problem of a quantum particle abso-
lutely trapped in a finite region. This is because for obtaining Equation (34) and 
Equation (36) the infinitude of the potential is only used for arguing that χ(r) 
should be null everywhere except inside of the well, thus assigning null boundary 
conditions to Equation (30). 

4. Hydrogen-Like Atoms 

In the Hydrogen atom or in highly ionized atoms with a single electron, U(r) is 
the Coulomb potential [1] [2] [3] [4] [5]: 

( ) ( )
2

.
4C

o

e ZU r U r
rε

= = −
π

                      (37) 

Here, e is the electron charge, Z is the atomic number, and εo is the electric 
permittivity of vacuum. Therefore, the radial equation corresponding to the qu-
asi-relativistic states of the electron in a hydrogen-like atom with a nucleus of 
mass mn is given by the Equation (30) with the electron mass, me, substituted by 
the reduced mass of the electron, ( ) ( )e n e nm m m mµ = + , i.e.: 

( )
( )

( ) ( )
2

2 2

1d 0.
d

V
C

r
r Ę W r r

r
γ µ

χ χ
+  + − =  



            (38) 

In Equation (38): 

( ) ( )
( )

( )2

2

1
.

1C C
V

l l
W r U r

rrγ µ

 +
= + 

+    



              (39) 

As expected, when the electron moves slowly (V c ) then γV ~ 1; therefore, 
Equation (38) reduces to the radial equation of a hydrogen-like atom obtained 
using the Schrödinger equation [4]. Using Equation (5), it is possible to elimi-
nate γV from Equation (38) and Equation (39) by making: 

( ) ( ) 22

2 2 2 2 2

1 22 .V Cr Ę U r cK c
c c

γ µ µµ+ − +   +   = =
  

          (40) 

 Using Equation (40) then allows for rewriting Equation (38) in the following 
way: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

2 2

2

2

1d
2 2d
1 0.

2

C

C

l l
r Ę U r r r

µr r

Ę U r r
c

χ χ χ
µ

χ
µ

+  − − − +     

− − =  

 

       (41) 
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The term between braces in Equation (41) coincides with the radial equation 
that should be solved when using the Schrödinger equation [4]. The last term of 
Equation (41) can be disregarded when 2K cµ

; therefore, the last term is a 
quasi-relativistic correction to the non-relativistic radial equation. Proceeding 
like it is done when solving the non-relativistic radial equation, one can intro-
duce [4]: 

1 2 .Ęζ µ= −


                          (42) 

For bound states, Ę < 0; therefore, ζ  is real. Using Equation (42) allows for 
rewriting Equation (41) in the following way: 

( ) ( )
( )
( )

( ) ( ) ( )

2 2

2 2 2 2

22 2
2

2

11 d 1
d 2

.
2

o

l le Zr
rr r

Z Z r
c r cr

µχ
ζζ ε ζ ζ

α ζ α ζ χ
µ ζ µζ

 += − + 
π  

   − − +  
    



 

      (43) 

where α is the fine-structure constant [8] [9] [12]: 
21  ~ 1 137.

4 o

e
c

α
ε

=
π 

                      (44) 

It is convenient to rewrite Equation (43) as: 

( ) ( )

( )
( )

( )

22 2

2 2 2

2 2

2

1 d 1
2d 2

1
.

o

e Zr
c c rr

l l Z
r

r

ζ µ ζχ α
µ µ ζζ ε ζ

α
χ

ζ

     = − − −       π         
+ − + 


 



      (45) 

So that introducing the new variables: 
22

12, , 1 .
22o

o

er Z
c c

µ ζ ζρ ζ ρ α ρ
µ µε ζ

    
≡ ≡ − ≡ −    π      

 



       (46) 

Allows for rewriting Equation (45) in the following way: 

( ) ( ) ( )
2 22

12 2

1d .
d

o l l Zαρ
χ ρ ρ χ ρ

ρρ ρ
 + −

= − + 
  

           (47) 

If the electron was free and moving slowly with kinetic energy K = Ę, then its 
linear momentum would be cζ µ  . In this limit, one can approximate Equ-
ation (46) in the following way [3] [4]: 

2

12, ~ , ~ 1.
2o

o

e Zr µρ ζ ρ ρ
ε ζ

≡
π 

                  (48) 

Using Equation (48), and considering that for the Hydrogen atom 2 2 1Zα  , 
allows for approximating Equation (47) in the following way [3] [4]: 

( ) ( ) ( )
2

2 2

1d 1 .
d

o l lρ
χ ρ χ ρ

ρρ ρ
+ 

= − + 
 

               (49) 
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which is the equation that is solved for the Hydrogen atom when using the 
Schrödinger equation [4]. Consequently, when solving the Schrödinger equation 
can be found that [4]: 

2 , 1, 2,3,o n nρ = =                        (50) 

From Equation (50), Equation (48), and Equation (42) then follows for Z = 1 
the following well-known result [2] [3] [4]: 

22

, 2 2

1 .
42n Sch

o

eĘ
n

µ
ε

  
 = −  π   

                  (51) 

However, each of the three terms in the right side of Equation (47) contains a 
different quasi-relativistic correction to the radial equation of hydrogen-like 
atoms. Nevertheless, one can try to solve the quasi-relativistic Equation (47) as 
Equation (49) is solved [4]. When ρ →∞ , the constant term in the brackets in 
Equation (47) dominates, so (approximately): 

( ) ( )
2

12

d .
d

χ ρ ρ χ ρ
ρ

=                       (52) 

which general solution is: 

( ) 1 1e e .A Bρ ρ ρ ρχ ρ −= +                     (53) 

But 1 0ρ > ; therefore, B must be null, so for large ρ: 

( ) 1~ e .A ρ ρχ ρ −                         (54) 

On the other hand, when 0ρ →  the centrifugal term dominates; approx-
imately, then: 

( ) ( ) ( )
2 22

2 2

1d   .
d

l l Zα
χ ρ χ ρ

ρ ρ
+ −

=                 (55) 

Which general solution is: 

( )
( ) ( )2 22 2 2 21 11 1 2 4 1 1 2 4

2 2 .
l Z l Z

C D
α α

χ ρ ρ ρ
   + + − − + −      = +          (56) 

Therefore, D must be null, so for small ρ: 

( )
( )2 2 21 1 1 2 4

2~ .
l Z

C
α

χ ρ ρ
 + + −                       (57) 

As expected, if the quasi-relativistic corrections are very small, then Equation 
(54) and Equation (57) reduces to the ones obtained when using the Schrödinger 
equation [4]. After knowing the asymptotic behavior of ( )χ ρ , one can look for 
a solution of Equation (47) as [4]:  

( ) ( )
( )2 2 2

1

1 1 1 2 4
2  e .

l Zα ρ ρχ ρ τ ρ ρ
 + + −  − ≡                (58) 

From Equation (58) and Equation (47) then follow that ( )τ ρ  is a solution of 
the following equation:  
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( ) ( ) ( ) ( )

( )( ) ( )

2
2 2 2

12

2 2 2
1

d d1 2 1 2 4
dd

1 1 2 4 0.o

l Z

l Z

ρ τ ρ ρ ρ α τ ρ
ρρ

ρ ρ α τ ρ

 + − + + −  

 + − + + − =  

      (59) 

Again, as expected, if the quasi-relativistic corrections are very small, then 
Equation (59) reduces to the one obtained when using the Schrödinger equation 
[4]. Finally, assuming that ( )τ ρ  can expressed as a finite power series in ρ  
[4]: 

( ) max
0 .j j

jj aτ ρ ρ
=

= ∑                          (60) 

And substituting Equation (60) in Equation (59) results: 

( )( )
( ) ( )( )

2 2 2
1

1
2 2 2

2 1 1 2 4
.

1 1 1 2 4

o

j j

j l Z
a a

j j l Z

ρ α ρ

α
+

 + + + − −  =
 + + + + −  

           (61) 

Evaluating Equation (61) for maxj j=  and making 
max 1 0ja + = , results: 

( )( )2 2 2

1

2 1 1 2 4 .o j l Z
ρ

α
ρ

 = + + + −  
               (62) 

As expected, if the quasi-relativistic corrections are very small, then Equation 
(62) reduces to Equation (50) with 1n j l= + +  [4]. Nevertheless, one can re-
write Equation (62) in the following way:  

( ) 12 , .o n l Zρ ρ= + ∆                        (63) 

In Equation (63): 

( ) ( )( ) ( )2 2 2, 1 1 2 4 2 1 .l Z l Z lα ∆ = + + − − +  
           (64) 

Substituting oρ  and 1ρ  given by Equation (46) in Equation (63), solving 
the resulting equation for ζ , and using Equation (42) allows for obtaining an 
exact analytical expression for Ę, which now depends not only on the principal 
quantum number n, but also on the angular quantum number l, and Z . For in-
stance, assuming that the quasi-relativistic corrections included in oρ  and 1ρ  
do not need to be accounting for because they are too small, the effect of the qu-
asi-relativistic correction included in the centrifugal term in Equation (63) is 
quantified by the following equation: 

( )

22 2

, 2 2 .
22 2 ,

n l
o

e ZĘ
n l Z

µ
ε

  
 = −  π  + ∆     

              (65) 

As expected, if α was null and Z = 1, then Equation (65) would be identical to 
Equation (51). However, ( ) 0,l Z∆ <  and ( ),l Z∆  increases when Z increases. 
Therefore, for n > 1 and l > 0, the degeneration of Ęn given by Equation (51) is 
broken by the quasi-relativistic correction ( ),l Z∆ . This effect is more pro-
nounced for heavy elements. In addition, as shown in Figure 1, ( ),l Z∆  de-
creases when l increases; therefore, ,n l nĘ Ę→  when l is large. Figure 1 shows a  
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Figure 1. Schematic of the values of Ęn,l - Ęn (in eV), which are calculated for Z = 1 and n 
= 1, 2, 3 using Equation (65) and Equation (51), respectively. The inset at the right per-
mits to appreciate the details corresponding to the energy levels n = 2 and 3. 
 
schematic of the calculated values of ,n l nĘ Ę−  in eV, where Ęn,l and Ęn were 
evaluated using Equation (65) with Z = 1 and Equation (51), respectively. In all 
cases, stabilizing negative quasi-relativistic corrections to the non-relativistic 
energies were obtained. This is because the negative contribution of −α2Z2 in the 
numerator of the centrifugal term in Equation (47).  

In columns 2 and 3 in Table 1 are reported the calculated values of Ęn,l (in eV) 
that were calculated using Equation (65) and Equation (63), respectively. The 
difference between the approximated values (Equation (65)) and the exact values 
(Equation (63)) of Ęn,l are ~0.01 meV; thus smaller than the exact values of 

, 0n l nĘ Ę= −  reported in the third column of Table 1. Therefore, Figure 1 also 
represents a good schematic of the exact values of ,n l nĘ Ę− ; i.e. calculated using 
Equation (63) and Equation (51). There is an excellent correspondence between 
the exact values of ,n l nĘ Ę−  reported in the third column of Table 1, and pre-
viously reported values of the relativistic correction to Ęn [4] [12]. This suggests 
that the solutions of Equation (63) are approximately equal to [4] [12]: 

2
2

, , 2

3~ 1 .
14
2

n l n Sch
nĘ Ę Z

n l

α
  
   − −  
  +
   

                 (66) 

where Ęn,l,Sch given by Equation (51) correspond to the Hydrogen energies calcu-
lated using the Schrödinger equation. In correspondence with this, one can show 
that the values of Ęn,l calculated using Equation (65) are approximately equal to: 

( )
2

2
, ,

2~ 1 .
2 1n l n SchĘ Ę Z

n l
α 

+  + 
                   (67) 

Indeed, Equation (65) can be rewritten as: 

( )
2 2 2

, 2

1 .
2 ,

n lĘ c Z
n l Z

µ α= −
+ ∆  

                 (68) 
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Table 1. First four columns: Calculated values of Ęn,l (in eV) and Ęn,l - Ęn (in meV). The 
last three columns report the calculated values of the energies (in eV) and wavelengths (in 
nm) corresponding to the Hydrogen’s Lyman (second row) and average Balmer α-line 
(sixth row), which were calculated using the exact quasi-relativistic values of Ęn,l reported 
in the third column. 

(n,l) Equation (65) Equation (63) Enl − En (meV) (n',l') → (n,l) En’l’ − En,l λ (nm) 

(1,0) −13.5997 −13.5992 −0.90526 (2,1) → (1,0) 10.1996 121.558 

(2,0) −3.39975 −3.39972 −0.147102 (3,1) → (2,0) 1.88879 656.422 

(2,1) −3.39963 −3.3996 −0.0264008 (3,0) → (2,1) 1.88863 656.477 

(3,0) −1.51097 −1.51097 −0.046938 (3,2) → (2,1) 1.88867 656.462 

(3,1) −1.51094 −1.51093 −0.0111749 (3) → (2,1) 1.88863 656.4695 

(3,2) −1.51093 1.51092 −0.00402301    

 
Then Equation (67) can be obtained from Equation (68) using the following 

approximated relations: 

( ) ( )
( ) ( )

2

2 2

,1 1 2~ 1 , , ~ .
2 122 ,

l Z
l Z

n lnn l Z

α∆ 
− ∆ −  ++ ∆    

       (69) 

This is an important result: the quasi-relativist energies calculated using the 
Grave de Peralta equation corresponds to the sum of the non-relativistic ener-
gies calculated using the Schrödinger equation plus the relativistic corrections to 
the kinetic energy. Consequently, these energies do not include the Darwin 
energy term [12]. In addition, like the Schrödinger equation, Equation (21) and 
Equation (38) describe a charged particle with spin-0 moving in a Coulomb po-
tential; therefore, no spin-orbit interaction is included in Equation (63) and Eq-
uation (65). It is well-known that both the Darwin and spin-orbit corrections are 
needed for a successful description of the Hydrogen spectrum [8] [9] [12]. Nev-
ertheless, it is good to emphasize the improvement that can be obtained by using 
the Grave de Peralta equation in comparison to using the Schrödinger equation. 
The quasi-relativistic approximation to the Hydrogen spectral lines correspond-
ing to the α-lines of the Lyman and Balmer series can be estimated using the 
values of En,l reported in the third column of Table 1 and the spectral rule 

1l∆ = ±  [12]. The calculated values of , ,n l n lE E′ ′ −  (in eV), which correspond to 
all possible transitions between the states (n, l) reported in the third column of 
Table 1, are reported in the sixth column of Table 1. The corresponding wave-
length values (in nm) are reported in the last column of Table 1. Table 2 allows 
for making a breve comparison between the calculated values reported in the last 
two columns of Table 1 and previously reported experimental data [13] [14]. 
The doublet structure of the α-Lyman Hydrogen line cannot be explained with-
out the spin-orbit interaction because only the transition (2,1) to (1,0) satisfices 
the spectral rule 1l∆ = ± . However, the existence of the doublet fine-structure of 
the Balmer’s α-line could be calculated as corresponding to the λ1 = 656.422 nm 
spectral line produced by the (3,1) to (2,0) atomic transition and the λ2 = 
656.4695 nm spectral line, which was estimated as in the middle of the spectral  
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Table 2. Experimental (second column) and calculated (third column) wavelengths cor-
responding to the doublet structure of the Hydrogen’s Lyman (first two rows) and Balmer 
α-lines (last two rows). 

(In nm) Experimental Calculated 

α-Lyman (λ in nm) 121.567 121.558 

α-Lyman (Δλ in nm) 0.006 No 

α-Balmer (λ in nm) 656.279 656.422 

α-Lyman (Δλ in meV) 0.04 0.16 

 
lines corresponding to the atomic transitions (3,0) to (2,1) and (3,2) to (2,1). 
This corresponds to a Balmer’s α-doublet separation of ∆λ ~ 0.048 nm or ∆E ~ 
0.16 meV. Nevertheless, as shown in Table 2, this value is four times larger than 
the experimental value [14], which demonstrates the need for including in the 
calculation both the Darwin and the spin-orbit contributions.  

5. Conclusion 

It has been shown how to solve the Grave de Peralta equation for a charged 
quantum particle with mass and spin-0, which is moving in a Coulomb potential 
or contained in a spherical infinite well. The solutions were found following the 
same procedures and with no more difficulty than the corresponding to solving 
the same problems using the Schrödinger equation. Nevertheless, the solutions 
found in this work are also valid when the particle is moving with quasi-relativistic 
energies. For instance, it was shown that the energies of the electron in a Hy-
drogen atom, which were calculated by solving the Grave de Peralta equation, 
includes the relativistic Thomas correction. Moreover, the relativistic correction 
to the kinetic energy is just an approximation found using a perturbative ap-
proach while Equation (63) was exactly solved. In addition, it should be noted 
that Equation (41) is different than the radial equation obtained using the 
Schrödinger equation. The author is currently working on solving Equation (41). 
This will allow to obtain more precise expressions for the atomic orbitals cur-
rently used in numerous ab initio computer packages dedicated to computer 
calculations in physical-chemistry and atomic and solid-state physics.  
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Abstract 
Article continues and complements our previous articles on the HM16 ether 
(ETH) model. Here, we describe the mechanism of occurrence of the submi-
croparticle (SMP). A general hypothesis, HFVI, is introduced for the modali-
ties of interaction between two SMPs, based on periodic mechanical percus-
sion forces, produced by fundamental vibrations FVs. A mechanism for de-
scribing the interaction between a SMPs and the ETH is presented. Positive 
and negative particles are defined by their membrane types of movement, 
such as +,−u/+,−v vibrations, and rotations at speeds +Ω/−Ω. The process of 
creating a pair of SMPs is discussed. Applying HFVI to the interaction be-
tween pairs of SMPs immobile in ETH, and considering longitudinal FVL, 
was obtained the forces of attraction/repulsion +FL21/–FL21, which correspond 
to the completed Coulomb force FCC including gravitation. The resultant FRL21 
will form an oriented field of forces, which is a quasielectric field QE, equiva-
lent to actual E electric field. Considering transversal FVT, was obtained the 
vibratory forces +,−FT21, whose resultant forms an vibrating field of forces, 
QHs, a quasimagnetic special field, which may explain some of the quantum 
properties of SMPs. Considering a mobile SMP, two new γ strains in ETH 
appear. Strains γL are created by the displacement of SMP with velocity V, 
whose force +,−FT12 is the support of a component of the magnetic field H 
(quasimagnetic field QH), giving the QHL component. Strains γR are created 
by the rotation of SMP with speed Ω, whose force +, −FR12 constitutes physi-
cal support of the component QHR of magnetic field H (i.e. QH). The crea-
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tion of a photon PH is modelled as a special ESMP containing two zones of 
opposed rotations, and a mechanism is presented for its movement in the 
ETH with speed c based on the HS hypothesis of screwing in ETH, with fre-
quency ν. 
 

Keywords 
Nature of Electrical Charges, Submicroparticle Constitution, Microparticle 
Interaction by Percussions, Ether Model HM16 with Fundamental  
Vibrations, Completed Coulomb’s Law, Photon Constitution and Travel 

 

1. Composition of Submicroparticles in the Form of Complex  
Self-Functional Cells 

The HM16 ether model, originally proposed by the present authors in 2016 [1], 
will be used as the starting point in this article for development regarding the 
composition, behaviour and effects of the ETH in nature, and particular in 
physics. We will use the abbreviations used in [1], and these will be redefined 
and completed here. 

We use the following terminology: MP: microparticle, SMP: submicroparticle, 
SMPP: positive submicroparticle (rather than SMP+), SMPN: negative submi-
croparticle (rather than SMP−), ESMP: elementary or special submicroparticle, 
PH: photon, RF: reference frame, EC: base cells of the ether, PC: constituent cell 
of an SMP, EP: ether constituents (etherons α, β), and MB: material body. 

We will also refer to neutral SMPs as SMPNEs. These include neutrons, and 
consist of SMPP and SMPN types, in pairs (Figure 1). 

We denote the ether as ETH, with its customisation, the HM16 model, which 
contains the fundamental vibrations FV of the EC cells of free ETH. PV is used 
to denote the vibrations of PC cells inside any type of microparticle (MP). FCC 
indicates the corrected/completed Coulomb electrical force, while FC represents 
the classical electrical Coulomb force; FN means Newton’s classical gravitation 
force, and FDC denotes the corrected electrical force between two electrical di-
poles that actually constitute gravity [2] [3]. We use ε and γ to represent the spe-
cific/unitary linear and angular/tangential deformations (strains), while σ and τ 
represent the normal and tangential unitary forces (stresses), respectively. 

It should be noted that in HM16, all types of MPs, including SMPs and 
ESMPs, have the composition of an SMP autonomous cell (SMPAC) at the in-
ternal organisational level, as they are complex and self-functional in a similar 
way to live organism cells (LOCs).   

Although we present SMPs as having a simple spherical shape, they may also 
take on more complex forms such as cylinders, ellipsoids, stars, neurons, etc., 
since SMPs form the most complex existing body, the universe, which requires 
interconnectable foundation bricks of similar complexity (Figure 1). 
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Figure 1. SMPAC shape model of SMPs. (a) SMPS spherical and neuronal types; (b) 
Neutron type. 

 
This composition of the particles of all known existing matter mainly involves 

the make-up of all SMPs in nature, in the form of SMPACs, and we call this the 
hypothesis of cellular organisation (HCO) of SMPs. 

In the HCO, SMPAC cells have well-known LOC substructures, including a 
nucleus (NC), protoplasm (PP), and a membrane (MM) (Figure 1). The MM is 
primarily responsible for protecting the integrity of the SMP and preserving its 
number of substructures, all having an ethereal nature. The role of the MM is to 
preserve its own energy E, and thus to ensure the functional maintenance of the 
SMP. The MM also determines the possible interaction, contact and association 
of SMP with other surrounding SMPs or MPs, and ensures permanent contact 
with the first row of ECs from free ETH, or even with basic etherons (ETs), so 
constituting the S surface of SMP, noted S/MM. 

The MM is also responsible for facilitating exchanges of the etheronic material 
of ECs, energy (E) or information (INF) (related to energy) between SMPs or 
between MPs. 

In the HCO, the PP constitutes the basic matter of the SMP, and is made up of 
PCs. However, these PCs are formed of ETs, which make up the internal cells of 
the PC. PP ensures lossless storage of the energy Ep of the SMP, and consists of 
permanent vibrations/vortices with rotation speed ω, of the internal PCs ethereal 
cells. The PP therefore directly participates in any changes or exchanges of energy, 
and even of ECs cells with external ETH, or with other SMPs, thus ensuring the 
functionality of the SMP. 

The PP also has the primary role of preserving the SMP’s mass m through the 
PCs it contains; this mass will need to be defined in the future. 

In this model, the NC core is responsible for recording and storing the foot-
print (FP) of the SMP in terms of the nature of the information recorded inter-
nally in the NC. The NC stores and processes information exchanged with the 
ether and with the SMPs in the external environment. It also determines by 
commands the actions/reactions of the SMP and creates the reactions of the 
SMP to INF received from the outside, including specific reactions of attraction 
or rejection, as part of the process of interaction between the SMPP and SMPN 
(Sections 3, 4). 

To achieve this, the NC core has a DNA composition in the same way as in an 
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LC cell, due to the formation of the SMP, which allows it to perform these smart 
functions. 

It follows from the HCO that MPs, including SMPs, have the same behaviour 
or manifestations as LC entities, and are in a permanent state of vibration and 
movement, and therefore should not be regarded as inert or “dead” particles. 

2. HFVI Hypothesis: Interaction between SMPs via  
Percussive Forces, Given by FVLs and FVTs 

In our original 2016 paper on the HM16 ether model [1], we discussed the abili-
ty of MPs and SMPs to transmit FVs to the ETH around them, thus justifying 
interactions between SMPs in principle. Today, these interactions are considered 
to be electrical or gravitational forces, although the actual physical nature of 
these two interactions and forces and the concrete mechanism of interaction via 
mechanical forces acting between SMPs have not yet been explained. 

In this article, we present and discuss in detail a new complex hypothesis 
called HFVI, which involves the fundamental vibration interactions and the 
mechanism for interaction between SMPs via the percussive forces created by 
the FVs of the ETH, permanently acting in the ETH, and between all SMPs. 

2.1. General Framework for the Implementation of HFVI 

We first admit the mechanical interactions unity principle (MIUP), according to 
which an interaction force F (here, F, p, ps, σ, τ, etc.) and the accompanying de-
formation δ (here, Δx, u, v, us, vs ε, γ, etc.) are inseparable, as a moment ti in 
time, and as the point Mi of the interaction in space (ether). The presence of one 
of these parts logically implies the presence of the other part. 

In HFVI, these interactions between SMPs via FVs occur exclusively through 
mechanical actions of periodic percussion forces +,−pp, which act discretely at 
the SMP level. We consider here that the percussion forces +,−pp are the only 
real actions that are physically possible, both in the case of interactions between 
MBs in nature and interactions between SMPs in physics, including electromag-
netism, atomic physics and quantum physics. We assume that any force F in 
physics or nature that is considered to be continuous, in fact is based on periodic 
percussion forces +,−pp. These periodic percussion forces form the actual physi-
cal basis of quantum mechanical interactions. 

It should be noted that this mechanism of percussion forces +,−pp that in 
HFVI explains the behaviour of SMPs and their interactions via FVs has not 
been confirmed on an experimental basis at the SMP scale; only laboratory-scale 
experiments have been carried out, and we rely on these here. This is the reason 
for the development in this paper of a physical mechanism of interaction at SMP 
scale through percussion forces +,−pp, in the form of the HFVI hypothesis.  

However, our HFVI can be initially confirmed by ensuring the functionality of 
the HM16 ether model based on the results of analyses of detailed interactions 
between SMPs, as discussed later in this article. 
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It should be noted that HFVI is not consistent with currently accepted con-
cepts in mainstream physics, as it does not allow for the existence of the ether 
and instead assumes the validity of the SRT and GR. However, as we have pre-
viously demonstrated theoretically [4] [5] [6] [7] [8], these two theories are 
beautiful mathematical inventions that correctly describe the behaviour of SMPs 
at the macro scale, but do not describe the interactions at SPMs scale in a me-
chanical sense. This is similar to the situation created by Ptolemy’s geocentric 
theory, which for many centuries was able to explain the movements of the pla-
nets on a large scale via the geometric contrivance of epicycles, but which ulti-
mately proved to be inconsistent with observable astronomical reality. 

Our hypothesis (HFVI) for the action of FVs arises from the actual behaviour 
of continuous elastic crystalline bodies (ECBs), which we propose are similar to 
our model of the type A ether, called HM16 [1]. These ECBs are found in daily 
life on a human scale in many forms, for example in natural rocks, manufac-
tured metals, man-made buildings, industrial materials, etc. 

In our previous paper [1], we postulated that the ETH is also a real natural 
elastic body with a special nature or composition and somewhat ideal properties, 
which are as yet unknown from direct study. These properties are known only 
indirectly from observations of the interactions between ETH and ordinary 
matter (still noted with OM). It follows that the mechanical behaviours and 
properties of these two bodies, the ETH and the ECB, can and must be common 
and similar. 

2.2. Similarities between the Properties of Elastic Body ECB and  
the ETH  

It is known from mechanics that an ECB will undergo relative displacements of 
its component particles through deformations of its shape, if it is acted on at one 
of its points M at some time t by a local instantaneous force on a small area, 
called a percussion force or simply percussion, p. 

We will assume that these percussions are always periodic forces p = +,−pp, if 
they act for a finite period of time on the ECB. 

As a general rule, we will consider that the sign of any force F, including the 
percussion +,−pp, will be positive (+/P) if it produces tension on the surface on 
which it acts and vice versa, i.e. a force will be negative (–/N) if it causes com-
pression at that surface. 

It is known that the percussion forces acting on an ECB can be of two types: 
normal forces on the surface on which they act, denoted here as +,−pn (with the 
related unit force or stress +,−σ) and tangential forces at the surface, denoted as 
+,−pt (with the related unit force or stress τ). Depending on the significance of 
the force, we can also use other notations and indices. 

The deformations in the ECB created by a periodic force +,−pp will have the 
general forms known from mechanics: linear deformations u, created by pn 
forces, and shear angular deformations v, created by pt forces. These u and v de-
formations will create in the ECB specific deformations or strains, that are linear 
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(ε) and angular (γ), respectively, and these are also periodic. 
These two types of deformations in the ECB environment (linear u/ε and an-

gular v/γ) may occur in any combination, i.e. separately (u/ε or v/γ), or together. 
We assume in HFVI that in the special physical body of the ETH, a third com-
bination is also possible over time, at any point in space. 

A real situation in mechanics and nature that is similar to an SMP within the 
ETH is the spatial deformation of a body/environment caused by an explosion 
or shock/percussion at a point M inside a massive ECB. In this context, we can 
mention the explosion caused by a bomb or shell in the air, water or earth, the 
explosion of dynamite in a mountain to create a tunnel, or the more well-known 
and well-studied case of the onset of an earthquake in the rock of the earth’s 
crust. 

The way in which waves are transmitted in an ECB environment is very well 
illustrated by seismic waves, which appear and are transmitted through the earth’s 
crust in all directions in spatial/spherical form, starting from a point called the 
hypocentre at which the earthquake originated. In this case, u-type longitudinal 
waves are also called principal waves (P), and the v-type transversal waves are 
called secondary waves (S); these are known to spread independently and with 
different propagation speeds, VP and VS, respectively, within the rock of the 
earth’s crust [9]. 

Obviously, the similarity with the ECB/ETH system is only partial, since the 
two cases involve different phenomena; in the case of explosions or earthquakes, 
the short duration does not allow the static equilibrium steady state described in 
Section 2.3.2 (Figure 3) to be achieved, and energy transport will be present in 
the ECB. However, the deformations of types u and v are similar. 

2.3. Mode of Functioning of SMPs in the ETH in HFVI 
2.3.1. SMP Behaviour Exposing Deformations us and vs Creating FVs in  

the ETH 
1) Case of deformations us: 
In HFVI, we postulate that the ETH is made up internally of individual ECs 

with bonds between them that are elastic at small deformations to form a conti-
nuous and infinite body, whose overall behaviour can be represented by the 
HM16 [1] model. 

We consider the situation where an SMP1 is present at a point M = O1 in the 
ETH at time t0, whose outer surface/membrane S/MM we assume to be near 
spherical; the surface S is represented by the cell membrane MM in HCO. 

For the purpose of positioning the physical elements in space, any point Mi in 
space is represented in HFVI using a Cartesian coordinate system Oxyz (Figure 
2), with the origin fixed at a point O attached to an object/SMP, whose velocity 
V relative to the ETH is considered to be known. The orientation of the x, y, z 
axes is chosen based on the directions of symmetry of the crystalline structure of 
the ether, which we assume are known. 

We also assume in HFVI that the surface S/MM exhibits normal/radial vibra-

https://doi.org/10.4236/jmp.2020.116052


I. Has et al. 
 

 

DOI: 10.4236/jmp.2020.116052 809 Journal of Modern Physics 
 

tions +,−us with frequency fn. As a result, we assume that S/MM is the source of 
periodic normal deformations +,−u in surrounding ETH. 

But S/MM also rotates around the Oz axis with rotational speed Ω (frequency 
ft) (Figure 2). As a result, we assume that S/MM is the source of periodic tan-
gential deformations +,−v in surrounding ETH after the subsequent mechanism. 

The vibrational deformations of SMP1, denoted by +,−us (Figure 2), are con-
sidered to be normal at S/MM. They are therefore radial, with alternate expan-
sion and contraction, and have the same spherical symmetry as the SMP1. 

The +,−us deformations at the S/MM surface of SMP1 will act directly on the 
first layer r1 of the ECs in the ETH that are in contact with S/MM (Figure 2), 
producing equivalent deformations +,−u in the ECs from the first row r1 of the 
ETH cells. Obviously, at S, we have: 

, , su u+ − = + −                           (1a) 

Due to the direct contact and links between all ECs in the ETH, deformations 
+,−u in row r2 of the ECs will also occur, and then deformations in row 3 of the 
cells, and so on ad infinitum (Figure 2). These deformations +,−u will be trans-
mitted in the ETH from S/MM to infinity, creating longitudinal fundamental vi-
brations FVL. We note that +,−u are not influenced by the rotational speed Ω of 
SMP. 

2) Case of deformations vs: 
The rotations with speed Ω of the S/MM surface of SMP1 are considered to be 

circular (i.e. continuously rotating) around an axis Oz, after the parallel circles of 
S, and produce in combination with +,−us, the equivalent/reactive tangential 
deformations in S/MM denoted by +,−vs according to the mechanism described 
below (Figure 2). 

Thus, at the contact points between S/MM and the outer ETH in crystalline 
form, which in HM16 is assumed to be immobile, a series of periodic attach-
ments and detachments will occur between S/MM, and the 1st layer of crystalline  
 

 
Figure 2. Simplified spherical model of an SMP showing the +,−us and +,−vs vibrations at 
its surface and the +,−u and +,−v fundamental vibrations in the ether. 
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ECs, due to the periodic oscillatory of normal deformations +,−us of S/MM; 
these have frequency fn (Tn period) and are mechanically coupled with the rota-
tion speed Ω of S/MM with frequency ft (Tt period), will follow (Figure 2). 

During the first time interval 2a nt T∆ = , referred to here as the Active phase 
(PHA), viz. when SMP acts upon ETH, as long as the deformation by expansion 
+us (of S/MM) lasts, an active attachment appears between SMP1 and ETH, and 
a tangential elastic clockwise deformation +v is produced by SMP, in the first 
layers of the ECs in the ETH, due to the rotation of the SMPP with rotation 
speed +Ω. In PHA, the SMP is active and transmits an active tangential percus-
sion pta to ETH together with a tangential deformation +v, involving mechanical 
active work: 

 1 taL p v=                             (1b) 

As a reaction to the deformation +v, a tangential elastic deformation –vs will 
also appear counterclockwise in the first layers of the S/MM, where: 

 sv v=                              (1c) 

In the following period 2r nt T∆ = , referred to here as the Reactive phase 
(PHR), viz. when ETH acts upon SMP as long as the deformation by contraction 
−us (of S/MM) lasts, a reactive deformation appears between SMP1 and ETH, 
and a tangential elastic counterclockwise deformation −v is produced (as recov-
ery of +v) in the first layers of the ECs in ETH, concomitant with the rotation of 
the SMPP with a period Tn (speed +Ω), (Figure 2). In PHR, the ETH is active, 
and transmits a reactive percussion ptr to the SMP together with a deformation 
−v, involving mechanical active work: 

  2 trL p v=                            (1d) 

Under stationary conditions of the couple SMP/ETH, the percussion forces 
will be equal, i.e. tr tap p= , (Newton’s 3rd law) and from (1b), (1c) and (1d), this 
results in a equality in the works done: 

  2 1L L=                              (2a) 

Hence, no loss of energy occurs. The energy accumulated in ETH during PHA 
is entirely returned to the SMP in PHR. 

We note that between PHA and PHR when manifests strong adherence be-
tween SMP/ETH, there may be a certain period of time Δts when adherence dis-
appears, in which slipping occurs between them, without effort τ or deformation 
v, in order to allow for a free rotation speed +Ω of SMP. 

The process of periodic transversal deformations +,−v of ETH completed with 
Δts of slipping SMP/ETH, will be continuous, with normal Tn periods: 

 n a r sT t t t∆ ∆ + ∆= +                      (2b) 

According to Newton’s third law and the MIUP principle from Section 2.1, 
any deformations +,−v in the ECs from the first few rows (1, 2, 3, …) of the ad-
jacent ETH will correspond to the pairs of deformations +,−vs from S/MM of the 
SMP (Figure 2(a)). But this +,−vs is only a partial deformation of S/MM, pro-
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duced between slipping times Δts, when in a slipping time the rest of a complete 
rotation displacement vslip, of S/MM sphere takes place by slipping.  

We note that PHA/PHR phases in case of a SMPN are offset with Tn/2 com-
pared to SMPP. 

The frequency fn of the PHA and PHR processes with period Tn from Equa-
tion (2a), and the size of the deformations +,−vs at the S/MM surface, must be a 
function of the nature of the contact surfaces, the speed of sliding between S/MM 
and the surrounding ECs, and of the rotation speed/frequency Ω (ft) which are 
as yet unknown. 

However, in the present analysis, it is not strictly necessary to know the sizes 
of these parameters, and it is sufficient to assume the existence of the deforma-
tions +,−v in the ETH, which create FVTs. We will assume that ft/(Ω) and fn are 
correlated as whole multiples, depending of number of protuberances in the 
SMP (Figure 1), including the case where n tf f= , for a sphere. In the general 
case, the vibrations FVL and FVT will have a frequency of integer multiples be-
tween them, resulting in: 

 ort n n tf nf T nT= =                         (3) 

but in the following analyse we assume for simplicity n = 1, so n tf f= . 
Hence, us and vs type vibrations of SMP will result in periodic deformations 

+,−u and +,−v in the ETH. These deformations of longitudinal type u and trans-
versal type v, will give rise to permanent vibrations of the ECs in ETH. These vi-
bratory deformations +,−u and +,−v, are referred to as FVs in HM16, since they 
are permanent in time and are uninterrupted by the vibratory deformations in 
the overall ETH, starting from each SMP1 and reaching or exceeding every ex-
isting SMP2 (Figure 2). 

FVs may be of two types, corresponding to +,−u and +,−v deformations, and 
these are referred to as FVLs and FVTs, respectively. Also the lasts may be of two 
types, corresponding to P and N electric sign, as will follow. 

2.3.2. Energy Equilibrium and Transmission 
We now note that at any intermediate point Mi on the front surface of an FV 
wave (Figure 2), each active (initial, from PHA) percussion force pp created by 
an active initial EC in the ETH will correspond a reactive (secondary, from PHR) 
force pp′  (Figure 3(a)). 

These percussions pp′  will be created by the EC’ located on the opposite side 
of the FV front of the vibratory wave, u and v and respectively, of FVL/FVT. 

In a state of static equilibrium we have the equality: 

p pp p′=                              (4) 

The situation for any string ST/li or line/path through the vibratory ECs in 
ETH with p pp p′  percussion pairs is shown in Figure 3(a). 

A theoretical model of the ECs of the ETH is shown in Figure 3(b), in which 
these are represented by a string of harmonic oscillators of mass m, connected 
with elastic springs. 
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Figure 3. Simplified mechanical model of FVs in a string of ECs in the ETH, without energy loss, as a series 
of harmonic oscillators.  

 
We notice that the percussion force pp can be transmitted between two SMPs, 

in a step-by-step manner via a direct string ST0 of ECs arranged on a straight 
line O1-O2 between them, through the ETH (Figure 2 and Figure 3), as well as 
via other less direct paths or strings, according to [8]. 

We admit in HFVI that at a time t0 in the initial periods of the existence of 
SMP1, considered to be mobile with speed V1, and of SMP2, which is mobile 
with a speed V2, in the area/zone of influence (AI) of SMP1 (Figure 2 and Fig-
ure 3), the pp′  reactive force will be less than the active force pp when mechan-
ical work L will be consumed during deformation with u or v (or with the re-
sulting deformation d) of the ECs, due to the non-zero difference in forces 

0p pp p′− ≠ . 

( )p pL p p d E′= − =                   (5) 

The mechanical work consumed, L, represents a transfer of energy E between 
the active cell EC and the reactive cell EC’, and this process will eventually lead 
to an transfer of energy E between SMP1 and SMP2 along the li path or between 
SMP1 and the ETH ether in the AI, fulfilling the condition p pp p≠ ′ .  

We note that this transfer of energy E can take place between SMP1 and SMP2 
in any direction, along various indirect paths between them, li.  

The energy E that corresponds to this mechanical work L will come from the 
potential energy U created by the percussion-type interaction forces pp, which in 
fact represent the corrected Coulomb-type forces FCC with which the SMP1 and 
SMP2 assembly (Figure 2) was originally endowed at the time t0 of their creation 
or stabilization. 
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We will now consider the situation of the point Mi in the ETH at a later time 

1 0t t> , when a state of equilibrium between the active pp percussion forces and 
the reactive pp′  force has been reached, thus fulfilling the condition p pp p′ =  
along the entire path li (Figure 2 and Figure 3). As a result, at time t1, no more 
mechanical work L will be consumed/developed at point Mi on the surface of FV’ 
contact front, between pp′  and pp. This is because the two values of the afferent 
mechanical work L and L’ will be equal according to Equation (2a), due to the 
equality of the forces p pp p′ =  and to the identical movements with u or v (or d) 
of their points of application. 

This will occur when all ECs in the ETH in the area of any point Mi achieve a 
state of vibration with permanent FVs over time, via +,−u and +,−v deforma-
tions, the size of which has become permanent over time (Figure 2 and Figure 
3). This can occur when all SMPs in the area reach an immobile state, i.e. they 
have speed V = 0. In this way, the percussion forces will be stabilised at a con-
stant value p pp p′ = , shortly after they reach speed V = 0; however, the oscilla-
tion deformation +,−u and +,−v of the ECs remain non-zero and are preserved. 

Since the ETH has ideal properties, without friction or other forms of energy 
loss, there will be no further remote transmission/transfer of energy E between 
SMP1 and SMP2 in the situation where p pp p′ =  (Figure 3). 

In the case of static and dynamic equilibrium between the specific percussion 
forces +,−pn and +,−pt (Figure 2 and Figure 3), no energy transmission from 
SMP1 to SMP2 occurs via the ECs of ETH. The initial/stabilised energy of SMP1 
will be preserved, although the particle will continue to transmit FVLs and FVTs 
continuously over time. However, these FVs will no longer absorb energy from 
SMP0, meaning that they will no longer transmit energy through the ETH during 
operation under these conditions for SMPs that are immobile and have reached 
static and energy equilibrium. 

This is because in the case of static equilibrium, the specific percussion forces 
+,−pn and +,−pt, will act symmetrically both ways at their contact point Mi: As a 
result, an energy balance situation is reached in the ETH in the AI zone (Figure 
2 and Figure 3). 

The majority of the ETH in nature is in this situation of energy equilibrium, in 
AI areas, free from SMPs or far from any SMP moving at a speed V ≠ 0. 

The physical matter in the universe, consisting of SMPs, is only in this state of 
energy balance and static equilibrium between percussion forces pi, if these 
SMPs are in a motionless state so with V = 0, or at a finite time interval, after the 
creation of these SMPs (if created). 

This results in the case discussed in this Section above, where an energy E/L bal-
ance can be achieved under certain conditions in the process of emission/reception 
of FVs by an SMP1. These FVs can be continuously emitted over an indefinite 
time by any SMP1 in equilibrium, without consuming the SMP1’s own energy. 
We can therefore conclude the following: 

1) We are justified in assuming in the HFVI that in the ETH, within an energy 
balance AI zone, due to the creation at a given point M on S/MM surface, of pe-
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riodic spherical forces (balloon type) of normal +/−psn percussions of ten-
sile/compression +/−σ type, a series of linear +/−u/ε deformations, will be created 
throughout the surrounding ETH. And that these +,−u are transmitted in the 
form of longitudinal spherical vibrations (FVLs) that are permanent over time, 
at energy equilibrium (Figure 2). 

2) In the event of the appearance of periodic transversal/circular +/−pst per-
cussion forces of the +,−τs shear type at point M on a spherical surface S/MM 
with vibration/rotation axis O1z, periodic transversal/angular deformations 
+,−v/γ will be created throughout the ETH, which shall be transmitted in the 
form of transversal spherical FVT vibrations, permanent over time, at energy 
equilibrium (Figure 2). 

However, we admit that the vibratory deformations +,−u and +,−v in ETH 
can be transmitted by any SMP1 via periodic +,−pp percussion forces, from one 
EC to another in the form of a cell string (CSi) (Figure 2 and Figure 3), and de-
formations occur in the form of FVL and FVT vibrations.  

We do not currently have concrete data on the sizes of the propagation veloci-
ties cfL and cfT of the FVLs and FVTs, respectively, or on the sizes of their fre-
quencies, ffL and ffT, however, these are not strictly necessary in our current 
analysis. 

2.4. Physical Nature of electrical Charges Due to PVP/PVN  
Vibrations of SMPs in HFVI 

Based on experience, we can assume in HFVI that SMPs must be differentiated 
firstly in terms of their electrical aspect, currently considered in physics to be 
given by an electrical charge +q/−q that is intimately attached to an SMP, al-
though this +q/−q charge has not been defined physically, as substance. 

This electrical aspect of SMPs is physically manifested in specific ways that 
can be distinguished in experiments, i.e. SMPP and SMPN (denoted in [1] as 
SMP+ and SMP−, respectively). 

We also assume the existence of neutral SMPNEs, including neutrons, but we 
admit that these are also composed of particles of types SMPP and SMPN. Inside 
an SMPNE, these SMPPs and SMPNs are grouped into neutral minidipoles (MDs) 
with zero electrical charge (Figure 1(b)), resulting in a total electrical charge of 
zero. 

We can verify this structure of the SMPNE neutron. For this, we assume that a 
neutron has a diameter 10 times as large as an electron/positron. It therefore 
comprises approximately 103 such MDs, consisting of electron/positron doublets 
(whose arm b is about 10 times smaller than for atomic dipoles) (Figure 1(b)). 
The mass of a neutron results about 2 × 103 times the mass of an electron me, as 
the currently accepted mass of the proton/neutron is close to 1840me. Hence, 
electron/positron doublets within the neutron represent an organised accumula-
tion of highly compacted MD doublets, which in the presence of an adequate 
energy input ΔE can release an electron or positron; when a single electron is re-
leased, the neutron becomes a proton. A proton has the same composition as a 
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neutron, but possesses an extra positron (or equivalently, lacks an electron). 
This electrical differentiation of the observable, external manifestation of 

SMPPs and SMPNs, must originate in the specific internal modes of vibration of 
the internal PCs, from the PVs of the PR protoplasm, including the vibra-
tion/rotation mode with rotation speed ω of the PCs, which constitutes the ex-
ternal membrane MM. These PCs are also particles of an ethereal nature but 
have their own composition that is different from ECs; this is likely to incorpo-
rate a large number of ECs, actually constituting a series of quark-type SSMPs. 

Thus, we postulate in HFVI that there will be a system of internal vibra-
tion/rotation PVs of PCs in the positive SMPP, denoted as PVP (particle vibra-
tion positive); an internal vibration system for SMPN PCs, denoted as PVN; and 
for SMPNEs, denoted as PVNE. 

Next, we assume that the primary difference between vibration modes, PVP 
and PVN, of SMPs lies in the sense of the rotation of the S/MM surface/membrane 
with the rotation speed +/−Ω around the Oz axis (Figure 2). 

We assign the clockwise sense (+Ω) of rotation around the Oz axis to the rota-
tion mode of the PC from the MM of the SMP denoted by PVP, and the an-
ti-clockwise rotation direction (−Ω) for the rotation mode of the PC cell from 
the MM of SMP, denoted by PVN. 

The PVP and PVN modes arise on the outside S/MM rotations +/−Ω, of the 
SMP superposed with the +,−psn and +,−pst percussions, which are associated to 
the deformations +,−us and +,−vs on the outer surface S of the SMP (i.e. the 
MM). And then PVP/PVN modes, manifest through the percussions +,−pn and 
+,−pt associated to deformations +,−u and +,−v of ETH cells ECs, as discussed in 
Sections 2.6 and 4. 

The +,−u and +,−v deformations in ETH will give rise to the FVs of the ECs of 
the ETH external to SMP1. The two types of particle, SMPP and SMPN, will ap-
pear on the outside ETH, by their specific FVs, and are differentiated based on 
the effect that is referred to today as electric, but in reality arises from the specif-
ic FVs created in the ETH (Figure 2). 

