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Abstract 
We report accurate wavelengths for the three most intense lines (resonance 
line: 1s2 1S0 - 1s2p 1P1, intercombination line: 1s2 1S0 - 1s2p 3P1 and forbidden 
line: 1s2 1S0 - 1s2s 3S1) along with wavelengths for the 1s2 1S0 - 1snp1P1 and 
1S0 - 1snp3P2 (2 ≤ n ≤ 25) transitions in He-like systems (Z = 2 – 13). The 
first spectral lines that belong to the above transitions are established in the 
framework of the Screening Constant per Unit Nuclear Charge method. The 
results obtained agree excellently with various experimental and theoretical 
literature data. The uncertainties in wavelengths between the present calculations 
and the available literature data are less than 0.004 Å. A host of new data 
listed in this paper may be of interest in astrophysical and laboratory plasmas 
diagnostic. 
 

Keywords 
He-Like Systems, Semi-Empirical, Screening Constant Per Unit Nuclear Charge, 
Excited States, X-Ray Spectra 

 

1. Introduction 

The helium-like isoelectronic series emit strong X-ray wavelengths. The most 
intense lines of these systems are the resonance line designated by ω (also 
labelled r: 1s2 1S0 - 1s2p1P1), the intercombination lines (x + y) (or i: 1s2 1S0 - 
1s2p3P2, 1) and the forbidden line z (or f: 1s2 1S0 - 1s2s 3S1). These three lines cor-
respond to the transitions between the n = 2 excited shell and the n = 1 ground 
state shell. The determination of these lines is of great interest because the line 
ratios f/i and (f + i)/r provided respectively electrons density (ne ~ 108 - 1013 
cm−3) and electrons temperature (Te ~ 1 - 10 MK) as first shown by Gabriel and 
Jordan [1] and are widely used for collisional solar plasma diagnostics [1] [2] [3]. 
On the other hand, these line ratios enable also to determine the prevailed ioni-
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zation processes (photo-ionization and/or collisional ionization) in the plasma 
[4] [5] [6]. Traditionally, He-like ions f/i line ratios have been used to derive 
electron densities of X-ray line-emitting regions since the populations of the 23P 
level are controlled by collisional excitation from the 23S level [1]. At low den-
sity, the n = 2 states are populated by electron excitation and then decay radia-
tively. Then, the relative intensities of the three lines are independent of the den-
sity [7]. Above the critical density (ncrtit): (ncrit C ~ A, C being the rate coefficient 
for collisional excitation 23S → 23P and A denotes the radiative transition prob-
ability of 23S → 11S), the 23S upper level of the forbidden line becomes to be de-
pleted by collision to the 23P upper levels of the intercombination line. As a re-
sult, when the electron density increases, the intensity of the forbidden line de-
creases strongly whereas that of the intercombination line increases. However, in 
the case of a strong UV radiation, the photo-excitation 23S → 23P becomes no 
negligible. Subsequently, the ratio (f/i) of the forbidden line on the intercombi-
nation line is no longer an electron density diagnostic. As concern the ratio (f + 
i)/r, it is sensitive to electron temperature as the dependence of the collisional 
excitation rates with the temperature for the resonance line is not the same for 
the forbidden and intercombination lines. In short, for plasma dominated by 
photo-ionization and recombination, the forbidden line (or the intercombina-
tion line at high density) becomes much stronger than the resonance line. In the 
case of plasma dominated by collisional ionization and excitation, the resonance 
line is stronger or comparable to the forbidden line and the intercombination 
line [4]. The following considerations indicate that the determination of the 
most intensive lines of Helium-like ions in the X-ray range is of great interest in 
laboratory and astrophysical plasma diagnostics. 

On the experimental side, high-precision measurements of the energy differ-
ence between S and P levels in the helium isoelectronic series were made three 
decades ago. Robinson [7] presents measurements of the 1s2 1S0 - 1snp 1P1 series 
of the Helium isoelectronic sequence for Be III, B IV and C V. Since that time, 
many experiments have been improved. Twelve lines in the region 20 - 100 Å be-
longing to the resonance series of Be III, B IV, C V and O VII are remeasured by 
Svensson [8] using spectrograms. Beiersdorfer et al. [9] use the tokamak plasmas 
from the Princeton Large Torus (PLT) high-resolution Johann spectrometer to re-
port the n = 2 → 1 X-ray transitions of Helium-like potassium, scandium, titanium, 
vanadium, chromium, and iron (Z = 19 - 26) along with wavelengths belonging to 
the 1s2 1S0 - 1snp 1P1 (n = 3 - 5) transitions. Furthermore, Engtröm and Litzén [10] 
generate spectra of C, N and O simultaneously by focusing 1 GW laser pulses on 
targets made of either ammonium hydrogen carbonate or ammonium oxalate 
and then determine the wavelengths of the 1s2 1S - 1snp 1P (n = 2 - 4) resonance 
lines in N VI and O VII (17 - 30 ÅÅ) with uncertainties ranging from 0.2 to 0.7 
mÅÅ. Bartnik et al. [11] measure the wavelengths of the 1snp 1P - 1s2 1S (n = 4 - 
10) transitions in He-like O VII in laser-produced gas puff plasmas with an 
accuracy measurement ranging between (1.5 - 3.0 mÅ). 

On the theoretical side, many techniques are presented. Acaad et al. [12] con-
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struct wave function expanded in a triple series of Laguerre polynomials of the 
perimertric coordinates to study the S and P states of the helium isoelectronic se-
quence and report nonrelativistic wavelengths and total wavelengths including 
mass polarization relativistic and, the Lamb shift corrections for Z = 2 - 9 belong-
ing to the 1snp 1P - 1s21S (n = 2 - 5) transitions. In addition, Safronova et al. [13] 
apply the MZ code through a perturbation theory based on hydrogen-like func-
tions to compute wavelengths of highly charged He-like ions (Z = 6 - 54) for 
both satellite lines (1s2l’nl - 1s2n’l’, n, n’ = 2, 3) and (1snp 1, 3P - 1s2, n = 2, 3 and 
1s2s 1, 3S - 1s2) transitions. Additionally, the plasma simulation code CLOUDY is 
used by Porter [14] to present wavelengths of the UV, intercombination, forbid-
den, and resonance transitions oh He-like ions for Z = 6 - 14 and for Z = 16, 18, 
20, and 26. But, as far as we know, the wavelengths cannot be directly deter-
mined within a single analytical formula for a whole members of He-like ions 
using one of the preceding method or one of the other existing computational 
techniques. Then, analytical spectral lines in two-electron systems such as the 
Balmer or the Lyman spectral lines of the hydrogen-like systems are not yet es-
tablished. In this paper, we intend to present analytical spectral lines belonging 
to the resonance line: 1s2 1S0 - 1s2p 1P1 and intercombination line: 1s2 1S0 - 1s2p 
3P2, 1 along the 1s2 1S0 - 1snp 1P1 (n ≤ 10) transitions in the helium isoelectronic 
sequence. In our study, we use the Screening Constant per Unit Nuclear Charge 
(SCUNC) method suitable in the analysis of atomic spectra [15] [16]. All the re-
sults obtained in the present work compared very well to the available experi-
mental and theoretical literature data. A host of data listed in this paper may be 
of interest in astrophysical and laboratory plasmas diagnostic. 

In section 2, we present the theoretical procedure adopted in this work. In sec-
tion 3, the presentation and the discussion of the results are made. A comparison 
of our results with available experimental and theoretical results is also made. 

2. Theory 
2.1. Brief Description of the SCUNC Formalism 

In the framework of Screening Constant per Unit Nuclear Charge formalism, 
total energy of ( ) 2 1, SN n L π+′

   excited states are expressed in the form (in 
rydberg units) 

( ) ( ) 22 1 2 2 1
2 2

1 1; 1 ; ;S SE N n L Z N n L Z
N n

π πβ+ +  ′ ′= − + −   
   

.     (1) 

In this equation, the principal quantum numbers N and n, are respectively for 
the inner and the outer electron of He-isoelectronic series. In this equation, the 
β-parameters are screening constant by unit nuclear charge expanded in inverse 
powers of Z and given by 

( )2 1

1

1; ;
kq

S
k

k
N n L Z f

Z
πβ +

=

 ′ = × 
 

∑  .               (2) 

where ( )2 1; S
k kf f N n L π+′=    are parameters to be evaluated empirically. 
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2.2. Energies for the Ground State 

For the ground state, Equations (1) and (2) give 

( )
2

2 1 2 31 2
0 2 31 ; 1 1

ff fE s S Z
Z Z Z

  = − + − − −     
.           (3a) 

Using the experimental total energy of He I, Li II and Be III respectively (in 
eV) −79.01 [17], −198.09 [18] and −371.60 [18], the screening constants in Equ-
ation (4) are evaluated by use of the infinite rydberg energy 1 Ryd = 13.605698 
eV. We find then 

( )
2

2 1 2
0 2 3

0.625085938 0.031315676 0.0598497121 ; 1 1E s S Z
Z Z Z

  = − + − − −     
. (3b) 

2.3. Spectral Lines of the 11S0 - 1s2p 1P1 Resonance Transition 

During the 1s2 1S0 - 1s2p 1, 3P1 transitions, the energy of the system varies as 

( ) ( )1,3 2 1
1 01 2 ; 1 ;hcE E s p P E s S

λ
∆ = = − .              (4) 

Using Equations (1) and (3b), we obtain from Equation (4) 
For 2 ≤ Z ≤ 15 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2 3

22
2 0 1 0 02 1

2 3

22 2 2 22
1 0 0 1 0 0

4 5

0.625085938 0.031315676 0.0598497121 1

11 1
4

hc Z
Z Z Z

f Z Z f Z Z Z ZfZ
Z Z Z

f Z Z Z Z f Z Z Z Z
Z Z

λ

  = + − − −     
  ′× − × − × −− + − − − 

′ ′× − × − × − × −  − −   

   (5a) 

In these equations, Z0 and 0Z ′  denote the nuclear charge of the helium-like 
systems used in the empirical determination of the if ′ —screening constants. 
On the basis of 346.626276 10 J sh −= × ⋅ , 82.99792458 10 m sc = ×  and  

191.602189 10 Ce −= ×  and using for 1s2 1S0 - 1s2p3P1 the experimental wave-
lengths of He I (Z0 = 2) and that of Li II ( 0 3Z ′ = ) respectively 584.3339 Å [19] and 
199.280 Å [7], Equation (5a) gives 1 1.004778731f =  and 2 0.026277861f = . We 
obtain then explicitly 

( ) ( ) ( ) ( )

( ) ( )

2
2

2 3

2
2

2 2 2

3 4

22 2

5

1 0.625085938 0.031315676 0.0598497121 1

1 1 21 1 1.004778731 0.026277861
4

2 3 2 3
0.000690525 0.000690525

2 3
0.026277861 10973644.9

Z
Z Z Z

ZZ
Z Z

Z Z Z Z
Z Z

Z Z
Z

λ

  = + − − −     
 −− + − −



− × − − × −
− −

− × −  − ×  

 (5b) 
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In Equation (5b), wavelengths are expressed in meters (m) and the infinite 
rydberg energy 1 Ryd = 13.605698 eV is used along with 1 eV =1.602189 × 10−19 
J. So Ryd/hc = 10973644.9 (m). 

2.4. Spectral Lines of the 1s2 1S0 - 1s2p3P1  
Intercombination Transition 

Using Equations (1) and (3b), Equation (4) yields for the 1s2 1S0 - 1s2p 3P1 inter-
combination transition 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2 3

2 2
2 0 2 0 02 1

2 3

22 2 2 32 2
2 0 0 2 0 0

4 5

0.625085938 0.031315676 0.0598497121 1

11 1
4

hc Z
Z Z Z

f Z Z f Z Z Z ZfZ
Z Z Z

f Z Z Z Z f Z Z Z Z
Z Z

λ

  = + − − −     
  ′′ ′′ ′× − × − × −′′− + − − −  

′′ ′ ′′ ′× − × − × − × −  − −   

  (6a) 

Here again, Z0 and 0Z ′  denote the nuclear charge of the helium-like systems 
used in the empirical determination of the if ′′ —parameters. For 1s2 1S0 - 1s2p3P1, 
the experimental wavelengths of He I (Z0 = 2) and that of B IV ( 0 5Z ′ = ) are re-
spectively equal to 591.4121Å [19] and 61.0880 Å [9] as quoted in Ref. [12], we 
obtain from Equation (6a) 1 0.967951498f ′′=  and 2 0.06781546f = − .  
Equation (6a) becomes then 

( ) ( ) ( ) ( )

( ) ( )

2
2

2 3

2
2

2 2 2

3 4

22 3

5

1 0.625085938 0.031315676 0.0598497121 1

1 1 21 1 0.967951498 0.06781546
4

2 5 2 5
0.004598936 0.004598936

2 5
0.004598936 10973644.9

Z
Z Z Z

ZZ
Z Z

Z Z Z Z
Z Z

Z Z
Z

λ

  = + − − −     
 −− + − +


− × − − × −

− −

− × −  − ×  

  (6b) 

2.5. Spectral Lines of the 1s2 1S0 - 1s2s 3S1 Forbidden Transitions 

For the 1s2 1S0 - 1s2s 3S1 forbidden transitions, the spectral lines are given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2
2

2 3

2
2 0 2 0 02 1

2 3

2 2 32 2
2 0 0 2 0 0

4 5

232
2 0 0

6

0.625085938 0.031315676 0.0598497121 1

11 1
4

hc Z
Z Z Z

f Z Z f Z Z Z ZfZ
Z Z Z

f Z Z Z Z f Z Z Z Z
Z Z

f Z Z Z Z
Z

λ

  = + − − −     
  ′′ ′′ ′× − × − × −′′− + − − −  

′′ ′ ′′ ′× − × − × − × −
− −

′′ ′× − × −  −   

   (7a) 
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For 1s2 1S0 - 1s2s 3S1, the experimental wavelengths from NIST [20] for He I 
(Z0 = 2) and for Li II ( 0 3Z ′ = ) are respectively equal to 625.563 Å and 210.069 Å. 
Equation (7a) provides then 1 0.816109425f ′′=  and 2 0.079252785f ′′= − .  
Equation (7a) becomes explicitly 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

2 3

2
2

3 3

2 2 2

4

0.625085938 0.031315676 0.0598497121 1

0.079252785 21 0.8161094251 1
4

0.006281003 2 3 0.006281003 2 3

0.006281003 2 3 0.006281003 2

hc Z
Z Z Z

Z
Z

Z Z

Z Z Z Z
Z Z

Z Z Z Z
Z

λ

  = + − − −     

 × −− + − −  

× − × − × − × −
− −

× − × − × − ×
− −

( )

( ) ( )

3

5

23

6

3

0.006281003 2 3
10973644.9

Z

Z Z
Z

−

× − × −  − ×  

 (7b) 

2.6. Spectral Lines of the 1s2 1S0 - 1snp1P1 Transitions 

Following the same reasoning above, we express from Equations (1) and (2) total 
energies belonging to the 1snp1P1 levels 

( ) ( )
( )

( ) ( ) ( ) ( )

3 01 2 1 2
1 2 2 2

22 2 2
3 0 0 3 0 0

3 4

11 ; 1 1
1

f Z Zf fE snp P Z
Z n Zn Z n

f Z Z Z Z f Z Z Z Z
Z Z

  × −= − + − − −  −

′ ′× − × − × − × −  − −   

  (8a) 

For the 1s2 1S0 - 1snp1P1 transitions, we get 

( )
( )

( ) ( ) ( ) ( )

2
2

2 3

3 02 1 2
2 2 2

22 2 2
3 0 0 3 0 0

3 4

0.625085938 0.031315676 0.0598497121 1

11 1
1

hc Z
Z Z Z

f Z Zf fZ
Z n Zn Z n

f Z Z Z Z f Z Z Z Z
Z Z

λ

  = + − − −     

  × −− + − − −  −

′ ′× − × − × − × −  − −   

   (8b) 

For 1s2 1S0 - 1s3p 3P1 and 1s2 1S0 - 1s4p 3P1 transitions, the corresponding ex-
perimental wavelengths of Li II (Z0 = 3) are respectively equal to 178.014 Å and 
171.575 Å [7]. In addition, for Be III ( 0 4Z ′ = ), the wavelength for to the 1s2 1S0 - 
1s3p 3P1 transition is 88.314 Å [7]. Using these wavelengths, we get from Equa-
tion (8b) 1 0.011679205f = , 2 1.003675341f = , and 3 0.008177868f = . The 
spectral lines belonging to the 1s2 1S0 - 1snp1P1 transitions is then in the shape. 
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( )

( ) ( )

( ) ( )

2
2

2 3

2
2

2

2 2 3

22 2

4

1 0.625085938 0.031315676 0.0598497121 1

1 1 11 1 0.011679205 1.003675341
1

3 430.008177868 0.008177868

3 4
0.008177868 10973644.9

Z
Z Z Z

Z
Z n Zn

Z ZZ
Z n Z

Z Z
Z

λ

  = + − − −     
 − + − −  −

− × −−
− −

− × −  − ×  

    (8c) 

Before presenting and discussing the results obtained in this work, let us first 
move on explaining how electron-electrons and relativistic effects are accounted 
in the present SCUNC formalism. As mentioned previously [16] in the framework 
of the SCUNC formalism, all the relativistic corrections in many electron 
systems are incorporated in the  β-parameters. To enlighten this point, let us 
move on considering the main relativistic terms in the Hamiltonian operator of 
Q-electron systems. For Q-electron systems, the Hamiltonian can be expressed 
as follows 

0H H W= + .                         (9) 

In this expression, H0 denotes the nonrelativistic Hamiltonian and W is the 
sum of the perturbation operators which includes mainly correction to kinetic 
energy (Wkin), the Darwin term (WD), mass polarization (WM), spin-orbit cor-
rections (Wso), spin-other orbit corrections (Wsoo) and spin-spin corrections 
(Wss). For Q-electron systems, the non-relativistic Hamiltonian and the pertur-
bation operators are explicitly the following 
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∑
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s s . 

In these expressions, α denotes the fine structure constant and M is the nu-
clear mass of the Q-electron systems. The energy value of the Hamiltonian (9a) 
is in the form 

0E E w= + .                        (9b) 

with 

kin D M so soo ssw W W W W W W= + + + + + .          (9c) 
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For a-given Nl1, nl2 configuration of He-like ions where N, n, and l1, l2, are re-
spectively principal and orbital quantum numbers, the total energy is given by 

( )
2 2 22 1

1 22 2 1 ; ;SZ ZE Nl nl L Z
N n

πβ + = − − −  .            (9d) 

Developing Equation (9d), we obtain 

( ) ( )
2 2 2

2 1 2 1
1 2 1 22 2 2 ; ; 2 ; ;S SZ Z ZE Nl nl L Z Nl nl L Z

N n n
π πβ β+ + = − − + −  .  (9e) 

Equation (9e) can be rewritten in the form 

[ ]
2 2 22

2 2 2
1

2i i
i i

Z Z ZE
N n

β β
ν=

= − − + × −∑ . 

This equation can be expressed in the same shape than Equation (9b) 

0E E w= + . 

where 

[ ]

2 2

0 2 2

22

2
1

2i i
i i

Z ZE
N n
Zw β β
ν=


= − −



 = × −


∑
                    (10) 

Using (9c) and the last equation in (10), we find 

[ ]
22

kin D M so soo ss2
1

2i i
i i

Z W W W W W Wβ β
ν=

× − = + + + + +∑ .   (11) 

Equation (11) indicates clearly that, in the framework of the SCUNC-formalism, 
all the relativistic corrections are incorporated in the β-screening constants per 
unit nuclear charge. In the structure of the independent particles model disre-
garding all the relativistic effects, total energy is given by E0. Subsequently w = 0. 
This involves automatically β = 0. Then, all relativistic effects are accounted im-
plicitly in general Equation (1) via the β-parameters expanded in inverse powers 
of Z as shown by Equation (2) where the ( )2 1; S

k kf f Nlnl L π+′= —screening 
constants are evaluated empirically using experimental data incorporating all the 
relativistic effects and all electrons-electrons effects in many electron systems. 

3. Results and Discussions 

The present SCUNC wavelengths predictions for the wavelengths belonging to 
the 1s2 1S0 → 1snp 1P1 (3 ≤ n ≤ 13) transitions in He-like (Z = 3 - 38) ions are 
quoted in Table 1. Table 2 Presents a comparison between theoretical and 
experimental wavelengths of the 1 1S0 → np 1P1 (1s2 1S0 → 1snp 1P1) transitions of 
helium-like ions up to Z = 8. The present SCUNC calculations values, are 
compared to the experimental data of Robinson [7], Svensson [8], Bartnik et al. 
[11] and to the experimental data of Engtröm and Litzén [10]. For the resonance 
1 1S0 → 2p 1P1 transition, it is seen that the current SCUNC results compared very 
well to the experimental values. Here, the Δλ/λ percentage deviations with  
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Table 1. Present wavelengths (λ, in Å) of the 1s2 1S0 → 1snp 1P1 transitions in He-like (Z = 3 - 15) ions. 

1S-n 1P 
Li II 

λ 
Be III 

λ 
B IV 

λ 
C V 

λ 
N VI 

λ 
O VII 

λ 
F VIII 

λ 
Ne IX 

λ 
Na X 

λ 
Mg XI 

λ 
Al XII 

λ 
Si XIII 

λ 
P XIV 

λ 

1S-31P 

1S-41P 

1S-51P 

1S-61P 

1S-71P 

1S-81P 

1S-91P 

1S-101P 

1S-111P 

1S-121P 

1S-131P 

1S-141P 

1S-151P 

1S-161P 

1S-171P 

1S-181P 

1S-191P 

1S-201P 

1S-211P 

1S-221P 

1S-231P 

1S-241P 

1S-251P 

178.0140 

171.5750 

168.7422 

167.2401 

166.3466 

165.7714 

165.3792 

165.0997 

164.8934 

1647369 

164.6153 

164.5187 

164.4410 

164.3775 

164.3248 

164.2808 

164.2435 

164.2117 

164.1843 

164.1605 

164.1399 

164.1217 

164.1057 

88.3140 

84.7502 

83.1934 

82.3706 

81.8821 

81.5679 

81.3539 

81.2015 

81.0890 

81.0037 

80.9374 

80.8849 

80.8425 

80.8079 

80.7793 

80.7553 

80.7349 

80.7176 

80.7027 

80.6898 

80.6785 

80.6686 

80.6599 

52.6852 

50.4334 

49.4536 

48.9368 

48.6302 

48.4332 

48.2990 

48.2035 

48.1331 

48.0796 

48.0381 

48.0052 

47.9787 

47.9570 

47.9391 

47.9240 

47.9113 

47.9005 

47.8911 

47.8831 

47.8760 

47.8698 

47.8644 

34.9749 

33.4271 

32.7553 

32.4014 

32.1916 

32.0568 

31.9651 

31.8997 

31.8516 

31.8150 

31.7867 

31.7642 

31.7461 

31.7312 

31.7190 

31.7087 

31.7000 

31.6926 

31.6862 

31.6807 

31.6759 

31.6717 

31.6679 

24.9012 

23.7736 

23.2850 

23.0278 

22.8754 

22.7775 

22.789 

22.6635 

22.6285 

22.6020 

22.5814 

22.5651 

22.5519 

22.5412 

22.5323 

22.5248 

22.5185 

22.5131 

22.5085 

22.5045 

22.5010 

22.4979 

22.4952 

18.6283 

17.7709 

17.3999 

17.2047 

17.0891 

17.0148 

16.9643 

16.9284 

16.9018 

16.8817 

16.8661 

16.8537 

16.8438 

16.8356 

16.8289 

16.8232 

16.8184 

16.8144 

16.8109 

16.8078 

16.8052 

16.8028 

16.8008 

14.4588 

13.7853 

13.4942 

13.348 

13.2504 

13.1922 

13.1525 

13.1243 

13.836 

13.0878 

13.0756 

13.0659 

13.0580 

13.0517 

13.0464 

13.0419 

13.0382 

13.0350 

13.0322 

13.0299 

13.0278 

13.0260 

13.0243 

11.5474 

11.5474 

11.0046 

10.7701 

10.5738 

10.5270 

10.4951 

10.4724 

10.4557 

10.4430 

10.4331 

10.4253 

10.4190 

10.4139 

10.4096 

10.4061 

10.4030 

10.4005 

10.3983 

10.3963 

10.3947 

10.3932 

10.3919 

9.4344 

9.4344 

8.9877 

8.7949 

8.6335 

8.5950 

8.5688 

8.5501 

8.5364 

8.5259 

8.5178 

8.5114 

8.5063 

8.5020 

8.4985 

8.4956 

8.4931 

8.4910 

8.4892 

8.4876 

8.4862 

8.4850 

8.4840 

7.8524 

7.8524 

7.4785 

7.3171 

7.1821 

7.1499 

7.1280 

7.1124 

7.1009 

7.0922 

7.0854 

7.0801 

7.0757 

7.0722 

7.0693 

7.0668 

7.0648 

7.0630 

7.0615 

7.0602 

7.0590 

7.0580 

7.0571 

6.6374 

6.6374 

6.3199 

6.1829 

6.0683 

6.0409 

6.0223 

6.0091 

5.9993 

5.9919 

5.9862 

5.9816 

5.9780 

5.9750 

5.9725 

5.9704 

5.9687 

5.9672 

5.9659 

5.9648 

5.9638 

5.9629 

5.9622 

5.6841 

5.6841 

5.4110 

5.2933 

5.1948 

5.1713 

5.1553 

5.1440 

5.1356 

5.1292 

5.1243 

5.1204 

5.1172 

5.1147 

5.1125 

5.1107 

5.1092 

5.1079 

5.1068 

5.1059 

5.1050 

5.1043 

5.1036 

4.9222 

4.9222 

4.6850 

4.5827 

4.4972 

4.4768 

4.4629 

4.4531 

4.4458 

4.4403 

4.4360 

4.4326 

4.4298 

4.4276 

4.4258 

4.4242 

4.4229 

4.4218 

4.4208 

4.4200 

4.4193 

4.4186 

4.4181 

 
Table 2. Theoretical and experimental wavelengths of the 1 1S0 → np 1P1 (1s2 1S0 → 1snp 1P1) transitions of helium-like ions up to Z 
= 8.  

1S-n 1P 
Li II Be III B IV 

λp λexp(a) Δλ/λ λp λexp(a) Δλ/λ λp λexp(a) Δλ/λ 

1S-21P 199.2800 199.280 0.0000% 80.2522 80.254 0.0018% 60.390 60.313 0.0033% 

1S-31P 178.0140 178.014 0.0000% 88.3140 88.314 0.0000% 52.6852 52.679 0.098% 

1S-41P 171.5750 171.575 0.0000% 84.7502 84.758 0.0092% 50.4334 50.435 0.0032% 

1S-51P 168.7421   83.1934 83.202 0.083% 49.4536 49.456 0.0048% 

1S-61P 167.2401   82.3706 82.377 0.0198% 48.9368   

1S-71P 166.3466   81.8821 81.891 0.089% 48.6302   

1S-81P 165.7714   81.5679   48.4332   

1S-91P 165.3792   81.3539   48.2990   

1S-81P 165.0997   81.2015   48.2035   
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Continued 

1S-n 1P 
CV NVI OVII 

λnrp λexp(a, b) Δλ/λ* λnrp λexp(d) Δλ/λ λnrp λexp(a, c) 

1S-21P 40.2647 40.268b 0.0082% 28.7857 28.787 0.0045% 21.6021 21.602a 0.0005% 

1S-31P 34.9749 34.973a, b 0.0054% 24.9012 24.898 0.0128% 18.6283   

1S-41P 33.4271 33.426a, b 0.0033% 23.7736 23.771 0.089% 17.7709   

1S-51P 32.7553 32.754a, b 0.0039% 23.2850 23.281 0.0172% 17.3999   

1S-61P 32.4014 32.399b 0.0074% 23.0278 23.024 0.0165% 17.2047 17.199c 0.0331% 

1S-71P 32.1916   22.8754   17.0891 17.083c 0.0357% 

1S-81P 32.0568   22.7775   17.0148 17.008c 0.0399% 

1S-91P 31.9651   22.789   16.9643 16.957c 0.0431% 

1S-81P 31.8997   22.6635   16.9284 16.924c 0.0230% 

Here, λp denotes the present SCUNC calculations values, λexp represents the experimental values and Δλ/λ stands for the percentage deviations with respect 
to the experimental value of the corresponding system. (a), experimental data of Robinson [7]; (b), experimental data of Svensson [8]; (c), experimental data 
of Bartnik et al. [11]; (d), experimental data of Engtröm and Litzén [10]. Wavelengths are in angstroms. 
 

respect to the experimental values of the corresponding system are less than 
0.009%. The slight discrepancies can be explained by the fact that the present 
formalism disregards explicitly mass polarization, relativistic and QED 
corrections. For the transitions 1 1S0 → np 1P1 (n ≥ 3), comparison with the quoted 
experimental data indicates again good agreements. For these levels, the 
percentage deviations with respect to the experimental value of the corresponding 
system are less than 0.05%. Here, the discrepancies may be imputed mainly to 
mass polarization corrections which are not taken into account in the present 
calculations. In fact, and as well mentioned by Beiersdorfer et al. [9], the n ≥ 3 
levels are less affected by electron-electron interactions, relativistic and QED 
corrections. Then, for n ≥ 3 states, the ratio m/M (m and M respectively the 
electron and nuclear masses) becomes important while increasing the Z-charge 
number. Nevertheless, the present SCUNC semi-empirical formulas may be 
considered as good representative of experimental data when electron-electron 
interactions, relativistic and QED corrections are disregarded. In Table 3, the 
SCUNC predictions for the wavelengths belonging to the 1s2 1S0 → 1s2p 1,3P1 
transitions in He-like ions are compared to the ab initio calculations of Acaad et 
al., [12] using wave function expanded in a triple series of Laguerre polynomials 
of the perimertric coordinates, the computational results of Safronova et al., [13] 
applying the MZ code through a perturbation theory based on hydrogen-like 
functions and with the data of Porter [14] using the plasma simulation code 
CLOUDY. The overall agreement between the calculations is reasonably 
gratifying. Here, the |Δλtheo| differences in wavelengths between the present 
calculations and the theoretical literature data [12] [13] [15] have never 
overrun 0.003 Å for the 1s2 1S0 → 1s2p 1P1 resonance line and 0.008 Å for the 
1s2 1S0 → 1s2p 3P1 intercombination line up to Z = 22. This may point out  
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Table 3. Theoretical wavelengths for 1s2 1S0 → 1s2p 1,3P1 for He-like ions (2 ≤ Z ≤ 22).  

