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Abstract 
The work illustrates the impossibility of decreasing entropy in a strictly ran-
dom thermodynamic process in a non-isolated system using the example of 
heating a planet by solar radiation flux without and taking into account its 
rotation around its own axis. That is, the second law of thermodynamics 
formulated for isolated systems continues to govern such systems. We have 
shown that in order to achieve a stationary state at lower values of tempera-
ture and entropy far from thermodynamic equilibrium at a maximum of 
temperature and entropy, it is necessary to have regular factors of nonran-
dom nature, one of which in this example is the rotation of the planet around 
its own axis. This means that the reason for the appearance of ordered struc-
tured objects in non-isolated thermodynamic systems is not the random 
process itself, but the action of dynamic control mechanisms, such as periodic 
external influences, nonlinear elements with positive feedback, catalysts for 
chemical reactions, etc. We present the plots with dependences of tempera-
ture and entropy versus time in non-isolated systems with purely random 
processes and in the presence of a control factor of non-random na-
ture-rotation. 
 

Keywords 
Random Process, Non-Isolated Systems, Entropy, Ordered Structures,  
Regular Factors of Non-Random Nature 

 

1. Introduction 

When studying the problem of origin of ordered structures: elementary particles, 
nuclei of atoms, crystals, biomolecules, cells, ..., basically one model is consi-
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dered: their occurrence in a random process [1] [2] [3]. With this 
“self-organization” the disorder should decrease. This means that entropy as a 
measure of disorder in a thermodynamic process should decrease. But the 
second law of thermodynamics prohibits a decrease in entropy in random 
processes in isolated systems. Therefore, our certain hopes are associated with 
the openness of real systems allowing the presence of ingoing and outgoing 
flows of heat (closed systems), heat and particles (open systems) that do not fall 
under action of the second law. It is believed that there it is possible, in principle, 
to reduce entropy due to its “removal” by the outgoing flows, and, therefore, the 
creation of conditions for the appearance of ordered structures in a random 
process. 

We consider the well-known “entropy pump” model which describes the 
process of decreasing entropy in the Earth’s ecosphere. In this model, a change 
in the entropy S with a speed dS/dt occurs in a non-isolated system in the course 
of a stationary process, when the ingoing ordered low-entropy heat flow Ps at 
solar temperature Ts is compared in equilibrium with the outgoing flow P = Ps. 
The latter is already more randomized (highly entropic) and having a lower 
temperature T < Ts. In this case, the rate of change in the entropy of the system 
becomes negative [4]:  

d 1 1 0
d s

s

S P
t T T

 
= − < 

 
                         (1) 

There are two comments regarding formula (1). Firstly, concerning a statio-
nary process in a homogeneous system, which in this example is a planet (neg-
lecting the atmosphere) heated by the solar radiation flux Ps, when two temper-
atures arise, Ts and T < Ts. Since temperature is a function of the state, then in an 
equilibrium thermodynamic state the system can have only one temperature 
equal to the temperature of the ingoing heat flow Ts. 

Secondly, the entropy S itself is also a function of the state, therefore, in equi-
librium state it must also be constant, that is, its rate of change dS/dt must be 
zero. 

Let’s see how we can obtain formula (1), and what it means in the classical 
thermodynamics of quasistatic systems, i.e. those in which a local thermody-
namic equilibrium can be established in a non-equilibrium process in a small 
neighborhood of each point. 

The simplest model was used (Figure 1), which we will describe in detail be-
low. As a result of solving her system of differential equations, the following re-
sults were obtained: 
- Taken with the opposite sign, formula (1) describes in fact the usually neg-

lected production of entropy at the input to the system at the boundary of a 
body and the environment during thermalization of the ingoing heat flow Ps 
and its randomization during interaction between the photons belonging to 
the ingoing solar radiation and atoms of the crystalline lattice at the surface 
of the system (the planet’s soil, in this example); 
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Figure 1. A non-isolated thermodynamic system with an input point outside the body. 
Thermalization of the ingoing heat flow at the system boundary. 

 
- Taking into account this production of entropy, despite its removal by the 

outgoing heat flow during the heating of the planet, the entropy of this 
non-isolated system does not decrease. That is, the second law of thermody-
namics remains valid for non-isolated homogeneous systems, if all the 
processes occurring in it are random; 

- At ( ) max
d, , 0,
ds
St T T S t S
t ∞→ ∞ → → → ; 

that is, a new asymptotic equilibrium state of the system is achieved at the 
maximum temperature T = Ts and the entropy S = S∞ max. There is no entropy 
pump here. 

But a paradox arises: in fact, however, real planets without a significant at-
mosphere (such as Mercury, Mars, and Pluto) really have two temperatures: Ts is 
the total radiation temperature of ingoing solar radiation and T∞ < Ts is the sta-
tionary temperature of the planet surface layer heated by solar heat. Therefore, 
they are not described by this thermodynamic model. 

It is clear, what is the reason for this difference. In the considered illustrative 
example, the influence of the planet’s rotation around its axis on the temperature 
and entropy balance is not taken into account. Therefore, we have a periodic 
change of day and night, at which heating, simultaneous emission of heat by the 
body and an increase in entropy occur on the day side of the planet, while on its 
night side the planet only radiates heat without generating entropy. 

This leads to the fact that the stationary state is achieved by a non-isolated 
system at lower values of temperature and entropy, far from the thermodynamic 
maximum. 

We took into account this rotation (in the general case, a periodic pulsed heat 
flow from the heater (Figure 2)) and we have obtained the expected result: rota-
tion of the planet around its axis decreases the stationary temperature of its sur-
face and entropy. 

The calculation of the day and night asymptotic temperature values Td∞ and 
Tn∞ for the planets mentioned above showed good agreement with the experi-
mental data (see Table 1). 
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Table 1. Calculation of the Day and Night temperatures for the three planets. 

Planet Mercury Mars Pluto 

Distance from the Sun, million km (a.u.) 57 (0.39) 230 (1.5) 6000 (40) 

Solar constant, W⁄m2 4200 590 1 

Rotation period, Earth days 58.6 1.03 6.39 

Total radiation temperature due to solar radiation, K 630 320 63 

Daily experimental temperature Td∞, K 500 - 700 200 - 300 40 

Daily calculated temperature Td∞, K 630 270 50 

Night experimental temperature Tn∞, K 100 150 - 250 - 

Night calculated temperature Tn∞, K 150 260 50 

 

 
Figure 2. The periodic heat flow Ps(t) as the regular control factor. 

 
Thus, in addition to the conclusion that entropy still does not decrease in a 

non-isolated system with purely random processes, which means that no 
self-organization phenomena are possible in purely random processes, one more 
result is obtained: the entropy of a stationary non-isolated system can become 
less than a thermodynamic maximum only under the influence of regular factors 
of a non-random dynamic nature (in this example, pulsed semi-periodic heat 
transfer, starting from t = 0). 

Hence the following conclusion is possible: the reason for the decrease in dis-
order and the appearance of structured objects is not the random process itself, 
but the action of not random ordering mechanisms, moreover of external origin: 
periodic external influences, such as nuclear or chemical reactions, nonlinear 
dynamic mechanisms with positive feedback, etc. 

This result is consistent with the Prigogine hypothesis about the existence of 
control parameters [1] [3]. We only note according to the result, that these pa-
rameters can be of a regular nature, and their nature needs to be investigated. 

For example, the considered mechanism of periodic interruption of the in-
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going heat flow is provided by the rotation of the planets during the gravitational 
interaction of bodies in the universe. 

2. Thermodynamic Model without Rotation 

In Figure 1, a low-entropic heat flow Ps with a total radiation temperature Ts 
falls on the boundary of a non-isolated system and becomes randomized when 
interacting with the surface of a body (planet). Other dissipative processes 
(thermal conductivity, diffusion, viscosity ...) are neglected.  

This heat flow begins to heat the body from the initial temperature T0 to T(t). 
When heated, the body begins to radiate a return heat flow into an external en-
vironment with increasing power P(t) until a new equilibrium state with the en-
tropy S(T) is reached, which, like the body temperature T(t), will be calculated 
from the following balance of entropy [5] [6]:  

( )

dd d d d d
d d d d d d

1 d
d

1 d 1
d d

inpext int out int

s s s

s s

v

SS S S S S
t t t t t t

P tP P P U A
T T T T T t

T Ac M
T t T t

δ

δ

 
= + = − + 

 
    +

= − + − =   
   

= +

               (2) 

Here Sext is the entropy transferred by heat flows: ingoing, Sinp, with speed s

s

P
T

, 

and outgoing, Sout, with speed ( )P T
T

; Sint is the entropy produced inside the 

system during thermalization of the ingoing heat flow at a speed equal to the in-

crement s s

s

P P
T T

 
− 

 
; dU is the differential of internal energy, cv is the heat capacity 

of a body with a heated mass M; δA is a work performed by the body in the 
process of thermalization of the ingoing heat flow. 

For simplicity, we assume that all heat flows are radiated by a completely 
black body: 

4
s sP Tσ= Π ,                           (3) 

4P Tσ= Π ,                           (4) 

where Π -surface area of the heated body, σ-Stefan-Boltzmann constant. 
From relations (2)-(4), it follows: 

( )3 3d 1 d
d d

ext
s v

S TT T c M
t T t

σ= Π − = ,               (5) 

d 1 1 1
d d

int
s

s

S AP
t T T T t

δ 
= − = 

 
,                    (6) 

( )4 4d
d s
S T T
t T

σΠ
= − .                       (7) 

From (5) we obtain the equation for ( )T t : 
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3 3
1 dd

v s

Tt
c M T T T
σΠ

=
−

                       (8) 

and from (7), substituting into it the time differential dt from (8), we obtain the 
equation for ( )S T : 

( )
4 4

2 3 3
d d .s

v
s

T TS c M T
T T T

−
=

−
                    (9) 

For convenience, we introduce dimensionless quantities (with a tilde) 

d d ,
2

t tτ
=   

d d ,sT T T=                           (10) 

d d .vS c M S=   

Substituting (10) into (8) and (9), we finally obtain the differential equations for 
( )T t   and ( )TS   in the dimensionless form: 

3
1 dd ,

1
Tt

T T
α =

−





 

                        (11) 

4

2 3
1 1d d ,

1
T T

T T
S −
=

−





 

                        (12) 

where the dimensionless constant is  

3

2 s
v

T
c M
στα Π

= .                        (13) 

3. Non-Isolated System without Rotation 

Integrating Equation (11), Equation (12) with the initial conditions:  

( )0 0 0 0, ,t t T T S tS== =   

                       (14) 

and omitting hereinafter all tildes for dimensionless temperatures T(t) and en-
tropy increment: 

( ) ( ) ( )0 0S t S t S t∆ = −                       (15) 

we get the following solutions:  

( ) ( ) ( )( )0

1
33 3

01 1 e t tT t T α −− −−= − − ,                  (16) 

( )
2

0
2

0 0 0

1 1 1 1 2 2 1 2 1ln 2 arctg arctg
2 1 3 3 3

T T T TS T
T T T T

  + + + + ∆ = + − − −     + +    
.(17) 

Equation (11), Equation (13) and their solutions (16), (17) are valid within the 
framework of the classical nonrelativistic thermodynamics for any non-isolated 
homogeneous systems in which thermodynamic random processes occur. But in 
the capacity of an illustrative example explaining the meaning of the quantities 
introduced in the model, we consider heating a planet of mass M with specific 
heat capacity of the heated layer cv with surface area Π  by solar radiation with 
a heat flow Ps and with a total radiation temperature at the input to the system Ts, 
which is then reradiated by the planet into the surrounding vacuum by the heat 
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flow P(T) at a changing temperature T(t) until a new equilibrium state is reached 
at t → ∞. 

From the solutions (16), (17) it directly follows that both the temperature T(t) 
and the entropy S(T(t)) are monotonically increasing functions which depend on 
time t, reaching their equilibrium values T∞ and S∞ in the asymptotics t → ∞ cor-
responding to the thermodynamic maximum (Figure 3, Figure 4, curves at ω = 0). 
 

 
Figure 3. The dependence of the dimensionless body (planet) temperature T(t, T0) of a 
non-isolated thermodynamic system in the absence of rotation (ω = 0) and in the pres-
ence of rotation (ω ≠ 0) (periodic heat flow at the input) on the day and night sides. 
 

 
Figure 4. The entropy increment ∆S of a non-isolated system in a random process (u = 0, 
there is no rotation as a control factor) and increments of entropy on the day and night 
sides of the planet relative to its initial value S0(T0) in the presence of a control factor of 
non-random nature (planet rotation around its axis, ω ≠ 0). ∆S∞ max is the dimensionless 
thermodynamic maximum of the entropy increment in a random process without con-
trolling factors of non-random nature; δSd ∞ and δSn ∞ are the asymptotic stationary incre-
ments of entropy on the day and night sides of the planet, taking into account its rotation. 
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Thus, the second law of thermodynamics continues to govern at least for the 
considered class of non-isolated systems and random processes in them. This 
situation is shown in the graphs T(t) and ∆S(t) in Figure 3, Figure 4. The 
asymptotic values of temperature and entropy are shown at t → ∞, in a state of 
new thermodynamic equilibrium:  

( ) 1,T t T∞→ =  

( ) ( ) ( )2
0 0

0

0

1 11 ln3 ln 1 2 1
2

2 1 2arctg 0.
33 3

S T S T T
T

T

∞

  
∆ → ∆ = − + + + −    

π + − − > 
 

       (18) 

4. Accounting for Body Rotation Being a Regular Factor of  
Non-Random Nature 

Before you begin to format your It is possible to lower the entropy of the body to 
values less than its thermodynamic maximum by introducing a regular factor 
into the system, for example, periodically interrupting the ingoing heat flow 

( ) ( )s sP t P t τ= +  in the considered example, taking into account the rotation of 
the planet around its axis (Figure 2, τ is the planet’s day length (day + night)). 

5. The Night Side of the Planet 

On the day side, Equation (11), Equation (12) and their solutions (16), (17) re-
main valid. There is no ingoing heat flow on the night side, therefore,  

d d0, 0, 0, 0,
d d d

inp int
s

S S AP
t t t

δ
= = = =                   (19) 

whence it follows from (2) (dimensional record): 

( ) 3d d d 1 d .
d d d d

ext out
v

P TS S S TT c M
t t t T T t

σ= = − = − = −Π =          (20) 

The dimensionless equations follow from (20): 

4
dd Tt
T

α− = ,                          (21) 

dd TS
T

=                             22) 

And their solutions: 

( ) ( )( )
1

3 33 ,T t t t Tα
−−

∗ ∗= − +                     (23) 

( ) ( ) ln ,TS S T S T
T∗ ∗
∗

∆ = − =                     (24) 

where T∗  and S∗  are the temperature and entropy at the beginning of the 
night at t t∗= . 
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6. The Decrease in Entropy When a Periodic Factor of  
Non-Random Nature Is in Effect 

Consider the temperatures Td and Tn and the entropies Sd and Sn at the ends of 
the day and night sections (Figure 3, Figure 4, lower curves, the initial value T0 
is given): 

Day: 2 2 1, 0,1,2,n t n n≤ ≤ + =      

( )( )
1

3 3 3
2 1 21 ,1 ed n n nT T α −− −

+ = + −                    (25) 

2 1 2 1 2

2
2 1 2 1

2
2 2 12 2

2 1 2

11 1 1ln 2
2 1

2 1 2 12 arctg arctg .
3 3 3

d n d n n n

d n d n

n n d nn n n n

d n n n

S S S

T T
T TT T

T T

+ +

+ +

+

+

∆ = −

  + +
= + −   + +  

+ +  
− −   

         (26) 

Night: 2 1 2 2n t n+ ≤ ≤ +      

( )
1

3 3
2 2 2 13 ,n n d nT Tα

−−
+ += +                      (27) 

2 2
2 2 2 2 2 1

2 1

ln .n n
n n n n d n

d n

T
S S S

T
+

+ + +
+

∆ = − =                (28) 

In formulas (26)-(28), the first n means “night”, and the second 0,1,2,n∈   
means integers. 