In the following, we will denote the FVLs/FVTs produced by the positive par-
ticles (+/P) SMPP as FVLP/FVTP, respectively; we will denote the FVLs/FVTs 
produced by negative particles (−/N) SMPN as FVLN/FVTN, and the vibrations 
of neutral particles as FVLNE/FVTNE. 

2.5. Creation of a Pair of SMPs 

In order to obtain information on how to differentiate between the vibrations 
produced by SMPPs and SMPNs, we can analyse the initial phase of creation of 
these SMPs according to HFVI. 

We assume that the creation of SMPPs and SMPNs is a phenomenon similar 
to the creation of electron/positron pairs by hard electromagnetic (E-M) γ waves. 
We assume that the starting point for the creation of SMPs is at the origin O of a 
Cartesian RF Oxyz that is fixed in the ETH (Figure 4). 
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Figure 4. The Oxyz reference frame at the centre of a cube with sides a, diagonals D1 - D4, 
and quadrants C1 - C8 at the time of creation of an SMPP/SMPN pair. 

 
Immediately after its creation, the SMPP will be located in the C1 quadrant of 

RF, and the SMPN will simultaneously be located symmetrically from the origin 
O, along the D1 diagonal of the RF, meaning that it is in quadrant C7 (Figure 4). 
The SMPP and SMPN are shown here in a simplified form, immediately after 
their creation, by two ellipsoids aligned along diagonal D1. 

Let us now look at the likely deployment of the creation of the two particles, 
SMPP and SMPN, by a PH photon with total energy Eph of the radiation γ order 
and with size smaller than an SMP, but of the same order of magnitude. 

Initially, at point O, within an area close to an MPP/MPN pair of micropar-
ticles (not shown), the photon PH begins to develop spatially within the ETH. 
PH will release its Eph energy into the ETH, and as a result, a series of vortices 
(VOs) will occur in ETH, comprising the first ECs within the surrounding ETH. 
These ECs cells will become groups of particle cells (GPCs), and will also take up 
an amount ΔE of the energy Eph.  

This group of VOs undergoes rapid expansion over the neighbouring ETH, 
initially creating an expanding bubble BU0 around PH made up of all the newly 
formed VOs, grouped into new GPCs. However, within a short period, BU0 will 
tend to divide to give two new SMPs. Thus, BU0 becomes elongated in the direc-
tion of the diagonal Di of the Oxyz reference frame (Figure 4). In the opposite 
quadrants C1 and C7, two ellipsoids EL1 and EL2 emerge from BU0; these are at 
first united by a thick common area that rapidly thins, and towards the end 
forms a connecting cord CO0 (Figure 4). This cord rapidly thins, becoming a 
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single CS string of ECs, and finally breaks completely. 
Thus, in the two quadrants I and VII, the two SMPP and SMPN are formed 

from EL1 and EL2, due to which we can admit that there is a differentiation in 
the shape of the two spherical/symmetrical surfaces S, given by the last stage of 
the CO0 break. A flaring will arises in the SMPP remaining from CO0, and in the 
SMPN, a deepening produced by CO0 will arise; however, these differentiations 
are equivalent as volume of ether and these differentiations makes sense to exist. 

These differentiations between the SMPP and SMPPN arise from the start of 
their formation as embryo ELs as new autonomous SMPAC cells (Section 1), 
when a nucleus NC structure was created for the positive (DNAP) and negative 
(DNAN) particle types. Due to their specific ADNs, these NCs are differentiated 
based on their future electrical charge-type behaviours, resulting in the positive 
SMPP and the negative SMPN, as described in Section 2.4. 

We also postulate in HFVI that during the formation and growth of the origi-
nal two ELs, an equilibrium is created between the volume of ECs cells embed-
ded in any EL and the number of CEs taken from the ETH, meaning that there is 
no change in the volume of the ETH in the BU0 zone from the creation of the 
SMPP and SMPN, and no change in the natural pressure of the ETH in the area. 

We postulate in HFVI that at the time of breaking of the cord CO0, it is in a 
state of tension (+σ) that opposes the break-up of the SMPP and SMPN. We also 
assume that within both the CO0 cord and the ELs, and also in the new SMPP 
and SMPN, internal rotations/vortices PV of the particles, with rotation speed ω, 
arise to maintain the energy reserve E of PH, in similar way to other SMPs. This 
energy reserve E allows for the creation and distancing of the two particles, 
SMPP and SMPN, with a certain initial speed V0. After reaching an equilibrium 
speed Veq, or V = 0, the SMPP/SMPN system will possess a potential energy U 
that is equivalent to the kinetic energy Ekin at the initial time of expulsion of the 
particles; this energy ensures normal operating conditions for the system in the 
ETH. 

At a later time, the two particles, SMPP and SMPN, will be able to approach 
again, and will tend to reunite to give the original form of the photon PH through 
the annihilation process (the inverse of the process described above in this Sec-
tion). The proximity needed for this reunion can be achieved by an interaction 
force +FL from the attraction between the SMPP and SMPN, produced by peri-
odic percussions +,−pp that are created by each particle in the ETH by FVLs (as 
discussed in Section 3). 

The force +FL will also arise as described in Section 1, for SMPAC and HCO, 
through the specific attraction orders provided by the NCs of the SMPP and 
SMPN. In addition, +,−pp percussions are generated from the FVLs created by 
each type of SMP: FVLP or FVLN, depending on the electrical sign (+/P or −/N) 
of the SMP respectively.  

When a SMPP and SMPN pair regroups (Figure 4), a new CO0 cord will be 
created between them, representing an initial CO0 reproduction; this will initial-
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ly consist of a CS0 string of ECs, and will regain its initial stretching effort (+σ), 
created by permanent percussions +,−pp, each of which exerts a reciprocal force 
of attraction +FL between SMPP and SMPN, as described in Section 3.  

However, when grouping a pair of two identic signs SMPs, a new CO0 cord 
will be created between the two particles. This will also now gain a compression 
effort created by permanent percussions +,−pp (−σ), thereby exerting a mutual 
force of rejection –FL between the two particle, which both have the same elec-
trical nature, as they have the same sign, as discussed in Section 2.4. This physi-
cal manifestation is confirmed by the presence of Coulomb-type forces, with the 
charges +q and +q from electrostatics. 

A more detailed mechanism for the process of interaction between SMPs via 
forces FL, based on percussion forces +,−pp, will be presented in Section 3. 

We note that this mode of interaction between two SMPs is also supported by 
the fact that it corresponds to a manifestation in the ETH of the dialectical prin-
ciple of attraction of the opposites. This principle is also found in nature in the 
process of reproduction of living beings (and also in inanimate world in some 
situations), for example the attraction between different sexes; this is spontane-
ous and natural, since most animals can reproduce only by combining two types 
of DNA. The reverse of this principle, manifested by the natural revulsion be-
tween identical sexes, which have only one type of DNA, also holds true, and this 
is also manifested in the case of SMPs, as described above. 

2.6. Specific Action Modes of SMPP/SMPN on ETH, for Creating the  
four Types of FVs 

1) SMPP with FVLP: 
We postulate in HFVI that an SMPP which produces FVLs, is in a permanent 

state of energy balance with the external ETH, as discussed in Section 2.3.2 
Then, radial/linear deformations +,−us at its S/MM surface, with spherical 

symmetry, starts at some time t0, through a positive dilation +us that corresponds 
to an increase in radius r0, and this gives rise to an expulsion of a volume of ETH 
corresponding to +us (mechanism is presented in Section 3.). This initial dilation 
+us will be followed by a contraction –us in S/MM, so that an absorption of the 
ETH corresponding to −us is produced (Figure 2). A new cycle will follow over a 
period TL of dilation/contraction of S/MM with +,−us deformations with fre-
quency fL, etc. 

Thus, the total variation in the radius r0 of the SMPP over one complete vibra-
tion will be +,−us of amplitude 1/2us, which corresponds to an average expulsion 
of ETH of +1/2us. The maximum deformations +,−us will be periodic, and thus 
vibratory, giving rise in ETH to FVLPs with frequency fL or period TL.  

This is the specific manifestation of SMPP considering the creation in ETH of 
+,−u deformations with spherical symmetry, which will produce FVLPs in whole 
ETH. 

2) SMPN with FVLN: 
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We also postulate in HFVI that in the case of an SMPN, which produces FVLs, 
the phenomenon is symmetrical to the case described in point 1) for the SMPP, 
including spherical symmetry of deformations, as shown in Figure 2. At the ini-
tial time t0, there will be an initial contraction deformation of size –us, at the 
surface S/MM, corresponding to the negative direction of the radius vector r0, 
and hence also an initial absorption of a volume of ETH corresponding to −us, 
thus offsetting the deformation +us for the SMPP from point 1). This initial 
contraction will be followed by a dilation/growth of r0 on S/MM with +us. A new 
cycle of contraction/dilation of r0 on S will follow with +,–us deformations etc. 
(Figure 2). Thus, the total variation in the radius r0 of the SMPN in a complete 
vibration with frequency fL will be −us, with amplitude 1/2us, corresponding to 
an average absorption of −1/2us of ETH and maximum deformation −,+us, giv-
ing rise in ETH to FVLNs with frequency fL or period TL.  

This is the specific manifestation of SMPN considering the creation in ETH, 
of +,−u deformations with spherical symmetry, which will produce FVLNs in 
whole ETH 

But this contraction of –us in r0 in the SMPN, occurs exactly during the period 
of dilation by +us from the corresponding SMPP (Figure 2). The two deforma-
tions +us and –us in the SMPP and SMPN are therefore in phase opposition, and 
the expulsion of ETH by the SMPP corresponds in time to the absorption of 
ETH by SMPN.  

After each period TL, because the directions of deformation +,−us are opposed 
−,+us, thus preserving the volume of the ETH, by ensuring a null variation in its 
volume (∆Vol = 0), thus maintaining constant the volume of ETH in the space 
around the SMPP and SMPN pair (Figure 2). This is similar to the phenomenon 
of liquid compensation between two interconnecting vessels, and can explain the 
observation in electrostatics of the cancellation of the total charge around two 
charges +q and –q that are close one to another. This is also the specific way in 
which an electric DI dipole is manifested through FVL. 

3) SMPP with FVTP: 
We also postulate in HFVI the case of an SMPP having the rotation speed +Ω, 

which will be the source of FVTP produced by ETH deformations +,−v. 
But deformations +,−v will be created by equivalent tangential/transversal 

deformations +,−vs in its S/MM surface, with cylindrical symmetry around the 
Oz axis. These equivalent deformations +,−vs, are special, being even those which, 
if there were real, would create in the ETH the vibrations deformations +,−v, 
with sv v= .  

These equivalent deformations +,−vs are due to rotation speed +Ω of SMPP, 
produced by successive adhesion and sliding between S/MM and the adjacent 
ECs in ETH, according to the mechanism mentioned in Section 2.4 and de-
scribed in Section 4. More formally, the deformations +,−vs correspond to alter-
nating partial rotations of S/MM around its own axis Oz, starting at a given time 
t0 (Figure 2). These equivalent deformations in the SMPP are periodic with fre-
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quency ft (or rotation speed +Ω) around the Oz axis of the SMP, or period Tt. 
In the case of the SMPP, we assume that the initial equivalent tangential de-

formation at t0 is +vs, a clockwise rotation (denoted here as positive), followed by 
a counterclockwise rotation –vs, then by a rotation +vs, and so on (Figure 2). All 
rotation deformations +,−vs, have the frequency ft or period Tt and involve os-
cillating rotation of the radius r0 of the SMPP around the Oz axis. 

This is the specific manifestation of SMPP considering the creation in ETH of 
tangential +,−v deformations with cylindrical symmetry around the Oz axis, 
which will produce FVTPs in whole ETH as at point 5). 

4) SMPN with FVTN: 
In the case of the SMPN, which produces FVTNs, we assume that the initial 

rotation equivalent deformation is −vs counterclockwise (negative), followed by 
a clockwise rotation +vs, then by a rotation −vs, and so on, with cylindrical sym-
metry around the Oz axis. All rotations have frequency ft and involve deforma-
tions −vs corresponding to a counterclockwise rotation of the radius r0 of the 
SMPN around the Oz axis, giving rise to vibrations (Figure 2). These deforma-
tions −,+vs are actually periodic grips/slips between S/MM and the ETH (similar 
to the fault slippages that create transversal waves in earthquakes).  

This is the specific manifestation of SMPN considering the creation in ETH of 
−,+v deformations with cylindrical symmetry around the Oz axis, which will 
produce FVTNs in whole ETH, as at point 5). 

Therefore here we postulate in HFVI that these tangential equivalent defor-
mations at time t0 (i.e. the first +vs in the SMPP and the first −vs in the SMPN) 
are in opposition (i.e. out of phase) in terms of the sense of rotation (Figure 2). 
This opposition between the senses of rotation +vs and −vs creates compensation 
(constancy) between the kinetic moments J of the SMPP and SMPN pair, start-
ing at the moment t0 of their creation. There is then no need to transfer the ki-
netic moment J, according to Newton’s third law, to the ETH external from the 
SMPP and SMPN pair, as the mechanism described above and in Sec. 4 is in ef-
fect. At the same time, the change in volume of the ETH due to +,−γ will be 
compensated. 

5) Consequences of ETH deformations produced by SMPs: 
We also postulate in HFVI that these periodic deformations +,−us and +,−vs, 

which produce at frequencies fL, fT, on the surface S/MM of the SMP, will be 
immediately transmitted to the surrounding ETH in the form of periodic exter-
nal deformations +,−u and +,−v (Figure 2). These produce FVLs and FVTs in 
the ETH, respectively, due to the mechanism discussed above, and in Sections 
2.4, 3 and 4, respectively. 

We also assume in HFVI that these periodic deformations +,−us and +,−vs in 
the surface of an SMP, as well as the deformations +,−u and +,−v in the ETH, 
are deformations/displacements with minimum intrinsic/predetermined size in 
both SMPs and ECs, and represent the minimum steps or displacements Δx in 
quantum mechanics. 
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3. Application of HFVI to the Interaction between  
Immovable SMPs in the Case of FVLs 

3.1. Interaction between Two Positive Immovable SMPPs through  
FVLs 

1) General conditions of SMPPs: 
In some SMPPs, vibrational deformations +,−us will appear on the surface S, 

and physically on the membrane MM, as explained in Section 2.6.(a) (Figure 2). 
These radial deformations +,−us are spherically distributed on S/MM, and are 
completely symmetrical to a point. 

Figure 5(a) shows a section through a pair of particles SMPP1 and SMPP2 
that are fixed in the O1xyz reference frame attached to SMPP1, which is consi-
dered immovable in the ETH. 

Figure 5(a) also shows the vibratory deformation vectors +,−us (radial) for 
SMPP1 and the S/MM surface/membrane of SMPP2 (the first with size +us and 
the remainder with size −,+us) and the vibratory deformation vectors +,−u (radial) 
of the first row of ECs r1 in the ETH adjacent to the surfaces of the SMPPs. The 
vibratory deformations FVLs are created by +,−us acting on the surface S/MM of 
the SMPP through percussion forces +,−ps from SMPP on the ECs adjacent to 
the surface S/MM in the ETH, as described in Sections 2.3.1, 2.4, 2.6, and illu-
strated in Figure 2.  

 

 
Figure 5. Physical mechanism of the interaction via percussions +,−pp, and the evolution of attached de-
formations u over time, between pairs of SMPs through their FVLs in the ETH.  
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The deformations +,−u in the ETH are spherically propagated, since they are 
completely symmetrical to a point, in all space. The vibratory deformations +,−u 
induced in the rest of the ETH will be permanently accompanied by related pe-
riodic percussions −,+pp (on a single EC) arising from SMPP. We consider that 
the dilation deformations +us correspond to the percussion forces –pp in the 
ETH, since compression is denoted as negative, and vice versa: the deformations 
−us correspond to +pp, i.e. tensile forces. 

The first deformations +,−u are then transmitted, starting from each SMP, 
step by step via adjacency/contact, in the form of continuous strings (STs) of 
ECs, and will reach through the other ECs via the surrounding ETH, including 
from SMPP1 to SMPP2. However, the sizes of these deformations +,−u will be 
reduced with increasing distance r (Figure 5(a)) corresponding to a variation 
1/r2 in a similar way to Coulomb’s law (as described in Section 6 of [8]). 

For clarity, the vibratory deformations +,−u in the rest of the ETH at various 
distances r are represented by 90˚ folds perpendicular to the direction of the ray 
r by tangent arrows of appropriate size, starting from the surface S of SMPP1 
and SMPP2 (Figure 5(a)) 

Figure 5(a) shows several fronts of action of the vibratory deformations u, 
which are represented as portions of large dotted circles (red for FVLs from an 
SMPP), as fundamental spherical FVL waves, in the ether ETH, (symbolically 
represented by rare squares/circles groups, although ECs must in fact be adja-
cent). Here, we analyse only the direct interaction between SMPPs through a 
single linear, direct string ST0 (the central one) of ECs cells of radius r00 (Figure 
5(a)). 

The indirect interaction between two SMPPs via multiple strings STi, in the 
form of a series of progressive curves, and the effect of these strings/paths that 
create the corrected Coulomb force FCC as a result, were analysed in [1]. 

2) Action on SMPP2: 
We will first analyse the case in which the forces produced by SMPP1 in M2, 

the central point on the surface/membrane S/MM of SMPP2, are oriented to-
wards SMPP1 (Figure 5(a)). Periodic linear/longitudinal (here, radial) deforma-
tions +,−u, the first with size +u, and the remainder with size −,+u (associated 
with −,+pn from SMPP1) near SMPP2, as well as the deformations +,−us in SMPP2 
(associated with −,+pn from SMPP2) permanently act on the surface S/MM of 
SMPP2, and are shown as dependent on the time t in the detail in Figure 5(b) by a 
periodic zigzag line (ZL), with a regular period of variation LT T= , starting from 

0 0t = . 
Although the correct real ZL allure may be different from that shown in Fig-

ure 5(b) (for example a periodically interrupted curve, lines with different slopes, 
or even a sinusoid), this detail is not significant in the current analysis. 

When the vibratory deformations +,−u from SMPP1 reach point M2 on 
SMPP2 at time t0 (Figure 5(a)), we postulate that the phase of the vibration +u 
from FVLP from SMPP1 is the same phase as the vibration +us of PVP from 
SMPP2. In fact, the FVLPs arrive with the same phase at all SMPPs in the ETH, 
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due to the theoretically ideal properties of the HM16 ETH, while also respecting 
the situation of the phases, since the moment of creation of the two SMPs de-
scribed in Sections 2.4, 2. 5. 

We will analyse the action of SMPP1 on SMPP2 through FVLs, under the 
general conditions for the behaviour of SMPs in HFVI, described in Sections 
2.3.1., 2.6. 

At the central point M2 on the surface S/MM of SMPP2 facing SMPP1 (Figure 
5(a) and Figure 5(b)) we observe that at time t0 = 0, the first deformations +u of 
the ECs in the adjacent ETH, originating in SMPP1 become −u (due to the re-
versal of the direction of the +u axis) when applied to SMPP2. 

It follows that the deformations +,−u in ETH, which have become −,+u 
(Figure 5(b)), now have the opposite orientation to the +,−us deformations in 
the PC cells in SMPP2, although they have the same phase. The peak points Pi of 
the ZL curve of the periodic −,+u deformations in ETH at various time intervals 
T, where the percussion forces −pn are focused, (on a single EC, as part of PHA 
active phase, from Sections 2.3.1., 2.4), will be directly opposite to the peak points 
Pi of the ZL curve of the +,−us deformations in SMPP2 (Figure 5(b)). The com-
pressive/active percussion forces −pn are concentrated at these contact points Pi 
having opposed senses, so giving repulsion force (Figure 5(b)). 

In this case, in point M2 on the surface of SMPP2, in the area of a single EC, 
normal/linear compression percussion forces −pn (negative −σ compression ef-
fort), will occur, i.e. the repulsion of SMPP2 from SMPP1. 

Hence, on the elementary surface Ss (a circle with radius r00) corresponding to 
the central string ST0 of ECs, at point M2 located on the surface S/MM of SMPP2, 
a continuous −pn (underlined) repulsive force will appear as an average over a 
time T of the periodic percussion forces −pn. This periodic force of repulsion 
upon SMPP2 due to SMPP1, denoted as −FL21, is created by periodic percussions 
–pni, based on their average effort –σ, on the elementary surface Ss of an EC: 

 ( )21L n sF p S σ− = − = −                        (6) 

This repelling force –FL21 corresponds to the direction/line O1-O2 of direct in-
teraction between SMPP1 and SMPP2 through ST0 of line l0 (Figure 5(a)). 

From Figure 5(a) and Figure 5(b), the nature of −F21 (on a single EC) is ob-
vious; this is a mechanical force derived from the compressive percussion forces 
−pn through their average −σ compression efforts, over the area Ss of an EC, ac-
cording to the mechanism discussed above and illustrated in Figure 5(b). At the 
same time, it can be seen from Figure 5(a) that the force −FL21 corresponds to 
the Coulomb force of repulsion FC between two positive charges, +q/+q, and that 
the force −FL21 must vary as 1/r2 in the same way as FC at relatively short dis-
tances. 

21 0 00 2

1, , ,L nF f r r p
r

 − =  
 

                     (7) 

The full form of the function f in Equation (7) can be established in future on 
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an experimental basis depending on the geometry of the SMPs (radius r0) and 
the ECs (radius r00). 

Note 3.1: This correlation between the periodic deformations −,+u of SMPP2 
and SMPP1 giving repulsion force −FL21, (on a single EC) is also ensured ac-
cording to the mechanism described in Section 1 for SMPAC and HCO, through 
the specific rejection commands provided by the NCs of SMPP1 and SMPP2 

Note 3.2: This correlation between the periodic deformations −,+u of SMPP2 
and +,−u of SMPP1 giving repulsion force, is also ensured according to the me-
chanism described in Section 2.3.1., where the percussion forces −pn are focused, 
as part of superposition of two PHA active phases, having opposed senses, so 
giving repulsion force. 

Note 3.3: We postulate in HFVI that the action at the level of an EC cell of the 
percussions −pn and the equivalent force –FL21 (on a single EC) in Equation (7) 
represent forces of intrinsic minimum/predetermined size for the SMPs and 
ETH, which are exactly same as the minimum forces of action ΔF in quantum 
mechanics. 

Summary 3.1: We postulate in HFVI that the vibratory deformations +,−us at 
the surface S/MM of SMPP1 create VFL vibrations in the ETH with deforma-
tions +,−u and associated periodic percussion forces +,−pn, (on a single EC) 
which act upon SMPP2 over the area Ss of ST0, the central string (Figure 5(a)). 
These deformations +,−u overlap at the maximum points of contact Pi with the 
deformations +,−us at the surface S of SMPP2. The deformations +,−u and +,−us 
have opposite phases in terms of their physical direction, belonging to PHA of 
Section 3.2 (Figure 5(b)). Hence, at the overlapping points, percussion forces 
−pn will be created with the same sign, where −pn represents compression forces, 
and thus SMPP2 is repelled by SMPP1 (Figure 5(b)). As a result, periodic per-
cussion forces −pn on SMPP2 will create periodic −σ efforts at the surface Ss of 
an EC of radius r00, which give an average resultant force −FL21 (average effort 
−σ). The force −FL21 can be considered continuous over time along the direction 
O1-O2, and thus acts in a similar way to the Coulomb force FC (but it is FCC in 
fact) between two electric charges with the same sign. 

3) Action on SMPP1 
We now look at the situation with percussions −pn that act on the surface 

S/MM of SMPP1 under the influence of SMPP2, and find that the position of the 
−,+u deformations in the ETH in the area of SMPP1 is completely symmetrical 
with regard to the situation of −,+u arising from SMPP2, as described in 2) 
(Figure 5(a) and Figure 5(b)). Symmetry is also maintained in the case of the 
deformations +,−us. As a result, the normal/orthogonal −pn percussion forces 
exerted on SMPP1 will be symmetrical to those acting on SMPP2, and will result 
in a force −FL12 (on single EC) (of –σ nature): 

12 21L LF F− ≅ −                             (8) 

This force –FL12 will also be a Coulomb-type force FC of repulsion of SMPP1 
by SMPP2 (but FCC in fact).  
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3.2. Interaction between Two Negative Immovable SMPNs  
through FVLs  

1) General conditions of SMPNs: 
In this case, Figure 5(a) must be adapted to reflect the new situation: here, we 

have SMPN1 and SMPN2 (rather than SMPP1 and SMPP2), and the angles of 
the internal vortices and external rotations +ω/+Ω must be reversed to become 
–ω/–Ω, while the directions of the arrows representing the sizes of the deforma-
tions +,−u will be inverted to give −,+u, as explained in Section 2.4. 

2) Action on SMPN2: 
Here, we analyse the situation of the percussion forces produced by SMPN1 at 

point M2 on the surface/membrane S/MM of SMPN2, facing SMPN1 (Figure 
5(a)-adapted).  

The vibratory linear/longitudinal deformations (here, radial) both those in the 
ETH, −,+u, with the first –u, and the rest +,−u, as well as −,+us at the S/MM 
surface of the SMPN2 particle, are represented in the inset to Figure 5(c) by a 
periodic zigzag line (ZL) with period T, depending on t.  

Hence, the order of occurrence of the phases of the deformations +,−u will be 
reversed twice: once due to the reversal of the direction of the +u axis, and once 
from reporting to SMPN2, as described in Section 3.1. These then become the 
first positive +,−u deformations in ETH around SMPN1, and the deformations 
at the surface S/MM of SMPN2 will become the first negative ones −,+us (Figure 
5(c)). 

At point M2 on SMPN2 facing SMPN1 (Figure 5(a)-adapted, Figure 5(c)), we 
find that at time t0 = 0, the deformations in the ETH will be positive deforma-
tions +,−u in the ECs of the adjacent ETH, originating in SMPN1. In the case of 
the PC cells at the surface S/MM of SMPN2 (Figure 5(c)), their first deforma-
tions are negative −,+us and these appear in the opposite direction to the defor-
mations +,−u, in the ETH, but with the same phase. 

The peak points Pi of the ZL curve of the periodic deformations +,−u in the 
ETH coming from SMPN1 at various timeframes T, will be directly opposite to 
the peak points Pi of the ZL curve for the −,+us deformations in SMPN2. The 
compressive percussion forces −pn from ETH are focused in these contact points 
Pi where the percussion forces −pn from SMPP2 are focused, (as part of PHA ac-
tive phase from Section 2.3.), having opposed senses, so giving repulsion forces 
(Figure 5(c)). 

In this case, normal/linear compression percussion forces −pn (negative com-
pression effort −σ) will occur at point M2 on the near half of the surface S/MM 
of SMPN2, over the area Ss of a single EC (circle radius r00), i.e. repulsion of 
SMPN2 from SMPN1. Hence, at the elementary surface Ss corresponding to the 
central string ST0 of ECs at point M2, a continuous rejection force −pn will ap-
pear as an average over a period T of periodic percussion forces −pn. This force 
−pn will be continuous over time, repelling SMPN2 due to SMPN1, and is de-
noted as –FL21; it is created by periodic percussion forces −pni, through their av-
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erage effort –σ over the elementary surface Ss of an EC. 
This repulsion force –FL21 (on a single EC) will be created by pn percussions 

through their average −σ effort on the elementary Ss surface of the EC, according 
to Figure 5(a)-adapted, Equation (6) being valid here also. 

( )21L n sF p S σ− = − = −                       (9a) 

Note 3.1, Note 3.2, Note 3.3 adjusted, and the adjusted Summary 3.1 from 
Section 3.1, final of point 2) are also valid here. 

3) Action on SMPN1: 
If we look at the case of SMPN1 under the influence of SMPN2, we find that 

the position of the deformations +,−u within the area of SMPN1 are completely 
symmetrical to the those of +,−u in the area of SMPN2, as explained in point 2) 
above (Figure 5(a)-adapted, Figure 5(c)). Symmetry is also maintained in the 
case of deformations −,+us. 

As a result, the percussion forces −pn (of −σ nature) exerted on SMPN1 will be 
symmetrical to those acting on SMPN2. A resulting repulsion force –FL12 will al-
so be exerted on SMPN1; this will also be a Coulomb-type force FC, (but it is FCC 
in fact) which constitutes a repulsive force on SMPN1 by SMPN2. Equation (9a) 
is also valid here: 

12 21L LF F− ≅ −                          (9b) 

3.3. Interaction between Immovable SMPP and SMPN through  
FVLs 

1) General conditions of SMPP/SMPN: 
Figure 5(a) must be adapted to reflect this situation, in which SMPP1 is pre-

served and SMPP2 is replaced by SMPN2 (Figure 5(a)-adapted). Here, the an-
gles of the internal vortices and external rotations +ω/+Ω for SMPP1 must be re-
versed to become −ω/−Ω for SMPN2, and the directions of the arrows representing 
the sizes of the deformations +,−u will be adapted to each SMP, as described in 
Section 2.4. 

2) Action on SMPN2: We will analyse the case of the forces created at point 
M2 on the surface/membrane S/MM of SMPN2 (Figure 5(a)-adapted). The li-
near/longitudinal vibratory deformations (radial in this case), both those in the 
ETH, +,−u (in which the first has size +u, and the rest −,+u) and those at the 
surface of particle SMPN2, −,+us (in which the first has size −us, and the rest 
+,−us) are represented in the inset of Figure 5(d) by a periodic zigzag line with 
period T, as function of t. 

The order of the phases of the particle deformations will therefore be reversed 
at SMPN2, becoming −,+us at the surface S/MM (Figure 5(d)). At point M2 
(Figure 5(a)-adapted, Figure 5(d)) we find that at time t0 = 0, the deformations 
of the ECs in the adjacent ETH will be with the first negative, −,+u, after revers-
ing +,−u directions of the deformations coming from SMPP1. And the longitu-
dinal/radial deformations of PCs cells from the surface S/MM of SMPN2 will be 
with the first −,+us negative and the rest, +,−us. They will have the same direc-
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tion as the longitudinal/radial deformations −,+u in ETH and will have the same 
phase, according to the HVFA hypothesis presented in Sections 2.3.1, 2.4. 

Hence, at point M2, the peak points Pi (at which the percussion forces −,+pn 
are focused) of the broken line ZL of deformations −,+u in the ETH coming 
from SMPP1 will occur at various timeframes T in positions identical to the Pi 
peaks in the ZL of the deformations −,+us of SMPN2, thus twisting/penetrating 
themselves, having identical senses, so giving attraction forces (Figure 5(d)). 

In this case, at the peak points Pi in the ETH/SMPN2 surface S/MM where the 
percussion forces −pn are focused, (as part of inversed PHA active phase from 
Section 2.3.1), positive percussion forces +pn (i.e. tensile forces) will be created 
in the ETH with regard to SMPN2. When applied to the surface of SMPN2, these 
positive percussion forces +pn will create an attraction force +FL21 on SMPN2, as 
shown in Figure 5(d). 

On the elementary surface Ss (circle with r00) of an EC belonging to the central 
string ST0 of ECs, at point M2, an average attractive percussion force +pn (over 
+pn) will appear as an average over a time period T of the percussions +,−pn. 

This average force will be continuous over time, due to the attraction of 
SMPN2 by SMPN1, denoted here as +FL21. This is created by percussion forces 
+pn, by their average effort +σ on the elementary surface Ss of an EC: 

( )21L n sF p S σ+ = + = +                       (10) 

This force +FL21 (on a single EC) corresponds to the O1-O2 direction of the 
connection r between SMPP1 and SMPN2 (Figure 5(a)-adapted). 

In Figure 5(a)-adapted, it is obvious that +FL21 is a mechanical force of attrac-
tion arising from periodic percussion forces +pn and from their average tensile 
stresses +σ, based on the mechanism described above and illustrated in Figure 
5(d); these forces vary as 1/r2 over short distances, in the same way as FC: 

21 0 00 2

1, , ,L nF f r r p
r

 + =  
 

                     (11) 

The full form of function f from Equation (11) can be determined in a similar 
way to that in Equation (8). 

Here, we assume that −,+u of the VFLs in the ETH within the area of SMPN2 
have the same phase and same direction/sign as −,+us from SMPN2; as a result, 
these percussion forces +,−pn (on a single EC) will give tensile stresses +σ, and 
periodic forces +FL21 of attraction to SMPN2 with period T. The force +FL21 is 
permanent over time in the direction of SMPN2; this force of attraction there-
fore acts in a similar way to the Coulomb force FC (but it is FCC in fact) between 
two electrical charges +q/−q with opposite signs, although it is different in na-
ture. 

Here is also the case of the Note 3.1-adapted, of Note 3.3-adapted and of 
Summary 3.1-adapted from Section 3.1., final of point 2). 

Note 3.2-adapted: This correlation between the periodic deformations −,+u 
and −,+us of SMPP2 and SMPP1 giving attraction force, is also ensured accord-
ing to the mechanism described in Section 2.3.1, where the percussion forces −pn 
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are focused, as part of superposition of a PHA active phase and of a PHR reac-
tive phase. 

3) Action on SMPP1: If we analyse the case of SMPP1 under the influence of 
SMPN2, we find that the position of the deformations −,+u in the area of SMPP1 
is similar to the case of −,+u in the area of SMPN2, as described in point 2) 
above (Figure 5(a)-adapted, Figure 5(d)). Symmetry is also maintained in the 
case of deformations −,+us. 

As a result, percussion forces +pn (of nature +σ) exerted on SMPP1 will be 
symmetrical with those exerted on SMPN2. The attraction force +FL12 (on a sin-
gle EC) will also then appear on SMPP1, as attraction from the part of SMPN2. 

( )12L n sF p S σ+ = + = +                         (12) 

It should be noted that the force +FL12 also corresponds to the Coulomb attrac-
tion force FC between a positive and a negative charge. Equation (7) obviously 
applies here, in the same way as in Section. 3.1:  

12 21L LF F≅                              (13) 

4. Application of HFVI to the Interaction between  
Immovable SMPs in Ether via FVTs 

4.1. Interaction of Two Immovable SMPPs in the Ether via FVTs 

1) General conditions of SMPPs: We consider here in HFVI, how the FVTs 
in the ETH are produced by the global rotations of SMPPs with rotation speed 
+Ω, according to the mechanism basically described in Sections 2.3.1, 2.4 and 
2.6. 

Figure 6(a) shows a plane section perpendicular to the central axes of rotation, 
O1z and O2z, of SMPP1 and SMPP2, which are parallel to each other, and per-
pendicular to the plane of Figure 6(a). The reference frame O1xyz is attached to 
SMPP1, which is immovable in the ETH, with distance D between them. 

In the case of SMPPs we will admit through HVFI, that the deformations +,−vs 
of the S/MM surface, are the result of the superposition of the effects of vibratory 
deformations us, with the general rotational movement with +Ω of the SMPP 
around the Oz axis, according to the mechanism in Section 2.3., 2.4. 

These deformations +,−vs are in fact equivalent/special deformations, which 
would create in the ETH the transversal vibrations/deformations +,−v, with vs = 
v, according to Section 2.6. These deformations +,−vs develops in two phases: ac-
tive phase (PHA), when SMP acts upon ETH transmitting energy (only which 
counts), and passive phase (PHP), when ETH acts upon SMP, retransmitting 
energy.  

The deformations +,−v in the ETH are initially, cylindrically propagated, since 
they have cylindrical symmetry around Oz axis of rotation, but at great distances, 
they are spherical propagated.  

In the case of SMPP, we will assume that the initial deformation vs are the re-
sult of a clockwise rotation of S/MM with +vs, (corresponding to the sense +Ω,  
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Figure 6. Physical mechanism of interaction between pairs of SMPs through their FVT vibrations in the ether, via 
percussions pp, through the evolution in time of attached deformations v. 

 
in PHA), that is denoted as positive here, followed by a counterclockwise rota-
tion –vs, in PHR and then followed by pairs of oscillations +,−vs, and so on, with 
frequency ft and period Tt. 

The deformation +vs corresponds to the rotation of the radius r0 (of the point 
M situated on the parallel circle of the sphere of SMPP), clockwise around the 
Oz axis through an angle +,−δ of vibrations, with size appropriate to the dis-
placement +,−vs. And the point M has the position angle λ, of the parallel circle 
(Figure 2 and Figure 6(a)). 

Deformations from +,−vs, will occur tangentially to the surface S/MM, as the 
alternating/vibratory displacements +,−vs of the M point on the S/MM surface 
(Figure 6(a)). The displacements +vs will correspond to the specific angular de-
formations γr = νs/r0, with frequency νt. 

For the SMPP, the initial displacement is considered to be +vs, in PHA while 
for the SMPN the initial displacement will be −vs, in PHR corresponding to the 
two types of effects from the quasielectrical charges +q,−q, of SMPP and SMPN 
respectively, as defined in Section 2.5. 

Once the deformations +,−vs appear, tangential percussion forces +,−pt will 
arise at the surface of the SMP upon ETH, through the MM membrane at the 
surface S of the SMP. These periodic percussion forces +,−pt (on a single EC) 
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will then be exerted on ECs in the adjacent external ETH, and thus deformations 
+,−v are produced in ETH. And being associated to deformations +,−v, the fun-
damental vibrations FVTs will also arise in ETH (Figure 2, Figure 6(a)). 

This mode of occurrence of FVT, when the PCs cells or GPCs/quarks inside 
the SMP may continuously rotate individually with rotation speed +,−ω, allow-
ing concomitantly the general rotation of the SMP with rotation speed +/−Ω of 
the membrane MM on the surface S/MM of the SMP. 

This model of FVT, is well correlated with other observed physical phenome-
na, such as the storage of energy E0 in a GPC, with rotation speed ω, and with 
the spin of SMPs, due to SMP general rotation with speed +/−Ω (Figure 2, Fig-
ure 6(a)). 

Thus, the spin arises from the effect of the rotations Ω of PCs at the outer 
surface of the SMP, since the rotations +/−ω of the inner PCs/quarks will be 
cancelled in pairs at the tangent points of the PCs, where the directions of the 
rotations +/−ω are opposite. 

This is similar to the occurrence of Ampere currents in magnetism, although 
the energy E is present in the rotations +/−ω of all inner PCs/quarks, and will be 
accumulated and preserved. 

Figure 6(a) indicates the direction of the transversal vibrational deformations 
+,−v of the ECs in ETH, at circumferences of different rays ri, related to the 
FVTs of SMPP1’s with period TT. The transversal deformations +,−vs of the sur-
faces S/MM of the SMPs are also shown.  

These circular, pulsating deformations +,−v of the ETH are imprinted by cir-
cular pulsating +,−vs deformations in the surface S/MM of SMPP1 in PHA, in 
the first layer of the adjacent EC cells in ETH, as described in Section 2.3.1, 2.4, 
2.6. 

These vibrational deformations +,−v are then transmitted/imprinted in a 
step-by-step way to all the external ECs layers within the ETH through the me-
chanism of periodic transversal percussion forces +,−pt which produce FVTs, 
starting from SMPP1. The values of these deformations +,−vi will decrease as 

0 1 2 3 nv v v v v> > > > > , (Figure 6(a)) corresponding to a variation of 1/r2, in a 
similar way to Coulomb’s law, as described in [1] [8]. 

The deformations +,−v will create in ETH, associated specific angular defor-
mations or strains +,−γ, and this is possible in the case of HM16 crystalline va-
riant A. 

We assume that the FVTs of an SMP start from S/MM as a set of cylinders 
around the Oz axis of rotation, which then expand to the whole ETH, becoming 
spherical at large distances.  

We must consider that the +,−v deformations, are local, discrete, on a single 
EC, as a quantum effect. 

2) Action on SMPP2: 
We will first analyse the action of SMPP1 on SMPP2 via FVTs under the gen-

eral conditions of the behaviour of SMPs in HFVI, as described in Sections 2.3.1, 
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2.4., 2.6. and above. 
Here, we examine the case where the Oz axes of both SMPs are parallel, to 

simplify the analysis. We analyse a direct interaction between two SMPs, given 
by percussions +,−pt that are associated with vibrational deformations +,−v via a 
single string ST0 of ECs, and which is central, linear and direct between O1 and 
O2 (Figure 6(a)). 

The total forces, including the indirect interaction forces between two SMPs 
via multiple STs as series of curved paths li and their effect through +,−v of the 
FVTs upon SMPP2, can be analysed separately in the same way as for the vibra-
tions +,−u of FVLs; these act as a corrected Coulomb force FCC as described in [2] 
[8], although here these −,+v originate in the FVTs. 

Figure 6(b) shows how the first deformations +v of the ECs in the adjacent 
ETH, derived from SMPP1, become –v (due to the reversal of the direction of 
the axis +v) when applied to SMPP2. 

In this simple case, at point M2 on SMPP2, a series of tangential percussion 
forces +,−pt during PHR will be transmitted from SMPP1 via the ETH, with the 
first being the negative −pt due to a reversal of the sense of +v when switching 
from SMPP1 to SMPP2 (Figure 6(a), Figure 6(b)). 

At point M2, we therefore find that at time t0 = 0, the first deformations of the 
ECs will be −v, during PHA of SMPP1 i.e. in the opposite direction to the first 
deformations +vs in the PCs within SMPP2, although these deformations have 
the same phase, and during PHA of SMPs.  

The peaks in the zigzag line ZL at the points Pi (where the percussion forces 
−,+pt are focused, as effects of PHA, Figure 6(b)), i.e. periodic deformations 
−,+v of the ETH at various timeframes T/2, will therefore be directly opposite to 
the direction of movement of the peaks P’i of the deformations +,−vs in SMPP2 
having opposed senses, so giving repulsion forces. (Figure 6(b)). It follows that 
the percussions −,+pt will constitute forces that oppose the direction of the de-
formations +,−vs in the surface of SMPP2, and are thus also opposite to the cor-
responding forces +,−pst afferent to the SMPP2 surface S/MM, as effects of PHA 
superposition from Section 3.2.1, indicating rejection of SMPP2 from SMPP1, 
which finally will be reciprocal. 

In this way, at point M2 on the elementary surface Ss of a single EC (a circle 
with radius r00) of the central string ST0 of ECs, tangential periodic percussions 
−,+pt with period T/2 will arise. 

The percussion forces +,–pt from ETH (Figure 6(b)), will be opposed to the 
deformations +,−vs in SMPN2, and hence form tangential efforts –,+τ restrain-
ing the deformations in SMPN2 and mitigating its rotation, giving: 

, , t sp Sτ− + = − +                          (14) 

This will result in an average percussion force −,+pt (over −,+pt, and thus 
−,+pt = −,+pt/2), as an average force over a semi-period T/2, noted with –,+FT21, 
derived from percussion forces −,+pt (on a single EC) via the average periodic ef-
fort –,+τ and this will have the form: 

https://doi.org/10.4236/jmp.2020.116052


I. Has et al. 
 

 

DOI: 10.4236/jmp.2020.116052 832 Journal of Modern Physics 
 

( )21, , ,T t sF p S τ− + = − + = − +                     (15) 

The force −,+FT21 will therefore be a periodic tangential force that produces a 
alternating rotation in SMPP2 by SMPP1, while creating a braking/attenuating 
effect on the periodic vibration +,−vst or on rotation +,−Ω, of SMPP2, as shown 
in Figure 6(a). 

This tangential force +,−FT21 will be continuous over T/2, due to SMPP1, and 
is created by the percussion forces −,+pti, through their average −,+τ effort on 
the elementary surface Ss of an single EC. 

This force −,+FT21 corresponds to the direction/line O1-O2 of direct connec-
tion l0 through ST0 between SMPP1 and SMPP2 (Figure 6(a)). 

From Figure 6(a), it can be seen that the force –,+FT21 also corresponds to a 
special tangential force of Coulomb type FC between two positive charges +q/+q, 
although with a different nature. The nature of −,+FT21 is obvious; it is a tangen-
tial mechanical force derived from the tangential percussion forces +,−pt, and 
from their average efforts −,+τ, according to the mechanism described above 
and illustrated in Figure 6(b). This force varies as 1/r2 over short distances, in 
the same way as FC: 

21 0 00 2

1, , ,T tF f r r p
r

 =  
 

                      (16) 

The full form of the function f in Equation (16) can be established on an expe-
rimental basis depending on the geometry of the SMPs (radius r0) and on the 
ECs (radius r00), and also on the positions of the axes Oz. 

As a result, from the percussions −,+pt arising from SMPP1, and hence also 
from the force −,+FT21, acting tangentially on SMPP2 (with radius r0), a moment 
−,+MT21 of rotation (periodic in the same way as −,+v) will result: 

21 21 0, ,T TM F r− + = − +                       (17) 

Since the deformations −,+v at the extreme points Pi on the lines of variation 
ZL over time t for ETH and near SMPP2 have signs/directions that are opposite 
to those of the deformations +,−vs (Figure 6(a) and Figure 6(b)), then the per-
cussions −,+pt (including the forces −,+FT21 and their efforts −,+τ) will be op-
posed to +,−vs, so representing a decrease in the +,−γ0 rotational trend of SMPP2 
due to SMPP1. 

As a result, the moment −,+M21 will also be a periodic/vibrational rotation 
moment on SMPP2 with a braking effect on its oscillations/rotations due to the 
influence of SMPP1, which is unknown at present and may have a quantum in-
terpretation. 

Note 4.1: This correlation in the periodic deformations −,+vs and −,+v be-
tween SMPP2 and SMPP1 giving repulsion forces –,+FT21 also arises as described 
in Section 1 for SMPAC and HCO, through the suitable commands for reversing 
the direction −,+v provided by the NCs of SMPP1 and SMPP2. 

Note 4.2: This correlation between the periodic deformations −,+vs and −,+v 
of SMPP2 and SMPP1 giving repulsion forces –,+FT21, is also ensured according 
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to the mechanism described in Section 2.3.1., where the percussion forces –pt are 
focused, as part of superposition of two PHA active phases, having opposed senses, 
so giving repulsion force –,+FT21 and braking moment MT21. 

Note 4.3: We admit in HFVI that the above forces action is at the single EC area 
of the +,–pt and the equivalent force +,–FT21 in Equation (16) and also the moment 
−,+MT21 in Equation (17). So +,–FT21 and −,+MT21 represents the forces/moments 
with minimum intrinsic/predetermined sizes for the SMPs and the ETH, which 
constitute the minimum forces/moments ΔF/ΔM in quantum mechanics. Hence, 
these forces FT21 may constitute a kind of special magnetic field QHs whose na-
ture needs to be researched in future. 

3) Action on SMPP1: 
In the case of the action of the force from SMPP2 on SMPP1, due to the sym-

metry of the situation (Figure 6(a)), the same result as in point 2) will be ob-
tained and the periodic +,−FT12 force will result : 

 ( )12 21, , , ,T t s TF p S Fτ− + = − + = − + ≅ − +              (18) 

The periodic rotation moment −,+MT12 will also arise: 

 12 12 0 21, , ,T T TM F r M− + = − + ≅ − +                  (19) 

where −,+MT12 is a periodic/vibrational moment of rotation on SMPP1 with a 
braking effect on its oscillation due to SMPP2. 

4.2. Interaction of Two SMPNs that are Immovable in the Ether,  
through FVTs 

1) General conditions of SMPNs: 
In this case, Figure 6(a) must be adapted to represent SMPN1 and SMPN2 

with the internal rotations ω and external rotations Ω that are reversed, becom-
ing –ω and –Ω, respectively. The senses of the arrows representing the deforma-
tions +,−v will also be inverted (Figure 6(a)). 

Thus, the order of occurrence of the phases of the deformations +,−v will be 
reversed on both sides, becoming −,+v, in the ETH around the SMPN and −,+vs 
(with the first of size −vs, and the rest of size +,−vs) at the surface S/MM of the 
SMPN. 