Z 
1s2 1S0 → 1s2p 1P1 (resonance line: r) 1s2 1S0 → 1s2p 3P1 (intercombinaison line: i) 

λp λtheoa, b λtheoc |Δλtheo|a, b |Δλtheo|c λp λtheoa, b λtheoc |Δλtheo|a, b |Δλtheo|c 

2 584.3339 584.3343a  0.0004  591.4121 591.499a  0.0002  

3 199.2800 199.2791a  0.0009  202.2252     

4 80.2522 80.2535a  0.0013  81.6677     

5 60.390 60.3135a  0.0020  61.0880 61.0882a  0.0002  

6 40.2647 40.2671a 40.2680 0.0024 0.0033 40.7302 40.7299a 40.7310 0.0003 0.0008 

7 28.7857 28.7867a 28.7870 0.0010 0.0013 29.0818 29.0840a 29.0840 0.0022 0.0022 

8 21.6021 21.6012a 21.6020 0.0009 0.0001 21.7988 21.8033a 21.8070 0.0008 0.0045 

9 16.8088 16.8061a 16.8070 0.0027 0.0018 16.9438 16.9496a 16.9470 0.0045 0.0082 

8 13.4514  13.4470  0.0044 13.5464  13.5530  0.0066 

9 9.0050  9.0030  0.0020 9.0880  9.0830  0.0060 

12 9.1689  9.1688  0.0001 9.2310  9.2312  0.0062 

13 7.7568  7.7573  0.0005 7.8044  7.8070  0.0026 

14 6.6475  6.6480  0.0005 6.6847  6.6883  0.0036 

15 5.7701 
5.0386b 

   5.7898 
5.0667b 

   

16 5.0387 5.0387 0.0002 0.0000 5.0667 5.0665 0.0000 0.0002 

17 4.4445 4.4445b  0.0002  4.4682 4.4681b  0.0001  

18 3.9491 3.9492b 3.9488 0.0001 0.0003 3.9694 3.9695b 3.9691 0.0001 0.0003 

19 3.5318 3.5319b  0.0002  3.5493     

20 3.1771 3.1772b 3.1772 0.0001 0.0001 3.1924 3.1928b 3.1928 0.0004 0.0004 

21 2.8731 2.8731b  0.0000  2.8866 2.8871b  0.0005  

22 2.684 2.685b  0.0001  2.6226 2.6230b  0.0004  

Here, λp denotes the present SCUNC calculations, λtheo represents the theoretical values and |Δλtheo| stands for the difference in wavelengths between the 
present calculations and the other theoretical ones (λtheoa or λtheob). (a): calculations of Accad et al., [12], (b): calculations of Safronova et al. [13]; (c): 
calculations of Porter [14]. Wavelengths are in angstroms. 
 

the good agreement between the calculations. The discrepancies with respect 
to the accurate ab initio computations are due to the present none-relativistic 
formalism. Table 4, shows a comparison of the present wavelengths for the 
forbidden 1s2 1S0 → 1s2s 3S1 transitions of He-like systems (Z = 2 - 15) with the 
NIST compiled data. Excellent agreement is obtained between the SCUNC 
predictions and the NIST data. Except for Z = 8, the maximum shift in 
wavelengths with respect to the NIST values is at 0.003 Å. In Table 5, the present 
theoretical wavelengths for the 1snp 1P1 → 1s2 1S0 (2 ≤ n ≤ 5) transitions of the 
helium-like ions up to Z = 9 are compared to the λnrel—nonrelativistic 
wavelengths values and to the λtot—total wavelengths (including mass polarization, 
relativistic corrections and the Lamb-shift correction for the 1 1S level) 
computed by Accad et al. [12]. For the 1s2 1S0 → 1s2p 1P1 resonance line, the 
uncertainties between the present calculations and the λtot—total wavelengths  
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Table 4. Comparison of the SCUNC predictions with the NIST data the wavelengths 
belonging to the forbidden 1s2 1S0 → 1s2s 3S1 transitions in He-like (Z = 2 - 15) systems. 
Wavelengths are in angstroms. 

Z λSCUNC λNIST |Δλ|* 

2 625.563 625.563 0.000 

3 210.069 210.069 0.000 

4 104.547 104.548 0.001 

5 62.439 62.440 0.001 

6 41.469 41.472 0.003 

7 29.531 29.534 0.003 

8 22.094 22.101 0.007 

9 17.149 -  

10 13.696 13.699 0.003 

11 11.190 11.192 0.002 

12 9.313 -  

13 7.872 -  

14 6.741 6.740 0.001 

15 5.838 -  

*|Δλ| = |λSCUNC − |λNIST|. 
 

Table 5. Theoretical wavelengths for the 1s2 1S0 → 1snp 1P1 (2 ≤ n ≤ 5) transitions in 
He-like (Z = 3 - 9) ions. Here, λ denotes the present SCUNC calculations, λnrel denotes 
the nonrelativistic wavelengths and λtot the theoretical wavelengths of Accad et al. [12] 
including mass polarization, relativistic corrections and the Lamb-shift correction for the 
1S level. Wavelengths are in angstroms. 

System Transition 

Theory Comparison 

Present 
λ 

Accad et al. 
λnrel 

Accad et al. 
λtot 

|λ – λnrel| |λ – λtot| 

 1S-21P 199.2800 199.2813 199.2791 0.0013 0.0009 

Li II 1S-31P 178.0140 178.0162 178.0143 0.0022 0.0003 

 1S-41P 171.5750 171.5776 171.5757 0.0026 0.0007 

 1S-51P 168.7421     

 1S-21P 80.2522 80.2600 80.2535 0.0078 0.0013 

Be III 1S-31P 88.3140 88.3134 88.3075 0.0006 0.0065 

 1S-41P 84.7502 84.7588 84.7532 0.0086 0.0030 

 1S-51P 83.1934 83.2044 83.1989 0.090 0.0055 

 1S-21P 60.390 60.3224 60.3135 0.094 0.0025 

B IV 1S-31P 52.6852 52.6876 52.6800 0.0024 0.0052 

 1S-41P 50.4334 50.4408 50.4335 0.0074 0.0001 

 1S-51P 49.4536 49.4621 49.4549 0.0085 0.0013 

 1S-21P 40.2647 40.2774 40.2671 0.0127 0.0024 
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Continued 

C V 1S-31P 34.9749 34.9811 34.9723 0.0062 0.0026 

 1S-41P 33.4271 33.4343 33.4259 0.0072 0.0012 

 1S-51P 32.7553 32.7622 32.7540 0.0069 0.0013 

 1S-21P 28.7857 28.7980 28.7867 0.0123 0.0010 

N VI 1S-31P 24.9012 24.9098 24.9002 0.0086 0.0010 

 1S-41P 23.7736 23.7806 23.7714 0.0070 0.0022 

 1S-51P 23.2850     

 
1S-21P 
1S-31P 

     

 21.6021 21.6133 21.6012 0.092 0.0009 

O VII 18.6283 18.6381 18.6280 0.0098 0.0003 

 1S-41P 17.7709 17.7777 17.7680 0.0068 0.0029 

 1S-51P 17.3999 17.4051 17.3957 0.0052 0.0042 

 1S-21P 16.8088 16.8188 16.8061 0.080 0.0027 

F VIII 1S-31P 14.4588 14.4690 14.4584 0.082 0.0004 

 1S-41P 13.7853     

 1S-51P 13.494 2     

 
results [12] are less than 0.003 Å. As far as comparison with the λnrel—non- 
relativistic wavelengths values are concerned, it is seen that the uncertainties are 
about 0.01 Å for Z = 5 - 9. This points out that, the present SCUNC results are 
most accurate than the λnrel—nonrelativistic wavelengths obtained by Accad et 
al. [12] when increasing the nuclear charge. For n ≥ 3 states, it can also be seen 
that the present SCUNC wavelengths values are most accurate than that of 
Accad et al. [12]. Here, the uncertainties with respect to the λtot—total 
wavelengths are less than 0.005 Å for all the entire series considered (Z = 2 - 9) 
whereas the uncertainties with respect to the λnrel—nonrelativistic wavelengths 
increase up to 0.01 Å for Z = 9. This may point out again that, in the SCUNC 
formalism, relativistic effects are implicitly incorporated in the fi—screening 
constants evaluated from experimental data. Besides, it should be mentioned 
that the λtot—total wavelengths equal to 88.3075 Å for the 1s2 1S0 → 1s3p 1P1 
transition of Be III may be probably lower as the corresponding high precision 
measurement is at 88.3140 Å [7] to be compared to the present prediction at 
88.3140 Å. 

4. Conclusion 

The Screening Constant per Unit Nuclear Charge method has been applied to 
inaugurate the first spectral lines for the three most intense lines (resonance line 
1s2 1S0 - 1s2p1P1 intercombination line 1s2 1S0 - 1s2p 3P1 and forbidden line 1s2 1S0 
- 1s2s 3S1 and for the 1s2 1S0 - 1snp1P1 transitions in the helium isoelectronic se-
quence. In our knowledge, only the spectral lines of the Hydrogen-like ions have 
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determined empirically in the past. At present hour, the possibilities to calculate 
easily the most intense lines of helium-like systems in the X-ray range in con-
nection with plasma diagnostic are demonstrated in this work. All the results 
obtained in the present paper compared very well to various experimental and 
theoretical literature data. It should be underlined the merit of the SCUNC for-
malism providing accurate results via simple analytical formulas without need-
ing to use codes of simulation. The accurate results obtained in this work point 
out the possibilities to investigate highly charged He-positive like ions in the 
framework of the SCUNC method. 
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Abstract 
The physical nature of the fundamental scalar field generation and hence the 
origination of the Universe is a matter of the discussions for many years. We 
propose to use the statistical approach to the description of the steady states 
of the quasi stationary systems with the elements of the quantum field theory 
methods as a basis to explain the appearance of the cosmological scalar field. 
Particularly, we apply two fundamental principles, i.e., the H-theorem and 
least-energy principle to show principal possibility of the scalar field origina-
tion. Along with the basic statement that in the presence of the fundamental 
scalar field, the energy of the vacuum ground state is lower than the ground 
state energy of the vacuum with no scalar field (primary vacuum), and with 
regard to the nonlinear interaction of fluctuating physical fields with the sca-
lar field, these principles are employed to reveal probable phase transitions 
that may be associated with origin and further evolution of the Universe. 
Thus, we propose the possible physical justification of the spontaneous cos-
mological scalar field generation. 
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Cosmology, Noise, Fundamental Scalar Field 

 

1. Introduction 

Modern notions (rather hypotheses) on the reason for the formation of the Un-
iverse imply an instability of some (hypothetical) scalar fields associated with the 
quantum nature of the matter [1]. The reasons and physical mechanism of the 
appearance of this field, and hence of the origination of the Universe, remain for 
many years a question open for a discussion. We propose one more approach 
similar to that proposed in [2] [3] [4]—to describe the origination and evolution 
of the Universe in terms of the first principles of statistical mechanics and quantum 
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theory. Our assumptions are given in what follows. 
In the case of spontaneous generation of the scalar field in vacuum, the gro- 

und-state energy of the “new” vacuum (i.e. the initial vacuum plus the scalar 
field) for the fields of other nature should be lower than the ground state energy 
of the “initial” vacuum. Moreover, the self-consistent interaction of the scalar 
field with fluctuations of any other field provides energy conservation for the 
new state of the system. Calculations of the partition function for this system re-
veal a probability of a phase transition from the state with zero scalar field to the 
state with finite spontaneously generated scalar field. 

2. Statistical Distribution in Energy Space 

According to Gibbs [5], we can always pass from the description in terms of 
phase variables to the description in terms of energy. Hence, we may treat the 
entropy as a function of energy and employ the quasi-equilibrium Gibbs distri-
bution to calculate the partition function. We can begin with the statistical de-
scription of the Universe based on the Gibbs distribution in the energy repre-
sentation [5]. The canonical Gibbs distribution in the phase space is given by 

( ) ( ),
, d exp d

F H q p
q pρ

−  Γ = Γ 
Θ  

                (1) 

where ( ),H q p E=  is the Hamiltonian on the hypersurface of the constant 
energy E, d d di ii q pΓ =∏  is an element of the phase space, kTΘ = , T is the 
temperature, and F is the free energy that can be found from the normalization  

condition 
( ),

exp d 1
F H q p− 

Γ = 
Θ 

∫ . The phase space is known [5] to be de-

termined by the energy of the system and by external parameters. We introduce 

the quantity dln
dE
Γ

Σ = . Then we can pass to the distribution in the energy space 

( ) ( )d exp d .F EE E C E Eρ − = + Σ 
Θ 

               (2) 

The normalization condition yields ( )exp d 1F Ec E E− + Σ = Θ ∫ . In order 

to select the states with dominant contributions in the partition function, we 

employ the condition for the temperature given by d 1
dE
Σ
=
Θ

. 

We assume that the relation between the changes of the value of the phase 
space from the energy E is known. In terms of this definition and within the con-

text of fundamental principles of statistical mechanics [6] that dln
d

S
E
Γ

Σ = =   

reproduces the entropy of the system bearing in mind that the temperature de-
scribes dependence of entropy only on energy but not on the other thermody-
namic functions. It also follows that integration over energy in the continual 
sense yields an expression for the partition function. It is obvious that the ex-
treme contribution in the partition function is associated with the states for 
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which F E Sθ= −  and that for any deviations from the latter condition the 
contribution in the partition function is negligibly small similarly to the contri-
bution of quantum corrections to the classical trajectories [7] [8]. 

The Universe is non-equilibrium from origination, so in order to describe its 
evolution we introduce an additional intrinsic parameter “time”. We assume 
that both the statistical distribution and the evolution of the Universe can be de-
scribed in terms of the distribution function that depends only on energy. An 
example of how this idea is applied to describe the properties of the statistical 
distribution is given in [7] [8]. It seems quite natural to suggest the evolution of 
the system in the energy space to be analogous to the Brownian motion in such a 
space. This raises the question which system can serve for the Universe as a 
thermostat. It is reasonable to suggest that such thermostat is the vacuum with 
fluctuations of all physical fields that interact with the fundamental scalar field 
and thus influence even the ground state of the vacuum. On the other hand, this 
suggestion opens the possibility to describe the Universe evolution in the energy 
space by the appropriate distribution function governed by the Fokker-Planck 
equations with nonlinear energy dependence of the diffusion and dissipation 
coefficients associated with relevant nonlinear Langevine equations [7] [8]. Just 
this assumption shows the way to describe the evolution of the Universe both 
before and after origin. 

Now let us apply the above speculations to the description of the Universe. 
First, we suggest that the vacuum ground state possesses energy. We also assume 
that fluctuations of all fields existing in vacuum can occur and thus we can write 
the equation of state for the vacuum. The thermodynamic relations yield the  

pressure given by d
d

SP
V

= −Θ  where V is the volume. For pure vacuum, we 

have 
d dd

d d d
v v

v
v

E ESP
E V V

ρ= −Θ = − = −  under the assumption that energy with  

density vρ  is additive, i.e., v vE Vρ=  and constant entropy. Obtained equa-
tion reproduces the known equation of state for the vacuum. In order to describe 
its evolution we introduce an additional intrinsic parameter, “time”, and write  

d 1
d

SS E E
E

= =
Θ

   . The latter equation implies that time changes of the entropy  

are related to the time changes of energy. Inasmuch as 0S > , relaxation to the 
equilibrium state occurs for 0E > , i.e., energy growth is accompanied by the 
increase of entropy. Thermodynamics regards heat as energy distributed be-
tween the degrees of freedom that are not macroscopic observable. Hence we 
suggest that under the change of the vacuum state the heat d dQ S= Θ  varies as  
d d
d d
Q E
t t
=  which in turn implies that heating can occur only under the relaxa-

tion towards equilibrium state. 

3. Origin of Classical Fundamental Scalar Field 

The above consideration and relations are well known. Now we employ them to 
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propose one more possible explanation of the origin of fundamental scalar field. 
We begin with the assumption that the phase transition from the “initial” va-
cuum to the new vacuum state is accompanied by the appearance of new scalar 
field. This means that the presence of the scalar field makes the “new” vacuum 
different from the “primary” vacuum for any field that may exist. The scalar field 
decreases the energy of the “new” vacuum with respect to the energy of the 
“primary” vacuum. Hence, the ground-state energy of the “new” vacuum is giv-
en by 

2
20

2vE E
µ

ϕ= −                         (3) 

Here the second term is the scalar field energy; the coefficient 2
0µ  describes 

the coupling of the new field and the “primary” vacuum, i.e., the self-consistent 
interaction of the new field with the fluctuations of all other fields that can exist 
in the “primary” vacuum. Notice, that the coupling coefficient is now positive so 
there is no need to use the explanations accepted in the standard approach. The 
contribution of the above interaction to the partition function (2) is given by 

2
2 2 2

2

1 1 1~ exp
2 2vZ D D E ξϕ ξ µ ϕ ξϕ

σ
 
− + − − 

Θ  
∫ ∫           (4) 

where the coupling coefficient is presented in terms of its average value plus the 
fluctuation caused by the nonlinear coupling of the scalar field with a fluctuation 
field of other nature. We also assume that the mean-square value of the fluctua-
tion is equal to 2 2

0µ µ ξ= + . 2σ  is dispersion of the couples coefficient fluctu-
ations. Integration over fluctuation fields yields 

2 4
2 21 1~ exp

2 4vZ D E σ ϕϕ µ ϕ
 
− + − 

Θ  
∫               (5) 

This means that we have a system with the effective energy (averaged over the 
fluctuations of the other field coupled with the scalar field) given by 

2 4
2 21

2 4vE E σ ϕµ ϕ= − +                      (6) 

where the last two-term is the well-known expression for the energy of the fun-

damental scalar field ( )
2 4

2 21
2 4

V σ ϕϕ µ ϕ= − + . The total effective energy of the 

“new” vacuum with the fundamental scalar field is given by 
24 2 2

2
2 244vE E µ σ µϕ

σ σ
 

= − + − 
 

                  (7) 

In the case of no scalar field 0ϕ = , vE E=  while for 
2

2
2

µϕ
σ

=  the expres-

sion for the effective ground state energy of the “new” vacuum reduces to 
4

24vE E µ
σ

= − . As follows from last relation, the energy of the “new” vacuum is 

lower than the energy of the primary vacuum and can vanish for 
4

24vE µ
σ

= .  
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This relation can be applied to estimate the maximum dispersion of the field 
fluctuations. If 2σ  tends to infinity, then the energy of the new state tends to 
the initial energy of the ground state. Thus, we come to the standard form of the 
energy of the fundamental scalar field, but with different behavior of the energy 
of vacuum at the presence of the scalar field. The coefficient of non-linearity in 
the potential energy is determined by the coupling of the fundamental scalar 
field with the fluctuations of the field of different nature. This means that there 
could be a new scenario of the Universe formation. In this scenario, the energy 
of pure vacuum does not contribute to the energy-momentum tensor and thus 
we cannot introduce dynamic presentation (and geometry) for such state. Only, 
if the fundamental scalar field appears and the matter is originated we can tell 
about the geometry. In this sense, the potential of scalar field determines the va-
cuum state of the Universe. 

4. Conclusions 

Standard cosmological models involve a scenario of the Universe nucleation and 
expansion based on a scalar field which is of fundamental importance for the 
unified theories of weak, strong, and electromagnetic interactions with sponta-
neous symmetry breaking [1]. A theory of new-phase bubble nucleation and ex-
pansion was proposed in Ref. [1]. Various cosmological models describe tunne-
ling through the potential barrier in terms of the potentials ( )V ϕ  of arbitrary 
forms. Here we propose a modification of the standard cosmological model. As 
was mentioned above, we assume that the fundamental scalar field interacts with 
possible fluctuations of fields of the other nature. To proceed further and to cal-
culate the size of the bubble, we have to violate the equivalence of the local mi-
nima. Attempts have been made [1] to obtain non-linearity of such type asso-
ciated with the fluctuations of the medium and produced by the interaction with 
the fields of different nature [9] [10]. Similar ideas are used in the description of 
phase transitions in condensed media, e.g., liquid crystals, superconductors etc. 
[11]. In order to explain the fact that the transition in such systems is the first- 
order one, the physical mechanism has been reduced to the interaction of the 
scalar order parameter with the vector field that includes information on possi-
ble fluctuations in the system [11] [12]. This means that the contribution of all 
existing configurations of such fields results in the additional part in the poten-
tial energy which proportional 3ϕ  in turn violates the equivalence of the local 
minima and opens the possibility to determine the bubble size of new phase with 
nonzero fundamental scalar field [12]. Thus the “condensing” value of fluctua-
tions of the field that is “external” with respect to the scalar field completely de-
termines both the mean critical size of the new phase bubble and the probability 
of its formation. In this case characteristics of such formation have no free pa-
rameters other than fluctuation dispersion. 

As mentioned above, only the fundamental scalar field and its symmetry 
breaking generate the matter, and equilibrium distribution of this matter deter-
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mines the geometry [13]. Obviously, the size of the bubble of the new phase is a 
finite one that is in agreement with the observations. And here we notice that in 
the Einstein equation the energy of primary vacuum is not present and the dy-
namics of the Universe are determined only by the potential energy of the fun-
damental scalar field which produces the matter. The distribution of matter in 
its turn determines the geometry. For our Universe, the vacuum is different from 
the primary one and its state depends on the fundamental scalar field which de-
termines all possible processes. So, the dispersion of the fluctuations fully deter-
mines the conditions of new phase bubble formation. 

Thus, the assumption of the vacuum ground state energy decrease for all 
physical fields due to the presence of the fundamental scalar field makes it possi-
ble to reveal the probability of a phase transition caused by the spontaneous 
generation of the field, i.e. the phase transition from vacuum with zero scalar 
field to the “new” vacuum with the spontaneously generated field. Combining 
this assumption with the idea that the Universe interacts with the fluctuations of 
various physical fields in vacuum we can get a consistent picture of the Universe 
origination and evolution. The decrease of the initial ground state energy does 
not contradict the H-theorem, because the distribution functions describing the 
evolution governed by the Fokker-Planck equation are known to satisfy it [14] 
[15]. 
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Abstract 
The properties of BaTiO3 (BTO) thin films deposited on different substrates 
by RF magnetron sputtering were investigated. Two representative substrates 
were selected and different heterostructures were studied. 1) SrTiO3 (STO) 
single crystals as a bulk oxide reference material, and 2) silicon as a semicon-
ductor. SrRuO3 (SRO) and Pt bottom electrodes were deposited on the silicon 
substrate. The BTO structural characterizations show that all the films have 
(001) crystallographic orientation. We have compared the electrical proper-
ties of the different samples: the same dielectric constant and polarization 
values were obtained independently of the nature of the substrate. 
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1. Introduction 

Among the ferroelectric perovskites, BaTiO3 (BTO) has intensively been studied 
for a wide range of applications [1], MEMS devices [2], non-volatile memories, 
electro-optical devices [3], and piezoelectric and electro-optical properties [4]. 
Especially the fact that its composition is lead-free makes BTO very interesting 
for applications and many papers have discussed electrical and structural prop-
erties of BTO thin films [5] [6]. Various deposition techniques were used to 
grow thin films such as molecular beam epitaxy (MBE) [7] [8] [9], sol-gel depo-
sition [10], pulsed laser deposition [11], chemical vapor deposition (CVD) [12], 
and RF sputtering [13] [14] [15]. RF sputtering is known to be one of the best 
compromises between deposition area size, stoichiometry, smoothness and de-
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position speed problematics. High quality BTO thin films have generally been 
grown on lattice matched substrate such as MgO and SrTiO3 (STO). In most 
cases, STO single-crystal is used as substrate as it also has a perovskite structure 
and its lattice parameters are close to those of BTO [16]. It is then easy to obtain 
epitaxially growth of BTO on STO. To check the electrical properties, conductive 
electrodes are needed. One can use a metal such as Pt, or a conductive oxide 
layer such as SrRuO3 (SRO). The substrate and the bottom contact layer have to 
ensure good quality growth, and sufficient mechanical and thermal stabilities. In 
the present work, we investigate the structural and dielectric properties of 300 
nm thick BTO thin films deposited by RF sputtering on different stacks of elec-
trode/substrate: 1) SrRuO3/SrTiO3, 2) Pt/TiO2/SiO2/Si and 3) SrRuO3/SrTiO3/Si. 

2. Experimental Procedure 

In this work, the substrates were cleaned before performing the deposition process 
with acetone and ethanol in an ultrasonic bath. Firstly, bulk STO (001) and STO 
buffered Si (001) were used as a substrate to deposit the BTO/SRO. SRO (30 nm 
thick) was deposited with Ar/O2 gas ratio = 10/1 at 4 mTorr and at 620˚C. The 
STO buffer layer growth was performed by Molecular Beam Epitaxy on Si (004) 
wafer thanks to McKee process [17] [18]. Strontium was deposited on the native 
silica layer of the wafer and used for the reduction of SiO2 and passivation layer 
on silicon, before the SrTiO3 direct deposition around 360˚C under oxygen at-
mosphere. Secondly, on Si (001) with native silica layer was deposited at room 
temperature by RF sputtering 120 nm-thick platinum bottom electrode. A thin 
TiO2 layer (5 nm-thick) was used as buffer and adhesion layer between Pt and 
SiO2. Then, the BTO thin films on all substrates were prepared by RF magnetron 
sputtering from a stoichiometric BaTiO3 ceramic target. The deposition was car-
ried out in gas ratio Ar/O2 = 4/1 maintained at a pressure of 15 mTorr and a 
temperature of 650˚C. After deposition, a rapid thermal annealing (RTA) at 
650˚C for 3 minutes under oxygen atmosphere was performed in order to re-
duce oxygen vacancies in BTO thin films and improve their structural and elec-
trical properties. The crystalline nature of BTO thin films was checked by X-ray 
diffraction analysis with a Rigaku Smartlab diffractomter using CuK𝛼𝛼 radiation 
(λ = 1.5406 Å). For electrical measurements, platinum top electrodes (50 µm × 
50 µm area and 250 nm-thick) were deposited by lift-off on all samples at room 
temperature. A sketch of the different samples can be found in Figure 1. To 
perform the capacitance-voltage (C-V) measurements, a HP 4284A precision 

 

 
Figure 1. Schematic of the different samples. Pt top electrodes were deposited by lift-off 
at room temperature. 

https://doi.org/10.4236/jmp.2020.114033


B. Wague et al. 
 

 
DOI: 10.4236/jmp.2020.114033 511 Journal of Modern Physics 
 

LCR meter was used. The ferroelectric hysteresis loops were evaluated with 
PUND (Positive Up Negative Down) method in order to extract the P-E hystere-
sis loop [19]. The PUND pulse train was programmed by LabView and a NF 
WF1966 2-channel generator. After application by a KEITHLEY 428 current 
amplifier, the current response was recorded by Nicolet INTEGRA-40 oscillos-
cope. 