2 1 2 1 0 2 2 1 0;d n d n n n d nS S S S S Sδ + + += − = + ∆ −  

2 2 2 2 0 2 1 2 2 0.n n n n d n n nS S S S S Sδ + + + += − = + ∆ −  

Their dependence on time is shown in Figure 4. 
At n → ∞, a rotating planet changes to its new stationary state at constant day 

and night asymptotic temperatures dT ∞ , nT ∞  and entropies dSδ ∞ , nSδ ∞ : 
1

3 3

3
3 e1 ,
1 edT

α

α

α
−−

∞ −

 
= + − 

                     (29) 

1
3

3
31 ,

1 enT α

α −

∞ −
 = + − 

                     (30) 

2

2

11 1 1ln 2
2 1

2 1 2 12 arctg arctg
3 3 3

0,

d d
d

n dn n

d n

T T
S

T TT T

T T

∞ ∞
∞

∞ ∞∞ ∞

∞ ∞

  + +
∆ = + −   + +  

+ +  
− −   

>

            (31) 

ln 0.n
n

d

T
S

T
∞

∞
∞

∆ = <                      (32) 

Their graphs are presented in Figure 3, Figure 4. Two important results fol-
low from these data: 
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- The increments of temperature and entropy on the day side are always great-
er than the decreases in temperature and entropy on the night side; the in-
crement of entropy for a period, that is, for one revolution, always grows; 

- At t → ∞ (n → ∞), the stationary asymptotic temperature and entropy incre-
ments, dT ∞ , nT ∞  and dSδ ∞ , nSδ ∞  are less than their maximum equili-
brium values in a purely random process. 

In principle, if to extend the night state in time (pause when the body heats up) 
and reduce the daytime state in time, we can achieve a decrease in temperature, 
and therefore, entropy, according to the third law of thermodynamics (Nernst 
theorem [5]), down to zero. But we will not do this in this work, this is a separate 
task that requires complicating the model by taking into account the dependence 
of the heat capacity of the body on temperature and fulfilling the condition: at 

0t → , ( )lim 0vc T = . The results will not be affected by such a complication 
obtained in this model. 

Using formulas (29), (30), we can calculate the value of the day and night 
asymptotic temperatures for three planets: Mercury, Mars, and Pluto, calculating 
the parameter α (13) for them from the known experimental values: the planet’s 
revolution period τ, the total radiation temperature due to solar radiation Ts, 
heat capacity cv, density of matter on the surface of the planet ρ, and the depth of 
daily heating h [7]: 

3

2
s

v

T
c h
στα

ρ
=                            (33) 

The following values were selected as average: heat capacity 1000 Joule/kg K, 
soil density 5000 kg /m3, depth of daily heating of the planet’s surface 1 m. 

The results are presented in Table 1. It can be seen from it that the theoretical 
dimensional values of Td∞, Tn∞ are in good agreement with their experimentally 
obtained values [7].  

The asymptotic temperature (t → ∞) of Mercury on the day side Td∞ is equal 
to the total radiation temperature due to solar radiation Ts. This is due to the fact 
that the day of Mercury is long enough; it manages to come into a state of ther-
mal equilibrium with radiation. And during the night, it manages to cool noti-
ceably: the temperature difference on the day and night sides is 480 K. 

The days of Mars are relatively short. Therefore, the temperature difference is 
not so significant. The shorter the revolution period τ, the smaller the difference 
in the dimensional temperatures Td∞ and Tn∞. In this regard, the difference in 
day and night temperatures in Mars is small and is equal to 10 K. 

The length of the day in Pluto is several times longer than that of Mars, but 
the total radiation temperature due to solar radiation is much less due to the 
great remoteness of Pluto from the Sun. Because of this, its temperature practi-
cally does not change during its day. 

7. Discussion of Results 

In the world around, everything is ordered and expedient. Why so? Indeed, there 
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are always random collisions in it of the particles forming it, knocking out indi-
vidual atoms from the ordered structures. If we didn’t take any action that would 
return randomly detached atoms to their place, then the world would, according 
to the second law, surely collapse, and turn into chaos or cosmic dust in a finite 
time. 

However, this does not happen. This means that there are guarding and res-
toring forces in nature, always returning “fallen atoms” to their place, i.e. ensur-
ing the stability of the existence of each object: an elementary particle, the nuc-
leus of an atom, cell, planet, star, ... the universe as a whole. 

What are these forces doing? What does the “existence” of an object mean? 
When it’s possible? Can forces of random, thermodynamic origin do this? Most 
likely, they cannot, and for a very simple reason. Because these forces (thermal 
conductivity, viscosity, diffusion, etc.) are rough, many micro particles always 
fall into their coverage area. But “building” and “restoring” forces need the abil-
ity to act locally; they influence on each particle separately in order to either 
build an ordered structured object in conditions of random collisions, or to 
recreate an object that deforms under random collisions. Otherwise, an attempt 
to rearrange, say, one micro particle, would entail the collective movement of 
many other micro particles that fell into the zone of action of thermodynamic 
forces. 

8. Conclusions 

The main result that can follow from this simple thermodynamic model of 
non-isolated systems: the cause of a decrease in entropy as a measure of disorder 
in such systems, which makes it possible for the phenomenon of “self-organization” 
to occur (the appearance of such structures as, say, Benard cells, the Belou-
sov-Zhabotinsky reaction [8] [9] [10], etc.) is not the random process itself of 
entropy removal by the outgoing heat flow in non-isolated systems. As shown in 
this paper, it actually leads to the increase in entropy and to achieve a thermo-
dynamic maximum in temperature and entropy in equilibrium state, as it takes 
in isolated systems. 

An “entropy pump”, which was regarded in some studies on synergetics as 
acting due to purely random processes of exporting entropy from a non-isolated 
system, does not work if we take into account the increase in entropy of the in-
going heat flow when it is thermalized at the input during the scattering of pho-
tons on the crystal lattice of the body (planet) surface. 

The reason for the decrease in entropy can be regular factors of non-random 
nature (for example, periodic interruption of the ingoing heat flow), which can 
ensure that the temperature and entropy achieved in the new stationary state the 
values below the thermodynamic maximum. 
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Abstract 
Usually it is demanded that the metric and its 1st derivatives have to match at 
the boundary of two adjacent regions which are solutions to Einstein’s field 
equation. We propose a new linking condition concerning gravitational mod-
els based on surfaces which could be embedded into a higher dimensional flat 
space. We probe this condition for the Schwarzschild interior and exterior 
solution. 
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1. Introduction 

The question of how spaces with different geometrical structures can be adapted 
to each other takes up a lot of space in gravity theory. Stellar objects are de-
scribed by interior solutions of Einstein’s field equations, their gravitational 
fields by exterior solutions. The two solutions have to be adjusted at the surface 
of the stellar object. The constituent quantities of the two geometries must 
merge smoothly into one another. Numerous authors have dealt with the prob-
lem of junction conditions in recent years. 

O’Brien and Synge [1] examined boundary conditions and jump conditions 
on surfaces where quantities and their derivatives can be discontinuous. To be 
consistent, they required the metrics and their 1st and 2nd derivatives to match at 
the boundary of two regions. Cocke [2] considered a non-static infinite cylinder 
that he cut out of a Friedman universe. The cylinder was surrounded by a gravi-
tational field. For the linking condition for both regions, he relied on the metric 
and its 1st derivatives, which he treated as the 1st and 2nd fundamental forms. 
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Israel [3] [4] basically relied on the 2nd fundamental forms of a 3-surface. He 
discussed the physical discontinuities and mismatching of coordinates. He was 
mainly concerned with expanding spherical shells and their linking condition to 
the surrounding empty space. Bonnor [5] and Faulkes found a class of interior 
solutions that match an exterior solution with a moving boundary. As a linking 
condition, they used the matching of the metric and its 1st derivatives. For the 
interior solution, they used the interior Schwarzschild solution in isotropic 
coordinates. Lanczos [6] [7] considered in connection with the de Sitter cosmos 
two-dimensional distributed singularities in which the metrics remain finite and 
constant but take a jump with respect to the normals. He interpreted this as a 
surface distribution of matter. In another paper, he delved into the problem in 
more detail and replied to a criticism from Sen. He dealt in detail with the ques-
tion to what extent the 1st derivatives of the metric must coincide at the boun-
dary of two regions. Abraham [8] examined the discontinuities using the Gauss 
and Codazzi equations and builds on the generalized expressions of the 
O’Brien-Synge relations. The problem of matching two regions is also significant 
in cosmology. Galaxies and clusters are thought to be embedded into an FRW 
universe with homogeneous mass distribution. At the boundaries of such va-
cuoles, linking conditions must be adhered. We cite the paper of Gilbert [9] as a 
representative of this topic. Leibowitz [10] investigates junction conditions in 
going over to admissible coordinates in the case of comoving coordinates. He 
claims that the Oppenheimer-Snyder solutions are correctly matched. At-
tempted modifications are shown to be incorrect. Lichnerowicz [11] investigated 
junction conditions which can match up to the 3rd derivative of the functions at 
the boundary. Sen [12] described the discontinuities on a surface that is covered 
with matter. The examination was carried out independent of coordinate sys-
tems. Taub [13] faced the existence of 3-dimensional hyper surfaces in spacetime 
across which there may be discontinuities in the stress-energy-momentum ten-
sor and the metric and their derivatives. Kumar [14] examined spherical shells in 
an empty universe. The 1st derivatives of the metric are discontinuous at the 
boundaries. The stress-energy-momentum tensor is defined with δ -functions. 
Coburn [15] determined discontinuity relations for a charged incompressible 
fluid with conservation laws and the 1st law of thermodynamics, and using shock 
waves. Edelen [16] obtained a dynamical theory of discontinuity surfaces and the 
associated jump strengths of both physical and geometrical quantities. It forms 
the basis for a general analysis of galactic structures. Huber [17] considered ad-
jacent regions with different structures. He deformed the metrics of these re-
gions in such a way that the linking conditions are satisfied at the boundary sur-
face of these two regions. McVittie [18] studied collapsing models in a more 
general way and tried linking conditions as well. Dautcourt [19] [20] dealt with 
the jumps of the stress-energy-momentum tensor and considered layers on sur-
faces moving with the velocity of light. Papapetrou [21] and Treder investigated 
discontinuities on hypersurfaces and the associated problem of shock waves. 
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Hayward [22] discussed regions with boundary surfaces at which the normal 
unit vector changes discontinuously. The validity of the second linking condi-
tion was surveyed by Nariai and Tomita [23] [24] [25] for the collapsing Op-
penheimer-Snyder model [26]. Although the metric of the interior OS solution 
matches the exterior OS solution—the Schwarzschild solution in comoving 
coordinates—the 1st derivatives of the metrics do not match at the boundary. 
Nariai and Tomita found a new exterior solution for the OS model, which fulfills 
the second linking condition for the OS interior and is free of singularity. Mitra 
[27] found that the two Schwarzschild solutions do not comply with the 2nd 
linking condition. He proposed a new interior solution that meets both linking 
conditions at the boundary to the exterior solution. 

Thus, the methods of the Nariai, Tomita, and Mitra to solve the linking prob-
lem were quite different. We want to go a third way and replace the condition 
that the 1st derivatives of the metrics have to match with another that is quite 
plausible and that connects the interior and exterior Schwarzschild solutions. 

In Sec. 2, we present the Schwarzschild geometry in the light of Flamm’s [28] 
original paper. We focus on the radii of curvature of the normal and inclined 
slices of the surfaces on which the Schwarzschild geometry is based. The metrics 
have the signature 4. The time-like arc element is defined by ( )4dx i c dt= . The 
tag “g” indicates the value of a quantity at the boundary of the surfaces. In Sec. 3, 
we show that the 1st derivatives of the metrics of the Schwarzschild models do 
not match, and we replace them by the postulate that the surfaces representing 
the interior and exterior Schwarzschild solutions have to have common tangents 
at the boundary surface. 

2. The Schwarzschild Geometry 

The new linking condition which we have introduced has a limited area of ap-
plication. It can only be applied to models that can be explained geometrically, 
i.e., models which have an embedding. We require that  

I) the metrics match at the boundary. 
II) the tangents (cutting tangents) of the embedded surfaces coincide. 
We inspect this procedure facing the interior and exterior Schwarzschild solu-

tions. Both solutions can be embedded into a 5-dimensional flat space, whereby 
a 6th variable is necessary for the exterior solution. The space-like part of the in-
terior solution is represented by a spherical cap, the exterior part by Flamm’s 
paraboloid. The two regions have to be matched. 

Using quasi-polar coordinates, the standard form of the exterior Schwarz-
schild metric is formed as follows: 

2 2 2 2 2 2 2 21 2d d d sin d 1 d21

Ms r r r tM r
r

ϑ ϑ ϕ  = + + − − 
 −

.     (2.1) 

Here r is the radial coordinate. The space-like part of the metric is the line ele-
ment on Flamm’s paraboloid. The parabolic intersection curve of this surface, 
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i.e., the Schwarzschild parabola is given by 

 ( )2 8 2R M r M= − .                        (2.2) 

R is the coordinate of the extra dimension in the 5-dimensional embedding 
space normal to r. Flamm has given a detailed geometrical explanation. His 
proposed geometrical properties are shown in Figure 1. 

Differentiating (2.2) and substituting for R, we obtain the ascent of the 
Schwarzschild parabola 

 

2
d 4 2 2tan , sin , cos 1
d 21

M
R M M Mr
r R r rM

r

η η η= = = = = −
−

,  (2.3) 

with the angle η  as the angle of ascent of the Schwarzschild parabola. 
A straight line normal to Flamm’s paraboloid is cutting the coordinate R at 

the point P. The distance from P to the parabola is R  and the inclination η  is 
the same as the angle of ascent of the parabola. From Figure 1, one can derive 

 sinr η= R .                          (2.4) 

The radius of curvature of the Schwarzschild parabola can be calculated using 
elementary methods and (2.4) 

32 22 2
2 sin

r r rr
M M

ρ
η

= = = = R . 

 

 
Figure 1. Flamm’s explanation of the parabolic properties. 
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Finally, we find the fundamental relations 

 2 , 3ρ ρ= + =R R R .                     (2.5) 

3R  is the distance between the point P, the “pole” of the parabola and the base 
point of the curvature vector of the parabola, lying on the evolute of the 
Schwarzschild parabola, i.e., on Neil’s parabola. With the insight of the factors 2 
and 3, we have made a significant contribution to understand the interior 
Schwarzschild solution, as we will see later. 

With the help of (2.3) the Schwarzschild metric can be written as 

 2 2 2 2 2 2 2 2 2
2

1d d d sin d cos d
cos

s r r r tϑ ϑ ϕ η
η

= + + − .         (2.6) 

Further we put for the proper time 

 d cos d cos di T i t iη ρ η ψ= = .                  (2.7) 

Here, iψ  is an imaginary angle and cosρ η  are the radii of a family of (open) 
pseudo circles (hyperbolae of constant curvature) lying in the 0 ' 4 ',x R x = 
-planes of the flat embedding space. 4 'x  is an imaginary coordinate. A simple 
calculation shows that 

1 d d
cos

r ρ η
η

= − . 

Thus, we are able to re-write the Schwarzschild line element as 

 2d d d ,i k
i ks i kρ ρ η η= = ,                   (2.8) 

exhibiting all the curvatures of the slices of the surface described by the 
Schwarzschild metric. The curvature radii of the slices and the associated angles 
are 

 

3

1 2 3 4

1 2 3 4

2 , , sin , cos

, , , .

r r r
M

i

ρ ρ ρ ρ ϑ ρ ρ η

η η η ϑ η ϕ η ψ

= = = = =

= = = =

        (2.9) 

Tangents can be calculated on the intersection curves with these curvatures. 
The line element of the interior Schwarzschild solution was given by Flamm 

as 

22 2 2 2 2 2 2 2 2 2 21d d sin d sin sin d 3cos cos d
4 gs tη η ϑ η ϑ ϕ η η = + + − − R R R . (2.10) 

The space-like part of the metric is the metric of a hypersphere with the radius 
.const=R  and the polar angle η . But only a part of that hypersphere is used. 

A spherical cap with the aperture angle gη  is cut off from the hypersphere 
and placed on the Schwarzschild parabola from below. The intersection curves 
of the spherical cap and the Schwarzschild parabola at the boundary must have 
common tangents (cutting tangents). We will write about this later. Unfortu-
nately, Flamm’s form of the interior metric is rarely found in literature. In the 
time-like part of the metric, the trigonometric functions are replaced by expres-
sions with the radial variable r, by substituting sin rη = R . This avoids to un-
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derstand the geometry. 
Differentiating sinr η= R , one finds 

1d d
cos

rη
η

=R . 