In the case of interaction between two negative SMPs, SMPN1 and SMPN2, by 
means of FVTs, the situation is similar to that discussed in Section 4.1 above, 
with Figure 6(a)-adapted, showing the changed directions of ω, Ω angles and of 
+,−v senses. 

This is because the difference between an SMPN and an SMPP in respect of 
FVTs consists only of the senses of transversal deformation +,−v and the related 
+,−γ angle, as illustrated in HFVI in Section 2. This means that for an SMPN, 
the initial rotation is −v, and –γ, i.e. counterclockwise. This reversed direction of 
the initial deformation/vibration has no influence on the size of the forces FT or 
the moment MT, but only on their directions in Equation (18), Equation (19). 

2) Action on SMPN2: 

https://doi.org/10.4236/jmp.2020.116052


I. Has et al. 
 

 

DOI: 10.4236/jmp.2020.116052 834 Journal of Modern Physics 
 

The transversal/pulsating deformation −,+vs (initially with size −vs, and then 
+,−vs) at point M2 on the surface S/MM of SMPN2, and deformations/vibrations 
+,−v in the adjacent ETH, is represented in the inset in Figure 6(c), and depends 
on the time t over a period T. This results in a periodic zigzag line ZL, due to the 
pulsating and periodic character of +,−v and +,−vs with time step T/2.  

The first deformations −v of the ECs in the ETH adjacent to SMPP1 become 
+v in Figure 6(c) near SMPN2 (due to the change in direction of the axis +v). 

At the central point M2 on the face of SMPN2 facing SMPN1 (Figure 
6(a)-adapted, Figure 6(c)), we find that at time t0 = 0, the deformations +,−v in 
the ECs caused by SMPN1 in the adjacent ETH are opposite in direction/sense 
to the deformations −,+vs of the PCs of MM within SMPN2, although they have 
the same phase. 

Hence, the peaks at points Pi where the percussion forces +,−pt are focused (as 
part of PHA active phases superposition, from Section 2.3.1.), having opposed 
senses, so giving repulsion forces (Figure 6(c)). So on the line ZL of periodic 
deformations +,−v in the ETH at various timeframes T/2, deformations +,−v will 
be directly opposite to the peaks of the deformations −,+vs in SMPN2 with pe-
riod T/2 indicating rejection of SMPN2 which finally will be reciprocal (Figure 
6(c)).  

The transversal vibratory deformations +,−v of the ECs in the ETH adjacent 
to SMPN2 will be accompanied by periodic transversal/tangential percussion 
forces +,−pt at point M2 (initially positive, on a single EC) on the nearby half-surface 
S/MM, of the nature of some tangential +,−τ efforts, and these are also vibra-
tional. The average of these efforts +,−τ at point M2 on the area Ss of an single 
EC projection (with radius r00) on the half-surface S close to SMPN2, will give 
the force +,−FT21. The first impulse of +,−FT21 is counterclockwise, starting from 
SMPN1, and this is reversed to the clockwise sense on SMPN2, as explained in 
Section 2 (Figure 6(a)-adapted, Figure 6(c)). 

In this way, an average percussion force +,−pt (over +,−pt, thus +,−pt = 
+,−pt/2) will appear at point M2 as an average force over a half-period T/2, de-
noted as +,−FT21 (on a single EC), arising from percussion forces +,−pt through 
their average periodic effort +,−τ, and will have the form: 

( )21, , ,T t sF p S τ+ − = + − = + −                      (20) 

Thus, the force +,−FT21 (on a single EC) will be a periodic tangential force on 
S/MM that produces a rotation in SMPN2 due to SMPN1, but creates a brak-
ing/attenuating effect on its own periodic rotations −,+vs as shown in Figure 
6(a)-adapted. 

This tangential force +,−FT21 corresponds to the direction/line O1-O2 of direct 
connection l0 through ST0, between SMPN1 and SMPN2 (Figure 6(a)-adapted).  

As a result of the percussion forces +,−pt and hence the forces +,−FT21 (on a 
single EC) acting tangentially on SMPN2 (radius r0), a rotation moment +,−MT21 
(periodic in the same way as +,−v) will emerge: 

21 21 0, ,T TM F r+ − = + −                         (21) 
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As explained in Sec. 4.1, also here, since the deformations −,+v at the extreme 
points of the lines ZL of variation during t for ETH and for SMPN2, have 
signs/senses that are opposite to the deformations +,−vs (Figure 6(a)-adapted, 
Figure 6(c)), the percussions −,+pt (including the forces −,+FT21 and their efforts 
−,+τ) will be opposite to +,−vs, representing an attenuation in the rotation of 
SMPN2 +,−γ0 due to SMPN1. 

The moment +,−MT21 will therefore be an alternating rotation moment on 
SMPN2 due to the influence of SMPN1, which will tend to oppose the own mo-
ment −,+MT21 of SMPN2 by braking. 

Here, Note 4.1.-adapted, Note 4.2.-adapted and Note 4.3.-adapted from Sec-
tion 4.1 point 2) are also valid here. 

3) Action on SMPN1: 
In the case of the action of SMPN2 on SMPN1, due to the symmetry of the 

deformations v, and hence also of the percussion forces pt (Figure 6-adapted), 
the same result as in point 2) will be obtained for the force +,−FT12 and the mo-
ment +,−M12 given in Equation (20) and Equation (21): 

 ( )12 21, , , ,T t s TF p S Fτ+ − = + − = + − ≅ + −                (22) 

 12 12 0 21, , ,T T TM F r M+ − = + − ≅ + −                  (23) 

The moment +,−MT12 will be a periodic/oscillating rotational moment on 
SMPN1 with a braking effect on the own oscillation/rotation −,+MsT1 of SMPN1. 

4.3. Interaction between Immovable SMPP and SMPN, in the Ether,  
via FVTs 

1) General conditions of SMPP/SMPN: 
In this situation, Figure 6(a) must be adapted to represent SMPP1 and SMPN2, 

with internal rotation ω and external rotation Ω, which are reversed for SMPN2 
to give –ω and –Ω, respectively, and the senses of the arrows of the deformations 
+,−v, will be inverted for SMPN2 (Figure 6(a)) as discussed in Section 2. 

Thus, the order of occurrence of the phases of deformations +,−v will be re-
versed, becoming −,+v, in the ETH around SMPN2 and remaining +,−vs (with 
initial size +vs and then −,+vs pairs) at the surface S/MM of SMPP1.  

2) Action on SMPN2: 
The transversal/circular deformations −,+vs, as vibrations at the point M2 on 

the surface S/MM of SMPN2, and the FVT deformations/vibrations −,+v in the 
adjacent ETH, are represented in detail in Figure 6(d), and depend on time t, 
over periods T. 

The first deformations +v of the ECs in the ETH adjacent to SMPP1 become 
−v in Figure 6(d) near SMPN2 (due to the change in direction of the +v axis) 
when applied to SMPN2. 

At the central point M2 on the face of SMPN2, the zigzag lines ZL of the de-
formations −,+v and −,+vs (Figure 6(d)) will result with the same sign (where 
the first deformation in ETH will be −/+v) with time step T/2. These deforma-
tions have the same phase. 
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The extreme peaks at points Pi where the percussion forces −pt are focused as 
part of PHA active phases superposition, from Section 2.3.1., having identical 
senses, so giving attraction forces (Figure 6(d)). So on the ZL line of the period-
ic deformations −,+v in the ETH at various timeframes T/2, the deformations 
−,+v, will therefore match the peaks in the deformations −,+vs in SMPN2, and 
since they have the same direction/senses, these lines will twist/penetrate them-
selves indicating attraction of SMPN2 which finally will be reciprocal attraction 
(Figure 6(d)).  

The transversal vibratory deformations −,+v of the ECs in the ETH adjacent 
to SMPN2 will be accompanied by periodic transversal/tangential percussion 
forces −,+pt at point M2 (initially negative) at the S/MM half-surface, of the na-
ture of some tangential −,+τ efforts, which are also vibrational. The average of 
these efforts −,+τ at point M2 on the area Ss of an single EC projection (radius 
r00), on the surface S/MM close to SMPN2 will give the force −,+FT21 (where the 
initial impulse of −FT21 is clockwise, starting from SMPN1, but is reversed to coun-
terclockwise for SMPN2) as discussed in Section 2.3.1. (Figure 6(a)-adapted, 
Figure 6(d)). 

In this way, an average percussion force −,+pt (over −,+pt ) will appear at 
point M2 as an average force over time with period T/2, denoted as −,+FT21, (on a 
single EC) arising from the percussion forces −,+pt through the average periodic 
effort −,+τ, and will have the form: 

( )21, , ,T t sF p S τ− + = − + = − +                    (24) 

Thus, the force −,+FT21 will be a periodic tangential force that produces a os-
cillatory rotation in SMPN2 due to SMPN1, and creates a boosting effect for its 
own periodic rotation −,+vs or −,+Ω, (Figure 6(a)-adapted, Figure 6(d)). 

This tangential force −,+FT21 corresponds to the line O1-O2 of direct interac-
tion line l0 through ST0, between SMPN1 and SMPN2 (Figure 6(a)-adapted). 
Here, the force −,+FT21 is a Coulomb-type force but with a different nature, aris-
ing from VFTs. 

As a result of the percussion forces −,+pt, and hence the forces −,+FT21 due to 
SMPN1 tangentially acting on SMPN2 (radius r0), a special rotational moment 
−,+MT21 (periodic in the same way as −,+v) will emerge: 

21 21 0, ,T TM F r− + = − +                        (25) 

The alternating rotation moment −,+MT21 (on a single EC) will act on 
SMPN2 due to the influence of SMPN1, tending to boost SMPN2’s own moment 
−,+Ms21. 

It can also be seen from Figure 6(a)-adapted that the −,+FT21 force also cor-
responds to a Coulomb force FC between two different charges +q/−q, although 
it has a different nature. 

Note 4.1.-adapted, Note 4.2.-adapted and Note 4.3.-adapted, from Section 
4.1 point 2) are also valid here. 

3) Action on SMPP1: 
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In the case of the action of SMPN2 on SMPP1, due to the anti-symmetry of 
the situation (Figure 6(a)-adapted, Figure 6(d)), the result described in point 2) 
will also be obtained for the force −,+FT12 and the moment −,+MT12, as given in 
Equation (26a) and Equation (26b): 

( )12 21, , , ,T t s TF p S Fτ− + = − + = − + ≅ − +              (26a) 

 12 12 0 21, , ,T T TM F r M− + = − + ≅ − +                (26b) 

The resulting force −,+FT12 and the moment −,+MT12 on the elementary sur-
face Ss (on a single EC) will produce a boost in its own rotation −,+vs and its own 
moment −,+Ms21. 

5. Effect Produced by FVs in ETH, Created by the Ordered  
Orientation of SMPs from an Immobile GSMP, Creating QE  
and QH Fields 

5.1. FVL Vibrations Creating QE 

We now consider the situation of a group of SMPs, GSMP1, that are homoge-
neous in electrical nature (P or N), and ordered in terms of their orientation on 
the Oz axis (Figure 7). These SMPs will each transmit FVL waves in an AI-zone 
of the ETH near SMP2, in the presence of which vibrational deformations of 
type +,−u and strains +,−ε respectively will occur within the EC network of the 
ETH (Figure 7). These vibrations of the linear strains +,−ε will be oriented in 
one direction and will have the same sense, and thus will accumulate from all the 
SMPs in the group within the AI. As a result, a sum of oscillatory percussions 
Σ+,−pn (on a single EC) will appear, which will act on SMP2 as explained in Sec-
tion 3. Then, the sum of oscillatory forces Σ+,−FL21 from Equation (9a) will be 
developed, with attraction/repulsion effect on SMP2 depending on the type (P or 
N) of the SMP2 and GSMP1 pair, as discussed in Section 3. 
 

 
Figure 7. Mechanism of interaction of percussion forces between immobile GSMP and a 
SMPP, via FVLs and deformations +,−u, creating a quasielectric field QE in the ETH. 
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Thus, the effect of +,−FL21 from the GSMP1 group of ordered particles accu-
mulates, giving a resulting force FR acting on SMP2 that is equivalent to the 
presence of a stronger quasielectric field QE (Figure 7). 

Here, QE has a clear physical explanation, as it is produced by the normal 
percussion forces +,−pn (on a single EC, only in PHA) created by the FVLs from 
GSMP. 

This QE field will produce the same physical effects as the E field; the nature 
of QE is clear here, as it is an effect of the percussion forces pi created by the 
strains +,−ε produced by the FVLs from the GSMP. 

5.2. FVT Vibrations Creating a Special QHs  

The FVTs of a stationary group of SMPs, GSMP1, can create in a certain AI near 
SMP2, from space/ETH, a special state of ordering of the vibrational deforma-
tions +,−v and the associated angles +,−γ from the EC network of the ETH 
(Figure 8). 

This situation can only occur if GSMP1 has component SMPs that are homo-
geneous in nature (P or N) and are ordered in terms of their orientation and the 
directions of their Oz axes. Then the positions and orientations of the angles 
+,−γ in the AI zone of ETH produced by all SMPs, will have the same direction 
and sense, cumulating from all SMPs in the GSMP (Figure 8). 

As a result, pulsating tangential percussion forces +,−pt will arise as a sum, 
Σ+,−pt, (on a single EC) and will act tangentially on the surface S/MM of SMP2 
as described in Section 4. At the same time, the associated forces accumulate as 
Σ+,−FT21 = +,−FRT21, and this resultant tangent force will create the vibration-
al/special moment of torsion +,−MSR (on a single EC) that acts on SMP2. The 
moment +,−MSR will have a damping or boosting effect on the rotations/vibrations 
of SMP2, based on the types of SMP2 and GSMP (P or N), as explained in Sec-
tion 4. 

 

 
Figure 8. Mechanism of interaction of percussion forces between an immobile GSMP and 
a SMPP, via FVTs and deformations +,−v, creating a quasimagnetic special field QHs in 
the ETH. 
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This damping or boosting action depends on the relative position of the axes 
Oz of SMP2 and of GSMP; a parallel direction gives the best result, due to the 
highest interference of the associated strains γ. 

The creation of a vibrational moment +,−MSR (on a single EC, only in PHA) 
acting on the surface S/MM of an SMP2 is equivalent to the presence in the AI of 
a more powerful vibrating quasimagnetic special field +,−QHs; although this has 
no actual equivalent field in physics, it may explain some of the quantum prop-
erties of SMPs (Figure 6). 

6. Effect of FVs in the ETH Created by a Mobile SMP with  
Velocity V 

6.1. FVLs of a Mobile SMP 

For a dynamic state of the SMP1/SMP2 pair, when SMP2 moves with velocity V 
along the Ox axis through the ETH (Figure 9), an additional effect will appear, 
namely a dynamic component of the deformation +,−u with size Δu, oriented in 
the x direction.  

This dynamic component +Δu represents the displacement of SMP2 in the 
direction of V for a half-period T/2, during which the deformation +,−u of the 
surface S/MM of SMP2 occurs. 

The deformation +Δu in the area of SMP2 will then be transmitted in a radi-
al/spherical way throughout the rest of ETH, and will reach SMP1, but with val-
ues +Δu’ decreasing as 1/r2 according to Coulomb’s law (in the same way as +,−u, 
described in Section 3). 

The new effect +Δu or the associated +Δε, will cause a change of Δε in +,−ε, 
including in the AI of SMP1, and will therefore create a modification of the force 
+,−FL12 on SMP1, as described in Section 3, but only when the direction of V 
coincides with the direction O1-O2 (Figure 9).  

 

 
Figure 9. Deformations u and v in the interaction between mobile SMP2 and the EYH resulting quasielectric (QE) 
and quasimagnetic (QH) fields in the ETH. 
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We also note that the deformation +Δu is discrete and vibrating, due to the 
vibrating nature of +,−u with which it is associated, and this vibration will be 
transmitted to +Δε and +ΔFL12. 

The new effect +Δu will produce a change in the base force +FL12, (on a single 
EC, only in PHA) as explained in Section 3, by a new force +ΔFL12 of repul-
sion/attraction type, of SMP1 by SMP2 due to velocity V. 

From the reciprocity of the interaction discussed in Section 3, a similar mod-
ification of the force +ΔFL21 on SMP2 due to SMP1 will be created, with size 
+ΔFL21 = +ΔFL12. This force +ΔFL21 is the reaction of the ETH acting on SMP2, 
opposing to its movement with speed V. 

We note here that Δx is the displacement of SMP2 during the period Δt of the 
expansion of SMP2, where 2u/2 = u, during a semiperiod T/2. We can therefore 
write: 

x t V∆ = ∆ ⋅                            (27) 

As a result, the total deformation ut of the point M2 located on the surface 
S/MM of SMP2 within a semi-period T/2 = Δt will be: 

tu u x u t V= + ∆ = + ∆ ⋅                       (28) 

The time Δt over which the deformation u takes place, with its own velocity of 
deformation cu of the surface S/MM, during a single vibration T/2 within the 
FVL, will be: 

u

ut
c

∆ =                             (29) 

We introduce Equation (29) into Equation (28), and obtain for the total de-
formation: 

t
u

uu u V
c

= + ⋅                          (30) 

For the total final specific deformation/strain ε, from Equation (30), we ob-
tain: 

0 0
0 0 0 0

t u
t

u u

uu V
u c u u V V
r r r c r c

ε ε ε
+

= = = + ⋅ = + ⋅            (31) 

The variation in the specific deformation, Δε, from Equation (31) is then: 

0 0t
u

V
c

ε ε ε ε∆ = − = ⋅                      (32a) 

In the case of an SMP2 moving with velocity V in a direction different from 
O1-O2 (Figure 9), the influence on Δε will arise only from the component of V in 
the direction Ox, meaning that this will be smaller than in the case in Equation 
(32a). So the dynamic effect +ΔFL12 created by Δε will modify the basic force 
+FL12 by a second factor V/cu as follows: 

12 12L L
u

VF F
c

+∆ = + ⋅                      (32b) 
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Since the force FL12 is modified as shown in Equation (32b), the force FCC will 
also be modified, and hence the intensity of the quasielectric field QE will be 
modified by ΔQE. 

This modification will normally be negligible, due to the negligible value of V 
compared to the velocity of deformation cu of S/MM from Equation (32a), based 
on the results from Sections 2 and 3. 

It follows that the final size of +ε, and hence also the sizes of the resulting 
forces +,−FL12 and +,−FL21, cannot be significantly influenced, in the case of 
movement with normal velocity V in the ETH, or between SMP2 and SMP1. 
However, for high speeds V, this influence ΔFL12 cannot be neglected, as it results 
in important consequences at both the microscale and the macroscale. It affects 
the electric interaction forces FCC and the gravitational forces FDC according to [1] 
[2]. 

6.2. FVTs of Mobile SMPs 

In this case, we consider the special situation of a mobile SMP with velocity V, 
which produces FVTs by means of rotation with speed +Ω around the axis Oz. 

We take into consideration the fact consider that an immobile SMP will pro-
duce only simple, tangential circular deformations +,−v, but with an asymme-
trical variation in the period T associated with the FVs, as described in Sections 
2 and 3.  

In the case of a mobile SMP with velocity V will result the superposition of 
two effects: 
- basic tangential/circular deformations +,−v as described in Section 3 for an 

immobile SMP; 
- new tangential/longitudinal deformations +Δv for a mobile SMP, which will 

be analysed below. 
In an analysis of +Δv, we need to consider two phenomena that arise in con-

junction with it: 
1) The linear displacement of SMP with velocity V. 
2) The concomitant rotation with speed +Ω for an SMPP or speed −Ω for an 

SMPN. 
These two important phenomena are analysed below. 
1) Linear displacement of SMPs with velocity V: 
The new deformation +Δv appears as an result of the mobile/dynamic state of 

SMP2 moving with velocity V in the direction of the axis Oy, normal to the di-
rection O1-O2, relative to SMP1, which is considered to be immobile. 

The velocity V must be considered against the ETH, and in this case, the ve-
locities V of both parts of the analysed interaction need to be considered (Figure 
9). This is because SMP1 will show the same effect if it moves with speed V1. 

First, we analyse the dynamic component +Δv representing the change in the 
velocity V of the surface S/MM of SMP2 in the direction Oy, over a semiperiod 
T/2, during which the normal/radial deformation +,−u of the surface S/MM of 
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SMP2 develops, as described in Section 3. During T/2 time, SMP2 travels a dis-
tance +Δy = +Δv. 

The deformation +Δv in the area of mobile SMP2, will be transmitted further, 
not spherically as FVLs but cylindrically/radially as special FVTs, throughout the 
rest of the ETH. The deformation +Δv will also reach SMP1, but with values +Δv’ 
that decrease as 1/r2, according to Coulomb’s law (as explained for +,−u in Sec-
tion 3). 

The deformations +Δv will develop longitudinally on the surface of a cylinder 
CL, with its axis oriented in the direction of Oy, where CL is circumscribed to 
the sphere of SMP2 (Figure 9). The deformations +Δv will be radially transmit-
ted from this cylinder throughout the ETH, as described above. 

We also note that the deformation +Δv has a discrete, oscillating asymmetrical 
character in an period T, due to the vibrating nature of +,−u with which it is as-
sociated, and this oscillating character of +Δv will be transmitted to Δγ and to 
associated +ΔFT12. 

The new effect +Δv will created a change +Δγ in the strains +,−γ in ETH, in-
cluding within the area AI of SMP1, and hence will produce a modification 
+ΔFT21 in the force +,−FT12 acting on SMP1 (on a single EC), as discussed in Sec-
tion 4 (Figure 9). 

However, the specific deformations +Δγ in the ETH resulting from the dis-
placement of SMP2 with velocity V will be simple as sense, but will oscillate in 
the direction of the velocity, +V. A change in the strain +Δγ will be created by 
+Δv, produced by the mobile SMP2, and will be accompanied by the efforts var-
iation +Δτ, and by the resulting variation +ΔFT21 of the forces +,−FT12. 

For simplicity, we will refer to the modification + Δγ that is due exclusively to 
the speed V, which we will denote simply as +γ. 

In fact, by the deformations +Δv and +γ, respectively, created by mobile 
SMP2, whose S/MM will create a new dredging/training force +FST21 on the ETH, 
as discussed in Sections 4 and 6.1. According to Newton’s third law of the reci-
procity of forces, and as explained in Section 4, a similar change +ΔFT21 in the 
force on SMP2 due to ETH will be created, where +ΔFT21 = +ΔFT12. This force, 
+ΔFT21, is the reaction force of the ETH on the mobile particle SMP2, in a direc-
tion opposed to its movement with velocity V. 

The forces +FT21 vary in size with distance r according to Coulomb’s law, 
within the AI of the ETH, close to SMP1 (Figure 9). 

In the case where SMP2 is in a dynamic/mobile state, travelling through the 
ETH with velocity V directed tangentially to the SMP1 direction O1-O2, the 
above dredging/training effect of the ETH will appear. This new effect consists of 
a component Δy = +Δv, oriented orthogonally to the end of the representation 
segment of the deformation u, but acting in the y direction, forming an angle 
+Δγ (denoted as γ) with u or with z (Figure 9). Δy represents the displacement 
along y of the mobile particle SMP2 over the period Δt = T/2, which corresponds 
to the expansion of S/MM of SMP2, with 2u/2 = u. We can therefore write: 
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v t V∆ = ∆ ⋅                            (33) 

As a result, the 90˚ angle between the deformation u and the axis Oy will be-
come 90˚ + γ (Figure 9), where +γ represents the angle of deformation of the 
rectangular crystal lattice of the ETH. We can then write, using Equation (33): 

v Vt
u u

γ ∆
= = ∆ ⋅                          (34) 

The time Δt during which the deformation u is produced, with a velocity cu of 
deformation of the S/MM surface of SMP2, will be: 

u

ut
c

∆ =                             (35a) 

We introduce Equation (35a) into Equation (34) and obtain: 

u u

V Vt
t c c

γ = ∆ ⋅ =
∆ ⋅

                      (35b) 

Thus, the angle +γ of deformation of the crystalline network of the ETH 
(Figure 9) is proportional to the velocity V and inversely proportional to cu. The 
velocity cu can be considered to be a constant, and this will be evaluated in the 
future. 

Hence, the new effect of V, resulting in a strain +γ, will lead to a modification 
of the basic force +,−FT21, as described in Section 3, by a new force +ΔFT21 with 
dredging effect between SMP2 and ETH, corresponding to the speed V of SMP2 
with respect to ETH. Assuming an elastic ETH, we can write: 

21T ETF K γ+∆ = ⋅                         (36a) 

where KET is an elastic constant to be determined in future works. 
Here, we assume that SMP2 has constant velocity V over a long continuous 

period tcon, so that SMP2 in this movement can be considered a DC current. 
The additional tangential force +ΔFT12 = +ΔFT21 acting on SMP1, or on any 

other SMP in the ETH, will constitute the longitudinal component HL of the 
field H which is generally referred to as magnetic but which in HM16 model we 
call the quasimagnetic field QH. The component QHL is caused by the move-
ment of the SMP with longitudinal velocity V via FVLs. 

The presence of QH in an area AI can be associated with the presence in the 
AI of the specific strains +γ of the ETH network (Figure 9). 

2) Rotation of SMPs at speed +/−Ω: 
This phenomenon of rotation of an SMPP/SMPN must be given the same 

importance as the velocity V in point 1) to enable a correct understanding of the 
phenomenon of interaction between two SMPs. 

We mention that for this mechanism of rotation with +/−Ω on the SMP scale, 
we do not have detailed information, but only the general knowledge of current 
physics, a multitude of phenomena involved in practically all chapters of physics. 

The following paragraphs complements the discussion of HFVI in Section 2, 
and aims to ensure the compatibility of +/−Ω rotation phenomenon, with the 
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rest of the interaction mechanisms of SMPs in HFVI, previously set out in [1] 
and in this paper as HFVI hypothesys. HFVI provides a logical explanation of 
the interaction process between the SMPs in the microcosm based on the me-
chanism of percussion forces, which form the basis of all phenomena in physics 
and nature. 

For this purpose, we assume that the SMPP and SMPN are mainly characte-
rised by their direction of rotation around the Oz axis with speeds +Ω and –Ω, 
respectively. 

We also assume that the two SMPs analysed previously, i.e. SMP1 and SMP2, 
have parallel Oz axes (Figure 9). Regarding the senses of the two Oz axes, we can 
admit the existence of both orientations of the analysed pair, but we will have to 
admit that the results of the interactions, as percussion forces, will differ in the 
two cases, but similar as a mode of interaction. 

Based on these general considerations, we admit that the deformations +,−v in 
the ETH produced by the two SMPs will arise from the surface S/MM according 
to the mechanism described in Section 2.3.1., 2.6. 

The deformations +,−vs is considered during the rotation +,−Ω of an SMP, 
and will form a tangent to an intermediate circle parallel to the equatorial plane 
of the SMP, with radius r0. We therefore consider that +,−vs has an average value 
corresponding to a circle of radius r0 at 45˚ (Figure 9). These deformations +,−vs 
of S/MM will also be transmitted to ETH in the form of deformations +,−v, 
which form the fundamental vibrations FVPP and FVPN, respectively. 

For a SMPP, we assume that the deformation vs at time t0 constitutes an initial 
deformation +vs, that is clockwise and positive in the active phase, PHA. This 
will be followed by a counterclockwise deformation, –vs, in the reactive phase, 
PHR, followed by another deformation +vs, and so on, following the mechanism 
presented in Sec. 2.3.1., 2.6. 

3) Superposition of phenomena from 1) and 2) for SMPs: 
According to the mechanism proposed in Section 2.3.1., 2.6, deformations 

+,−vs in the surface S/MM and their counterparts +,−v in ETH develop in two 
phases, i.e. an active and a reactive phase, without impeding the continuous ro-
tations +,−Ω of the SMP. Only the active deformation v will be transmitted by 
SMP to the ETH, giving a series of deformations +v, +v, +v, … acting on the 
ETH. 

All of these deformations have frequency fT/+Ω, or period T, and the defor-
mations +vs correspond to the clockwise rotation of the radius r0 of the SMP 
around the axis Oz. These properties will be transmitted to the ETH as deforma-
tions +,−v of the ETH with vs = v (Figure 9). 

In the case of an SMPN, the phenomenon is similar to that for an SMPP, but 
with a reversal of the rotation sense, −Ω. 

Hence, the rotation of the SMP will give rise to a series of deformations +v, +v, 
+v, … with frequency fT/+Ω, as in point 2). 

As a result, a two deformations vector summation will occur: one of the new 
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deformations +Δv from V in period T from point 1), and ones on the base from 
rotations from 2) (+v). Thus, a series of cumulated deformations +Δvc will result, 
referred to here, as cumulative deformations:  

cv v v∆ = + ∆                          (36b), 

Or their associate γ strains: 

c R Vγ γ γ∆ = + ∆                         (36c) 

These cumulative deformations +Δvc will have as their starting points the sur-
face of a cylinder CL resulting from the translation of the largest circle of the 
sphere of SMP2, which is moving with velocity V along the Oy axis. 

In this way, the trajectories of the deformations +Δvc will appear as spirals 
that evolve in time after their departure from the surface of the cylinder CL. 
These deformations will be transmitted to the overall ETH (Figure 9). 

The sense of rotation of the spirals will depend on whether the particle is an 
SMPP or an SMPN. The mechanical effect of these deformations +Δvc or of as-
sociated strains +γ will be the percussion forces +ΔFC12 acting on SMP1. These 
are also cumulative vectorial forces, FC12, as are vectorial also deformations γ of 
their origin (36c): 

12 12 12,C R V+∆ = + − + ∆F F F                    (36d) 

The force +ΔFC12 will form a field in ETH called the H field, which in main-
stream physics is referred to as magnetic but which in the HM16 model we call 
the quasimagnetic field QH. As can be seen from Equation (36c), the field has 
two components: rotational QHR and velocity QHV components:  

 R VQ Q Q= +H H H                       (36e) 

The presence of QH in an area AI can be associated with the presence in the 
AI of the specific cumulative strains +γc from (36c) of the ETH network (Figure 
9). 

The force +ΔFC12 will have the same effect as the Lorenz force FL, of transverse 
thrust/dredging of SMP2, created by a field H on an electric charge +,−q that is 
in transverse motion with velocity V (Figure 9). 

The force +ΔFC12 is tangential and spiral (based on the two components shown 
in Equation (36d)), and will also produce a cumulative rotational moment +ΔMC12, 
which acts on SMP1 as explained in Section 4. This moment +ΔMC12 will contain 
the dredging effect of the force +ΔFV12, thus creating an additional quantum ef-
fect on SMP1. 

Note that these forces will act simultaneously on SMP1, i.e. both the dredging 
force +ΔFV12 arising from the velocity difference V between the two components, 
and the forces +,−FR12 due to the rotations from FVTs produced by moving 
SMP2, as shown in Equation (36d) and described in Section 4. 

In the case of a group GSMP2, the individual force +ΔFC12 will have a consi-
derable size, since it is proportional to the number n of SMPs in GSMP2.  

Here, we consider the contribution to the forces +ΔFC12 from the central string 
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ST0 in the direction O1-O2 of the ECs, as discussed in Section 2 (Figure 9). The 
total resultant will be a tangential force FTCC which is calculated by considering 
the set of paths li, as set out in [8]. 

The orientation of the QH field will depend on the direction and sense of the 
velocity V of the SMP2, and also on the sense of rotation +/−Ω of SMP2, as fol-
lows: it will create cumulative, oscillating strains +,−γc in ETH, inclined in the 
direction and sense of the velocity V, containing also rotating strains +γR in the 
sense of +/−Ω in the AI area of SMP1 (Figure 9). The cumulative effect will re-
sult in a complex +Δγc in the overall ETH.  

At the same time, the QH field represents the classical properties of the mag-
netic field +H, for the inclination/orientation angles +γc, and rotation +,−Ω in 
the Oxyz reference frame, according to Fleming’s rule of magnetic induction, 
and depending on the type of particle (SMPP or SMPN). Thus, the oscillating 
force +ΔFC21 will be of the Lorenz type, and will be exerted on SMP1 due to the 
velocity V and rotation +/−Ω of SMP2, and due to the effect of the oscillating 
moment +ΔMC21. The force +ΔFC21 and the moment +ΔMC21 will be imprinted to 
SMP1, over its own rotation vibrations +,−u/v and rotations +/−Ω, resulting a 
complex effect containing forces/percussions F/pp associated to displacements 
u/v, all of a quantum nature, because forces/percussions/displacements, act on a 
single EC. 

But the dredging effect +ΔFCT21 of mobile SMP2 will be transmitted to SMP1 
upon his γc, with a decreased effect, with r as a Coulomb type effect (Figure 9). 

If we assume that SMP2 has a constant velocity V over a long period tcon, it can 
be considered a linear DC current, given by a string of SMP2 of P or N type, 
having the same orientation of Oz axes, but only considering the concomitant 
phenomenon of the rotation of SMP2 with speed +,−Ω (Figure 9).  

In the case of a moving SMP2 with velocity V describing a circle as part of a 
spiral, with a constant radius R over a long period tcon, the SMP2 can be consi-
dered a solenoid containing a DC current, with a specific strong QH field at the 
inner part of the radius R (Figure 9). This strong QH field is caused by the con-
centration within a limited zone of radius R of all the paths of the deformations 
u/v, from the half of the linear current case, but only considering the phenome-
non of rotation of SMP2 with speed +,−Ω. This results in a complex effect upon 
SMP1, involving forces F and displacements u/v of a quantum nature. 

6.3. Energetic Aspects 

As set out in Sections 6.1 and 6.2, the energy ΔEU is related to the percussions 
+,−pn and +,−pt, including the related forces +,−FL21 and +,−FT21, respectively, 
which change their point of application and produce mechanical work L, which 
will come from the potential energy U of the SMP2−GSMP1 system, energy left 
since its creation. Such energy will be released by the movement of SMP2 at 
speed V (Figure 9). This situation also corresponds also to the proper applica-
tion of the general law of Lorenz force [10] [11]: 
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F qE qv B= + ×                          (37) 

The potential U energy of the SMP2-GSMP system is stored in the QE + QH 
fields. 

In this case, the energy +ΔE taken from the potential energy U is associated 
with the SMP2-GSMP1 system of MPs disposed in the neighbouring AI of SMP2, 
from ETH. The transfer will take place through the QE or QH fields. These qua-
sielectric and quasimagnetic fields create the percussion forces +,−pn and +,−pt 
and the associated forces +,−FL21 and +,−FT21, to give the associated moments 
+ML21 and +MT21, fields, which will imprint to SMP2 the speed V, or the speed 
increase +ΔV and the rotation increase ΔΩ respectively (Figure 9). 

It should be noted that the specific deformations +,−ε and +,−γ corresponding 
to deformations +,−u and +,−v may vary in space. The deformations +,−u and 
+,−v appear in the ETH due to the change in the reference distance r, through V 
between two SMPs, which are initially immobile in the ETH (also considered 
immobile). These deformations will be produced by one of the SMPs, which 
moves at velocity V through the ETH. 

The initiation of the displacement with velocity V through the ETH of SMP2, 
occurs under the influence of the field QE + QH. SMP2 also gains rotational 
movement with a change of speed ΔΩ, as a subtle quantum effect (Figure 9). 

7. Mechanism of PH Emission and Movement with Speed c in  
the ETH 

Here, we discuss a possible approach to compiling and operating a PH that tra-
vels freely into space, and therefore within the ETH, at speed c. 

We assume that the PH can be considered an ESMP, i.e. that the basic compo-
sition consists of ECs of PCs (including quarks). Simple etherons (ETs) inside 
any SMP are likely to be grouped into PCs. We assumed in [1] that the composi-
tion of ECs and their grouping within ETH is based on a crystal type body, ac-
cording to the HM16 ether model, Type A. An EC cell comprises a small num-
ber (maybe two to eight) of ETs, while a PC comprises a larger number of ETs. 

We assume that the PH comprises a large number of etheronic cells PCs of 
particle type, that are assembled in the form of a PH compact body, constituting 
an autonomous PAC as described in Section 1 (Figure 10). 

In HFVI, we admit that PH moves through the ETH at a specific speed c, 
without training in its displacement, the ECs cells encountered, which remain in 
place as ECs at the same fixed point M, like initial ECs, at the same M point, af-
ter PH’s passage through point M. The PH behaves like a vortex that entrains 
ECs only in its vortex movement only within its own volume V, along its path. 

This mode of movement of a PH in the ETH without transporting ECs has 
also been considered in regard to the MH16 model [1], a hypothesis that became 
useful only here for the best functioning of the PH. 

We admit in HFVI that the PH can be created by a pair of particles SMP1/SMP2 
or a GMP that is organised in a certain stable form for a while. 
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Figure 10. Physical mechanism of movement of a PH in the ETH with velocity c based on 
the hypothesis of scrubbing. 

 
A PH is created when the energy level E of an MP or GMP decreases by –ΔE 

for some reason, usually after a prior energy increase of +ΔE. The creation of a 
PH consists of the expulsion at the speed of light c of a PH by a pair of MPs, and 
this PH will take the equivalent energy Εph from the MPs or GMP, where Εph = 
ΔE. In the HM16 ether model, we assume that the received energy ΔE is stored 
in the PH within the PP, permanently in a vibrational state with vortices of rota-
tion speed ω, either individually or grouped into certain PC/quark-type. 

In the case of the creation of a PH with energy Εph, the mass m of the MPs will 
also have to be reduced by Δm = Εph/c2, corresponding to a certain number of 
PC cells. This is Variant 1 for the transformation of the mass m of some PCs into 
the energy transmitted to PH, since the PCs are also the carriers of the mass Δm 
of the MP/SMP. 

The energy difference –ΔE will be entirely found in the PH photon, as vortic-
es/vibrations of ECs/PCs, temporarily contained in the PH’s volume that moves 
at speed c and, likewise, the mass difference Δm must also be found in PH. 

Since at least one SMPP and one SMPN are involved when the PH is created 
by annihilating pairs of particles, the resulting PH will have to comprise two 
areas with characteristics specific to these SMPs. Additional support for this 
mechanism also arises from the phenomenon of the creation of pairs (Section 
2.5), when a PH turns into an SMPP and an SMPN. 

We admit in HFVI that the PH will have an ellipsoid shape, including a posi-
tive zone (PZ) in which its own sense of rotation will be clockwise (considered 
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positive), and a negative zone (NZ), in which the sense of rotation will be coun-
ter clockwise (Figure 10). 

These two areas can be coupled either in series or in parallel (Figure 10(a) and 
Figure 10(b)). 

In photon Variant VPH 1, we assume that the two zones (PZ and NZ) are 
coupled in series, forming a single ellipsoid (Figure 10(a)), while in Variant VPH 
2, we assume that they are coupled in parallel to form a double ellipsoid (Figure 
10(b)). 

In photon Variant VPH 3, we assume that the two zones (PZ and NZ) are 
complete separated, forming two simple ellipsoids (Figure 10(a)-adapted), which 
are moving separately, which correspond to simultaneous emission of two PHs. 

The energy ΔE will be transmitted over a short period of time to the PH by 
two types of kinetic: kinetic energy of displacement Edis at speed V, and rotation 
energy Erot at rotation speed Ω. 

These two movements, one involving linear advance, and the other involving 
the rotation of the PH in the ETH, will be produced by periodic percussion 
forces psn-normal and pst-tangential applied to the PH by the S/MM of the two 
MPs. Percussions will be applied via associated vibrations +,−u and +,−v of the 
PCS/MM in final contact with PH at the time of its detachment from the two 
MPs (Figure 10). 

After the detachment of the PH from the SMPs, it will produce in ETH its 
own percussions ps in the same way as an ESMP, which will simultaneously 
create own FVLs and FVTs of the ECs of the surrounding ETH. 

The movement of the PH at speed c starts with the two SMPs imprinting of 
the τ-type efforts on its lateral surface S/MM, creating a sudden rotation of the 
PH with the speed +,−Ω(ν), which will be applied differently to the two zones, 
PZ and NZ of the PH (Figure 10). 

This correlation will also be guided by the nuclei NUs, considering the role of 
those NUs of the SMPs, involved in the creation of the PH, according to the 
SMPAC hypothesis presented in Section 1. Thus, the speed c resulting from the 
advancement process by its double screwing in ether will be imprinted to PH 
(Figure 10). 

Simultaneously, the efforts of type σ from the percussions p acting on the back 
surface S/MM of the PH may contribute to the launch/creation of the PH by 
imprinting speed c. 

We put forward here the hypothesis of scrubbing (HS) as a valid and feasible 
in the physical reality in which the PH starts and moves through the ETH due to 
a screwing process in the ETH. We assume here that the PH has a hydrodynamic 
ellipsoid shape, and to simplify the calculations we will approximate this ellip-
soid by an elongated cylinder of equivalent volume (Figure 10). 

This process of displacement at speed c occurs due to the rotation of this el-
lipsoid /cylinder around its longitudinal axis with rotation speed/frequency Ω/f. 
We assume that the surface/membrane S/MM of the PH’s ellipsoid, has certain 
regular striations or protrusions, which may play the role of a spiral helical thread 
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arranged around and along the ellipsoid, differentiated by the directions of rota-
tion in the two zones (PZ and NZ) of the PH, with step size δ specific to each PH 
(Figure 10). 

The HS is based on a simple process that facilitates the advance of a certain 
body into a compact, penetrating environment, by scrubbing. The validity of the 
HS can be initially confirmed by the theoretical results it provides, as shown be-
low. 

In the HS, for a PH with frequency ν (here we use the Greek ν rather than f) 
and a spiral step δ, moving through the ETH at speed c, we have the equation: 

c δν=                               (38) 

We will denote the initial mass of the PH as mP and apply to it the equation of 
total energy Eph: 

 2
P phE m c=                             (39) 

If we also take into account Planck’s law [11], we can write: 

 phh Eν =                              (40) 

Combining (39) with (40) gives: 

 2
phh m cν =                             (41a) 

 2ph
hm
c
ν

=                             (41b) 

If we multiply by c in Equation (41a) we get: 

 ph
h hm c
c
ν

λ
= =                           (42) 

We introduce c from Equation (38) into Equation (41b) to give: 

 ph
hm
c
νδν =                            (43) 

Simplification with ν in Equation (32a) gives: 

 ph
hm
c

δ =                             (44) 

From Equation (44), given that the product c.mph represents the pulse pph of 
the PH, we obtain: 

 
ph ph

h h
m c p

δ = =                         (45) 

Equation (45) can be generalised using de Broglie’s theory to any MP of mass 
m, pulse p and speed v < c moving through the ether, also through the pheno-
menon of scrubbing with its own step δ, giving: 

 h h
mv p

δ = =                          (46) 

We now apply Equation (45) to the case of a photon with any frequency ν, for 
which the resting mass is mph in Equation (41b): 
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2

h c
h c
c

δ λ
ν ν

= = =                         (47) 

So for a PH of frequency ν moving through the ether by scrubbing, the thread 
step δ is equal to the wavelength λ, equivalent to the frequency ν. This result 
confirms the well-known physical phenomenon of advancing a drill by rotation 
into a compact environment, and hence the HS is theoretically confirmed. 

8. Conclusions and Consequences 

In this article, we have presented a new way of constructing SMPs as complex 
cells such as LCs, with their own MM, PP, and NC. 

A complex hypothesis called HFVI for the interaction between SMPs was de-
veloped based on periodic percussion forces +,−pp created by the FVs produced 
by any SMP in the ETH upon a single EC. We have shown that these percussions 
+,−pp are the smallest forces occurring in the interactions between any two 
SMPs, and are periodic with associated deformations +,−u/+,−v, at a frequency f, 
with energy of +,−pp upon a single EC, representing Planck’s constant h as a 
physical phenomenon related to quantum actions between particles. 

Based on the FVs of SMPs, which create periodic linear +,−u and transversal 
+,−v deformations in the ETH, and which vibrate and act simultaneously, it was 
possible to establish the physical nature of the electrical charges +,−q, given by 
the specific rotation +/−Ω and vibration of an SMPP and of a SMPN, i.e. posi-
tively and negatively charged SMPs, respectively, starting from the moment of 
creation of this the pair, due to a PH photon. 

Based on this knowledge of the physical nature of the electrical charges +,−q 
generated by SMPs producing specific FVs, it was possible to confirm the man-
ner of interaction between two SMPs through +,−FL21 forces as completed Cou-
lomb’s type attraction/repulsion forces FCC between two SMPs, via normal +,−pn 
percussion forces upon a single EC generated by specific longitudinal FVL vibra-
tions. 

The nature of magnetic interaction could also be confirmed in the case of 
movements with velocity V between two SMPs, via tangential percussion forces 
+,−pt, upon a single EC generated by specific FVTs created by the particles. 

So a mechanism for interactions between SMPs was proposed based on the 
velocity V and the rotation speed Ω of the SMPs. This results in explaining the 
properties of the quasielectric field QE, given by specific ordered/oriented strains 
+ε, and the properties of the quasimagnetic field QM, given by specific or-
dered/oriented strains +γ created by a GSMP of the same type of particle (+/P or 
−/N) that are ordered and moving together. This mechanism also considers the 
associated forces +FL21 and +FT21, of the +,−pn and +,−pt percussions, for an SMP 
in the ETH. 

Based on the periodic percussions +,−pp, a scrubbing mechanism was post-
ulated for the start and movement at speed c in the ETH of a photon PH, which 
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can be considered as being made up of two zones with opposite rotations travel-
ing without transporting matter, only energy. 

Based on these new results, the validity of our complex hypothesis HFVI is 
theoretically confirmed. 

As a general consequence, it follows that there is a need for the HM19 model 
of the ether and the above HFVI hypothesis to be accepted into mainstream 
physics. Concomitantly it must renounce at classical SRT, GR, gravity, electro-
magnetism theories. 

Therefore will resulting in a new NPHM19 physics, based on the ether ETH, 
starting from the HM16 model, which will be able to provide a physical explana-
tion of quantum mechanics as true classical mechanics phenomena in micro-
cosm based on periodic percussion forces pp upon a single EC NPHM19 can be 
developed on these new basis by a broad community of open-minded physicists 
released by SRT, who will be necessary to guide the main theoretical concerns 
and experimental research on NPHM19 towards new areas. 

It will obviously be necessary to correct certain assumptions, reasoning or 
calculations in our previous works, that may prove to be incorrect in future. In 
this way, NPHM19 will be able to give correct new answers to some of the many 
unresolved questions and problems in physics, astronomy, chemistry, biology 
and other fields. However, some unanswered questions will still remain and new 
questions will also constantly arise. 