3. Results and Discussion 

• Structural characterization 
As a bulk material, BTO is normally crystallized in a tetragonal phase at room 

temperature. The difference between tetragonal phase and cubic phase in general 
is confirmed by the separation of diffraction peaks (002) and (200). Figure 2(a), 
Figure 2(c) and Figure 2(e) show 2θ ω  patterns of 300 nm thick BTO grown 
on the different substrates. All diagrams indicate a preferential diffraction peak 
along the [001] direction, with no sign of secondary crystallographic orienta-
tion. Moreover, no other phase than the pure perovskite phase with a tetragonal 
structure is observed. The position corresponding to the 002 BTO reflection of 
bulk is obtained by angle determination ( 2θ  = 44.86˚). The BTO thin films on 
all substrates are c-oriented and strained with elongated c-axis. These results are 
consistent with experimental data from previous sputtering depositions [20]. 
The diffractograms for all samples are qualitatively similar: on ω scan, the rock-
ing curves display a full width at half maximum (FWHM) between 1.16 ˚ and 
1.36˚, indicating the similar good crystallinity of BTO films, as shown in Figure 
2(b), Figure 2(d) and Figure 2(f). These values are similar to those found in 
[21]. On the one hand, the phi-scan and reciprocal space mapping (RSM) pat-
terns on the 103 reflections, shown in Figure 3(a) and Figure 3(b), reveal the 
epitaxy of BTO films on bulk STO and STO buffered silicon substrates. The 
RSM measurements also show that the BTO films are relaxed on the substrates. 
On the other hand, the BTO deposited on Pt/TiO2/SiO2/Si is textured with out- 
of-plane c-axis. The 2θ ω  patterns allow calculating the out-of-plane c-para- 
meter of BTO for all samples. Based on fitting of 002 reflection peaks, these 
c-parameter values are 4.07 Å, 4.06 Å and 4.03 Å (±0.01 Å) respectively for BTO 
films deposited on BTO/SRO/STO and BTO/SRO/STO/Si and Pt/TiO2/SiO2/Si. 
This expansion of c parameter (bulk value of 4.038 Å) can be due to the epitaxial 
strain from the substrate for the epitaxial samples and/or the oxygen vacancies 
in BTO films. However, with a very low leakage current in the films (about 50 
nA/cm2 at 100 kV/cm applied field), it is expected that the films are vacancies-free. 
From RSM measurements, the in-plane a-parameter values were extracted and 
equal to 4.03 Å and 4.02 Å (±0.01 Å) respectively for BTO/SRO/STO  

and BTO/SRO/STO/Si. Then, it was possible to calculate their ratio 1.01c
a

= — 

equal to the bulk value one—which confirms the tetragonal structure of the BTO 
films. Although the substrates are different for BTO/SRO/STO and BTO/SRO/ 
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STO/Si heterostructures, their structural properties are quite similar with same 
out-of-plane orientation and close lattice parameters. 
• Dielectric and ferroelectric properties 

Electrical and ferroelectric measurements were performed on the 3 samples. 
The investigation on the variation of the dielectric constant versus the applied 

 

 
Figure 2. Out-of-plane XRD measurements of 300 nm thick BTO thin films on: (a) SRO/STO, (c) SRO/STO/Si and (e) Pt/TiO2/ 
SiO2/Si. Rocking curve measurements around the BTO 002 respectively on (b) STO, (d) STO-Si and (f) Pt/TiO2/SiO2/Si. 
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electric field (C-V) is one of the methods for gaining insight into the behavior of 
the ferroelectric materials and has been used to characterize ferroelectric thin 
films [22] [23]. The C-V (Figure 4) characteristics measured on BTO films show 
the dielectric constant extracted from the small signal capacitance as a function 
of a DC bias voltage. The butterfly shape observed for all samples indicates the 
ferroelectric nature of the BTO tetragonal films. Very low leakage current (about 
50 nA/cm2 at 100 kV/cm applied field) was measured on the 3 samples. From 
Figure 4, the relative permittivity extracted using the parallel-plate capacitor 
equation was found 115rε =  for all substrates, corresponding to its dielectric 
contribution. On all samples, we can observe a shift of the dielectric constant 
along the X-axis for positive values of the electric field. This can be explained by 
the fact that top and bottom electrodes were made of different materials, which 

 

 

Figure 3. RSM measurements around the 103 STO, SRO and BTO reflections for BTO films deposited respectively on (a) STO 
substrate and (b) STO/Si template. 
 

 

Figure 4. Dielectric constant curves of different samples: BTO/SRO/STO, BTO/SRO/ 
STO/Si and BTO/Pt/TiO2/SiO2/Si. 
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Figure 5. Ferroelectric hysteresis loops of different samples: BTO/SRO/STO, BTO/SRO/ 
STO/Si and BTO/Pt/TiO2/SiO2/Si. 

 
results in asymmetric properties of the upper and lower electrode-thin film in-
terfaces, e.g. their work-function. The ferroelectric properties of BTO films on 
substrates were confirmed by hysteresis measurement as shown in Figure 5. It 
can be seen that all loops are normal P-E hysteresis ones. The corresponding 
remanent polarization value is 22.5μc cmrP =  and the coercive field about 

170 kV cmcE =  for all samples. These results agree with other results close to 
state of art obtained for BTO films deposited by MOCVD [23] [24] [25] or sput-
tering [20] [26]. The small value of the Pr in BTO films can be due to the pres-
ence of space-charges within the films [26]. As all the BTO films have out-of- 
plane c-axis orientation, it is obvious that the remanent polarization and the 
coercive field are similar. In this work, the same values are obtained on all sub-
strates. We obtained BTO films with similar out-of-plane structure and electrical 
properties regardless of the nature of the substrate. It seems that the same crys-
tallization process by sputtering with post-deposition annealing under oxygen 
atmosphere used to realize all the samples leads to similar film properties inde-
pendently of the nature of the substrate.  

4. Conclusion 

Ferroelectric BTO thin films were successfully deposited on bulk STO, STO- and 
Pt-buffered silicon substrates. We achieved epitaxial growth of BTO on STO and 
STO-buffered Si and texturation on Pt-buffered Si. The BTO films show similar 
electrical properties on the substrates used in this work (STO or Si). These results 
offer promise for low cost integration of ferroelectric BTO film on silicon wafer. 
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Abstract 
It is proposed a representation of the basic laws (i.e. the zeroth, first, second 
and third laws) in thermodynamics for quantum systems in the pure and 
mixed ensembles, respectively. We show that the basic laws are represented 
by parameters that specify respective quantum states. The parameters are the 
elements of the thermodynamic state space θ  and the state space ϑ  of 
the mixed ensemble for quantum systems. The introduction of such parame-
ters is based on a probabilistic nature of quantum theory. Consistency be-
tween quantum theory and classical thermodynamics is preserved throughout 
the formulation for the representation of the thermodynamical laws in quan-
tum systems (quantum thermodynamics). The present theory gives the ma-
thematical foundations of quantum thermodynamics. 
 

Keywords 
Basic Laws in Thermodynamics, Thermodynamic State Space, Pure and Mixed 
States, Classical Thermodynamics, Quantum Thermodynamics, Transitive Law, 
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1. Introduction 

Thermodynmics is a universal theory not only for classical but for quantum sys-
tems. Classical thermodynamics has been well established by different ap-
proaches [1] [2] [3]. Above all, the theoretical importance of thermodynamical 
consideration in quantum systems (quantum thermodynamics) is emphasized in 
textbooks [4] [5]. When we consider the thermodynamics for quantum systems, 
the most important is the change in entropy since entropy is a constant of mo-
tion under the unitary transformation generated by a system Hamiltonian [6] 
[7]. The internal energy of the system plays the same role as temperature [8]. It 
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should, however, be noticed that in quantum system, thermodynamic equibria 
cannot be described in terms of a parameter like a temperature as in classical 
system. 

In classical thermodynamics, states of the system are represented by points on 
a thermodynamic state space. In quantum system, quantum states are expressed 
by the elements of a complex Hilbert space H . Therefore, in quantum therm- 
odynamics, the Hilbert space itself does not play the same role as the state space 
in classical thermodynamics. In quantum system, thermodynamic equibria can-
not be described in terms of a parameter like a temperature as in classical sys-
tem. To be more precise, respective thermodynamic states are represented by 
points on a thermodynamic state space θ , and a different point means other 
thermodynamic states. 

In order to gain some insights into the relation between thermodynamic states 
and quantum states, we have to investigate the structure of thermodynamics 
(quantum thermodynamics) on the basis of mathematical foundations. Lieb and 
Yngvason made the mathematical structure of thermodynamics transparent by 
axiomatic approach [3]. Thermodynamics treats changes of thermodynamical 
quantities when a system changes from one thermodynamic state to another 
state. In quantum mechanics, quantum states are expressed by the elements of a 
complex Hilbert space H . It should be however noted that the Hilbert space 
itself does not play the same role as the thermodynamic state space in classical 
thermodynamics. In other words, the thermodynamic state space is not the same 
state space. The present authors [9] started with introducing a set Ψ  of the 
state vectors in H  in order to obtain a suitable set which plays the same role 
as the thermodynamic state space in classical thermodynamics. That is, a set 

θ , which plays the same role as the thermodynamic state space, is introduced 
and the correspondence between Ψ  and θ  must be derived. In short, we 
will see this treatment provides an insight into a correspondence between Ψ  
and θ . 

In our previous paper [9], we showed that a representation of the basic laws in 
thermodynamics for quantum systems in pure states is constructed in terms of 
the parameters θ ’s by which respective thermodynamic states corresponding to 
the respective quantum states of the system are represented. In this paper, we 
extend the previous theory for the representation of the thermodynamic quan-
tum states applicable to the case for the mixed ensembles in quantum systems. 
We introduced parameters θ ’s in θ , which could describe the thermody-
namic temperature. The parameters θ ’s make sense only on existence of the 
map θΨ   , i.e., θ  is an injection of Ψ  valid for a system in pure 
states. 

To extend the range of applicability of the theory is interesting from the 
viewpoint of fundamental physics. In the previous study [9] we discussed ther-
modynamics for a system in pure quantum states and constructed the represen-
tation of basic laws of quantum thermodynamics in terms of the parameters θ’s 
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in θ . In this paper, we extend the theory and construct the formulas representing 
the basic laws of thermodynamics for a system in a mixed quantum ensemble. 
The formulation is based on the mathematical foundation by employing axiomatic 
approach [3]. 

We will introduce a state space ϑ  in order to take into account a mixed 
state just like we introduced θ  for a pure state. The parameter ϑ ’s charac-
terize the state vectors of the mixed states, where fractional population (viz., a 
probability of occurrence) of the quantum states is naturally introduced for state 
vectors. It should be noted that the parameters ϑ ’s are the elements of ϑ  for 
a system in mixed quantum states and the map ϑΨ    should hold. We 
will show that a representation of the basic laws (Zeroth, First, Second and Third 
laws) in thermodynamics for quantum systems in a mixed state is described by 
making use of those parameters ϑ ’s in ϑ . 

This paper is organized as follows. In the next section, we present quantum 
thermodynamics, namely thermodynamics for quantum systems. In subsection 
2.1, the zeroth law of quantum thermodynamics is formulated for the case where 
the quantum systems are in mixed quantum ensembles. We introduce thermo-
dynamic state space θ , ϑ  respectively for pure and mixed quantum en-
sembles in order to relate θ , ϑ  to the quantum state space Ψ . We 
discuss the connection between the elements in Ψ  and those in θ  and 

ϑ , and formulate the first law of quantum thermodynamics in subsection 2.2. 
In subsection 2.3, we introduce an entropy function for the system of mixed 
states as a map on thermodynamic state space θ  and ϑ  for pure and 
mixed ensembles. We shall see that the entropy function ensures it is defined for 
all states in terms of θ ’s ( θ∈ ) and ϑ ’s ( ϑ∈ ). We will show that thermo-
dynamic temperatures can be defined as a function of θ ’s and ϑ ’s for the sys-
tem of mixed ensembles. In subsection 2.4, the third law of thermodynamics for 
the quantum systems of mixed states is briefly discussed. The absolute zero 
temperature is the state that the system is in a single quantum state. Finally, 
summary and concluding remarks are given in section 3. 

2. Thermodynamics for Systems in Mixed Quantum States 

In the previous paper [9], we have considered the case where thermodynamic 
quantum systems are in pure ensembles. The state of quantum systems in a pure 
ensemble is described by ,α βΨ Ψ , etc., where subscripts denote the label of 
respective states of quantum system. The formulation of the present theory can 
be extended to a case where thermodynamic quantum systems are in mixed en-
semble by introducing another parameter in order to describe those mixed en-
sembles of the quantum system. 

Mixed ensembles are defined by 

( ): , , , ; , , , ,w w wα β γ α β γρ = Ψ Ψ Ψ                (1) 

where fractional populations jw  ( 0 1jw< ≤  and 1jw =∑ , , , ,j α β γ=  ) 
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describes a probability of occurrence corresponding to a state vector jΨ  [10]. 
This suggests that a mixed ensemble is characterized not only by a probability 

jw  but also by a probability p which is obtained from Ψ  as shown in the 
proof of L1’ (see Section 2.1). Therefore if we introduce a probability function 
( );Q yϑ  so as to satisfy ( ); jQ y jϑ ω= = , a mixed ensemble can be characte-

rized by both ( );Q yϑ  and ( );P xθ . Thus, a state of the thermodynamic 
quantum systems can be characterized by these two parameters: ϑ ’s in ϑ  
and θ ’s in θ . It should be noticed that the origin of θ  is a probabilistic 
nature of quantum mechanics but ϑ  is due to the `classical’ probability of oc-
currence jω  that the state vector is jΨ . In this section, we derive a repre-
sentation of zeroth, first, second, and third laws of thermodynamics for a quan-
tum system in a mixed ensemble. 

At first, we have to introduce the concept of an ensemble jw  into the proba-
bility amplitude ia  defined by ia i≡ Ψ  where †i i= , ( 1,2,3,i =  ), is 
complete orthogonal basis. We define the probability amplitude in a mixed en-
semble as follows: 

.ij j jb w i≡ Ψ                         (2) 

The probability is thus given by 
22

.ij ij j j i jp b w i p w= = Ψ =                   (3) 

Recall that 
2

ji Ψ  is the usual quantum mechanical probability taken with 
respect to the respective state i. Equation (2) tells us that these probabilities must 
further be weighted by the corresponding fractional populations jw . Notice 
how probabilistic concepts enter twice: first in 

2

ji Ψ  for the quantum-me- 
chanical probability for the respective state i to be found in an eigenstate jΨ , 
second in the probability factor jw  for finding a quantum-mechanical state 
characterized by ji Ψ  in the ensemble. 

In the following subsections, we derive the representation of the basic laws of 
quantum thermodynamics for a system in mixed ensembles. 

2.1. The Zeroth Law of Quantum Thermodynamics 

The zeroth law of quantum thermodynamics for a system in mixed ensembles is 
expressed by making use of the parameter ϑ ’s in ϑ . In order to represent the 
zeroth law, we need to introduce the Lemma L1’ as follows: 

L1’: There exist parameters , ,α βθ θ 
 in θ  for pure quantum states and 

, ,α βϑ ϑ 
 in ϑ  for mixed ensembles representing the respective state vec-

tors, , ,α βΨ Ψ   in Ψ . 
Proof of L1’: We treat a case for a label α . Other cases, , ,β γ  , could be 

proved in the same way. From Equation (2), one can obtain a sequence  

{ }2 2 2

1 2, , , ,j j ijb b bα α α
 

 with an ensemble j. By normalizing a state vector  

αΨ , the sequence satisfies the condition 
2

1 1iji bα
=

=∑  and it is clear that 
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2
0 1ijbα≤ ≤ . Then each element of the sequence describes a definite probability  

for the respective state i and a specific ensemble j. Hereafter, we shall omit su-
perscript α  for simplicity. Let us introduce a probability function ( );P xθ  so 
as to satisfy ( ) 2; iP x i aθ = =  for any i. In ( );P xθ , θ  is a parameter and x is 
a random variable. We also introduce a probability function so as to satisfy 
( ); jQ y j wϑ = =  for any j. Therefore, the parameters kθ  ( ), , ,k α β γ=   and 

kϑ  ( ), , ,k α β γ=  , both exist for the representation of a state vector kΨ .  
We note here that L1’ ensures the existence of parameters kθ ’s and kϑ ’s 

which correspond to respective state vectors kΨ ’s in Ψ  through probabil-
ity functions ( );kP xθ ’s and in ( );kQ yϑ ’s, respectively. 

Now one can compare two quantum states in thermodynamic sense since 
those parameters θ ’s and ϑ ’s can be used to describe two or more systems 
being equivalent. This leads to the zeroth law of quantum thermodynamics. Let 
us prepare three systems, A

θ  with A
ϑ , B

θ  with B
ϑ  and C

θ  with 
C
ϑ , where superscripts indicate labels of respective systems. The zeroth law of 

quantum thermodynamics (equivalence relation among quantum states) is de-
scribed by the following relation: 

Let us first consider the following relation for the system in mixed ensembles: 
BAA B A BIf and , then ,α β α β α βθ θ ϑ ϑ= = Ψ Ψ            (4) 

where A A
α θθ ∈  and B B

β θθ ∈ , A A
α ϑϑ ∈  and B B

β ϑϑ ∈  respectively, and 
a symbol   here denotes that the state in the left-hand side is equivalent to the 
state in the right-hand side. 

Proof of Equation (4): Let A
αθ  and B

βθ  be the elements of A
θ  and B

θ , 
respectively. Furthermore, let A

αϑ  and B
βϑ  be the elements of A

ϑ  and B
ϑ , 

respectively. By L1’, it is clear that A B
α βθ θ=  and A B

α βϑ ϑ=  imply  
BA

α βΨ Ψ .                                                    
The zeroth law: We are now in a position to discuss some consequences ob-

tained by introducing the parameters kθ  and kϑ  to specify the corresponding 
thermodynamic states of the systems in mixed quantum ensembles. It is clear 
from Equation (4) that the transitive law holds: 

CAA B A B B C B CIf with and with , then .α β α β β γ β γ α γθ θ ϑ ϑ θ θ ϑ ϑ= = = = Ψ Ψ  (5) 

We have established a representation of the zeroth law of quantum thermo-
dynamics (equivalence relation among quantum states). The zeroth law can be 
expressed in terms of parameters in θ  and ϑ . Equation (5) means that, in 
the mixed ensemble, the additional condition A B

α βϑ ϑ=  is required for the equiva-
lence relation among mixed ensembles. 

2.2. The First Law of Quantum Thermodynamics 

The first law of thermodynamics states that heat is a form of energy, and ther-
modynamic processes are therefore subject to the principle of conservation of 
energy, meaning that heat energy cannot be created or destroyed. In order to 
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discuss the first law and obtain the representation of the first law of quantum 
thermodynamics, let us consider the internal energy of the system in mixed 
quantum ensembles. 

The internal energy mU  of the system in mixed quantum states is given by 
the expectation value of Hamiltonian ̂ : 

m m ,

ˆ ,ij i j
i j j

U p E U= = =∑ ∑                   (6) 

where ij i jp p w=  and j ij iiU p E= ∑  is the internal energy of the ensemble j. 
By calculating the total differential of Equation (6), we obtain 

( ) ( )m
,

.i ij ij i j j
i j j

dU E dp p dE d Q d W′ ′= + ≡ +∑ ∑             (7) 

Analogous to the case for a system in a pure ensemble [9], we identify  

j i ijid Q E dp′ = ∑  and j ij iid W p dE′ = ∑ , respectively, for the heat transferred to 
the ensemble j and for the work done on the ensemble j. The variation of the in-
ternal energy mU , that is mdU  for the mixed ensemble, is obtained by sum-
ming up all jd Q′  and jd W′  weighted by jw  since ijp  is equal to i jp w . It 
is clear that mdU  in Equation (7) is reduced to ( )i i i iidU E dp p dE= +∑ , which 
is the case of a quantum system in a pure quantum ensemble since a pure quan-
tum ensemble means 1jw =  only for particular j and 0jw ′ =  for j j′ ≠ . 

Distinguishing two kinds of transfer of energy, as heat and as thermodynamic 
work, adopted for thermodynamic processes, we prove that the equalities  

j ij iid W p dE′ = ∑  and j i ijid Q E dp′ = ∑  are true. Let us consider the small change 
in the outcome is given by 

( )
,i

i

E L
dE dL

L
∂

=
∂

                       (8) 

where L is the work coordinate related to the work done on the system. Then 

,i
ij i ij

i i

E
p dE p dL

L
∂

=
∂∑ ∑                      (9) 

where ( ) ( ); ;ijp P x i Q y jθ ϑ= = = . Note that ijp  is a function of the parame-
ters θ  and ϑ . The probability ijp  does not depend on L but the energy iE  
of the quantum state i does. Thus we can write Equation (9) as 

( ) .ij i ij i j
i i

p dE p E dL U dL
L L
∂ ∂

= =
∂ ∂∑ ∑               (10) 

A change in the internal energy of the system in a mixed ensemble is generally 
related to a force defined by 

( )
,j

j

U L
F

L
∂

≡ −
∂

                       (11) 

so that Equation (10) and hence Equation (9) can be expressed as 

.ij i j
i

p dE F dL= −∑                       (12) 

Thus, it is clear that the term ij ii p dE∑  corresponds to the work jd W′  done 
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on the system described by ensemble j and it is generally expressed by 

( ) ,j ij i j
i

d W p dE L F dL′ = = −∑                   (13) 

where the definite probability ijp  can then be replaced by the probability func-
tion ( ) ( ); ;P x i Q y jθ ϑ= = . Thereby, from Equations (7) and (13) we have  

j jdU d Q′=  when 0jd W′ = . Then the term i iji E dp∑  corresponds to the 
change in the internal energy of the system that occurs when no work is done; 
this is what we understand as heat flow. 

It should be emphasized that the heat entering the system described by ensem-
ble j, jd Q′ , is expressed in terms of the variation of ( ) ( ); ;ijp P x i Q y jθ ϑ= = =  
while the work is done on the system described by ensemble j, jd W′ , is ex-
pressed in terms of the variation of ( )iE L . Since ( ) ( ); ;ijp P x i Q y jθ ϑ= = = , 
we can write ijdp  as 

( ) ( ) ( ) ( ); ;
; ; .ij

P x i Q y j
dp Q y j d P x i d

θ ϑ
ϑ θ θ ϑ

θ ϑ
∂ = ∂ =

= = + =
∂ ∂

    (14) 

so that jd Q′  is expressed in terms of those parameters θ  and ϑ : 

( ) ( ) ( ) ( ); ;
; ; .

j i ij
i

i
i

d Q E dp

P x i Q y j
E Q y j d P x i d

θ ϑ
ϑ θ θ ϑ

θ ϑ

′ =

∂ = ∂ = 
= = + = ∂ ∂ 

∑

∑
   (15) 

We would like to note that Equation (15) reduces to  
( );

i i ii i

P x i
d Q E dp E d

θ
θ

θ
∂ =

′ = =
∂∑ ∑  for a quantum system in a pure ensem-

ble, where ( ); 1Q y jϑ = = . 

2.3. The Second Law of Quantum Thermodynamics 

In this subsection, we will give a definition of entropy to describe the entropy 
principle (viz., the second law of thermodynamics) for quantum system de-
scribed by a mixed state. The entropy principle states that adiabatic accessibility 
of any two states is described by an entropy inequality. Here we should refer to 
the adiabatic process since the second law treated here is defined for the process. 
The process is characterized by 0jd Q′ =  for mixed ensembles. This is ensured 
when ( ) ( ); ;P x Q yθ ϑ  remains unchanged throughout the process (see C1’ and 
argument below). In other words, adiabatic process is a process such that  
( ) ( ); ;P x Q yθ ϑ  remains unchanged. It should be noted that adiabatic process 

allows to change a value of L since it affects only the work jd W′ . This is consis-
tent with adiabatic processes defined by Lieb and Yngvason [3]. 

Let us define an entropy function mS  for mixed ensembles as a map from 
the sets ,Lθ  and ,Lϑ  to a real number  : 

m , ,: , .L LS θ ϑ                         (16) 

We note that this general definition for entropy can describe all types of en-
tropy functions including well known Boltzmann, Gibbs, and Shannon entro-
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pies. The entropy mS  defined by the map (16) is clearly a state quantity and 
ensures that mS  can be defined for all states (i.e. pure and mixed ensembles) in 
terms of θ  and ϑ . 

In order to obtain a representation of the second law in terms of θ  and ϑ  
for quantum system, it must be shown that determining parameters θ  and ϑ . 
In order to show this, let us show that mU  is specified by θ ’s, ϑ ’s and L’s 
(i.e., the elements of ,Lθ  and ,Lϑ ). 

First, we show that the following corollaries, C1’ and C2’, can be drawn: 
C1’: The internal energy mU  is specified by the respective parameters θ , ϑ  

and L: 

( )m m , , .U U Lθ ϑ=                       (17) 

Proof of C1’: Once a maximal test is chosen for a fixed L, respective outcomes 

iE  ( )1,2,i =   for the system is uniquely determined and the definite proba-
bility ijp  is then described as ( ) ( ); ;P x i Q y jθ ϑ= =  by the proof of L1’. 
Therefore, it is clear that the internal energy is specified by the respective para-
meters θ , ϑ  and L.                                               

We note that C1’ states the internal energy mU  can be specified by those pa-
rameters, θ , ϑ  and L. We will omit L in ( )m , ,U Lθ ϑ  for simplicity when we 
consider a fixed L. 

C2’: 0jd Q′ =  implies the consequence of adiabatic equivalence for all en-
sembles w.r.t. each j. 

Proof of C2’: By the proof of L1’, no change in the probability function im-
plies that the absolute values of the expansion coefficients ijb ’s remain the 
same. This implies ijp  remains constant. Thus jd Q′  is equal to zero throughout 
the operation (process).                                              

In the statement of C2’, the consequence of adiabatic equivalence is as follows: 
if the system were isolated, the absolute values of the expansion coefficients 

ijb ’s would remain constant. It should be noticed that the notion of heat arises 
only when the state (internal energy) of a system changes, where j jdU d W′≠ . 
As in classical thermodynamics, heat in quantum system is also defined as a 
form of energy flow. Once the internal energy of a quantum system is well de-
fined, heat is also well defined. Thus the following Lemma (L2’) is established: 

L2’: There exist mU ’s specified by each element of ,Lθ  and ,Lϑ . 
Proof of L2’: Without loss of generality, one can consider a fixed maximal 

test, where outcome of the maximal test is uniquely determined: The internal 
energy for mixed ensembles is thus represented in terms of those parameters 
θ ’s and ϑ ’s: 

( ) ( )m
, ,

; ; ,ij i i
i j i j

U p E P x i Q y j Eα αθ ϑ= = = =∑ ∑           (18) 

where αθ  and αϑ  specify the internal energy mU . Therefore, mU  can be la-
beled as mU α . As in the same way, respective internal energies, m m, ,U Uβ γ  , 
can be specified by , ,β γθ θ 

 and , ,β γϑ ϑ 
.                           

Since the existence of correspondence between an internal energy mU  and 
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parameters θ  and ϑ  was established by L2’, we can obtain one-to-one cor-
respondence between ( )mS X  and ( )m ,S θ ϑ . This keeps consistency between 
an entropy function defined in the entropy principle (see Ref. [9], Section 2) and 
the statement (16) for a mixed ensemble of the system. We finally obtain a re-
presentation of the second law of quantum thermodynamics for a system in a 
mixed ensemble in terms of θ  and ϑ : 

( ) ( )m mand if and only if , , .S Sα α α α α α α αθ θ ϑ ϑ θ ϑ θ ϑ′ ′ ′ ′≤       (19) 

This describes the entropy principle for quantum systems in mixed quantum 
ensembles. 