Writing for the coordinate time using (2.5), one obtains 

 d d 2 dgi t i iρ ψ ψ= = R ,                  (2.11) 

where gρ  is the curvature radius of the Schwarzschild parabola at the boundary 
surface. Finally, we have the equation for the metric of the interior Schwarzschild 
solution 

 
22 2 2 2 2 2 2 2

2

2

1d d d sin d 3 cos cos d
1

gs r r r i
r

ϑ ϑ ϕ η η ψ = + + + − 
−

R R

R

. (2.12) 

Here, we have met the magical factors 2 and 3 as explained in (2.5). The 
proper time of the interior Schwarzschild model is described by two concentric 
pseudo-circles with the radii 3 cos gηR  and cosηR . This circle is lying in the 

0 ' 4 ',x x   -plane of the flat 5-dimensional embedding space1. 
We realize that the Schwarzschild interior solution is soldered to the exterior 

solution, because it contains elements of the exterior solution, i.e., gρ  the cur-
vature radius of the Schwarzschild parabola at the boundary. 

3. The Linking Conditions 

We turn to the discussion of the linking conditions. Evidently, the 1st linking 
condition for the Schwarzschild solutions is satisfied. Their metrics coincide at 
the boundary. Considering the interior solution using (2.12) and putting gη η= , 
one obtains  

 1 d , 2 cos d cos d
cos g g g

g

r i iη ψ ρ η ψ
η

=R ,             (3.1) 

i.e., the corresponding expressions of the exterior metric (2.7) at the boundary 
surface. 

It was Mitra [27], who showed that the 2nd linking condition cannot be applied 
to the Schwarzschild solutions. The first derivatives of the metrical coefficients 
do not match. The radial part of the line elements (2.6) and (2.12) for both solu-
tions is 

2
2

1 d
cos

r
η

. 

Differentiating the metrical factor, we get 

11 |1 |12 3|1

1 2sin
cos cos

g ηη
η η

 
= = 
 

. 

Here, all the indices are coordinate indices. Now one has to calculate |1η  for 
both models. From 

 

 

1More details one can find in our monographs [29] [30]. 
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1 1d d , d d
cos cos

r rη ρ η
η η

= = −R  

one has 

|1 |1

1 1,
cos cos

η η
η ρ η

= = −
R

. 

Thus, recalling 2ρ = R , one obtains the relations 

 11|1 11|14 4 4
2sin 2sin sin,
cos cos cos

g gη η η
η ρ η η

= = − = −
R R

.         (3.2) 

Evidently, these relations are also valid at the boundary surface. However, they 
differ by the factor −2, whereas the factor 2 is typically for the Schwarzschild 
geometry. Thus, the commonly accepted 2nd linking condition of O’Brien and 
Synge is not satisfied for the Schwarzschild geometry and has lost its legitimacy. 

For the derivatives of the 44g  one obtains for the interior solution 

( )

( )

( )

2
44|1 |1

|1

1 3cos cos
4
1 3cos cos sin
2
1 13cos cos sin
2 cos

g

g

g

g η η

η η ηη

η η η
η

= −

= −

= −
R

 

and at the boundary 

44|1
1 sin gg η=
R

. 

For the exterior solution one has 

 ( ) |1
2

44|1 |1

1 1cos 2cos sin 2cos sin sin
cos

g η η ηη η η η
ρ η

= = − = − = −
R

, (3.3)  

and at the boundary 

44|1
1 sin gg η= −
R

. 

The difference in the signs can be explained with the fact that the curvature vec-
tors R  and ρ  have opposite directions. Robson [31] also recognizes that the 
1st derivatives of the metric of the Schwarzschild models do not match at the 
boundary surface and he tries to force the match using a coordinate transforma-
tion. However, he drops this condition and agrees with the other authors to de-
mand the coincidence of the 2nd fundamental forms. 

In earlier papers we repeatedly mentioned that interior and exterior solutions 
should have common tangents at the boundary surface. We believed that this 
was a commonly accepted criterion for matching solutions. However, a careful 
study of the literature has shown that this requirement is not in use. In contrast, 
general validity is ascribed to the O’Brien-Synge method. Now we make up the 
proof that our requirement II provides functional results for the Schwarzschild 
geometry. 
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To calculate the tangents to the Flamm’s paraboloid, it is sufficient to face the 
equation of the Schwarzschild parabola (2.2). We already have calculated the as-
cent of the Schwarzschild parabola with (2.3), i.e., 

 d tan
d
R
r

η= ,                          (3.4) 

which is equally valid at the boundary surface. 
For the interior solution we have to calculate the ascent of the circle 

2 2 2 2 2 d, ,
d
R rr R R r
r R

+ = = ± − = ±R R . 

with sin , cosr Rη η= =R R  one finally obtains 

d tan
d
R
r

η= . 

Here, the sign is chosen to be “+” because the spherical cap is adapted to the 
Schwarzschild parabola from below. We recognize that the interior and the exte-
rior surfaces have a common tangent (cutting tangent) at the boundary surface. 
But this is evident right from the beginning, because the curvature vectors R  
and ρ  are lying in the same straight line at the boundary surface and are nor-
mal to the cap of the sphere and the Schwarzschild parabola and thus normal to 
the tangents of the two surfaces. Accordingly, the tangents have to coincide. We 
could have done without the calculation. 

Lastly, we investigate the time-like parts of the models. Taking a glance at the 
interior metric (2.12), we find that the flow of time is characterized by two con-
centric pseudo circles with the radii 3 cos gηR  and cosηR  founding a pseu-
do-ring sector. It is parameterized in the 5-dimensional flat space by 

0 '

4 '

3 cos cos cos cos

3 cos sin cos sin
g

g

x i i

x i i

η ψ η ψ

η ψ η ψ

= −

= −

R R

R R
. 

Since both circles have the same ascents, it is sufficient to calculate the ascent 
of one circle, i.e., for a specific slice .constη =  

 

2 20 ' 4 ' 2 2

0 ' 4 ' 0 '

4 ' 0 '

cos
d dtan , tan .
d d '

x x
x x xi i i th
x x t

η

ψ ψ ψ

+ =

= − = − = − =

R
         (3.5) 

For the exterior solution, one has 
0 '

4 '

cos cos
cos sin

x i
x i

ρ η ψ

ρ η ψ

=

=
 

and the equation of the pseudo circle for a specific slice cos .constρ η =  is 

 

2 20 ' 4 ' 2 2

0 ' 4 ' 0 '

4 ' 0 '

cos
d dtan , tan
d d '

x x
x x xi i i th
x x t

ρ η

ψ ψ ψ

+ =

= − = − = − =
.         (3.6) 

The result is also valid at the boundary surface. Thus, one gets common tan-
gents. 
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Once more we note that the last calculation is superfluous since the expres-
sions for the radii of the two interior pseudo circles reduce for gη η=  to 

2 cos cosg g gη ρ η=R . 

The pseudo circles of the interior and exterior solutions coincide at the boun-
dary surface and have the same tangents. 

4. Conclusions 

We showed that the interior Schwarzschild solution and the exterior Schwarz-
schild solution have common tangents at the boundary surface. We made this 
clear by calculating the ascents of the tangents of the two Schwarzschild solu-
tions. Thus, the postulation that the tangents of surfaces representing gravita-
tional models coincide at the boundary surface can serve as a linking condition 
and can replace the O’Brien-Synge condition, which does not apply to the 
Schwarzschild models. 

Furthermore, it is quite likely that our method will also be applicable to the 
Reissner-Nordström model and to all models of the Kerr family. 
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Abstract 
Two problems in solid state physics and superconductivity are addressed by 
applications of dispersion dynamics. The first is the Hall effect. The dynamics 
of charges that yield positive Hall coefficients in material having no mobile 
positive charges have always been problematic The effect requires both elec-
tric and magnetic response, but magnetic deflection is only possible in mobile 
charges. In high temperature superconductors, these charges must be elec-
trons. Contrary to Newton’s second law, their acceleration is reversed in 
crystal fields that dictate negative dispersion. This is evident in room temper-
ature measurements, but a second problem arises in supercurrents at low 
temperatures. The charge dynamics in material having zero internal electric 
field because of zero resistivity; and zero magnetic field because of the Meiss-
ner-Ochsenfeld diamagnetism; while the supercurrents themselves have 
properties of zero net momentum; zero spin; and sometimes, zero charge; are 
so far from having been resolved that they may never have been addressed. 
Again, dispersion dynamics are developed to provide solutions given by re-
duction of the superconducting wave packet. The reduction is here physically 
analyzed, though it is usually treated as a quantized unobservable. 
 

Keywords 
Reduction, Wave Packet, Dispersion Dynamics, Special Relativity,  
Propagation, Transverse Plane, Functions of Relativistic Free Particles, 
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1. Introduction 

Dispersion dynamics grows immediately out of Special relativity by the joint in-
troduction of Planck’s law and the de Broglie hypothesis. After first order diffe-
rentiation of the standard formulae 2 2 2 2 4

oE p c m c= +  (where E represents 
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energy, p momentum, c the speed of light, and mo rest mass) and the wave 
equivalent 2 2 2 2 4 2

ok c m cω = +   (where ω represents angular frequency, k wave 
vector, and   the reduced Planck constant) [1]:  

2d
d g pv v c

k k
ω ω

⋅ = ⋅ =                        (1) 

i.e. the product of phase velocity vp (angular frequency/wave vector) with group 
velocity vg (the first derivative d dkω ) is equal to the square of the speed of 
light. Alternative normalization gives 1g pv v′ ′⋅ = , where g gv v c′ =  and 

p pv v c′ = . The group velocity is the speed of the particle in special relativity; the 
phase velocity is faster than light, and is measured either as the inverse of the 
group velocity or as the ratio of energy to momentum1. The phase velocity is 
singular in the rest frame: pv → ∞  when 0k → . Massless particles in vacuo 
have p gv v= . More generally, ( )1 22 21p ov m k= + , in units 1c = = ; and 

( )1 22 2
g ov k k m k ω= +   when ok m , and om ω .  
Previously we have explored implications for Equation (1) in many fields in-

cluding wave packets [2]; antiparticles in force fields [3]; electromagnetic inte-
ractions in wave groups [4]; the stable wave packet in quantum mechanics [5]; 
and in uncertainty [6] that is further developed below; voids in the Hall effect [7] 
and excitons in high temperature superconductors; many-body-gravitational 
solutions for galactic rotational velocities [8] that obviate dark matter and dark 
energy; magnetic radius in intrinsic spin that is equal to the Compton wave-
length [9], etc. These applications spring clean old cobwebs and provide many 
cases of improved clarity for the way forward. Now we turn our attention to the 
reduction of the wave packet which is implicit in all calculations that involve 
transitions between time-independent wave functions, and which is particularly 
implicit in superconductivity.  

Mathematicians choose their axioms; physicists falsify them. Typically, we in-
vestigate a new problem with simplicity, expecting complexity to later resolve 
oversimplification. As an early example, Newton believed light is corpuscular, 
moving in straight lines, where the complexity of wave-particle duality, came to 
dominate the subsequent legacy of 19th and 20th Century physics. The corres-
ponding theoretical postulate of point particles2, however convenient for limited 
purposes, poses anomalies for the real world of physics. For example, the elec-
tron may be regarded variously as a propagating wave in the electron micro-
scope; or as an atomic wave orbital; or as an intrinsic magnetic current loop 
[9]; or having electrostatic radius. Each of these has dimensions over widely 
different orders of magnitude [10]. In particle physics, further dimensions oc-
cur in meson and hadron particles, and in their constituent quarks and inte-
racting bosons.  

Even at the relatively large scale of the atom, simplification is employed in 

 

 

1The group and phase velocities supposedly combine to produce Dirac’s “jitter” [Dirac, P.A.M., The 
Principles of Quantum Mechanics (1958) 4th Edition, Oxford] without purportedly offending the 
requirement for infinite energy in his electron particle, that he claims to have velocity c. 
2Dirac supposed point particles apparently because the wave packet was, to him, unstable [ibid.]. 

https://doi.org/10.4236/jmp.2020.113023


A. J. Bourdillon 
 

 

DOI: 10.4236/jmp.2020.113023 367 Journal of Modern Physics 
 

time independent, wave functional solutions, where time is re-introduced 
through perturbations. The wave function then becomes a probability amplitude 
for locating an extreme point particle. This feature becomes more mysterious 
when it is reduced to reality during quantum measurement. Mystery and physics 
are antithetical. In particular, suppose a particle, say a photon, is emitted by an 
atom near point A so that it may contemporaneously arrive near B or C with 
appropriate probabilities on the same wave front. Two anomalous possibilities 
occur: on the one hand ask, “Can the particle be absorbed at both B and C by 
breaking energy conservation and doubling energy”; or on the other, “If absorp-
tion occurs at B, how does information arrive at C—without breaking the group 
velocity, v, constraints in special relativity (v ≤ c, the speed of light)—in order to 
prevent a second absorption and to conserve energy?” A new solution for the 
reduction of the wave packet is available to Dispersion Dynamics [1] where the 
wave phase and particle group in the duality are treated specifically, having var-
ious properties that were previously ignored in standard quantum theory. 

In the following discussion we suppose an objective reality in our mathemati-
cal framework that is not limited by Bohr’s usage of phenomena [11]: “In con-
trast to his view that the notion of phenomenon irrevocably includes the specif-
ics of the conditions of experimental observation, Einstein held that one should 
seek for a deeper-lying theoretical framework which permits the description of 
phenomena independently of these conditions”3. 

Before proceeding to a treatment of reduction, it will be necessary to clarify 
the notion of uncertainty in all its variations through multiple dimensions. The 
noteworthy example in superconductivity requires prior treatment of the Hall 
effect. In particular, high temperature superconductors, besides being ionic, have 
critical temperatures Tc that are typically an order of magnitude greater than 
classical, metallic, low temperature superconductors. Above respective critical 
temperatures T > Tc, the former group displays positive Hall coefficients, RH > 0; 
the latter negative. The Hall voltage is generated in two stages: by a transient ac-
celeration of electrons, across an applied magnetic field; in which magnetic def-
lection in the Lorentz force builds a charge potential in the steady state. The 
consequent field is normal to the two applied fields and produces a correspond-
ing Hall voltage. When charge carriers are positive ions the Hall coefficient, RH > 
0; typically, negative charges yield RH < 0. In high temperature superconductors, 
the charge carriers produce RH > 0, though the only positive charges are statio-

 

 

3Pais [4] wrote that “It was [Einstein’s] almost solitary conviction that quantum mechanics is logi-
cally consistent, but that it is an incomplete manifestation of an underlying theory in which an un-
derlying objective reality is possible.” Actually, in his EPR paper [Einstein, A., Podolsky, B. and Ro-
sen, N., Phys.Rev. 47 777-780 (19350] Einstein held that Bohr’s theory is incomplete. The latter had 
claimed that all that can be known about an electron is in its wave function, particularly with regard 
to momentum and position. This seems an unlikely theory since Gödel’s mathematical theorems on 
completeness and consistency in axiomatic systems [Gödel, K., Monatshefte für Mathematik und 
Physik 38 173-198 doi: 10.1007/BF01700692]. Popper was another realist in common with Einstein 
[Popper, K.R., Quantum theory and the schism in physics, Ed.Bartley W.W. III, (1982) Hutchinson]. 
This footnote does not contribute to the debate so much as outline background for arguments given 
in the text. 
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nary ions. These charges are subject to negative dispersion in ionic crystal fields 
[1] [7]. The true motion is described in dispersion dynamics. 

A second and worse anomaly is the common description of superconducting 
currents. These are due to Cooper pairs of electrons that co-exist, in the super-
conducting state, with normal electrons [12]. In the superconductor not only is 
E = 0 because of zero resistance; so also is magnetic field force B = 0 because of 
the Meissner-Ochsenfeld effect (type II superconductors are slightly more com-
plicated); while the net momentum carried by a Cooper pair K = 0; and likewise 
S = 0. Moreover, in the high temperature superconductor, the excitonic net elec-
tric charge Q = 0 [1]. Yet in spite of all of these absences, a supercurrent is ob-
served. How can this be and what are the charge dynamics? Dispersion dynam-
ics is used to show how the wave packet is reduced to produce the external cur-
rent. 

2. Uncertainty  

In mathematical quantum mechanics the wave function is a probability ampli-
tude for finding a point particle that is bounded by limits given by the Heisen-
berg uncertainty principle. By contrast, classical wave mechanics contains many 
techniques for predicting wave behaviors that depend on particular circums-
tances: the image plane; or near field; or far field; whether longitudinal or trans-
verse; whether 1-dimensional; or 2-dimensional; or spherically symmetric; or cy-
lindrical etc. Physical uncertainty describes properties of wave groups [2] where 
the alternative idea of a “limit” is less specific, and less useful to experimentalists, 
than “expected uncertainty” [5]. This is peculiar to each of the model systems to 
be described. We will consider first, the direction of propagation and then the 
transverse direction. in which the longitudinal wave packet is directly used. 
Waves are bounded in various ways. Waves that are not bounded have vanishing 
amplitude. Bounding in either space or time increases uncertainty in wave vector 
or angular frequency respectively, and vice versa. 