We believe that the human mind is able to encompass, understand and resolve 
situations in nature at increasingly profound levels, both at the microcosmic and 
macrocosmic levels, but only in a step-by-step way; a definitive ultimate truth is 
probably too far away to be touched. 
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Abstract 
The objective of this research is to provide an explanation of galactic haloes 
using established particles and forces using recent theoretical developments. 
Light fermions, with masses on the order of 1 eV/c2, are not a leading candi-
date for dark matter because of their large free-streaming scale length and 
their violation of the Tremaine-Gunn bound. With a self-interaction of fer-
mions, the free-streaming scaling length is reduced, and the tenets of the 
Tremaine-Gunn bound are not applicable. Binding of neutrinos via a feeble 
SU(3) force is considered as a model for such interactions. The assumed sum 
of masses of the three neutrino flavors is 0.07 eV/c2. The resulting form of 
matter for such bound neutrinos is found to be a degenerate Fermi fluid. 
Pressure-equilibrium approaches applied to this fluid provide cuspy solutions 
and match observationally-inferred profiles for galactic haloes. Such ap-
proaches also match the observed total enclosed mass for galaxies similar to 
the Milky Way. The computed structures are found to be stable. The hypo-
thesis is considered in view of observationally-inferred halo-halo interactions 
and gives results that are consistent with the observed Bullet cluster halo in-
teraction. The theory gives agreement with observationally-inferred proper-
ties of dark matter near earth. Questions related to interaction rates, consis-
tency with SN1987a data, the cosmic microwave background, the issue of 
SU(3) interactions between neutrinos and quarks, free-streaming after neu-
trino decoupling, and dark-matter abundance are addressed in a companion 
paper. 
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[7], weakly interacting massive particles [3], and cold dark matter (CDM) [8] [9]. 
The conventional picture of neutrinos as dark matter was ruled out early [10]. The 
best current model for CDM is the Λ-CDM model [11], which assumes a certain 
fraction of the matter in the universe is cold (non-relativistic), non-interacting, 
and stable [12]. However, the model has a number of open issues [13] [14]. In 
particular, there is no explanation for dark matter. Massive neutrinos as inserted 
in the Standard Model have been postulated for dark matter [1] but rejected be-
cause in the conventional view neutrinos are almost always relativistic particles 
so any structure would diffuse away quickly and could not lead to the structures 
observed in the universe today. There are currently many hypothetical explana-
tions for dark matter. Extensions to the Standard Model have been proposed to 
explain dark matter, dark energy, and other aspects of cosmology, e.g. [15] [16] 
[17] [18] [19]. QCD-like and nuclear like forces have recently been suggested for 
self-interacting dark matter, e.g. [20] [21]. In this paper, an SU(3) force applied 
to neutrinos is hypothesized as an explanation for galactic haloes, and by exten-
sion, DM.  

The standard view posits that DM was in thermal contact with visible matter 
in the early universe when the temperature was much greater than the DM mass. 
In those eras, the DM number density would be comparable to photon number 
density. If the DM number density was still comparable to the photon number 
density when it froze out, it would overproduce the observed amount of DM 
mass when the DM particle mass is more than about 1 eV/c2 [22]. Thus, there is 
a need to deplete the abundance of any massive dark matter that is sufficiently 
cold at recombination. This is the path that leads to DM particles that are re-
quired to be largely annihilated in the early universe. An interaction energy of 
100 GeV ~ kT leads to a weak interaction cross section that when multiplied by 
the density and velocity at that time leads to a decay rate comparable to the ex-
pansion rate. Here k is Boltzmann’s constant and T is the temperature. This 
would result in freeze-out at that early time in the primordial universe for the 
corresponding particle mass. Hence DM masses of order 100 GeV would be 
candidates for DM under these standard assumptions. These would become ex-
tremely cold (non-relativistic) over the eons as the universe expanded. 

Thus, the most anticipated masses of cold dark matter are associated with 
weakly interacting massive particles (WIMPs), with masses in the range of 10 to 
100 GeV. However, in the absence of significant evidence of massive DM, the 
community is looking to lighter alternatives. To avoid the free-streaming issue 
with lighter DM, one approach is for DM to bind and/or cool early in the history 
of the universe. One might look for particles and/or forces for which such cool-
ing and binding occurs. Such behavior might be analogous to the binding via 
SU(3) of quarks into hadrons in the early universe.  

In the past 4 decades, computationally-intensive approaches have investigated 
the consistency of lighter DM with astronomical observations. Such investiga-
tions began with [10] regarding the possibility of neutrinos for dark matter. Ref-
erence [23] investigated consistency of dark matter with Lyman-α lines. Early 
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modeling on light DM and self-interacting DM (SIDM) include [24] with elastic 
collisions and [25] on gravothermal collapse. Reference [26] simulated subhaloes 
and [27] considered the impact of fermions. More recently, [28] [29] performed 
extensive modeling of galaxy formation within larger structures in the Universe, 
[30] investigated an effective theory for small scale structure, [20] [31] consi-
dered SIDM and halo interactions, [32] considered the impact of SIDM on 
structure and self-assembly history, and [33] modeled SIDM that includes in-
elastic scattering. There have been recent reviews of SIDM by [21] and of the 
larger topic of dark matter haloes and subhaloes by [34]. Most of the more re-
cent papers consider particles with masses of the order of a keV/c2, as is consis-
tent with observationally inferred values from the latest Lyman-α forest absorp-
tion measurements [35] and gravitational lensing measurements [36]. However, 
both these observationally-inferred mass bounds and the other aforementioned 
papers rely on assumptions that are not consistent with relativistic fermions with 
a mass of order 0.1 eV that bind into a number of species of heavier particles in 
the primordial era, which then further bind into macroscopic structures later.  

Section 2 considers the basic application of the SU(3) hypothesis to neutrinos 
in the early universe. Section 3 compares the predictions of the hypothesis to the 
observed small- and large-scale structure of the universe. Section 4 discusses the 
hypothesis in the context of the Tremaine-Gunn bound. Section 5 computes the 
properties of the proposed bound neutrinos near earth. Section 6 discusses the 
self-interacting properties of the proposed DM in haloes and between haloes. 
Section 7 summarizes the overall findings of this effort. 

2. The Feeble SU(3) Hypothesis and Neutrinos 

The hypothesis of a feeble form of SU(3) for the neutrino family is not imme-
diately obvious from the standard model. From the standard model one might 
expect an interaction energy of the order of the QCD energy scale, ~200 MeV 
[37]. However, motivation can be found for a feeble SU(3) interaction between 
neutrinos in a modest extension of the standard model [38]. In this extension, 
SU(3) is not precluded for the neutrino family. In this theory, neutrino oscilla-
tions are direct evidence that neutrinos form bound states via SU(3). As shown 
in Appendix A, this extension also provides a means for estimating the neutrino 
interaction strength by scaling the quark interaction strength by ( )2

v qm m , 
where mν is the mass of the highest-mass neutrino and mq is the mass of the 
highest-mass quark of the up or down families. This scaling applies when the in-
teraction involves relativistic neutrinos. Using mν of about 0.055 eV/c2 for the 
tau neutrino for minimal neutrino masses and the normal hierarchy [39] one 
finds a reduction in the SU(3) strength for relativistic neutrinos by a factor of 
1.73 × 10−22 to 1.01 × 10−25 using the bottom quark or top quark, respectively, for 
mq. This theory also has the property that in addition to the 8 massless gluons, 
there are 15 massive Goldstone bosons (massive gluons) for each family with 
gluon energies of the order of mνc2. These massive gluons satisfy most of the cri-
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teria proposed by [17] for a correction to the observed effective number of neu-
trinos. This extended form of SU(3) will be denoted SU(3)νe and the standard 
form of SU(3) applied to the neutrino family will be denoted SU(3)νs. It will be 
seen that both forms of SU(3) are consistent with galactic halo data, but the for-
mer provides estimates of binding energies and particle masses whereas the 
standard SU(3) does not. 

What are the consequences of a feeble analogue of quark confinement with 
neutrinos? Neutrinos typically start out as ultra-relativistic isolated particles near 
infinite redshift. In the early universe, the neutrinos would have formed a neu-
trino/neutrino-gluon plasma, much as would have occurred with quarks and 
gluons. By analogy with quarks, neutrinos would be bound into “mesonic” or 
“baryonic” neutrinos, and they would then remain confined to the present day. 
When excited with sufficient energy, perhaps by hot stellar neutrinos, such 
bound states might “hadronize” to form additional bound neutrinos while re-
maining confined, analogous to the behavior of quarks we see today.  

Table 1 shows that the partition of energy using the standard approach, e.g. 
[40], applied to the hypothesis. It is seen that both forms of SU(3) can supply a 
fraction of the mass-energy that corresponds to the modern estimate of the frac-
tion of mass-energy in the dark matter sector, about 84% [41]. The confined ba-
ryonic neutrinos would hold the vast reservoir of the mass-energy of SU(3) neu-
trino gluons shown in Table 1. 

When would the above interactions terminate? Such neutrinos should “ha-
dronize” when their total center-of-mass (CM) collision energy exceeds about 
4mνμc2, where mνμ is the mass of the muon neutrino, by analogy with the quark 
families, assuming the normal hierarchy. Hence this limits the maximum kinetic 
energy to about mνμc2 for each particle. Also, there is no interaction pathway to 
hadronize when the total CM energy of any neutrino state is less than 4mνec2. 
Here mνe is the mass of the lowest-mass neutrino, the electron neutrino in the 
normal hierarchy. This gives a range of kinetic energies from mνec2 to mνμc2 in 
the CM frame, and about a factor of 2 more in the local rest frame in the early 
universe. From our current knowledge of neutrino masses in the normal hierarchy,  
 
Table 1. Energy density degrees of freedom in the early universe with kT at ~1 MeV as-
suming standard SU(3) for neutrinos, SU(3)ns, and an extended version, SU(3)ne. 

Particle 
Degrees of Freedom, 

SU(3)νs 
Degrees of Freedom, 

SU(3)νe 

Electron family (1)(4) = 4 (×7/8) (1)(4) = 4 (×7/8) 

Photons 2 2 

Neutrino family (3)(2)(3) = 18 (×7/8) (3)(2)(3) = 18 (×7/8) 

Neutrino family gluons (8)(2) = 16 (15)(3) + (8)(2) = 61 

Total degrees of freedom 37.25 82.25 

Total degrees of freedom in neutrino sector 31.75 76.75 

% Degrees of freedom in neutrino sector 83.9% 93.3% 
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mνec2 ~ 0.005 eV and mνμc2 ~ 0.01 eV [39]. The implied approximate range of 
steady-state mean thermal kinetic energy is (3/2)kT = 0.01 to 0.02 eV, i.e. kT = 
0.007 to 0.014 eV. For the inverted hierarchy, the range of kT is 0.007 to 0.07 eV 
assuming appropriate adjustments of the above masses. These estimates for ki-
netic energies would apply at the end of the hypothesized period of neutrino 
binding into baryonic neutrinos; further evolution would be expected as the un-
iverse expands. 

3. Consistency of the Hypothesis with the Size and Shape of  
Galactic Haloes 

3.1. Equations and Inputs for Spatial Structure of DM 

The spatial density profile derived from the hypothesis of bound neutrinos is 
compared to observationally-inferred galactic halo structures. The characteristic 
scales sizes of galaxies for ordinary radiant matter (OM) are 1 - 200 kpc de-
pending on the galaxy and somewhat larger for the associated haloes [42]. 

To analyze the spatial distribution of low-energy neutrinos or other weakly 
interacting particles, an N-body simulation [20] [31] or the Vlasov equation is 
typically preferred [43]. Herein, two simplified governing equations are consi-
dered for DM density profiles. The first is the standard equation for hydrostatic 
equilibrium in a spherically-symmetric geometry. This equation is known to be 
inadequate for dark matter haloes, as further shown below. This equation is giv-
en by  

( )( ) ( ) 21 d d bv encP r m M r G rρ = − .                 (1) 

Here ρ is the number density of DM, P is the pressure, r is the radius, bvm  is 
the mass of a DM particle, ( )encM r  is the enclosed mass, and G is the gravita-
tional constant. This equation can be solved using the well-known Lane-Emden 
formulation [44] if pressure is a function of density only: 

P c γ
γ ρ= ,                             (2) 

where cγ  is a constant for a given polytropic exponent γ. An inhomogeneous 
form of the Lane-Emden equation can be used when OM is present. As shown 
later in this section, initial calculations using Equation (1) with a galaxy similar 
to the Milky Way for OM do not match key published results from simulations 
or inferences from observations for DM. In particular, the solutions have no 
cusp at the origin, and are a poor match to the standard de-projected Sersic or 
Einasto profiles based on observations [42] [45]-[51]. This is found to be true for 
any polytropic exponent between 4/3 and 2.  

To address this, a generalization of Equation (1) is used. The derivation and 
the properties of the resulting equation are given in [52]. The basic result is 

( ) ( )( ) ( )
( ) ( )2

1 d d 1 d d

d d
bv enc

bv enc

P r r m M r G r

m M r G r P r

ρ ρ ρ

ρ

+   
= − −

             (3) 

when pressure is assumed to be a function of density only. It can be seen that 

https://doi.org/10.4236/jmp.2020.116053


R. B. Holmes 
 

 

DOI: 10.4236/jmp.2020.116053 859 Journal of Modern Physics 
 

this equation reduces to Equation (1) when the second terms of both sides of the 
equation are negligible. When all terms are included, Equation (3) is seen to give 
a 1/r dependence for the density. Equation (3) with a total mass constraint and a 
density constraint is the most justifiable based on theoretical considerations, 
comparisons with data, and comparisons with others’ calculations and simula-
tions. This best-justified result is given by 

( ) ( )

0 0in a spherical region about the origin of radius , or
  d ln satisfies 1 2

d ln
c

c

r
r rr

r r

ρ

ρ ρρρ
ρ


=    = − −   

  

     (4) 

In this equation, cr  is the cutoff radius and cρ  is the cutoff number density 
where the density drops due to the mass constraint. The last key equation used 
for calculations of haloes is the Fermi-Dirac equation for the number density 
given temperature T and particle mass mbν: 

( ) ( ) ( )
1 2222 3 2 2 22 d exp 1s v v vn p p pc m c m c kTρ µ

  = π + −
  
  

  
− +     

∫

,  (5) 

where ns is the number of spin states and p is the fermion momentum. Note that 
the general form is used, applicable to both relativistic and non-relativistic states. 
The chemical potential is denoted by μν and will be estimated later. Note that for 
trapped neutrinos the chemical potential may be non-zero, as with ordinary bound 
matter. Equation (5) yields the result ( )2 5 31.914 bvP m ρ=   for non-relativistic 
fermions with two spin states. This equation is used to set the density at the ori-
gin, and then Equation (1) and Equation (2) or Equation (4) are used to generate 
a spatial profile. The resulting solution of Equation (4) for number density 

( )rρ  can be expressed as a function of its inputs, ( ) ( )0 0, , , ,c cr r r rρ ρ ρ ρ= . 
Using Equation (5), ( )rρ  can also be expressed as a function of temperatures 
and mass, ( ) ( )0 0, , , , , ,c c br r T r T r m ν νρ ρ µ= , where T0 is the temperature at the 
origin, Tc is the temperature corresponding to the cutoff density cρ , and the 
other variables are defined above. This notation will be used below. 

To solve Equation (1) and Equation (2), an equation of state that relates pres-
sure to density and temperature must be chosen. In many treatments in as-
tronomy and astrophysics, the pressure is a function of density only as in Equa-
tion (2), yielding an implicit relationship between temperature and density. One 
natural choice that relates temperature and density is Equation (5). The relativis-
tic and non-relativistic versions have been used to derive the equation for the 
density in dwarf stars [53] [54]. The relativistic and non-relativistic versions give 
polytropic exponents of 4/3 and 5/3, respectively. The latter choice might be ex-
pected to be a good one for a cool fermionic gas. 

As another option for the polytropic exponent, one may look for physical 
models in the literature for chargeless baryonic particles in a gravitational field. 
Such a model can be found in treatments of neutron stars. Treatments of neu-
tron stars typically use a polytropic exponent ranging from 3/2 to 2, with near 2 
as the most common and most likely choice [55] [56] [57]. Such an exponent is 
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also present in the van der Waals equation of state. Thus, a choice 2γ ε= −  
with 0 1ε<   is also considered below for galactic haloes. 

To complete the initial conditions, the density at r = 0 must be known or as-
sumed. Given the discussions at the end of Section 2, one expects kT to be in the 
range of 0.007 to 0.07 eV near galactic centers at the time of halo formation. This 
range of temperatures corresponds to a range of densities given by Equation (5). 

Such a range of mean kinetic energies is considered in combination with the 
possible range of masses of baryonic neutrinos. As given in Appendix A, the 
range of masses considered for baryonic neutrinos is 0.025 to 0.6 eV/c2. A possi-
ble range of key properties of a fermion gas is shown in Table 2. In particular, 
the table assumes a temperature of 0.0134 eV/k = 155 K, which is found to give 
good agreement with density profiles of galactic haloes inferred from data, as 
will be shown in the next section. From Equation (5) one then obtains a number 
density, shown in the second column (with the chemical potential initially set to 
zero). The third column shows the root-mean-square (RMS) velocity, vrms, which 
is obtained from the well-known relation between relativistic velocity and kinetic 
energy. The fourth column shows the energy density computed using  

( )
1 222 1b rmsm c v cνρ  

 − . 
From this table, one sees a range of mildly relativistic velocities. These veloci-

ties are not consistent with gaseous dark matter that is bound in galactic haloes 
solely by gravitational attraction, since the escape velocity for a galaxy is typically 
of the order of 500 km∙sec−1 [41]. To address this issue, one may recall the ana-
logous states of baryonic quarks, which form atomic nuclei or neutron stars, as 
mentioned above. In the absence of electrostatic repulsion, nuclei can be of un-
bounded size, according to the Weizsacker model [58]. Hence, one might sur-
mise that baryonic neutrinos form a similar macroscopic state in which very 
weak binding occurs (but not binding with other forms of matter).  

Such a binding energy between neutrinos in baryonic states would need to be 
at least the mean kinetic energy, i.e. the value of about 0.02 eV in order to avoid 
the free-streaming issue. To estimate such a binding energy, one might consider 
the nuclear binding energy of about 15 MeV per nucleon and use the ratio of the  
 
Table 2. Tentative range of key properties of a baryonic neutrino medium near a galactic 
centera. 

Mass (eV/c2) Number Density, ρ0,mv (×1015 m−3) RMS velocity/c Energy Density (GeV∙cm−3) 

0.025 0.185 0.83 0.0083 

0.05 0.36 0.70 0.0250 

0.10 0.81 0.55 0.0966 

0.2 2.01 0.42 0.441 

0.3 3.55 0.35 1.13 

0.4 5.34 0.30 2.23 

0.6 9.58 0.25 5.91 

aAssumes a mean kinetic energy of 0.02 eV, corresponding to a temperature of 155 K as described in text. 
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mass of a baryonic neutrino to that of a neutron. Such a scaling gives a binding 
energy of about (15 MeV) × (0.4 eV)/(939 MeV) = 0.0064 eV between neutri-
no-based baryons. This linear scaling of baryonic binding with particle mass is 
partially justified by Appendix A. One might also envision a binding between up 
to six neighboring baryonic neutrinos (divided by two since bonds are shared), 
leading to a total binding energy up to about 0.0192 eV, which is comparable to 
the mean kinetic energy of 0.02 eV given above. A more detailed ab initio calcu-
lation is beyond the scope of this paper. However, these estimates of binding 
energy and thermal kinetic energy are roughly consistent with what is required 
from the virial theorem for a medium in equilibrium ( . .K E V= n  with 

1= −n  for massless gluons or gravity and ~ 1n  for a br inter-particle poten-
tial, where “ . .K E ” denotes a time average of the total kinetic energy and “ V ” 
denotes the time average of the total potential energy). 

With estimates for a binding energy and a range of densities, one may then es-
timate a chemical potential to use in Equation (5). The standard formula from 
the free electron model for the chemical potential for non-relativistic particles is 
given by  

( ) ( )2 32 2 2
0 2 3F bvc m cνµ ε ρ = π =  ,                 (6) 

and relevant values are shown in Table 3. 
One may set the chemical potential equal to the Fermi energy and use Equa-

tion (5) with these chemical potentials and with the associated upper limit 
(2mεF)1/2. The resulting densities at T = 155 K range from 72% to 60% of the re-
sults of Table 2 for the masses shown. The computed densities are not equal to 
the input densities because the integral does not converge with the aforemen-
tioned upper limit. For masses above 0.1 eV/c2, if the upper limit of the integral 
is extended until it converges, the resulting densities are consistent with the in-
put densities from Table 2. This state of matter corresponds to Fermi tempera-
tures varying from 162 to 172 K, and to thermodynamic temperatures (T in Eq-
uation (5)) of 2 to 15 K, with little variation in that range of T. The lower ther-
modynamic temperatures are expected from the theory of metals. For masses at 
or below 0.1 eV/c2, the particles are sufficiently relativistic that the Fermi tem-
peratures need to be adjusted to maintain consistency with Table 2. For these  
 
Table 3. Fermi energy and Fermi temperature versus baryonic neutrino mass. Numbers 
in parenthesis are adjusted values to account for relativistic effects at lower masses, to 
match densities of Table 2. 

Mass (eV/c2) 

 0.025 0.05 0.1 0.2 0.3 0.4 0.6 

Fermi Energy εF (eV) 
0.0241 
(0.018) 

0.0188 
(0.016) 

0.0161 
(0.015) 

0.0148 0.0144 0.0142 0.140 

Fermi Temperature TF (K) 
279 

(206) 
218 

(187) 
187 

(174) 
172 167 164 162 

https://doi.org/10.4236/jmp.2020.116053


R. B. Holmes 
 

 

DOI: 10.4236/jmp.2020.116053 862 Journal of Modern Physics 
 

lower masses, the Fermi temperature is set to 206, 187, and 174 K for masses of 
0.025, 0.05, and 0.1 eV/c2, respectively. The result is that a thermodynamic tem-
perature of 2 to15 K still gives the densities of Table 2 for all masses shown. 
Hence T will be set to 2 K in what follows, roughly consistent with the expected 
temperature of free neutrinos in the modern universe [12], p. 154. Given that the 
baryonic neutrinos were bound early in the history of universe when the mean 
kinetic energy was approximately 0.02 eV, the haloes comprising such matter 
should remain relatively stable after formation, much as bound ordinary matter. 
This expectation for halo evolution is justified in detail in Section 6.  

It is also possible that multiple species of baryonic neutrinos could result in 
lower average temperatures and lower RMS velocities that further reduce diffu-
sion of the hypothesized matter away from galactic centers. There are 3 basic 
types of neutrinos, so there are expected to be at most 33 = 27 possible types of a 
colorless baryonic triplet, just as with the discrete SU(3) symmetry for (u, d, s) 
states in the quark sector. Accounting for antiparticles there may be as many as 
54 species. To achieve the same total number density, one then requires a tem-
perature of 12 K with 54 species rather than 155 K, assuming a Fermi-Dirac dis-
tribution and a mass of 0.4 eV/c2. The RMS velocity in such cases is about 0.09c, 
which is still sufficient to overcome a galactic escape velocity if there is no other 
form of binding. One might expect that all such species would be present in the 
hot early universe. Then, as the universe cools only a few species that are most 
stable would remain, matching the known behavior of the quark sector. With 
this in mind the analyses related to the modern era will assume one or two stable 
baryonic neutrino species. It is possible that a few mesonic neutrino states may 
be present. The net effect of two baryonic neutrino states would change the Fer-
mi temperature from 155 K, for example, to about 99 K to achieve the same total 
density (at a mass of 0.4 eV/c2). 

The mid and upper range of energy densities in Table 2 is somewhat greater 
than the current nominal estimate of 0.3 GeV∙cm−3 for the dark matter mass-energy 
near earth [41] [59] [60], which is a desirable property for dark matter near a 
galactic center.  

Next, the distribution of ordinary matter must be specified. In recent years, 
the model of choice [47] for describing the projected density of elliptical galaxies 
is due to Sérsic [48]. An approximate de-projected form is given by [61]. A simi-
lar form for the density versus radius was developed by Einasto [49]. The center 
bulge of the Milky Way has a cluster with a Sersic exponent of n = 3 [50] for OM. 
As is well known, for spiral galaxies the overall Sersic exponent n is a measure of 
the balance between the disk and the bulge, two clearly distinct components. A 
typical Sersic exponent for a spiral galaxy might be 4 or more, but for the central 
bulge 2 is a common number [51]. For elliptical galaxies, 2 - 4 is a common 
number [42] for OM. With these various results in mind, a Sersic exponent of 2 
is initially chosen for ordinary matter. The projected form of the Sersic equation is  

( )0exp a
rad rad Arρ ρ= −                           (7) 

where ρrad0, A, and α are constants. The de-projected Sersic (dpS) density distri-
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bution for radiant matter is approximated by [42] [61]: 

( ) ( )1
0 expnp n

rad rad e n er R b r Rρ ρ −= − 
  .               (8) 

The parameter 0radρ  is obtained by setting the volume integral of Equation (8) 
equal to the measured or inferred ordinary mass of the galaxy. The variable Re 
denotes the radius which encloses 1/2 the total light of the galaxy. The other two 
parameters in Equation (8) are given conveniently and approximately from Eq-
uation (19) and Equation (27) of [42],  

21.0 0.6097 0.05463np n n= − + ,                 (9a) 

and 
      2 1 3 0.009876nb n n= − + .                   (9b) 

Figure 1 shows the n = 2 dpS radial profile and also a profile with n = 4. The 
assumed total OM mass of the galaxy is assumed to be Mgal = 9 × 1010 solar 
masses, approximating that of the Milky Way [60] [62]. It is assumed to have a 
black hole of 4 × 106 solar masses at its center.  

The dpS profile is also used with some success for characterization of the DM 
density profile versus radius. Another density distribution used for characteriza-
tion of DM is the Einasto distribution, which for the purposes of this paper is 
given by  

( )1
0 ,DMexp

n
Ein n ed r Rρ ρ = − 

  
,                (10a) 

where ,DMeR  is the radius of the volume enclosing 1/2 the total of the galaxy, 
and dn is given approximately by Equation (24) of [42]:  

      3 1 3 0.0079 , for 0.5nd n n n≈ − + > .             (10b) 

Both the dpS and Einasto distributions will be compared against the DM density 
profiles computed using Equation (1) through (5). 
 

 
Figure 1. Profiles for a de-projected Sersic model with Sersic index of 2 (blue) and 4 
(green). Radius parameter = 15.3 kpc. 
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The radiant matter distribution is the source term for Equation (1) and Equa-
tion (2). To use these equations to compute a profile, a polytropic exponent 
must be chosen. Based on the discussions above, two polytropic exponents are 
considered, 5 3γ =  and 2γ ε= − , with ε  a positive number much less than 
1. The polytropic relation for 5 3γ =  is given above. For the case of 2γ ε= − , 
one can use the polytropic relation 2

2P c ε
ε ρ −

−=  with 2c ε−  given by [55] 

( ) 2 2 2
2 0 0 02 b ghc Gm R Pε ε

ε υ ρ ρ −
− = π ≡ .                 (11) 

Here Rgh is the nominal radius of the galactic halo, chosen to be 92 kpc for the 
purposes of this paper. It will be checked for consistency in the following solu-
tions. The pressure P0 at the center of a galactic halo is defined by Equation (10). 
So, for example, with a baryonic neutrino mass mbν of 0.4 eV/c2 and Equation 
(11) one obtains c2 = 2.08 × 10−40 J∙m3. In this case, P0 = 1.53 × 10−9 J∙m−3. For ρ 
in units of m−3 one obtains the correct units in Equation (11). Other approaches 
are available to estimate the value of c2−ε, for example as given in [52]. Such an 
approach gives a value within 1.5 orders of magnitude of that given here. 

This section provided the equations and the input parameters needed to 
compute solutions for DM density. Variations about these input assumptions are 
also considered. 

3.2. Galactic-Scale Solutions 

Moving on to full numerical solutions of Equations (1)-(5), consider conditions 
corresponding to a galaxy similar to the Milky Way as mentioned above. To ob-
tain a solution, a density at the origin must be specified. These are given in the 
second column of Table 2 for the respective masses. For example, for a baryonic 
neutrino mass of 0.4 eV/c2, the number density is ρ0 = 5.34 × 1015 m−3. 

Table 4 summarizes the inputs used for the results of this section. Note that 
the quoted temperature is the thermodynamic temperature used in Equation (5), 
with chemical potentials μν given in Table 3. 

 
Table 4. Inputs for calculations of this section. 

Input Parameter Values Comment 

Thermodynamic Temperature, T 2 K T of Equation (5) 

Fermi Temperature T0 at origin 160 - 210 K From Table 3 

Masses of baryonic neutrinos, mbν 0.025 - 0.6 eV/c2  Upper limit of mass is from Appendix A 

Galactic halo radius, rc 92 kpc rc in Equation (4) 

Polytropic exponents 5/3 to 2 As discussed above 

Ordinary matter profile dpS profile Exponent = 2, radius = 15.3 kpc 

Total ordinary matter mass, Mgal 9 × 1010 Solar masses 

Fermi Temperature Tout at radius rc, 
with chemical potential μνc ≡ kTout 

5 - 16 K 
Sets density ρc at outer radius in  
Equation (4) using Equation (5) 

Inner scale r0 1 kpc 
Sets radius of constant density region in  

Equation (4), approximate size of bulge of 
Milky Way 
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The numerical integration of Equation (1) and Equation (4) for the density 
uses 4000 steps at 30.7 pc each. A simple finite-difference numerical approach 
proves adequate with the quoted step size. If the density is reduced below 109 m−3, 
then the density is set to that value for display purposes.  

The results of the calculations are shown in Figure 2 and Figure 3 for the 
standard and generalized equations of hydrostatic equilibrium, respectively. The 
horizontal axes in these figures are the dimensionless ratio radius/Rgh, where Rgh 
= 92 kpc as discussed above. A comprehensive (but not exhaustive) search was 
performed over fermionic mass, polytropic exponent, and mean kinetic energy 
within the ranges shown in Table 4. The search attempted to find the best match 
to the following properties of dark matter reported in the literature: 1) outer radius  
 

 
Figure 2. Calculated dark-matter profiles versus radius for various masses of a baryonic neutrino for a galaxy similar to the 
Milky Way with a Sersic index of 2. Standard hydrostatic equation assumed. Legend shows masses ranging from 0.025 to 0.6 
eV/c2. Left: γ = 1.995, T0 = 19 to 20 K. Right: γ = 1.90, T0 = 17 K. 

 

 
Figure 3. Calculated dark-matter profiles versus normalized radius for various masses of baryonic neutrino for a galaxy sim-
ilar to the Milky Way. Generalized hydrostatic equation assumed. Left: varying mass, T0 as shown in Table 4, r0 = 1 kpc, Tout 
= 8 K. Right: T0 varied as given in the legend to overlay curves for different masses. Also shown is a case with galactic halo 
radius set to 1.66 Rgh = 153 kpc = rc, with mbν = 0.4 eV/c2, T0 = 155 K, r0 = 1 kpc, and Tout = 5 K. 
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consistent with the assumed radius of DM of 92 kpc; 2) cusp near the origin; 3) 
mass-energy density at radius of Sol; 4) ratio of DM in galactic halo to OM in 
galaxy; 5) quantitative shape consistent with published simulations and infe-
rences from observations, and 6) consistency of temperature at outer radius with 
standard cosmology. The best or near-best fits considering all these criteria are 
shown in the figures. 

Results for the standard hydrostatic equation, Equation (1), are shown in Fig-
ure 2 for varying masses of baryonic neutrino and for two different polytropic 
exponents near 2. The results for the cutoff radius shown here are a good match 
to the assumed radius of DM, Rgh = 92 kpc, for particle masses ranging from 0.3 
to 0.6 eV/c2. However, as expected, it is seen that the results using the standard 
hydrostatic equation are not a good match to a dpS profile, by comparison to 
Figure 1. No cusp is present. The quantitative shape is also not a match to any 
accepted dpS profiles. The shapes shown in Figure 2 are typically close to the 
expected result for the Lane-Emden equation, sin(πr/R)/(πr/R) for some R, as-
suming the standard hydrostatic equation with a polytropic exponent near 2. 
The shapes are expected to differ somewhat from this standard form because (a) 
the exponents are not exactly 2, and (b) the solutions shown are for the inho-
mogeneous form of the equation with a strong concentration of OM at and near 
the origin.  

It should also be noted that with a polytropic exponent near 2 and using Equ-
ation (11), the lower masses have less pressure and so result in smaller half-max 
radii. This differs from the case of a polytropic exponent of 5/3, which yields 
larger half-max radii for lower masses in view of the expression for fermions 
given after Equation (5). With smaller exponents such as 5/3, dramatically larger 
galactic haloes are computed using the standard hydrostatic equation, and so are 
not shown. 

Several other metrics are worth discussion for Figure 2. First, the total en-
closed mass is in the range of 4 to 60 times the ordinary matter for particle 
masses ranging from 0.3 to 0.5 eV/c2 for the plots shown. For 0.4 eV/c2, the total 
enclosed mass is within 15% of 15 times ordinary matter. Second, the mass-energy 
density (as computed in Table 2) at the radius of Sol is 0.06 to 0.2 GeV∙cm−3 for 
particle masses ranging from 0.4 to 0.6 eV/c2 for Figure 2. Values of T0 much 
larger or smaller than the range shown in Figure 2 do not show a radius consis-
tent with the assumed halo radius for γ near 2. Overall, the results of Figure 2 
are a match to the assumed halo radius and enclosed mass for some particle 
masses. However, such solutions have a relatively low energy density at earth 
compared to observational inferences and also do not have the cusp deduced 
from data. 

Sample results for the generalized hydrostatic equation, Equation (4), are 
shown in Figure 3. In this case, as in Figure 2, the plots with the specified inputs 
also show a radius that is in the neighborhood of Rgh = 92 kpc, consistent with 
the assumed radius. However, it is seen that the results using the generalized hy-
drostatic equation are a qualitative match to a dpS profile. A cusp is present out-
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side of a radius of 1 kpc with a logarithmic slope of about −1.  
The left plot of Figure 3 shows the sensitivity of the result to the mass of the 

hypothesized baryonic neutrino. It is seen that the range of masses that are con-
sistent within 10% of Rgh is from 0.2 to 0.6 eV/c2 for the chosen inputs. Lower 
masses did not show such agreement. The right plot shows sensitivity to T0 in 
the vicinity of the nominal 155 K, showing the masses required to obtain a simi-
lar density profile. The right plot also shows a sample case for the galactic radius 
set to 1.66Rgh = 153 kpc with a baryonic neutrino mass of 0.4 eV/c2 with appro-
priate choice of temperatures. The point of this plot is that other (self-consistent) 
galactic halo radii can be achieved with similar input parameters.  

Further calculations, not shown, give consistent results for Rgh with particle 
masses up to about 5.0 eV/c2 for smaller values of r0, r0 as low as 0.1 kpc. These 
typically require lower values of T0 and Tout. For larger particle masses, the tem-
perature needed for Tout is 0.1 K or less to match both galactic halo size (Rgh) and 
enclosed DM mass. For larger values of particle mass, above 5.0 eV/c2, consis-
tency with both observationally-inferred galactic halo size and mass cannot be 
met simultaneously; either the computed radius matches Rgh but the total en-
closed DM mass is too large, or the total mass matches expectations but the ra-
dius is too small. Dwarf galaxies with masses of 107 to 1010 solar masses can be 
obtained with this approach for particle masses of 0.2 eV/c2 to 0.6 eV/c2. The 
required input values for dwarf galaxies are T0 the same as in Table 4, with r0 in 
the same range (0.1 to 1 kpc), Rgh = 1 to 2.5 kpc, and Tout = 30 to 95 K. 

Figure 4 shows plots of two relevant metrics. The curve on the left of Figure 4 
shows the ratio of the enclosed DM mass to OM mass for the curves on the left 
of Figure 3. A dotted line shows the estimated universal average ratio of 6:1. 
This ratio is believed to be of the order of 15:1 for the galactic halo of the Milky 
Way [60]. The values of baryonic masses consistent with ratios of 6:1 to 30:1 are 
about 0.25 to 0.50 eV/c2. 

 

 
Figure 4. Left: Computed ratio of DM to OM versus mass of the baryonic neutrino (eV/c2) for conditions corresponding to 
the left plot of Figure 3. Right: Computed mass-energy density of DM at the radius of earth for conditions corresponding to 
the left plot of Figure 3.  
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The plot on the right of Figure 4 shows the computed mass-energy density of 
DM at a radius of 7.9 kpc for plots on the left of Figure 3. 7.9 kpc corresponds to 
the distance of earth from the galactic center. As discussed above, the mass-energy 
density is given by ( )2 2

2
1

1b rmsm c v cνρ  −  . As mentioned earlier, the esti-
mated mass-energy density at earth is 0.3 GeV∙cm−3, “within a factor of 2 - 3,” as 
stated in the Astrophysical Constants section of the most recent PDG document 
[41]. The resulting lower bound is 0.1 GeV∙cm−3, and this lower bound is shown 
in the right plot as a dotted line. The particle masses consistent with these esti-
mates from data are about 0.25 to 0.65 eV/c2. 

The nominal computed density profile from Figure 3 with a baryonic neutri-
no mass of 0.40 eV/c2 is fit to various model profiles as shown in Figure 5. In 
addition to this single-species computation, a two-species computation is also 
shown, and will be discussed below. The densities of Figure 5 are all limited 
from above to the value of mbν ρ0 = 3.76 × 10−21 kg∙m−3 within 1 kpc of the origin, 
consistent with the nominal computed profile for a baryonic neutrino mass of 
0.40 eV/c2. The vertical axis is normalized by this density. This limit at the origin 
is used and shown because it is in better accord with most measured data [63] 
[64] [65] than the model profiles and also because such a limit is in better accord 
with a density that is limited by Fermi-Dirac statistics. Just outside this core, all 
densities of all profiles of Figure 5 have an approximate 1/r dependence, in-
cluding the dpS and Einasto model profiles. However, at larger radii, the nomin-
al density profile has a slower decline than the dpS and Einasto model profiles 
up to a radius of about 0.9Rgh.  

The chosen parameters for the model profiles are given in Table 5. The para-
meters for the dpS and Einasto models are within the accepted range for the ex-
ponent and the radius, by comparison with the values shown at the bottom of  
 

 
Figure 5. Nominal computed density profile of Figure 3 with a baryonic neutrino mass 
of 0.40 eV/c2, a 2-species computed profile, and various model profiles. Model inputs and 
fit metrics are given in Table 5. 
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Table 5. Model parameters and fit metrics of model profiles versus computed profiles for 
Figure 5a.  

Input Parameters and Metrics: n Re,DM (kpc) ρ0/ρ0,mv Metric 1 Metric 2 M/Mgal 

(2, 3, 1), fit to nominal - r02 = 92 1 0.20 0.91 19.6 

dpS, fit to nominal 3.3 700 0.011 0.47 0.45 7.8 

Einasto-2, fit to nominal 5.5 400 220 0.61 0.68 4.9 

dpS, fit to 2-species 3.3 700 0.011 0.033 0.18 7.8 

Einasto-1, fit to 2-species 5.5 800 110 0.011 0.20 8.6 

Einasto-2, fit to 2-species 5.5 400 220 0.18 0.18 4.9 

Galaxy-sized haloes, dpS 3.1 - 4.6 110 - 230 - - - - 

Galaxy-sized haloes, Einasto 5.3 - 7.8 190 - 400 - - - - 

Cluster-sized haloes, dpS 2.2 - 3.5 700 - 4700 - - - - 

Cluster-sized haloes, Einasto 3.9 - 7.4 1200 - 6000 - - - - 

aBottom four rows are from [42]. 

 
the table, which are from [42]. However, as expected, the central density para-
meters are quite different. This is expected because of the large derivatives of the 
model profiles at the origin, as discussed in [52], which do not match measured 
values [63].  

Table 5 also shows two metrics for the quality of the fits. These metrics are 

( ) ( ) ( ){ } ( ) ( ){ }2 22 2
1 2 1 2

Metric 1 Σ Σr M C r CU r r r r U r r rρ ρ ρ= −       , (12a) 

and 

( ) ( ) ( ){ } ( ){ }
1 2 1 22 2 2Metric 2 Σ 1 Σr M C rU r r r r U r rρ ρ= −   ,    (12b) 

where ( )C rρ  is the numerically-computed profile and ( )M rρ  is the model 
profile. Three classes of model profiles are considered: (α, β, γ), dpS, and Einasto. 
The metrics are computed over the range of radii for which the densities are ap-
preciable (U(r) = 1 for r < 0.9 Rgh, 0 otherwise). The metrics for these model fits 
to the nominal curve vary from 20% to 91%, which is not particularly good, but 
are expected from visual inspection of Figure 5. It should be noted that both 
metrics 1 and 2 weight the agreement at the outer radii quite heavily, and this is 
a significant contributor, especially for the (α, β, γ) model. 

Table 5 additionally shows the total enclosed mass within a radius of 0.9 Rgh. 
For reference, the nominal density profile, the blue curve of Figure 5 has a total 
enclosed mass of 15.2Mgal within this radius. The (α, β, γ) model has an enclosed 
mass close to expectations, about 19Mgal. The profiles labelled dpS and Einasto 
have a total enclosed mass ratio (DM/OM) that is low compared to expected 
values of 15 or more. Also considered but not shown are dpS and Einasto pro-
files with an inner core that is about 2 kpc in radius, matching the mean radius 
of the bulge in the Milky Way. These had higher enclosed masses, of the order of 
10 to 15Mgal, but the fit metrics were no better than shown in the table. 
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Overall, the differences between the best-fit dpS and Einasto models and the 
nominal computed solution are not negligible. This difference can be addressed 
via several physically reasonable approaches. Such approaches include (a) inclusion 
of angular momentum in the computation, (b) an allowance for non-equilibrium 
profiles at larger radii, or (c) inclusion of multiple particle species. These three 
approaches are discussed briefly in the following three paragraphs. As shown in 
Figure 5, approach (c) was found to readily provide a good match to observa-
tionally-inferred profiles. 

Angular momentum profiles in CDM haloes have undergone considerable 
study using N-body simulations of particles that interact by gravity alone. Such 
studies include [66] [67] [68] [69] [70]. However, the parametric relationship 
between the density profile and the angular momentum profile has not been 
considered at length. Further, such studies are of limited relevance because they 
focus on non-interacting particles rather than the Fermi fluid posited in this pa-
per. Such studies find typical estimated velocities of the order of 300 km∙sec−1 
associated with angular momentum for the Milky Way [71]. For a DM particle 
mass of 0.4 eV/c2, such velocities correspond to kinetic energies of about 2 × 10−7 
eV, which is much less than the estimated inter-particle binding energy of ~0.02 
eV of the posited Fermi fluid. Hence, by analogy with other well-understood liq-
uid or semi-solid celestial bodies, the primary impact of angular momentum 
would be distortion of the halo, with a limited impact on the density profile.  

Approach (b) involves appeal to density profiles that do not strictly adhere to 
the 1/r equilibrium profile at larger radii. Such non-equilibrium profiles are dis-
cussed in [34] and [52] and are attributed to the ongoing process of halo accre-
tion and mergers. These profiles were considered in this effort but were found to 
differ from the model profiles even more than the nominal 1/r profile. This is 
because if the model profile and the 1/r profile agree at small radii and the com-
puted non-equilibrium profiles are even flatter at intermediate radii then they 
are always above the 1/r profile. From Figure 5, one can see that such a profile 
would offer worse agreement at larger radii However, with a larger particle mass, 
e.g. about 0.6 eV/c2, a sharper decline near the center could support a flatter pro-
file at larger radii, as shown in the 2-species profile of Figure 5. 

Approach (c) was also considered and the result is shown in the black curve of 
Figure 5. It can be seen that this 2-species model is a particularly good match to 
the dpS and Einasto-1 models. Both model curves have a radius in the range of 
700 to 800 kpc, corresponding to small galactic clusters. This 2-species approach 
can be described succinctly using the notation developed for Equation (4) and 
Equation (5). The mass density profile involving two species is denoted by 

( ),2-speciesm rρ  and can be written  

( ) ( ) ( ),2-species 1 01 01 1 1 1 1 2 02 02 2 2 2 2, , , , , , , , , , , ,m c c c cr m r T r T r m m r T r T r mν νρ ρ µ ρ µ= + (13) 

Clearly, there are more parameters in Equation (13) that permit a better fit a 
model profile. Experimentation with the parameters indicated that values of m1 
of 0.3 to 0.5 eV/c2 led to a good fit at larger radii. Larger masses, m2 = 0.6 to 0.8 
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eV/c2, lead to a better fit at smaller radii with a steeper mass-density slope, while 
still matching the total enclosed mass. Larger masses led to excessive total en-
closed mass, and smaller masses led to insufficient total enclosed mass given the 
range of values for the chemical potentials and temperatures shown above. Note 
also that both species of masses lie within the range of values expected from 
Appendix A. Table 6 shows the inputs used to obtain the 2-species curve shown 
in Figure 5. 

In summary, assuming the generalized hydrostatic Equation (4) and the po-
sited baryonic neutrinos with masses of 0.4 eV/c2 ± 50%, the results are roughly 
consistent with the following observationally-inferred and simulated properties 
of galactic-scale or cluster-scale DM structure reported in the literature: 1) halo 
width consistent with the assumed radius of 92 kpc for a galaxy similar to the 
Milky Way; 2) relatively flat density profiles within a core radius of ~1 kpc; 3) 
cusp in the region outside of this core; 4) mass-energy density at radius of Sol; 5) 
ratio of DM in galactic halo to OM in a galaxy similar to the Milky Way; 6) qua-
litative shape; and with multiple species, 7) quantitative shape. Further, the 
temperature at the edge of the galactic halo is consistent with expectations from 
standard cosmology, with a temperature of 2 K (Fermi temperatures of 5 to 16 
K). 

The above represents a summary of a search over multiple parameters, in-
cluding baryonic-neutrino mass, particle temperature, polytropic exponents, and 
core radius. The standard and generalized hydrostatic equations are both consi-
dered. The generalized hydrostatic equation gives a better overall match for me-
trics derived from fits to representative models and data than does the standard 
equation for these ranges of values, when all 7 of the criteria mentioned in the 
previous paragraph are considered. However, the generalized hydrostatic equa-
tion of equilibrium does not fully trace to DM material properties. Only four of 
the six inputs to the solution are traceable to material properties: the particle 
mass and Fermi temperature of the constituent particle, both at the origin and 
outer radius. The other two inputs, the inner radius r0 and the outer radius rc, are 
not traceable to fundamental physical properties and make it too easy to fit 
some of the measured parameters. Nonetheless, selection of these two para-
meters allows a simultaneous fit to multiple criteria, which seems more than 
fortuitous. 

4. The Hypothesis and the Tremaine-Gunn Bound 

Reference [72] identified a bound that assumes (a) that the subject particles are 
fermions, (b) that such particles are non-relativistic, and (c) that such particles  
 
Table 6. Parameters used for 2-species plot of Figure 5. 

Input Parameters m (eV/c2) T0 = Tc (K) r0 (kpc) rc (kpc) μν0/k (K) μνc/k (K) 

Species 1 0.4 2 1 92 104 8 

Species 2 0.6 2 1 9.2 51 16 
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are non-interacting. In this paper, (a) is true, (b) is approximately true, but (c) is 
not true near a galactic center. Regarding (a), neutrinos should form baryonic 
neutrinos with odd multiples of half-integer spin, as expected by analogy with 
quark-based baryons. Regarding (b), the estimated speed of baryonic neutrinos 
for a temperature of 2 K is about 0.03c to 0.05c depending on mass, and possibly 
less if there are multiple species. Regarding (c), the hypothesized baryonic neu-
trinos are weakly bound near a galactic center, based on the findings of Sections 
3.1 and 3.2, and therefore interact. Hence (c) is not true. In the depths of space, 
far from any ordinary matter clusters, one might expect that neutrinos or the 
bound neutrino states considered herein are likely non-relativistic and not inte-
racting and the Tremaine-Gunn bound is indeed expected to apply. 

5. The Hypothesis and Observation of DM near Earth 

One might question whether such baryonic neutrinos might be observed at earth. 
As seen in Figure 4, one finds consistency of the hypothesis for the mass-energy 
density near earth with accepted values [41] [59] for baryonic neutrino masses of 
0.25 to 0.6 eV/c2. This basic comparison supports the hypothesis. Somewhat 
larger masses are possible as well.  