For the case where a given arbitrary pair of states represented by ( ),α βθ θ  
and ( ),α βθ θ′ ′ , the following relation holds [9]: 

( ) ( ) ( ) ( ) ( ) ( ), , if and only if ,S S S Sα β α β α β α βθ θ θ θ θ θ θ θ′ ′ ′ ′+ ≤ +   (20) 

where jθ , , ,j α β=  , is the element of the state space θ θ×  . 
From L2’, we can immediately obtain the relation for any pairs of states repr- 

esented by ( ),α βθ θ , ( ),α βϑ ϑ  and ( ),α βθ θ′ ′ , ( ),α βϑ ϑ′ ′ : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , and , ,

if and only if , , , , ,S S S S

α β α β α β α β

α α β β α α β β

θ θ θ θ ϑ ϑ ϑ ϑ

θ ϑ θ ϑ θ ϑ θ ϑ

′ ′ ′ ′

′ ′ ′ ′+ ≤ +

 

     (21) 

where kθ  and kϑ , , ,k α β=  , are the elements of the state space θ θ×   
and ϑ ϑ×  , respectively. The statement (21) means that ( ); , ;α α β βθ ϑ θ ϑ′ ′ ′ ′  
is adiabatically accessible from ( ); , ;α α β βθ ϑ θ ϑ . 

Since we established mS  for the quantum system as a function of parameters 
θ  and ϑ , one can define thermodynamic temperature T as a function of θ  
and ϑ : ( ),T T θ ϑ= . 

2.4. The Third Law of Quantum Thermodynamics 

Let us briefly discuss the third law of thermodynamics for quantum systems de-
scribed by mixed ensembles. The probability functions ( )P θ  and ( )Q ϑ  are 
found from probability amplitudes (see L1’). Accordingly, we can obtain the re-
presentation of the third law: The entropy mS  is equal to zero only when  
( )P θ  and ( )Q ϑ  satisfy the conditions: 

( ); 1 for arbitrary ,P x i iθ = =                   (22) 

( ); 1 for arbitrary .Q y j jϑ = =                  (23) 

At the absolute zero temperature, one can expect a state of quantum system 
being in a single state for each ensemble j such as 

for arbitrary and .j ijb i i jΨ =                 (24) 

The single state here means that only one outcome is obtained with a proba-
bility 1 by maximal tests. 

3. Summary and Concluding Remarks 

In this study, in addition to the parameters θ ’s in a thermodynamic state space 

θ  to describe pure quantum ensembles discussed in Ref. [9], parameters ϑ ’s 
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in ϑ  are newly proposed in order to describe mixed quantum ensembles of 
quantum systems, where the map ϑΨ    is an injection. Therefore, in or-
der to establish the representation of the zeroth law in terms of the elements 

ϑ , it is required to use the same maximal tests to obtain the corresponding 
elements from the respective elements of quantum state vectors Ψ ’s in the 
state-vector space Ψ  for quantum systems. We showed that the first law is 
represented by a state quantity specified in terms of the parameters ϑ ’s ,Lϑ∈  
along with the parameters θ ’s ,Lθ∈  for the the systems in mixed ensembles 
(C1’), where L denotes the work coordinate related to the work done on the re-
spective system. We showed that the representation of the second law of ther-
modynamics was also obtained for a system in mixed quantum ensembles by 
using the parameters in ϑ . This representation obtained here could give some 
insight into the order relation in ,Lθ  and ,Lϑ  for pure and mixed quan-
tum systems. Therefore, the study of the order relation would afford one to in-
vestigate thermodynamic structure in a state space characterizing thermody-
namics of quantum systems in terms of those parameters in ,Lθ  and ,Lϑ . 
Finally, we note on the third law. In our representation, when the state is de-
scribed by j ijb iΨ = , where ijb  is the probability amplitude in a mixed en-
semble, viz. the state of system is characterized by a single state for each ensem-
ble j, entropy of the system takes the value of zero. Suppose i  be an energy 
eigenstate of the system. The state is then described by j ijb iΨ =  at the ab-
solute zero temperature. Thus we draw from third law that in our representation 
the entropy 0S →  as temperature 0T → , where the energy of the system iE  
corresponds to the lowest energy quantum state of the system. In summary, 
based on the mathematical foundation for quantum systems, we have obtained a 
representation of the basic laws (Zeroth, First, Second and Third Laws) in ther-
modynamics for quantum systems described by mixed quantum ensembles. 

We hope that the present theory affords the mathematical foundation of the 
basic laws of quantum thermodynamics and the key to treat mixed quantum 
systems thermodynamically. 
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Abstract 
K. Suto has recently pointed out an interesting relativistic extension of Ryd-
berg’s formula. Here we also discuss Rydberg’s formula, and offer additional 
evidence on how one can easily see that it is non-relativistic and therefore a 
good approximation, at best, when v c . We also extend the Suto formula 
to hold for any atom and examine the formula in detail. 
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1. Introduction 

Rydberg’s [1] formula is given by 

2
2 2
1 2

1 1 1R Z
n nλ ∞

 
= − 

 
                      (1) 

where R∞  is the Rydberg’s constant, which has a value of 10,973,731.568160 (21) 
m−1 (NIST CODATA value). Even though the formula is very simple, the intui-
tion behind the formula is hidden in Rydberg’s constant and the way the formu-
la is written. To truly understand what Rydberg’s formula represents, we will 
take a close look at what is embedded in the formula. 

Rydberg’s constant is given by 
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Since the Compton [2] wavelength of the electron is given by1 

e
e

h
m c

λ =                            (3) 

This can be rewritten as 
22

44

e

e

m c
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h h
m c

αα
∞ = =

ππ
                      (4) 

This is well known, so we have shown nothing new so far. Let us now replace 
this in Rydberg’s formula, which gives 
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where 
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and since 
ch
λ

 is energy, we can write this as 

2 2 2
1 2

1 1
2 2e eE Z m v m v = − 

 
                    (7) 

Rydberg’s formula is thus the difference in the kinetic energy between two  

 

 

1The original Compton derivation actually gives a non-relativistic Compton wave. That is, it is based 
on the assumption that the electron is standing still before being hit by photons. For more on the re-
lativistic Compton wave, see [3]. 
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electrons (or two states of an electron). However, it is well known that the kinet-

ic energy formula of the form 21
2kE mv=  is the first order Taylor series  

approximation to the relativistic version of the formula. This approximation is 
only valid when v c . In other words, Rydberg’s formula is an approximation 
formula that only holds when the electron moves very slowly as compared to the 
speed of light. However, it may not be completely obvious or clearly acknowl-
edged that Rydberg’s formula is a non-relativistic approximation formula. Stan-
dard university textbooks on physics, for example, do not comment that the 
formula is, in reality, a non-relativistic approximation formula, see [4] and [5], 
for example. 

Turning to a specific case, for a hydrogen atom, it is more precise to use the 
Rydberg constant 

P
H

P e

mR R
m m∞=

+
                       (8) 

this means we have 
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Before we move on to study relativistic effects, it is also worth mentioning that 
the Rydberg formula can be rewritten as 
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                  (10) 

To set the stage here, all we need to know to obtain the wavelength of the 
spectra from an atom is the Compton wavelength of the electron, the fine struc-
ture constant, and the atomic number. In a recent interesting paper by Suto [6], 
the author derives a relativistic Rydberg formula that contains the Compton 
wave of the electron, but he finds it strange that the standard Rydberg formula 
does not contain the Compton wavelength. In his own words: 

“However, Equation (8) for calculating the wavelength of the spectra of a 
hydrogen atom is strange because it does not include the Compton wave-
length of the electron.” 

where his Equation (8) is the Rydberg formula, here formula 1. But as we can see 
by rewriting the standard Rydberg formula, the Compton wave of the electron is 
hidden inside the Rydberg constant, which is a composite constant consisting of 
more fundamental constants such as the fine structure constant and the Comp-
ton wave of the electron. This is clear from Equation (2), where we see the fine 
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structure constant and the Compton wave of the electron, as well as π . 

2. The Relativistic Rydberg Formula 

In the previous section, we observed that Rydberg’s formula is a non-relativistic 
approximation. Recently, Suto [6] has published a relativistic Rydberg formula 
given by 

1 2 1 22 2

2 2
1 2

1 1 1 1
e n n

α α
λ λ

− −    
 = − − −        

               (11) 

He also completes a Taylor series expansion series and gets 
2 4 6 2 4 6

2 4 6 2 4 6
1 1 1 2 2 2
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2 8 16 2 8 16e n n n n n n
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      (12) 

Here may be a small mistake; we suggest that the correct Taylor expansion 
should be 

2 4 6 2 4 6

2 4 6 2 4 6
1 1 1 2 2 2

1 1 3 5 3 51 1
2 8 16 2 8 16e n n n n n n
α α α α α α

λ λ
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= − + + − − + +         
      (13) 

In other words, there is a problem with the signs. The error in the Taylor se-
ries expansion is likely also the reason the values in the table in his paper are not 
correct for the prediction of his model. Still, his main result and analysis are 
correct and we think the relativistic Rydberg formula deserves more attention. 
For one thing, the Suto formula is only for hydrogen atoms. For a hydrogen 
atom, the velocity of the electron is very slow, so the difference in predictions 
between the non-relativistic Rydberg formula and the relativistic formula of Suto 
is very small and probably not easily evaluated inside the error bounds in mea-
surements. 

However, for much heavier elements many of the electrons are moving consi-
derably faster. Here we extend that formula to hold for any element and we get 
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where z is the atom/element number. Table 1 shows predictions from both the 
non-relativistic Rydberg formula and our relativistic formula for element 1 (Hy-
drogen) and up to element 137 (Feynmanium). Another interesting aspect here 
is that the Rydberg formula is somewhat linked to the Bohr model, which is ob-
viously only an approximation. In practice, many predictions are done from 
quantum mechanics, such as results from the Dirac [7] equation. It is therefore  
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Table 1. The table shows the Rydberg formula predictions and the relativistic predictions for the first 137 elements. As we can see, the 
difference increases between the two models the higher the element number is. Here we are just looking at the case 1 1n =  and 2 2n = . 

Atomic 
# 

Rydberg 
formula 

Relativistic 
formula 

Diff. 
Diff. 

% 
Atomic 

# 
Rydberg 
formula 

Relativistic 
formula 

Diff. 
Diff. 

% 

1 121.5023 121.4962 −0.0061 −0.0050% 71 0.0241 0.0144 −0.0097 −67.6% 

2 30.3756 26.0315 −4.3440 −16.7% 72 0.0234 0.0139 −0.0096 −68.9% 

3 13.5003 11.0414 −2.4589 −22.3% 73 0.0228 0.0134 −0.0094 −70.2% 

4 7.5939 6.0710 −1.5229 −25.1% 74 0.0222 0.0129 −0.0093 −71.6% 

5 4.8601 3.8329 −1.0272 −26.8% 75 0.0216 0.0125 −0.0091 −73.0% 

6 3.3751 2.6374 −0.7377 −28.0% 76 0.0210 0.0121 −0.0090 −74.5% 

7 2.4796 1.9247 −0.5549 −28.8% 77 0.0205 0.0116 −0.0088 −76.0% 

8 1.8985 1.4659 −0.4326 −29.5% 78 0.0200 0.0112 −0.0087 −77.6% 

9 1.5000 1.1533 −0.3467 −30.1% 79 0.0195 0.0109 −0.0086 −79.2% 

10 1.2150 0.9308 −0.2842 −30.5% 80 0.0190 0.0105 −0.0085 −80.9% 

11 1.0042 0.7668 −0.2373 −31.0% 81 0.0185 0.0101 −0.0084 −82.6% 

12 0.8438 0.6425 −0.2013 −31.3% 82 0.0181 0.0098 −0.0083 −84.4% 

13 0.7189 0.5460 −0.1729 −31.7% 83 0.0176 0.0095 −0.0082 −86.2% 

14 0.6199 0.4696 −0.1503 −32.0% 84 0.0172 0.0092 −0.0081 −88.1% 

15 0.5400 0.4081 −0.1319 −32.3% 85 0.0168 0.0088 −0.0080 −90.1% 

16 0.4746 0.3579 −0.1168 −32.6% 86 0.0164 0.0085 −0.0079 −92.2% 

17 0.4204 0.3163 −0.1042 −32.9% 87 0.0161 0.0083 −0.0078 −94.3% 

18 0.3750 0.2815 −0.0935 −33.2% 88 0.0157 0.0080 −0.0077 −96.5% 

19 0.3366 0.2521 −0.0845 −33.5% 89 0.0153 0.0077 −0.0076 −98.8% 

20 0.3038 0.2270 −0.0768 −33.8% 90 0.0150 0.0075 −0.0075 −101.2% 

21 0.2755 0.2054 −0.0701 −34.1% 91 0.0147 0.0072 −0.0075 −103.7% 

22 0.2510 0.1867 −0.0643 −34.5% 92 0.0144 0.0070 −0.0074 −106.3% 

23 0.2297 0.1704 −0.0593 −34.8% 93 0.0140 0.0067 −0.0073 −109.0% 

24 0.2109 0.1561 −0.0548 −35.1% 94 0.0138 0.0065 −0.0073 −111.8% 

25 0.1944 0.1436 −0.0509 −35.4% 95 0.0135 0.0063 −0.0072 −114.7% 

26 0.1797 0.1324 −0.0473 −35.8% 96 0.0132 0.0061 −0.0071 −117.7% 

27 0.1667 0.1225 −0.0442 −36.1% 97 0.0129 0.0058 −0.0071 −120.9% 

28 0.1550 0.1136 −0.0414 −36.5% 98 0.0127 0.0056 −0.0070 −124.2% 

29 0.1445 0.1056 −0.0389 −36.8% 99 0.0124 0.0054 −0.0070 −127.7% 

30 0.1350 0.0984 −0.0366 −37.2% 100 0.0122 0.0053 −0.0069 −131.3% 

31 0.1264 0.0919 −0.0346 −37.6% 101 0.0119 0.0051 −0.0068 −135.1% 

32 0.1187 0.0860 −0.0327 −38.0% 102 0.0117 0.0049 −0.0068 −139.1% 

33 0.1116 0.0806 −0.0310 −38.4% 103 0.0115 0.0047 −0.0067 −143.3% 

34 0.1051 0.0757 −0.0294 −38.8% 104 0.0112 0.0045 −0.0067 −147.7% 
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Continued 

35 0.0992 0.0712 −0.0280 −39.3% 105 0.0110 0.0044 −0.0067 −152.3% 

36 0.0938 0.0671 −0.0267 −39.7% 106 0.0108 0.0042 −0.0066 −157.2% 

37 0.0888 0.0633 −0.0254 −40.2% 107 0.0106 0.0040 −0.0066 −162.4% 

38 0.0841 0.0598 −0.0243 −40.7% 108 0.0104 0.0039 −0.0065 −167.9% 

39 0.0799 0.0566 −0.0233 −41.2% 109 0.0102 0.0037 −0.0065 −173.7% 

40 0.0759 0.0536 −0.0223 −41.7% 110 0.0100 0.0036 −0.0065 −179.8% 

41 0.0723 0.0508 −0.0214 −42.2% 111 0.0099 0.0034 −0.0064 −186.3% 

42 0.0689 0.0483 −0.0206 −42.7% 112 0.0097 0.0033 −0.0064 −193.3% 

43 0.0657 0.0459 −0.0199 −43.3% 113 0.0095 0.0032 −0.0064 −200.8% 

44 0.0628 0.0436 −0.0191 −43.9% 114 0.0093 0.0030 −0.0063 −208.8% 

45 0.0600 0.0415 −0.0185 −44.4% 115 0.0092 0.0029 −0.0063 −217.3% 

46 0.0574 0.0396 −0.0178 −45.1% 116 0.0090 0.0028 −0.0063 −226.6% 

47 0.0550 0.0378 −0.0172 −45.7% 117 0.0089 0.0026 −0.0062 −236.6% 

48 0.0527 0.0360 −0.0167 −46.3% 118 0.0087 0.0025 −0.0062 −247.4% 

49 0.0506 0.0344 −0.0162 −47.0% 119 0.0086 0.0024 −0.0062 −259.2% 

50 0.0486 0.0329 −0.0157 −47.7% 120 0.0084 0.0023 −0.0062 −272.1% 

51 0.0467 0.0315 −0.0152 −48.4% 121 0.0083 0.0021 −0.0062 −286.3% 

52 0.0449 0.0301 −0.0148 −49.1% 122 0.0082 0.0020 −0.0061 −302.0% 

53 0.0433 0.0289 −0.0144 −49.8% 123 0.0080 0.0019 −0.0061 −319.5% 

54 0.0417 0.0277 −0.0140 −50.6% 124 0.0079 0.0018 −0.0061 −339.1% 

55 0.0402 0.0265 −0.0136 −51.4% 125 0.0078 0.0017 −0.0061 −361.3% 

56 0.0387 0.0255 −0.0133 −52.2% 126 0.0077 0.0016 −0.0061 −386.6% 

57 0.0374 0.0244 −0.0130 −53.0% 127 0.0075 0.0015 −0.0061 −415.8% 

58 0.0361 0.0235 −0.0126 −53.8% 128 0.0074 0.0013 −0.0061 −450.0% 

59 0.0349 0.0226 −0.0123 −54.7% 129 0.0073 0.0012 −0.0061 −490.7% 

60 0.0338 0.0217 −0.0121 −55.6% 130 0.0072 0.0011 −0.0061 −540.2% 

61 0.0327 0.0209 −0.0118 −56.6% 131 0.0071 0.0010 −0.0061 −602.1% 

62 0.0316 0.0201 −0.0115 −57.5% 132 0.0070 0.0009 −0.0061 −682.3% 

63 0.0306 0.0193 −0.0113 −58.5% 133 0.0069 0.0008 −0.0061 −791.8% 

64 0.0297 0.0186 −0.0111 −59.5% 134 0.0068 0.0006 −0.0061 −953.2% 

65 0.0288 0.0179 −0.0108 −60.6% 135 0.0067 0.0005 −0.0062 −1224.9% 

66 0.0279 0.0173 −0.0106 −61.7% 136 0.0066 0.0003 −0.0062 −1835.0% 

67 0.0271 0.0166 −0.0104 −62.8% 137 0.0065 0.0001 −0.0064 −11273.7% 

68 0.0263 0.0160 −0.0102 −63.9%      

69 0.0255 0.0155 −0.0101 −65.1%      

70 0.0248 0.0149 −0.0099 −66.3%      

https://doi.org/10.4236/jmp.2020.114035


E. G. Haug 
 

 

DOI: 10.4236/jmp.2020.114035 534 Journal of Modern Physics 
 

not clear if the relativistic Rydberg formula has much to offer or not, but it is 
important for anyone interested in physics to know that it is, at best, a good ap-
proximation when the velocity of the electron is v c . 

3. Conclusion 

Suto has recently published an interesting relativistic version of the Rydberg 
formula. Here we have added additional evidence and insight on how, after some 
reformulation, one can easily see that the Rydberg formula is simply a non-rela- 
tivistic approximation. We have also extended the Suto relativistic formula to 
hold for any element. For those interested in this area of physics, further explo-
ration may yield additional insights. 
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Abstract 
In this work, we discuss the possibility to classify relativity in accordance with 
the classification of second order partial differential equations that have been 
applied into the formulation of physical laws in physics. In mathematics, 
since second order partial differential equations can be classified into hyper-
bolic, elliptic or parabolic type, therefore we show that it is also possible to 
classify relativity accordingly into hyperbolic, elliptic or parabolic type by es-
tablishing coordinate transformations that preserve the forms of these second 
order partial differential equations. The coordinate transformation that pre-
serves the form of the hyperbolic equation is the Lorentz transformation and 
the associated space is the hyperbolic, or pseudo-Euclidean, relativistic space-
time. Typical equations in physics that comply with hyperbolic relativity are 
Maxwell and Dirac equations. The coordinate transformation that preserves 
the form of the elliptic equation is the modified Lorentz transformation that 
we have formulated in our work on Euclidean relativity and the associated 
space is the elliptic, or Euclidean, relativistic spacetime. As we will show in 
this work, equations that comply with elliptic relativity are the equations that 
describe the subfields of Maxwell and Dirac field. And the coordinate transfor-
mation that preserves the form of the parabolic equation is the Euclidean trans-
formation consisting of the translation and rotation in the spatial space and 
the associated space is the parabolic relativistic spacetime, which is a Euclid-
ean space with a universal time. Typical equations in physics that comply with 
parabolic relativity are the diffusion equation, the Schrödinger equation and in 
particular the diffusion equations that are derived from the four-current defined 
in terms of the differentiable structures of the spacetime manifold, and the 
Ricci flow. 
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1. Introduction 

In physics, it appears that physical objects are endowed with many different 
physical properties each of which couples to a physical field that obeys a specific 
physical law that can be described by a particular system of partial differential 
equations. It is also conventionally assumed, due to our ability of observing and 
perceiving of the natural environment, that physical events occur in a three-dim- 
ensional space and progress forward in one-dimensional time, even though it is 
conceivable to speculate that physical events may also progress backwards in 
time and occur in a higher dimensional space. From the physical laws that are 
derived and formulated from observation, a mathematical structure of space and 
time can be constructed to conform to the corresponding observed physical oc-
currences. In Newton physics since the established dynamical laws that describe 
the dynamics of material particles seem to obey the Galilean transformation of 
space and time therefore it is reasonable to assume that time is absolute. On the 
other hand, in Einstein physics, space and time are relative since it is established 
that Maxwell field equations of the electromagnetic field comply with the Lor-
entz transformation. Maxwell field equations are wave equations that describe 
the dynamics of a wave motion rather than that of a material particle. Until the 
quantum mechanics was invented which embraces the wave-particle dual char-
acteristics of a material particle, it had been regarded that Newton and Maxwell 
dynamics are two different dynamics that describe physical systems that have 
completely different physical compositions, even though Newton himself specu-
lated that the electromagnetic field is also composed of particles. The difficulty 
associated with the wave-particle duality may be due to the assumption that an 
elementary particle such as an electron is simply a mass-point with no internal 
structure. In fact, we have shown that it is possible to describe mathematically 
an elementary particle as a three-dimensional differentiable manifold whose 
mathematical structure can be expressed in terms of a Schrödinger wavefunc-
tion. Therefore, from the superposition principle associated with the wave mo-
tion and the assumption of internal structures of an elementary particle, we may 
assume that a physical property endowed to an elementary particle does not 
have to satisfy the requirements that are imposed on other physical properties of 
the particle but rather follows its own physical law that obeys its own type of 
relativity. For example, in quantum mechanics the time-independent Schrödinger 
wave equation describes the structure of atoms and it has been shown that atoms 
are stable and their physical structures are invariant with respect to translation 
and rotation, and we have also shown that the spin dynamics can be formulated 
by the Schrödinger equation in terms of intrinsic coordinates rather than the 
Dirac relativistic equation, therefore the Schrödinger equation should not be 
considered as a non-relativistic limit of Dirac relativistic equation but rather a 
physical formulation that follows its own relativity and as we will show later that 
the relativity that the Schrödinger equation obeys is the parabolic relativity, in 
the same way as Maxwell and Dirac field to comply with the pseudo-Euclidean 
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relativity. 
In this work, we discuss a classification of relativity in which the spacetime 

manifold in which physical phenomena occur are classified into hyperbolic, el-
liptic or parabolic relativistic spacetime. Since the classification of relativity is 
closely related to the classification of second order partial differential equations 
therefore for reference we first outline the classification of the second order par-
tial differential equations in Section 2, and the classification of relativity will be 
given in Section 4. A hyperbolic relativistic spacetime is a pseudo-Euclidean 
space that was formulated by Minkowski to establish a mathematical foundation 
for Einstein’s theory of special relativity. That is a four-dimensional differenti-
able manifold which possesses a fundamental quadratic form of Lorentz signa-
ture that makes the wave equation invariant under Lorentz transformation [1]. 
On the other hand, we have shown in our work on the Euclidean relativity that 
quantum particles may possess physical properties that comply with the Euclid-
ean relativity rather than the pseudo-Euclidean relativity. Since this type of rela-
tivity is associated with the elliptic equation therefore we will refer to the space-
time continuum whose mathematical structure complies with the Euclidean 
relativity an elliptic relativistic spacetime. And we have also shown in our work 
on Euclidean relativity that the elliptic equations are invariant under a modified 
Lorentz transformation, which is a rotation in spacetime [2] [3]. The two types 
of relativistic spacetime that we have considered depend essentially on the cor-
responding second order partial differential equations that are used to describe 
possible physical properties associated with a quantum particle. In fact, in Sec-
tion 3 we show that the Euclidean relativity is the spacetime structure that is as-
sociated with the subfields of the Maxwell and Dirac field, in which the dynam-
ics of the subfields is described by elliptic equations. In addition to the elliptic 
and hyperbolic relativity, in Section 4 we also discuss the parabolic relativity. As 
it is well-known that second order partial differential equations can be classified 
into three distinctive types of equations therefore it seems appropriate also to 
classify relativistic spacetime into three different types, and the third type of 
relativistic spacetime that we introduce in this work is the parabolic relativistic 
spacetime. Therefore, by definition, a parabolic relativistic spacetime is a space 
whose mathematical structure is determined by the invariance of a parabolic 
equation such as the diffusion equation and the Schrödinger wave equation in 
quantum mechanics. Overall, we assume that a quantum particle may have dif-
ferent physical properties which are described by different physical laws each of 
which is formulated independently in either the hyperbolic or the elliptic or the 
parabolic relativistic spacetime. All of these relativistic spaces can be regarded as 
different fibres of the fibre bundle of the spacetime continuum. 

2. A Classification of Second Order Partial  
Differential Equations 

A general second order partial differential equation can be written in the form: 
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2

1 1 1
0

n n n

ij i
i j ii j i

a b c d
x x x
ψ ψ ψ

= = =

∂ ∂
+ + + =

∂ ∂ ∂∑∑ ∑                (1) 

If the matrix ( )ijA a=  is symmetric then it can be transformed into a diago-
nal matrix by applying a diagonalising matrix M 

1
T

0

0 n

M AM
λ

λ

 
 =  
 
 



  



                     (2) 

Then the second order partial differential equation given in Equation (1) can be 
classified into three different types of partial differential equations as follows [4]. 
• If all eigenvalues iλ  are non-zero and have the same sign then Equation (1) 

is elliptic. 
• If all eigenvalues iλ  are non-zero and have the same sign except for one of 

the eigenvalues then Equation (1) is hyperbolic. 
• If exactly one of the eigenvalues is zero and all the others have the same sign 

then Equation (1) is parabolic. In this case, the matrix A is singular. 
In this work, we consider the second order partial differential equations, and 

classify relativity accordingly, in the spacetime continuum in which space has 
three dimensions and time has one dimension therefore we only need to present 
the case of the partial differential equations in the four-dimensional space whose 
coordinates are specified by three spatial coordinates ( ), ,x y z  and one tempo-
ral coordinate t. With this specification, the three different types of second order 
partial differential equations are given as follows: 
• Elliptic equation can be written in the form 

2 2 2 2

2 2 2 2 a b c d e f
t x y zt x y z

ψ ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
     (3) 

We will show in the next section that elliptic equations in the four-dimen- 
sional spacetime manifold play an important role in the determination of the 
dynamics of the subfields of Maxwell and Dirac field [5]. Therefore, the subfields 
of Maxwell and Dirac field comply with the Euclidean relativity which we will 
classify as elliptic relativity in this work. 
• Hyperbolic equation can be written in the form 

2 2 2 2

2 2 2 2 a b c d e f
t x y zt x y z

ψ ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
     (4) 

Hyperbolic equations play an important role in physics with Maxwell theory 
of the electromagnetic field and Dirac theory of quantum particles [6] [7]. In 
particular, the invariance of the hyperbolic equations under Lorentz transforma-
tion led Einstein to develop his theories of special and general relativity. We will 
classify Einstein relativity as hyperbolic relativity in this work. 
• Parabolic equation can be written in the form 

2 2 2

2 2 2 a b c d e f
t x y zx y z

ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂
       (5) 

https://doi.org/10.4236/jmp.2020.114036


V. B. Ho 
 

 
DOI: 10.4236/jmp.2020.114036 539 Journal of Modern Physics 
 

We will classify as parabolic relativity for the mathematical structure of the 
spacetime manifold that makes the parabolic equations invariant. The important 
parabolic equations in physics are the diffusion equation, the Schrödinger equa-
tion, and diffusion equations that are derived from the four-current associated 
with the differentiable structure of the spacetime manifold and the Ricci flow. 
The parabolic relativity complies with the Euclidean transformation which con-
sists of translation and rotation in the spatial space. 