2.1. Longitudinal  

The stable wave packet φ  is defined by mean angular frequency ω  and mean 
wave vector k , which together stabilize the packet through conservation laws in 
energy and momentum (Figure 1): 

( )
2

2exp , with
2
XA X X i kx tφ ω
σ

 
= ⋅ + = − 

 
              (2) 

where σ  is the coherence, A is the wave amplitude, and x, t are coordinates in 
space and time. We can define the uncertainty in time by the full width at height 
1/e ([3] p. 11): 

2t σ
ω

∆ =                              (3) 

and uncertainty of frequency by Fourier transform: 
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Figure 1. Stable wave packet (Equation (2)) containing envelope with group velocity vg 
(purple arrow) and real (orange) and imaginary (blue) parts of the carrier wave having 
phase velocity vp (orange arrow). The full width half maximum at 1 eφ = , 

2 2 4 2 4t xk k kσ ω ω ω= ∆ = ∆ = ∆ = ∆  is shown by the red double arrow. 

 

4 ωω
σ

∆ =                             (4) 

The product is a dual uncertainty in which σ cancels! By substituting for ω 
and using Planck’s law: 

8E t∆ ⋅ ∆ =  ,                          (5) 

and by similar operations on de Broglie’s hypothesis: 

8xp x∆ ⋅ ∆ =  .                         (6) 

Both values are more than an order of magnitude greater than Heisenberg’s 
limit, ( 2 ) (Figure 2). We shall see how they compare with uncertainty in the 
transverse plane. However, notice that limits are limitless, and valueless when 
they are too far away. In solid state theory the wave function is usually 
represented as indefinitely extended; but if extension is not a finite σ, the ampli-
tude would be quantized zero. 

2.2. Transverse 1-D in the Far Field 

Next consider diffraction in the transverse plane that is caused by a horizontal 
slit, width d. The diffracted beam intensity tends to zero when the angle away 
from axis ( )1tan dθ λ−=  where λ represents wavelength, and θ  is suffi-
ciently small. Then, using the de Broglie relationship, xp h λ=  and  

( )2 sin 2y xp p h dθ∆ = =  ([13] p.321), where h is Planck’s constant. 

2yp y h∆ ⋅ ∆ = .                            (7) 

This value is again greater than Heisenberg’s limit, here by the factor 8π. 

2.3. Transverse 1-D in the Near Field 

It is well known that in Fresnel diffraction a narrow slit pinches a transmitted  
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Figure 2. Uncertainties known in optical physics compared as multiples of Heisenberg’s 
Limit. 
 
beam in the near field, which is contrary to general effects elsewhere [13]. A 
zone in the wave field that has been used in X-ray lithography is called the Criti-
cal Condition [14] [15] [16] [17]. At this transverse plane, at a distance ~d2/(3λ) 
downstream from the slit, the beam width is ~d/3, From this it follows that 

23 3yp h d d h dλ λ∆ = ⋅ ⋅ = , and: 

~ 3yp y h∆ ⋅ ∆ .                        (8) 

The dual uncertainty is 6 times smaller than in Equation (7) and over 4 times 
larger than Heisenberg’s limit. However, at gaps away from Critical, the con-
tracted beam dimension varies rapidly and is illustrated elsewhere [13]. 

2.4. Transverse 2-D in Zone Plates 

When a circular opaque screen of diameter Δs, is placed transverse to a parallel 
beam and viewed from downstream, an illuminated spot is seen on the axis. The 
intensity of the spot is greatly amplified when the circle is divided into optical 
half zones, of dimensions such that only zones of either odd or even sequence 
transmit. This zone plate acts like a lens [13], and aerial images show how beam 
profile varies with Gap d [18]. A typical dual uncertainty when the number of 
half zones is ( ) ( )2 4FN s dλ= ∆ , is given by 2y zp y p z h∆ ⋅ ∆ = ∆ ⋅ ∆ = , i.e. 4 
times smaller than Equation (7) and 2π times greater than Heisenberg’s limit. 
The varieties of uncertainty outlined by specific instances is needed in realistic 
applications of reduction in wave packets. To understand reduction, a limit of 
uncertainty is insufficient; only the expected value will do and this will vary with 
circumstances as already shown by the examples here in Section 2. The latter two 
cases are particularly extreme, yet are both significantly greater than Heisen-
berg’s limit which is an inaccurate short cut. Moving forward, we must under-
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stand the electronic “hole” before applying uncertainty to superconductivity. 

3. The ELectronic “Hole” in Dispersion Dynamics  

The problem we address is this: how is a hole deflected in a magnetic field? This 
is supposed to occur in the Hall effect measured in a p-type semiconductor, P 
doped Si for example. The charge carrier has a positive Hall coefficient like a 
positive ion such as a proton or Li+ ion in whatever matrix. In the two step 
process, the charge is first accelerated in an electric field and then deflected in a 
crossed magnetic field. The force F on the deflection depends on the charge and 
is proportional to its velocity, vg. Including the first stage electric acceleration. 
Instantaneously: 

×gq q= +F E v B                           (9) 

Where q represents the carrier charge, now presumed electronic, negative e; E 
represents the applied Coulomb field; and B the crossed magnetic intensity. 
Since vg is parallel to E, the magnetic part Fm is normal to both E and B (Figure 
3). The velocity is produced by the electric field, and can be averaged. For the 
more common case of the n-type semiconductor: 

×ge e= − −F E v B                         (10) 

So that the acceleration a can be written approximately: 

×e e ta
m m

′
− −

E E B .                      (11) 

where t' is a kind of mean time between collisions or the inverse of the number 
of collisions per unit time (Table 1)4. 

Since the only positive charges in p-type Si, for example, are on immobile 
nuclei, it is obvious that the carriers cannot be ions; they must be electrons. To 
understand how the charges react like positive ions to produce positive Hall 
coefficients, we have to return to Einstein’s special relativity and derive the 
second derivative following Equation (1): 

2 2

2 3

d dd 1 1
d dd

g g

eff

v v k a
k p m m Fk m

ω  
= = = − = = ′ ′ 

             (12) 

where m' is the relativistic mass ( )1 22 21o gm v c− ; effective mass meff is as de-
fined in the brackets; a is acceleration in Newton’s second law of motion corres-
ponding to applied force F, such as the electric force (Equation (9)). in electricity 
and magnetism. Notice that a negative second derivative, or curvature (in p-Si, 
Al etc.), causes negative effective mass and negative acceleration under the Cou-
lomb force. By contrast, the magnetic force is normal to the velocity and applied 
magnetic intensity so that its potential is structured differently from those in 
electrostatics and gravity. The result is that in magnetism, 0δω =  and the ef-
fective mass responding to the magnetic part of the electromagnetic Lorentz 
force is conventional (see Figure 3): 

 

 

4This description has the same Hall result as previously [1] [7], but equations 10 and 11 had been 
misapplied to the magnetic field instead of the electric field. 
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Table 1. Commonly, the “hole” is supposed to operate as a positive charge. But the Hall effect in specimens where all positive 
charges are immobile can only have negatively charged carriers. These are not influenced by magnetic fields. However, following 
dispersion dynamics, (especially columns 2 and 4) the mobile electrons, as illustrated in Figure 3, are influenced by applied Cou-
lomb forces and Lorentz magnetism. These are tabulated in the double event, namely electric acceleration and magnetic deflec-
tion. 

 Charge q D± curvature meff el
zF  el

z za F m=  s 2gz at′v   m
xF  m

x xa F m=  m Hall
x xq a E⋅   

+ve ion e >0 mi eE eE/m >0 eEt'/2m eB(eEt'/2m) eB(eEt'/m2) >0 

Electron -e >0 m -eE -eE/m <0 -eEt'/2m eB(eEt'/2m) eB(eEt'/m2) <0 

Holey 
electron 

-e <0 -m -eE eE/m >0 eEt'/2m -eB(eEt'/2m) -eB(eEt'/m2) >0 

Glossary: mi ionic mass; el
za  electric acceleration; t' time between collisions: expected velocity is half this time x acceleration; gzv  mean z-component 

velocity. 

 

 
Figure 3. In the Hall effect, an applied electric field Ez is crossed with an applied magnetic 
field By. The resulting transient current is deflected and the consequential steady state 
charge causes a transverse electric field Ex. Equations (9)-(12) show how RH is positive for 
mobile ions (lower left brown arrow) for p-type “holey” electrons (lower right); but more 
generally negative for n-type electrons (upper arrow). In dispersion dynamics, the current 
density jz of p-type electrons reverses owing to negatively dispersed crystal fields. 
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These formulae describe the motion of a single electron in an electron gas; 
they should be multiplied by carrier density to find measured values. 

In summary: 
1) The Hall effect occurs in two moments: a linear Coulomb acceleration; and 
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a magnetically deflected charge. The Hall voltage results from the steady state 
deflection of charges.  

2) As for free electrons, in typical metals (e.g.Cu) the normal dispersion band 
curvature 2 2d d 0D kω+ = >  at Fermi level intercepts. RH < 0 when the carriers 
have charge -e (Equation (11)). 

3) By contrast, because all positive charges in p-Si and Al are immobile and 
since RH > 0, the charge carriers in the magnetic field must be electrons. 

4) Dispersion dynamics predicts that in crystal fields with negative dispersion 
D−, the effective mass and acceleration are negative (Equation (12)). 

5) In consequence, the velocity of electrons due to the Coulomb force Fel is 
reversed in D−, compared with D+. 

6) In further consequence, the backward velocity reverses the otherwise con-
ventional magnetic force Fm and deflection (Table 1, Figure 3). Thus in D− 
crystal field dispersion, the Hall coefficient RH > 0. 

This gives the sign of RH for “holey” electrons. Dispersion dynamics gives the 
reasons how and why those electrons behave like positive ions in the Hall effect. 
The argument is significant in high temperature superconductivity, where, be-
cause all positive charges are nuclear and immobile, the charge carriers can only 
be electrons [1] [7]. Indeed, charge pairing and reduction are common themes 
across the broad scope of bosonic wave particles in physics. 

4. Reduction of Wave Packets in Massive and Massless  
Particles 

Physically, how does it happen that a supercurrent is measured outside a super-
conductor, when its internal measurables, E, B, pair momentum K, pair spin S, 
resistivity r, etc., are all nominally zero? Reduction is mysterious when intro-
duced as a change between time-independent wave functions: by hypothesis, the 
change may be represented as instantaneous at some point in space. In reality it 
is not so: in modern physics, resonant wave packets are the typical instruments 
for the force of change, and the packet is extended in both space and time. The 
space is divided between a direction of propagation and the corresponding 
transverse plane. Each of these differentiates as in Equation (1), where the group 
propagates with properties that are distinct from its internal transverse phase. In 
massive particles the group travels slower than light; the phase faster. The phase 
velocity vp, in a particle with non-zero rest mass, is singular in the rest frame. 
Transmission of information is therefore theoretically instantaneous and New-
tonian, i.e. within the transverse spatial coherence of the wave packet.  

In massless photons travelling in vacuo, by contrast, the group and phase ve-
locities share common speed c. In fact of course, the transmission is spread over 
time that is determined by the coherence 2σ, of the wave packet. This coherence 
determines likewise the spatial transmission, consistently with the methods of 
Huygen’s wavelet construction and with the methods of Fresnel, Fraunhoferetc. 
[13]. 
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Transmission of energy or momentum by massive particles, like the electron, 
is most easily considered in the rest frame: energy and momentum are conserved 
when a wave front encounters two targets simultaneously. The transverse phase 
velocity is singular and time is Newtonian, so that energy supplied to one target 
cannot be given to the other owing to released wave amplitude. 

However, creation and annihilation of a massless particle, like the photon, is 
not so simple because c is the constant velocity for both group and phase veloci-
ties. By ignoring diffraction, the transverse spatial coherence then becomes c 
multiplied by the temporal coherence. This photon is described in Maxwell’s 
theory by two real, sinusoidal, wave functions on mutually normal planes, one 
lagging in phase by π/2. Reduction of the packet thus occurs within its spa-
tio-temporal coherence. From Equation (2), the longitudinal coherence length is 
found to be 2cσ; the coherence time 2σ/c. Through σ, the coherence values de-
pend on initial conditions for the transmitting wave packet.  

What can be understood about the transverse spatial coherence? Can a wave 
front become wider than the coherence? Does the coherence limit beam spread? 
Compare the temporal coherence from section 2.1 (2σ/c) with the transverse 
spatial coherence from Section 2.2 (tan−1(λ/d)). It is clear that when, typically 

dλ  , the ratio ( ) ~ 2c t d dλ σ λ∆ . Thus, when dσ λ> , the transverse 
spatial coherence is determined by longitudinal temporal coherence; otherwise 
wave diffraction, d/λ, determines the transverse coherence. These features are in 
principle demonstrated by comparing diffraction of light generated by a laser 
source or point source. Supercurrents are massive, so we can now consider their 
reduction in their rest frame, i.e. in Newtonian time. 

5. Super Currents 

The solution for superconductivity was given by Bardeen, Cooper and Schrieffer 
[19] [20] [21]. Electrons in metallic superconductors occupy two states, normal 
and superconducting, i.e. at temperatures below critical T < Tc, and applied 
magnetic field H < Hc. The superconducting state consists of a pair of electrons 
bound together by a lattice distortion and energy gap ΔE. This Cooper pair has 
zero net momentum K = 0; zero net spin S = 05; and electronic charge 2e. The 
wave is superconductive, with zero resistivity ρ = 0 and therefore zero internal 
electric field E = 0. Meanwhile zero internal magnetic field induction B = 0 is 
demonstrated by the Meissner-Ochsenfeld effect. This is the basic state, though 
minor complexity arises in type II superconductors where electrons propagate 
quantized magnetic flux lines, and also at normal state boundaries as in the Jo-
sephson dc and ac tunneling effects. Since the normal and superconducting 

 

 

5Even the intrinsic spin is problematic in dynamics. Spin is only measured in the presence of a mag-
netic field, so it is not obvious whether a measured magnetic moment is induced or “intrinsic” [1] 
[9]. Nor is it obvious that the electron is a point particle: it has magnetic moment with dimensions 
that include area? In particular, how can an “intrinsic spin” exist in the absence of a circulating cur-
rent? Moreover, what physical transition is involved when a spin flip occurs? In dispersion dynam-
ics, the spin is induced in non-resistive phase currents. 
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states are, by supposition, time independent, anomalies naturally arise in their 
dynamics. In high temperature superconductors, we understand the Cooper pair 
to be Wannier excitons with charge Q = 0 [1]. This is an added obstacle for 
conductivity. It suggests a real wave function that is Bosonic and commensurate 
with the lattice. How does transmission of current occur? 

Consider for contrast, the more comprehensible oscillator strength in spectral 
transitions. This is a calculation of the relative transition rate between two stable 
electronic states, initial and final, excited by an operator O: 

2

f iy O y , typi-
cally integrated over space, time, and density of states. In a dipole transition for 
example, O = er, where e represents electronic charge. Apply such a transition to 
measurement of resistivity of a superconductor by the four probe technique: at T 
< Tc and H < Hc. When a voltage is applied between two outer terminals the su-
percurrent is measured at the inner sensor terminals. This current consists of 
normal electric charges that emerge from the positive terminal of a supercon-
ductor containing no electromagnetic fields. In dispersion dynamics this feature 
is not surprising: the terminals supply energy that breaks the Cooper pairs which 
release their normal charges to metallic terminals in Newtonian time, i.e. when 
considered in the rest frame. The dynamics will be governed by the transfer of 
thermal or electrical energy to the Cooper pairs. Each pair has zero net momen-
tum, while any dynamic momentum that is transferred to the normal electrons 
at terminals, can be obtained by the pairs from the massive lattice as in X-ray 
diffraction and in the Mossbauer effect. Between the terminals, a supercurrent 
flows in absence from any internal electric or magnetic fields. 