It is estimated that the flux of solar neutrinos from the sun at earth is about 7 
× 1010 cm−2∙sec−1, see, e.g. [73]. Given that solar neutrinos travel at nearly the speed 
of light, the corresponding density is about 2.3 cm−3. From the previous two sec-
tions, with the 2018 PDG mass-energy density of DM at the earth of ~0.3 
GeV∙cm−3 one obtains a baryonic neutrino density of about 109 cm−3, assuming a 
baryonic neutrino mass of 0.3 eV/c2. Based on a simple scaling of the electro-
weak force which goes as the square of the CM energy, DM baryonic neutrinos 
should interact much more weakly than solar neutrinos via the electroweak force 
by a factor of about 1/(3 × 105)2 or less, because they have much lower energy 
than solar neutrinos in the earth reference frame (<1 eV for the former versus 
~0.3 MeV for the latter). Hence, direct observation of such baryonic neutrinos 
seems challenging.  

Further, solar neutrinos should interact in a very limited way with such DM 
via SU(3)νe, because solar neutrinos are predominately electron neutrino states, 
which are mono-color based on the theory of [38]. It should be noted that this 
property would not follow from a simple application of SU(3) to neutrinos. Spe-
cifically, they are color green using the conventions of that work. DM consists of 
baryonic states which are already colorless. Hence solar neutrinos cannot be ab-
sorbed or bound by DM in any significant way. Further, solar neutrinos cannot 
bind with each other to form baryonic or mesonic neutrinos to form colorless 
states since they are the same color (with no anti-color contribution). Thus, the 
interaction of solar neutrinos with themselves or DM should be limited to elastic 
(Rutherford) or quasielastic (Mott) scattering via SU(3)ν. The latter would have 
similarities to high-energy electron scattering in bulk material. It will be seen in 
the companion paper that such elastic or quasielastic scattering should not sig-
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nificantly alter the composition, energy spectrum, or the flux of solar neutrinos 
as seen at earth, and this is consistent with observations to date. Note that solar 
neutrinos are not initially bound to other neutrinos partly because of the way 
they are created, but also partly because they are ultra-relativistic, just as quarks 
were not initially bound in the hot early universe. It should be re-stated that the 
experimental fact of neutrino oscillations is direct evidence that neutrinos will 
form bound states via SU(3)νe within the context of the extended-color theory. 

Possible observations for DM near earth also include an annual variation of 
the order of 1% of the time-average of scintillation in sodium iodide detectors at 
specific energies [74]. The observed energies of ~6 keV are not obviously related 
to the form of DM proposed herein. Measured values of the relative annual varia-
tion range from 0.0026 to 0.025 from Table 1 of that reference. The peak-to-valley 
velocity difference of earth relative to DM is about vSol = 250 km∙sec−1, i.e. ~10−3c, 
assuming that DM is not rotating and the earth’s orbital plane around the sun is 
oriented at 60˚ relative to the sun’s velocity vector around the galactic center 
[41]. The RMS velocity vrms of the proposed DM is 0.03c to 0.05c with T = 2 K. 
This gives an estimate of the relative annual variation of the flux of DM of 
vSol/vrms = 10−3/0.03 to 10−3/0.05. Thus, the estimated range of relative flux varia-
tion is a factor of 0.8 to 1.33 times the maximum measured relative variation of 
0.025 quoted above.  

The standard cosmological theory of neutrinos [12] [75] indicates that cold 
relic neutrinos are also present. The presence of bound neutrino states is not in-
consistent with neutrinos interspersed with ordinary and DM matter. It is thus 
expected that there is a substantial fraction of free neutrino states near earth. 
Because of their low relative velocity, the helicity of such neutrinos of mass 0.005 
to 0.055 eV/c2 would differ from those of high-energy free neutrinos observed in 
typical experiments, assuming that such neutrinos have mass and have Dirac 
wavefunctions. This would result in a relatively large fraction of right-handed 
neutrinos. Such neutrinos would be difficult to detect, however, because of the 
known inability to induce right-handed neutrinos to interact with normal matter 
[76]. Such relic neutrinos with a temperature of about 2 K would have electro-
weak cross sections comparable to those of bound neutrino states, and so would 
also be difficult to detect. 

6. The Hypothesis, Halo Stability, and Halo-Halo  
Interactions 

The hypothesis of SU(3)ν leads to an investigation of other self-interacting dark 
matter (SIDM) proposals. Recent papers [20] [21] [30] [31] discuss related phe-
nomenologies. In the taxonomy of [21], this proposal is one of composite DM in 
which the mediators are both SU(3) massless gluons and/or lightly-broken SU(3) 
with massive mediators. In this case, the latter have mass of the order of the 
mass of the most massive constituent neutrino, and their effective binding ener-
gy is 4 to 12 times that of the highest-mass neutrino based on Appendix A.  

With the self-interaction discussed here, DM is a dense form of matter that 
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maintains its volume due to fermion degeneracy pressure of baryonic neutrinos. 
This dense form of matter is justified with the core assumption that the constituent 
baryonic neutrinos interact and are bound via SU(3)ν and obey non-relativistic 
Fermi-Dirac statistics. The SU(3) interaction with its approximate 1/E2 depen-
dence on CM energy E [77] gives a large cross-section and a vanishing mean free 
path as temperatures tend to zero. Further, the computed Fermi temperature of 
Table 3 is typically much greater than the thermodynamic temperature of 2 K, 
much as occurs with ordinary condensed matter. These considerations justify 
the simplest calculation for the mean free path,  : 

( )1 2 122 dρ
−

= π ,                         (14) 

where ρ is the density appropriate to the specific location in the halo and d is the 
“size” of the particle. The values of ρ are given by the densities of Table 2 as-
suming a macroscopic bound state with the given Fermi temperatures. The value 
of d should be approximately ћ/pF, where pF is the Fermi momentum of the par-
ticle. The value of mean free path is shown in Table 7, along with the RMS ve-
locity, vrms, which is 0.036c based on a temperature of 2 K and a particle mass of 
0.4 eV/c2, in accord with the discussions following Table 3. The table also shows 
the Fermi temperature, TF, the diffusion constant, rmsvκ =  , the mean free time 
between collisions, rmsvτ =  , and the time to diffuse 1 kpc, ( )2

1 kpc 1 kpct κ= . 
Also shown is the medium pressure, assuming a polytropic exponent of 2 and 
assuming c2 equals 2.08 × 10−40 J∙m3, as in the discussion surrounding Equation 
(11).  

The table shows a diffusion constant varying from about 200 to 2000 m2∙sec−1, 
which is quite high compared to conventional matter. However, this diffusivity 
leads to negligible mass or heat transfer over scale sizes of the order of 1 kpc over 
the age of the universe, as can be seen by the second-to-last column. This implies 
that the density and temperature distributions are expected to be relatively stable 
from the time of creation up to the present day, so that there is little evolution 
other than modest gravitational and SU(3)-based contraction and subhalo ag-
gregation over most of the universe’s lifetime. There are alternative formulations 
for the mean free path that differ from Equation (14), in which the cross section 
is calculated based on an interaction strength rather than the hard-sphere ap-
proximation. These estimates also lead to very long mass-transfer time constants, 
of the order of the age of the universe for haloes of 100 kpc in size. 

 
Table 7. Fluid properties of proposed DM versus density, assuming mbv = 0.4 eV/c2 and 
temperature T = 2 K. 

Density ρ (m−3) TF (K) pF/mbνc l (μm) κ (m2∙sec−1) τ (psec) t1kpc (yrs) P (J∙m−3) 

5 × 1015 157 0.323 19.3 209 1.80 1.5 × 1029 4.4 × 10−9 

5 × 1014 34 0.148 40.9 442 3.79 6.9 × 1028 4.4 × 10−11 

5 × 1013 7.3 0.069 87.8 948 8.14 3.2 × 1028 4.4 × 10−13 

5 × 1012 1.6 0.032 189 2040 17.5 1.5 × 1028 4.4 × 10−15 
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The above shows that the DM derived in this paper has some degree of 
self-consistency for a single halo. What does the above imply for halo-halo inte-
ractions? This is a very complex subject [34], involving baryonic feedback, dy-
namical friction, tidal stripping, and more. However, some calculations can be 
performed for the hypothesis under consideration. First, consider the kinetic 
energy of halo-halo interactions, which involve relative velocities vrel of 30 to 
3000 m/sec, see e.g. [21]. The corresponding kinetic energy per particle 2 2b relm vυ  
ranges from 2 × 10−9 to 2 × 10−5 eV. Note that these values are less than both the 
estimated inter-baryonic-neutrino binding energy, 6.4 × 10−3 eV, as well as the 
estimated intra-baryonic neutrino binding energy, 0.4 eV. Hence the medium is 
not expected to dissociate, but rather to maintain its form.  

Given that the medium is a fluid, the interaction should be characterizable in 
terms of dimensionless parameters such as Reynolds number, Re, and Mach 
number, Ma. These are shown in Table 8 for three interaction velocities and for 
the same 4 densities shown in Table 7. The Reynolds number is computed as-
suming the value of κ in Table 7, the velocities shown, and a scale size of 1 kpc, 
which is assumed to be the typical diameter scale of a subhalo. The acoustic ve-
locity is computed in the standard way assuming a polytropic exponent of 2 as in 
the discussion surrounding Equation (11). 

From Table 8, it is evident that most of the Reynolds numbers are astronom-
ical in comparison to typical values of terrestrial interest, and that the corres-
ponding solutions are mathematically similar to those with very small viscosity. 
This, combined with the essentially incompressible properties of a quantum flu-
id satisfying Fermi-Dirac statistics, suggests that the fluid might approximate 
potential flow, which is known to have very low drag [78]. 

With such large Reynolds numbers, the accepted drag coefficient is about 0.2 
for a sphere, as can be found in any textbook in fluid mechanics, neglecting 
possible quantum fluid effects. A drag coefficient as low as 0.1 occurs for an el-
lipsoid with a 2:1 aspect ratio, as may be found for subhaloes like the dwarf Sa-
gittarius galaxy. With the above information, the drag-induced slowing of a 
subhalo in a larger medium can be computed using the simple differential rela-
tion 

  ( ) 2d d 2sh d galtV C Aρ ρ=v v .                  (15) 

Here ρsh is the DM density of the subhalo, set equal to 5 × 1015 m−3, ρgal is the DM  
 
Table 8. Reynolds number and Mach number, respectively, for halo-halo interactions. 
Scale size for Re is 1 kpc, particle mass is 0.4 eV/c2. 

Density ρ (m−3) vrel = 30 km∙sec−1 vrel = 300 km∙sec−1 vrel = 3000 km∙sec−1 

5 × 1015 4.4 × 1021, 0.019 4.4 × 1022, 0.19 4.4 × 1023, 1.9 

5 × 1014 2.1 × 1021, 0.061 2.1 × 1022, 0.61 2.1 × 1023, 6.1 

5 × 1013 9.8 × 1020, 0.19 9.8 × 1021, 1.9 9.8 × 1022, 19.1 

5 × 1012 4.6 × 1020, 0.61 4.6 × 1021, 6.1 4.6 × 1022, 60.6 
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density of the galaxy in the vicinity of the subhalo, and v is the velocity of the 
subhalo relative to the galaxy. V is the volume of the subhalo, set equal to 3 3shr4π , 
and rsh is the subhalo radius, set equal to 0.5 kpc. Cd is the drag coefficient, and A 
is the cross-sectional area of the subhalo presented to the flow, set equal to 2

shrπ . 
Equation (15) is readily solvable assuming the densities are constant over time 
(as a first approximation). Sample results are shown in Table 9 versus initial rel-
ative velocity vrel0 and local galaxy density, for times corresponding to 50% and 
90% reductions in velocity. 

The table shows, for example, that the 50% and 90% times are about 22 and 
about 197 Myr, respectively, for a subhalo diameter of 1 kpc located at the outer 
edges of a galaxy where vrel0 = 300 km∙sec−1. For haloes of order 1 kpc in diameter 
and vrel0 = 30 km∙sec−1, the orbit decay times range from about 0.2 Gyr to 2 Gyr 
based on the lower left values of Table 9. The lower end of this range, 0.2 Gyr, is 
definitely smaller than expected [34], for which typical subhalo decay times are 
predicted to lie in the range of 2 to 4 Gyr. This is a potential inconsistency which 
could be investigated via observations and simulations to test this theory as well 
as to inform the theory of the possibility of lower drag for this form of matter. 

Referring to Equation (15), one sees that these numbers can be interpreted as 
the decay time per kpc diameter. So, for example, for a 10 kpc subhalo such as 
the Sagittarius dwarf spheroid, the predicted velocity decay time constant is 
about 1970 Myr for the 90% decay time with an initial velocity of 300 km∙sec−1, 
referring to the bottom of the middle column of Table 9. If the shape of the 
subhalo is elliptical with major axis in the flow direction, as is the case for Sagit-
tarius, the drag coefficient might be a factor of 2 lower, resulting a time constant 
of about 4 Gyr. These numbers are within a factor of 2 of those inferred from 
observations [79] [80]. It is not clear that this result is consistent with such ob-
servations, due to the neglect of many other effects such as the type of orbit and 
dynamical friction. 

Another well-known constraint on self-interacting dark matter is the observa-
tion of the Bullet Cluster halo collision. In this collision the r200 radius (the ra-
dius at which the galactic density is 200 times that of background) is about 2140 
kpc for the main cluster and about 995 kpc for the smaller Bullet Cluster. The 
final observationally-estimated lag of DM behind stellar matter is 25 ± 29 kpc 
[31] [81]. The drag-induced lag of the Bullet cluster halo relative to its associated 
ordinary stellar matter can be computed using Equation (15). Hernquist density  
 
Table 9. Time (Myr) for velocity to decay by 50% and 90% for halo-subhalo interactions 
using Equation (15) and inputs described in text.  

Density ρgal (m−3) vrel0 = 30 km∙sec−1 vrel0 = 300 km∙sec−1 vrel0 = 3000 km∙sec−1 

5 × 1015 0.22, 1.97 0.022, 0.197 0.002, 0.020 

5 × 1014 2.2, 19.7 0.22, 1.97 0.22, 0.197 

5 × 1013 21.8, 197 2.2, 19.7 0.22, 1.97 

5 × 1012 218, 1970 21.8, 197 2.2, 19.7 
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profiles are assumed as in [31] with the same initial velocity of 3000 km/sec and 
same initial separation of 4 Mpc. Nominal motion is in a straight line. Values of 
closest approach of 10 to 100 kpc of the cluster centers are used. A central num-
ber density of 5 × 1015 m−3 at a radius of 1 kpc is used for the main cluster, and 
number densities of 5 × 1015 to 5 × 1014 m−3 are used for central portion of the 
Bullet cluster, in accord with Section 3. The Bullet cluster radius is chosen to 
equal the Hernquist α-parameter, 279 kpc, as in [31]. Using the r200 radius of 995 
kpc results in smaller lags due to the larger mass and therefore lower accelera-
tion. A drag coefficient of 0.2 is used. The resulting computed lags range from 
0.35 to 7.7 kpc, when 700 kpc past closest approach, which is within error bars of 
that measured (25 kpc). 

Using a strict 1/r density profile for the main cluster rather than the Hernquist 
profile gives a lag of as much as 15 kpc, because of the greater column density 
traversed by the Bullet Cluster. Also, a larger drag coefficient of 1.0 gives about 
1.75 to 37 kpc of lag instead of 0.35 to 7.7 kpc. If these larger numbers are com-
bined with a 1/r density profile, the result is about 73 kpc of lag as an extreme 
worst case, which is outside the error bars. Convergence of these calculations 
was checked; the computed lags are accurate to within 0.01% using up to 104 
steps in time. The lags are relatively small because of the large size of the Bullet 
cluster halo, as noted in the previous paragraph, so its large mass decelerates less. 
Evidently, this form of self-interacting dark matter is consistent with the meas-
ured lag of the Bullet cluster collision, based on the simplest relevant drag calcu-
lation for this state of matter. 

The net effect of the above calculations is decay of subhaloes into a larger halo, 
with associated erosion and assimilation. Scaling the results of Table 9, the 
slowing is most significant for the smaller haloes. From this, one sees a partial 
explanation for the unexplained dearth and diversity of smaller satellite haloes 
mentioned by other authors [21] [34]. Note that the decay rates for such haloes 
are significantly shorter than the time scales involving dynamical friction, so this 
offers observational means for assessing or informing this theory. Further, this 
picture of halo interaction is quantitatively consistent with the observed Bullet 
cluster halo interaction, provided the halo centers do not pass closer than about 
10 kpc of each other, using the simplest relevant calculation. The basic picture 
for halo-halo interactions is that a smaller dense halo moves through the less-dense 
perimeter of the larger halo in a manner similar to that of a mercury ball as it 
moves through water under the influence of gravity, with additional mass strip-
ping due to friction and diffusion. Much more could be said about halo-halo in-
teractions as it relates to the self-interacting form of DM that derives from the 
hypothesis of this paper; hopefully the above is sufficient for an initial treatment. 

7. Summary 

Straightforward calculations of galactic haloes are performed for DM assuming 
an SU(3) interaction applies to neutrinos. Both SU(3)νe and SU(3)νs are largely 
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consistent with observations if one allows SU(3)νs to have a different strength 
than that of SU(3) for quarks. The key attributes of this force can be and are 
chosen consistent with SU(3)νe given by [38], whereas the standard SU(3) pro-
vides no guidance on key parameters such as the bound state mass or the coupl-
ing parameter, as discussed in Section 2. 

As shown in Section 3, such baryonic neutrinos in haloes need a relatively 
high temperature to maintain the density and the associated total mass observed 
for haloes. Since the corresponding velocity exceeds the galactic gravitational 
escape velocity, some sort of additional binding is inferred. It is found that an 
SU(3)ν binding that is similar to the SU(3) binding of neutrons in neutron stars 
will produce sufficient binding. Because the resulting state of matter is similar to 
that for neutron stars, such haloes might be viewed as a form of “neutrino star”. 
Such binding near galactic centers implies that the Tremaine-Gunn bound is not 
expected to apply as discussed in Section 4. The coupling constant gs of the 
feeble SU(3)ν is deduced to be as low as [(137)2 × 10−25]1/4 = 6.58 × 10−6 of that of 
the electric force (e) from theoretical estimates. This coupling strength applies 
for relativistic neutrinos and is greater at lower energies due to the running of 
the coupling parameter as well as the interaction probability as discussed in Ap-
pendix A. 

As shown in Section 3, a generalized form of the equation for hydrostatic 
equilibrium provides a better match than the standard equation for the observa-
tionally-inferred cuspy behavior for DM near galactic centers. Such calculations 
provide a good match to the inferred total galactic-halo mass and to the DM 
mass-energy density near earth. Solutions to the generalized hydrostatic equa-
tion are found to have long spatial “tails” that are cut off based on a galactic-halo 
mass constraint. Other explanations for the details of a halo density profile are 
explored. These include (a) multiple species, (b) angular momentum, and (c) a 
transition to a condition in which the standard hydrostatic equation applies. An 
approach using 2 species provides a particularly good fit to sample Einasto and 
de-projected Sersic model profiles. Further, the generalized solution offers a res-
olution to the “core-cusp” problem in dwarf galaxies. The solutions must have a 
core due to the density-limiting Fermi-Dirac statistics of baryonic neutrinos, in 
the absence of a gravitational singularity. Dwarf galaxies are found to have the 
“core” portion of the solution in Section 3.2, but either lose the cusp portion of 
their DM or never accumulate it. 

Section 5 discusses the prospects for observation of such DM near earth. Solar 
neutrinos are not expected to interact significantly with each other or with such 
dark matter because they are created mono-color (all solar neutrinos are “green” 
in the conventions of [38]). Hence, they would not bind with each other or the 
colorless states of the hypothesized form of DM. However, elastic or quasi-elastic 
scattering might occur. Also, some contact is made with earth-based DM detec-
tion experiments, for which the measured amplitude of annual modulation is a 
fair match with what might be expected from this form of DM. 

Halo solutions are stable and self-consistent, having low thermal and mass 
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diffusivity as discussed in Section 6. Also shown in Section 6 is that the fluid 
hypothesis is consistent with observed galactic halo interactions (particularly the 
Bullet Cluster interaction) via arguments put forth here and by other authors, e.g. 
[82]. The issue of SIDM cross-section is apparently not relevant for the same 
reasons. Also considered is the motion of smaller haloes, less than 1 kpc in di-
ameter in a larger halo. It is found that the orbital decay is a factor of 1 to 10 
times faster than expected from the standard DM model. Further observations of 
haloes and their interactions would provide helpful tests of the theory presented 
here. It remains to be seen if the hypothesis proposed herein has full consistency 
with the preponderance of observational evidence. Further work definitely re-
mains. 

A key issue for this form of dark matter is the free-streaming scale in the early 
universe. This issue is relegated to a companion paper. However, the calculations 
here show stability of haloes because of the relatively short mean free path of the 
hypothesized form of dark matter. This short mean free path applied to the early 
universe results in diffusive rather ballistic transport, vastly shortening the asso-
ciated “free-streaming scale length” of such matter. Also covered in the compa-
nion paper is a discussion of the interaction strength of this form of DM with 
ordinary matter, dark-matter fraction of total matter, consistency with cosmic 
microwave background measurements, SN1987a data, neutrino accelerator ano-
malies, and the issue of SU(3) interactions between neutrinos and quarks 
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Appendix A: Estimate of Binding Energy of Hadronic  
Neutrinos and SU(3)νe Interaction Strength 

This Appendix estimates the binding energy of baryonic and mesonic neutrinos 
as well as the SU(3)νe interaction strength for relativistic neutrinos. Because the 
SU(3) binding energy is a large fraction of the mass-energy of bound quarks, one 
might expect that this would be the case for SU(3)-bound neutrinos as well 
(should they exist). This fact is utilized for estimation of the mass-energy of 
bound neutrino states.  

The binding energy of baryonic neutrinos is estimated first. From equation 
(10.27a) of [38], the binding energy Eb of a baryonic neutrino can be approx-
imated by 

( ) ( ) ( ){ }2
2 2 2 2 1 2

3

2
4 4 Δb eE c m m m c c xυτ υ υµ υτβ α= π + +  ,      (A1) 

where 2
υτβ  is the probability of an upper-mass tau neutrino state (assuming the 

normal hierarchy), and α3 is the dimensionless coupling parameter for the 
strong force, ( )2 4sg ћcπ . The neutrino flavor masses are mνe, mνμ, and mντ. |Δx| 
is the characteristic size of an SU(3)-bound neutrino. The value of α3 is chosen to 
equal 1 in this calculation because for bound SU(3) states the coupling parame-
ter is close to 1 for bound quark-quark interactions, and that should apply here 
as well. The probability of an upper-mass neutrino state from the same reference 
for a marginally relativistic bound state is given by 

( )2
e em m mυτ υ υ υτβ = + .                      (A2) 

This probability is approximately 0.1 for mνe ~ 0.005 eV/c2 and mντ~ 0.05 
eV/c2, assuming the normal hierarchy for neutrino masses, the known mass-squared 
differences, and the least possible mass for the tau neutrino. Under the same as-
sumptions, the muon neutrino mass is about 0.01 eV/c2. The last input to Equa-
tion (A1) is the characteristic size of SU(3)-bound neutrinos. For this, use an es-
timate based on the Heisenberg uncertainty principle: 

       ( ) ( )2Δx c pc c m cυτ≥ ≈  .                   (A3) 

Using the nominal value of mντ given above, one obtains |Δx| ~ 3.3 microns. 
One might also use mνe or mνμ in Equation (A3), but the basis of Equation (A1) 
suggests that mντ should be used. Substituting the above into Equation (A1), one 
obtains an estimate of the binding energy of baryonic neutrinos. 

2 24 0.2 eVb eE m cυ≥ π = .                     (A4) 

One can see that with these approximations and assumptions, the binding 
energy is roughly independent of the upper neutrino mass value. In Equation 
(A3), one might also use ( )1 22

em m cυτ υ  for the denominator based on Ch. 10 of 
[38]. With this assumption, one obtains 

( ) ( )1 2 1 22 2 2 24 4 0.62 eVb e e eE m c m m m m cυ υτ υ υτ υ≥ π = π = .    (A5) 

To this range of binding energies, one must add the masses of the constituent 
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neutrinos, which might range from 3mνe to 3mντ. This then leads to a range of 
baryonic neutrino masses from about 0.22 eV/c2 to about 0.8 eV/c2. Assuming 
the baryonic neutrinos comprise the lower-mass neutrino states as in quarks, a 
tighter range would be 0.22 to 0.64 eV/c2. On the other hand, a baryonic neutri-
no mass as high as 0.8 eV/c2 should not immediately be ruled out. Equation 
(10.27b) of [38] gives a similar equation for mesonic neutrino states, and the 
corresponding range of masses is 0.08 to 0.35 eV/c2. 

The above mass-scaling analysis can also be applied to relativistic particles 
using Equation (10.13b) rather than (10.13a) of [38]. In this limit, 2 ~ 0.5ντβ , 
independent of the interacting masses. Referring to Equation (A1) and removing 
the |Δx| to obtain the interaction force coupling parameter, one finds that the in-
teraction scales as 2mντ  in this case. One then has a scaling factor of ( )2

bm mυτ  
to ( )2

tm mυτ  of the quark interaction strength to the neutrino family interac-
tion strength, scaling from the down family or the up family, respectively. Here 
mb is the bottom quark mass and mt is the top quark mass. Note that the scaling 
factor between the down-quark family and up-quark family should be of order 1 
because all hadrons bound by a strong quark interaction have sufficient energy 
for the presence of both u u−  and d d−  sea quarks. There is also the run-
ning of the coupling parameter that should be included; the standard calculation 
indicates that the correction is negligible when applied to neutrinos. 
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Abstract 
Using a Gurevich-Krylov solution that describes the propagation of nonlinear  
magnetoacoustic waves in a cold plasma, we construct solutions of various 
other nonlinear systems. These include, for example, Madelung fluid, reac-
tion diffusion, Broer-Kaup, Boussinesq, and Hamilton-Jacobi-Bellman sys-
tems. We also construct dilaton field solutions for a Jackiw-Teitelboim black 
hole with a negative cosmological constant. The black hole metric corres-
ponds to a cold plasma metric by way of a change of variables, and the plasma 
dilatons and cosmological constant also have an expression in terms of para-
meters occurring in the Gurevich-Krylov solution. A dispersion relation, more-
over, links the magnetoacoustic system and a resonance nonlinear Schrödin-
ger equation. 
 

Keywords 
Cold Plasma, Magnetoacoustic Waves, Resonance Nonlinear Schrödinger 
Equation, Reaction Diffusion System, Jackiw-Teitelboim Black Hole, Dilaton 
Field, Ricci Scalar Curvature, Jacobi Elliptic Function 

 

1. Introduction 

Over the past years, points of connection of plasma physics to various nonlinear 
equations of significant importance have been explored. An initial connection 
can be traced back to H. Washimi and T. Taniuti [1], for example, who showed 
that the one-dimensional asymptotic behavior (as t→∞ ) of small amplitude 
ion-acoustic waves was described by the Korteweg-deVries equation—following 
on a parallel track work of C. S. Gardner and G. K. Morikawa [2]. The paper of 
A. Jeffrey [3] provides for some systematic details on this particular connection, 
and it includes remarks, for example, on the work of Y. A. Berezin and V. I. 
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Karpman [4]. 
In the 2007 paper [5] of J.-H. Lee, O. K. Pashaev, C. Rogers, and W. K. Schief 

the resonance nonlinear Schrödinger (RNLS) equation  

  2 xx
t xxi

ψ
ψ ψ γ ψ ψ δ ψ

ψ
+ + =                     (1) 

appears in connection with a discussion of one-dimensional, long magnetoac-
oustic waves in a cold plasma subject to a transverse magnetic field B



. Here 
,γ δ ∈ =  the field of real numbers with 1δ > , and 

xxψ ψ  is a de Broglie 
quantum potential. For 1 2γ = − , a complex-valued wave function solution ψ  
of the form 

  ( ) ( ) ( ),, , e iS x tx t x tψ ρ −=                       (2) 

was obtained, where 0ρ >  is the plasma density and S is a real-valued velocity 
potential. That is, the velocity field u of the plasma is given by 2 xu S= − . In the 
present paper we consider for an arbitrary 0γ <  solutions of Equation (1) of 
the form 

  eR iSψ −=                              (3) 

for real-valued functions ( ) ( ), , ,R x t S x t . Such a function ψ  is a solution if 
and only if the pair ( ),R S  is a solution of the Madelung fluid system  

( ) 2 2 2

2 0

1 e 0
t xx x x

R
t xx x x

R S R S

S R R Sδ γ

− − =

 + − + − + = 
                 (4) 

independently of the assumption 0γ < . 
The system of main interest for us is the nonlinear magnetoacoustic system 

(MAS) 

( )
2

2

0

1 0
2

t x

xx x
t x x

x

u

u uu

ρ ρ

ρ ρ
ρ β

ρ ρ

+ =

  
+ + + − =  

   

                (5) 

which describes the propagation of the aforementioned magnetoacoustic waves 
in the cold plasma, under some simplifying assumptions that include the uni-axial 
propagation assumption 

  ( ) ( ) ( ) ( ), , , , , .x t B x t k u x t u x t i= =B





                  (6) 

Here 0β >  and ,i k




 are unit vectors along the x and z axes. The system (5) 
is derived by way of a shallow water type approximation of the system 

( ) 0

0

1

t x

t x x

x
x

u

Bu uu B

B B

ρ ρ

ρ

ρ
ρ

+ =

+ + =

 
= +  

 

                         (7) 

where a change of variables ( ) ( ), ,x t x tβ β→  is employed (under which the first 
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two equations in (7) are invariant and third one becomes ( )2
x x

B Bρ β ρ= + ), 
and where an expansion of B of the form 

  ( )2 4x

x

B
ρ

ρ β β
ρ

 
= + + 

 
                       (8) 

is inserted into the second equation [5] [6] [7].  
We will work with the following explicit traveling wave solution ( )0,uρ >  

of the MAS (5) given by A. Gurevich and A. Krylov (G-K) in [8]. For a choice 

0 0u > , 3 2 1 0α α α> ≥ ≥ , define  

( ) ( )

( ) ( )( )

1
1 2def def def 3 220 3 1

3 1

1def 2 2 2 2 221 2 3 1

2

1 1

1

0, 2 0, 0,1 ,

4 1 4

v u a

C a a

α α
β α α β κ

α α

α α α α β κ α β α

 −
= > = + − > = ∈ − 

   = + = − + +  

     (9) 

where the second expression for C in (9) follows as ( ) ( )def2
2 1 3 11 κ α α α α− = − −  

and ( )def2 2 2 2 2 2 2
3 1 1 1 2 34 4 1 4a a aβ α α β κ α β α α α   = − ⇒ − + + =   . Then for the 

standard Jacobi elliptic function ( ),dn x κ  with elliptic modulus κ  [9] 

( ) ( )( )
( ) ( )

2 2 2
1

0

, 4 , ,

, , .

x t a dn a x vt

u x t u C x t

ρ α β β κ

ρ

= + −

= +
                (10) 

The choice for 1δ >  in (1) will be def 2 1δ β= + . As shown in [10] (also com-
pare [5] [7]), given a solution ( )0,uρ >  of the MAS (5) and the assumption 

0γ < , one can construct a corresponding solution ( ),R S  of the Madelung 
fluid system (4) where 

  def def1 log ,
2 2 2x

uR Sρ
γ

 
= = − − 

                      (11) 

and, moreover, a corresponding solution ( ),r s  of the reaction diffusion system 
(RDS) 

  
2

2

0

0
t xx

t xx

r r Br s

s s Brs

− + =

+ − =
                          (12) 

where 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

def , ,

def , ,

def

def 2

, e e

, e e

, , ,

1

,

,

0.

R x t x t

R x t x t

r x t

s x t

x t S x t

B

β φ

β φ

φ β β

γ β γ δ

−

=

= −

=

= − = − − >

                     (13) 

In the present case of (10) therefore 

( ) ( ) ( ) ( )

( )( ) ( )

1
,2

2 2 2
1

1

,

2

, , 2 e

,
,

4
e

2

x t

x t

r x t x t

a dn a x vt

φ

φ

ρ β γ

α β κ
γ

= −  

 + −
=  

−  
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( ) ( ) ( ) ( )

( )( ) ( )

1
,2

2 2 22
1 ,

1

, , 2 e

.
4 ,

e
2

x t

x t

s x t x t

a dn a x vt

φ

φ

ρ β γ

α β κ
γ

−

−

= − −  

 + −
= −  

−  

           (14) 

As before, we see in (11) that S is a potential function for the velocity field u. 
Note also that by (3) and (11) we obtain the solution 

( ) ( ) ( ) ( )

( )( ) ( )

1
,2

1/22 2 2
1 ,

, , 2 e

4 ,
2

,e

iS x t

iS x t

x t x t

a dn a x vt

ψ ρ γ

α β β κ
γ

−

−

= −  

 + −
=  

−  

          (15) 

of the RNLS equation (1). 
The formulas (11), (14), (15) relate the nonlinear systems (4), (12) and the reson-

ance nonlinear Schrödinger Equation (1) to the cold plasma system (5) with solution 
(10). In Section 2 we relate the solution (10) also to nonlinear systems of Broer-Kaup, 
Boussinesq, and Hamilton-Jacobi-Bellman and their anti-systems given by the 
time reversal t t→ − . Here we find solutions of these systems that generalized 
in a non-trivial way those found in [11], for example. By choosing 1κ =  so that 

( ) ( )def, sechdn x xκ = , and choosing 1 0α =  so that 0C =  by (9) and 0u u=  is 
a constant function in (10), in particular, our r in (14) and v+  in (34) of section 
2 reduce to the dissipaton e+  and shock soliton v+  in Sections 2 and 4 of [11]. 

Attention in Section 4 is turned to further remarks on the cold plasma-2d 
black hole connection set up in [10]. The main result of that section is the com-
putation of two more plasma dilaton fields such that these combined with the 
one computed in [10] form a linearly independent set. This too generalizes in a 
non-trivial way (namely the case 1 0α ≠ ) a result found in [12]. 

Finally, in Section 5, we switch from the traveling wave solution ( ),uρ  to a 
plane wave solution of the system (5). Remarkably, its dispersion relation coin-
cides with the dispersion relation obtained from the linearization of the RNLS 
Equation (1) about a suitably normalized ground state solution 0ψ . 

Throughout, an attempt is made to maintain an expository style in the pres-
entation of the material, for the sake of completeness. 

2. Elliptic Function Solutions of Broer-Kaup, Boussinesq,  
and Hamilton-Jacobi-Bellman Systems 

In addition to the solutions (11), (14) of the Madelung fluid and RD systems (4), 
(12), and the RNLS solution (15) of (1), all of which were constructed by way of the 
G-K solution (10), we consider now solutions of nonlinear systems of Broer-Kaup 
(B-K), Boussinesq, and Hamilton-Jacobi-Bellman (H-J-B), and of their time re-
versal ( t t→ − ) systems. Here, again, the G-K solution (10) of the MAS (5) plays 
an underlying, subtextual role. 

2.1. Conservation Laws and the B-K System 

From the RDS (12), conservation laws can be deduced by which, in turn, one can 
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derive the B-K system. We provide a sketch of this derivation, for the sake of 
completeness, and we present a general elliptic function solution. 

The continuity equation ( ) 0t xuρ ρ+ = , or conservation law, in (5) is one of 
many such laws. The RDS (12) gives rise to the conservation law 

  ( ) ( ) 0x xt x
rs r s rs− − = ,                      (16) 

for example, for which the particular value 2B γ β= −  there does not matter. 
To check (16), start with the equation ( )

( )
–

i

x x xx xxx
r s rs rs sr− = − . Multiply the 

first RD equation in (12) by s and the second one by r. Addition of these two 
multiplied equations eliminates B and gives the equation  

( ) ( )0 t t xx xx x xt x
r s s r r s s r rs r s rs= + − + = − − , by (i), which is the assertion in (16). 

In addition to (16), we also need the conservation law 

  ( ) [ ]2

2x x x t x t x
t

Br s rs r s s r + = +  
,                 (17) 

which also follows from (12). Namely, the l.h.s. in (17) is  
[ ]x xt xt x t tr s r s Brs rs r s+ + + , where the third term here is  

( ) ( ) ( ) ( )2 2
t t t xx t t xx tBr s s Brs r r r s s s r

∴
+ = − + + +  (by (12)) xx t xx tr s s r= + . Thus the 

l.h.s. in (17) is ( ) ( )x xt xt x xx t xx t x t x tx x
r s r s r s s r r s s r+ + + = + , by the equality of 

mixed partials: tx xtr r=  and tx xts s= . Equation (17) is now established. 
Define 

   def rsσ = − .                           (18) 

For 0r >  and 0s < , we see that ( ) ( )deflog
iix

xx

rsr
r sr

r
σ = − =−  and similarly 

( ) ( )
log

iii

x xxs rss s rsσ − = − = − , which says that the conservation law (16) can be 
written as  

( ) ( ) ( )def log logt t x x x
rs r sσ σ σ   = − = − −    

.           (19) 

Also by (ii), (iii), ( ) ( )log logx x xr sσ σ σ= + − ⇒  

  ( ) ( )log logxx x x x
r sσ σ σ = + −  ,               (20) 

so that (19) and (20) together give the equations  

( )2 logt xx x x
rσ σ σ + =   , ( )2 logt xx x x

sσ σ σ − = − −  ,      (21) 

which suggests that one defines 

( )def log x
x

r
v r

r
+ = = , ( )def log x

x

s
v s

s
− = − = :            (22) 

( )2t xx x
vσ σ σ ++ = , ( )2t xx x

vσ σ σ −− = − .           (23) 

Then 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
x x xx x x xx txx

v v r r r r rr r r r r r r r Br s r+ ++ = + = − + = = +  

(by (12)) def
tr r Bσ= −  (by (18)) ( )log tr Bσ= − . That is, 
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( ) ( ) ( ) ( )2 deflog logx tx xt tx
v v B r r vσ+ + + + + = = =  

.           (24) 

Similarly, by (12) and (18) again,  

( ) ( ) ( ) ( )
2 2 logxx t tx

v v s s s Brs s s Bσ− −+ = = − + = − − − ⇒  

( ) ( ) ( ) ( ) ( )2 deflog logtx xtx tx
v v B s s vσ− − − + + = − − = − − = −  

.     (25) 

Putting the pieces together, (Equations (23)-(25)), we have derived from the 
RDS (12), for 0, 0r s> < , and B arbitrary (not necessarily the specific value 

2B γ β= −  there) the Broer-Kaup systems 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2

2

,

,

t xx x t x x

t xx x t x x

v v v v B

v v v v B

σ σ σ σ

σ σ σ σ

+ + + +

− − − −

 + = = + +  

 − = − = − + +  

        (26) 

for σ  and v±  defined in (18) and (22). The second system in (26) (with the 
minus signs) corresponds to the time reversal t t→ − . 

We can obtain elliptic function solutions of the systems in (26) immediately, 
by way of the solutions ,r s  in (14). Note first that by (10), (14), (18) 

( ) ( ) ( ) ( ) ( )
( )( ) ( )

def

2 2 2
1

, , , , 2

4 , 2

x t r x t s x t x t

a dn a x vt

σ ρ β γ

βα κ γ

= − = −

 = + − − 
           (27) 

Also by (14) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1log , log , log 2 ,
2

1log , log , log 2 , .
2

r x t x t x t

s x t x t x t

ρ β γ φ

ρ β γ φ

= − − +  

− = − − −  

         (28) 

From [9], the identities and differentiation formulas 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2

, , 1, , , 1,

,1 tanh , ,1 ,1 sech ,
d d, , , , , , , ,
d d
d , , ,
d

sn x cn x dn x sn x

sn x x cn x dn x x

sn x cn x dn x cn x sn x dn x
x x

dn x sn x cn x
x

κ κ κ κ κ

κ κ κ κ κ κ

κ κ κ κ

+ = + =

= = =

= = −

= −

 (29) 

hold for the standard Jacobi elliptic functions ( ) ( ) ( ), , , , ,sn x cn x dn xκ κ κ . The 
following is a useful inequality: 

   ( ) ( )
( )

2 2

2

, ,
1

,
sn x cn x

dn x
κ κ

κ
≤ .                    (30) 

By definitions (13), (11), (10), (9), respectively 

( ) ( ) ( )
( )

( )

0, ,
,

2 2 2 ,

.
2 2 ,

x
x

S x t u x t u Cx t
x t

v C
x t

β β
φ

β β β βρ β

βρ β

= = − = − −

= − −
       (31) 
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By (10) (again) 

( ) ( )( )2 2 2
1, 4 ,x t a dn a x vtρ β α β κ= + −               (32) 

so that the last differentiation formula in (29) gives  

( ) ( ) ( )( )3 2 2, 8 ,x x t a sncndn a x vtρ β β κ κ= − − ,          (33) 

which with (22), (28), (31) and (32) gives 

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

3 2 2
def

2 2 2
1

3 2 2
def

2 2 2
1

4 , 2
, log , ,

2, 4 ,

4 , 2
, log , ,

2, 4 ,

x

x

a sncndn a x vt C vv x t r x t
x t a dn a x vt

a sncndn a x vt C vv x t s x t
x t a dn a x vt

β κ κ β

ρ β α β κ

β κ κ β

ρ β α β κ

+

−

− − −
= = −

= + −

− − +
= − = +

= + −

(34) 

for C given in (9). 
The formulas (27) and (34) therefore provide for a solution ( ), ,v vσ + −  of the 

Broer-Kaup systems in (26). There we take 2B γ β= − , since we used the spe-
cific solution ( ),r s  in (14) of the RDS (12). 

The solution ( ),vσ +  of the first system in (26) vastly generalizes the one 

( ),vρ +  found in [11], where the notation ρ  there corresponds to σ  here, 
and where a solution of the second system in (26) is not addressed. 

The generalization here is not simply that of elliptic functions over hyperbolic 
function, but it is in large part due to the freedom to allow 1α  to be non-zero: 

1 0α > . Indeed for 1 0α = , all results of this paper, and those of [10], simplify 
greatly—mainly because then 0C = , by (9). For 1 0α = , the formulas in (27) 
and (34), for example, reduce to 

( ) ( )( ) ( )

( ) ( )( )

2 2 2

2

, 4 , 2 ,

, , ,
2

x t a dn a x vt

sncn vv x t a a x vt
dn

σ β κ γ

κ κ±

= − −

= − − 

              (35) 

which, moreover, for 1κ =  reduce further to  

( ) ( )( ) ( )

( ) ( )( )

2 2 2, 4 sech 2 ,

, tanh ,
2

x t a a x vt

vv x t a a x vt

σ β γ

±

= − −

= − − 

              (36) 

which apart from v−  are the results that appear in [11], with a different choice 
of constants—the v+  in (36) being the shock soliton mentioned in the intro-
duction. We shall see in Section 3 that in case 1 0α = , there is also a nice choice 
for the potential function ( ),S x t  in (11), and thus a nice expression for 
( ),x tφ  in (13), (14), and for ( ),x tψ  in (15) exists in this case.  

2.2. Boussinesq Systems 

Given the bulk of details and formulas in Section 2.1, we can glide more easily 
through this section. A good number of equations for various mathematical 
models are referred to as Boussinesq equations. It is perhaps best then to con-
sider the systems discussed here more properly as Boussinesq type systems. This 
prolific French researcher, Joseph Valentin Boussinesq (1842-1929) made nu-
merous high level contributions to fluid mechanics that involved the theory of 
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solitary waves and the KdV equation, for example, and contributions to several 
other fields including the propagation of light and the theory of linear elasticity. 

Define the “pressure” functions ( ),p x t±  by 

( )def

x
p B vσ± ±= + .                         (37) 

As before we will choose def 2B γ β= − . By (26), 

( ) ( ) ( ) ( ) ( )2
2 xt x xx xx

v v v B v v v Bσ σ± ± ± ± ± ± = ± + + = ± + +  
 
       (38) 

so that  

( ) ( ) ( ) ( )def2 xt x xx x
v v v v B pσ± ± ± ± ±= ± ± = ± .            (39) 

One can compute ( )
t

p±  also, and in the end, with (39), derive the Boussi-
nesq type systems  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2,

2 2,
x t x t xxx x

x t x t xxx x

p v v v p v p v

p v v v p v p v

+ + + + + + + +

− − − − − − − −

= − = +

− = + = − −
      (40) 

The second system in (40) (with the minus signs) corresponds to the time re-
versal t t→ − . 

As with the B-K systems in (26), one can obtain explicit elliptic function solu-
tions of the systems in (40), or simpler hyperbolic function solutions as in (36), 
by taking 1κ = . For this one simply applies the formulas for σ  and v±  in (27) 
and (34) to compute p±  in definition (37)—perhaps with the help of Maple. Ge-
nerality in an alternate direction of importance is provided by Professor Pashaev 
in [11] who considers kink-soliton and two-soliton solutions of the Broer-Kaup 
and Boussinesq systems (26) and (40). These latter systems trace back to the 
analysis of water waves propagating in a long narrow channel [13] [14]. 

2.3. A Hamilton-Jacobi-Bellman System 

Given two functions ( ) ( )1 2, , ,f x t f x t , consider the Lagrangian density 
22

def 22 1 1 2 1
222 4 2

f f f f f B f
t xx

 ∂ ∂ ∂ = − − −   ∂ ∂∂   
 .               (41) 

The corresponding Euler-Lagrange equations of motion are 

  
2

2
j t j x j xx jt f x f f fx

     ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − =          ∂ ∂ ∂ ∂ ∂ ∂∂     

                   (42) 

for 1,2j = , which are immediately computed: 

 

2 2 1

1 2 1

2

2 1 2 1
22

1 1 1
22

2

, 0, ,
2 2

0, , 0, 0,
2

1 1
2 4

t t x

x xx xx

f f f
f f f x

f
f f f f

f f f Bf
f t xx

∂∂ ∂ ∂
= = = −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= = − = =

∂ ∂ ∂ ∂

 ∂ ∂ ∂∂  = − − −   ∂ ∂ ∂∂   

  

   



              (43) 
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so that the equations of motion are  
2

2 1 2
2 2

22
1 1 1

22

0,

1 2 0.
2

x

f f ff
t x x

f f f Bf
t xx

∂ ∂ ∂ − + = ∂ ∂ ∂ 

∂ ∂ ∂ − − − = ∂ ∂∂  

                  (44) 

Now going back to the first B-K equation 

  ( )2 0t xxx
vσ σ σ+− + =                       (45) 

in (26), which we compare with the first equation in (44), we are obviously mo-
tivated to think of 2f  as σ  and to take 

  ( )def1 2 2 log x

f v r
x

+∂
= =

∂
.                      (46) 

That is, we choose 

  def
1 2 logf A r+= = .                        (47) 

Then (44) is the system 

  
( )

( ) ( ) ( )
2

0

1 2 0
2

t xxx x

t xx x

A

A A A B

σ σ σ

σ

+

+ + +

 − + = 

 − − − = 

               (48) 

where the second equation in (48) is a Hamilton-Jacobi-Bellman (H-J-B) equa-
tion, which as remarked in [11] is well-known in the theory of optimal stochastic 
control for continuous Markov processes [15]. Although this equation was de-
rived by way of a suitable action functional, defined by the integration of   in 
(41) for choices def

1 2 logf r A+= = 
 
 

, 2f σ= , another path to it is by way of the 
first RD equation in (12) divided by r; 

( )

( ) ( )

def

2

0 log

2

t xx xx
t

x
t

r r r
Brs r B

r r r
A v v B

σ

σ
+

+ +

= − + = − −

   = − + −     

                (49) 

where the bracketed expression here for xxr r  was obtained in the first sen-
tence that followed Equation (23). By the definition (22), and the definition of 
A+  again, ( )2

x
v A+ += . (49) is therefore the statement  

  ( ) ( ) ( )
21 1 10

2 2 4t xx x
A A A Bσ+ + + = − − −  ,              (50) 

which is the H-J-B equation in (48). 
At hand already we have a solution ( ), Aσ +  of the H-J-B system (48), by 

formulas (27) and (28). (27) gives ( ),x tσ , and we can plug the expression for 
( ),x tρ β  there into the first formula in (28) to get  

( ) ( )
( )( ) ( ) ( )

( ) ( )

def

2 2 2
1

, 2 log ,

log 4 , log 2 2 ,

log , 2 ,

A x t r x t

a dn a x vt x t

x t x t

α β κ γ φ

σ φ

+ =

 = + − − − + 
= +

   (51) 
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with xφ  given in (31). Again we choose 2B γ β= − . 
The useful role of the reaction diffusion system (12) has been noted several 

times in this section. Typically in physics, chemistry, or biology, for example, a 
more general system of the form 

( )
( )

, 0

, 0
t r xx

t s xx

r d r F r s

s d s G r s

− + =

− + =
                        (52) 

is encountered, where ,r sd d  are diffusion constants for ,r s  and where  
( ) ( ), , ,F u v G u v  are growth and interaction functions. r and s could be concen-

tration functions for two chemicals, or prey and predator functions in a two-species 
ecological model, for example. 