3. Subfield Structure of Maxwell and Dirac Field 

In this section, we will discuss possible physical fields that comply with the ellip-
tic equation given in Equation (3). We have shown in our previous works that 
both Maxwell field equations of the electromagnetic field and Dirac equation of 
massive quantum particles can be formulated from a general system of linear 
first order partial differential equations, and, as a consequence, the field equa-
tions of the two physical fields have many common features that specify charac-
teristics that are not typical in classical physics [8] [9] [10] [11]. In the following, 
we further show the similarity between the Maxwell and Dirac field by examin-
ing the subfields that are coupled to form either of these two physical fields. We 
show that the subfields have the mathematical structures and physical properties 
that are essentially different from the coupled field of Maxwell, and that of Dirac. 
In particular, we show that the subfields of both Maxwell and Dirac field satisfy 
elliptic equations rather than hyperbolic equations therefore while Maxwell and 
Dirac field are described by wave equations therefore they comply with the laws 
of the pseudo-Euclidean relativity, the Maxwell and Dirac subfields are described 
by elliptic equations therefore they comply with those of the Euclidean relativity 
instead [12]. The fact that the subfields of Maxwell and Dirac fields are Euclid-
ean relativistic has profound implications, such as they can be used to explain 
the stability of elementary particles because if elementary particles are repre-
sented by subfields which are described by elliptic equations then since elliptic 
equations are used to describe equilibrium states of physical systems therefore 
elementary particles associated with those subfields are also stable. Furthermore, 
if quantum particles possess physical properties that are represented by subfields 
which are described by elliptic equations, hence acting in accordance with the 
Euclidean relativity, then they can be used to explain physical phenomena that 
require physical transmissions with speeds greater than the speed of light in 
vacuum, such as the Einstein-Podosky-Rosen paradox in quantum entanglement 
[13] [14] [15]. 

The system of linear first order partial differential equations that we need to 
use in this work is given as follows [16] [17] 

1 2
1 1 1

, 1, 2, ,
n n n

r r ri
ij l l

i j lj

a k b k c r n
x
ψ

ψ
= = =

∂
= + =

∂∑∑ ∑              (6) 

Equation (6) can be rewritten in a matrix form as: 
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1 2
1

n

i
i i

A k k J
x

ψ σψ
=

 ∂
= + ∂ 

∑                    (7) 

where ( )T
1 2, , , nψ ψ ψ ψ=  , ( )T

1 2, , ,i i i n ix x x xψ ψ ψ ψ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂ , iA , 
σ  and J are matrices representing the quantities k

ija , r
lb  and rc , and 1k  and 

2k  are undetermined constants. Now, if we apply the operator 1
n

i ii A x
=

∂ ∂∑  on 
the left on both sides of Equation (7) then we obtain 

( )1 2
1 1 1

n n n

i j i
i j ii j i

A A A k k J
x x x

ψ σψ
= = =

    ∂ ∂ ∂
= +     ∂ ∂ ∂    

∑ ∑ ∑          (8) 

If we assume further that the coefficients k
ija  and r

lb  are constants and  

i iA Aσ σ= , then Equation (8) can be rewritten in the following form 

( )
2 2

2
2

1 1

2 2
1 1 2 2

1

n n n

i i j j i
i i j i i ji

n

i
i i

A A A A A
x xx

Jk k k J k A
x

ψ

σ ψ σ

= = >

=

 ∂ ∂
+ +  ∂ ∂∂ 

∂
= + +

∂

∑ ∑∑

∑
             (9) 

In order for the above systems of partial differential equations to be applied to 
physical phenomena, the matrices iA  must be determined. For the case of 
Maxwell and Dirac field, the matrices iA  must take a form so that Equation (9) 
reduces to a wave equation 

2
2 2 2

1 1 2 22
1 1

n n

i i
i i ii

JA k k k J k A
xx

ψ σ ψ σ
= =

 ∂ ∂
= + + 

∂∂ 
∑ ∑            (10) 

From Equation (9), for Dirac field, we simply require the matrices iA  to sat-
isfy the conditions 0i j j iA A A A+ =  and 2 1iA = ± . However, for the case of 
Maxwell field, the conditions required for the matrices iA  can be determined 
from the classical form of Maxwell field equations [3] [18]. Furthermore, as 
shown in the next subsection, in order to reduce Equation (9) to Equation (10) 
for the case of Maxwell field, we will also need an extra condition on the com-
ponents of the wavefuction ψ  in the form of a divergence or Gauss’s law 

1

n
i

i ix
ψ

ρ
=

∂
=

∂∑                          (11) 

In this work, we will discuss only Maxwell and Dirac field therefore we will set 
1σ = . 

3.1. Maxwell Field as a Coupling of Two Elliptic Fields 

In this subsection, we show that Maxwell field of electromagnetism is a coupled 
field that is formed from the coupling of two subfields that satisfy an elliptic 
equation. In order to distinguish a field that satisfies an elliptic equation from a 
field that satisfies a hyperbolic equation, or wave equation, we refer to the for-
mer as an elliptic field and the latter as a hyperbolic field. From the general 
equation given in Equation (7), the two subfields that are coupled to form the 
Maxwell field can be rewritten in the following simple form: 
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0 1 2 3 1 2
1 2 3

A A A A k k J
t x x x

ψ ψ
 ∂ ∂ ∂ ∂

+ + + = + ∂ ∂ ∂ ∂ 
          (12) 

where ( )T
1 2 3, ,ψ ψ ψ ψ=  and ( )T

1 2 3, ,J j j j= , and the matrices iA  are given 
as follows 

0 1

2 3

1 0 0 0 0 0
0 1 0 , 0 0 1 ,
0 0 1 0 1 0

0 0 1 0 1 0
0 0 0 , 1 0 0
1 0 0 0 0 0

A A

A A

   
   = = −   
   
   

−   
   = =   
   −   



              (13) 

In Equation (13), the negative sign, or negative time, in front of the matrix 

0A  together with other matrices form one subfield and the positive sign, or 
positive time, in front of the matrix 0A  together with other matrices form an-
other subfield. Then we obtain the following results 

2 2
0 1

2 2
2 3

1 0 0 0 0 0
0 1 0 , 0 1 0 ,
0 0 1 0 0 1

1 0 0 1 0 0
0 0 0 , 0 1 0
0 0 1 0 0 0

A A

A A

   
   = = −   
   −   
− −   
   = = −   
   −   

              (14) 

0 0 2 for 1,2,3i i iA A A A A i+ = =                 (15) 

1 2 2 1 1 3 3 1

2 3 3 2

0 1 0 0 0 1
1 0 0 , 0 0 0 ,
0 0 0 1 0 0

0 0 0
0 0 1
0 1 0

A A A A A A A A

A A A A

   
   + = + =   
   
   
 
 + =  
 
 

        (16) 

Using the matrices iA  given in Equation (13) with the negative sign for the 
matrix 0A  we obtain the following system of differential equations from Equa-
tion (12) 

31 2
1 1 2 1

2 3

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
− + − = +

∂ ∂ ∂
                (17) 

32 1
1 2 2 2

1 3

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
− − + = +

∂ ∂ ∂
                (18) 

3 2 1
1 3 2 3

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

− + − = +
∂ ∂ ∂

                (19) 

Similarly, using the matrices iA  given in Equation (13) with the positive sign 
for the matrix 0A  we obtain the following system of differential equations from 
Equation (12) 
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6 54
1 4 2 4

2 3

k k j
t x x

ψ ψψ
ψ

∂ ∂∂
+ − = +

∂ ∂ ∂
                 (20) 

5 6 4
1 5 2 5

1 3

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

− + = +
∂ ∂ ∂

                 (21) 

6 5 4
1 6 2 6

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

+ − = +
∂ ∂ ∂

                 (22) 

In Equations (20)-(22), we have used different subscripts for the field compo-
nents iψ  because it is a different field from the field given in Equations 
(17)-(19). However, for simplicity, we have used the same 1k  and 2k  for the 
system of equations given in Equations (20)-(22) even though they may have 
different dimensional values from those given in Equations (17)-(19). 

On the other hand, using the matrices iA  given in Equation (13) with negative 
sign for the matrix 0A  we obtain the following system of differential equations 
from Equation (9). 

2 2 2
3 31 1 1 2 2

2 2 2
2 3 1 2 32 3

2 31 2
1 1 1 2 1 2

2 3

2
t x x x x xt x x

jj jk k k j k
t x x

ψ ψψ ψ ψ ψ ψ

ψ

   ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂
− − − − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂∂ ∂
= + + − + − ∂ ∂ ∂ 

     (23) 

2 2 2
3 32 2 2 1 1

2 2 2
1 3 2 1 31 3

2 32 1
1 2 1 2 2 2

3 1

2
t x x x x xt x x

jj jk k k j k
t x x

ψ ψψ ψ ψ ψ ψ

ψ

   ∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂
− − + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂∂ ∂
= + + − + − ∂ ∂ ∂ 

     (24) 

2 2 2
3 3 3 2 1 1 2

2 2 2
1 2 3 1 21 2

2 3 2 1
1 3 1 2 3 2

1 2

2
t x x x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψ ψ ψ

ψ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
− − − − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂ ∂
= + + − + − ∂ ∂ ∂ 

     (25) 

Similarly, using the matrices iA  given in Equation (13) with positive sign for 
the matrix 0A  we obtain the following system of differential equations also 
from Equation (9). 

2 2 2
6 5 5 64 4 4

2 2 2
2 3 1 2 32 3

2 6 54
1 4 1 2 4 2

2 3

2
t x x x x xt x x

j jjk k k j k
t x x

ψ ψ ψ ψψ ψ ψ

ψ

   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂
− − + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂∂
= + + + − ∂ ∂ ∂ 

     (26) 

2 2 2
5 5 5 6 64 4

2 2 2
1 3 2 1 31 3

2 5 6 4
1 5 1 2 5 2

2 3

2
t x x x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψψ ψ

ψ

   ∂ ∂ ∂ ∂ ∂∂ ∂∂ ∂
− − − − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

     (27) 

2 2 2
6 6 6 5 54 4

2 2 2
1 2 3 1 21 2

2 6 5 4
1 6 1 2 6 2

1 2

2
t x x x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψψ ψ

ψ

   ∂ ∂ ∂ ∂ ∂∂ ∂∂ ∂
− − + − + +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

     (28) 

https://doi.org/10.4236/jmp.2020.114036


V. B. Ho 
 

 
DOI: 10.4236/jmp.2020.114036 543 Journal of Modern Physics 
 

The equations given in Equations (23)-(28) contain cross derivatives that in-
volve both space and time. Even though the cross derivatives that involve the 
time coordinate can be removed by using the system of equations given in Equa-
tions (17)-(19) and Equations (20)-(22), the cross derivatives that involve the 
spatial coordinates can only be removed by imposing on the wave function ψ  
an additional condition that is commonly known as the divergence of a vector 
field as given in Equation (11). The divergence of a field in fact endows the field 
with a physical character and gives a direct relationship between a mathematical 
object and a physical entity. Using Equation (11), Gauss’s laws for the field 

( )T
1 2 3, ,ψ ψ ψ ψ=  and the field ( )T

4 5 6, ,ψ ψ ψ ψ=  are written as follows: 

31 2
1

1 2 3x x x
ψψ ψ

ρ
∂∂ ∂

+ + =
∂ ∂ ∂

                    (29) 

5 64
2

1 2 3x x x
ψ ψψ

ρ
∂ ∂∂

+ + =
∂ ∂ ∂

                    (30) 

where 1ρ  and 2ρ  are physical quantities that can be identified with the elec-
tric and magnetic charge density. Using Equation (29) and Equations (17)-(19) 
then from Equations (23)-(25) we obtain the following system of equations: 

2 2 2 2
1 1 1 1 1

12 2 2 2
1 2 3

2 31 2 1
1 1 1 2 1 2

2 3 1

2k
tt x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= − − − + − + ∂ ∂ ∂ ∂ 

            (31) 

2 2 2 2
2 2 2 2 2

12 2 2 2
1 2 3

2 32 1 1
1 2 1 2 2 2

2 3 2

2k
tt x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= − − − + − + ∂ ∂ ∂ ∂ 

           (32) 

2 2 2 2
3 3 3 3 3

12 2 2 2
1 2 1

2 3 2 1 1
1 3 1 2 3 2

1 2 3

2k
tt x x x

j j jk k k j k
t x x x

ψ ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂ ∂
+ + + +

∂∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= − − − + − + ∂ ∂ ∂ ∂ 

           (33) 

In order to obtain a system of differential equations that can be applied to the 
electromagnetic field we set 1 0k = . Then Equations (31)-(33) reduce to the fol-
lowing system of equations: 

2 2 2 2
31 1 1 1 1 2 1

22 2 2 2
2 3 11 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (34) 

2 2 2 2
32 2 2 2 2 1 1

22 2 2 2
2 3 21 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (35) 

2 2 2 2
3 3 3 3 3 2 1 1

22 2 2 2
1 2 31 2 1

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (36) 

The equations given in Equations (34)-(36) are elliptic equations rather than 
hyperbolic or wave equations therefore these subfields are more suitable to rep-
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resent stable quantum particles with invariant physical properties. Moreover, 
since elliptic equations comply with the Euclidean relativity instead of the pseudo- 
Euclidean relativity therefore there may exist some physical properties associated 
with quantum particles that can travel with speeds greater than the speed of light 
in vacuum, which is a speed limit of transmission for physical events that com-
ply with the pseudo-Euclidean relativity. 

Similarly, by using the matrices iA  given in Equation (13), Equations 
(26)-(28), Gauss’s laws given in Equation (30), and 1 0k = , a system of equa-
tions with the positive sign for the matrix 0A  can be obtained and given as fol-
lows: 

2 2 2 2
6 54 4 4 4 4 2

22 2 2 2
2 3 11 2 3

j jjk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (37) 

2 2 2 2
5 5 5 5 5 6 4 2

22 2 2 2
2 3 21 2 3

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (38) 

2 2 2 2
6 6 6 6 6 5 4 2

22 2 2 2
1 2 31 2 1

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

     (39) 

The equations of the subfield with the positive sign for the matrix 0A  also 
satisfy elliptic equations rather than wave equations therefore they are also suit-
able to represent quantum particles with stable properties that accompany the 
stable properties associated with the field equations given in Equations (37)-(39). 

Having shown the basic equations for the two subfields by using the matrices 

iA  with negative and positive time, each of which can be used to represent sta-
ble properties of quantum particles due to the fact that they satisfy elliptic equa-
tions rather than wave equations, we now show that a coupling of these two sub-
fields can give rise to a coupled field that satisfies wave equations such as Max-
well field equations of the electromagnetic field. A coupled field from the two 
subfields with the matrices given in Equation (13) can be formulated by using 
the following coupled matrices. 

0 1

2 3

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0

, ,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0

,
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

A A

A A

−   
   − −   
   −

= =   
   
   −
      
   

− 
 
 
 −

= = 
 
 
  − 

1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

 
 
 
 
 

− 
 
  
 

    (40) 

Then we obtain the following results: 
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2 2
0 1

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

A A

   
   −   
   −

= =   
   
   −
      −     

2 2
2 3

1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

,
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0

A A

− −   
   −   
   −

= =   
− −   

   −
      −     

1 2 2 1 1 3 3 1

0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

,
0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

A A A A A A A A

   
   
   
   

+ = + =   
   
   
      
     

2 3 3 2 0 0

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

, 0 for 1, 2,3
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

i iA A A A A A A A i

 
 
 
 

+ = + = = 
 
 
  
 

     (41) 

It is noticed from the results obtained in Equation (41) that by coupling the 
two subfields with negative and positive time the cross derivatives that involve 
time are automatically removed. This shows that the electromagnetic field may 
be considered as a resonant field which is formed from the superposition of two 
physical fields that flow in opposite temporal directions. Similar to the case of 
subfields, we also rewrite Equation (7) for the coupled field in the following sim-
ple form: 

0 1 2 3 1 2
1 2 3

A A A A k k J
t x x x

ψ ψ
 ∂ ∂ ∂ ∂

+ + + = + ∂ ∂ ∂ ∂ 
          (42) 

where ( )T
1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ=  and ( )T

1 2 3 4 5 6, , , , ,J j j j j j j= . Using the 
matrices given in Equation (40) we obtain the following system of equations for 
the coupled field from Equation (42): 

6 51
1 1 2 1

2 3

k k j
t x x

ψ ψψ
ψ

∂ ∂∂
− + − = +

∂ ∂ ∂
                (43) 

62 4
1 2 2 2

3 1

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
− + − = +

∂ ∂ ∂
               (44) 
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3 5 4
1 3 2 3

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

− + − = +
∂ ∂ ∂

                (45) 

34 2
1 4 2 4

2 3

k k j
t x x

ψψ ψ
ψ

∂∂ ∂
+ − = +

∂ ∂ ∂
                 (46) 

5 31
1 5 2 5

3 1

k k j
t x x
ψ ψψ

ψ
∂ ∂∂

+ − = +
∂ ∂ ∂

                 (47) 

6 2 1
1 6 2 6

1 2

k k j
t x x
ψ ψ ψ

ψ
∂ ∂ ∂

+ − = +
∂ ∂ ∂

                 (48) 

Using the results obtained for the matrices iA  given in Equation (41) we ob-
tain the following system of equations for the coupled field from Equation (9): 

2 2 2
31 1 1 2

2 2 2
1 2 32 3

2 6 51
1 1 1 2 1 2

2 3

x x xt x x

j jjk k k j k
t x x

ψψ ψ ψ ψ

ψ

 ∂∂ ∂ ∂ ∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂∂
= + + − + − ∂ ∂ ∂ 

             (49) 

2 2 2
32 2 2 1

2 2 2
2 1 31 3

2 62 4
1 2 1 2 2 2

3 1

x x xt x x

jj jk k k j k
t x x

ψψ ψ ψ ψ

ψ

 ∂∂ ∂ ∂ ∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂∂ ∂
= + + − + − ∂ ∂ ∂ 

             (50) 

2 2 2
3 3 3 1 2

2 2 2
3 1 21 2

2 3 5 4
1 3 1 2 3 2

1 2

x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψ ψ

ψ

 ∂ ∂ ∂ ∂ ∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂ ∂
= + + − + − ∂ ∂ ∂ 

             (51) 

2 2 2
5 64 4 4

2 2 2
1 2 32 3

2 34 2
1 4 1 2 4 2

2 3

x x xt x x

jj jk k k j k
t x x

ψ ψψ ψ ψ

ψ

 ∂ ∂∂ ∂ ∂ ∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂∂ ∂
= + + + − ∂ ∂ ∂ 

             (52) 

2 2 2
5 5 5 64

2 2 2
2 1 31 3

2 5 31
1 5 1 2 5 2

3 1

x x xt x x

j jjk k k j k
t x x

ψ ψ ψ ψψ

ψ

 ∂ ∂ ∂ ∂∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂∂
= + + + − ∂ ∂ ∂ 

             (53) 

2 2 2
6 6 6 54

2 2 2
3 1 21 2

2 6 2 1
1 6 1 2 6 2

1 2

x x xt x x

j j jk k k j k
t x x

ψ ψ ψ ψψ

ψ

 ∂ ∂ ∂ ∂∂∂
− − + + ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

             (54) 

Using the divergence conditions or Gauss’s laws given in Equations ((29), 
(30)) the system of equations given in Equations (49)-(54) reduces to the following 
system of equations: 
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2 2 2 2
1 1 1 1

2 2 2 2
1 2 3

2 6 51 1
1 1 1 2 1 2

2 3 1

t x x x

j jjk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + − + − − ∂ ∂ ∂ ∂ 

           (55) 

2 2 2 2
2 2 2 2

2 2 2 2
1 2 3

2 62 4 1
1 2 1 2 2 2

3 1 2

t x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= + + − + − − ∂ ∂ ∂ ∂ 

           (56) 

2 2 2 2
3 3 3 3

2 2 2 2
1 2 3

2 3 5 4 1
1 3 1 2 3 2

1 2 3

t x x x

j j jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + − + − − ∂ ∂ ∂ ∂ 

           (57) 

2 2 2 2
4 4 4 4

2 2 2 2
1 2 3

2 34 2 2
1 4 1 2 4 2

2 3 1

t x x x

jj jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
= + + + − − ∂ ∂ ∂ ∂ 

           (58) 

2 2 2 2
5 5 5 5

2 2 2 2
1 2 3

2 5 31 2
1 5 1 2 5 2

3 1 2

t x x x

j jjk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + + − − ∂ ∂ ∂ ∂ 

           (59) 

2 2 2 2
6 6 6 6

2 2 2 2
1 2 3

2 6 2 1 2
1 6 1 2 6 2

1 2 3

t x x x

j j jk k k j k
t x x x

ψ ψ ψ ψ

ρ
ψ

∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + + − − ∂ ∂ ∂ ∂ 

           (60) 

Now, to obtain Maxwell field equations of the electromagnetic field we set 

1 0k =  and the system of equations given in Equations (43)-(48) reduces to: 

6 51
2 1

2 3

k j
t x x

ψ ψψ ∂ ∂∂
− + − =

∂ ∂ ∂
                   (61) 

62 4
2 2

3 1

k j
t x x

ψψ ψ ∂∂ ∂
− + − =

∂ ∂ ∂
                   (62) 

3 5 4
2 3

1 2

k j
t x x
ψ ψ ψ∂ ∂ ∂

− + − =
∂ ∂ ∂

                   (63) 

34 2
2 4

2 3

k j
t x x

ψψ ψ∂∂ ∂
+ − =

∂ ∂ ∂
                   (64) 

5 31
2 5

3 1

k j
t x x
ψ ψψ∂ ∂∂

+ − =
∂ ∂ ∂

                   (65) 

6 2 1
2 6

1 2

k j
t x x
ψ ψ ψ∂ ∂ ∂

+ − =
∂ ∂ ∂

                   (66) 
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By identifying ( )1 2 3, ,ψ ψ ψ=E , ( )4 5 6, ,ψ ψ ψ=B , ( )1 1 2 3, ,j j j=j  and  
( )2 4 5 6, ,j j j=j  the system of equations given in Equations (61)-(66), together 

with Gauss’s laws given in Equations ((29), (30)), can be rewritten in the familiar 
form in classical electrodynamics: 

1ρ⋅ =E∇                          (67) 

2ρ⋅ =B∇                          (68) 

2 2k
t

∂
× + =

∂
BE j∇                       (69) 

2 1k
t

∂
× − =

∂
EB j∇                       (70) 

With 1 0k =  we also obtain the following system of equations from Equa-
tions (55)-(60): 

2 2 2 2
6 51 1 1 1 1 1

22 2 2 2
2 3 11 2 3

j jjk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
− − − = − + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

       (71) 

2 2 2 2
62 2 2 2 2 4 1

22 2 2 2
3 1 21 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = − + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (72) 

2 2 2 2
3 3 3 3 3 5 4 1

22 2 2 2
1 2 31 2 3

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = − + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (73) 

2 2 2 2
34 4 4 4 4 2 2

22 2 2 2
2 3 11 2 3

jj jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (74) 

2 2 2 2
5 5 5 5 5 31 2

22 2 2 2
3 1 21 2 3

j jjk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
− − − = + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (75) 

2 2 2 2
6 6 6 6 6 2 1 2

22 2 2 2
1 2 31 2 3

j j jk
t x x xt x x x

ψ ψ ψ ψ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = + − − ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

      (76) 

Equations (71)-(76) can be rewritten in a vector form as a system of two equa-
tions as in classical electrodynamics: 

( )
2

2
1 2 2 22

ek k
tt

ρ
∂∂

−∇ = ∇ − + ∇×
∂∂
JE E J               (77) 

( )
2

2
2 2 2 12

bk k
tt

ρ
∂∂

−∇ = ∇ − + ∇×
∂∂
JB B J               (78) 

where the charge density iρ  and the current density ij  satisfy the conserva-
tion law 

0i
i t

ρ∂
⋅ + =

∂
j∇ .                        (79) 

3.2. Dirac Field as a Coupling of Two Elliptic Fields 

In this subsection, we will formulate Dirac field and subfields using the same 
procedure that we have applied to the Maxwell field of electromagnetism in the 
previous subsection. We have shown that Maxwell field is represented by matri-
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ces of rank six but the two subfields that are coupled to form Maxwell field are 
represented by matrices of rank three. Now, as it has been known that Dirac 
equation is formulated with matrices of rank four which are built upon Pauli 
matrices therefore we will simply use Pauli matrices as the required matrices for 
the two subfields. The Dirac equation then can be seen as a coupling of two sys-
tems of field equations similar to the case of Maxwell field equations of the elec-
tromagnetic field. Although the formulation of Dirac equation we consider in 
this work is straightforward from the known results there are new features that 
emerge with regard to the nature of the subfields that are coupled to form the 
Dirac field, such as the subfields also satisfy elliptic equations and therefore 
comply with the Euclidean relativity instead of wave equations and the pseudo- 
Euclidean relativity. Except for the dimensions, these characteristics show that 
the quantum behaviours of both Maxwell and Dirac are similar when they are 
represented by the subfields. The Pauli matrices i iA σ=  that we use for Dirac 
subfields are given as follows: 

0 1

2 3

1 0 0 1
, ,

0 1 1 0

0 1 0
,

0 0 1

A A

i
A A

i

   
= =   

   
−   

= =   −   



                 (80) 

We then obtain the following results: 
2 1 and 0 for , 0,1, 2,3i i j j iA A A A A i j= + = =            (81) 

Using the Pauli matrices iA  given in Equation (80) with negative time we obtain 
the following system of differential equations from Equation (7): 

1 2 2 1
1 1 2 1

1 2 3

i k k j
t x x x
ψ ψ ψ ψ

ψ
∂ ∂ ∂ ∂

− + − + = +
∂ ∂ ∂ ∂

             (82) 

2 1 1 2
1 2 2 2

1 2 3

i k k j
t x x x
ψ ψ ψ ψ

ψ
∂ ∂ ∂ ∂

− + + − = +
∂ ∂ ∂ ∂

             (83) 

Using the Pauli matrices iA  given in Equation (80) with positive time we obtain 
the following system of differential equations from Equation (7): 

3 34 4
1 3 2 1

1 2 3

i k k j
t x x x
ψ ψψ ψ

ψ
∂ ∂∂ ∂

+ − + = +
∂ ∂ ∂ ∂

              (84) 

3 34 4
1 4 2 2

1 2 3

i k k j
t x x x

ψ ψψ ψ
ψ

∂ ∂∂ ∂
+ + − = +

∂ ∂ ∂ ∂
              (85) 

On the other hand, using the results obtained in Equation (81) with negative 
time we obtain the following equation for the components of the function  

( )T
1 2,ψ ψ ψ=  from Equation (9): 

2 2 2 2
1 1 1 1

2 2 2 2
1 2 3

2 1 2 2 1
1 1 1 2 1 2

1 2 3

t x x x

j j j jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + − + − + ∂ ∂ ∂ ∂ 

           (86) 
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2 2 2 2
2 2 2 2

2 2 2 2
1 2 3

2 2 1 1 2
1 2 1 2 2 2

1 2 3

t x x x

j j j jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
= + + − + + − ∂ ∂ ∂ ∂ 

           (87) 

Similarly, using the results obtained in Equation (81) with positive time we 
obtain the following equation for the components of the function ( )T

3 4,ψ ψ ψ=  
from Equation (9): 

2 2 2 2
3 3 3 3

2 2 2 2
1 2 3

2 3 34 4
1 3 1 2 3 2

1 2 3

t x x x

j jj jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + + − + ∂ ∂ ∂ ∂ 

            (88) 

2 2 2 2
4 4 4 4

2 2 2 2
1 2 3

2 3 34 4
1 4 1 2 4 2

1 2 3

t x x x

j jj jk k k j k i
t x x x

ψ ψ ψ ψ

ψ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= + + + + − ∂ ∂ ∂ ∂ 

            (89) 

As in the case of the subfields of Maxwell field of the electromagnetic field, the 
equations given in Equations (86)-(89) are elliptic equations therefore they can 
be used to describe the steady states of physical systems, in particular they can be 
used to explain the stability of elementary particles. Furthermore, if quantum 
particles possess physical properties that are represented by subfields which are 
described by elliptic equations, hence complying with the Euclidean relativity, 
then they can be used to explain physical phenomena that require physical trans-
missions with speeds greater than the speed of light in vacuum, such as the Ein-
stein-Podosky-Rosen paradox in quantum entanglement. 