6. Summary and Conclusion 

In dispersion dynamics, the product of the group velocity and phase velocity in a 
wave packet is equal to the square of the speed of light. In consequence, uncer-
tainty is not an arbitrary limit, but a calculated expectation that has varied effects 
in reduction. Moreover, since immobile positive ions are not deflected by the 
magnetic Lorentz force, the positive Hall coefficients that are measured in cer-
tain metals and doped semiconductors must be generated by (negatively charged) 
“holey” electrons that exist in states having peculiar dispersive dynamics. Fur-
thermore, in ionic high temperature superconductors, those electrons are sup-
posedly contained in bosonic pairs of Wannier excitons. How then do supercur-
rents flow in the absence of internal electromagnetic fields and with zero mo-
mentum, zero spin, and zero net charge? In dispersion dynamics, the flow occurs 
by the reduction of time-independent waves that are consistent with packet de-
cay, i.e. in Newtonian time between terminals. This reduction is a new solution 
for an unanswered problem. Following the analysis, the reduction is in principle 
verifiable by time-dependent measurements. Superconductivity is a physical pa-
radigm for Boson statistics, for condensation, and for related phenomena that 
occur throughout the broad scope of physic. These further applications of dis-
persion dynamics will be objects for further study. 
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Abstract 
Ultrahyperfunctions (UHF) are the generalization and extension to the com-
plex plane of Schwartz’ tempered distributions. This effort is an application 
to Einstein’s gravity (EG) of the mathematical theory of convolution of Ul-
trahyperfunctions developed by Bollini et al. [1] [2] [3] [4]. A simplified ver-
sion of these results was given in [5] and, based on them; a Quantum Field 
Theory (QFT) of EG [6] was obtained. Any kind of infinities is avoided by 
recourse to UHF. We will quantize EG by appealing to the most general 
quantization approach, the Schwinger-Feynman variational principle, which 
is more appropriate and rigorous that the popular functional integral method 
(FIM). FIM is not applicable here because our Lagrangian contains derivative 
couplings. We follow works by Suraj N. Gupta and Richard P. Feynman so as 
to undertake the construction of an EG-QFT. We explicitly use the Einstein 
Lagrangian as elaborated by Gupta [7], but choose a new constraint for the 
ensuing theory. In this way, we avoid the problem of lack of unitarity for the 
S matrix that afflicts the procedures of Gupta and Feynman. Simultaneously, 
we significantly simplify the handling of constraints, which eliminates the 
need to appeal to ghosts for guarantying unitarity of the theory. Our ap-
proach is obviously non-renormalizable. However, this inconvenience can be 
overcome by appealing to the mathematical theory developed by Bollini et al. 
[1] [2] [3] [4] [5]. Such developments were founded in the works of Alexan-
der Grothendieck [8] and in the theory of Ultradistributions of Jose Sebastiao 
e Silva [9] (also known as Ultrahyperfunctions). Based on these works, an 
edifice has been constructed along two decades that are able to quantize 
non-renormalizable Field Theories (FT). Here we specialize this mathemati-
cal theory to discuss EG-QFT. Because we are using a Gupta-Feynman in-
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spired EG Lagrangian, we are able to evade the intricacies of Yang-Mills theo-
ries. 
 

Keywords 
Quantum Field Theory, Einstein Gravity, Non-Renormalizable Theories,  
Unitarity 

 

1. Introduction 

Quantifying Einstein gravity (EG) remains an open question, a kind of su-
preme desideratum for quantum field theory (QFT). The failure of some at-
tempts in this direction is due to the fact that 1) they appeal to Rigged Hilber 
Space (RHS) with undefined metric, 2) problems of non-unitarity, and also 3) 
non-renormalizablity issues. 

Here we build up a unitary EG’s QFT in the wake of related efforts by Suraj 
N. Gupta [7]. We deviate from his work by using a different EG-constraint, 
facing then a problem similar to that posed by Quantum Electrodynamics 
(QED). In order to quantize the concomitant non-renormalizable variational 
problem we appeal to mathematics developed by Bollini et al. [1] [2] [3] [4] [5], 
based upon the theory of Ultradistributions de J. Sebastiao e Silva (JSS) [9], also 
known as Ultrahyperfunctions (UHF). Any kind of infinities is avoided by re-
course to UHF. The above cited mathematics was specifically devised to quantify 
non-renormalizable field theories. We consequently face a theory similar to 
QED, but endow with unitarity at all finite orders in power expansions in G 
(gravitation constant) of the EG Lagrangian. This was attempted without success 
first by Gupta and then by Feynman, in his Acta Physica Polonica work [10]. 

Mathematically, quantifying a non-renormalizable field theory is tantamount 
to suitably defining the product of two distributions (a product in a ring with 
zero-divisors in configuration space), an old problem in functional theory 
tackled successfully in [1] [2] [3] [4] [5]. 

Remarking that, in QFT, the problem of evaluating the product of distribu-
tions with coincident point singularities is related to the asymptotic behavior of 
loop integrals of propagators. 

In references [1] [2] [3] [4], it was demonstrated that it is possible to define a 
general convolution between the ultradistributions of JSS [9] (Ultrahyperfunc-
tions). This convolution yields another Ultrahyperfunction. Therefore, we have a 
product in a ring with zero divisors. Such a ring is the space of distributions of 
exponential type, or ultradistributions of exponential type obtained applying the 
anti-Fourier transform to the space of tempered ultradistributions or ultradi-
stributions of exponential type. 

We must clarify at this point that the ultrahyperfunctions, our present prota-
gonists, are the generalization and extension to the complex plane of the 
Schwartz tempered distributions and the distributions of exponential type. That 
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is the tempered distributions and those of exponential type are a subset of the 
ultrahyprefunctions. 

In our work we do not use counter-terms to get rid of infinities, because 
our convolutions are always finite. We do not want counter-terms, since a 
non-renormalizable theory involves an infinite number of them.  

At the same time, we conserve all extant solutions to the problem of running 
coupling constants and the renormalization group. The convolution, once obtained, 
converts configuration space into a ring with zero-divisors. In it, one has now 
defined a product between the ring-elements. Thus, any unitary-causal-Lorentz in-
variant theory quantified in such a manner becomes predictive. The distinction 
between renormalizable on non-renormalizable QFT’s becomes unnecessary 
now.  

With our convolution, that uses Laurent’s expansions (LE) in the parameter 
employed to define the LE, all finite constants of the convolutions become com-
pletely determined, eliminating arbitrary choices of finite constants. This is tan-
tamount to eliminating all finite renormalizations of the theory. The indepen-
dent term in the Laurent expansion yield the convolution value. This translates 
to configuration space the product-operation in a ring with divisors of zero. 

We have already obtained an EG-OFT in [6] by recourse to the mathematics 
elaborated in [5]. What we do here is an extended EG-QFT, using the more gen-
eral mathematical approach of [3]. 

The manuscript is organized as follows:  
• Section 2 presents preliminary materials. 
• In Section 3 we introduce the convolution of Ultrahyperfunctions, our 

present protagonists. 
• Section 4 is devoted to the QFT Lagrangian for EG. 
• In Section 5 we quantize the ensuing theory. 
• In Section 6 the graviton’s self-energy is evaluated up to second order. 
• In Section 7 we introduce axions into our picture and deal with the axions gravi-

tons interaction. 
• In Section 8 we calculate the graviton’s self-energy in the presence of axions. 
• In Section 9 we evaluate, up to second order, the axion’s self-energy. 
• Finally, in Section 10, some conclusions are drawn. 

2. Preliminary Materials 

We do not deal in this effort with the popular functional integral method (FIM). 
Instead, we appeal here to the most general quantification approach, Schwing-
er-Feynman variational principle [11], which is able to deal even with high order 
supersymmetric theories, as exemplified by [12] [13]. Such theories cannot be 
quantized with the usual Dirac-brackets technique.  

We introduce the action for a set of fields defined by  

( ) ( )
( )

( ) ( )
0

0, , , , d ,
x

A A Ax x
σ

µ
σ

σ σ φ φ ξ φ ξ ξ ξ = ∂    ∫             (2.1) 
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where ( )xσ  if a space-like surface passing through the point x. 0σ  is that 
surface at the remote past, at which all field variations vanish. The Schwing-
er-Feynman variational principle dictates that: 

“Any Hermitian infinitesimal variation δ  of the action induces a canonical 
transformation of the vector space in which the quantum system is defined, and 
the generator of this transformation is this same operator δ ”. 

Accordingly, the following equality holds: 

[ ], .A Aiδφ δ φ=                          (2.2) 

Thus, for a Poincare transformation we have  

 1 ,
2

v
va aµ µ

µ µδ = +                        (2.3) 

where the field variation is given by  

 1ˆ ˆ .
2

v
a A v Aa P a Mµ µ

µ µδφ φ φ= +                    (2.4) 

From (2.2) one gathers that  

 , .A Aiµ µφ φ ∂ =                          (2.5) 

Specifically,  

 [ ]0 0, .A Aiφ φ∂ =                         (2.6) 

This last result will be employed in quantizing EG. 

3. The Convolution of Two Lorentz Invariant Tempered  
Ultradistributions 

In [3] we have obtained a conceptually simple but rather lengthy expression for 
the convolution of two Lorentz invariant tempered ultradistributions:  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )

1 2

1 2 1 2 1 12

2
2 2 1 2 1 2

2
1 2 1 2 1 2

1 2

1 1 2 2

,

1 ln ln
8

ln ln 4 2

4 2 2
ln

2

ln ln ln ln

H

F G

i

λ

λ λ

ρ

ρ ρ ρ ρ ρ ρ ρ
ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ

Γ Γ

Λ

 
 = Θ ℑ − + Λ − − − Λ       π  



× − + Λ − − − Λ + Λ + Λ − − − − Λ  
 + Λ + Λ − − − − Λ − − − − Λ ×
 + Λ + Λ
 

+ + Λ − − Λ + Λ − − Λ      

∫ ∫

 

    

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2
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2
1 2 1 2 1 2

1 2
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4 2
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 −Λ −Λ − − − + Λ − − − + Λ ×
 − Λ −Λ  

+ + Λ − −Λ − + Λ − − −Λ      

 

https://doi.org/10.4236/jmp.2020.113024


A. Plastino, M. C. Rocca 
 

 

DOI: 10.4236/jmp.2020.113024 382 Journal of Modern Physics 
 

   
( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 2 1 2 1 2

2
1 2 1 2

4
2

4

i iρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ


π  × + Λ −Λ − − − − − −   
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+ − + Λ − − −Λ + Λ − −Λ      
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    Λ − Λ +
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

− + Λ − − − Λ + Λ − − Λ      
     Λ − Λ +
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( ) ( ) ( )

( ) ( ) ( )
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1 2 1 2

1 2 1 2 1 1 2
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ln ln
2

ln ln ln

ln ln ln d d

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

−
+ + + Λ − + − Λ

− − − + Λ + − − − Λ + − − + Λ  


− − − − Λ + + + Λ − + − Λ    


(3.1) 

This defines an ultradistribution in the variables ρ  and Λ  for 

( ) ( ) ( ) ( )1 2ρ ρ ρℑ > ℑ Λ > ℑ + ℑ  

Let B  be a vertical band contained in the complex λ -plane P . Integral 
(3.1) is an analytic function of λ  defined in the domain B . Moreover, it is 
bounded by a power of ρΛ . Then, ( ),Hλ ρ Λ  can be analytically continued 
to other parts of P . Thus, we define  

 ( ) ( ) ( )0 , 0H H iρ ρ +=                      (3.2) 

( ) ( ) ( ), 0 , 0n n

m
H i H iλ ρ ρ λ

∞
+ +

−

= ∑                  (3.3) 

As in the other cases, we define now  
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 { }( ) ( )F G Hρ ρ∗ =                       (3.4) 

as the convolution of two Lorentz invariant tempered ultradistributions. 
The Feynman propagators corresponding to a massless particle F and a mas-

sive particle G are, respectively, the following ultrahyperfunctions:  

( ) ( ) 1F ρ ρ ρ −= −Θ −ℑ    

( ) ( ) ( ) 12G mρ ρ ρ
−

= −Θ −ℑ +                   (3.5) 

where ρ  is the complex variable, such that on the real axis one has  
2 2 2 2
1 2 3 0k k k kρ = + + − . For them, the following equalities are satisfied  

( ) ( ) 1Fλ λρ ρ ρ ρ −= −Θ −ℑ    

( ) ( ) ( ) 12G m
λλρ ρ ρ ρ
−

= −Θ −ℑ +                 (3.6) 

where we have used: ( )2m
λ λρ ρ+ 

, since we have chosen m to be very small. 
On the real axis, the previously defined propagators are given by:  

( ) ( ) ( ) ( ) 10 0 0f F i F i iρ ρ ρ ρ −= + − − = −  

( ) ( ) ( ) ( ) 120 0 0g G i G i m iρ ρ ρ ρ
−

= + − − = + −         (3.7) 

These are the usual expressions for Feynman propagators. 
Consider first the convolution of two massless propagators. We use (3.6), 

since here the corresponding ultrahyperfunctions do not have singularities in the 
complex plane. We obtain from (3.1) a simplified expression for the convolu-
tion:  

 ( ) ( ) ( ) ( )
1

1 1 2 2
1 2 1 2 1 2 1 20 0 4 d d

2
h i iλ λ
λ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ

∞
− −

+
−∞

π  = − − − − − ∫∫ (3.8) 

This expression is nothing other than the usual convolution:  

 ( ) ( ) ( )1 10 0h i iλ λ
λ ρ ρ ρ− −= − ∗ −                  (3.9) 

In the same way, we obtain for massive propagators:  

 ( ) ( ) ( )1 12 20 0h m i m i
λ λ

λ ρ ρ ρ
− −

= + − ∗ − −            (3.10) 

These last two expressions are the ones we will use later to evaluate the gravi-
ton’s self-energy. 

4. The Lagrangian of Einstein’s QFT 

Our EG Lagrangian reads [7]  

 2
1 1 ,

2
v

G vg h hµα β
µ α βη

κ
= − ∂ ∂R                (4.1) 

where ( )1,1,1, 1diagµνη = − , h g gµν µν=  The second term in (4.1) fixes the 
gauge. We effect now the linear approximation  

 ,v v vhµ µ µη κφ= +                       (4.2) 

where 2κ  is the gravitation’s constant and vµφ  the graviton field. We write  
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 ,G L I= +                              (4.3) 

where  

 1 2 2 ,
4

v
L v

λ µ β µα α µβ
λ µ α µβ µα βφ φ φ φ φ φ = − ∂ ∂ − ∂ ∂ + ∂ ∂          (4.4) 

and, up to 2nd order, one has [7]:  

 1 1 ,
2 2

v
I v v v

µ λρ β λ λ ρ
µ λρ λ µβ λ µρκφ φ φ φ φ φ φ = − ∂ ∂ + ∂ ∂ − ∂ ∂  

         (4.5) 

having made use of the constraint  

 0.µ
µφ =                               (4.6) 

This constraint is required in order to satisfy gauge invariance [14] For the gra-
viton we have then  

 0,vµφ =                              (4.7) 

whose solution is  

 
( )

( ) ( ) 3
3

0 02

1 e e d ,
2 22

ik x ik xv v
v

a a
k

k k

µ µ
µ µµ µ

µφ
+

− 
= + 

  π
∫

k k
           (4.8) 

with 0k = k . 