3. Further Remarks on the Case 1 0=α  

It was pointed out in Section 2.1 that various formulas presented in this paper 
(and in the paper [10]) simplify drastically in case 1 0α = ; in general 1 0α ≥ . 
Here we find in this case, in particular, a concrete expression for the potential 
function ( ),S x t  (and thus also for the function ( ),x tφ ) appearing in some of 
these formulas. 

For 1 0α = , ( ) 0,u x t u vβ= = , by (9) and (10), is a constant function: 0C = . 
By (11), 2xS vβ= − , def2e 2Rγ ρ= − , and  

  
2

2 1 1
2 2 2

xx x
xx xR R

ρ ρ
ρ

  
+ = −  

   
                    (53) 

by straight-forward differentiation of R. By Maple, for example, the differentia-
tion of ρ  on the r.h.s. of (53) can be carried out. For ρ  given by (10) and 

( )defw a x tβ= − , the result is that this r.h.s. is ( )2 2 22 , 1a sn wκ κ −  , or  
( )2 2 22 , 2a dn w κ κ− + −    by (29). As we have chosen δ  in (1) to be 2 1β + , 

we see that the second fluid equation in (4) therefore gives 

( )

( )

2 2
2 2 2 2

2 2
2 2 2

0 2 , 2
4 2

2
4

t

t

vS a dn w

vS a

β ρβ κ κ

ββ κ

 = − − + − − − 

= − − −

            (54) 

since ( )2 2 22 2 ,a dn wρ β κ=  by (10), for 1 0α = . That is, ( ),tS x t  is the con-
stant function ( )2 2 2 2 22 4a vβ κ β− + , or  

( ) ( ) ( )
2 2

2 2 2, 2
4
vS x t a t f xββ κ

 
= − + + 
 

,              (55) 

for a function of integration ( )f x . Using again that 2xS vβ= − , we see that 
( ) ( ) 02 2f x v f x vx cβ β′ = − ⇒ = − + , for some constant 0c . Thus, in the end, 

for 1 0α =  we can choose the potential function ( ),S x t  and the associated 
function ( ),x tφ  in (13) to be given by  

( ) ( )

( ) ( ) ( )

2
2 2 2

0

2
def 2 2 0

, 2
4 2

, , 2
4 2

,v vxS x t a t c

cv vxx t S x t a t

ββ κ

φ β β κ
β

 
= − + − + 

 
 

= = − + − + 
 

         (56) 

https://doi.org/10.4236/jmp.2020.116054


J. D’Ambroise, F. L. Williams 
 

 

DOI: 10.4236/jmp.2020.116054 896 Journal of Modern Physics 
 

for a constant 0c . 
These expressions for ( ),S x t  and ( ),x tφ  can be plugged into formulas 

(14), (15), and (51), for example—taking 1 0α =  there, to further explicate the 
solutions , , ,r s Aψ + ; keep in mind the assumption 0γ < : 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )
( )( )

( )

,

,

,

2 2 2

2, , e
2

2, , e
2

2, , e
2

4 ,
, log 2 ,

2

x t

x t

iS x t

ar x t dn a x vt

as x t dn a x vt

ax t dn a x vt

a dn a x vt
A x t x t

φ

φ

β κ
γ
β κ
γ
βψ κ
γ

β κ
φ

γ

−

−

+

= −
−

−
= −

−

= −
−

  −  = +
 − 

         (57) 

for ( ) ( ), , ,x t S x tφ  given in (56). We also have the formulas for ( ),x tσ  and 
( ),v x t±  in (35) in case 1 0α = . In (57), 2 2 2 Bβ γ− = , by (13). 

Some concluding remarks about the case 1 0α =  pertain to the conservation 
laws (16) and (17). These laws imply that rs and ( )2 2x xr s B rs+  are conserved 
quantities that give rise to constants of motion 

( )def def 2d , 2 d .x xI rs x J r s B rs x
∞ ∞

−∞ −∞
 = = + ∫ ∫                (58) 

In [16], for example, where 1 0, 1α κ= =  (and 1β = ), the mass defM I= −  
and energy def 2E J=  constants, in particular, are computed, where the notation 

,e e+ −  there (as in [5] [6] [11]) corresponds to ,r s  here; also – 4Λ  there 
corresponds to def 2B γ β= −  in (13) here. We state the results in terms of our 
notation, but we also express M and E in terms of the Gurevich-Krylov solution 
( ),x tρ  in (10). First note that by (10), (29), (33), (36)  

( )
( )( ) ( )( )

( )( )

( )( ) ( )( )

22 3 2 2

2 2 2

2
2 2

8 tanh sech
,

4 sech

4 tanh 4 ,
4

x
a a x vt a x vt

x t
a a x vt

va a x vt v v x t

βρ
β

ρ β

+ −

 − − − 
=    −    

 
= − = + 

 

     (59) 

for 1 0, 1α κ= = . Then by (18), (22), (27), (59) x xr s rv sv v vσ+ − + −= = − ,  
( )2 2rs σ= ⇒  

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2

2 , , ,
2

, ,1 , .
2 4 4 2 2

x x

x

Br s B rs x t x t v v x t

x t x tv Bx t

σ σ

ρ β ρ βρ
β

γ ρ γ

+ −  + = − −    
  

= − −   −   

         (60) 

The result is that  

( )( ) ( )

( ) ( )

2
def def

def 2
2

, 4, d d ,
2

2 , d
2x x

x t aM rs x t x x

E r s rs x t x

ρ β β
γ γ

γ
β

∞ ∞

−∞ −∞

∞

−∞

= − = =
− −

 
= − 

 

∫ ∫

∫
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( ) ( ) ( )22 2

2

3 2 2 2

, ,12 , d
2 4 4 8

8 2 ,
3

xx t x tvx t x

a a v

ρ β ρ βρ
β

γ ρ γβ

β β
γ γ

∞

−∞

   = − −  −   

= − −

∫
    (61) 

using that  

( )( ) ( )( )

( ) ( )( )

2 4

2 2

2 4sech d , sech d ,
3

2tanh sech d ,
3

a x vt x a x vt x
a a

a x vt x
a

∞ ∞

−∞ −∞

∞

−∞

− = − =

− =

∫ ∫

∫
       (62) 

where the latter integral formula in (62) is used to compute the integration of 

x xr s  in the definition of E. Namely, as we have just noted, x xr s v vσ + −= −  so by 
(36) again 

( )( ) ( )( ) ( )( )
2 2 2

2 2 24, sech tanh
2 4x x
a vr s x t a x vt a a x vtβ
γ

 
= − − − 

 
.  (63) 

4. Plasma Metric and Plasma Dilaton Fields 

An exact connection of the cold plasma system (5) to a two-dimensional Jack-
iw-Teitelboim (J-T) black hole was investigated in [10], with the resonance NLS 
Equation (1) serving as a bridge. An explicit change of variables was set up 
which transformed a plasma metric associated with the system (5) to a J-T me-
tric. This transformation, moreover, provided for a direct calculation of a plasma 
dilaton field, which with the plasma metric and an appropriate cosmological 
constant constitutes a solution of the J-T gravitational field equations [17] [18]. 
The results of [10] represent an extension to the non-trivial case 1 0α ≠  of re-
sults in [12]—a case discussed in Sections 2 and 3 here. As indicated in the in-
troduction, two more plasma dilaton fields will be computed in this section, to 
obtain a set of three linearly independent ones altogether. 

The J-T gravitational field equations are a system of equations 

  
( ) 2 0

0, 1 , 2i j ij

R g
g i j

+ Λ =

∇ ∇ Φ +ΛΦ = ≤ ≤
                  (64) 

of which a solution consists of a triple ( ), ,g Φ Λ  where g is a pseudo Rieman-
nian metric with local components ijg , ( )R g  is its Ricci scalar curvature, Φ  
is a real-valued function of the local coordinates ( )1 2,x x  in which g is ex-
pressed (called a dilaton field), Λ  is a cosmological constant (and therefore the 
scalar curvature is a constant), and where, locally, the Hessian i j∇ ∇  is given by 

  
2

2
1

k
i j ijk

i j kx x x=

∂ Φ ∂Φ
∇ ∇ Φ = − Γ

∂ ∂ ∂∑                   (65) 

for the Christoffel symbols k
ijΓ  of g, of the second kind. 

For example, the J-T (Lorentzian) black hole solution of the system (64) is 
given in the coordinates ( ) ( )1 2, ,x x rτ=  by g  with 
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( )

( )

2
def2 2 2 2

2 2

def def 2

dd d ,

, ,

rs m r M
m r M

r mr m

τ

τ

= − − +
−

Φ = Λ = −

               (66) 

for fixed real numbers ,m M , 0M >  being a black hole mass parameter. Here 
( ) 22R g m= , and we point out that the sign convention for scalar curvature that 

we adopt here (and in [10] [12]) is spelled out on page 182 of [19], for example. 
Thus, for example, our ( )R g  is the negative of that employed in [17] [18]. We 
will also write bhg  for the J-T metric given in (66).  

As a second example, we consider the plasma metric plasmag g=  constructed 
in [10] by way of the G-K solution in (10) of the MAS (5). Here the local coor-
dinates ( ) ( )1 2, ,x x τ ρ= , with the notation ρ  here not to be confused with the 
same notation for the solution ρ  in (10): 

( )
( ) ( )( )

( ) ( )( ) ( )

( )( )
( )

4 4 4
def2 2 2 2 2 2

2

2 4 2
def 2 2 2 2 2

4 2 4 2 2 2 2 2
1 1

2 2 2
1

4: d d , d

4 , d ,
2 8

16 ,

8 48 4 ,

,ag s A sn cn dn
A

a vA a sn cn n

a sn cn C v vC
a dn

β κρ τ ρ κ ρ
γ ρ

κρ β ρ κ ρ κ
γ γ

α β κ ρ κ β α
γ γβγ α β ρ κ

 
= −  

  
 

= + − 

+
+ + −

 + 

    (67) 

where (again) C is given (9). Obviously this metric is more complicated in 
structure. For 1 0α =  (so that again 0C = ) and for the choice 1 2γ = −  (as in 
[5] [6]) it reduces to the metric (6) in [12], where the notation b there corres-
ponds to 2β  here. Some remarks herewith are offered to provide some clarifi-
cation regarding the “raisons d’être” of the plasma metric formula (67).  

The classical continuous Heisenberg model realized on a single sheeted 
hyperboloid 

  ( ) ( ) ( )2 2 2
1 2 3, , , 1S x t S x t S x t− + − = −                 (68) 

with equations of motion 

  [ ] def 3 1 2

1 2 3

1 , ,
2t xx

S S S
i
S S Si

− 
= =  + − 

                 (69) 

is equipped with a canonical metric 
2 2 2

11 12 22
22 2

def 31 2
11

22 2
def 31 2

22

def 3 31 1 2 2
12

: d d 2 d d d

 

 

Hg s g t g t x g x

SS Sg
t t t

SS Sg
x x x

S SS S S Sg
t x t x t x

= + +

∂∂ ∂     = − + −     ∂ ∂ ∂     

∂∂ ∂     = − + −     ∂ ∂ ∂     
∂ ∂∂ ∂ ∂ ∂

= − + −
∂ ∂ ∂ ∂ ∂ ∂

                (70) 

of constant scalar curvature ( ) 2HR g = . The bracket in (69) is just the commu-
tator [ ] def

1 2 1 2 2 1,M M MM M M= −  of two matrices 1M  and 2M , and the ijg  
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in (70) are simply Minkowski inner product expressions:  
def

1 1 2 2 3 3,X Y x y x y x y= − + −  for ( )1 2 3, ,X x x x= , ( ) 3
1 2 3, ,Y y y y= ∈ .  

On the other hand, one can construct Lax pairs ( ) ( )( )0 1,J Jλ λ  for this Hei-
senberg model, and Lax pairs ( ) ( )( )0 1,u uλ λ  for the reaction diffusion system 
(12), and establish a gauge equivalence of these two nonlinear systems [16]. 
More precisely, in our specific setup, 

  

( ) ( )

( ) ( )

2
def def

0 1

2
def def

0 12

def def

,
8 4 4

48 2
,

42 8

, ,
2 2

x

x

x

i iJ J

srs s s
u u

rr r rs

B Br r s s

λ λ λλ λ

λλ λ
λ λ

λλ λ

= + =

 − − +  
= =   −+ − +   

= =


  


  

 

 


      (71) 

for a (complex) spectral parameter λ . The equations of motion assertion (69) is 
equivalent to the assertion that ( ) ( )( )0 1,J Jλ λ  satisfies the zero curvature con-
dition (zcc) 

  ( ) ( ) ( ) ( )1 0 0 1  , 0.t xJ J J Jλ λ λ λ− + =                  (72) 

Similarly, a pair of functions ( ) ( )( ), , ,r x t s x t  is a solution of the RDS (12) if 
and only if ( ) ( )( )0 1,u uλ λ  satisfies the zcc 

  ( ) ( ) ( ) ( )1 0 0 1  , 0.t xu u u uλ λ λ λ− + =                  (73) 

Gauge equivalence means that for some ( )2,M GL∈  , 

  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0 1 1

def 1 1
0 0

def 1 1
1 1

, ,

,

,

M M

M
t

M
x

u J u J

u Mu M M M

u Mu M M M

λ λ λ λ

λ λ

λ λ

− −

− −

= =

= −

= −

                 (74) 

which in turn means that one can show that the Heisenberg metric Hg  in (70) 
can be expressed in terms of r and s. The result (a key result) is that  

( ) ( )11 12 222 , , 2 .x x x xg B r s g B r s rs g Brs= − = − =            (75) 

Since the scalar curvature ( )HR g  of Hg  has the value 2, as we have noted, 
it is convenient to work with the metric 2Hg B  with scalar curvature  

def 24 4B γ β= − . Now rs σ= −  by definition (18), so by (27) 

( ) ( ) ( )( ) ( )( )def 2 2 2
1222 , , 4 , 2Hg B x t rs x t a dn a x vtα β κ γ = = + −  .    (76) 

By formulas (34) then 

  ( )( ) ( )( )
,

2 ,
Cv v x t v
rs x t

β
γ

+ − −
− = − ,                 (77) 

and by definition (22), ( ) 2x xr s rs v rs v sr v v rs C vrsγβ+ − + −− = − = − = − −  by 
(77). That is, by (75), (76) 

( ) ( ) ( )( )2 2 2
1122 , 4 ,

4 4H
C vg B x t a dn a x vt
B

α β κ
γ γ

 = − − + −  .     (78) 
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The computation of ( ) def

112H x xg B r s= −  (by (75)) is more involved. By (18) 
and (22) again, x xr s v vσ + −− = , which can be computed by (27) and (34) again. 
The end result is that  

( ) ( ) ( )( ) ( )( )

( ) ( )( )
( )( )

2 4 2
2 2 2 2 2

11

4 2 4 2 2 2 2 2
1 1

2 2 2
1

2 4 , ,
2 8

16 ,
.

8 48 4 ,

H
a vg B a sn cn a x vt dn a x vt

a sn cn a x vt C v vC
a dn a x vt

κβ κ κ
γ γ

α β κ κ β α
γ γβγ α β κ

 
= − + − − 

− +
+ + +

 + − 

(79) 

In the very specialized case of 1 0, 1α κ= = , ( )112Hg B−  is given exactly by 
Equation (63). Formulas (76), (78), (79) (for C given in (9)), which give the 
structure of the metric 2Hg B  were also obtained in [10], by a different me-
thod. This metric is non-diagonal: ( ) ( )12 212 2 0H Hg B g B= ≠ . In Section 3 of 
[10] a suitable change of variables was constructed by which 2Hg B  was 
transformed exactly to the plasma metric g in (67), which is diagonal. For this, 

2v  is required to be sufficiently large: 

2 2 44v a κ>  and 
2

2
2 2
1

4Cv
α β

≥  for 1 0α > ,             (80) 

with the single condition 

  2 2 44v a κ>  for 1 0α = .                     (81) 

A clarification regarding how the plasma metric plasmag  in (67) arises is now 
established. Also ( ) ( ) 22 4plasma HR g R g B γ β= = − , as we have seen. 

We move on now to the main result in [10], which will allow, in particular, for 
a direct computation of plasma dilaton fields and thus for solutions of the field 
Equations (64). That main result states that the change of variables  
( ) ( )( ), , rτ ρ τ ψ ρ→ =  for 

( ) ( ) ( ) ( )2 22 2 2 2 2
1def 2,

2
2 8

va dn a β αβ ρ κ βψ ρ κ
γ γ γ

−
= + − −

−
         (82) 

transforms the cold plasma metric plasmag  in (67) precisely to the J-T black hole 
metric bhg  in (66), for m and M there given by  

( )1 2
def

2 2 2 4 2 4 2 2 2 2 2 4
def

2 2 2 2 2
1 1 1 1

2

2
,

4 2 2 4 32
3 3

.
16 4 232

m

vC a v a a v vM

v a a

γ
β

β β κ β κ β
γβ γ γ γ γ
α α α κ α
γ γ γγβ

−
= +

−
= + − − −

+ + − +

          (83) 

Another (more compact) expression is given in (99) for the black hole mass 
parameter M here, which is indeed positive for  

( )2 2 2 21 1 1
2

6 3
8 2 , 2

8
v a v a

C
α α α

κ β
ββ

 
> − + ≥ + 

 
,           (84) 

which we assume. Of course the second condition (84) is automatic for 1 0α =  
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and the first condition, in fact the condition ( )2 2 28 2v a κ> − , implies the first 
condition 2 2 44v a κ>  in (80). 

Going back to the earlier equations ( ) 22bhR g m=  and ( ) 24plasmaR g γ β= − , 
we conclude from the equality of these scalar curvatures that m must be given by 
(83), and moreover that by the first field equation in (64) the cosmological con-
stant Λ  must be given by 

  
( ) 2

2

2
2
plasmaR g

mγ
β

−
Λ = = = − .                    (85) 

0γ <  throughout this paper, and we see that the cosmological constant is 
negative. The dilaton field ( )1

plasmaΦ  for the second set of equations in (64), for 
the plasma metric, can be derived immediately from the J-T dilaton field 

( ), r mrτΦ =  in (66): 

( ) ( ) ( )( ) ( )
( ) ( )

def def1

2 2 2 2 22 2
def 2 1

, ,

,
2

2 8

plasma m

a dn vam

τ ρ τ ψ ρ ψ ρ

β ρ κ β αβ κ
γ γ γ

Φ = Φ =

 −
= + − − 

−  

    (86) 

as in [10]. There are, however, two other J-T dilaton fields ( ) ( ), , 2,3j r jτΦ = , 
that are also solutions of the second set of equations in (64) for the metric bhg , 
and therefore by way of the transformation Ψ  in (82) there are in addition 
plasma dilaton fields ( ) ( ), , 2,3j

plasma jτ ρΦ = , for the plasma metric which were 
not computed in [10], which we compute here.  

In fact, one can take 

  
( ) ( ) ( )
( ) ( ) ( )

def2 2 2

def3 2 2

, sinh ,

, cosh

r m r M m M

r m r M m M

τ τ

τ τ

Φ = −

Φ = −
               (87) 

so that (as in (86)) 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

def def 22 2 2

def def 23 3 2

, , sinh ,

, , cosh

plasma

plasma

m M m M

m M m M

τ ρ τ ψ ρ ψ ρ τ

τ ρ τ ψ ρ ψ ρ τ

Φ = Φ = −

Φ = Φ = −
    (88) 

which means that we need to find expressions for ( )22m Mψ ρ −  and m M , 
given the definitions (82), (83). For convenience, write for now , ,sn cn dn  for 

( ) ( ) ( ), , , , ,sn cn dnρ κ ρ κ ρ κ . Let 

( ) def 4 4 4 4 2 2 2 4 2 2 4 4 2

4 4 4 4 4 2

16 16 4 16

16 32

w w a a dn a v dn a

a dn a dn

ρ β β κ β β κ

β β

= = + + −

+ −
    (89) 

Then, as is easily checked, w has factorization ( )2 416w a Bβ ρ=  for 

( )
( )2 2 2

def 2 2 2 2 2 2
2

1
2

4

a vB dn a a a dn
dn

κ
ρ κ

 −
 = + − + +
  

,        (90) 

which, in turn, can be written as 
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  ( )
2 2 2

2 2 4
24

v sn cnB dn a
dn

ρ κ
 

= − 
 

.                 (91) 

The argument in [12], for example, leading up to Equation (55) there verifies 
this assertion. Therefore 

  
2 2 2

2 4 2 2 4
216

4
v sn cnw a dn a

dn
β κ

 
= − 

 
.               (92) 

On the other hand, given the definitions (82), (83), one has by Maple, for ex-
ample, that 

( )
( )

22

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 18 4 4 2 8

m M

w v a a a dn v C

ψ ρ

α α β α β α β κ α β β γβ

−

 = + + + − − − − 
(93) 

for C (as usual) in (9). Using that 2 2 21dn snκ− = −  and 2 21 sn cn− =  (by (29)), 
one can write 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 18 4 4 4 1a a a dn a cnα β α β κ α β α β κ− − = −   . In the 
end, 

( )

( ) ( )( )( ){ } ( )

22

2 2 2 2 2 2
1 1 4 1 , 2 8

m M

w v a cn v C

ψ ρ

ρ α α β κ ρ κ β γβ

−

 = + + + − − −  

  (94) 

for  

( ) ( ) ( )

( ) ( )( )( )

2 2 2
2 4 2 2 4

2

1def 2 2 2 2
1 2

221 2 3 1 1 1

16 , , ,
4

4 4 .1

v sn cnw w a dn a
dn

C a a

ρ β ρ κ κ ρ κ

α α α α β κ α β α

 
= = − 

 

 = + = − + + 

      (95) 

Next, note that in (83)  

( )

2 2 2 4 2 4 2 2 2 2 2 4

2 2 2 4 2
2 4 4

2 2 4 32

2
2 2 16 2

a v a a v v

a v va A

β β κ β κ β
γ γ γ γ

β βκ κ
γ γ

− − −

 − −
= − + + =  − 

            (96) 

for the same constant A in definition (11) of [12]: 

  ( )
2 2 4

def 2 4 42
2 16
a v vA aκ κ= − − + + .                  (97) 

Also in (83) 

( )2 22 2 2 2 2 2 2
1 1 1 1 1 1

2 2 4 2

23 3 33  .
16 4 2 232 8 16 2

av a a v κα α α κ α α β α
γ γ γ γγβ β β β

 −
 + − + = − − −

−   
 (98) 

It follows that M can also be expressed as  

( )2 22 2
1

13 2 4 2

233 
2 2 8 16 2

avC vM A
καβ α

γ β β β β

  −
  = + − + +
  −   

,         (99) 

where def2 22 1 mβ γ− = . Then 
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( )2 22
1

13 2 4

2

2

1
233 

2 8 16 2

avC vm M A
κα

α
β β β β

  −
  = + − + +
  

  
        (100) 

for C and A in (95) and (97), respectfully. In summary, the formulas for  
( )22m Mψ ρ −  and m M  in (94) and (100) provide for the computation of 

the plasma dilaton fields ( ) ( ), , 2,3j
plasma jτ ρΦ = , in (88) for the plasma metric 

plasmag  in (67).  
As usual, all formulas simplify considerably in case 1 0α = : 

( ) ( ) ( ) ( )

( )

2 4 2 2 2
def22 2 2 4

2 2 2

2 2 4
de

1 2
f 2 4 4

16 , , ,
48 8

1
,2

2 6

w a v sn cnm M dn a
dn

a v vm M A a

ρ βψ ρ ρ κ κ ρ κ
γβ γβ

κ κ

 
− = = − − −  

 −
= = − + + 

 

(101) 

by (94), (95), (97), and (100), which gives 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
1 2 2 2 2

2 2 2
2 2 4

2

2 2 2
3 4

1 2

2
2

1 2

, 2 , 2 ,
2 4

2, , , sinh ,
4

2, , , cosh .
4

plasma

plasma

plasma

m va dn a

v sn cna dn a A
dn

v sn cna dn a A
dn

βτ ρ ρ κ κ
γ

τ ρ β ρ κ κ ρ κ τ
γ

τ ρ β ρ κ κ ρ κ τ
γ

 
Φ = − − + −  

 
Φ = − −  

 
Φ = − −  

(102) 

Apart from the constant factors 2 2 1m mβ γ− =  and ( )1 22 aγ β− , the di-
laton fields in (102) (obtained for 1 0α = ) are exactly the ones computed in [12], 
by a different method; see Equation (10) and Equation (11) there. 

5. A Plane Wave Solution of the Magnetoacoustic System 

The traveling wave solution ( ),uρ  in (10) of the magnetoacoustic system (5) 
has been of central interest, of course. Equation (15), with 2xS u= −  as in (11), 
relates this solution to the solution ψ  of the resonance NLS equation (1). 
There is another instance, or another sense, in which solutions of (5) and (1) are 
related, of which some brief remarks are added in this section. 

The bond between the system (5) and Equation (1) is illustrated further in 
[20], for example, where it is shown that they share a dispersion relation. More 
precisely, in place of the traveling wave solution ( ),uρ  in (10), consider a 
plane wave solution ( ),uρ  of (5) of the form 

( ) ( )

( ) ( )

def
0 1

def
2

, e

, e

i kx t

i kx t

x t A

u x t A

ω

ω

ρ ρ −

−

= +

=
                    (103) 

for constants 0 1 20, ,A Aρ ≠ , wave frequency ω , and wave number k. A proof of 
the dispersion relation 

  
2 2

2 2 2 4 2
0 0

0

1 kk k kβω ρ ρ β
ρ

 
= − = − 

 
               (104) 
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for the system (5) is given in [20]. There it is also shown that this dispersion re-
lation coincides exactly with the dispersion relation for the RNLS Equation (1), 
for a linearization of the latter equation about the ground state (condensate) so-
lution 

  ( )
2
0def

0 0 0, e ,i a tx t a aγψ = ∈                    (105) 

of it, for the choice 2
0 02 0aρ λ= − > . The dispersion relation for Equation (1) is 

stated (without proof) in [6], for 1 2γ = − .  

6. Conclusions 

The focal points of interest of this paper have been the nonlinear system (5), 
which describes the propagation of magnetoacoustic waves in a cold plasma in 
the presence of a transverse magnetic field, the particular traveling wave solution 
( ),uρ  of this system given by Gurevich-Krylov in (10), and the construction of 
new solutions of other nonlinear systems—elliptic function solutions that we 
have in fact expressed in terms of the solution ( ),uρ . These other nonlinear 
systems considered were that of a Madelung fluid, a reaction diffusion system 
(which played a distinct, unifying role throughout the paper), systems of Broer-Kaup, 
Boussinesq, Hamilton-Jacobi-Bellman, and the Jackiw-Teitelboim system of gra-
vitational field equations. An elliptic function solution of the resonance nonli-
near Schrödinger Equation (1) is also expressed in terms of the solution ( ),uρ  
in Equation (11) and Equation (15).  

Regarding the gravitational field equations (see (64)), in particular, some 
black hole solutions ( ( ), , 2j

plasma plasmag BΦ Λ = − ) were presented where plasmag  is 
a pseudo-Riemannian metric (given in (67)) of constant Ricci scalar curvature 
4B ( def 2B γ β= −  for γ  and 2β  in (1) and (5)), the ( ) , 1, 2,3j

plasma jΦ =  are di-
laton fields (given by (86), (88), (94), (100), (102)), and Λ  is a (negative) cos-
mological constant. To obtain these solutions we used a fundamental result in 
[10] where an explicit change of variables was set up (which is given in defini-
tion (82) here) that transforms plasmag  precisely to the Jackiw-Teitelboim black 
hole metric bhg  in (66), for the values of m and M there given in (83). 

Brief remarks in Section 5 further narrate a nexus between the magnetoacous-
tic system (5) and the resonance NLS Equation (1)—this by way of the disper-
sion relation (104). 

The results presented here, generally speaking, provide for a non-trivial ex-
tension of a few selected results obtained in [11] [12], for example. On the other 
hand, as pointed out in Section 3, we have not considered an extension in the 
direction of two-soliton solutions of Broer-Kaup and Boussinesq systems, for 
example, as discussed in [11]; also see [5] [6] [16].  
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Abstract 
In our time, experimental physicists have obtained data on a very large num-
ber of phenomena and objects of the physical world. Very rarely there is a 
situation when theoretical physicists do not have enough experimental data to 
understand some known fundamental law of Nature. This situation arose al-
most a hundred years ago and sparked a discussion between A. Einstein and 
N. Bohr on the probabilistic nature of microcosm phenomena. From the time, it 
seemed that most physicists are inclined to believe that the proponents of a 
quantum explanation of the randomness of the phenomena of radioactive 
decay are right. Now this problem has been solved experimentally. The results 
of these measurements [1] show that A. Einstein and other proponents of de-
terminism were right. In most cases, theoretical models are based on some 
already existing experimental data and are intended to explain them. At the 
same time, in the twentieth century, among microscopic, well-mathematically 
based models, there were several that raise doubts about their correctness, 
since they cannot explain a number of other experimental data that can be at-
tributed to the fundamentally important properties of the studied objects [2] 
[3]. Therefore, the usual criterion for the correctness of the theory, which 
consists of its agreement with the measurement data, is ambiguous in this 
case. An additional criterion for the correctness of a microscopic theory can 
be formulated if it is assumed that the microscopic theory must be quantum 
one. The coefficients of quantum equations are world constants. Therefore, 
the solutions of these equations must be equalities made up of world con-
stants only. For this reason, a correct microscopic model must rely on equali-
ties consisting of world constants only. This criterion is shown to work suc-
cessfully for models of superfluidity and superconductivity, for models of a 
number of particles, and models of the star interior.  
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“A question that sometimes drives me hazy: am I or are the others crazy?...  
...Do you think it’s that easy? Yes, it’s simple. But absolutely not so”.  

A. Einstein. 

1. The Main Postulate of Natural Sciences 
1.1. General Consideration 

Einstein’s statements in the epigraph can be attributed to a number of theories 
created by physicists in the twentieth century. 

The twentieth century is a thing of the past. Now it is time to critically rethink 
some theories created by physicists during this period. 

The need for this reinterpretation arises from the fact that theoretical physic-
ists in the past century often are considered the most exciting and important 
task to build theoretical models for those phenomena and objects for which 
there was not yet enough experimental data collected for their unambiguous in-
terpretation. To create such theories, in addition to knowledge, they needed in-
tuition and a rich imagination. Therefore, the reliability of such models needs 
experimental confirmation, as required by the main principle of natural Science. 

1.2. Gilbert’s Postulate 

The postulate, which eventually became the main principle of the natural Sciences, 
was formulated more than 400 years ago by William Gilbert (1544-1603) [4]. 

Its wording is simple: 
All theoretical constructions that claim to be scientific must be tested and 

confirmed experimentally. 
Today, Gilbert’s postulate has become a basic principle of physics and expe-

rimental physics has created a reliable foundation for a building of theoretical 
models. 

Only occasionally can occur ambiguous situation due to the fact that direct 
experiments do not indicate their decision. 

This was the reason for the long-term debate of physicists at the beginning of 
the last century, who discussed the stochastic nature of microcosm phenomena. 

1.3. The Nature of Beta-Decay 

The question of the probabilistic nature of radioactive decay arose immediately 
after the discovery of this phenomenon. 

Anti-determinists led by N. Bohr considered this decay as a purely random 
quantum mechanical tunneling phenomenon. 

But the proponents of determinism in physics did not agree with this explana-
tion. Einstein rejected the probabilistic interpretation of natural phenomena. In 
a letter to M. Born (1926) he wrote: “at any rate, I am convinced that the Lord 
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God does not roll the dice.” 
Still, the anti-determinists prevailed. The immaculate logic of the mathematics 

of the quantum-mechanical apparatus won over public opinion to their side. 
Currently, the physical community generally believes that radioactive decay is 

a truly random process. 
However, this problem should not be decided by voting. 
In accordance with the Gilbert’s principle, the solution is possible only on the 

basis of experimental data. 
Einstein and his associates (for example, N. Tesla) believed that the cause of 

radioactive decay could be the impact of the unknown at the time external caus-
es. 

The neutrino flux fits the description of such external causes very well. 
Therefore, it is natural that the assumption that the cause of beta-decay of ra-

dioactive nuclei may be their interaction with the neutrino flux, has been re-
peatedly expressed earlier by various researchers [5] [6] [7]. 

One can test this hypothesis by examining the reaction of a beta-source to 
changes in the neutrino flux incident on it. We can’t reduce the cosmic neutrino 
flux, but we can increase it by adding the neutrino flux from the nuclear reactor. 

The experiment used the IBR-2 pulse reactor (Dubna, Russsia) [1]. 
This reactor, after a short burst of activity, created a pulsed neutrino stream 

due to the beta-decay of fission fragments of nuclear fuel. Therefore, this neu-
trino flux decreased exponentially after each reactor flash. 

The experiment [1] investigated the effect of this flow on the decay rate in an 
isolated beta-source 63Ni. This source was located next to the reactor and was 
carefully protected from the effects of reactor neutrons and gamma-quanta. The 
isotope 63Ni is characterized by having a very small energy of beta-electrons. 

The result of these measurements is shown in Figure 1. 
The effect of the same stream of reactor neutrinos on the beta-source 90Sr/90Y, 

which has almost a couple of orders of magnitude more beta-electron energy, 
was significantly weaker (Figure 2) [8]. 

From the obtained measurement data, it can be concluded that, as suggested 
by A. Einstein, the phenomenon of beta-decay is not a random phenomenon: 
“quantum mechanics speaks volumes, but it doesn’t bring us any closer to solv-
ing the mystery of the Creator”.  

1.4. Clarifications of the Gilbert Principle 

The first clarification was formulated shortly after Gilbert. It boils down to the 
statement that a scientific theoretical model should not have fundamentally im-
measurable parameters inside it. 

To a certain extent, this was a response to medieval ideas about angels. The 
very existence of angels was not questioned by anyone at that time. But they 
have attributed the property of complete undetectability, i.e. a kind of confine-
ment, similar to that which was introduced into the theoretical concepts of 
non-observable quarks, which nevertheless have a well-defined fractional charge. 
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Figure 1. The result of the accumulating registration of beta-electrons emitted by 63Ni. 
Measurement time is 1 day. The level of amplitude discrimination close to the boundary 
energy was chosen experimentally. On abscissa: time in ms in the logarithmic scale [1]. 
 

 
Figure 2. The result of the accumulation of registered beta-electrons emitted by the 
90Sr/90Y source in the time interval between reactor flashes. The measurement time is 3 
days [8]. On the ordinate axis the account in relative units. 
 

Another important clarification is due to the fact that in our time, new theo-
retical constructions are created on the basis of any experimental facts and there-
fore automatically agree with them. 

However sometimes, they do not provide an explanation for a number of oth-
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er experimental data that can be attributed to the fundamentally important 
properties of the studied objects [2] [3]. 

Therefore, to test the correctness of some modern theoretical model, it is ne-
cessary to formulate an additional criterion that gives it an assessment from a 
fundamentally different point of view. 

In applied physics, phenomenological theories play an important role, but this 
is not about them. 

To understand the essence of physical objects and phenomena, it is necessary 
to develop fundamental theories that give them a microscopic theoretical de-
scription. 

Due to the fact that these objects of the microcosm obey quantum laws, mod-
ern microscopic theories must be formulated in terms of quantum mechanics 
and its rules. Therefore, some basic formulas in modern microscopic theories 
must be expressed in ratios of world constants only. 

There are no other solutions to the equations of quantum physics. 
As an example, we can consider the model of the Bohr atom, in which all the 

main parameters are expressed only by world constants. 
Of course, one can’t put an identity mark between microscopic theory and 

quantum mechanical one. There may be exceptions. So a microscopic theory of 
Brownian motion should not be quantum. However, in the vast majority of cas-
es, these two terms can be considered to coincide. 

Therefore the modern formulation of requirements for microscopic physical 
theory must take this into account: 

A correct microscopic theory must rely on basic relationships that consist 
of world constants only and are supported by measurement data. 

Based on this formula, we can analyze the theoretical models of the twentieth 
century in order to determine the correctness of their understanding of the na-
ture of the phenomena they study. 

2. Investigating the Correctness of Some Twentieth-Century  
Physical Models 

2.1. Superfluidity, Superconductivity and the Ordering of  
Zero-Point Oscillations 

Modern microscopic theories of superfluidity and superconductivity are pro-
vided with well-developed mathematical justifications. Their authors were re-
peatedly awarded Nobel prizes. However, these theories do not satisfy the Gil-
bert principle in its modern formulation, since they cannot be called quantum. 

They do not rely on equations made up only of world constants. 

2.1.1. Superfluidity 
In order to formulate a quantum mechanical model of superfluidity, it is neces-
sary to take into account the mechanism for ordering of zero point oscillations 
of helium atoms, first considered by F. London almost a hundred years ago [9]. 

F. London showed that between atoms in the ground state, there is an interac-
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tion of the type of Van-der-Waals forces, which has a quantum nature. Atoms in 
the ground state (at T = 0) make zero-point oscillations. He considered atoms as 
three-dimensional oscillating dipoles connected to each other by electromagnet-
ic interaction and called this interaction of atoms in the ground state as a disper-
sional one. 

If to take into account that different modes of zero-point oscillation are must 
order at different temperatures [10], we obtain an equality for the density of su-
perfluid helium: 

32
3

4 3 0.1443 g cm .
2 eB

M
ma
ααγ = ≅                    (1) 

where 
2

2B
e

a
m e

=
  is the Bohr radius, 

Mα  is the mass of He-4 nucleus, 

em  is the electron mass, 
2e
c

α =


 is the fine structure constant. 

This value is in good agreement with the measured density of liquid helium 
equal to 0.145 g/cm3 at T Tλ . 

Calculating the temperature at which helium goes into the superfluid state 
gives the equality [10]:  

 
2 61 2.1772 K,

3
M c

T
k

α
λ

α
= =                     (2) 

which agrees very well with the measured value of 2.1768 KTλ = . 

2.1.2. Superconductivity 
Consideration of zero-point oscillation in electron gas reveals the mode of these 
vibrations, in which attractive forces arise between the particles decreasing the 
ensemble energy. Comparing this energy decreasing of electron gas with its 
Fermi energy, we obtain the ratio of the transition temperature to the ordered 
superconducting state to the Fermi energy in the form of an equality that de-
pends on the world constants only:  

 3 69 5.5 10
2

c

F

T
T

α −π
= ×                        (3) 

Graphically, the dependence of the critical temperature cT  calculated in this 
way on its measured value for type I and II superconductors is shown in Figure 
3 [10]. 

2.2. Neutron and Its Excited States 

Particle physics proceeds from the assumption that the neutron consists of three 
fractional-charged quarks of the lower level. This makes it easy to explain the reac-
tion of converting a neutron into a proton. To do this, just one of the d-quarks of 
neutron must turn into a u-quark. 
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Figure 3. Comparison of calculated values of critical temperatures of superconductors 
with measurement data. Circles show the parameter values for type I superconductors, 
and squares show Tc for type II superconductors. The measured value of the critical tem-
perature of superconductors is deposited on the abscissus axis, and the calculated critical 
temperature is deposited on the ordinate axis [10]. 
 

Formulas consisting of world constants do not arise in this theory. 
According to another assumption, a neutron is a structure similar to a hydro-

gen atom, but with a relativistic electron [11] [12]. 
In this model, the process of converting neutron into proton does not require 

a complex explanation—it is a simple ionization. 
Since electron and proton are bound by electromagnetic forces, the stable state 

of neutron can be found from the minimum energy condition. 
This makes it possible to calculate the mass of the neutron, its magnetic mo-

ment, spin, and binding energy. 
The results of these estimates are quite satisfactory in agreement with the data 

of measurements of neutron properties [11] [12]. 
There is another important property of this model [14]. 
A hydrogen atom can be in a stable state with minimal energy or in one of the 

excited states. In the ground state of the Bohr atom the electron orbit fits one de 
Broglie wavelength. The excited states realize at 2, 3 or more de Broglie waves. 

By applying this condition to determine the excited states of neutron, we can 
calculate parameters characterizing these states. For example, calculated mag-
netic moments are shown in Table 1.  

All these calculations are based on simple equalities consisting of world con-
stants. 
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Table 1. Comparison of calculated values of magnetic moments with measured values. n 
denotes the number of de Broglie waves that fit in an electron orbit [14]. 

n calcµ  experimental data Ref. 

n = 1 −1.9367 
0

1.9130427 0.0000005nµ = − ±  [13] 

n = 2 −0.6247 0 0.613 0.004µ
Λ
= − ±  [13] 

n = 3 1.3779 0 1.61 0.08µ
ΣΛΣ
= ±  [13] 

 
It is generally assumed that there are two quantum values with length dimen-

sion. 
This is the Bohr radius  

 
2

9
2 5 10 cm,B

e

a
m e

−= ≈ ×
                          (4) 

It characterizes non-relativistic quantum systems. 
And Compton wavelength  

 102 2 2 10 cm,C B
e

a
m c

λ α −π π= = ≈ ×
                    (5) 

It arises in quantum theories. 
In accordance with the refined Gilbert principle, a new fundamental length 

appears in this model  

 
2

2 13
* 2 3 10 cm.B

e

eR a
m c

α −= = ≈ ×                     (6) 

This radius determines the characteristic sizes of neutron and hyperons in order 
of magnitude and is included in the relations associated with them. 

So the magnetic moment of neutron *

2n
eR

µ ≈  coincides with the nuclear 

boron magneton in order of magnitude. 
In this case, the theoretical and measured values of the deuteron binding 

energy differ by a numerical coefficient of the order of one. 
The nature of nuclear forces in this case is described by a simple and well-known 

quantum mechanical effect, and there is no need to introduce gluons and the 
strong force (at least for light nuclei) [11] [12]. 

2.3. Neutrinos and Mesons 

The characteristic feature of neutrino that distinguishes it from all other par-
ticles is its extremely weak interaction with matter. At the same time, neutri-
nos can carry away at the speed of light part of the energy released during be-
ta-decay. 

According to Thomson’s theory, radiation scattering occurs due to the fact 
that the electric field of the incident electromagnetic wave accelerates electrons 
in the substance of a diffuser. As there are no magnetic monopoles in nature, 
only a particle that does not carry an electric field in its wave can avoid such 
scattering, transferring all its energy due to the magnetic component of its wave. 
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But is this magnetic wave possible? 
It turns out that Maxwell’s equations have a such solution [7]. 
This solution is usually not considered, probably because it is not technically 

feasible. However, in nature it is realized in reactions with relativistic particles. 
A magnetic oscillation in the ether must occur as a result of a reaction in 

which a particle with a magnetic moment that did not exist before is born relati-
vistically quickly. 

Since beta-decay gives birth to a relativistic electron that carries the magnetic 
moment, according to Maxwell’s equations, a magnetic gamma-quantum must 
be born that takes away part of the reaction energy. This gamma-quantum was 
called as neutrino in the twentieth century. 

Since the excitation of a magnetic gamma-quantum is a purely electromag-
netic process, it cannot be expected that neutrino physics should rely on equali-
ties consisting only of world constants. 

However, as a consequence of the existence of neutrinos, the occurrence of 
such equalities is possible. 

So in the chain of reactions eπ µ± ± ±→ →  neutrino and two antineutrinos 
are born, which carry away some of the reaction energy. The fact that no other 
particles are born in these reactions allows us to estimate the masses of charged 
mesons, whose values are determined by the world constants (Table 2) [15]. 

3. Microscopic Models of the Star Interior and Measurement  
Data 

Until last decades of the last century, measurement data that could shed light on 
the physical properties of the interior of stars was very poor. In the sense of such 
data simply almost did not exist. 

But in recent decades, the technique of astronomical measurements has grown 
so much. The need data have appeared. On their basis, it has become possible to 
judge the state of the interior of stars. 

Then it became clear that it was bad with the theory of the star interior. This is 
the result of the historical development of this theory. 

One can assume that modern physics of stars appeared in the early twentieth 
century and an important milestone of this period was the work of R. Emden 
“Die Gaskugeln”. It laid the foundation for describing stars as gas balls characte-
rized by various equations of state. 

 
Table 2. Results of calculations of the charged meson masses [15]. 

meson 
measured 

meson mass 

measm  

calculated 
meson mass 

calcm  

calc meas

meas

m m
m
−  

π ±  273.13 em  2 274.1e
e

m m
α

=  33.5 10−×  

µ±  206.77 em  3 205.6
2

e
e

m m
α

=  35.8 10−− ×  
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According to R. Emden, the equation of state of the gas that forms stars, de-
termines their characteristics. It can be either a dwarf or a giant, or the main se-
quence star, etc. 

In the 30s of the last century, I. Langmuir discovered a new state of mat-
ter-plasma. Soon the largest astrophysicist of that time A. Edington realized that 
the interior of stars must consists from plasma. He built the standard model of a 
plasma star, much like the model of a gas ball. 

At the same time, the main difference between gas with any equation of state 
and a plasma fell out of the attention of the creators of new astrophysics. 

Plasma is an electrically polarized medium. It must have the effect of gravita-
tionally induced electric polarization (GIEP), which is absent in any gas. 

The GIEP effect plays an important role in establishing the equilibrium state 
inside stars and therefore it determines many properties of stars. 

3.1. Mass of Stars 

Taking into account the GIEP effect, the mass of stars is determined by the equali-
ty [16]:  

 
5

3 2 2

13 52 27.4 .
7

Ch ChM M
M

A A
Z Z

= =
   
   
   

π                   (7) 

where the constant ChM  is called the Chandrasekhar mass, consists of world 
constants only:  

 
3 2

2 ,Ch p
p

cM m
Gm

 
=   
 

                         (8) 

A and Z are the mass and charge numbers of the nuclei that make up the plasma 
of the star’s interior, G is gravitational constant, pm  is proton mass. 

This equality is consistent with the mass distribution of stars obtained from 
measurements [17] (Figure 4). 

3.2. Magnetic Moments of Cosmic Bodies 

The existence of electric polarization in the plasma of cosmic bodies, which oc-
curs under the influence of their own gravity, leads to the fact that due to their 
rotation, these bodies have magnetic moments. The ratio of magnetic moments 
thus induced µ  to their moments of rotation   turns out to be equal to [16]:  

 .
3
G
c

=
µ


                            (9) 

This equality agrees well with the measurement data (Figure 5).  