Now, as being well-known the coupled field which can be used to represent 
Dirac field is formulated by using the familiar gamma matrices µγ  written in 
terms of the Pauli and unit matrices as: 

0

00
,

00
i

i
i

I
I

σ
γ γ

σ
  

= =    −−   
                 (90) 

0 1

2 3

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

, ,
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

,
0 0 0 1 0 0 0

0 0 0 0 1 0 0

i
i

i
i

γ γ

γ γ

   
   
   = =
   − −
   

− −   
−   

   −   = =
   −
   
−   

           (91) 

With 2 0k = , Equation (7) reduces to Dirac equation for a free particle which 
is written in the form: 

imµ
µγ ψ ψ∂ = −                        (92) 
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Using the gamma matrices given in Equation (91), Dirac equation given in 
Equation (92) can be written out for the wavefunction ( )T

1 2 3 4, , ,ψ ψ ψ ψ ψ=  as 

31
1 4im i

t z x y
ψψ

ψ ψ
∂  ∂ ∂ ∂

+ = − − + ∂ ∂ ∂ ∂ 
               (93) 

2 4
2 3im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

+ = − + + ∂ ∂ ∂ ∂ 
              (94) 

3 1
3 2im i

t z x y
ψ ψ

ψ ψ
∂  ∂ ∂ ∂

− = − − − ∂ ∂ ∂ ∂ 
              (95) 

4 2
4 1im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

− = − + − ∂ ∂ ∂ ∂ 
              (96) 

Dirac equation written as a system of linear first order partial differential 
equations given in Equations (93)-(96) suggests that matter wave can be inter-
preted as a coupling of two different physical subfields represented by the field 
( )1 2,ψ ψ  and the field ( )3 4,ψ ψ  whose temporal rates of change will convert 
one field to the other. From the gamma matrices given in Equation (91) we ob-
tain the following relations: 

2 2
0 1, 1 for 1,2,3 and 0 fori i j j ii i jγ γ γ γ γ γ= = − = + = ≠       (97) 

With the relations obtained in Equation (97), it can be shown that all compo-
nents of Dirac wavefunction ( )T

1 2 3 4, , ,ψ ψ ψ ψ ψ=  satisfy the Klein-Gordon equa-
tion: 

2 2 2 2
2

2 2 2 2 m
t x y z

µ µ µ µ
µ

ψ ψ ψ ψ
ψ

∂ ∂ ∂ ∂
− − − = −

∂ ∂ ∂ ∂
              (98) 

The Klein-Gordon equation is a wave equation that is Lorentz invariant in the 
pseudo-Euclidean space which was proposed and developed by Minkowski based 
on Einstein’s theory of special relativity. 

In fact, it is possible to formulate a coupled field that is similar to Dirac field 
from the subfields represented by the Pauli matrices but instead satisfies an el-
liptic equation rather than a wave equation. Such field therefore will be Euclid-
ean invariant. Consider a coupled field that is formed from the subfields repre-
sented by Pauli matrices with the coupled matrices given as follows: 

0

00
,

00
i

i
i

I
A A

I
σ

σ
−   

= =   
   

                 (99) 

Then we obtain the following results: 
2 2
0 1, 1 for 1,2,3 and 0 fori i j j ii i jγ γ γ γ γ γ= = = + = ≠      (100) 

From the relations obtained in Equation (100), then it can be shown that all 
components of the wavefunction ( )T

1 2 3 4, , ,ψ ψ ψ ψ ψ=  satisfy the following el-
liptic equation: 

2 2 2 2
2

2 2 2 2 m
t x y z

µ µ µ µ
µ

ψ ψ ψ ψ
ψ

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
             (101) 
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As a further remark, we would like to mention here that we have formulated 
Maxwell and Dirac field essentially from a general system of linear first order 
partial differential equations which is a purely mathematical framework that can 
be used to formulate any physical theory that requires such mathematical struc-
ture, similar to the case of Laplace or Poisson’s equation. Nonetheless, with such 
perspective, it has been suggested that they should be referred to as Maxwell-like 
and Dirac-like field equations instead of Maxwell and Dirac. The approach that 
we have used to formulate Maxwell and Dirac field is quite different from other 
mathematical methods such as gauge theories whose formulation is based on the 
variational principle [19] [20]. However, as we have shown in our work on the 
principle of least action that the variational principle with quantum objects may 
not lead to the least action as the principle is supposed to provide but only com-
plies with Feynman’s integral method of random paths or random surfaces, 
which itself is not related to the principle of least action [21]. Therefore, physical 
theories such as gauge theories that rely on the variational principle with a La-
grangian function to establish a deterministic least action should not be regarded 
as statistical theories therefore they are not in accordance with the current inter-
pretation of the quantum theory which relies on the probability view for their 
interpretation of experimental results. 

4. A Classification of Relativity 

In this section, we show that relativity can be classified into three different types 
that are determined by the mathematical structures given to the spactime con-
tinuum so that it can manifest as three different types of relativistic spaces as-
sociated with the types of second order partial differential equations that are 
classified in Section 2. We call the spacetime continuum with the mathematical 
structure associated with the hyperbolic or wave equation a hyperbolic relativis-
tic space and the corresponding relativity is the hyperbolic relativity. Similarly, 
we also define the elliptic and parabolic relativity. The problem that we address 
in this section is similar to our discussion on the fibre bundle structure of the 
spacetime continuum in which the spacetime continuum is the base space and 
all other physical events occur on different types of fibres and manifest in dif-
ferent physical forms that can be described by different mathematical structures 
[22]. We have shown that the spacetime structures result from different rela-
tionships between space and time and the apparent geometric and topological 
structures of the total spatiotemporal manifold are due to the dynamics and the 
geometric interactions of the decomposed cells from the base space of the total 
spatiotemporal manifold. The decomposed cells can form different types of fi-
bres which may also geometrically interact with each other. In a more general 
context, we also discussed in detail a spacetime which has the mathematical 
structure of a 6-sphere bundle in which the dynamics of the fibres result from 
the geometric interactions of different types of decomposed cells that give rise to 
various relationships between space and time. In this case, it is assumed that we 
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can only perceive within our physical ability the appearance of the grown intrin-
sic geometric structures on the base space of the total spatiotemporal manifold 
and the base space itself may not be observable with a reasonable assumption 
that a physical object is not observable if it does not have any form of geometric 
interactions. It could be that the base space of the spatiotemporal manifold at the 
beginning was only a six-dimensional Euclidean spatiotemporal continuum R6 
which had no non-trivial geometric structures therefore contained no physical 
objects. As we have shown in our work on Maxwell and Dirac field with three- 
dimensional time [23], we can assume that the spatiotemporal manifold is de-
scribed by a six-dimensional differentiable manifold M which is composed of a 
three-dimensional spatial manifold and a three-dimensional temporal manifold, 
in which all physical objects are embedded, then the manifold M can be decom-
posed in the form 3 3# #S TM M S S= , where 3

SS  and 3
TS  are the spatial and 

temporal 3-sphere, respectively. It is expected that the mathematical formulation 
of possible fibres of the spatiotemporal manifold should be derived from a gen-
eral line element 2d d ds g x xα β

αβ= . In the following, however, we propose that 
the three types of relativity are classified in accordance with the classification of 
their corresponding coordinate transformations. 

4.1. Hyperbolic Relativity 

Hyperbolic relativity refers to the relativistic spacetime continuum with the mathe-
matical structure of a pseudo-Euclidean space that associates with the hyperbolic 
type of the second order partial differential equations. In physics, the concept of 
a pseudo-Euclidean spacetime, or relativistic hyperbolic spacetime, was intro-
duced by Minkowski in order to accommodate Einstein’s theory of special rela-
tivity in which the coordinate transformation between the inertial frame S with 
spacetime coordinates ( ), , ,ct x y z  and the inertial frame S ′  with coordinates 
( ), , ,ct x y z′ ′ ′ ′  are derived from the principle of relativity and the postulate of a 
universal speed c, which is assumed to be the speed of light in vacuum. The co-
ordinate transformation is the Lorentz transformation: 

( )
( )

, , ,x x ct y y z z

ct x ct

γ β

γ β

′ ′ ′= − = =

′ = − +
               (102) 

where v cβ =  and 21 1γ β= − . It can be shown that the Minkowski space-
time interval 2 2 2 2 2c t x y z− − −  is invariant under Lorentz transformation given 
in Equation (102). Now, in order to show that the hyperbolic equations are asso-
ciated with the hyperbolic relativity, we need to show that the part that com-
poses of the second order derivatives of the hyperbolic equation given in Equa-
tion (4) is invariant under Lorentz transformation. The Lorentz transformation 
and its inverse can be rewritten in the following forms: 

Λ and Λx x x xµ µ ν ν ν µ
ν µ′ ′= =                 (103) 

where ( ), , ,x ct x y zµ =  and the Lorentz matrix Λµ
ν  and its inverse Λ ν

µ  are 
given as: 
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0 0 0 0
0 0 0 0

Λ and Λ
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

µ ν
ν µ

γ βγ γ βγ
βγ γ βγ γ

−   
   −   = =
   
   
   

     (104) 

In order to show that the hyperbolic relativity associates with the hyperbolic 
type of second order partial differential equations we only need to show that the 
d’Alembert operator 2 2 2 2c tµ

µ∂ ∂ = ∂ ∂ −∇  is invariant under Lorentz transfor-
mation, where the differential operators µ∂  and µ∂  are defined as  

( ), , ,c t x y zµ∂ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  and ( )T, , ,g c t x y zµ µν
ν∂ = ∂ = −∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . 

This can be seen by the fact that the differential operators µ∂  and µ∂  are vectors 
therefore by using the transformations Λ ν

µ µ ν′∂ = ∂  and gµ µν
ν′ ′∂ = ∂  we then 

obtain µ µ
µ µ′ ′∂ ∂ = ∂ ∂ . 

Now, it is remarkable that even though the concept of a relativistic hyperbolic 
spacetime originates from the invariance of Maxwell field equations under Lor-
entz transformation, Einstein was able to generalise it into a more general struc-
ture utilising the mathematics of differentiable manifold and the resulted theory 
has only been applied into the description of the gravitational field in which the 
electromagnetic field can only act as a source. And the only invariance that is 
required is the transformation of general coordinates. Einstein general relativity 
that complies with the hyperbolic relativity in curved spaces is represented in  

tensor form as 1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

. Then using the centrally sym-

metric gravitational field with Schwarzschild metric: 

( )2 2 2 2 2 2 2 2d e d e d d sin ds c t r rψ χ θ θ φ= − − +            (105) 

Schwarzschild solution can be found as: 

( )
1

2 2 2 2 2 2 2 2d 1 d 1 d d sin dC Cs c t r r
r r

θ θ φ
−

   = − − − − +   
   

     (106) 

where 22C MG c= . From the Schwarzschild solution, Newton law of gravity 
can be obtained as an approximation. We show in the next subsection on the el-
liptic relativistic spacetime that this result can also be obtained from the elliptic 
or Euclidean relativity. 

4.2. Elliptic Relativity 

Elliptic relativity refers to the relativistic spacetime continuum with the mathe-
matical structure of a Euclidean space that associates with the elliptic type of the 
second order partial differential equations. We have also shown in our work on 
Euclidean relativity that it is possible to construct a special relativistic transfor-
mation that will make the four-dimensional spacetime continuum a Euclidean 
space rather than a pseudo-Euclidean space as in the case of Einstein’s theory of 
special relativity. Consider the following modified Lorentz transformation: 

( ) ( ), , ,E Ex x ct y y z z ct x ctγ β γ β′ ′ ′ ′= − = = = +         (107) 
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where v cβ =  and Eγ  will be determined from the principle of relativity and 
the postulate of a universal speed. If we now assume the invariance of the Euclid-
ean interval 2 2 2 2 2 2 2 2 2 2c t x y z c t x y z′ ′ ′ ′+ + + = + + +  then from the modified 
Lorentz transformation given in Equation (107), we obtain 21 1Eγ β= + . It is 
seen from this expression for Eγ  that there is no upper limit in the relative 
speed v between inertial frames. The value of Eγ  at the universal speed v c=  
is 1 2Eγ = . For the values of v c

, the modified Lorentz transformation 
also reduces to the Galilean transformation. However, it is interesting to observe 
that when v →∞  we have 0Eγ →  and 1Eβγ → , and in this case, we have 
x ct′ → −  and ct x′ → . This result shows that there is a conversion between 

space and time when v →∞ . We can also derive the relativistic kinematics 
from the modified Lorentz transformation, such as the transformation of a 
length, the transformation of a time interval and the transformation of velocities. 
Let 0L  be the proper length and 0t∆  is the proper time interval then the 
length and the time interval transformations can be found as 2

01L Lβ= +  
and 2

0 1t t β∆ = ∆ + . It is observed from the length transformation that the 
length of a moving object is expanding rather than contracting as in Einstein 
theory of special relativity. It is also observed from the time interval transforma-
tion that the proper time interval is longer than the same time interval measured 
by a moving observer. With the modified Lorentz transformation, the transfor-
mation of velocities can be found as: 

( ) ( )
, ,

1 1 1x y
yx z

x E x E x
z

vv c vv v v
v c v c v c
β

β γ β γ β
−′ ′ ′= = =

+ + +
      (108) 

From Equation (108), if we let xv c=  then we obtain ( ) ( )( )xv c v c v c′ = − + . 
Therefore in this case xv c′ =  only when the relative speed v between two iner-
tial frames vanishes. In other words, the universal speed c is not the common 
speed of any moving physical object or physical field in inertial reference frames. 
In order to specify the nature of the assumed universal speed, we observe that in 
Einstein theory of special relativity it is assumed that spatial space of an inertial 
frame remains steady and this assumption is contradicted to Einstein theory of 
general relativity that shows that spatial space is actually expanding. Therefore it 
seems reasonable to suggest that the universal speed c in the modified Lorentz 
transformation is the universal speed of expansion of the spatial space of all in-
ertial frames. The modified Lorentz transformation and its inverse can be re-
written in the following forms: 

Λ and Λx x x xµ µ ν ν ν µ
ν µ′ ′= =                 (109) 

where ( ), , ,x ct x y zµ =  and the modified Lorentz matrix Λµ
ν  and its inverse 

Λ ν
µ  are given as: 

0 0 0 0
0 0 0 0

Λ and Λ
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

E E E E

E E E Eµ ν
ν µ

γ βγ γ βγ
βγ γ βγ γ

−   
   −   = =
   
   
   

   (110) 
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In order to show that the elliptic relativity associates with the elliptic type of 
second order partial differential equations we only need to show that the Euclid-
ean differential operator 2 2 2 2c tµ

µ∂ ∂ = ∂ ∂ +∇  is invariant under the modified 
Lorentz transformation given in Equation (20), where the differential operators 

µ∂  and µ∂  are defined as ( ), , ,c t x y zµ∂ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  and  
( )T, , ,g c t x y zµ µν

ν∂ = ∂ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ . Since the differential operators µ∂  and 
µ∂  are vectors therefore by using the transformations Λ ν

µ µ ν′∂ = ∂  and  
gµ µν

ν′ ′∂ = ∂  we then obtain µ µ
µ µ′ ′∂ ∂ = ∂ ∂ . 

We assume that a general relativity that complies with the elliptic relativity in 
curved spaces can also be represented in tensor form as  

1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

. Then using the centrally symmetric gravitational 

field with Schwarzschild-like metric: 

( )2 2 2 2 2 2 2 2d e d e d d sin ds c t r rψ χ θ θ φ= + + +            (111) 

Schwarzschild-like vacuum solution is found as: 

( )
1

2 2 2 2 2 2 2 2d 1 d 1 d d sin dC Cs c t r r
r r

θ θ φ
−

   = − + − + +   
   

      (112) 

where 22C MG c= . It can also be shown from the Schwarzschild-like solution 
given in Equation (112) that Newton law of gravity is obtained as an approxima-
tion [2]. 

4.3. Parabolic Relativity 

We have shown that the hyperbolic and elliptic relativity are classified according 
to the mathematical structure of the second order derivatives of the second order 
partial differential equations 2

1 1
n n

ij i ji j a x xψ
= =

∂ ∂ ∂∑ ∑ . For the hyperbolic rela-
tivity associated with the four-dimensional spacetime manifold we have  

2 2 2 2 2 2 2 2 2
1 1

n n
ij i ji j a x x t x y zψ ψ ψ ψ ψ

= =
∂ ∂ ∂ = ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂∑ ∑ . On the oth- 

er hand, for the elliptic relativity we have  
2 2 2 2 2 2 2 2 2

1 1
n n

ij i ji j a x x t x y zψ ψ ψ ψ ψ
= =

∂ ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂∑ ∑ . Now, for the 
case of the parabolic equation, because there are only three spatial components 
of second order derivatives for the four-dimensional spacetime continuum there-
fore as a consequence we consider the invariance of the parabolic equation 
only for these components under a parabolic coordinate transformation. Para-
bolic relativity refers to the relativistic spacetime continuum with the mathe-
matical structure of a Euclidean space that associates with the parabolic type of 
the second order partial differential equations. There are many physical events 
that are described by the second order partial differential equations that in-
volve only the spatial components of the second order derivatives therefore 
these physical events can be regarded as being associated with the parabolic 
relativity. In particular, the physical events that can be described by the diffu-
sion equation and the Schrödinger equation that can be written generically as 
follows: 
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2 2 2

2 2 2 a
tx y z

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂
                  (113) 

In Equation (113), we obtain the diffusion equation if 0a tψ∂ ∂ ≠  and the 
Schrödinger equation by setting ( )2a t i m tψ ψ∂ ∂ = − ∂ ∂ . As in the case of 
the hyperbolic and elliptic relativity in which the Lorentz and modified Lorentz 
transformation involve only the second order derivatives of the differential equa-
tions, therefore to discuss coordinate transformation for the parabolic equation 
we should also consider the second order derivatives which form the Laplace 
operator. Therefore the corresponding transformations for the parabolic equa-
tion that leave the Laplace operator unchanged, that is in the parabolic relativity 
we only consider the invariance of the Euclidean spatial interval  

2 2 2 2 2 2x y z x y z′ ′ ′+ + = + + . The time in parabolic relativity is therefore a uni-
versal time which is assumed to flow uniformly with the same rate in all refer-
ence systems. In general, the parabolic relativity is invariant with respect to the 
translation and rotation given as follows: 

1
and

n

i i ij ji i
j

x x a x b x
=

′ ′= + = ∑                  (114) 

where ( )T
1 2, , , nx x x=x  , and { }iA a=  is a matrix for the translation and 

{ }ijB b=  is an orthogonal matrix for the rotation. If the matrix { }ijB b=  is an 
orthogonal matrix then we have 1

n j
ik jk ik b b δ

=
=∑ , therefore we obtain the fol-

lowing result: 

2 2
2 2

1 , 1 , 1 1j k j k

n n n n

x ji ki ji ki x
i j k j k i

b b b b
x x x x ′

= = = =

 ∂ ∂ 
∇ = = = ∇    ′ ′ ′ ′∂ ∂ ∂ ∂  

∑ ∑ ∑ ∑       (115) 

We now extend our discussion to a particular parabolic equation that is re-
lated to the curved structure of the spacetime manifold. We have shown in our 
work on the spacetime structure of quantum particles that they can be endowed 
with geometric and topological structures of differentiable manifolds and their 
motion should be described as isometric embeddings in higher Euclidean space 
that involve the diffusion equation. Fundamentally, we show that the three main 
dynamical descriptions of physical events in classical physics, namely Newton 
mechanics, Maxwell electromagnetism and Einstein gravitation, can be formu-
lated in the same general covariant form and they can be represented by the 
general equation [8] [9]: 

M kJβ∇ =                         (116) 

where M is a mathematical object that represents the corresponding physical 
system and β∇  is a covariant derivative. For Newton mechanics,  

( )23
1

1 d d
2

M m x t Vµ
µ== +∑  and 0J = . For Maxwell electromagnetism,  

M F A Aαβ µ ν ν µ= = ∂ − ∂ , with the four-vector potential ( ),A Vµ ≡ A  and J can 
be identified with the electric and magnetic currents. And for Einstein gravita-
tion, M Rαβ=  and J can be defined in terms of a metric gαβ  and the Ricci  
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scalar curvature using the Bianchi identities 1
2

R g Rαβ αβ
β β∇ = ∇ , that is,  

1
2

J g Rαβ
β= ∇ . If we use the Bianchi identities as field equations for the gravita-

tional field then Einstein field equations 1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

, as in 

the case of the electromagnetic field, should be regarded as a definition for the 
energy-momentum tensor Tµν  for the gravitational field. From the definition 

of the four-current ( ) 1,
2ij g Rα αβ

βρ= = ∇j  for the gravitational field, by 

comparing with the Poisson equation for a potential V in classical physics,  
2 4V ρ∇ = π , we can identify the scalar potential V with the Ricci scalar curva-

ture R and then obtain a diffusion equation: 
2 2 2

2 2 2

R R R Rk
t x y z

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

                 (117) 

whose solutions can be found to take the form: 

( )
( )

2 2 2

3, , , exp
44

M x y zR x y z t
ktkt

 
 + + = −     π 

          (118) 

which determines the probabilistic distribution of an amount of geometrical 
substance M which is defined via the Ricci scalar curvature R and manifests as 
observable matter. We have also shown that the Ricci scalar curvature R associ-
ated with a differentiable manifold can be expressed in terms of the Schrödinger 
wavefunction ψ  in quantum mechanics. Now, instead of deriving a diffusion 
equation for the Ricci scalar curvature from the four-current we can also derive a  
diffusion equation for the Ricci scalar curvature from the Ricci flow by consid-

ering the case in which 1 0
2

J g Rαβ
β= ∇ = . Then we obtain the equation: 

0Rαβ
β∇ =                         (119) 

Since 0gαβ
µ∇ ≡  for a given metric tensor gαβ , Equation (119) implies  

ΛR gαβ αβ=  which can be written in a covariant form as: 
ΛR gαβ αβ=                         (120) 

where Λ  is an undetermined constant. Using the identities 4g gαβ
αβ =  and 

g R Rαβ
αβ = , we obtain Λ 4R= . 
The Ricci flow can be derived from the field equation given in Equation (119) 

as follows [24] [25]. In differential geometry, the covariant derivative of a con-
travariant tensor of second rank Aαβ  is given by: 

Γ ΓA A A Aαβ αβ α σβ β ασ
γ γ σγ σγ∇ = ∂ + +                (121) 

The partial time derivative of Equation (121) is given as: 

( ) ( ) ( ) ( )
( ) ( )

Γ Γ

Γ Γ

t t t t

t t

A A A A

A A

αβ αβ α σβ α σβ
γ γ σγ σγ

β ασ β ασ
σγ σγ

∂ ∇ = ∂ ∂ + ∂ + ∂

+ ∂ + ∂
        (122) 
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Under the coordinate transformation ( )x f xα α β′ = , the tensor Aαβ  is trans-
formed as 

x xA A
x x

α β
αβ ρσ

ρ σ

′ ′∂ ∂′ =
∂ ∂

                    (123) 

If the coordinate transformation is time-independent then the partial time de-
rivative of the tensor Aαβ  is also a tensor which is transformed according to the 
rule: 

A x x A
t tx x

αβ α β ρσ

ρ σ

′ ′ ′∂ ∂ ∂ ∂
=

∂ ∂∂ ∂
                   (124) 

In this case, we have: 

( ) ( ) ( ) ( )Γ Γt t t tA A A Aαβ αβ α σβ β ασ
γ γ σγ σγ∇ ∂ = ∂ ∂ + ∂ + ∂         (125) 

It is observed from Equations (122) and (125) that if we impose the following 
condition on Equation (122): 

( ) ( )Γ Γ 0t tA Aα σβ β ασ
σγ σγ∂ + ∂ =                  (126) 

then we obtain the identity: 

( ) ( )t tA Aαβ αβ
γ γ∇ ∂ = ∂ ∇                   (127) 

In the case of a metric tensor gαβ  then we have ( ) ( ) 0t tg gαβ αβ
γ γ∇ ∂ = ∂ ∇ ≡ , 

and from the field equations 0Rαβ
β∇ =  we arrive at the Ricci flow: 

g
kR

t
αβ

αβ

∂
=

∂
                        (128) 

From Equation (128) we can obtain a diffusion equation for the Ricci scalar 
curvature as follows [26] [27]: 

2R R g g R R
t

αβ γσ
ασ βγ

∂
= ∆ +

∂
                  (129) 

As a further remark, it should be mentioned here that it has been shown that 
parabolic equations have associated invariants that may be related to physical 
properties of physical objects. For example, consider a linear second order para-
bolic partial differential equation in two independent variables x and t: 

( ) ( ) ( )
2

2, , , 0a x t b x t c x t
t xx
ψ ψ ψ ψ∂ ∂ ∂

+ + + =
∂ ∂∂

           (130) 

It is shown that the form of the parabolic equation given in Equation (130) is 
invariant under the group of equivalence transformations which consists of the 
linear transformation of the dependent variable and the invertible transforma-
tions of the independent variables as follows: 

( ) ( ) ( ), , , ,x t t t x x tχ σ ψ ϕ ρ′ ′= = =               (131) 

where ( ),x tσ , ( )tϕ  and ( ),x tρ  are arbitrary functions [28] [29] [30]. The 
transformed equation of the equation given in Equation (131) then takes the 
form: 
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( ) ( ) ( )
2

2, , , 0a x t b x t c x t
t xx
χ χ χ χ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′+ + + =
′ ′′∂ ∂∂

         (132) 

Then an invariant of the parabolic equation given in Equation (130) is a func-
tion of the form 

2 2 2

2 2, , , , , , , , , , , ,a a b b c c a a aJ J a b c
t x t x t x t xt x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ 

 .     (133) 

4.4. Simultaneous Relativities 

We have shown in previous subsections that the mathematical structure of the 
spacetime manifold can be classified in accordance with the classification of 
second order partial differential equations into hyperbolic, elliptic or parabolic 
relativistic space. On the other hand, normally a complex physical system such 
as an atom has various physical properties that involve different physical proc-
esses described by different types of second order partial differential equations in 
different relativities. If the physical properties associated with the physical sys-
tem remain invariant then we can assume that they can be described independ-
ently by different second order partial differential equations, and hence their 
corresponding relativistic spaces should also exist independently from each 
other. As we have discussed in the introduction, these relativistic spaces may be 
considered as independent fibres of the spatiotemporal fibre bundle. Then in 
order to describe independent physical properties, we simply express all corre-
sponding physical equations in all relativistic spaces simultaneously. For exam-
ple, we assume that a physical system that possesses physical properties that can 
be described in the parabolic relativity and elliptic relativity respectively. If the 
parabolic property is massive and the elliptic property is massless then we have a 
simultaneous system of two equations that take the forms similar to the massive 
Schrödinger equation and massless Klein-Gordon equation as follows: 

2 2 2

2 2 2

2p p p pmi
tx y z

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + = −

∂∂ ∂ ∂ 

              (134) 

2 2 2 2

2 2 2 2 2
1 2 3

0e e e e

ec t x x x
ψ ψ ψ ψ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

                (135) 

where pψ  and eψ  are wavefunctions in the parabolic and elliptic relativistic 
space respectively. We have also written ec  to indicate that, unlike the universal 
speed c in the hyperbolic relativity, the speed ec  may be very large according to 
the elliptic relativity. In an n-dimensional space, solutions to Laplace equation  

can be expressed by the Green function as ( )
2

2 2 2 2
1 2

n

nG k x x x
−

= + + + , hence 

for the Laplace equation given in Equation (135) with 4n = , we obtain the so-
lution: 

2 2 2 2 2e
e

k
c t x y z

ψ =
+ + +

                   (136) 

It is seen that if ec  is very large then while other parabolic relativistic proper-
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ties of a quantum particle remain the same the elliptic properties vanish quickly 
with time, and in particular this result may be invoked to explain the EPR para-
dox in quantum mechanics. However, if different physical properties belong to 
the same type of relativity then we can express the total equation as a sum of 
different equations in the same relativistic space, as in the case we have shown in 
our work on spin dynamics that a total Schrödinger equation can be written as a 
sum of two separate Schrödinger equations in two different coordinate systems, 
one of them can be considered as intrinsic. This can be outlined as follows. In-
stead of introducing a spin operator, we introduce a differential operator that 
depends on an intrinsic coordinate system and can be used to formulate a spin 
dynamics. Since spin angular momentum and orbital angular momentum are 
similar in nature therefore it is possible to suggest that the spin operator in the 
intrinsic coordinate system should also have similar form to that of the orbital 
angular momentum operator. From this perspective, we can write a Schrödinger 
wave equation that is used to describe both the orbital and spin dynamics as fol-
lows [31]: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
2 2, , ,

2 2
, ,

s s s s
s

s s s s

V

V E
µ µ

− ∇ Ψ + Ψ − ∇ Ψ

+ Ψ = Ψ

r r r r r r r

r r r r r

 

         (137) 

The quantity µ  can be identified with a reduced mass. However, since we 
are treating spin angular momentum as a particular case of angular momentum 
therefore we retain the Planck constant and the quantity sµ  also retains the di-
mension of mass. We call the quantity sµ  an intrinsic mass and it could be re-
lated to the curvature that determines the differential geometric and topological 
structure of a quantum particle, as in the case of Bohr model, or charge. On the 
other hand, the quantity ( )V r  can be identified with normal potential, such as 
Coulomb potential but the quantity ( )s sV r  represents an intrinsic potential that 
depends on physical intrinsic properties associated with the spin angular momen-
tum of a quantum particle. Since the two dynamics are independent, the wave 
equation given in Equation (137) is separable and the total wavefunction ( ), sΨ r r  
can be written as a product of two wavefunctions as ( ) ( ) ( ), s sψ χΨ =r r r r . Then 
Equation (137) is separated into two equations as follows: 

( ) ( ) ( ) ( )
2

2
02

V Eψ ψ ψ
µ

− ∇ + =r r r r               (138) 

( ) ( ) ( ) ( )
2

2
12 s s s s s s

s

V Eχ χ χ
µ

− ∇ + =r r r r             (139) 

where 0 1E E E+ = . For the case of the hydrogen atom then the total energy 
spectrum can be found as the sum of two energy spectra as: 

( )
22

2 2 2
0 2

1, ,
42 12

2

s s
s s

s s

AZqE n n m
n

n m

µµ
ε

 
= − − π    + + 

 





       (140) 

It is seen that the total energy spectrum has a fine structure depending on the 
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intrinsic quantum numbers sn  and sm . Furthermore, the total energy spec-
trum also depends on the undetermined physical quantities sµ  and sA  that 
define the intrinsic properties of a quantum particle, which is the electron in this 
case. Without restriction, the quantity sµ  can take zero, positive or negative 
values. Similarly, it is also possible to explain the wave-particle duality by writing 
simultaneous equations for a quantum particle in the parabolic and hyperbolic 
relativistic space respectively. If an experiment is designed to detect an invari-
ance associated with a quantum particle which is invariant in the parabolic rela-
tivity then it appears as a particle, but if it is invariant in the hyperbolic relativity 
then it appears as a wave. The formulation of dual properties of particle and 
wave in two coexisting relativistic spaces may be viewed as a representation of 
the hidden variable theory and de Broglie theory of double solution in wave 
mechanics [32] [33]. 