5. Quantization of the Theory 

We need some definitions. The energy-momentum tensor reads  

 ,v
vT λ λ µ λ

ρ ρρ µ φ δ
φ

∂
= ∂ −
∂∂


                      (5.1) 

and the time-component of the four-momentum is  

 0 3
0 0 d .T x= ∫                           (5.2) 

Using (4.4) we have  

0 0 0
0 0 0

0
0

1 2 2
4

2 2 .

v j v j
v j v j

j
j

T µ µ µα µα
µ µ α µ α µ

µα µα
α µ α µ

φ φ φ φ φ φ φ φ

φ φ φ φ

= ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂

+ ∂ ∂ + ∂ ∂ 

     (5.3) 

Consequently,  

 ( ) ( ) ( ) ( ) 3
0

1 d .
4

v v
v va a a a kµ µ

µ µ
+ + = + ∫ k k k k k           (5.4) 

Appeal to (2.6) leads to  

( ) ( )0 0, v va k aµ µ  = − k k  

( ) ( )0 0, .v va k aµ µ+ +  = k k                    (5.5) 

From the last relation in (5.5) one gathers that  

 ( ) ( ) ( ) ( ) 31 , d .
2

v
va k a a a kρλ ρλ µ

µ
+ + +′ ′ =  ∫k k k k k



        (5.6) 

The solution of this integral equation is  
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 ( ) ( ) ( ), .v v va a ρλ ρ λ ρ λ
µ µ µδ δ δ δ δ+ ′ ′   = + −   k k k k            (5.7) 

As customary, the physical state ψ  of the theory is defined via the equation  

 0.µ
µφ ψ =                           (5.8) 

We use now the usual definition  

 ( ) ( ) ( )0 0 .x y T x yρλ ρλ
µν µνφ φ ∆ − =                  (5.9) 

The graviton’s propagator then turns out to be  

 ( )
( )

( )
( )

4
4 2

e d .
02

ik x y

v v
ix y k

k i

µ µ
µ

ρλ ρ λ ρ λ
µν µ µδ δ δ δ

−

∆ − = +
−π ∫         (5.10) 

As a consequence, we can write  

 ( ) ( ) ( ) ( ) ( ) 3 3
0

1 d d ,
4

v v
v va a a a k kµ µ

µ µ δ+ +′ ′ ′ ′ = + − ∫ k k k k k k k   (5.11) 

or  

 ( ) ( ) ( ) ( ) 3 3
0

1 2 d d .
4

v
va a k kµ

µ δ δ+ ′ ′ ′ ′ = + − − ∫ k k k k k k k    (5.12) 

Thus, we obtain  

 ( ) ( ) 3
0

1 d ,
2

v
va a kµ

µ
+= ∫ k k k                   (5.13) 

where we have used the fact that the product of two deltas with the same argu-
ment vanishes [1], i.e., ( ) ( ) 0δ δ′ ′− − =k k k k . This illustrates the fact that us-
ing Ultrahyperfunctions is here equivalent to adopting the normal order in the 
definition of the time-component of the four-momentum  

 ( ) ( ) ( ) ( ) 3
0

1 : : d .
4

v v
v va a a a kµ µ

µ µ
+ + = + ∫ k k k k k        (5.14) 

Now, we must insist on the fact that the physical state should satisfy not only 
Equation (5.8) but also the relation (see [7])  

 0.vµ
µφ ψ∂ =                        (5.15) 

The ensuing theory is similar to the QED-one obtained via the quantization 
approach of Gupta-Bleuler. This implies that the theory is unitary for any finite 
perturbative order. In this theory only one type of graviton emerges, 12φ , while 
in Gupta’s approach two kinds of graviton arise. Obviously, this happens for a 
non-interacting theory, as remarked by Gupta. 

Undesired Effects of NOT Using Our Constraint 

If we do NOT use the constraint (5.8), we have  

 ( ) ( ) ( ) ( ) 3
0

1 1 d ,
2 2

v v
v va a a a kµ µ

µ µ
+ + = −  ∫ k k k k k           (5.16) 

and, appealing to the Schwinger-Feynman variational principle we find  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 31 1, , d ,
2 2

v v
v va a a a a a a kµ µ

ρλ µ ρλ µ ρλ
+ + + + + ′ ′ ′   = −     ∫k k k k k k k k k (5.17) 
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whose solution is  

 ( ) ( ) ( ), .v v v va aµ ρλ µρ λ ρ µλ µ ρλη η η η η η δ+ ′ ′   = + − −  k k k k      (5.18) 

The above is the customary graviton’s quantification, that leads to a theory 
whose S matrix in not unitary [7] [10]. 

6. The Self Energy of the Graviton 

To evaluate the graviton’s self-energy (SF)c we start with the interaction Hamil-
tonian I . Note that the Lagrangian contains derivative interaction terms.  

0
0 .I

I I
µν

µν φ
φ

∂
= ∂ −
∂∂


                        (6.1) 

A typical term reads  

 ( ) ( ) ( )
1 2 3 4 1 2 3 4

1 10 0 .G k k k i k k iλ λ
α α α α α α α αρ ρ− −Σ = − ∗ −          (6.2) 

where 2 2 2 2
1 2 3 0k k k kρ = + + −  

The Fourier transform of (6.2) is  

 

( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )
( )

( )( )

( ) ( )
( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4 3 4 1 2

1 2 3 4

1 1

24 1
2 4

2

4 1
2 5

2

24 1
2

0 0

2 2
0

4 1

2 2 3
0

2 1

2 3
0

1

k k i k k i

x i

x x x x x i

x x x x x i

λ λ
α α α α

λ
λ

α α α α

λ
λ

α α α α α α α α

λ
ν

α α α α

ρ ρ

λ
η η

λ

λ λ
η η

λ

λ
λ

− −

+
− −

+
− −

+
− −

 − ∗ − 
 Γ + = − +
Γ −

Γ + Γ +
+ + +

Γ −

Γ +
− +

Γ −



   (6.3) 

where 2 2 2 2
1 2 3 0x x x x x= + + −  

Anti-transforming the above equation we have  

( ) ( )

( )
( ) ( )

( )
( )
( )

( )
( ) ( ) ( )( )

( )
( )

( )
( ) ( )( )

1 2 3 4

1 2 3 4

1 2 3 4 2 3 1 4 2 4 1 3

1 2 3 4 3 4 1 2

1 1

2

2

2
2 2

2

2

0 0

2 3
2 2

2 4 2 54 1

3
2 2 0

2 6

3 2
1

2 52 1

k k i k k i

i

i

i
k k k k

λ λ
α α α α

α α α α

λ
α α α α α α α α α α α α

α α α α α α α α

ρ ρ

λ λ
λ η η

λ λλ

λ
η η η η η η λ ρ

λ

λ λ
ν η η

λλ

− −

+

− ∗ −

  Γ + Γ +π = Γ + −  Γ + Γ +Γ −   
Γ + + + + Γ − − −Γ + 

π Γ + Γ ++ Γ + +Γ +Γ − 

 

( )
( ) (

) ( )( )

( )
( ) ( )

( )( )

1 2 3 4 1 3 2 4 1 4 2 3 3 4 1 2

2 3 1 4 2 4 1 3

1 2 3 4

2 1

22
2

2

3
2 6

2 1 0

3
2 0

1 2 6

k k k k k k k k

k k k k i

i
k k k k i

α α α α α α α α α α α α α α α α

λ
α α α α α α α α

λ
α α α α

λ
η η η η

λ

η η λ ρ

λ
λ ρ

λ λ

+

Γ +
− + + +
Γ +


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Self-Energy Evaluation for λ 0=  

We appeal now to a λ -Laurent expansion and retain there the 0λ =  inde-
pendent term [3]. Thus, we Laurent-expand (6.4) around 0λ =  and find 
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∑

   (6.5) 

The exact value of the convolution we are interested in, i.e., the left hand side of 
(5.5), is given by the independent term in the above expansion, as it is 
well-known. If the reader is not familiar with this situation, see for instance [3]. 
We then reach  
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  (6.6) 

We have to deal with 1296 diagrams of this kind. 

7. Including Axions into the Picture 

Axions are hypothetical elementary particles postulated by the Peccei-Quinn 
theory in 1977 to tackle the strong CP problem in quantum chromodynamics. If 
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they exist and have low enough mass (within a certain range), they could be of 
interest as possible components of cold dark matter [15]. We include now a 
massive scalar field (axions) interacting with the graviton. The Lagrangian be-
comes  

 2 2
2

1 1 1 .
2 2

v v
GM v vg h h h mµα β µ

µ α β µη φ φ φ
κ

 = − ∂ ∂ − ∂ ∂ + R      (7.1) 

We can now recast the Lagrangian in the fashion 
,GM L I LM IM= + + +                          (7.2) 

where  

 2 21 ,
2LM mµ

µφ φ φ = − ∂ ∂ +                      (7.3) 

so that IM  becomes the Lagrangian for the axion-graviton action  

 1 .
2IM

µν
µ νκφ φ φ= − ∂ ∂                        (7.4) 

The new term in the interaction Hamiltonian is  

 0
0 .IM

IM IMφ
φ

∂
= ∂ −
∂∂


                        (7.5) 

8. The Complete Self Energy of the Graviton 

The presence of axions generates a new contribution to the graviton’s self energy  

 ( ) ( ) ( )1 12 20 0 .GM rvs r v sk k k m i k k m iµ µ ρ ρ
− −

Σ = + − ∗ + −         (8.1) 

So as to compute it we appeal to the usual integral together with the generalized 
Feynman-parameters. After a Wick rotation we obtain  
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where 
2 2 2 2.a p x p x m= − +                        (8.3) 

After the variables-change u k px= −  we find  
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where  
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After evaluation of the pertinent integrals we arrive at  
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   (8.6) 

Self-Energy Evaluation for λ 0=  

We need again a Laurent’s expansion and face  
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  (8.7) 

Again, the exact result for our four-dimensional convolution becomes  
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We have to deal with 9 diagrams of this kind. 
Accordingly, our desired self-energy total is a combination of ( )

1 2 3 4G kα α α αΣ  
and ( )

1 2 3 4GM kα α α αΣ . 

9. Self Energy of the Axion 

Here a typical term of the self-energy is:  

( ) ( ) ( )1 12 0 0 .vr v rk k k m i iρ ρ
− −Σ = + − ∗ −                (9.1) 

In four dimensions one has  
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with the Feynman parameters used above we obtain  
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where  

 ( )2 2 2 2.a p m x p x= + −                        (9.4) 

We evaluate the integral (9.3) and find 
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Self-Energy Evaluation for λ 0=  

Once again, we Laurent-expand, this time (9.5) around 0λ = , encountering 
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      (9.6) 

The λ -independent term gives the exact convolution result we are looking for:  
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   − + − +      

     + − −     
     

        (9.7) 

10. Discussion 

We have developed above a quantum field theory (QFT) of Eintein’s gravity 
(EG), that is both unitary and finite, by appealing to the Schwinger-Feyman var-
iational principle. We emphatically avoid the functional integral method. Our 
results critically depend on the use of a rather novel constraint the we intro-
duced in defining the EG-Lagrangian. Laurent expansions were also an indis-
pensable tool for us. As sgtated, in order to quantify the theory we appealed to 
the variational principle of Schwinger-Feynman’s. This process leads to just one 
graviton type 12φ . The underlying mathematics used in this effort has been de-
veloped by Bollini et al. [1] [2] [3] [4] [5]. This mathematics is powerful enough 
so as to be able to quantize non-renormalizable field theories [1] [2] [3] [4] [5]. 
We have evaluated here in finite and exact fashion, for the first time as far as we 
know, several quantities:  
• the graviton’s self-energy in the EG-field. This requires full use of the theory 

of distributions, appealing to the possibility of creating with them a ring with 
divisors of zero.  

• the above self-energy in the added presence of a massive scalar field (axions, 
for instance). Two types of diagram ensue: the original ones of the pure EG 
field plus the ones originated by the addition of a scalar field.  
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• the axion’s self-energy.  
• Our central results revolve around Equation (6.6), Equation (8.8), and Equa-

tion (9.7), corresponding to the graviton’s self-energy, without and with the 
added presence of axions. Also, we give the axion’s self-energy.  

As a final remark, we would like to point out that our formula for convolu-
tions is a mathematical definition and not a regularization. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Bollini, C.G., Escobar, T. and Rocca, M.C. (1999) International Journal of Theoreti-

cal Physics, 38, 2315. https://doi.org/10.1023/A:1026623718239 

[2] Bollini, C.G. and Rocca, M.C. (2004) International Journal of Theoretical Physics, 
43, 1019. https://doi.org/10.1023/B:IJTP.0000048599.21501.93 

[3] Bollini, C.G. and Rocca, M.C. (2004) International Journal of Theoretical Physics, 
43, 59. https://doi.org/10.1023/B:IJTP.0000028850.35090.24 

[4] Bollini, C.G., Marchiano, P. and Rocca, M.C. (2007) International Journal of Theo-
retical Physics, 46, 3030. https://doi.org/10.1007/s10773-007-9418-y 

[5] Plastino, A. and Rocca, M.C. (2018) Journal of Physics Communications, 2, Article 
ID: 115029. https://doi.org/10.1088/2399-6528/aaf186 

[6] Plastino, A. and Rocca, M.C. (2019) Gupta-Feynman Based Quantum Field Theory 
of Einstein’s Gravity.  
https://www.researchgate.net/publication/336406184_Gupta-Feynman_based_Qua
ntum_Field_Theory_of_Einstein’s_Gravity  

[7] Gupta, S.N. (1968) Proc. Pys. Soc. A, 65, 161. 

[8] Grothendieck, A. (1955) Memoirs of the American Mathematical Society, 16.  
https://doi.org/10.1090/memo/0016 

[9] Sebastiao e Silva, J. (1958) Mathematische Annalen, 136, 38.  
https://doi.org/10.1007/BF01350287 

[10] Feynman, R.P. (1963) Acta Physica Polonica, 24, 697. 

[11] Visconti, A. (1969) Quantum Field Theory. Pergamon Press, ‎Oxford. 

[12] Delbourgo, R. and Prasad, V.B.J. (1975) Journal of Physics G: Nuclear Physics, 1, 
377. https://doi.org/10.1088/0305-4616/1/4/001 

[13] Barci, D.G., Bollini, C.G. and Rocca, M.C. (1995) Il Nuovo Cimento, 108, 797. 
https://doi.org/10.1007/BF02731021 

[14] Kleinert, H. (2016) Particles and Quantum Fields. Free Web Version.  
https://pt.b-ok2.org/book/2747268/e795bc  
https://doi.org/10.1142/9915 

[15] Peccei, R.D. (2008) The Strong CP Problem and Axions. In: Kuster, M., Raffelt, G. 
and Beltrn, B., Eds., Axions: Theory, Cosmology, and Experimental Searches, Lec-
ture Notes in Physics, Vol. 741, Springer, Heidelberg, 3-17.  
https://doi.org/10.1007/978-3-540-73518-2_1 

https://doi.org/10.4236/jmp.2020.113024
https://doi.org/10.1023/A:1026623718239
https://doi.org/10.1023/B:IJTP.0000048599.21501.93
https://doi.org/10.1023/B:IJTP.0000028850.35090.24
https://doi.org/10.1007/s10773-007-9418-y
https://doi.org/10.1088/2399-6528/aaf186
https://www.researchgate.net/publication/336406184_Gupta-Feynman_based_Quantum_Field_Theory_of_Einstein's_Gravity
https://www.researchgate.net/publication/336406184_Gupta-Feynman_based_Quantum_Field_Theory_of_Einstein's_Gravity
https://doi.org/10.1090/memo/0016
https://doi.org/10.1007/BF01350287
https://doi.org/10.1088/0305-4616/1/4/001
https://doi.org/10.1007/BF02731021
https://pt.b-ok2.org/book/2747268/e795bc
https://doi.org/10.1142/9915
https://doi.org/10.1007/978-3-540-73518-2_1


Journal of Modern Physics, 2020, 11, 395-406 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2020.113025  Mar. 16, 2020 395 Journal of Modern Physics 
 

 
 
 

How Massive Are the Superfluid Cores in the 
Crab and Vela Pulsars and Why Their 
Glitch-Events Are Accompanied with under and 
Overshootings? 

A. A. Hujeirat1, R. Samtaney2 

1IWR, Universität Heidelberg, Heidelberg, Germany  
2Applied Mathematics and Computational Science, CEMSE Division, KAUST, Thuwal, KSA 

 
 
 

Abstract 
The Crab and Vela are well-studied glitching pulsars and the data obtained so 
far should enable us to test the reliability of models of their internal struc-
tures. Very recently it was proposed that glitching pulsars are embedded in 
bimetric spacetime: their incompressible superfluid cores (SuSu-cores) are 
embedded in flat spacetime, whereas the ambient compressible and dissipa-
tive media are enclosed in Schwarzschild spacetime. In this letter we apply 
this model to the Crab and Vela pulsars and show that a newly born pulsar 
initially of 1.25M



 and an embryonic SuSu-core of 0.029M


 could evolve 
into a Crab-like pulsar after 1000 years and into a Vela-like pulsar 10,000 
years later to finally fade away as an invisible dark energy object after roughly 
10 Myr. Based thereon we infer that the Crab and the Vela pulsars should 
have SuSu-cores of 0.15M



 and 0.55M


, respectively. Furthermore, the 
under- and overshootings phenomena observed to accompany the glitch 
events of the Vela pulsar are rather a common phenomenon of glitching pul-
sars that can be well-explained within the framework of bimetric spacetime. 
 

Keywords 
Relativity: Numerical, General, Black Hole Physics, Magnetars, Neutron Stars, 
Pulsars, Superfluidity, Superconductivity, Gluons, Quarks, Quantum  
Chromodynamics (QCD) 

 

1. Observational Constraints and Methodology 

The Crab and Vela pulsars are well-known and extensively studied pulsars (see 
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[1]-[7] and the references therein). In Table 1 we summarize their basic obser-
vational data relevant for the present discussion. The SuSu-Scenario relies on 
solving the TOV equation in combination with the equations of torque balance 
between the incompressible superfluid cores, whose dynamics obey the Onsag-
er-Feymann equation, and an overlying shell of compressible and dissipative 
matter (see Sec. 2 and Eq. 10 in [8]).  