4. Conclusions 

At our time, the goal of theoretical researches is always consistent with the Gil-
bert principle, since they are aimed at explaining some real physical phenome-
non discovered by experimenters. 
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Figure 4. Mass distribution of double stars [17]. By the abscissa contains the logarithm of 
the mass in units of solar mass. Lines show separate values of A/Z from Equation (7).  
 

 
Figure 5: Measured values of magnetic moments space bodies depending on their mo-
ments of rotation. By ordinate, the logarithm of the magnetic moment (in Gs∙cm3) is 
shows, by the abscissa, the logarithm of the moment of rotation (in erg∙s) is shown. The 
dashed line is obtained using the least squares method. Solid line illustrates the theoretical 
dependence Equation (9). 
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These theories are always correlated with measurement data without prob-
lems—they come from some actual experimental data. 

Therefore, it is important to formulate the criterion of reliability of the theory 
so that it can be understood whether this theory has a scientific future. 

The improved Gilbert principle stated above seems to satisfy this purpose. In-
deed, the equations of quantum mechanics contain only world constants as coef-
ficients. Therefore, combinations containing only world constants can be a solu-
tion to these equations. 

Well, the fact that measurement data can confirm such decisions with amaz-
ing accuracy strengthens their role in theoretical physics. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Vasiliev, B.V. (2020) Journal of Modern Physics, 11, 608-615.  

https://doi.org/10.4236/jmp.2020.115040 

[2] Vasiliev, B.V. (2015) Journal of Pure and Applied Physics, 3, 1-10. 
http://www.rroij.com/open-access/on-the-disservice-of-theoretical-physics-work-o
n-the-bugs.php?aid=61047  

[3] Vasiliev, B.V. (2018) Journal of Modern Physics, 9, 2101-2124. 
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87652  
https://doi.org/10.4236/jmp.2018.912132 

[4] Gilbert, W. (1600) De magneto magneticisque corporibus et de magno magnete 
tellure. London. 

[5] Falkenberg, E.D. (2001) Apeiron, 8, 32-45. 
https://pdfs.semanticscholar.org/3a21/346203f836847e60016770d931b324a46be9.pdf  

[6] Jenkins, J.H., et al. (2008) Astroparticle Physics, 32, 42-46.  
https://arxiv.org/abs/0808.3283  
https://doi.org/10.1016/j.astropartphys.2009.05.004 

[7] Vasiliev, B.V. (2017) Journal of Modern Physics, 8, 338-348.  
https://doi.org/10.4236/jmp.2017.83023 
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=74443  

[8] Vasiliev, B.V. (2020) Journal of Modern Physics, 11, 91-96.  
https://doi.org/10.4236/jmp.2020.111005 
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=97775  

[9] London, F. (1937) Transactions of the Faraday Society, 33, 8.  
https://doi.org/10.1039/tf937330008b 

[10] Vasiliev, B.V. (2015) Superconductivity and Superfluidity. Science Publishing Group, 
New York.  
http://www.sciencepublishinggroup.com/book/B-978-1-940366-36-4.aspx  

[11] Vasiliev, B.V. (2017) SciFed Journal of Nuclear Science, 1, 2.   
https://doi.org/10.23959/sfjns-1000013 

[12] Vasiliev, B.V. (2015) Journal of Modern Physics, 6, 648-659.  
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=55921  

https://doi.org/10.4236/jmp.2020.116055
https://doi.org/10.4236/jmp.2020.115040
http://www.rroij.com/open-access/on-the-disservice-of-theoretical-physics-work-on-the-bugs.php?aid=61047
http://www.rroij.com/open-access/on-the-disservice-of-theoretical-physics-work-on-the-bugs.php?aid=61047
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87652
https://doi.org/10.4236/jmp.2018.912132
https://pdfs.semanticscholar.org/3a21/346203f836847e60016770d931b324a46be9.pdf
https://arxiv.org/abs/0808.3283
https://doi.org/10.1016/j.astropartphys.2009.05.004
https://doi.org/10.4236/jmp.2017.83023
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=74443
https://doi.org/10.4236/jmp.2020.111005
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=97775
https://doi.org/10.1039/tf937330008b
http://www.sciencepublishinggroup.com/book/B-978-1-940366-36-4.aspx
https://doi.org/10.23959/sfjns-1000013
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=55921


B. V. Vasiliev 
 

 

DOI: 10.4236/jmp.2020.116055 919 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2015.65071 

[13] Tanabashi, M., et al. (2018) Physical Review D, 98, Article ID: 030001.   

[14] Vasiliev, B.V. (2019) Journal of Modern Physics, 10, 1487-1497.  
https://www.scirp.org/journal/paperinformation.aspx?paperid=96226  
https://doi.org/10.4236/jmp.2019.1013098 

[15] Vasiliev, B.V. (2019) Journal of Modern Physics, 10, 1-7.  
http://www.scirp.org/pdf/JMP_2019011014591744.pdf  
https://doi.org/10.4236/jmp.2019.101001 

[16] Vasiliev, B.V. (2014) Universal Journal of Physics and Application, 2, 257-262.  

[17] Heintz, W.D. (1978) Double Stars. Geophysics & Astrophysics Monographs: No. 15. 
D. Reidel, Dordrecht. https://doi.org/10.1007/978-94-009-9836-0 

 
 

https://doi.org/10.4236/jmp.2020.116055
https://doi.org/10.4236/jmp.2015.65071
https://www.scirp.org/journal/paperinformation.aspx?paperid=96226
https://doi.org/10.4236/jmp.2019.1013098
http://www.scirp.org/pdf/JMP_2019011014591744.pdf
https://doi.org/10.4236/jmp.2019.101001
https://doi.org/10.1007/978-94-009-9836-0


Journal of Modern Physics, 2020, 11, 920-927 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2020.116056  Jun. 17, 2020 920 Journal of Modern Physics 
 

 
 
 

Quantization of Newton’s Gravity 

Mario C. Rocca1,2,3*, Angelo Plastino1,3,4 

1Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina 
2Departamento de Matemática, Universidad Nacional de La Plata, La Plata, Argentina 
3Consejo Nacional de Investigaciones Científicas y Tecnológicas (IFLP-CCT-CONICET), La Plata, Argentina 
4SThAR-EPFL, Lausanne, Switzerland 

 
 
 

Abstract 
In this work we will use a recently developed non relativistic (NR) quantiza-
tion methodology that successfully overcomes troubles with infinities that 
plague non-renormalizable quantum field theories (QFTs). The ensuing me-
thodology is here applied to Newton’s gravitation potential. We employ here 
the concomitant mathematical apparatus to formulate the NR QFT discussed 
in the well known classical text-book by Fetter and Walecka. We emphasize 
the fact that we speak of non relativistic QFT. This is so because we appeal to 
Newton’s gravitational potential, while in a relativistic QFT one does not em-
ploy potentials. Our main protagonist is the notion of propagator. This no-
tion is of the essence in non relativistic quantum field theory (NR-QFT). In-
deed, propagators are indispensable tools for both nuclear physics and con-
densed matter theory, among other disciplines. In the present work we deal 
with propagators for both fermions and bosons. 
 

Keywords 
Non-Relativistic Quantum Field Theory, Newton’s Gravity, Schwartz’  
Distributions 

 

1. Introduction 
1.1. Preliminaries 

In this work we will use a recently developed non relativistic quantization me-
thodology that successfully overcomes all troubles of non-renormalizable QFT 
[1]. The essential result of such procedures is that we can dispense with renor-
malization and counter-terms. The reader can consult the recent references [1] 
[2] [3] [4] [5]. The proofs given there are conclusive.  
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The above claims are validated because infinities in Feynman diagrams, that 
arise in the convolution of quantum propagators (QP), disappear if one 1) represents 
QP by ultra-hyperfinctions (a generalization of Schwartz’ distributions) and fol-
lows this technique with an appropriate Laurent expansion. The facts 1) and 2) 
above are clearly explained, with all kind of details, in [1] [2] [3] [4] [5]. Accor-
dingly, no more mathematical aspects of the procedure need to be given in this 
paper.  

The techniques of [1] [2] [3] [4] [5] are here applied to Newton’s gravitation 
potential. We strongly emphasize the fact that, since we will be inserting a gravi-
tational potential into a Schrödinger Equation (SE), the ensuing discussion is per 
force non-relativistic, and as such is the character of SE. 

1.2. Organizing Our Material 

In Section 2 we revisit Newton’s gravity. Section 3 is devoted to an explicit dis-
play of results belonging to [6], concerning non relativistic quantum field theory 
(NR-QFT). In Section 4 we apply the results of Sections 2 and 3 so as to obtain 
the N-QFT of Newton’s gravity. We discuss, as examples, the calculation of the 
self-energy for fermions and of the dressed propagator for both, bosons and 
fermions, to first order in perturbation theory. Some conclusions are drawn in 
Section 5. 

2. Newton’s Gravity 

As stated above, 1r−  is viewed here as  

 ( ) ( )1 11 1 10 0 .
2

r r i r i PV
r

− −−  = − + + =                  (2.1) 

Remember also that  

 ( ) 0.rδ =                             (2.2) 

We need now the Fourier transform of 1r− . We have  

 
( ) ( )

1 3

2 22
cos cos

0
0 0 0 0 0
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e d
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∞ ∞
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π

π

−
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∫

∫ ∫ ∫ ∫ ∫ ∫ 



    (2.3) 

Integrating over φ  one finds  

 ( ) ( )
2

cos cos

0
0 0 0

2

lim 2 e sin d d 2 e sin d d .i k i r i k i rr r r rθ θθ θ θ θ

π
π∞ ∞

π
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 
 + 
  

π π∫ ∫ ∫ ∫ 


      (2.4) 

Evaluating now for θ  we reach  

 
( )

( )
( )

( )0
0

e elim 2 d .
i k i r i k i r

r
i k i i k i

+ −∞

→

   −  
+ −  

π
 

∫
 

  
                 (2.5) 

Finally, dealing with the variable r we arrive at  
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( ) ( )2 20

1 12 lim .
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                     (2.6) 

As an example, consider now the anti transform of 24 k −π  and verify that it is 
1PV
r

.  
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One has  
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so that  
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or  

 1 1 1e d ,ikri PV PV k PV
r k r

∞
−

∞

=
π ∫                     (2.10) 

where we used (see Ref. [7])  

 ( )1 e d ,ikxPV k Sgn x
k i

∞
−

∞

π
=∫                     (2.11) 

together with ( ) 1Sgn r = , where ( )Sgn x  is the function sign of x. 

3. Materials Needed from Fetter and Walecka’s Book 
3.1. Self Energies 

The energy that a particle gains as the result of environment-modifications that 
it itself generates is called a self-energy Σ . This quantity denotes the contribu-
tion to the particle’s effective mass due to interactions particle-surrounding me-
dium (SM). Consider the particular (and common) condensed matter scenario: 
electrons moving in a material. Σ  represents there the potential felt by a given 
electron due to the SM’s interactions with it. Given that electrons repel each 
other, a moving electron does polarize the electrons in its vicinity, This, in turn, 
changes the potential of the moving electron fields. Such effects necessarily in-
volve self-energy. 

3.2. Fermion Dressed Propagators 

The dressed propagator is defined to be the two-point function to all orders of 
the perturbation expansion. It changes the bare mass to the physical mass. We 
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will use this notion here. For an accessible discussion of the concept we recom-
mend the book [8]. In Fetter and Walecka’s (FW) [6] one, this idea is compre-
hensively discussed for a fermion’s NR QFT. In the case of free fermions, FW 
defined the following (current) propagator  

 ( ) ( ) ( )0 , ; , 0 , , 0 .iG t t T t tαβ α βψ ψ + ′ ′ ′ ′=  x x x x              (3.1) 

One has  

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

0

3
3

, ; ,

e e d .
2

ki t t
F F

iG t t

t t k k t t k k k

αβ

αβ ωδ ′ ′⋅ − − −

′ ′

′ ′= Θ −
π

Θ − −Θ − Θ −  ∫ k x x

x x
 (3.2) 

Θ  is the Heaviside’s step function. We appeal now to the very well known rela-
tion  

 ( )
( )1 e d ,

2 0

i t t

t t
i i

ω

ω
ω

′− −∞

−∞

′Θ − = −
+π ∫                     (3.3) 

and find  

 

( )

( )
( ) ( ) ( ) ( )

0

3
3

, ; ,

e e d d .
0 02

ki t t F F

k k

iG t t

k k k k
k

i i

αβ

αβ ωδ
ω

ω ω ω ω

∞
′ ′⋅ − − −

−∞

′ ′

Θ − Θ − 
= − − + − −π  

∫ ∫ k x x

x x

     (3.4) 

Thus, the pertinent expression in momentum space reads  

 ( ) ( ) ( )0ˆ , ,
0 0

F F
F

k k

k k k k
G

i iαβ αβω δ
ω ω ω ω
Θ − Θ − 

= + − + − − 
k              (3.5) 

with  

 ( )1 1 ,
0 k

k k

PV i
i

δ ω ω
ω ω ω ω−

π= −
± −

                (3.6) 

where k = k  and 2 2k k mω =  We already stated above that PV  signifies 
‘‘principal value of a function’’. The system’s interaction’s Hamiltonian is de-
fined by a two-body FV  potential such that  

 ( ) ( ) ( ) ( )1 2 1 2 1 2 ,F FV V− = −x x x x 1 1                 (3.7) 

where 1  is the unity matrix. The dressed propagator here verifies  

 ˆ ˆ ,F FG Gαβ αβδ=                           (3.8) 

so that the dressed propagator becomes diagonal. Then, ( ( ) ( )0 0ˆ ˆ,F FG G kω ≡k )  

 ( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ ˆ ˆ ,F F F F FG k G k G k k G k= + Σ              (3.9) 

with ( )F kΣ  the self-energy. We can pass now to its perturbative expansion at 
first order  

 ( ) ( ) ( ) ( ) ( )
( )

( ) ( )1 1 3
3

1ˆ ˆ0 d ,
2

F F F
nk V V k k k′ ′ ′Σ ≡ Σ = − − Θ −

π
∫k k k





  (3.10) 

with n N V=  and  
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 ( ) ( ) 3ˆ e d .i
F FV V x− ⋅= ∫ k xk x                      (3.11) 

Consequently (up to first order),  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 0 0ˆ ˆ ˆ ˆ .F F F F FG k G k G k k G k= + Σ               (3.12) 

3.3. Bosons’ Dressed Propagators from FW’s Book 

For free bosons FW introduce the propagator in momentum space as  

 ( ) ( ) ( )0 , ; , 0 , , 0 .iG t t T t tφ φ+ ′ ′ ′ ′=  x x x x              (3.13) 

It reads  

 ( )0

0

1ˆ ,
0B

k

G k
k iω

=
− +

                      (3.14) 

with 2 2k k mω = . One has then  

 ( ) ( ) ( ) ( )4
0 0

ˆ ˆ2 , ,B BG k n i k k G kδ ′+π= −                (3.15) 

where the primed part refers to the noncondensate ( 0 0n N V= )  

 ( ) ( ) ( ) ( ) ( ) ( )4 10
0 0

ˆ ˆ ˆ2 , ,B B BG k n i k k G k G kδ ′= − + +π          (3.16) 

( ) ( ) ( ) ( ) ( ) ( )1 0 00ˆ ˆ ˆˆ ˆ0 ,B B B B B
n

G k G k V V G k
h

 ′ = + k            (3.17) 

and  

 ( ) ( ) 3ˆ e d .i
B BV V x− ⋅= ∫ k xk x                      (3.18) 

4. Non-Relativistic QFT of Newton’s Gravity  
4.1. Fermions 

We wish to calculate ( )1Σ  for the potential 
2Gm

r
− .  

 ( )
2

.F
GmV r
r

= −                          (4.1) 

One has  

 ( ) ( ) 3ˆ e d ,ik x
F FV k V x x⋅= ∫                       (4.2) 

and then  

 ( )
2

2

4ˆ ,F
GmV k
k
π

= −                         (4.3) 

with  

 ( )ˆ 0 0.FV =                            (4.4) 

Starting here, a father lengthy manipulation leads to  

 
( ) 22 2

2 3 2 2
24 d 8 ln ,

2
F F F

F

k k k k k kGm k Gm
k k k

′Θ −  − +′− = −  −′− 
π π


∫ k k

     (4.5) 

so that the self energy reads  
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 ( ) ( )
22 22

1 ln .
2

F F

F

k k k kGm
k k k

 − +
Σ =  − π

k


                 (4.6) 

Accordingly, one writes for the dressed propagator  

 ( ) ( ) ( ) ( )
22 22 21 0 0ˆ ˆ ˆln ,

2
F F

F F F
F

k k k kGmG k G k G k
k k k

 − +  = +    − π
        (4.7) 

noting that  

 ( ) ( ) ( ) ( )0 0ˆ ˆ , .
0 0

F F
F F

k k

k k k k
G k G

i i
ω

ω ω ω ω
Θ − Θ − 

= = + − + − − 
k             (4.8) 

We recall at this stage that, in Ref. [9], it was been proved that  

 ( ) ( ) ( )
( )

( ) ( )
11 ! .
2 !

n
m m n

n

mPV x x
m nx

δ δ +−
= ⋅

+
              (4.9) 

Then, using the result  

 ( )
1 1 1 ,n m n m

PV PV PV
x x x +

=                      (4.10) 

we reach  

 
( )2

1 1 1 ,
0 0 0k k k
i i iω ω ω ω ω ω

=
− − − − − −

                (4.11) 

so that  

 ( ) ( )
( )

( )
( )

20
2 2

ˆ , ,
0 0
F F

F
k k

k k k k
G

i i
ω

ω ω ω ω

 Θ − Θ −   = +   − + − − 
k             (4.12) 

If V →∞ , Fk →∞ , n finite, we find  

 3
2

1 d 0,k ′ =
′−

∫ k k
                        (4.13) 

so that  

 ( ) ( )1 0,F kΣ                             (4.14) 

and thus 
( ) ( ) ( )1 0ˆ ˆ .F FG k G k                          (4.15) 

4.2. Bosons’ Potential ( )BV r  

We calculate now the dressed propagator for 

( )
2

.B
GmV r
r

= −                          (4.16) 

Since  

 ( )
2

2

4ˆ ,B
GmV k
k
π

= −                         (4.17) 

one has  
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 ( )ˆ 0 0.BV =                          (4.18) 

For this result, we have used the relation of [7] concerning the regularization 
of integrals that depend upon a power of x. Thus, for the dressed propagator we 
find, up to first order  

 ( ) ( ) ( )
2 21 00

2

4ˆ ˆ .B B
n GmG k G k
h k

 ′ = −  
π                (4.19) 

We must proceed from here as we did for the fermion case to obtain  

 ( )
( )

20
2

0

1ˆ ,
0

B
k

G k
k iω

  =  − +
                 (4.20) 

and we obtain for the dressed propagator the relation  

 ( ) ( ) ( ) ( )
2 24 0 00

0 0 2

4ˆ ˆ ˆ2 , .B B B
n GmG k in k k G k G k
h k

δ π
π  = − + −       (4.21) 

5. Conclusions 

We have here applied a recently developed non relativistic quantization metho-
dology [2] [9] [10] [11] [12] to Newton’s gravitation potential. 
• We emphasize that our methodology successfully tackles all renormalization 

issues. We made full use ultra-hyperfunctions’ theory, in particular the re-
sults reported in [2].  

• With such tools we have been able to construct a non-relativistic quantum 
field theory (NR QFT) of Newton’s gravitation (NG). 

• This was done for pairs of fermions or bosons that interact between them-
selves via NG. 

• Our manipulations were based on the results of the classical book [6]. 
• As special examples, we have obtained the dressed propagators for both types 

of particles, up to first order in perturbation theory, and also the fermions’ 
self-energy. 

• The examples indicate that we have indeed constructed, both for fermions 
and bosons, a viable non-relativistic quantum field theory of gravitation. 

• Remark that we were here concerned only with Newton’s gravitation. 
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Abstract 
We present an ab-initio, self-consistent density functional theory (DFT) de-
scription of ground state electronic and related properties of hexagonal boron 
nitride (h-BN). We used a local density approximation (LDA) potential and 
the linear combination of atomic orbitals (LCAO) formalism. We rigorously 
implemented the Bagayoko, Zhao, and Williams (BZW) method, as enhanced 
by Ekuma and Franklin (BZW-EF). The method ensures a generalized minimiza-
tion of the energy that is far beyond what can be obtained with self-consistency 
iterations using a single basis set. The method leads to the ground state of the 
material, in a verifiable manner, without employing over-complete basis sets. 
We report the ground state band structure, band gap, total and partial densi-
ties of states, and electron and hole effective masses of hexagonal boron ni-
tride (h-BN). Our calculated, indirect band gap of 4.37 eV, obtained with 
room temperature experimental lattice constants of a = 2.504 Å and c = 6.661 
Å, is in agreement with the measured value of 4.3 eV. The valence band 
maximum is slightly to the left of the K point, while the conduction band 
minimum is at the M point. Our calculated, total width of the valence and to-
tal and partial densities of states are in agreement with corresponding, expe-
rimental findings. 
 

Keywords 
Density Functional Theory, Band Gap, Density and Partial Density of States, 
Electron and Hole Effective Masses 

 

1. Introduction 

The demand for compact ultraviolet laser devices has led many researchers to 
search for materials with band gaps larger than that of GaN (3.4 eV), a material 
presently utilized in the fabrication of high-power, blue-ray laser devices [1]. 
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Properties of hexagonal boron nitride (h-BN), with a graphite-like crystal struc-
ture, provide a basis for many applications. It is employed as a good electrical 
insulator, with excellent thermal conductivity, for crystal growth and molecular 
beam epitaxy. It has several applications in electronics and nuclear energy in-
dustries and serves as an excellent lubricant [2]. Recently, its outstanding cata-
lyst properties have attracted much attention, for potential applications in oxy-
gen reduction reactions [3] [4] [5]. Hexagonal boron nitride (h-BN) is a wide 
band gap material with high chemical and thermal stability. Despite the above 
attributes of h-BN, a survey of the literature shows a lack of consensus on the 
experimentally determined band gap of the material. Measured, direct and indi-
rect band gaps have been reported, with values ranging from 3.6 to 7.1 eV. Its 
electronic structure and band gap have been studied experimentally using x-ray 
photoemission [6] [7] [8] [9], optical absorption [10], UV absorption [11], opti-
cal reflectivity [12] [13], luminescence spectra [14] [15], photoconductivity [16] 
[17], and temperature dependence of the electrical resistivity [18]. The various 
experimentally measured band gaps are summarized in Table 1. From the con-
tent of the table, we infer a lack of consensus not only on the direct or indirect 
nature of the band gap, but also on its numerical value—notwithstanding some 
of the discrepancies may be due to differences in sample purity, thickness (for 
films) and measurement temperature.  

As shown in Table 2, the theoretical studies of h-BN disagree on the value of 
the band gap and particularly on the locations of the valence band maximum 
(VBM) and of the conduction band minimum (CBM), respectively. Specifically, 
the table shows that previous LDA and GGA calculations [22]-[32] led to seven 
(7) different pairs of VBM and CBM: M-H (1), H-M (5), K-M (2), M-K (1), H-K 
(1), Г-H (1) and Г-K (2), where the numbers between parentheses represent the 
respective frequencies of the concerned VBM-CBM pair. The two Green func-
tion and dressed Coulomb approximation (GW) calculations in the table found 
the gap to be from H to M. With an LDA potential, Ma et al. [23] employed the  
 
Table 1. Experimental values of the band gap (Eg) of h-BN, in eV. The results in this table 
are reportedly for bulk h-BN. We note that some authors believe the measured indirect 
band gap of 4.3 eV [9] [10] [11] best represents the true band gap of h-BN.  

Experimental method Eg (eV) 

X-ray photoemission spectra 3.6 [a], 3.85 [b] 

Optical and UV absorption 3.9 [c], 4.3 [d] 

Laser-induced fluorescence (LIF) 4.02 [e] 

Optical reflectivity spectra 4.5 [f], 5.2 [g] 

Luminescence optical spectra >5.5 [h], 5.89 [i], 5.95 [j] 

Photoconductivity, and absorption spectra 5.8 [k], 5.83 [l] 

Temperature dependence of electrical resistivity 7.1 [m] 

aRef. [6], bRef. [7] [8] [9], cRef. [10], dRef. [11] [12] [13], eRef. [14], fRef. [15], gRef. [16], hRef. [17], iRef. [18], 
jRef. [19], kRef. [20], lRef. [21], mRef. [22]. 
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Table 2. Illustrative, previously calculated values of the band gap (Eg) of h-BN, in eV. 
They include results from LDA, GGA, and GW calculations.  

Computational method Potentials Eg (eV) 

Linear Combination of Pseudoatomic 
Orbitals (LCPAO) 

LDA 3.7 (M-H) [a] 

FP-LAPW LDA 
3.9 (H-M) [b] 
4.3 (H-H) [b] 

Ab-initio Pseudopotential LDA 3.9 (K-M) [c] 

OLCAO LDA 4.07 (M-K) [d] 

Ultra soft Pseudopotential LDA 
4.1 (H-M) [e] 
4.5 (M-M) [e] 

FP-LAPW LDA 
4.0 (H-M) [f] 
4.5 (M-M) [f] 

FP-LAPW LDA 4.58 (H-K) [g] 

FP-LAPW PW91-GGA 4.53 (Γ-K) [g] 

FP-LAPW PBE-GGA 4.54 (Γ-K) [g] 

Projected-Augmented-Wave (PAW) LDA 4.02 (K-M) [h] 

PAW (VASP) LDA 4.21 (H-M) [i] 

PAW (VASP) GGA 4.39 (H-M) [i] 

PAW GGA 4.47 (K-M) [j] 

GW GGA 5.4 (H-M) [c] 

GW LDA 5.95 (K-M) [h] 

GW LDA 5.95 (H-M) [k] 

aRef. [23], bRef. [24], cRef. [25], dRef. [26], eRef. [27], fRef. [28], gRef. [29], hRef. [30], iRef. [31], jRef. [32], 
kRef. [33]. 

 
linear combination of pseudo-atomic-orbitals (PAO) method to calculate prop-
erties of h-BN. Their calculated, indirect band gap, from H to M, was 3.7 eV 
[23]. The calculated direct (H-H) and indirect (H-M) band gaps, obtained by 
using the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method, 
were respectively 4.3 eV and 3.9 eV [24]. The LDA pseudopotential calculations 
of Blasé et al. [25] resulted in an indirect (K-M) band gap of 3.9 eV while their 
GW quasiparticle calculations produced an indirect (H-M) band gap of 5.4 eV. 
Xu and Ching [26], using orthogonalized linear combination of atomic orbitals 
(OLCAO), found an indirect (K-M) band gap of 4.07 eV. The optimized ultra-soft 
(Vanderbilt-type) LDA pseudopotential calculations of Furthmüller et al. [27] 
predicted an indirect (H-M) band gap of 4.1 eV and a direct (M-M) gap of 4.5 
eV. Table 2 shows the above referenced results and several other theoretical 
findings [28]-[33].   

Clearly, this range of theoretical results for the band gap of h-BN, including 
the seven (7) different pairs of VBM-CBM, points to the need for further work. 
Additionally, and unlike the cases for most semiconductors, the experimental 
results in Table 1 also disagree. These discrepancies constitute a major motiva-
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tion for this work. This motivation is partly predicated on previous, theoretical 
results of our group, in agreement with corresponding experimental ones, for 
more than 30 semiconductors [34].  

2. Method and Computational Details 

We succinctly provide below the essential features of our computational ap-
proach. Extensive details on it are available in the literature [34]-[41]. As with 
most other calculations, we employed a density functional theory (DFT) poten-
tial and the linear combination of atomic orbitals (LCAO). Our specific DFT 
potential for this work is the local density approximation (LDA) one by Ceperley 
and Alder, with the parameterization of Vosko et al. [42] [43] [44] [45]. A major 
difference between our method and most others in the literature stems from our 
performance of a generalized minimization of the energy functional to attain the 
ground state of the system, without utilizing over-complete basis sets. The first 
[46] [47] [48] and the enhanced [49] [50] [51] versions of this generalized mi-
nimization of the energy are respectively expounded upon in the literature.  

As per the second DFT theorem, self-consistent iterations with a single basis 
set lead to a stationary solution among an infinite number of such solutions. 
This fact resides in the reality that the ground state charge density (i.e. basis set) 
is not à priori known, as far as we can determine. Consequently, the chances are 
extremely small for a calculation with a single basis set to lead to the ground 
state of the system or to avoid over-complete basis sets.  

We have described in previous publications a straightforward way to search 
for and to reach the ground state of the system. Beginning with a small basis set 
that is large enough to account for all the electrons in the system, we perform 
successive self-consistent calculations, where the basis set of a calculation, except 
for the first one, is that of the preceding calculation augmented with one orbital. 
The first and second versions of our method, known as BZW and BZW-EF me-
thod, differ as follows. For the first one, we add orbitals in the order of increas-
ing energy of the excited states they represent. In the second, we heed the “arbi-
trary variations” clause of the second DFT theorem and add orbitals so as to 
recognize the primacy of polarization orbitals (p, d, and f) over the spherical 
symmetry of s orbitals for valence electrons. Indeed, for diatomic and any other 
multi-atomic system, valence electrons do not possess any full, spherical sym-
metry known to us, unlike the core electrons. The above referenced, successive 
calculations continue until three (3) consecutive ones produce the same occu-
pied energies. This criterion guarantees the attainment of the absolute minima of 
the occupied energies (i.e. the true ground state). With just two (2) consecutive 
calculations leading to the same occupied energies, these energies could represent 
a local minima and not the absolute ones. The first of the referenced three (3) 
consecutive calculations [34] is the one providing the DFT description of the 
material. The basis set for this calculation is dubbed the optimal basis set, i.e. the 
smallest basis set leading to the ground state charge density and energies.  
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In this study, we utilized the program package developed at the US Depart-
ment of Energy’s Ames Laboratory, in Ames, Iowa. B and N are light enough to 
neglect relativistic corrections. Self-consistent calculations of the electronic ener-
gies and wave functions for the atomic or ionic species provided input data for 
the solid-state calculations. Specifically, for hexagonal BN, the species we consi-
dered were B3+ and N3−. Preliminary calculations for neutral atoms (B and N) 
pointed to a charge transfer larger than 2, from B to N.   

We provide below computational details to enable the replication of our work. 
Hexagonal BN (h-BN) belongs to the 4

6hD  space group, with a space group num-
ber of 194, a Pearson symbol of hP4, and Patterson space group P63/mmc [17]. 
There are two atoms of each kind in the unit cell, with the boron (B) atoms occu-  

pying sites ( 10,0,
2

) and ( 1 2, ,0
3 3

) while the nitrogen (N) atoms are at (0, 0, 0) and 

( 1 2 1, ,
3 3 2

). Our self-consistent calculations were performed with the experimental  

lattices constants for hexagonal BN with a = 2.504 Å = 4.7319 a.u. is a lattice 
constant in atomic units (1 a.u. = 1 Å/aB, where aB is the Bohr radius) and c = 
6.661 Å = 12.5875 a.u. at room temperature. We expanded the radial parts of the 
orbitals in terms of even-tempered Gaussian functions. The s and p orbitals for 
the cation B3+ were each described with 16 even-tempered Gaussian functions 
with the respective minimum and maximum exponents of 0.2658 and 1.655 × 
104 for the atomic potential and 0.1242 and 1.365 × 104 for the atomic wave 
functions. The self-consistent calculations for B3+ led to the total charge of 
2.0005, which is also the valence charge, with an error per electron of 2.5 × 10−4. 
Similarly, the s and p orbitals for N3− were described with 20 even-tempered 
Gaussian functions with the respective minimum and maximum exponents of 
0.1600 and 1.600 × 104 for the atomic potential and 0.1000 and 1.300 × 104 for 
the atomic wave functions. These exponents led to the convergence of the atom-
ic calculations for N3− with the total, core and valence charges of 10.00004, 
2.00002, and 8.00002, respectively. The error per electron was therefore 4 × 10−6. 
We utilized a 24 k-point mesh with proper weights, in the irreducible Brillouin 
zone, for the self-consistency iterations. The criterion for the convergence of the 
iterations was a difference of 10−5 or less between the potentials from two con-
secutive ones. We used 140 k points in the irreducible Brillouin zone for the 
production of the final, self-consistent bands.  

3. Results 

Table 3 contains information on the successive calculations performed with the 
purpose of reaching the absolute minima of the occupied energies. The band gap 
generally can decrease or increase before one reaches the optimal basis set. As 
shown farther below, with the graphs of the bands, Calculations IV, V, and VI led 
to the same occupied energies indicating that these energies have reached their ab-
solute minima, i.e. the ground state. As per the BZW-EF method, Calculation 
IV, the first of the three (3) is the one providing the DFT description of the  
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Table 3. Successive calculations with the BZW-EF method, for h-BN (Calculations I-VI). 
In these calculations, the lattice constants are a = 2.504 Å and c = 6.661 Å, at room tem-
perature. Calculation IV led to the absolute minimum of the occupied energies, given that 
Calculations V and VI produced occupied energies identical to corresponding ones from 
Calculation IV. The calculated indirect band gap, from near K to M, is 4.369 eV (or 4.37 
eV).  

Calculation No. 
Valence Orbitals for 

B3+ 
Valence Orbitals 

for N3− 
No. of  

Functions 
Band Gaps (eV) 

(near K-M) 

I 1s22p02s0 2s22p6 36 7.499 

II 1s22p02s0 2s22p63p0 48 5.767 

III 1s22p02s03p0 2s22p63p0 60 4.370 

IV 1s22p02s03p0 2s2263p03s0 64 4.369 

V 1s22p02s03p03s0 2s2263p03s0 68 4.365 

VI 1s22p02s03p03s0 2s22p63p03s04p0 80 4.210 

 
material. The basis set for this calculation is the optimal basis set, i.e. the smallest 
basis set leading to the ground state of the material, without being over-complete.  

Figures 1(a)-(e) provide a graphical illustration of the generalized minimiza-
tion of the energy, as the basis set is methodically augmented for successive, 
self-consistent calculations. Every pair of bands from consecutive calculations is 
shown below. In Figure 1(c), Calculations III may appear to reach the minima 
of the occupied energies, given that these occupied energies are mostly the same 
as corresponding ones from Calculation IV. However, a close examination of the 
occupied energies around −18.50 eV, at the Γ point, shows that both bands have 
been lowered by Calculation IV from their values from Calculation III. The oc-
cupied energies from Calculation IV are identical to the corresponding ones 
from Calculations V and VI. This perfect superposition of the occupied energies 
from three (3) consecutive calculations is the robust criterion for the attainment 
of the absolute minima of the occupied energies, i.e. the ground state of the ma-
terial. As such, these occupied energies possess the full, physical content of DFT. 
From Figure 1(d) and Figure 1(e), it is apparent that the referenced superposi-
tion of the occupied energies does not hold for the all the unoccupied ones. It is 
instructive to note, however, that the low laying, unoccupied energies from the 
three (3) calculations, up to 8 eV, are also superimposed. This gratifying feature, 
notwithstanding, it is clear from the graphs that higher, unoccupied energies 
tend to be lowered as the size of the basis set increases.  

The top of the valence band (VBM) is between K and Γ, at equally 10% of the 
K-Γ separation, to the left of K. Its distance from K is ∆K = (4π/3a) × 0.1 = 
0.0885, where a = 4.7319 a.u. is a lattice constant in atomic units. Hence, the lo-
cation of the VBM is at K* = K − ΔK = (0, 0.7965, 0), to the left of K.  

Even though the occupied energies in Table 4 and the graph of the bands 
from Calculation IV (in Figure 1(d)) provide an adequate description of the 
ground state electronic properties of hexagonal BN, we discuss farther below  
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Figure 1. Energy bands of hexagonal BN (h-BN) as obtained in Calculations I-VI of the BZW-EF method. These figures show 
the bands for pairs of consecutive calculations, with solid lines for bands of a calculation and dashed lines for the bands of the 
calculation immediately following it. The progressive lowering of the occupied energies, upon setting the Fermi levels to zero, 
is apparent, up to Calculation IV-VI, which produced the same absolute minima of the occupied energies, i.e. the ground 
state. (a) Calculations I and II; (b) Calcualtions II and III; (c) Calculations III and IV. Calculation IV is optimal basis set; (d) 
Calculations IV and V; (e) Calculations V and VI. 
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Table 4. Calculated, electronic energies (in eV) of h-BN, at high symmetry points in the 
Brillouin zone, obtained from Calculation IV. The Fermi energy is set equal to zero. The 
calculated band gap is 4.37 eV. 

Γ-point K-ΔK-point K-point H-point A-point M-point L-point 

17.357 21.116 20.759 19.791 16.4508 21.593 21.745 

16.617 20.969 20.759 19.791 16.4508 21.259 21.745 

13.322 19.793 18.939 18.802 13.320 21.033 18.820 

13.321 18.613 18.939 18.802 13.320 20.236 18.820 

13.305 16.896 17.668 14.843 13.319 15.699 13.856 

13.304 14.445 13.994 14.843 13.319 12.780 13.856 

13.056 13.656 13.994 13.878 12.958 10.689 10.824 

12.592 12.309 12.957 13.878 12.958 10.163 10.824 

9.714 5.445 5.064 4.715 7.263 6.222 5.040 

5.049 4.953 5.064 4.715 7.263 4.369 5.040 

−2.419 0.000 −0.138 −0.048 −2.435 −0.482 −1.007 

−2.420 −0.614 −0.138 −0.048 −2.435 −1.552 −1.007 

−2.453 −7.827 −8.067 −8.082 −2.436 −5.399 −5.423 

−2.453 −7.833 −8.067 −8.082 −2.436 −5.452 −5.423 

−4.365 −9.241 −9.242 −9.322 −5.606 −9.960 −9.990 

−6.593 −9.366 −9.400 −9.322 −5.606 −10.012 −9.990 

−18.206 −14.748 −14.653 −14.653 −18.368 −15.254 −15.283 

−18.509 −14.801 −14.653 −14.653 −18.368 −15.313 −15.283 

 
subtilities relative to the valence band maximum (VBM) and the conduction 
band minimum (CBM). In particular, our close examination of the bands hints 
at a possible explanation of the multitude of VBM-CBM pairs reported by pre-
vious density functional theory calculations. These calculations, as far as we can 
determine, did not perform the generalized minimization of the energy as dic-
tated by the second DFT theorem. 

Figure 2 and Figure 3 respectively show the calculated, total and partial den-
sities of states (DOS, pDOS). We derived them from the bands produced by 
Calculation IV, with the optimal basis set. Short, vertical segments indicate the 
locations of major peaks, whose values are provided on the graph of the total 
density of states. The calculated valence band width of 18.58 eV is in agreement 
with the calculated valence band width (18.5 eV) from Ma et al. [23] and from 
Castellani et al. [24]. While this value is smaller than the experimental finding of 
20.7 ± 1.5 eV obtained by J. Barth et al. [7] and by Tegeler et al. [8] in their XPS 
measurements, we note that, according to these authors [7] [8] [23] [24], the real 
total width of the valence bands may be smaller than the measured value by l - 3 
eV, due to significant Auger broadening of the XPS spectrum at energies cor-
responding to the s band. 
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Figure 2. Calculated, total density of states (DOS) for hexagonal boron nitride (h-BN), 
obtained with the bands from Calculation IV. 
 

 
Figure 3. Calculated, partial densities of states (p-DOS), as derived from bands resulting 
from Calculation IV. 
 

The lower and upper groups of valence bands have widths of 3.98 eV and 
10.02 eV, respectively. Three major peaks in the density of states for the conduc-
tion bands are located at 4.92 eV, 12.88 eV, and 18.46 eV. The above characteris-
tics of the total density of states (DOS), for h-BN, will be hopefully confirmed by 
future experimental measurements. Additionally, the eigenvalues in Table 4 
lend themselves to comparison with some X-Ray and UV spectroscopic mea-
surements. From Figure 3, for the partial densities of state (pDOS), we clearly 
observe a net dominance by nitrogen s state in the lowest group of valence 
bands, with a tiny contribution from boron p state. In the upper group of va-
lence bands, N p dominates, with small contributions from boron p and minus-
cule ones from boron s. This hybridization of nitrogen p and boron p should be 
observable in X-Ray spectroscopic measurements. While the largest contribution 
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to the conduction bands comes from nitrogen p, particularly around the absorp-
tion edge, that of boron p is also significant. Both N s and B s have evanescent 
contributions to the conduction bands.  

Several transport properties, including various mobilities for electrons or 
holes, depend on the inverse of the electron or hole effective masses, respective-
ly. For this reason, we have calculated the electron and hole effective masses 
shown in Table 5, in units of the electron mass m0. With values of 0.205m0, 
2.250m0, and 1.730m0 in the M to Γ, M to K, and M to L directions, respectively, 
the electron effective mass at the bottom of the conduction band is clearly aniso-
tropic. The same is true for the electron effective mass at H, even though its val-
ues from H to A and H to Γ are identical.  

The hole effective masses from K* to Γ, K* to H, and K* to M are respectively 
0.534, 0.569, and 1.48, in units of m0. The calculated hole effective masses at the 
H symmetry point, along H-A, H-Γ, H-K, and H-L axes, are 0.822, 0.822, 3.468, 
and 1.671, respectively, in units of m0. These hole effective masses are anisotrop-
ic, despite the equality of the ones from H to A and H to Γ. 

4. Discussion  

A discussion of our results, particularly in relation to findings from previous 
DFT calculations, rests on the following fact. None of the previous calculations  
 
Table 5. Calculated effective masses for hexagonal BN, in units of free electron mass m0: 
Me indicates an electron effective mass in the conduction bands and Mh represents a hole 
effective mass. The top of the valence band is at K*, to the left of the K symmetry point, as 
defined above.  

Types and Directions of Effective Masses Values of Effective Masses (m0) 

Me (M-Γ) 0.205 

Me (M-K) 2.250 

Me (M-L) 1.730 

Me (H-A) 0.588 

Me (H-Γ) 0.588 

Me (H-K) 1.102 

Me (H-L) 3.129 

Me (K-Γ) 0.387 

Me (K-H) 0.433 

Mh (K*-Γ) 0.534 

Mh (K*-H) 0.569 

Mh (K*-M) 1.480 

Mh (H-A) 0.822 

Mh (H-Γ) 0.822 

Mh (H-K) 3.468 

Mh (H-L) 1.671 
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appear to have performed a generalized minimization of the energy. The mini-
mization obtained following self-consistent iterations, with a single basis set, 
produces the minimum of the energy relative to that basis set. Such solutions are 
stationary ones whose number is practically infinite. None should be à priori 
assumed to provide a description of the ground state of the material. Conse-
quently, the computational results should not be expected to possess the full, 
physical content of DFT or to agree with experimental measurement. Our gene-
ralized minimization, as thoroughly explained above, verifiably leads to the ab-
solute minima of the occupied energies, i.e. the ground state, as required by the 
second DFT theorem. Explicitly searching for the ground state and avoiding ba-
sis sets that are overcomplete for the description of the ground state are two re-
quirements for a correctly performed DFT calculation. We address below plaus-
ible, negative consequences use of over-complete basis sets.  

With the second corollary of the first DFT theorem, i.e. that the spectrum of 
the Hamiltonian is a unique functional of the ground state charge density [34], 
we avoid over-complete basis sets. While these larger basis sets lead to the 
ground state energies, they also lower some unoccupied energies from their val-
ues obtained with the optimal basis set. As per the above corollary, any unoccu-
pied energy, different from (i.e. lower than) its corresponding value obtained 
with optimal basis set, no longer belongs to the spectrum of the Hamiltonian. 
This rigorous conclusion also results from the fact that, with these larger basis 
sets, the charge density and the Hamiltonian do not change from their respective 
values obtained with the optimal basis set. Consequently, the unoccupied eigen-
values, different from their corresponding values obtained with the optimal basis 
set, cannot rationally be physically meaningful ones. The Rayleigh theorem for 
eigenvalues, as elaborated upon elsewhere [34] [49] [50], trivially explains the 
spurious lowering of unoccupied energies in calculations employing larger basis 
sets that contain the optimal one. We should note the spuriously lowered, un-
occupied energies, including some lowest laying ones, provide one plausible ex-
planation of the widespread underestimation of band gaps in the literature. This 
contention stems in part from the fact that single basis set calculations tend to 
employ large basis sets in order to avoid incompleteness.  

With the above understanding, we discuss the fine structures of the bands us-
ing the enlarged graphs in Figure 4 and Figure 5. While Figure 4 shows the en-
tire band structure, Figure 5 only exhibits the drastically enlarged uppermost 
and lowest valence and conduction bands, respectively, around and between the 
K and H symmetry points. In Figure 4, the highest and degenerate valence 
bands are visibly close to the Fermi level, from K to H. Figure 5 is needed to as-
certain the location of the valence band maximum. To do so, one is guided by 
the fact that, at the location of the VBM, the band is superimposed on a short 
segment at the Fermi level. Figure 5 shows that the VBM is at the K* point de-
fined above. At the H point, the degenerated valence band is only 0.048eV below 
the Fermi level. The top of the valence band at M is 0.482 eV below the Fermi 
level. The direct band gap at M is therefore 4.369 eV + 0.482 eV = 4.851 eV. It  
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Figure 4. The enlarged graph of the band structure of hexagonal BN, produced by Calcu-
lation IV, with the optimal basis set.  
 

 
Figure 5. The further enlarged parts of highest and lowest valence and conduction bands, 
respectively, in Figure 4, between and around the K and H high symmetry points. Clear-
ly, the top of the valence band is the only part that is superimposed on the Fermi level; 
this top is at K* as defined above, to the left of K, and 0.1 is the one tenth of the distance 
between Г and K points. 
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is slightly larger than the one at H which is 4.763 eV + 0.048 eV = 4.811 eV.  
The above fine structures of the bands hint to a possible explanation of the 

report of seven (7) different VBM-CBM pairs by previous DFT calculations. In-
deed, while the presumed single basis sets in these calculations may be close to 
or contain the corresponding optimal basis sets, with the above subtle features of 
the band structure, the slightest deviation of these basis sets from the one de-
scribing the ground state could explain the differences between the resulting 
bands and between them and the ones reported here. Additionally, without the 
generalized minimization, it is practically hopeless to have the basis set complete 
for the description of the ground state, without being over-complete.  