5. Conclusion 

We have shown in this work the possibility to classify relativity in accordance 
with the classification of second order partial differential equations that have 
been applied into the formulation of physical laws in physics. Based on the clas-
sification of second order partial differential equations into hyperbolic, elliptic 
or parabolic type, we suggested that relativity should also be classified accord-
ingly into hyperbolic, elliptic or parabolic type by establishing coordinate trans-
formations that preserve the forms of the second order partial differential equa-
tions. The coordinate transformation that preserves the form of the hyperbolic 
equation is the Lorentz transformation and the associated space is the hyper-
bolic, or pseudo-Euclidean, relativistic spacetime. The coordinate transforma-
tion that preserves the form of the elliptic equation is the modified Lorentz 
transformation, or rotation in spacetime, that we have formulated in our work 
on Euclidean relativity and the associated space is the elliptic, or Euclidean, rela-
tivistic spacetime. And the coordinate transformation that preserves the form of 
the parabolic equation is the Euclidean transformation consisting of the transla-
tion and rotation in the spatial space and the associated space is the parabolic 
relativistic spacetime, which is a Euclidean space with a universal time. Besides 
the typical equations in physics that comply with hyperbolic relativity such as 
Maxwell and Dirac equations, we have also established equations that comply 
with elliptic relativity and these equations can be used to describe the subfields 
of Maxwell and Dirac field. On the other hand, apart from the typical equations 
in physics that comply with parabolic relativity such as the diffusion equation, 
the Schrödinger equation, we have shown that the diffusion equations that are 
derived from the four-current defined in terms of the differentiable structures of 
the spacetime manifold and the Ricci flow also belong to parabolic relativity. 

Acknowledgements 

We would like to thank the reviewers for their constructive comments and we 

https://doi.org/10.4236/jmp.2020.114036


V. B. Ho 
 

 
DOI: 10.4236/jmp.2020.114036 563 Journal of Modern Physics 
 

would also like to thank Jane Gao of the administration of JMP for her editorial 
advice during the preparation of this work. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Einstein, A. (1952) The Principle of Relativity. Dover Publications, New York. 

[2] Ho, V.B. (2017) Euclidean Relativity. 

[3] Schliewe, J. (2019) Open Physics, 17, 731-742.  
https://doi.org/10.1515/phys-2019-0077 

[4] Strauss, W.A. (1992) Partial Differential Equation. John Wiley & Sons, Inc., New 
York. 

[5] Ho, V.B. (2019) On the Nature of Maxwell and Dirac Field. 

[6] Jackson, J.D. (1975) Classical Electrodynamics. John Wiley & Sons, New York. 

[7] Dirac, P.A.M. (1928) Proceedings of the Royal Society A: Mathematical, Physical 
and Engineering Sciences, 117, 610-624. https://doi.org/10.1098/rspa.1928.0023 

[8] Ho, V.B. (2018) International Journal of Physics, 6, 105-115.  
https://doi.org/10.12691/ijp-6-4-2 

[9] Ho, V.B. (2018) GJSFR-A, 18, 37-58. 

[10] Ho, V.B. (2018) Journal of Modern Physics, 9, 2402-2419.  
https://doi.org/10.4236/jmp.2018.914154 

[11] Ho, V.B. (2018) Fluid State of the Electromagnetic Field. 

[12] Ho, V.B. (2017) On the Motion of Quantum Particles and Euclidean Relativity. 

[13] Einstein, A., Podolsky, B. and Rosen, N. (1935) Physical Review, 47, 777-780.  
https://doi.org/10.1103/PhysRev.47.777 

[14] Bell, J.S. (1964) Physics, 1, 195-290.  
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 

[15] Rosenfeld, W., Burchardt, D., Garthoff, R., Redeker, K., Ortegel, N., Rau, M. and 
Weinfurter, H. (2017) Physical Review Letters, 119, Article ID: 010402.  
https://doi.org/10.1103/PhysRevLett.119.010402 

[16] Melshko, S.V. (2005) Methods for Constructing Exact Solutions of Partial Differen-
tial Equations. Springer Science & Business Media, Berlin. 

[17] Sobolev, S.L. (1964) Partial Differential Equations of Mathematical Physics. Dover 
Publications, Inc., New York. 

[18] Landau, L.D. and Lifshitz, E.M. (1987) The Classical Theory of Fields. Pergamon 
Press, Sydney. 

[19] Lopes, J.L. (2011) Gauge Field Theories: An Introduction. Pergamon Press, Sydney. 

[20] Lim Zheng Liang (2019) Aspects of Newton Cartan Gauge Theory. National Uni-
versity of Singapore, Singapore. 

[21] Ho, V.B. (2018) International Journal of Physics, 6, 47-52.  
https://doi.org/10.12691/ijp-6-2-4 

[22] Ho, V.B. (2018) On the Geometric Structure of the Spatiotemporal Manifold. 

[23] Ho, V.B. (2019) Maxwell and Dirac Field with Three-Dimensional Time. 

https://doi.org/10.4236/jmp.2020.114036
https://doi.org/10.1515/phys-2019-0077
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.12691/ijp-6-4-2
https://doi.org/10.4236/jmp.2018.914154
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.119.010402
https://doi.org/10.12691/ijp-6-2-4


V. B. Ho 
 

 
DOI: 10.4236/jmp.2020.114036 564 Journal of Modern Physics 
 

[24] Ho, V.B. (2017) A Derivation of the Ricci Flow. 

[25] Ho, V.B. (2017) A Covariant Ricci Flow. 

[26] Richard, S. and Hamilton, R.S. (1982) Journal of Differential Geometry, 17, 255-306.  
https://doi.org/10.4310/jdg/1214436922 

[27] Cao, H.-D. and Zhu, X.-P. (2006) The Asian Journal of Mathematics, 10, 165-492.  
https://doi.org/10.4310/AJM.2006.v10.n2.a2 

[28] Ibragimov, N.H., Meleshko, S.V. and Thailert, E. (2008) Communications in Nonlinear 
Science and Numerical Simulation, 13, 277-284.  
https://doi.org/10.1016/j.cnsns.2006.03.017 

[29] Ibragimov, N.H. (2009) Communications in Nonlinear Science and Numerical Simu-
lation, 14, 1157-1168. https://doi.org/10.1016/j.cnsns.2008.04.010 

[30] Ibragimov, N.H. and Meleshko, S.V. (2009) Communications in Nonlinear Science 
and Numerical Simulation, 14, 2551-2558.  
https://doi.org/10.1016/j.cnsns.2008.10.007 

[31] Ho, V.B. (2019) Journal of Modern Physics, 10, 1374-1393.  
https://doi.org/10.4236/jmp.2019.1011091 

[32] de Broglie, L. (1925) Annales de Physique, 10, 22-128.  
https://doi.org/10.1051/anphys/192510030022 

[33] Bohm, D. (1952) Physical Review, 85, 180-193.  
https://doi.org/10.1103/PhysRev.85.180  

 
 

https://doi.org/10.4236/jmp.2020.114036
https://doi.org/10.4310/jdg/1214436922
https://doi.org/10.4310/AJM.2006.v10.n2.a2
https://doi.org/10.1016/j.cnsns.2006.03.017
https://doi.org/10.1016/j.cnsns.2008.04.010
https://doi.org/10.1016/j.cnsns.2008.10.007
https://doi.org/10.4236/jmp.2019.1011091
https://doi.org/10.1051/anphys/192510030022
https://doi.org/10.1103/PhysRev.85.180


Journal of Modern Physics, 2020, 11, 565-580 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 
DOI: 10.4236/jmp.2020.114037  Apr. 14, 2020 565 Journal of Modern Physics 
 

 
 
 

Recent QFT of Einstein’s Gravity  
Simplified via Ultrahyperfunctions 

A. Plastino1,2,3*, M. C. Rocca1,2,4 

1Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina 
2Consejo Nacional de Investigaciones Cientícas y Tecnológicas, La Plata, Argentina 
3(IFLP-CCT-CONICET)-C. C., La Plata, Argentina 
4Departamento de Matemática, Universidad Nacional de La Plata, La Plata, Argentina 

 
 
 

Abstract 
Previously published treatment is rather involved. Here we present a useful 
approximation to the concomitant derivation that yields a simpler way of 
handling things and still obtains results quite similar to those yielded by the 
exact treatment. Our approximation consists of giving the graviton field a 
simpler, but still quite good approximate form. 
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1. Introduction 

Previous attempts to quantize Einstein gravity (EG) have failed because of 1) 
they utilize a Rigged Hilber Space (RHS) with undefined metric, 2) non-unitarity 
troubles, and 3) non-renormalizablity problems. These problems were success-
fully bypassed in [1] [2], yielding a viable quantification procedure for Einstein’s 
gravity. One used two kinds of tools. Some are of physical nature and were de-
veloped in [3] [4] [5]. Others are of a purely mathematical character, and con-
cern the nature and properties of a generalization of Schwartz’s distributions 
made in the 1960s. The generalized entities were called Ultrahyperfuntions (UHF). 
The existence and uniqueness of their convolution, whcih yields another UHF, 
were demonstrated in the 1990s [6]-[10]. Such convolutions are finite. Since 
quantum propagators can be seen to be UHFs, and their convolution is finite, all 
Feynman diagrams also turn out to be finite. There is no longer a need for renor-
malization. These important mathematical advanced were founded on the efforts 
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of A. Grothendieck [11] and J. S. Silva (JSS) [12]. The concomitant mathematical 
apparatus was specifically devised so as to quantify non-renormalizable field theo-
ries. For a detailed discussion of it, see [10]. One ends up facing a theory similar 
to QED, endowed with unitarity at all finite orders of power expansions in the 
gravitation constant G of the EG Lagrangian. This feat was previously attempted, 
but without success, by Gupta and by Feynman (in his celebrated Acta Physica 
Polonica paper [13]). 

Our paper is structured as indicated below: 
1) Section 2 deals with preliminary materials. 
2) Section 3 treats the QFT Lagrangian for EG and introduces our approxima-

tion that consists of setting the graviton field µν µνφ γ φ= , where µνγ  is a con-
stant tensor and φ  a scalar (graviton) field. 

3) Section 4 quantizes the ensuing theory. 
4) Section 5 evaluates the graviton’s self-energy up to second order. 
5) Section 6 introduces axions into our scenario and considers the axions- 

gravitons interaction. 
6) Section 7 calculates the graviton’s self-energy in the presence of axions. 
7) Section 8 evaluates the axion’s self-energy, up to second order. 
8) Finally, some conclusions are drawn in Section 9. 

2. Preliminary Materials 

The most general quantification approach is based upon Schwinger-Feynman’s 
variational principle [14] and can successfully deal even with high order super-
symmetric (HOS) theories (see [15] [16]). It is important to emphasize, for QFT 
experts, that HOS theories cannot be quantized by appeal to the customary Di-
rac-brackets approach. 

Consider now the action for a set of fields ( )A xφ  written in the fashion 

( ) ( )
( )

( ) ( )
0

0, ,

, , d ,

A

x

A A

x x

L
σ

µ
σ

σ σ φ

φ ξ φ ξ ξ ξ

  

 = ∂ ∫



               (2.1) 

where ( )xσ  if a space-like surface passing through the point x. 0σ  is that 
surface (at the remote past), for which all field variations vanish. The Schwing-
er-Feynman variational principle asserts then that: 

‘‘Any Hermitian infinitesimal variation δ  of the action induces a ca-
nonical transformation of the vector space in which the quantum system is 
defined, and the generator of this transformation is this same operator 
δ ”. 

In such circumstances, this equality is seen to hold 

[ ], .A Aiδφ δ φ=                        (2.2) 

Accordingly, for a Poincare transformation one has 
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1 ,
2

v
va aµ µ

µ µδ = +                      (2.3) 

where aµ  and vaµ  are variational constants, the first for displacement and the 
second for rotation, µ  refers to linear momentum, and vµ  to complete 
angular momentum. For the field variation the last two quantities are repre- 
sented by P̂µ  and ˆ

vM µ , respectively. One has 

1ˆ ˆ .
2

v
a A v Aa P a Mµ µ

µ µδφ φ φ= +                   (2.4) 

From (2.2) one can now ascertain that 

, .A Aiµ µφ φ ∂ =                         (2.5) 

More to the point, 

[ ]0 0 , .A Aiφ φ∂ =                        (2.6) 

Equation (2.6) will be used below for quantizing EG. 

3. The Convolution of Two Lorentz Invariant  
Tempered Ultradistributions 

In [7] we have obtained a conceptually simple but rather lengthy expression for 
the convolution of two Lorentz invariant tempered ultradistributions. ρ  and 
Λ  are defined there. Θ  is the Heaviside function and ℑ  stands for imaginary 
part. We have then 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )

1 2

1 2 1 2 1 12

2
2 2 1 2 1 2

2
1 2 1 2 1 2

1 2

1 1 2 2

,

1 ln ln
8

ln ln 4 2

4 2 2
ln

2

ln ln ln ln

H

F G

i

λ

λ λ

ρ

ρ ρ ρ ρ ρ ρ ρ
ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ

Γ Γ

Λ

 
 = Θ ℑ − + Λ − − −Λ       π  



× − + Λ − − −Λ + Λ + Λ − − − − Λ  

 + Λ + Λ − − − − Λ − − − − Λ ×
 + Λ + Λ
 

+ + Λ − −Λ + Λ − −Λ      

∫ ∫

 

( )( ) ( )

( )( ) ( ) ( )
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( ) ( ) ( ) ( )
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4
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ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

× −Λ −Λ − − − + Λ

 −Λ −Λ − − − + Λ − − − + Λ ×
 − Λ −Λ
 

+ + Λ − −Λ − + Λ − − −Λ      


π  × + Λ −Λ − − − − − −   



+ + Λ −Λ − − −
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( )( ) ( ) ( )
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( )( ) ( ) ( )
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 + Λ −Λ − − − − − −  ×  − + Λ −Λ  
+ − + Λ − − −Λ + Λ − −Λ      

π  × −Λ + Λ − − − − − −   



+ −Λ + Λ − − −

 −Λ + Λ − − − − − − ×
 − −Λ + Λ
 




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( )( ) ( )

( )( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )
( )( ) ( )

1 1 2 2

2
1 2 1 2

2
1 2 1 2 1 2

1 2

1 1 2 2

2
1 2 1 2

ln ln ln ln

4 2

4 2 2
ln

2

ln ln ln ln

4 2

i

ρ ρ ρ ρ ρ
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× −Λ −Λ − − − + Λ

 −Λ −Λ − − − + Λ − − − + Λ ×
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 

+ + Λ − −Λ + Λ − −Λ      

× + Λ + Λ − − − − Λ
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 

+ + Λ − −Λ − + Λ − − −Λ      

π  × −Λ + Λ − − − − − −   



+ −Λ + Λ − − −

 −Λ + Λ − − − − − − ×
 − −Λ + Λ
 




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+ − + Λ − − − Λ + Λ − − Λ      

π  × + Λ − Λ − − − − − −   



+ + Λ − Λ − − −

 + Λ − Λ − − − − − −  ×  − + Λ − Λ  

− − + Λ − − − Λ − + Λ − − − Λ        
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( )

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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    + Λ − Λ
× − + −       + Λ − Λ     
+ + Λ − − Λ + Λ − − Λ      

    Λ − Λ +
× − − +       Λ − Λ +     
+ + Λ − − Λ − + Λ − − − Λ      

 Λ +
× −  Λ −

1
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ρ

    Λ − +      Λ +       
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
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

− + Λ − − − Λ + Λ − − Λ      
     Λ − Λ +

× − +        Λ + Λ −     




  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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1 2 1 2

1 2 1 2 1 1 2
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2
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ln ln ln d d

ρ ρ
ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

−
+ + + Λ − + −Λ

− − − + Λ + − − −Λ + − − + Λ  


− − − −Λ + + + Λ − + −Λ    


  (3.1) 

This defines an ultradistribution in the variables ρ  and Λ  for 

( ) ( ) ( ) ( )1 2ρ ρ ρℑ > ℑ Λ > ℑ + ℑ
 

Let B  be a vertical band contained in the complex λ -plane P . Integral 
(3.1) is an analytic function of λ  defined in the domain B . Moreover, it is 
bounded by a power of ρΛ . Then, ( ),Hλ ρ Λ  can be analytically continued to 
other parts of P . Thus, we define 

( ) ( ) ( )0 , 0H H iρ ρ +=                     (3.2) 

( ) ( ) ( ), 0 , 0n n

m
H i H iλ ρ ρ λ

∞
+ +

−

= ∑                 (3.3) 

As in the other cases, we define now 

{ }( ) ( )F G Hρ ρ∗ =                      (3.4) 

as the convolution of two Lorentz invariant tempered ultradistributions. 
The Feynman propagators corresponding to a massless particle F and a mas-

sive particle G (mass m) are, respectively, the following ultrahyperfunctions: 
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( ) ( ) 1F ρ ρ ρ −= −Θ −ℑ    

( ) ( ) ( ) 12G mρ ρ ρ
−

= −Θ −ℑ +                   (3.5) 

where ρ  is the complex variable, such that on the real axis one has  
2 2 2 2

1 2 3 0k k k kρ = + + − . For them, the following equalities are satisfied 

( ) ( ) 1Fλ λρ ρ ρ ρ −= −Θ −ℑ    

( ) ( ) ( ) 12G m
λλρ ρ ρ ρ
−

= −Θ −ℑ +                  (3.6) 

where we have used: ( )2m
λ λρ ρ+  , since we have chosen m to be very small. 

On the real axis, the previously defined propagators are given by: 

( ) ( ) ( ) ( ) 10 0 0f F i F i iρ ρ ρ ρ −= + − − = −  

( ) ( ) ( ) ( ) 120 0 0g G i G i m iρ ρ ρ ρ
−

= + − − = + −           (3.7) 

These are the usual expressions for Feynman propagators. 
Consider first the convolution of two massless propagators. We use (3.6), 

since here the corresponding ultrahyperfunctions do not have singularities in the 
complex plane. We obtain from (3.1) a simplified expression for the convolu-
tion: 

( ) ( ) ( ) ( )
1

1 1 2 2
1 2 1 2 1 2 1 20 0 4 d d

2
h i iλ λ
λ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ

∞
− −

+
−∞

π  = − − − − − ∫∫   (3.8) 

This expression is nothing other than the usual convolution: 

( ) ( ) ( )1 10 0h i iλ λ
λ ρ ρ ρ− −= − ∗ −                 (3.9) 

In the same way, we obtain for massive propagators: 

( ) ( ) ( )1 12 20 0h m i m i
λ λ

λ ρ ρ ρ
− −

= + − ∗ − −            (3.10) 

These last two expressions are the ones we will use later to evaluate the gravi-
ton’s self-energy. 

4. The Lagrangian of Einstein’s QFT 

The EG Lagrangian is [3] [4] [5], for curvature R  and 2κ  the gravitation’s 
constant, 

2

1 1 ,
2

v
G vg h hµα β

µ α βη
κ

= − ∂ ∂R                (4.1) 

where Minkowski’s ( )1,1,1, 1diagµνη = − , while h g gµν µν= , with g µν  the 
metric tensor. The second term in (4.1) establishes the gauge fixing. We reach 
here a critical stage. At it, we will proceed to perform a crucial linear approxima-
tion. This will be immediately seen to be an approximation to the graviton field. 
We will write 

,v v vhµ µ µη κφ= +                       (4.2) 

where 2κ  is the gravitation’s constant and vµφ  the graviton field. Our ap-
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proximation, based on [1], reads 

,v vµ µφ γ φ=                         (4.3) 

with φ  a scalar field and where vµγ  is a constant tensor which satisfies 

0µ
µγ =                           (4.4) 

This approximate casting of vµφ  considerably simplifies the handling of 
matters without sacrifice of rigor. We write now the Lagrangian as a sum of a 
non-perturbative component plus an interactive one, i.e., 

,G L I= +                           (4.5) 

where 

1 ,
4

v
L v

µ λ
µ λγ γ φ φ= − ∂ ∂                    (4.6) 

and, up to 2nd order, one has [3] [4] [5] 

1 1 ,
2 2

v
I v v v

µ ρλ λ β ρ λ
ρλ µ µβ λ µρ λκγ φ γ γ φ φ γ γ φ φ γ γ φ φ = − ∂ ∂ + ∂ ∂ − ∂ ∂  

    (4.7) 

having made use of the constraint (4). This constraint is required in order to sa-
tisfy gauge invariance [17] For the field φ . We have then, as can also be seen to 
happen for the considerations made in [10], 

0,φ =                           (4.8) 

whose solution is 

( )
( )

( ) ( ) 3
3

0 02

1 e e d ,
2 22

ik x ik xa a
x k

k k

µ µ
µ µφ

+
− 

= + 
  π
∫

k k
         (4.9) 

with 0k = k . Above, ( )a k  and ( )a+ k  stand for Fourier coefficients. Up to 
this point, we were using Einstein’s Lagrangian. Its quantization begins next. 

5. Quantization of the Theory 

As usual in QFT (see for instance Visconti’ celebrated book [14]), the quantum 
energy-momentum tensor T λ

ρ  is cast as 

,v
v

LT Lλ λ µ λ
ρ ρρ µ φ δ

φ
∂

= ∂ −
∂∂

                  (5.1) 

and the time-component of the four-momentum is now the quantum operator 
0 3

0 0 d .T x= ∫                         (5.2) 

Using (4) we have 

0 0
0 0

1 .
4

v j
v jT µ

µγ γ φ φ φ φ = − ∂ ∂ − ∂ ∂                 (5.3) 

Consequently, 

( ) ( ) ( ) ( ) 3
0

1 d .
4

v
v a a a a kµ

µγ γ + + = + ∫ k k k k k          (5.4) 
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Appeal to (2.6) leads now to 

( ) ( )0 0,a k a= −  k k
 

( ) ( )0 0, .a k a+ +  = k k                    (5.5) 

From the last relation in (5.5) one gathers that 

( ) ( ) ( ) ( ) 3, d .
2

v
va a a a k

µ
µγ γ+ + + ′ ′=  ∫k k k k k k          (5.6) 

The solution of this integral equation is 

( ) ( ) ( )2, .v
v

a a µ
µ

δ
γ γ

+ ′ ′= − k k k k                (5.7) 

We use now the usual definition 

( ) ( ) ( )0 0 .x y T x yφ φ∆ − =                    (5.8) 

The graviton’s propagator then turns out to be 

( )
( )

( )
4

4 2

2 e d .
02

ik x y

v
v

ix y k
k i

µ µ
µ

µ
µγ γ

−

∆ − =
−π

∫              (5.9) 

As a consequence, we can write 

( ) ( ) ( ) ( ) ( ) 3 3
0 d d ,

4

v
v a a a a k k

µ
µγ γ

δ+ + ′ ′ ′ ′= + − ∫ k k k k k k k   (5.10) 

or 

( ) ( ) ( ) ( ) 3 3
0

22 d d .
4

v
v a a k k

µ
µ

ρλ
ρλ

γ γ
δ δ

γ γ
+

 
′ ′ ′ ′= + − − 

  
∫ k k k k k k k   (5.11) 

Thus, we obtain 

( ) ( ) 3
0 d ,

2

v
v a a k

µ
µγ γ += ∫ k k k                (5.12) 

where we have used the fact that the product of two deltas with the same argu-
ment vanishes [6], i.e., ( ) ( ) 0δ δ′ ′− − =k k k k . This illustrates the fact that us-
ing Ultrahyperfunctions is here equivalent to adopting the normal order in the 
definition of the time-component of the four-momentum 

( ) ( ) ( ) ( ) 3
0 : : d .

4

v
v a a a a k

µ
µγ γ + + = + ∫ k k k k k         (5.13) 

Now, we must insist on the fact that the physical state should satisfy the rela-
tion (see [3] [4] [5]) 

0.vµ
µγ φ ψ∂ =                       (5.14) 

The ensuing theory is similar to the QED-one obtained via the quantization 
approach of Gupta-Bleuler. This implies that the theory is unitary for any finite 
perturbative order. In this theory, just one type of graviton arises, 12φ , while in 
Gupta’s treatment two sorts of graviton emerge. Of course, this happens for a 
non-interacting theory, as pointed out by Gupta. 
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6. Graviton’s Self Energy 

So as to compute the graviton’s self-energy (SF) we begin with the interaction 
Hamiltonian I . Remark that the Lagrangian has derivative interaction terms. 

0
0 .I

I I
µν

µν φ
φ

∂
= ∂ −
∂∂


                     (6.1) 

A typical term reads 

( ) ( ) ( )
1 2 3 4 1 2 3 4

1 10 0 ,G k k k i k k iα α α α α α α αρ ρ− −Σ = − ∗ −          (6.2) 

where 2 2 2 2
1 2 3 0k k k kρ = + + − . 

The Fourier transform of (2) becomes 

( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )
( )

( )( )

( ) ( )
( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4 3 4 1 2

1 2 3 4

1 1

24 1
2 4

2

4 1
2 5

2

24 1
2

0 0

2 2
0

4 1

2 2 3
0

2 1

2 3
0

1

k k i k k i

x i

x x x x x i

x x x x x i

λ λ
α α α α

λ
λ

α α α α

λ
λ

α α α α α α α α

λ
ν

α α α α

ρ ρ

λ
η η

λ

λ λ
η η

λ

λ
λ

− −

+

− −

+
− −

+
− −

 − ∗ − 
 Γ + = − +
Γ −

Γ + Γ +
+ + +

Γ −

Γ +
− +

Γ −



   (6.3) 

where 2 2 2 2
1 2 3 0x x x x x= + + − . 

Anti-transforming the above equation one has 

( ) ( )

( )
( ) ( )

( )
( )
( )

( )
( ) ( ) ( )( )

( )
( )

( )
( ) ( )( )

1 2 3 4

1 2 3 4

1 2 3 4 2 3 1 4 2 4 1 3

1 2 3 4 3 4 1 2

1 1

2

2

2
2 2

2

2

0 0

2 3
2 2

2 4 2 54 1

3
2 2 0

2 6

3 2
1

2 52 1

k k i k k i

i

i

i
k k k k

λ λ
α α α α

α α α α

λ
α α α α α α α α α α α α

α α α α α α α α

ρ ρ

λ λ
λ η η

λ λλ

λ
η η η η η η λ ρ

λ

λ λ
ν η η

λλ

− −

+

− ∗ −

  Γ + Γ +π = Γ + −  Γ + Γ +Γ −   
Γ + + + + Γ − − −Γ + 

π Γ + Γ ++ Γ + +Γ +Γ −   

( )
( ) (

) ( )( )

( )
( ) ( )

( )( )

1 2 3 4 1 3 2 4 1 4 2 3 3 4 1 2

2 3 1 4 2 4 1 3

1 2 3 4

2 1

22
2

2

3
2 6

2 1 0

3
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        (6.4) 

Computing the Self-Energy 

We proceed here to perform a λ -Laurent expansion, keeping from it just the 
λ  independent term [10]. We Laurent-expand (4) around 0λ =  and encoun-
ter: 
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∑

    (6.5) 

The exact value of the convolution we are interested in, i.e., the left hand side 
of (5.5), is given by the independent term above, as everyone knows. Should the 
reader be unfamiliar with this scenario, we direct him/her to [10]. We now get 
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 (6.6) 

We face here 1296 diagrams of this type. 