In [9] these equations were solved at the background of a bimetric space-time 
(see Figure 1). Unlike the original model [8], in which the spin-down of the Su-
Su-core is set to follow a priori given sequence of values { }n

cΩ , in the present 
work however, the SuSu-core is set to undergo an abrupt spin-down, if the dif-
ference between its Eigen rotation and that of the ambient medium surpasses a 
critical value { }n

cr∆Ω , i.e. if n n n n
c am c am cr−∆Ω = Ω −Ω ≥ ∆Ω , where “n” and “am” 

refer to the order of the elements in the relevant sequence and to the ambient 
medium, respectively. This approach is more consistent than the former, as the 
elements of n

cr∆Ω  are determined here through the rate of loss of rotational 
energy of the entire star and that these should overlap the current values ob-
served in the Crab and Vela pulsars.  

The strategy of obtaining the optimal values here relies on using a global itera-
tive solution procedure that takes the following constraints into account (see al-
so Table 1):  

1) The elements of the sequence 
n

g∆Ω 
 Ω 

 must fulfill the three conditions:  

 0 0
n

g
n→

∆Ω 
→ Ω 

, which means that the media in both the core and in the 

surrounding shell must have identical rotational frequency initially.  

 
0

94 10g g

n N Crab

−

=

∆Ω ∆Ω
= = ×

Ω Ω
 and 

1

62.33 10g g

n N Vela

−

=

∆Ω ∆Ω
= = ×

Ω Ω
, i.e. 

the elements number 0N  and ( )1 0N N  of the sequence 
n

g∆Ω 
 Ω 

 must 

be identical to the observed values of the Crab and to the Vela pulsars, re-
spectively.  

 
Table 1. A list of the main observational data of the Crab and Vela pulsars relevant for 
the present study (see [2]-[7] and the references therein). 

 Crab Vela 

Mass ( M


) 1.4 1.8 

Age (kyr) 1.24 11.3 

B (1012 G) 4.875 4.35 

( )1s−Ω  200 70 

g∆Ω Ω  4 × 10−9 2.338 × 10−6 

( )yrgt∆  1.6 2.5 
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Figure 1. A schematic description of the bimetric spacetime inside glitching pulsars: The 
incompressible superfluid core is embedded in a Minkowski spacetime whereas the am-
bient media are enclosed in Schwarzschild spacetime.  

 

 
n

g
n α∞→∞

∆Ω 
→ < ∞ Ω 

, i.e. the sequence must converge to a finite value. 

Moreover, our test calculations have shown that for Velat t ,  

0
n

g

t

 ∆Ω ∂   <  ∂ Ω  
 as otherwise the magnetic field would fail to spin-down 

the crust and therefore to surpass cr∆Ω  required for triggering a prompt 
spin-down of the core into the next lower energy state. 

Indeed, one possible sequence which fulfills the above-mentioned constraints, 
though it might not be unique, is shown in Figure 2.  

2) The initial conditions used here are ( )0 0 1440 HztΩ = Ω = =  (see [10] 
and the references therein). Here both the core and the ambient medium are set 
to initially rotate with the same frequency, i.e. ( ) 00n n

c am tΩ = Ω = = Ω . The initial 
total mass of the pulsars and that of the core are taken to be: 0cM M=



  and 
( )0 10M M t M= = =



 , respectively, where 0  and 1  are parameters whose 
values are determined through a global iteration procedure. The initial magnetic 
field strength is taken to be ( ) 130 10B t = =  Gauss. 
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Figure 2. The elements of the quantum sequence n

g∆Ω Ω  are shown as function of time 

in year units. Both the core and the ambient medium are set to rotate with the same fre-
quency 1440s−1 initially. As the pulsar cools down, n

g∆Ω Ω  starts increasing to reach 4 

× 10−9 after approximately 1000 yr, (which corresponds to the Crab phase/blue-star) and 
8.15 × 10−7 after 11,000 yr (which corresponds to Vela phase/red-star). n

g∆Ω Ω  here is 

measured in units of 200 sΩ = .  

 
3) The elements of the sequence { }n

amΩ  are obtained through the energy 
balance equation:  

 
2

2
d 1 ,
d EM

am am

B
t I

α
 

= − Ω 
                      (1) 

where amI  is the inertia of the ambient compressible dissipative medium, 
which, due to the increase of the SuSu-core, must decrease on the cosmic time 
and 44.9 10EMα −= ×  is a non-dimensional constant.  

Thus, the time-evolution of the core’s rotational frequency proceeds as follows: 
for a given n

cΩ , the ambient medium is set to decrease its frequency conti-
nuously with time through the emission magnetic dipole radiation. This implies 
that the difference c am−∆Ω  should increase with time until c am−∆Ω  has sur-
passed the critical value cr≥ ∆Ω , In this case three events are expected to occur 
promptly:  
 The rigid-body rotating core changes abruptly its rotational state from 

( )2, 1
2

n rot n n
c c cE I= Ω  into the next the quantum-mechanically permitted lower 

energy state: ( )21, 1 11
2

n rot n n
c c cE I+ + += Ω . This process is associated with ejection 

of a certain number of vortices into the boundary layer (BL) between the core 
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and the overlying dissipative medium.  
 The ejected vortices by the core are then absorbed by the differentially rotat-

ing dissipative medium and re-distributed viscously. Hence the medium in 
the BL would experience the prompt spin-up: n n n

am am gΩ →Ω + ∆Ω , where 

n
g∆Ω  is deduced from the sequence 

n
g∆Ω 

 Ω 
.  

 The radius of the core is set to increases as dictated by the Onsag-
er-feynmann equation:  

 
2d ,V N
m
π

⋅ =∫






                        (2) 

where , , , ,V m N   denote the velocity vector, the vector of line-element, the 
reduced Planck constant, mass of the superfluid particle pair and the number of 
vortices, respectively (see [11] for further details). Imposing zero-torque condition 

on the incompressible SuSu-core, i.e., ( )d 0
d cI

t
Ω = . We then obtain the follow-

ing recursive relation:  

 
( ) ( )1

1
1

n n
c c

n
n nc

n
c

S S

S S

+

+
+

Ω = Ω

 Ω
⇒ =  Ω 

                      (3) 

where ( )2n n
c cS Rπ  and n

cR  correspond to the cross-sectional area of the Su-
Su-core and to the corresponding radius, respectively. The increase in the di-
mension of the core implies that the matter in the geometrically thin boundary 
layer between the SuSu-core and the ambient medium should undergo a cros-
sover phase transition into an incompressible superfluid, whose total energy 
density saturates around the critical value 06crρ ρ≈  (see [12] and the refer-
ences therin). The growth of the core proceeds on the cosmic time scale and 
ends when the pulsar has metamorphosed entirely into a maximally compact in-
visible dark energy object and therefore becomes observationally indistinguisha-
ble from a stellar black hole.  

2. Solution Procedure & Results 

The set of equations consists of the TOV equation for modeling the compressi-
ble dissipative matter in the shell overlaying the incompressible gluon-quark su-
perfluid core, whereas the latter is set to obey the zero-torque condition and to 
dynamically evolve according to the Onsager-Feymann equation (for further 
details see Sec. 2 and Eq. 10 in [8]). 

The global iteration loop is designed here to find the optimal values of the pa-
rameters: 0 1,α α , the elements of the sequence n

cr∆Ω  and the decay rate of the 
magnetic field. These values should fulfill the initial and final conditions, the 
currently observed values of the time passages between two successive 
glitch-events gt∆  both of the Crab and the Vela pulsars, the current observed 
values of their magnetic fields masses. 
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Indeed, our intensive computations reveal that optimal fitting may be achieved 
for ( )0 0.029cM t M= ≈



, a sequence of n
g∆Ω , whose elements are shown in 

Figure 2. In Figure 3, Figure 4 the optimal values of n
cr∆Ω  and n

g∆Ω  are 
shown versus cosmic time, whereas in Figure 5 we show the time-development 
of the rotational frequencies of the core, the ambient medium and of the mag-
netic field during the first 10 to 100 years after the birth of the pulsar. The 
long-term evolution of the magnetic field and the growing mass of the core and 
of the entire object are shown in Figure 6 and Figure 7. Here the mass of the 
pulsar’s core grows with time to reach 0.15M



 after 1000 years and reaches 
0.55M



 after 11,000 years; hence reproducing the exact total masses of 1.4M


 
for the Crab and 1.8M



 for the Vela pulsars as revealed from observations. 
The relative ratio of inertia of both cores reads 3 20Crab VelaI I ≈ .  

Due to the incompressible, superfluid and supreconducting character of the 
core, the evolution of the magnetic field is solely connected to the dynamics of 
the ambient compressible and dissipative matter in the shell as well as to its di-
mensions (see [13] for further details on the physical aspects of compressibility 
of fluid flows). As the mass and dimension of the core grow with time, the sur-
rounding shell must shrink. In this case, conservation of the magnetic flux 
should strengthen the magnetic field intensity. This interplay between the loss of 
magnetic energy due to loss of rotational energy and enhancement by conserva-
tion of magnetic flux in combination with dynamo action and other mechanisms,  
 

 

Figure 3. The elements of the sequence n
cr∆Ω  versus cosmic time. Each element corres-

ponds to the critical difference between the rotational of frequency of the core and that of 
the ambient medium, beyond which the core undergoes a prompt spin-down to the next 
lower energy state.  
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Figure 4. The elements of the sequence gt∆  versus cosmic time. Each element corres-

ponds to the time passage between two successive glitch events. The actual values that 
correspond to the Crab and Vela pulsars are shown in blue and red stars. These time pas-
sages increase dramatically with time due to the decay of both magnetic field intensity 
and rotational energy.  
 

 

Figure 5. The elements of the sequences ,n n
c amΩ Ω  and n

amB  that corresponds to the ro-
tational frequencies of the core, the ambient medium and of the magnetic field during the 
first 10 years. During a passage of time between two successive glitches, the core rotates 
rigidly with a constant frequency n n

c coreΩ =Ω  (dotted line), whereas the ambient medium 
spin-down in a continuous manner (solid line). During the glitch, the core spin-down 
abruptly, triggering a prompt spin-up of the ambient medium in the boundary layer be-
tween the rigid-body rotating core and the overlying differentially rotating medium. The 
enhanced spin-up of the ambient medium in combination with the decreasing volume 
enclosing this matter gives rise to magnetic field amB  which evolves in a similar discrete 
manner (dash-dot).  
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Figure 6. The cosmic evolution of the magnetic field-B, of a newly born pulsar in units of 
1013 G. The superimposed blue and red stars correspond to the current B of the Crab and 
Vela pulsars.  
 

 
Figure 7. The mass growth of a newly born pulsar having initially 0 1.25M M=



 and an 
embryonic SuSu-core of 0.029M



. After approximately 1000 yr the pulsar recover the 
mass of the Crab ( 0 1.4M M=



) and 10,000 yr later 0 1.8M M=


 that corresponds to 
the mass of the Vela. At the end of the luminous life time, which lasts for approximately 
10 million years, the pulsar enters the dark phase with a total mass of 2.5M



, which 
corresponds to a maximally compact invisible dark energy object. The plotted mass here 
is in units of 0M .  

 
may clarify the very weak decay of magnetic field as pulsars evolve from the 
Crab to the Vela phase. Mathematically, let the magnetic energy in a shell of a 
newly born pulsar be:  

 ( )
2 2

3 3d ~ ,
8 6M c
B BE v R R= −
π∫                      (4) 
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where R  denotes the pulsar’s radius. Assuming ME  to roughly decay as the 
rotational energy EΩ , then we obtain:  

 
2 2

2 1 2
3 3 ,c

am am
c

R RB M
R R

α−
Ω

−
= Ω

−




                     (5) 

where αΩ  is constant coefficient.  
On the other hand, dynamo action in combination with magnetic flux con-

servation and other enhancement mechanisms would contribute positively to the 
magnetic field, that can, for simplicity absorbed in the term: ( )2 2

B cB R Rα+ = − . 
The coefficient Bα  is set to ensure that the magnetic field remains in the very 
sub-equipartition regime. Hence the interplay between magnetic loss and en-
hancement would yield an effective magnetic field that evolves according to:  

 
2 2

2 1 2
2 2 3 3 .B c

tot am am
c c

R RB M
R R R R
α αΩ

−
= − Ω

− −


 

              (6) 

Consequently, our model predicts that the decreasing volume of the shell en-
closing the ambient medium in combination with dynamo action in the boun-
dary layer could potentially be the mechanism that keeps the decay of magnetic 
fields in pulsars extremely weak.  

In fact our model predicts the glitch activity of a newly born pulsar, which 
evolves into a Crab phase, followed by a Vela phase and finally by an invisible 
phase, to be approximately two orders of magnitude larger than it was estimated 
by other models (see Figure 8 to be compared to [1] [5]). According to our  
 

 
Figure 8. The glitch activity of a newly born pulsar versus cosmic time. In the very early 
times, the pulsar underwent millions of glitches, though the total ejected rotational energy 
was relatively very low. These activities start to be significant as the pulsar ages and be-
come maximally effective between 100 and 60,000 years, followed by a decreasing phase, 
during which time-passages between successive glitches become increasingly longer.  
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model pulsar may undergo millions or up to billions of glitches during their lu-
minous life time with passages of time between two successive glitch events that 
range from nanoseconds in the very early time up to hundreds or even thou-
sands of years toward the end of their luminous life times (see Figure 4). The 
vast difference in the evolution of glitch activity between the two approaches 
here may be attributed to the strong non-uniformity of time-duration between 
glitch events. 

Moreover, the model also predicts the occurrence of under- and overshoot-
ings that have been observed to accompany the glitch events in the Vela pulsar 
(see [14] and the references therein). In the case of the Vela, when the core ex-
pels certain number of vortices and moves to the next lower energy state, the 
enhanced rotational energy of the matter in the BL amplifies the magnetic field 
strength. Due to the non-locality of magnetic fields1, this enhancement is com-
municated to the crust via Alfven waves, AV , whereas the excess of rotational 
energy is communicated via shear viscosity with an effective propagational ve-
locity visV . As these two speeds are generally different with A visV V>  in most 
cases, the time-delay in the arrival of communication enforces the crust to react 
differently. Specifically, the arrival of magnetic enhancement prior to the rota-
tional one leaves the crust subject to an enhanced magnetic braking and there-
fore to a stronger reduction of its rotational frequency (see the top panel of Fig-
ure 9).  

Indeed, in the case of Vela, the propagational speed of Alfven waves may be 
esitmated to be of order 8~ 10 cm sAV B ρ ≈ . Hence the enhanced MFs in the 
BL would be communicate to the crust within  

( ) 210 sMF A c AR V R R Vδτ −= ∆ = − ≈ . On the other hand, supplying the crust 
with rotational energy would proceed on the viscous time scale, which is esti-
mated to be: ( )2

vis visRδτ ν= ∆  (see [15] and the references therein). Under 
normal astrophysical conditions we may safely assume that 2 1vis AV V α=   
and that the length scale, vis , over which viscous interaction occurs, vis  is 
much smaller than the width of the shell R∆ , or equevalently 2vis Rα= ∆ , with 

2 1α = . Therefore ( ) ( )2
1 2 1 210 1sVis AR Vδτ α α α α−= ∆ ≈ ≈ , where we reasonably 

set 1 2 0.1α α= = . Consequently, the observed undershooting most likely results 
due to the time delay of the arrival of communications via magnetic fields and 
viscous torque, which amounts to ( )1 21 100vis MFδτ δτ α α= ≈ . On the other 
hand, the observed overshooting can be attributed to the case in which the visc-
ous front transporting rotational energy from the BL outwards has reached the 
crust. As MF visδτ δτ , at the end of visδτ , the magnetic field intensity in the 
BL should have returned to values comparable or even lower than prior to the 
glitch event. 

Moreover, the observed order in which undershooting followed by over-
shooting is an indication for a time-delay in the arrival of communication re-
sulting from A visV V>  and from the significant difference of the locations of the 
BL and the crust. This order is expected to reverse if A visV V< . 

 

 

*I.e. In the absence of magnetic monopoles. 
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Figure 9. Under and overshooting of amΩ  shortly before and immediately after a glitch 
event (top Figure). At a given instant of time, t, the rotational frequency of the matter in 
the BL, amΩ , differs from that of the crust crustΩ . Due to their different locations (see 
lower panel), the response of the crust to the dynamical changes of matter in the BL de-
pends strongly on the speed of communication via magnetic fields (e.g. Alfven waves) 
and shear viscosity, which, under most astrophysical conditions, are considered to be dif-
ferent.  