5. Conclusion  

We have presented the description of electronic and related properties of the 
ground state of h-BN, as obtained from ab-initio, self-consistent density func-
tional theory (DFT) calculations. Our generalized minimization of the energy, 
following the BZW-EF method, verifiably led to the ground state and avoided 
over-complete basis sets. Our findings possess the full, physical content of DFT. 
Our calculated indirect band gap from K* to M is 4.37 eV. This value is practi-
cally in agreement with the experimental finding of 4.30 eV which is the most 
accepted one in the literature. The density of states (DOS) and partial densities 
of states (p-DOS) are in good agreement with those from electron momentum 
spectroscopy (EMS) [6] [7] [8] [9]. To the best of our knowledge, no measure-
ments of the electron effective masses are available for comparison with our cal-
culated ones. In light of our previous success, partly through accurate predictive 
capabilities, we expect future experiments to confirm our findings.  
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Abstract 
The aim of the paper is to get an insight into the time interval of electron 
emission done between two neighbouring energy levels of the hydrogen atom. 
To this purpose, in the first step, the formulae of the special relativity are ap-
plied to demonstrate the conditions which can annihilate the electrostatic 
force acting between the nucleus and electron in the atom. This result is ob-
tained when a suitable electron speed entering the Lorentz transformation is 
combined with the strength of the magnetic field acting normally to the elec-
tron orbit in the atom. In the next step, the Maxwell equation characterizing 
the electromotive force is applied to calculate the time interval connected 
with the change of the magnetic field necessary to produce the force. It is 
shown that the time interval obtained from the Maxwell equation, multiplied 
by the energy change of two neighbouring energy levels considered in the 
atom, does satisfy the Joule-Lenz formula associated with the quantum elec-
tron energy emission rate between the levels. 
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Hydrogen Atom, The Bohr Model, Lorentz Transformation Done with the 
Aid of the Electron Orbital Speed, Maxwell Equation Applied to Calculate the 
Time Interval of Electron Transitions between Two Quantum Energy Levels, 
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1. Introduction 

In an application of the Bohr model to the energy spectrum of the atomic hy-
drogen, the electric field—acting between the electron and nucleus—plays a do-
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minant role; see e.g. [1]. Nevertheless the magnetic field—due to circulation of 
the electron along its orbit—though it does not enter the spectral calculations, 
can be important for the Lorentz transformations of different kind applied to the 
vector fields active in the atom. For, in some previous paper [2], we noticed that 
quantum properties of the magnetic field  

 
3 2

3 3n
e m cB
n

=


                              (1) 

can be also applied in calculating the energy quanta of the electron in the hy-
drogen atom. These quanta of energy can be obtained when the magnetic mo-
ments associated with the circulating electron particle are interacting with cor-
responding quanta of the magnetic field. In effect of that interaction the spec-
trum of the energy levels identical to that known from the Bohr atom can be 
calculated. 

Another application of nB  in (1)—taken into account together with the 
quanta nE  of the electric field acting between the nucleus and electron—concerns 
the calculation of the drift velocity of electron possessed in the hydrogen atom; 
see [2] [3]. 

Evidently nE —when multiplied by the electron charge e− —gives the at-
tractive force between the nucleus of charge e and the electron having charge 
e− :  

 
2

;n
n

n

mv
eE

r
− = −                             (2) 

see [4]. The right-hand side of (2) is the centripetal force which provides us with 
an equilibrium of the electron motion along a circular orbit having the radius [4]  

 
2 2

2n
nr
me

=
                               (3) 

and the speed [4]  

 
2

.n
ev
n

=


                               (4) 

In the result of (2)-(4) we obtain the electric field  

 
2 3 2 2 5

2 2 2 2 4 4 .n
n

n

mv e me m eE m
er n n n

= = =
  

                    (5) 

In [5] we have shown that a classical Lorentz force—which combines both 

nE  and nB  at the same time—can attain zero on condition both electric and 
magnetic fields are represented by parameters characteristic for some electron 
orbit n. The first aim of the present paper—being a supplement of [5]—is to 
point out that nE  can be reduced to zero due to a suitable Lorentz transforma-
tion done in the presence of nB . In effect we find with the use of one of the 
Maxwell equations that the time interval seeked for the electron transition can 
be obtained in terms of both the electric and magnetic field intensities characte-
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ristic for some quantum state in the atom. 

2. Lorentz Transformation of the Electric and Magnetic Field  
Present in the Hydrogen Atom  

If the velocity Lv  entering the Lorentz transformation is relatively small in 
comparison with the speed of light c [6], so  

 ,Lv c                                 (6) 

the components of the transformation matrix which are [6]  

 ( )

0
0

0
0

z y x

z x y
ik

y x z

x y z

B B iE
B B iE

F
B B iE
iE iE iE

− − 
 − − =  − −
  
 

                    (7) 

can be simplified into the approximate expressions  

 
, , ,

, , ,

L L
x x y y z z z y

L L
x x y y z z z y

v vE E E E B E E B
c c
v vB B B B E B B E
c c

′ ′ ′ ′ ′= = + = −

′ ′ ′ ′ ′= = − = +
             (8) 

The primes indicate the components of the transformed field. 
The formulae entering (8) and (9) can be combined into the vector relations  

 [ ]1 ,Lc
′ ′= + ×E E B v                          (9) 

 [ ]1 .Lc
′ ′= − ×B B E v                         (10) 

Formally there exist two kinds of the transformation possibilities which re-
duce the external fields to zero [6]:  

 ( )a 0′ =B                            (11a) 

which implies  

 ( ) [ ]a 1 ,Lc
= ×B v E                          (11b) 

or  
 ( )b 0′ =E                            (12a) 

which implies  

 ( ) [ ]b 1 .Lc
= − ×E v B                         (12b) 

From the calculations done in Sec. 3 it becomes evident that  

 ,B E                              (13) 

so we examine solely the case of (b) in (12a). 
As the size of the transformation speed Lv  we assume  

 
2

L n
ev v
n

= =


                           (14) 
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given in (4). Because the direction of nv  is normal to that of nB , we obtain in 
this case from (12b) the result  

 ( )
2 3 2 5 2

b
3 3 4 4

1 1
n n n

e e m c e mE v B
c c n n n

= − = − = −
  

                 (15a) 

which is the size of the electric field acting on the electron located on the orbit n, 
but having an opposite sign than nE  in (5). In effect the field in (5) added to 
the correcting term in (15a) give the Lorentz force equal to zero:  

 [ ] 0.n n n
ee
c

− × =E B v                         (15b) 

3. Equation for the Field Invariants and Its Solution  

The matrix (6) can be applied in solving the equation  

 0ik ikF λδ− =                             (16) 

the solution of which gives the invariants λ ; see [6]. A substitution of the 
components ikF  entering (7) into (16) provides us with the equation  

 ( ) ( ) ( )24 2 2 2 4 2 2 2 0.λ λ λ λ+ − − ⋅ = + − =B E B E B E            (17) 

The last step on the left of (17) holds because the field B  is normal to E . 
Evidently a substitution of  

 
6 4 2

2 2
6 6 ,n

e m cB
n

= =B


                        (18) 

and of (b)
n nE E=  from (15a), so  

 
10 4

2 2
8 8 ,n

e mE
n

= =E


                         (19) 

gives  

 
6 4 2 10 4 6 4 2 4

2 2 2 2
6 6 8 8 6 6 2 2 21 .n n

e m c e m e m c eB E
n n n n c

 
− = − = − = − 

 
B E

   

     (20) 

Since the atomic constant is equal to  

 
2 1 ,

137.04
e
c

≅


                           (21) 

we obtain in (20) the relation  
 2 2 .n nB E                              (22) 

For example for 1n =  the first term entering the bracket expression in (20) is 
more than 104 times larger than the second term. 

This makes (17) transformed into the expression  
 ( )2 2 2 0n nB Eλ = − − <                         (23) 

equal to a negative number which implies an imaginary λ .  

4. Reduction of the Lorentz Force and Its Effect on the  
Electromotive Force Acting on the Electron in the  
Hydrogen Atom  

A basic content of the Maxwell equation which provides us with a combination 
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of the electric field, magnetic field and an interval of time is [7]  

 d d .c c t
∂

= −
∂∫ ∫E l B f



                       (24) 

On the left-hand side of (24) there is presented the integral of a non-vanishing 
electric field cE  performed along a closed contour line which—in the present 
case—is the cross-section line of the electron orbit normal to the orbit axis; on 
the right-hand side we have a time derivative of the integral concerning the 
magnetic field vector B  enclosed by the contour mentioned on the left-hand 
side of (24); t is time and c is a speed of light. 

We assume that field B  for some quantum state n is a constant equal to (1). 
On the other hand, cE  is a non-vanishing electric field along the contour; the 
field size  

 ( )
5 2

b
4 4c cn
e mE
n

= = =E E


                      (25) 

is given in (15a). The contour, being a cross-section line of the electron orbit, 
can be identified with a circumference of the electron microparticle; see below 
(27). 

The only simplification we apply in (24) is the replacement  

 1 ,
t t
∂
→

∂ ∆
                             (26) 

so t∆  becomes the time interval dividing the integral given on the right-hand 
side of (24). 

The electron particle is moving about the atomic nucleus along a circular orbit 
n, but for any n we have the same length of the cross-section line of the orbit 
namely  

 
2

2d 2 2el
er
mc

π π= ≅∫ l


                        (27) 

where elr  is the radius of the electron particle given in [7]:  

 
2

2 .el
er
mc

≅                              (28) 

In effect the area enclosing the electron orbit becomes  

 d 2 2 .el nr r= π π∫ f                            (29) 

The expression on the right of (29) is approximately equal to a surface of a cy-
linder having its length equal to the orbit length equal to  

 2 nrπ                                (30) 

and the circumference of the cylinder is assumed to be equal to (27). 
In effect, by neglecting the negative sign in (24), we obtain from the Maxwell 

equation the formula  

 12 2 2 ,cn el n el nE r B r r
c t

π π≅
∆

π                       (31) 
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or  

 1 2 .cn n nE B r
c t

π≅
∆

                            (32a) 

This relation, because of (1) and (25), is equivalent to  

 
5 2 3 2 2 2

4 4 3 3 2

1 2 .e m e m c n
c tn n me∆

π≅


 

                       (32b) 

Therefore  

 
3 4 4 2 2 3 3

3 3 5 2 42 2 .e n n nt
n e me me

π π∆ ≅ =
  



                     (33) 

This result is identical to the time interval associated with the electron transi-
tion between neighbouring quantum levels obtained earlier (see [8]) on the basis 
of an examination of the dynamical properties characteristic for the electron 
particle moving in the Bohr’s hydrogen atom.  

5. Comparison with the Joule-Lenz Law Coupling the Time  
and Energy of the Quantum Transitions  

The energy E∆  emitted between two quantum levels 1n +  and n is coupled 
with the emission time t∆  (see [9] [10] [11]) by the formula  

 E t h∆ ∆ =                               (34) 

derived with the aid of the quantum reasoning applied to the Joule-Lenz law of 
the energy emission in classical thermodynamics [12]. 

The size of the time emission interval t∆  in case of the hydrogen atom is 
calculated in (33). In the next step, the energy interval between two neighbour-
ing quantum levels becomes  

 
( )

( )
( )

4

1 2 2 2

2 24 4 4

2 2 2 4 2 32

1 1
2 1

1 2 .
2 21

n n
meE E E

nn

n nme me n me
n nn n

+

 
∆ = − = − − 

+  

+ −
≅ ≅ =

+



  

                (35) 

Therefore we obtain for the product entering (34) the result  

 
4 3 3

2 3 42 2me nE t h
n e m

π∆ ∆ = = =π






                    (36) 

which is identical to that given in (34). Evidently the energy symbols 1nE +  and 

nE  in (35) should not be confused with the electric field strength in (5), (15a) 
and (25).  

6. Summary  

The aim of the paper was to get an insight into the time interval connected with 
the electron transition between two neighbouring quantum energy levels in the 
hydrogen atom. To this purpose a non-probabilistic approach to the quantum 
atomic levels characteristic for the Bohr semiclacssical theory became useful. 
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This is so because such approach allowed us to apply the classical Maxwell elec-
trodynamics in describing the electron behaviour on the orbits present in the 
atom. 

In result, in the first step, the paper demonstrates that when the size of the ve-
locity Lv  entering the Lorentz transformation amounts the size nv  of the 
electron speed along some orbit n in the hydrogen atom, the effect of transfor-
mation reduces the electric field nE  by the term nE−  making the electric field 
between the electron and nucleus equal to zero. The presence of a corresponding 
magnetic field in the atom normal to the orbit n [see (1)] is essential for the ef-
fect. 

In the second step of the paper the Maxwell equation for the electromotive 
force joining the electric and magnetic field with the time interval of the electron 
transition is taken into account. In this case the presence of a non-zero electric 
field active along the cross-section line of the electron orbit is assumed. A cha-
racteristic point is that the size of this field, obtained with the aid of the Lorentz 
transformation making the electrostatic interaction between the electron and 
atomic nucleus equal to zero, is equal to the size of nE ; see (5) and (15a). The 
new electric field active along the cross-section of the orbit is much smaller than 
the magnetic field normal to the orbit plane. 

When a substitution of the both—electric and magnetic—fields to the Max-
well equation is done, the time interval for the electron transition due to the 
electromotive force is found. This interval is very close to the time intervals ob-
tained earlier from an analysis of the dynamical properties of the electron in the 
hydrogen atom (see [8]), or on the basis of an examination of the Ehrenfest 
adiabatic invariants; see [11]. In a final step it is shown that the product of in-
tervals of transition time and that of energy between two neighbouring states in 
the hydrogen atom does satisfy the quantum formula for the Joule-Lenz energy 
emission in that atom; see (34) and (36). 
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Abstract 
In this paper, an attempt is made to synthesize fuzzy mathematics and quan-
tum mechanics. By using the method of fuzzy mathematics to blur the proba-
bility (wave) of quantum mechanics, the concept of fuzzy wave function is put 
forward to describe the fuzzy quantum probability. By applying the non-fuzzy 
formula of fuzzy quantity and Schrödinger wave equation of quantum me-
chanics, the membership function equation is established to describe the 
evolution of the fuzzy wave function. The concept of membership degree am-
plitude is introduced to calculate fuzzy probability amplitude. Some impor-
tant concepts in fuzzy mathematics are also illustrated. 
 

Keywords 
Fuzzy Quantum Probability, Fuzzy Wave Function, Membership Function, 
Membership Degree Amplitude, Fuzzy Probability Amplitude 

 

1. Introduction 

The research on combining fuzzy mathematics and quantum mechanics has 
been done in the prior work [1]-[8]. These theories, which are using fuzzy ma-
thematics to understand quantum mechanics, can be regarded as the equivalent 
theory of quantum mechanics. They do not break through quantum mechanics. 

In order to be able to break through quantum mechanics and find a deeper 
principle of the universe, in this article a mathematical theory named “fuzzy 
quantum probability” is proposed. Different from the prior theories, the theory 
in this paper is not using fuzzy mathematics to understand quantum mechan-
ics, but using fuzzy mathematics to fuzzify the state function of quantum me-
chanics so that a fuzzy (unsharp) probability can be obtained. This work is not 
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the equivalent theory of quantum mechanics but a breaking through quantum 
mechanics. 

In a sense, quantum mechanics is a theory of probability (so-called “quantum 
probability”). This kind of probability is different from the classical probability 
in the traditional mathematical probability and statistics theory. It is a kind of 
probability associated with volatility and calculated by wave function. 

After the birth of fuzzy mathematics, people use the method of fuzzy mathe-
matics to fuzzify classical probability to obtain fuzzy probability (the probability 
of uncertain and imprecise values, also called “language probability”). Then, can 
we use the method of fuzzy mathematics to also blur quantum probability to 
obtain fuzzy quantum probability (see Figure 1)? 

In fuzzy mathematics there are two directions for developing classical proba-
bility into fuzzy probability: one is to introduce fuzziness into the event, whereas 
the probability is clear or determined, so as to obtain the probability of fuzzy 
event. The other is to introduce fuzziness into the probability, while the event is 
clear, so as to obtain the fuzzy probability of the event. Similarly, we also can try 
to develop quantum probability into fuzzy quantum probability along these two 
directions. This article is dedicated to the work in the second direction, i.e. doing 
the work of “the fuzzification of quantum probability” with the method of fuzzy 
mathematics (the work of the first direction will be done in another paper).    

The calculation of the quantum probability of the event is realized by means 
of a wave function, and the value of the quantum probability is obtained by 
squaring the modulus of the (normalized) wave function. Therefore, it can be 
assumed that the fuzzification of the quantum probability should first be the 
fuzzification of the wave function (state function), and the value of the fuzzy 
quantum probability can be obtained by the square of the modulus of the fuzzy 
wave function. The concept of fuzzy wave function was first put forward by 
Markus Müller [9], but he did not conduct in-depth research. In this paper I will 
discuss the mathematical description of fuzzy wave function in detail and how to 
calculate out a fuzzy quantum probability of the event from fuzzy wave function. 
In addition, the evolution equation of fuzzy wave function also is established. 

As the Russian mathematician Lobachevsky said, any branch of mathematics, 
no matter how abstract it is, will one day find applications in the real world. As 
the application of fuzzy mathematical methods to quantum mechanical proba-
bilities, the theory of fuzzy quantum probabilities will eventually be applied in  
 

 
Figure 1. This figure shows the logical clues to the development of probability theory. 
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reality one day even though now we cannot find its specific application. Fuzzy 
quantum probability is mainly used to describe and compute the probability that 
is difficult to accurately estimate. Then, where could there be such a kind of 
probability? Maybe in the field of particle decay, maybe in the field of economics 
and finance, maybe in small closed regions of space as proposed by Markus 
Müller in his paper, .... One day, we will find a place where fuzzy quantum 
probability comes into play. 

In this paper, fuzzy wave function and fuzzy quantum probability (density) 
are discussed in Section 2. The equation of the membership function of the fuzzy 
wave function is established in Section 3. In Section 4, the concept of member-
ship degree amplitude is introduced and discussed. Fuzzy probability amplitude 
is also discussed in this Section. Lastly, in Appendix 1 the list of the used va-
riables in the paper is provided, whereas in Appendix 2 some important con-
cepts pertaining to the fuzzy mathematics are illustrated. 

2. Fuzzy Wave Function 

Usually, in quantum mechanics it is thought that the value of the probability 
for the event ( ),r t  is clear and certain, correspondingly, the probability wave 
( ),r tψ   also is clear and certain. However, if the probability value is unsharp or 

imprecise, this kind of probability should be described by fuzzy number. Cor-
respondingly, the probability wave also should be depicted by fuzzy plural. Such 
a fuzzy wave function is denoted by ( ),r tψ 

  (fuzzification plural function). 
According to fuzzy mathematics, ( ),r tψ 

  is depicted by a membership function 
( ) [ ], , 0,1r tψλ ψ ∈



 , where ψ  is one of all possible values of ( ),r tψ 

 . Here it 
should be pointed out that ψ  is an independent variable, the variety of which no 
longer depends on the event ( ),r t  because the value of fuzzy wave function is 
uncertain. This is similar to the case in quantum mechanics, where the coordinate 
r  is an independent variable, the variety of which no longer relies on the time t  
because the value of the coordinate is uncertain. From classical mechanics to 
quantum mechanics, and then to fuzzy quantum probability, the relationship be-
tween variables and the changes in the status of variables can be seen in Figure 2. 

The membership function ( ), ,r tψλ ψ


  tells us about the distribution of the 
membership degrees of all possible values of the fuzzy probability wave about 
the event ( ),r t . The meaning of the fuzzy wave function depicted by the mem-
bership function is showed in Figure 3.  

( ),r tψ 

  can be represented as 

( ) ( ) ( ), , , , ,
C

r t r t r tψψ
ψ λ ψ ψ

∈
= ∫ 

  

 . 

Here C  is the plural set. The symbol “ ∫ ” does not represent integration but a 
sign, whereas “/” does not represent division but a kind of corresponding symbol. 

The normalization problem of ( ),r tψ 

  will be discussed in Section 4. 
Now it should be considered how to calculate fuzzy probability from ( ),r tψ 

 . 
This is by means of the membership function. The specific approach is consi-
dered as follows: 
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Figure 2. This figure shows that quantum mechanics breaks through the principle of clas-
sical mechanics by replacing certainty with probability, while fuzzy quantum probability 
breaks through the principle of quantum mechanics by replacing clarity with ambiguity 
(using the uncertainty of probability (wave) to replace the certainty of probability (wave)). 
 

 
Figure 3. This figure shows that the normalized fuzzy probability wave of a specific event 
( )1 1,r t  takes much possible plural values, and each value has a (generally different) degree 
of membership (credibility or truth). For instance, if ( )1 1,r tψ 

  is depicted by such a 
membership function with the form as follow:  

( )

( ) ( )( ) ( ) ( )( )2 22 2 2 2
0 0 0 02 2

, , ,

1 1exp , , 4 , , ,
2 2

R I r t

R I R r t I r t RI R r t I r t

ψλ

σ σ
  = − − − + + −   π 





   

 

the credibility of ( )1 1,r tψ 



 
taking one value 2.49 2.92i+  is 0.79984, while that of 

( )1 1,r tψ 

  taking another value 3.65 2.56i+  is 0.30348. 

 
Calculating the fuzzy quantum probability of the event ( ),r t  is by compu-

ting ( ) 2
,r tψ 

 ; 
Calculating ( ) 2

,r tψ 

  is by computing ( ),r tψ 

 ; 
Order ( ),r tρ ψ= 

  , i.e. ρ  represents the (fuzzy) modulus of the fuzzy wave 
function of the event ( ),r t . Then calculating ( ),r tψ 

  is by determining the 
membership function ( ), ,r tα ρ   of ρ . Here ρ , the membership degree of 
which is α , represents a possible value of ρ .  

( ), ,r tα ρ   can be computed from ( ), ,r tψλ ψ


 , and the specific method is as 
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follows: 
Order eiϕψ ρ=  (or R iIψ = + ), then ( ), ,r tψλ ψ



  can be equivalently re-
written as ( ), , ,r tψλ ρ ϕ



  (or ( ), , ,R I r tψλ 
 ). Thus, ( ), ,r tα ρ   is determined 

from ( ), , ,r tψλ ρ ϕ


 . Then how to determine the value of ( ), ,r tα ρ  ? About 
( ), , ,r tψλ ρ ϕ



 , it is usually such a case that for the specified event ( ),r t , one 
value of ρ  corresponds to much different values of membership degree be-
cause of the variation of ϕ . ( ), ,r tα ρ   should take the maximal value of 
membership degree according to the assignment rule of the membership degree 
of the possible value of fuzzy number in fuzzy mathematics. For instance, sup-
pose when 0ϕ ϕ= , ( ), , ,r tψλ ρ ϕ



  takes maximum value ( )max
0, , ,r tψλ ρ ϕ





. 
Then, ( ), ,r tα ρ   can be assigned the value ( )max

0, , ,r tψλ ρ ϕ




, i.e. 

   ( ) ( )max
0, , , , , .r t r tψα α ρ λ ρ ϕ= =



 

 (see Figure 4) 

Thus, the membership function of ρ  has been got.  
By using ( ), ,r tα ρ  , the membership function of the fuzzy wave strength 
( ) ( ) 2

, ,I r t r tψ= 



  can be obtained  

( ) ( ) ( ), , , , , , ,r t I r t f I r tα α ρ α= = =
    

where I, the membership degree of which is α , represents a possible value of 
the fuzzy wave strength I  of the event ( ),r t . 

By using ( ), ,f I r t , the fuzzy quantum probability (density) of the event 
( ),r t  can be obtained. The specific method is as follows: 
 

 

Figure 4. This figure shows how the membership function of ( )1 1,r tψ 

  of a specific event 

( )1 1,r t  is determined from that of ( )1 1,r tψ 

  (this fuzzy wave function is mentioned in 

Figure 3). This is by finding the maximum value of ( )1 1, , ,r tψλ ρ ϕ




 in the case of a fixed 

value of ρ . The bright white line in the figure is the function curve of ( )1 1, ,r tα ρ  . 
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( ) ( ) ( )1, , , , , .f I r t I f r t I r tαα α−= → = =
  

 

This is a possible function form (the membership degree of this form is α ) of 
the fuzzy wave strength ( ),I r t .  

From ( ),I r tα
 , one possible quantum probability (density) (the membership 

degree of this quantum probability (density) is α ) of the event ( ),r t  can be 
derived  

( ) ( ), , .r t C I r tα α αω =
   

where Cα  is the normalization constant. 
Thus, the fuzzy quantum probability (density) of the event ( ),r t  has been 

obtained 

( ) ( )[ ]0,1
, ,r t r tαα

ω α ω
∈

= ∫
 

 , 

In addition, the membership function of ( ),r tω 

  can be easily solved as fol-
lows: 

Order ( ) ( ), , ,r t r tαω ω ω α= =
  , then one can have ( ) (1 , , , ,r t rα ω ω α ω−= =

 

)t . This is the membership function for ( ),r tω 

 . Thus, ( ),r tω 

  can be rewrit-
ten as 

( ) ( )[ ]0,1
, , ,r t r t

α
ω α ω ω

∈
= ∫

 

 . 

3. The Membership Function Equation 

Next, an equation will be established for the membership function ( ), , ,R I r tψλ 
 .

 
The membership function can be normalized, i.e. it should satisfy  

( ) ( )d d , , , , 1,R I R I r t u r tψλ∞
=∫ 

                    (1) 

where ( ) ( ), d d , , ,u r t R I R I r tψλ∞
= ∫ 

  . The normalized membership function reads 
as 

( ) ( ) ( ), , , , , , , .R I r t R I r t u r tψ ψµ λ=
 

    

Schrödinger equation is ti Hψ ψ∂ = . Order R iIψ = + , R IH H iH= + .  
Then Schrödinger equation turns into real form  

( ) ( )
( ) ( )

, 2

. 3
t I R

t R I

R H R H I

I H R H I

∂ = +

∂ = − +





 

As we know, the deterministic mechanical quantity in classical mechanics can 
be considered as a statistical average of the corresponding indeterministic me-
chanical quantity in quantum mechanics. Similarly, here one can regard the 
clear or deterministic wave function in quantum mechanics as the result of the 
non-fuzzification [10] [11] of fuzzy wave function 

( ) ( )

( ) ( )

, , , d d , 4

, , , d d . 5

R R R I r t R I

I I R I r t R I

ψ

ψ

µ

µ
∞

∞

 =



=


∫

∫








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Putting (4), (5) into (2) and shifting items, one can obtain 

( ) ( ) ( )d d , , , , , , 0.t I RR I R R I r t RH IH R I r tψ ψµ µ
∞

 ∂ − + = ∫  

 

  

Therefore, the integrand in the bracket is a function whose integral is zero about 
R, I.   

Order 

( ) ( ) ( ) ( )1, , , , , , , , , .t I RR R I r t RH IH R I r t g R I r tψ ψµ µ∂ − + =
 

  


     (6) 

Then ( )1 , , ,g R I r t  satisfies 

( )1d d , , , 0.R Ig R I r t
∞

=∫
  

Similarly, by bringing (4) and (5) into (3), one can derive 

( ) ( ) ( ) ( )2, , , , , , , , , .t I RI R I r t IH RH R I r t g R I r tψ ψµ µ∂ − − =
 

  


   (7) 

where ( )2 , , ,g R I r t  satisfies 

( )2d d , , , 0.R Ig R I r t
∞

=∫
  

Order 

( ) ( ) ( ) ( )1 2, , , , , , , , , , , , , .R I r t R R I r t R I r t I R I r tψ ψµ µ µ µ= =
 

     

Then (6), (7) can be written as  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 1

2 2 1 2

, , , , , , , , , , , , ,

, , , , , , , , , , , , .
t I R

t I R

R I r t H R I r t H R I r t g R I r t

R I r t H R I r t H R I r t g R I r t

µ µ µ

µ µ µ

∂ = + +

∂ = − +

   

 

   

 

 

Again order 

( )
( )

( )
( )

1 1

2 2

, , , , , ,
, , .

, , , , , ,
I R

R I

R I r t g R I r t H H
R I r t g R I r t H H

µ
µ
     

= = =     −    

 

 

g Hµ  

Then the above equations about ( ) ( )1 2, , , , , , ,R I r t R I r tµ µ   can be simply 
written in a matrix form 

.t∂ = +H gµ µ                            (8)
 

This is the membership function equation, which determines the evolution of 
the fuzzy wave function ( ),r tψ 

 , accompanied by constraints:     

( ) ( )
( )
( )

1 2

1

2

, , , , , , ,

d d , , , 0,

d d , , , 0.

I R I r t R R I r t

R Ig R I r t

R Ig R I r t

µ µ =
 =


=

∫
∫

 





                 (9) 

Equation (8) is a nonhomogeneous equation. The nonhomogeneous item g  
can be interpreted as fuzzy source which leads to the blurring and uncertainty of 
probability and probability wave. If there is no fuzzy source, there is no fuzziness 
of probability and probability wave, and Equation (8) loses meaning. This point 
can be proved as follows:  

In fact, by ordering 0=g  in Equation (8), one can obtain 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

2 2

2 2

2 2

, , , , , , 0,

, , , , , , 0

, , , , , ,

, , , 0

, , when

when

, 0, 0

, , , 0. 0

t I R

t I R

I R I R

R

R R I r t RH IH R I r t

I R I r t IH RH R I r t

RIH I H R I r t RIH R H R I r t

I R H R I r t

R I r t I R

R I r t I R

ψ ψ

ψ ψ

ψ ψ

ψ

ψ

ψ

µ µ

µ µ

µ µ

µ

µ

µ

∂ − + =

∂ − − =

⇒ + = −

⇒ + =

 = + ≠⇒ 
≠ = =

 

 

 







 



 



 







 

It can been seen that ( ),r tψ 

  has only one value ( ), 0r tψ =


 . This is a mea-
ningless result. Thereby, Equation (8) without fuzzy source is meaningless. So, 
the equation of the membership function of the fuzzy wave function only can be 
a nonhomogeneous one. 

4. The Membership Degree Amplitude and Fuzzy Probability  
Amplitude 

In order to discuss the normalization of fuzzy wave function and the calculation 
of fuzzy probability amplitude, a new concept is now introduced, named “mem-
bership degree amplitude” ( ), ,r t Cψχ ψ ∈





 
(C  is the plural set), the square of 

the modulus of which denotes the membership degree, i.e. 

( ) ( ) [ ]2
, , , , 0,1 ,r t r tψ ψχ ψ λ ψ= ∈

 

   

From ( ), ,r tψχ ψ


 , it can be derived that 

( ) ( ) ( )1, , , , , .r t r t r tψ ψ χχ χ ψ ψ χ χ ψ−= → = =
 

  

 

This is one possible form (the membership degree of this form is 2χ ) of 
( ),r tψ 

 . And ( ),r tψ 

  can be denoted as 

( ) ( )
[ ]2

2

, 0,1

, ,
C

r t r tχ
χ χ

ψ χ ψ
∀ ∈ ∈

= ∫
 

 . 

If for Cχ∀ ∈ , the wave function ( ),r tχψ   is normalized (multiplying by the 
normalization constant Cχ ) 

( ) ( ) ( ), , , ,r t r t C r tχ χ χ χψ φ ψ→ =
    

then the fuzzy wave function ( ),r tψ 

  is normalized 

( ) ( ) ( )
[ ]2

2

, 0,1

, , ,
C

r t r t r tχ

χ χ

ψ φ χ φ
∀ ∈ ∈

→ = ∫
  



 . 

The membership degree amplitude of ( ),r tφ 

  can be derived  

( ) ( ) ( ) ( )1, , , , , , , .r t r t r t r tχ φφ φ φ χ χ φ φ χ φ−= = → = =


   

 

The membership degree of ( ),r tφ 

  is ( ) ( )
2

, , , ,r t r tφ φχ φ λ φ=
 

 

. From ( , ,rφλ φ




)t , the fuzzy quantum probability (density) ( ),r tω 

  can be derived with the 
train of thought in Section 2 of this paper. 

 Now one can discuss the calculation problem of fuzzy probability amplitude 
( )nc t  which is defined by 

( ) ( ) ( ), ,n
n

nr t c t rφ ψ= ∑ 



                     (10) 
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or 

( )
[ ]

( ) ( )
[ ]2 2

2 2

, 0,1 , 0,1

, n
n

n
C C

r t c t rχ χ

χ χ χ χ

χ φ χ ψ
∀ ∈ ∈ ∀ ∈ ∈

=∫ ∫ ∑  , 

i.e.  

( ) ( ) ( )

( ) ( )
[ ] ( ) ( )[ ]2 2

2
2

*
, 0,1 , 0,1

 , ,

.
d ,

n n

n n
nC C

n
r t c t r

c t c t
r r t

χ χ

χ
χχ χ χ χ

φ ψ

χ
χ

τψ φ
∀ ∈ ∈ ∀ ∈ ∈

 =




= =


∑

∫ ∫ ∫

 



 

 

where ( )n rψ   is the normalized eigenfunction of the mechanical quantity op-
erator F̂ , satisfying ( ) ( )ˆ

n n nF r F rψ ψ=
 

. 
It should be pointed out that the sum rule in Equation (10) about the fuzzy 

plurals is different from the general that of fuzzy plurals, the operation rule in 
(10) need ensure the normalization of ( ),r tφ 

 .  
The fuzzy probability from ( )nc t  can be solved as follows:  

( ) ( ) ( ) ( )1, , , , , , .
nn n n c nc c t c F t c c F t c F tχ χ χ χ−= = → = =


 

The membership degree of ( )nc t  is ( ) ( )
2

, , , ,
n nc n c nc F t c F tχ λ=
 

. From ( ,
nc
cλ



),nF t , the fuzzy quantum probability ( ) ( )2
n nc t P F F= =

  can be derived with 
the train of thought in Section 2 of this paper.  

Next, an equation will be established for the normalized membership degree 
amplitude function ( ), ,r tφχ φ





 which satisfies  

( ) ( )
2

, , , , .r t r tφ φχ φ µ φ=
 

 

 

where ( ), ,r tφµ φ




 
is the normalized membership function which satisfies Equa-

tion (1). 
For simplicity, the real number form is adopted. Order R iIφ = + , then
( ), ,r tφχ φ




 can be equivalently rewritten as  

( ) ( ) ( ), , , , , , , , , ,R I r t u R I r t iv R I r tφχ = +


  

 

here u  and v  are the real and imaginary parts of ( ), ,r tφχ φ




 respectively. 
And then 

( ) 2 2, , .r t u vφµ φ = +


                      (11) 

Putting (11) into (8), one can derive out  

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

2 2
1

2 2
2

2 , , , , 12

2 , , , . 13

I R

I R

R uu vv RH IH u v g R I r t

I uu vv IH RH u v g R I r t

 + − + + =


+ − − + =



 




 


 

By ( ) ( )12 13R I× + × , ( ) ( )13 12R I× − × , one can respectively obtain   

( )( ) ( ) ( )
( ) ( )

2 2 2 2 2 2

1 2

2

, , , , , , ,
IR I uu vv R I H u v

Rg R I r t Ig R I r t

+ + − + +

= +

 


 

 

( ) ( ) ( ) ( )2 2 2 2
2 1, , , , , , .RR I H u v Rg R I r t Ig R I r t+ + = −

 

  

By sorting out the above two formulas, an equation set is established for 
( ), ,r tφχ φ



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( ) ( ) ( )

( ) ( )

2 2
1

2 2
2

2 , , , ,

, , , .

I

R

uu vv H u v f R I r t

H u v f R I r t

 + − + =


+ =



 






            (14) 

Here  

( ) ( ) ( )
( )

( ) ( ) ( )

1 2
1 2 2

2 1
2 2 2

, , , , , ,
, , , ,

2

, , , , , ,
, , ,

Rg R I r t Ig R I r t
f R I r t

R I

Rg R I r t Ig R I r t
f R I r t

R I

 +
=

+

 −

=
 +

 



 



 

can be regarded as the fuzzy source.  
Now let me prove the rationality of the above designing fuzzy probability am-

plitude. This only need prove that the result of the non-fuzzification of fuzzy 
probability amplitude satisfies the equation of probability amplitude in quantum 
mechanics. A derivation as follows can be done: 

1) The equation of probability amplitude in quantum mechanics is  

.n nm m
m

i c H c= ∑

                          (15) 

Order n n nc X iY= + , nm nmR nmIH H iH= + . Then (15) turns into real form 

( )

( )

d ,
d
d .
d

n nmR m nmI m
m

n nmR m nmI m
m

X H Y H X
t

Y H X H Y
t

 = +

 = − +


∑

∑





                 (16) 

Here  

( ) ( )
( ) ( )

d ,

d .
nmR n R m I m n R m I m

nmI n R m I m n R m I m

H R H R H I I H I H R

H R H I H R I H R H I

τ

τ

  = − + + 


 = + − −  

∫
∫

 

2) By solving (14), it can be obtain that       

( )
( )

, , , ,

, , , .

u u R I r t

v v R I r t

=


=





                       (17) 

By solving (17), one can obtain  

( )
( )

, , , ,

, , , .

R R u v r t

I I u v r t

=


=





 

Thus, ( ) ( ) ( ), , , , , , ,r t R u v r t iI u v r tχφ = +
   . 

So,  

( ) ( ) ( )
( ) ( ) ( ) ( )

d ,

d , , , d , , , .
n n

n n

c t r r t

r R u v r t i r I u v r t
χ χτψ φ

τψ τψ

∗

∗ ∗

=

= +

∫
∫ ∫

 

   

       (18)
 

Order   

( ) ( ) ( )
( ) ( ) ( )

, , , , ,

.
n n n

n n n

c t X u v t iY u v t

r R r iI r
χ

ψ

= +


= +
  

 

Bringing them into (18), one can derive 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, , d , , , d , , , ,

, , d , , , d , , , .
n n n

n n n

X u v t R r R u v r t I r I u v r t

Y u v t R r I u v r t I r R u v r t

τ τ

τ τ

 = +


= −

∫ ∫
∫ ∫

   

   

      (19) 

By using (19), the real part of the non-fuzzification of ( )nc t  can be obtained 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2

2 2

d d , ,

d d d , , ,

d d d , , ,

d , , ,

n n

n

n

n n

X t u v u v X u v t

R r u v u v R u v r t

I r u v u v I u v r t

R r R r t I r I r t

τ

τ

τ

= +

= +

+ +

 = + 

∫
∫ ∫
∫ ∫

∫

 

 

              (20)

 

Similarly, the imaginary part of the non-fuzzification of ( )nc t  is 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2d d , , d , , .n n n nY t u v u v Y u v t R r I r t I r R r tτ  = + = − ∫ ∫
     

3) By differentiating the variable t  at both sides of (20), and by using (2) and 
(3), it can be derived out that    

( ) ( ) ( )d .n n I n R n R n IX t R H I H R R H I H Iτ  = − + + ∫

          (21) 

In quantum mechanics 

( ) ( ) ( ) ( ) ( ) ( )( ), , , m m m m m m
m m

r t R r t iI r t c t r X iY R iIφ ψ= + = = + +∑ ∑     

( ) ( )
( ) ( )

, ,

, .

m m m m
m

m m m m
m

R r t X R Y I

I r t X I Y R

 = −
→ 

= +


∑

∑





                (22) 

Substituting (22) into (21), one can get 

( ) ( ) ( ){
( ) ( ) }

d

.

n n I m R m n R m I m m
m

n R m I m n R m I m m

X t R H R H I I H R H I X

R H R H I I H I H R Y

τ  = + − − 

 + − + + 

∑∫



 

Similarly, it can be derived that 

( ) ( ){
( ) ( ) }

d

.

n n R m I m n R m I m m
m

n R m I m n R m I m m

Y R H R H I I H I H R X

R H I H R I H R H I Y

τ  = − − + + 

 + + − − 

∑∫



 

These two results are completely consistent with (16), so the above design of 
fuzzy probability amplitude is rational. 

5. Conclusions 

The subject of this paper is to do the work of “the fuzzification of quantum 
probability” with the method of fuzzy mathematics. The mathematical frame-
work of fuzzy quantum probability has been established. It includes fuzzy wave 
function depicted by a membership function, the equation of the membership 
function of deciding the evolution of fuzzy wave function, fuzzy probability am-
plitude computed by a membership degree amplitude, the equation of the 
membership degree amplitude, the method of obtaining fuzzy probability from 
fuzzy wave function and fuzzy probability amplitude. 
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Unlike the work on using fuzzy mathematics to understand quantum me-
chanics is equivalent to quantum probability in a certain sense, my work on 
bluring quantum probability with the method of fuzzy mathematics in this paper 
is not equivalent to quantum probability. Quantum probability theory only ad-
vocates the uncertainty of events, while probability and probability waves are 
determined. Fuzzy quantum probability theory advocates not only the uncer-
tainty of events, but also the uncertainty (fuzziness, unclearness) of probability 
and probability wave. The core concepts of quantum probability theory are 
probability wave and wave equation, while the core concepts of fuzzy quantum 
probability theory are membership degree (membership degree amplitude) and 
membership degree equation (membership degree amplitude equation). 
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Appendix 1: The Main Used Variables in the Paper 

Sign of the variable Name of the variable Meaning of the variable 

( ),r tψ 

  fuzzy wave function 
Describing the fuzziness or inaccuracy of 
the values of the wave function 

( ), ,r tψλ ψ


  membership function 

Describing the distribution of the  
credibility or truth value of the fuzzy 
probability wave taking all the possible 
values about the event ( ),r t  

( ), , ,r tψλ ρ ϕ


  the equivalent form of mem-
bership function 

ditto 

( ), , ,R I r tψλ 

  ditto ditto 

( ),r tω 

  fuzzy quantum 
probability (density) 

Describing the fuzziness or inaccuracy of 
the values of the quantum probability 
(density) 

( ), , ,R I r tψµ 

  the normalized 
membership function 

Describing the relative distribution of the 
credibility or truth value of the fuzzy 
probability wave taking all the possible 
values about the event ( ),r t  

g  fuzzy source 
Describing the distribution of the factors 
which lead to the fuzziness or inaccuracy 
of quantum probability 

( ) ( ), , , , , ,r t R I r tψ φ
χ ψ χ




 

 
membership degree  
amplitude 

There is no physical meaning in itself, and 
the square of its modulus represents the 
degree of membership. This is similar to 
probability wave or probability amplitude 

( ) ( ), , , , , , ,u R I r t v R I r t   
real and imaginary parts of 

( ), , ,R I r t
φ

χ


   

( ),r tχψ   
one possible form with a 
membership degree  
amplitude χ  of ( ),r tψ 

  

Representing that the credibility or truth 
value of ( ),r tψ 

  taking such a form

( ),r tχψ   is 
2χ  

( ),r tφ 

  
the normalized fuzzy wave 
function 

Being similar to the above explanation 

( ),r tχφ
  

being similar to the name of 
( ),r tχψ   Being similar to the above explanation 

( )nc t  fuzzy probability amplitude Being similar to the above explanation 

( )nc tχ  
being similar to the name of 

( ),r tχψ   Being similar to the above explanation 

( ) ( ), , , , ,n nX u v t Y u v t  
real and imaginary parts of 

( )nc tχ   

( )nP F F=  
the fuzzy probability for 

nF F=  

Describing the fuzziness or inaccuracy of 
the values of the quantum probability for 

nF F=  

( ) ( ),n nR r I r   
Real and imaginary parts of 

( )n rψ    

( ) ( ), , , , ,n nX u v t Y u v t  
Real and imaginary parts of 

( )nc t   

,nmR nmIH H  
real and imaginary parts of 

nmH   
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Appendix 2: The Important Concepts in Fuzzy Mathematics 

Since famous American automatic control expert Zadeh, L.A. pioneered the 
theory of fuzzy sets. Fuzziness has caused widespread concern and research. Its 
application has become increasingly widespread and in-depth. Here several pairs 
of important concepts are introduced. 

1) Fuzziness and clarity 
This pair of concepts is used to describe the property and state of things. 

“Clarity” refers to an unequivocal and certain property-state, whereas “Fuzziness” 
to an equivocal and uncertain one. For instance, “far larger than 5”, “pretty girl”, 
“tall man” etc. are all fuzzy conceptions and there is no categorical or unambi-
guous boundary about them. “Larger than 5”, “Chinese people”, “round table” 
etc. are all clear concepts with distinct or certain boundaries about them. 

2) Fuzziness and chance 
These two concepts both refer to uncertainty. However, the former means 

uncertain property-state of things, whereas the latter means uncertain the results 
of the event. The most critical quantity to depict fuzziness is “membership de-
gree” (look below), whereas the most critical quantity describing chance is 
“probability”. 

3) General set and fuzzy set 
There is a categorical boundary about classical set: an object either belongs to 

a classic set or does not belong to this classic set, whereas there is not a clear 
boundary about fuzzy set: the membership relation about an object belongs to a 
fuzzy set is uncertain, and we only can say how large is the degree of member-
ship of an object for a fuzzy set? Order U represents a collection of some objects, 
called “discussion domain”. For a classical set A U⊆ , we may use a characteris-
tic function ( )A xχ  to indicates the membership degree for x A∈ . When 

( ) 1A xχ = , x belongs to A. When ( ) 0A xχ = , x does not belong to A. From this 
we may define a fuzzy set A . On the discussion domain U, A  is depicted us-
ing a real-valued function [ ]: 0,1A Uµ →



. 
For x U∈ , ( )A xµ



 is called the membership degree for x A∈  , whereas 
the function ( )A xµ



 is named “membership function” of A . Because of 
( ) [ ]0,1A xµ ∈



, it means that x does not Completely absolutely belong to A , i.e. 
x belongs to A  only in a certain of degree. This membership relation is inex-
plicit. A fuzzy set is entirely depicted by its membership function. 

If U is the finite set, A  is marked in the form 

( ) ( ) ( ) ( )1 2

11 2

.
n

n iA A A A

in i

x x x x
A

x x x x
µ µ µ µ

=

= + + + = ∑   



  

when U is the infinite set, A  can be expressed as ( )Ax U
A x xµ

∈
= ∫ 

 . Here 
, , /∑ ∫  respectively is not summation, integration and division. 
4) Fuzzy number and fuzzy plural 
Normal fuzzy set: For a fuzzy set A , if there is at least one element x A∈  , 

satisfying ( ) 1A xµ =


. Then A  is called “normal fuzzy set”. 
Convex fuzzy set: For a fuzzy set A , if x y z∀ < < , always satisfying 
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( ) ( ) ( )2 1 3,A A Ax x xµ µ µ ≥    

. Then A  is called “convex fuzzy set”. 
Fuzzy number: A normal convex fuzzy set A  on real domain is called 

“fuzzy number”. 
Fuzzy plu-set: A fuzzy set Z  on plural domain is called “fuzzy plu-set”. 
Normal fuzzy plu-set: For a fuzzy plu-set Z , if there is at least one element 

z Z∈  , satisfying ( ) 1Z zµ =


. Then Z  is called “normal fuzzy plu-set”. 
Convex plu-set: For a classical set Z on plural domain (plural plane), if the 

connection of any two points in the set Z is entirely inside this set. Then Z is 
called “convex plu-set”. 

Convex fuzzy plu-set: For a fuzzy plu-set Z , if its any cut set is Convex 
plu-set. Then Z  is called “convex fuzzy plu-set”. 

Fuzzy plural: A normal convex fuzzy plu-set Z  is called “fuzzy plural”. 
5) Modulus of fuzzy plural Z : Modulus of fuzzy plural Z  is written as 
Z . Its membership function is ( ) ( )

,
sup ZZ

z C z r
r zλ µ

∈ =
=





, i.e. the supremum of 
( )Z zµ



. 
6) Fuzzification and non-fuzzification 
Fuzzification: Fuzzification is a process which blurs the clear, certain amount. 

We can have such a concise understanding: many quantities, which are thought 
to be clear and certain ones, factually are not uncertain at all. They have great 
uncertainty. If the uncertainty results from inaccuracy, ambiguity, the variable 
may be fuzzy and should be depicted using fuzzy number. 

Non-fuzzification: Non-fuzzification is a process of converting the fuzzy 
amount into a certain one. The most popular non-fuzzification method is “cen-
troid method” with the equation [10] [11] 

( ) ( )non-fuzzification d d .A Ax U x U
A x x x x x xµ µ

∈ ∈
→ = ∫ ∫ 



 
7) Fuzzy probability

 After the fuzzification of classical probability, one can obtain fuzzy probability, 
whereas classical probability can be regarded as the result of the non-fuzzification 
of fuzzy probability. 

8) Fuzzification function and fuzzification plural function 
Fuzzification function from X to Y is the ordinary function from X to ( )Yℜ , 

( ):f x f x→  . Where X, Y are the two real number fields, whereas ( )Yℜ  is 
the set of all fuzzy numbers on Y. 

Fuzzification plural function from X to C is the ordinary function from X to 
( )Cℜ , ( ):g x g x→  . Where C is the plural field, whereas ( )Cℜ  is the set of 

all fuzzy plurals on C. 
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