7. Axions Enter the Picture 

Axions are hypothetical elementary particles conjectured by the 1977 Peccei- 
Quinn theory so as to tackle the strong CP problem in quantum chromodynam-
ics. Should they exist and have low enough mass (within a certain range), they 
may be of some interest as putative components of cold dark matter [18]. We 
thus consider now a massive scalar field (axions) interacting with the graviton 
and the pertinent Lagrangian becomes 
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2 2

1 1
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1 .
2

v
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g h h
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µα β
µ α β

µ
µ

η
κ

ψ ψ ψ

= − ∂ ∂

 − ∂ ∂ + 

R
               (7.1) 

It is possible to recast the Lagrangian now as 

,GM L I LM IM= + + +                       (7.2) 

where 

2 21 ,
2LM mµ

µψ ψ ψ = − ∂ ∂ +                   (7.3) 

so that LM  is the Lagrangian for the axion-graviton action 

1 .
2IM

µν
µ νκγ φ ψ ψ= − ∂ ∂                    (7.4) 

A new term in the interaction Hamiltonian appears 

0
0 .IM

IM IMψ
ψ

∂
= ∂ −
∂∂


                      (7.5) 

8. Graviton’s Complete Self Energy 

Axions necessarily generate a new contribution to a graviton’s self energy 

( ) ( ) ( )1 12 20 0 .GM rvs r v sk k k m i k k m iµ µ ρ ρ
− −

Σ = + − ∗ + −        (8.1) 

To evaluate it face the customary four-dimensional integral together with the 
Feynman-parameters denoted by the letter x. After a Wick rotation, we find 
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1 12 2
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          (8.2) 

where 
2 2 2 2 .a p x p x m= − +                      (8.3) 

Effecting a variables-change u k px= −  we encounter 
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1
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            (8.4) 

where 
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      (8.5) 

After computing the associated integrals we find 
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 (8.6) 

Computing the Self-Energy ( 0λ = ) 

We appeal once again to a Laurent’s expansion and have 
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 (8.7) 

Once again, the exact result for our four-dimensional convolution is 
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Accordingly, our desired self-energy total is a combination of ( )
1 2 3 4G kα α α αΣ  

and ( )
1 2 3 4GM kα α α αΣ . 

9. Axion’s Self Energy 

The self-energy reads 
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In four dimensions, we have 
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Using the same Feynman parameters as above, we have 
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where 

( )2 2 2 2 .a p m x p x= + −                     (9.4) 

We compute the integral (3) and encounter 
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Self-Energy Computation ( 0λ = ) 

We Laurent-expand again, this time (5) around 0λ = . 
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The λ -independent term yields the exact convolution result we need 
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1 31 ln
6 3 4

1 1,1,5;
4 12 3

vr v r

vr

v r

vr v r

k k k m i i

m
i m

m

k k
m

m

m k k
F

m m m

ρ ρ

η ρ

ρ

ηρ ρ ρ

− −Σ = + − ∗ −

     = π + +        

   − + − +      

     + − −     
     

.       (9.7) 

10. Conclusions 

We have developed above an approximate quantum field theory (QFT) of Eins-
tein’s gravity (EG) that is both unitary and finite. This treatment considerably 
simplifies the mathematical handling so that it may constitute a valuable tool in 
the theorist’s arsenal. 

This paper addressed the same problem tackled in [19], with different ma-
thematical techniques. Both papers dealt with gravity’s quantization (GQ) via an 
approximate graviton’s approach. The difference between that reference and the 
present paper resides in the fact that here we base our discourse on a general GQ 
formulation using Ultrahyperfunctions. In [19], instead, we constitute a special 
instance, based on Explicitly Lorentz Invariant Schwartz’ Distributions (ELISD). 
The predictions of the two papers are similar, a remarkable fact given that the 
two types of mathematics involved are very different. 

Our approximation consists of defining the graviton field as µν µνφ γ φ=  with 
µνγ  a constant tensor and φ  an scalar field. 
Summing up, we have evaluated in finite fashion. 

• A graviton’s self-energy in the EG-field. 
• The self-energy in the presence of a massive scalar field (axions, for exam-

ple). Two sorts of diagram emerge: the original ones of the pure EG field plus 
the ones generated by the addition of a scalar field. 

• An axion’s self-energy. 
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Abstract 
A set of discoveries are described that complete the structural model and dif-
fraction theory for quasicrystals. The irrational diffraction indices critically 
oppose Bragg diffraction. We analyze them as partly rational; while the irra-
tional part determines the metric that is necessary for measurement. The 
measurement is verified by consistency with the measured lattice parameter, 
now corrected with the metric and index. There is translational symmetry 
and it is hierarchic, as is demonstrated by phase-contrast, optimum-defocus 
imaging. In Bragg’s law, orders are integral, periodic and harmonic; we dem-
onstrate harmonic quasi-Bloch waves despite the diffraction in irrational, 
geometric series. The harmonicity is both local and long range. A break-
through in understanding came from a modified structure factor that features 
independence from scattering angle. Diffraction is found to occur at a given 
“quasi-Bragg condition” that depends on the special metric. This is now ana-
lyzed and measured and verified: the metric function is derived from the irration-
al part of the index in three dimensions. The inverse of the function is exactly 
equal to the metric that was first discovered independently by means of “qua-
si-structure factors”. These are consistent with all structural measurements, in-
cluding diffraction by the quasicrystal, and with the measured lattice parameter. 
 

Keywords 
Quasicrystal, Icosahedra, Hierarchic, Integral, Periodic, Harmonic, Irrational, 
Geometric Series, Metric 

 

1. Introducing Harmonics in Hierarchy 

“A metallic phase with long range order but with no translational symmetry” 
[1], how come? The greater the prize, the worse the gaff: the translational sym-
metry is strictly hierarchic [2]-[15]. How, in particular, can the diffraction 
represent long range order when it occurs as irrational numbers, aperiodically 
ordered, and in geometric series? Since Bohr’s atom, all of modern wave physics 
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have required harmonic solutions; how does that strange series harmonize? This 
study shows precisely how the exceptional harmony occurs. 

The original solid-state phase was discovered in 1982 and published in 1984 
[1], shortly before my hierarchic proposal in 1986. After twenty years in the dol-
drums, Senechal wrote for the American Mathematical Society, “What is a qua-
sicrystal?” The paper began, “The short answer is no one [knows]” [16]. She was 
mistaken: I had by then discovered the quasi-structure factor and metric [2] [3] 
[6]. These were based on phase-contrast, optimum-defocus images [17] which 
identify the locations of the heavier atom in the Al6Mn icosahedral alloy, owing 
to high atomic scattering factor. Knowing all of the microscope magnification, 
the image pattern, and the diffraction pattern, it was obvious that the unit cell is 
Al12Mn, with stoichiometry Al6Mn because of edge sharing. These cells are hie-
rarchically arranged, each order having 6 five-fold rotation axes. In particular, 
four tiers of hierarchic structure are evident in the data and this structure was 
shown to be infinitely extensible: it is logarithmically periodic with period 2τ , 
the square of the golden section ( )1 21 5 2τ = +  [18]. 

To calculate the diffraction pattern from the known structure, it was necessary 
to correctly index [9] the original diffraction pattern [1] [2]. From stereographic 
projections of the icosahedral axes and diffraction planes, the indexation was 
shown to be three dimensional, in geometric series, simple and complete. The 
planes are normal to the three-dimensional axes. Mathematicians choose six di-
mensions; physicists falsify them. 

A breakthrough in understanding of the diffraction pattern followed our rea-
lization that the structure factor is independent of scattering angle and can be 
simply calculated from our knowledge of the structure [2] [14]. Prima facie, the 
structure factor was inconsistent with data. This inconsistency was half expected 
because of known “quasi-periodicity”, so we included two adjustments to the 
formulae. Firstly, a coherence term sc  which has the effect similar to making 
the structure breath so that the quasi-Bragg condition became evident by sudden 
diffractive coherence, that is similar to Bragg coherence observed by rotation of 
a crystal through the Bragg condition: suddenly on and suddenly off. Bragg dif-
fraction is bi-planar where quasi-Bragg diffraction is multi-planar [14], but the 
breathing coherence provides sharp diffraction at the quasi-Bragg condition 
[12], in spite of the “quasiperiodic lattice”. Actually of course, there is no me-
chanical breathing strain; the coherence is due to axial contraction owing to the 
peculiar hierarchic optics as will be described below by a new law in physics. 
Secondly, it became obvious that because our unit cells do not repeat periodical-
ly in linear order, we had to sum our quasi-structure not just over the unit cell as 
in crystals; but over the whole quasicrystal (QC) in hierarchic order. The qua-
si-structure factor formula (QSF) allowed an important iterative procedure that 
was necessary for the summation of high orders: the iteration overcame compu-
ting truncation errors. The final result is consistent with experimental diffraction 
data [2] [5]. An example will be given in Figure 1. This shows four peaks in 
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geometric series, offset from the Bragg condition by the metric 0.894. This will 
be elaborated in the next section. 

The outstanding question remained, what is the metric and how does the 
geometric series diffraction occur? It is not consistent with Bragg diffraction; but ra-
ther diametrically opposed by geometric, aperiodic, and anharmonic orders n , and 
multiple spacings d  at any given Bragg condition. The new quasi-Bragg law was 
evident: ( )2 sinm dτ λ θ= ’ ’ , where through multiple simulations, the role of the me-
tric defined all of the lattice parameter a ; the order n m→’ ; the quasi-interplanar 
spacing d ’ ; and quasi-Bragg angle θ ’  (the compliment to the angle of inci-
dence). After completely understanding the metric in this unique diffraction, the 
varieties of data verify both the structure and the diffraction. 

 

 
Figure 1. Quasi structure factors calculated by scanning for five peaks in geometric series 
against the coherence factor sc  [14]. At the Bragg condition, 1sc =  (ordinate axis), 
and there is no diffraction; the diffraction peaks occur at the quasi-Bragg condition when 
the metric 0.894sc = . All peaks in the diffraction pattern of ref. [1] are calculated to oc-
cur at this condition. Geometric series indices are shown level with the tops of corres-
ponding QSF peaks. 

2. Quasi Structure Factor (QSF) Suppresses Diffraction 

The sites of atoms and cell centers in icosahedral clusters are known [2] [13] [14], 
and also sites of higher order p  of supercluster centers, where radii multiply by 

2pτ : 
Unit cell ( ur ):   Mn  ( )0,0,0  

Al  ( ) ( ) ( )1 1 1,0, 1 , 0, 1, , 1, ,0
2 2 2

τ τ τ± ± ± ± ± ±                (1) 

and 

Cell or cluster centers ( ccr ) ( ) ( ) ( )2 2 21 1 1,0, , 0, , , , ,0
2 2 2

τ τ τ τ τ τ± ± ± ± ± ±   (2) 
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The QSF formula is adapted from classical crystallography with two differ-
ences: 

( )( )
all atoms

1
cos 2hkl i s hkl i

i
F f c h r

=

π= ⋅ ⋅∑                  (3) 

firstly, because the diffraction is sharp in spite of multiple interplanar spacings 
d , a coherence factor sc  is inserted. Its value will be derived analytically be-
low. The factor is used as a scanned variable (Figure 1) to illustrate the variance 
of quasi-Bragg diffraction from Bragg diffraction in crystals. 

 

 
Figure 2. Each golden triad has three principal planes on each dimension that intersect 
(red pointers) at normals on the [100] axis in the diagram. Each corner of each golden 
rectangle locates the center of a cell or subcluster. Intercluster spacings are arranged at 
intervals 0, 1, τ , for the unit cell. By scaling the triad for clusters and superclusters, the 
spacings continue 2 3 4, , ,τ τ τ 

 in geometric series, as observed in diffraction indices. 
 

Secondly, because the unit cells are not periodic as in crystals, the summation 
is made over all atoms in the QC; not just the unit cell. The summation is taken 
in two steps: over the unit cell and cluster, and iteratively over the superclusters 
in hierarchic order p . Write the vector from the origin to each atom in a clus-
ter clr  as the sum of a unit cell vector ur , with a vector to the cell centers in 
the cluster ccr : cl cc ur r r= + . Then since: 

( ) ( ) ( )
cluster 12 13

exp exp exp
N

hkl cl hkl cc hkl u
i i i

h r h r h r⋅ = ⋅ × ⋅∑ ∑ ∑          (4) 

with corresponding summations over unit cell sites and cell centers, and know-
ing that cluster cc uN N N= ⋅ , the QSF for the cluster is calculated: 

( )( )
12

cluster cell

1
cos 2hkl s hkl cc hkl

i
F c h r F

=

= π ⋅ ⋅ ⋅∑                (5) 

and repeating iteratively over superclusters by using the known stretching factor 
2pτ : 
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( )( )
all atoms

2 1

1
cos 2p p p

hkl s hkl cc hkl
i

F c h r Fτ −

=

π ⋅ ⋅ ⋅= ∑               (6) 

The example in Figure 1 is for a simple axial series, but all beams in the orig-
inal data [1] display the same metric deviance from the Bragg condition on the 
ordinate axis where 1sc = . In the QCs all beams peak at the quasi-Bragg condi-
tion 0.894sc = . There is no Bragg diffraction. From larger samples, the value of 

sc  is extremely precise [5]. As we shall see, this value is the result of harmoniza-
tion of the incident, sine wave probe with the aperiodic, hierarchic structure. 
Notice that the QSF depends on the angle between a specific atomic plane-normal 
and the crystal structure; it is independent of the experimental Bragg angle. Eli-
mination of the Bragg angle θ  from the equation, allowed access to parameters 

’n , ’d , and hierarchic lattice parameter a . (The value of the QSF depends 
greatly on the number of atoms in the simulated quasicrystal as also partly on 
atomic scattering factors: the number is much larger and more varied than the 
number of atoms in a crystal unit cell). 

3. Stretching the Axis for Bloch 

Bragg diffraction is bi-planar: the path difference between two rays reflected 
from neighboring Bragg planes is equal to the wavelength of light. QC diffrac-
tions multiplanar, as is observed in high resolution electron micrographs: within 
the “quasi-periodic solids” every atom scatters. To know how the phases of the 
various scattered rays add, it is necessary to calculate the QSF. The addition is 
iterative (Equation (6)). Subclusters locate on the corners of the golden rectan-
gles shown in Figure 2, i.e. on principal planes. These planes, in hierarchic dif-
fraction, replace Bragg planes in diffraction from crystals. Keeping the golden 
triad as basis in the hierarchy, the spacings between principal planes scale geo-
metrically owing to the stretching factor 2 pτ  that determines axial dimensions 
with increasing order. 

Interplanar spacings are ordered like the diffraction pattern: 2 3 4 50,1, , , , , ,τ τ τ τ τ   
It is evident that whereas Bragg diffraction occurs by coherent scattering from 
Bragg planes, hierarchic diffraction occurs by coherent scattering from subclus-
ter centers. How, more precisely, this happens will be illustrated with qua-
si-Bloch waves. These waves differ from both the Bloch wave in crystals and 
from the Bragg diffracted wave beam. Bloch waves are evident as lattice images 
in the two-beam condition [19]. The waves are due to interference between an 
incident X-ray or electron beam with its specularly reflected diffraction beam. 
However, because the interplanar spacings are not in linear order in the QC, an 
imagined pseudo-Bragg Bloch wave (blue waves in Figure 3) may be coherent in 
the unit cell but must then be incoherent with the geometric, principal-plane, 
hierarchic lattice that describes the higher order icosahedra. The pseudo interfe-
rence is destructive. To construct interference, the interfering sine wave must be 
stretched by the inverse of the metric. This makes the quasi-Bloch wave com-
mensurate and approximately harmonic with the principal planes. The interfe-
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rence is accompanied by a small (10.6%) change in scattering angle, away from 
the Bragg condition i.e. smaller than would occur in crystals having equivalent 
interplanar spacing. The result is the quasi-Bragg angle θ ’  to be used below in 
the quasi-Bragg law. Before we reach for this conclusion, we must explain the 
origin for the metric that was calculated in the QSFs, and that is critically needed to 
find the function ( ), , , 0sf n d cθ =’ ’ ’  for the quasi-Bragg diffraction. The strong 
explanation is principally numerical, and will be described in the next section. 

Meanwhile, it is obvious in Figure 3, that whereas long range order is evident 
from the diffraction of quasicrystals, it is not true that there is no translational 
symmetry: the quasi-Bloch wave is invariant in all translations maτ . There is 
additional symmetry because the hierarchic model is also centrosymmetric. No-
tice the extraordinary feature: the quasi-Bloch wave symmetry is both long range 
and local at each intercept in Figure 3(b). 

 

 
Figure 3. (a) Red Quasi-Bloch wave invariant under translation maτ  compared with blue pseu-
do-Bragg Bloch wave that is incommensurate with the structure below in d. (b) Geometric series 
that mark locations of principal plane intercepts in the unit cell and cluster as below. (c) Same trac-
es as (a), but translated to demonstrate local and long range invariance of the quasi-Bloch wave, and 
approximate coherence with structure. (d), Atomic planes in the semi-cluster that cross the [100] 
axis, including principal planes: u for the unit cell; c for the cluster. Where the pseudo-Bragg Bloch 
wave is incoherent. 

4. Irrational Metric Function 

Column 7 in Table 1 lists the geometric series, base τ . Corresponding values 
are shown in col.9. They are irrational excepting the first. The exact Fibonacci 
equivalents are shown in cols 2 - 5. They can be rationalized by replacing the ir-
rational number t  by the fraction 3/2. For harmony, the fraction should be  
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Table 1. The bold type in column 7 shows the geometric series that correctly indexes the observed diffraction pattern. Corres-
ponding irrational values are shown in col. 9 and the common Fibonacci sequence (cols 2 - 5), which sums a rational part and an 
irrational part. By substituting the rational fraction 3/2 for irrational τ in col.5, the rational series in col.10 is derived. QSFs calcu-
lated for this imaginary structure are Bragg-like with 1sc = . This fact confirms the supposition that the metric, calculated in the 
quasi-Bragg QSFs, is due to the irrational part of col.9 (i.e. completely absent in Bragg diffraction). Subtract it from col.9 and 
harmonize the residue by dividing col. 11/col. 12 (corresponding to harmonics in Figure 3). Derive the metric in the final col. 14. 
This value is identical to the metric simulated universally in QSFs. N.B. ( ) ( ) ( )11, 0,1 0,1m

m m mF F Fτ τ τ+= = + ; where 0m > ; ratios 

( ) ( )1 0,1 0,1m mF F+  oscillate about τ; contrasting ( ) ( )1 1, 1,m mF Fτ τ τ+ = , as in the diffraction data.  

   
Fibonacci series 

 
Geometric  

series 
Irrational 

values 
Rational 
Approx. 

Irr.-Rat. 
residue 

Commensurate 
divisor 

Residue/ 
divisor 

Metric 

      
1mτ −        sc  

m  mF  
 1mF +  τ  

    
3 2a b+  

 1/ mF +  3 2τ∆ = −  ( )1 1+ ∆  

              

              

   
0 τ  

 
0τ  = 1 1 0 0 

  
1 0 

 
1 τ  = τ  = 1.618034... 1.5 0.11803 1 0.118034 0.894427 

2 1 + 1 τ  = 2τ  = 2.618034… 2.5 0.11803 1 0.118034 0.894427 

3 1 + 2 τ  = 3τ  = 4.236068… 4 0.23607 2 0.118034 0.894427 

4 2 + 3 τ  = 4τ  = 6.854102 6.5 0.3541 3 0.118034 0.894427 

5 3 + 5 τ  = 5τ  = 11.09017 10.5 0.59017 5 0.118034 0.894427 

6 5 + 8 τ  = 6τ  = 17.944272 17 0.94427 8 0.118034 0.894427 

7 8 + 13 τ  = 7τ  = 29.034443 27.5 1.53444 13 0.118034 0.894427 

8 13 + 21 τ  = 8τ  = 46.978715 44.5 2.47872 21 0.1180341 0.894427 

9 21 + 34 τ  = 9τ  = 76.013159 72 4.01316 34 0.1180341 0.894427 

10 34 + 55 τ  = 10τ  = 122.99188 116.5 6.49188 55 0.1180341 0.894427 

11 55 + 89 τ  = 11τ  = 199.00504 188.5 10.505 89 0.1180341 0.894427 

12 89 + 144 τ  = 12τ  = 321.99691 305 16.9969 144 0.1180341 0.894427 

 
integral or half integral. QSF calculations show it is half integral. The rational 
approximation to the geometric series indices is listed in col. 10. Calculation of 
the QSFs for this imaginary series is Bragg-like with 1sc = . This demonstrates 
the fact that the metric is an expression of the irrational part of the geometric 
sequence in col. 7. To derive the metric, subtract the rational part from the irrational 
sequence (col. 7 - col. 10) to give the residue in column 11. Notice that this is a 
growing number down the sequence, and that it can be harmonized by the integers 

( )1 0,1mF +  in col. 12, i.e. the Fibonacci sequence 1 0,1,1, 2,3,5,mF + =  , with the 
argument representing the first two terms. The re-normalization corresponds to 
the increasing number of periods between intercepts illustrated in Figure 3. 
Division of the irrational residue by this sequential harmonization leaves the 
constant, irrational number. When this is represented as an increment on the 

1sc =  at the Bragg condition, and then inverted, we derive, from the irrational 
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indices, the analytic metric which is exactly the same as was discovered, by the 
perfectly independent numerical method of QSF simulations on the QC. The 
exact and identical values make the probability for error infinitesimally small 
and practically impossible. 

The result is summarized in Figure 4. The “metric function” is the inverse of 
the metric and is equal to: 

 

 
Figure 4. The metric function is derived by subtraction of the rational part from the irra-
tional index ( ) 2 31, 1, , , ,mF τ τ τ τ= 

 (see Table 1). After division by a commensurating 

harmonic number, ( )1 0,1 0,1,1,2,3,5,8,11,mF + =  , (also Fibonacci, see Figure 3), the 
metric expresses computational “breathing” of the QC axes that are necessary for cohe-
rence. This condition was obtained by scanning sc  to find the maximum QSF. The me-
tric function is the inverse of the metric that is simulated universally in QSFs. The first six 
terms are evaluated as examples. The wave expands when the metric contracts the axes. 

 

4

1

21 11
0.894

m
m

s m

F
c F

τ +

+

−
= + =                    (7) 

To illustrate, the first six terms are shown in the figure: the metric is exactly 
derived from the irrational part of the index, the part that is completely absent in 
the Bragg formula. 

The metric may be derived in several ways, one is as follows: An index mτ  is 
separated into rational and irrational parts while τ  is separated into the ra-
tional semi-integral 3/2 and an irrational residue 3 2τ∆ = −  (Table 1): 

1

1 1 1

2 1 1

4 1

2
2

2  

m
m m

m m m m

m m m

m m

F F
F F F F
F F F
F F

τ τ+

+ + +

+ + +

+ +

= + ⋅

= + + + ⋅∆

= + + ⋅∆

= + ⋅∆

                 (8) 

Since, by general properties of the Fibonacci sequence: 

4 3 2

2 1 2

2 1

2 2 2
2 2 2

2

m m m

m m m

m m

F F F
F F F
F F

+ + +

+ + +

+ +

= +

= + +

= +

                 (9) 
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Equation (8) is thereby systematically confirmed from Table 1 and Figure 4, 
and rearranged: 

4

1

2m
m

m

F
F

τ +

+

−
∆ =                        (10) 

So that the metric function: 

1 11
0.894sc

= + ∆ =                       (11) 

in complete agreement with the QSF simulations where 1 1.1180sc = , and 
3 2 0.1180τ∆ = − = . This irrational part (Table 1, col. 11), can be written  

( )1 1, 3 2mF τ+ − ∆ , consistent with Equation (8). 
The metric can be derived in further ways: notice, for example, that if τ  is 

supposed to vary, then 1sc →  as 0τ → , i.e. at the Bragg condition. Generally 
however, the metric commensurates and harmonizes the diffracted sine wave 
onto a geometric grid [2] [14], as is simulated in the QSFs. 

A summary of the structural result is shown in Figure 5. Notice, in particular, 
that the lattice parameter for the QC that was measured a long time ago on an 
assumption of Bragg diffraction [20] [21], is now corrected for the metric and 
index under the quasi-Bragg law: 0.205 nmsa cτ= ⋅ ⋅ . Within errors, a  is 
equal to both the known diameter of Al and to the edge width of the unit cell 
(Figure 6). To understand this, consider the edge of the unit cell. Twelve Al 
atoms are closely packed around the central Mn atom. The edge width of the 
unit cell is the sum of the radii of two Al atoms [5] [14] [15]. The experimental 
value of a is a necessary consistency test for any model that has been proposed, 
and the test is only possible with a systematic and complete theory of the unique 
diffraction. There is a further fact beyond the strong evidence from imaging and  

 

 
Figure 5. Comparison of Bragg parameters in crystals with quasi-Bragg parameters in 
quasicrystals. Notice especially the corrections (col. 2, row 5) to the lattice parameter a , 
derived from the earlier, false assumption of Bragg diffraction. 
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Figure 6. Cross-section of icosahedral unit cell showing central Mn atom touching outer 
Al atoms centered on corners of the golden rectangle. The measured lattice parameter, 

0.296 nma = , equals the width of the golden rectangle and the diameter of Al. The dense 
unit cell has 15 identical cross-sections between the 30 edges on the Platonic solid. 
Alongside the imaging of hierarchies and theory of diffraction, the measurement verifies 
the structure. 

 
diffraction, namely that all diatomic, icosahedral QCs have atomic diameter ra-
tios: ( )1 22

solute solvent 1 1D D τ= + − , as indeed do Mn AlD D  in the figure. The fact 
is consistent with high local density as the structural driving force. 

The true measurement of the lattice parameter, with the correction given by 
the metric and index under the quasi-Bragg law (Figure 5), verifies the structure 
and diffraction of the QC. 

5. Welcome Hierarchic Physics 

The quasicrystal has inter-related icosahedral symmetry with diffraction in geo-
metric series: an incident X-ray or electron beam scatters off the hierarchic lat-
tice into geometric space. The metric, that is measured and experimentally veri-
fied, is now completely understood. This is unique and novel in QCs. Quasi-
crystallographers have, for 38 years refused to accept this fact, though some, like 
Senechal have acknowledged shortcomings. For example, a sub-editor of Acta 
Crystallographica wrote that you don’t measure the lattice parameter, “You just 
have to choose ‘ hd ’”, the interplanar spacing [[5] p. 82]. This is a category error: 
mathematicians choose their axioms; physicists falsify them [22] [23]. He went 
on to write, “Bragg’s equation cannot be applied if we do not know how to han-
dle the term hd ”. He doesn’t “know” since he “chooses” a  in  

( )2, ,hkld a m h k l= ⋅  falsely and inaccurately (without metric); while Bragg’s 
law never applies. His is first rank, mainstream, quasi-physics. As we have 
shown, the dimensions that mathematicians invent are multiplied without ne-
cessity; it is ironic that the metric function supplies the new dimensionality 
that they sought. Whatever, they do not review papers objectively when their 
own writings and readings are made irrelevant. The formal and informal logic 
that has guided science for two millenia are observed by neglect, and this is 
evident in published reviews. Other mathematical theories are equally quasi 
[23] [24], as Feynman famously observed, “No one understands quantum me-
chanics”. But obviously, whatever is not understood is not physics. 
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6. Conclusion 

The quasi-Bragg law is a new law in physics. Now that the structure and diffrac-
tion are clear for anybody to see and understand, we should turn our attention 
to outlying problems. These include quasicrystalloids in which planar five-fold, 
six-fold and eight-fold quasicrystal symmetries link to regular linear symmetries 
on planar normals. The icosahedral unit cell may share edges in various ways, 
and metrics are likely dependent on them individually. Another class of prob-
lems is defects, especially in rapidly quenched material. Some anomalous micro-
structures have been recorded, by convergent beam diffraction for example [21], 
so these, along with grain boundaries [14], might give important information 
about hierarchic crystal growth. Supposing that the dense unit cell nucleates in 
the melt before solidification, it is not obvious how clusters, superclusters and 
higher orders grow and agglomerate during solidification. It may become neces-
sary to discover methods that can be used on samples that are more bulky than 
thin foils observed in typical transmission electron microscopy. Hierarchic crys-
tals present ever more interesting phenomena, where mature and complete un-
derstanding now graduates them as a new field in physics. 
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