 
In fact, the under- and overshooting here may indicate that MFs are insensi-

tive to the momentary rotational frequency of the crust, but rather to the activity 
and dynamics of the matter in the BL.  

Extending this analysis to both the Crab and Vela pulsars, the relative 
time-delays is expected to be: ( )2

~ 3.4Crab Vela Crab Vela
vis vis R Rδτ δτ ∆ ∆ ≈  or equiva-

lently, the undershooting in the case of the Crab is expected to last 3.4 sec com-
apred to one second in the Vela case. 
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Finally, although the physics is entirely different, the situation here is stri-
kingly similar to action of the solar dynamo, which is considered to be located in 
the so-called tachcline between the rigid-body rotating core and the overlying 
convection zone [16]. 
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Abstract 
In this paper, the relationship between the geodynamics and cosmic expan-
sion is analyzed and demonstrated from the basic physical principles and 
various natural phenomena, and the conclusion is drawn that cosmic expan-
sion is the dynamic force source of all planetary tectonic movements in the 
universe. The energy for the formation and change of landscape and the 
energy of earthquakes and volcanic eruptions all come from the cosmic ex-
pansion. With the cosmic expansion, the energy density of space is decreas-
ing, the atoms and molecules of all matter in the universe are growing, and 
the magma is expanding and producing gases. As the earth’s internal pressure 
rises, the mechanical energy that accumulates within the magma forms the 
driving force of the earth’s various tectonic movements, and the release of 
these energy and matter (expansive magma and high-pressure gases) leads to 
the formation and the changes of the landform (such as orogenesis, epeiro-
genesis, the formation of the earth’s plates, the Earth expansion, the seafloor 
spreading, and the continental drift), as well as to earthquakes and volcanic 
eruptions. In this paper, the causes of all kinds of earthquakes, especially deep 
focus earthquakes, are given and almost all known seismic phenomena are 
explained, the basic principle and method of earthquake prediction are given, 
and the direction is pointed out for the elimination of earthquakes and the 
utilization of earthquake energy. Based on the same principle of physics, this 
paper also shows that the Ice-Age is caused by the acceleration of the speed of 
the motion of the solar system relative to the Milky Way in certain regions of 
the Milky Way. The greater the speed of the solar system relative to the Milky 
Way, the greater the drop in Earth surface temperature. 
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1. Introduction 

There have been numerous theories of geodynamics in the past 100 years, and at 
present there are mainly the following hypotheses [1]: 

1) Hypothesis on the Earth contraction;  
2) Hypothesis on the Earth expansion;  
3) Hypothesis of the Earth pulsation;  
4) Hypothesis on the Earth rotation; 
5) Hypothesis on the surge tectonic; 
6) A model of layer-block tectonic thermal-upwelling and the Earth’s rotation. 
The academician of Chinese Academy of Sciences Ma Zhongjin [1] said a 

reasonable geodynamic hypothesis must satisfy at least three conditions: 
1) It can explain the global tectonic characteristics, spatial distribution laws 

and tectonic evolution process; 
2) The dynamic factor it depends on has sufficient energy and its action mode 

can reasonably explain the characteristics of the tectonic deformation field; 
3) It conforms to the basic principles of physics and the physical and chemical 

properties of earth interior materials. 
In terms of the three conditions mentioned above, no hypothesis has been 

perfect so far. 
In the 1960s, geoscience went through a far-reaching revolution. Plate tecton-

ics led us to realize that the surface of the planet on which we are living was di-
vided into rigid plates that have been moving, and that the earth is a dynamic 
planet, driven by a deep force that causes earthquakes and volcanoes, uplifts 
mountains and makes the ocean floor to spread, and gradually changes the shape 
of the earth’s surface, thus shaping the spectacular natural landscape on the sur-
face and bringing rich mineral resources to human civilization. However, the 
revolution is not over, because the source and nature of the driving force behind 
the planetary tectonic movement are unclear [2]. 

To sum up, the current geodynamic models are not perfect mainly because the 
driving force or the energy source for the planetary tectonic movement has not 
been found. 

The purpose of this study is to provide the driving force or energy source for 
the planetary tectonic movements and to propose a complete geodynamic mod-
el. The model not only conforms to the basic principles of physics but also can 
reasonably explain the various geological tectonic movements, such as orogene-
sis, epeirogenesis, the formation of the plates, the expansion of the earth, seafloor 
spreading and continental drift, volcanic eruption and the causes of various earth-
quakes, especially the deep focus earthquakes, basic principle and method of earth-
quake prediction. The model can also point out the direction for the future elimina-
tion of earthquake and the exploitation and utilization of earthquake energy. 

2. The Relationship between Geodynamics and Cosmic  
Expansion  

From the formula (5.31) [3], it can be seen that the orbital radius of the electrons 
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around the nucleus of the atoms or ions that make up the object decreases with 
the increase of the velocity of the object in ether. Thus, as the cosmic expansion 
decelerates, or as the speed of the objects relative to the cosmic etheric system 
decreases, all the atoms and ions (ions containing orbital electrons) that make up 
the objects grow larger. So as the cosmic expansion decelerates, the atoms or 
ions that make up all the earth’s material, including the solid crust, underground 
magma, water, and air, are expanding.  

Because the underground magma is in a high-temperature fluid or liquid 
state, the magma atoms are mostly in an ionic state. As the magma atoms or ions 
grow larger, the distance between atoms or ions becomes larger and the attrac-
tion between atoms or ions becomes smaller, leading to the volatile matter of the 
magma to release gases. So the underground magma is bubbling and expanding 
like a foaming foam that continues to produce gas and expand. Therefore, as the 
cosmic expansion decelerates, the internal hydraulic and pneumatic pressure of 
the Earth will continue to rise, and the elastic potential energy accumulated in 
the Earth’s magma provides the driving force for the various tectonic move-
ments of the Earth, and the release of the energy and matter (foaming magma 
and compressed gases) have led to the formation and change of landforms (such 
as the orogenesis, the epeirogenesis, the formation of plates, the expansion of the 
earth, the seafloor spreading and the continental drift), and to earthquakes and 
volcanic eruptions. So the cosmic expansion is the source of the driving force or 
the source of the energy for the tectonic movements of the earth and all the pla-
nets in the universe. 

From the formation of natural diamonds and various crystalline minerals in 
the earth’s crust, and from the evidence that meteorites generally have a mineral 
density greater than earth’s, we can learn that all atoms are growing larger as the 
universe expands. From the fact that there are gases from the volcanic eruption and 
the fact that the more recent the eruption is the less dense the volcanic rock is, we 
can learn that the underground magma is continuously producing gases and ex-
panding. From the formation, maintenance and change of earth atmosphere, we 
can learn that underground magma is continuously producing gases. From a great 
deal of factual evidence from the geometry, geology, astronomy and geophysics 
of continental forms, we can learn that the earth has been expanding. This geo-
dynamics model gives reasonable explanations of various tectonic movements, 
such as orogeny, epeirogenic movement, seafloor spreading, continental drift, 
volcanic eruptions, and reasonable explanations of the causes of various earth-
quakes (including deep-focus earthquake) and various seismic phenomena. 

2.1. From the Formation of Natural Diamonds and Various  
Crystalline Minerals in the Earth’s Crust, and from the  
Evidence That Meteorites Generally Have a Mineral Density  
Greater than Earth’s, We Can Learn That All Atoms Are  
Growing Larger as the Universe Expands 

Why can’t the lava from the volcano now form crystalline minerals such as di-
amond, gem, granite and so on after solidification, but light volcanic rocks? Ac-
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cording to formula (5.31) [3], all atoms will increase with the decelerating ex-
pansion of the universe, so the atoms and molecules of magma are much larger 
than those of hundreds of millions or billions of years ago, and under the normal 
pressure of one atmosphere, minerals such as diamond, gem and granite cannot 
be formed by natural solidification. Crustal minerals such as diamonds, gem-
stones and granites were formed by magma cooling and solidifying at different 
ages during the earth’s crustal formation process. Diamonds were formed bil-
lions of years ago by natural cooling and solidification of magma on the earth’s 
surface or at shallow crust at about one atmospheric pressure. This is why we 
can find or mine diamonds on the surface of the earth or in the shallow layers of 
the earth’s crust. Natural diamonds must be found in ancient continental plates 
such as Africa and Siberia, not in young craters or on young continental or 
oceanic crusts. 

In addition, meteorites have a high probability of containing diamonds because 
of their small size and quick solidification (the time of solidification is very early). 

So the fact that natural diamonds and various crystalline minerals formed on 
the earth’s surface, and that meteorites have a higher mineral density than earth, 
provides evidence that atoms keep getting bigger as the universe expands. 

2.2. From the Fact That There Are Gases from the Volcanic  
Eruption and the Fact That the More Recent the Eruption Is  
the Less Dense the Volcanic Rock Is, We Can Learn That the  
Underground Magma Is Continuously Producing Gases and  
Expanding 

The fact that underground magma continues to produce gases from volcanic 
eruptions can be verified by the fact that carbon dioxide, hydrogen sulfide, sulfur 
dioxide, hydrogen chloride, hydrogen fluoride, nitrogen, argon, methane, car-
bon monoxide and other gases are accompanied by the eruptions. 

We can measure the specific gravity of volcanic rock in the vicinity of the cra-
ter at different ages, indicating that the closer the eruption is, the less dense the 
rock is. As shown in Figure 1, the density of 6-edged basalt volcanic rocks in the 
ancient crater of the Changle Northern Rock in Shandong province of China 18 
million years ago is significantly larger than that of the Shishan volcanic group 
in Haikou city, Hainan province of China about 13,000 years ago, as shown in 
Figure 2. 

As the universe expands, the atoms and ions of the underground magma keep 
getting bigger, the magma keeps producing gases at an accelerating rate, so the 
magma has more and more bubbles and the bubbles are getting bigger and big-
ger, and the magma keeps expanding. That’s why the closer the age of the erup-
tion, the less dense the rock. 

2.3. From the Formation, Maintenance and Change of Earth  
Atmosphere, We Can Learn That Underground Magma Has  
Been Producing Gases Continuously 

As the universe expands, the atoms and molecules of everything in the universe  
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Figure 1. 6-angled basalt volcanic rocks from the ancient crater 18 million years ago in 
Changle North Rock, Shandong Province. 
 

 
Figure 2. Volcanic rocks from Shishan volcanic group about 13,000 years ago, in Haikou, 
Hainan province. 
 
keep getting bigger. In the early days of the earth, small molecules of some vola-
tile materials in the magma, such as hydrogen and helium, broke free from the 
magma and became free molecules. These free molecules gathered on the surface 
of the planet after leaving the magma to form the planet’s primeval atmosphere 
by the gravity. Since atmospheric molecules obey Maxwell’s law of speed distri-
bution, there is always a certain percentage of gas molecules at every moment 
that exceed the second cosmic velocity, so the atmosphere is constantly losing 
molecules to space. The earth’s atmosphere would not have lasted for billions of 
years without the constant replenishment of gases. It is because the gases re-
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leased by the underground magma continue to replenish the air lost in the at-
mosphere that the Earth’s atmosphere has been able to remain so long. As the 
cosmic expansion continues to slow down, the magma atoms continue to grow, 
the weight and size of the molecule released from the magma keep increasing 
and the composition of the atmosphere is constantly changing. In the early days 
of the Earth, underground magma mainly released small molecule gases such as 
hydrogen and helium, and now it mainly releases large molecule gases such as 
nitrogen, carbon dioxide, sulfur dioxide and hydrogen sulfide. A paper by the 
university of California, published in Science on April 6, 2018 [4] claimed to 
have found that up to 26% of nitrogen in the ecosystem came from the earth’s 
lithosphere bedrock (this paper suggests from underground magma). 

The disappearance of the atmosphere of the moon and mars is due to the fact 
that the mass of the moon and Mars is much smaller than that of the Earth (the 
masses of the moon and Mars are about 1/81 and 1/10 of that of Earth, respec-
tively), and that the underground magma has completely solidified and stopped 
producing gas. 

2.4. The Evidence of Earth’s Expansion 

In the article “the theory of earth expansion, its development and its main facts” 
[5], a large number of facts were provided for the continuous expansion of the 
earth from the geometry of the continental form, geology, astronomy, geophys-
ics and other aspects. 

2.5. Explanations of the Formation and Variation of the Earth  
landforms by the Geodynamics Model Based on Cosmic  
Expansion 

The formation of earth landforms such as the land, the sea, the mountain chain, 
the cave, the mountain and the basin are caused by cosmic expansion. The for-
mation of the earth’s plates, the seafloor spreading, and the continental drift are 
also caused by cosmic expansion. 

As the Earth’s surface continues to cool, the Earth’s surface slowly formed a 
solid monolithic shell, the lithosphere. The outer layer of the lithosphere is solid, 
and the further inside, the higher the temperature, the softer. The continuous 
gas production of underground magma causes the expansion rate of under-
ground magma to be greater than that of solid lithosphere. Before the formation 
of the Earth’s plates, or before the broke up of the Earth’s lithosphere, the Earth 
was like a closed, thin-walled container filled with hot water at 100˚C and con-
tinuously heated. With the expansion of underground magma and the accumu-
lation of high-pressure gases under the lithosphere, these foaming magma and 
high-pressure gases constantly changed the shape of the lithosphere both leading 
to violent orogenic and epeirogenetic movements. 

With the cosmic expansion the gases produced within the Earth grew, and 
these gases gathered beneath the lithosphere formed a gas layer. Because of the 
inhomogeneity of the lithospheric material structure, the rate at which each part 
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cools and solidifies will vary, and those relatively weak local areas will be uplifted 
by the gas pressure to form mountains, while those with no or relatively few up-
lifts will form valleys, basins, or plains. The gases that partially jacked up the li-
thosphere to form the mountains would eventually escape the earth and leave an 
exhaust passage (the original cave) underground. Thus, one end of the cave must 
be connected to the atmosphere and the other to the mantle. 

With the continuous cooling of the earth’s surface, the lithosphere has been 
constantly thickening. When the lithosphere reached a certain thickness, the 
pressure required to rupture the lithosphere is less than that required for the 
partial uplift of the lithosphere, the foaming magma and high-pressure gas fi-
nally ruptured the lithosphere into several large plates. 

Because the sudden rupture of the lithosphere caused the sudden expansion of 
the earth and the sudden separation of the primitive plates formed after the 
rupture of the lithosphere, the surface area of the earth suddenly increased a lot. 
Because the curvature of the primitive plates formed after the rupture of the li-
thosphere is smaller than that of the expanded earth’s surface, a layer of gas ac-
cumulated under the primitive plates after the rupture of the lithosphere. Be-
cause there is a gas layer under the primitive plates, the primitive plates have 
been floating on the magma and form the continents. 

Because these new crusts, formed by magma cooling from the gap between the 
primitive plates, are relatively low in topography, they constitute the ocean 
floors. Because these newly formed crusts (ocean floors) are formed by magma 
cooling exposed by the gap between the primitive plates formed by lithosphere 
rupture, there is a great difference in geological age between continental crusts 
and oceanic crusts. 

Because there are fragments in the middle of the gap between the primitive 
plates during the rupture of the lithosphere, these fragments have been remain-
ing in their original position during the seafloor spreading, thus becoming island 
or continental fragments. 

Because the sudden rupture of the lithosphere lead to a massive release of un-
derground gas, including water vapor, air and water vapor in the atmosphere 
suddenly increased. The cooling of the water vapor formed the original ocean. 

Because the oceanic crusts are thin, the tectonic movement in the vertical di-
rection of the earth after the rupture of the lithosphere has been being concen-
trated on the oceanic crusts mainly. 

As the universe continues to expand, the underground magma continues to 
produce gases and causes the earth to continue to expand, causing the newly 
formed ocean crusts to continue to burst, and the magma continues to gush out 
at the fractures of the ocean crusts to form and renew mid-oceanic ridges in the 
ocean. As the underground magma continues to expand, the ocean floor ex-
pands on both sides of the mid-oceanic ridge, and underground magma gushes 
out to form new ocean floor. This is how the ocean floors spread and continents 
drift. Thus, the closer to the mid-oceanic ridges, the younger the ocean floor. 

It is the expanding force of the underground magma, not the convection of 
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the earth’s mantle, that cause the seafloor to spread, the mantle plumes and plate 
subductions do not exist. Because the earth is expanding, plates are moving away 
from each other, so plate squeezes and collisions do not exist. This shows that 
the earthquake is not caused by plate squeeze or collision. 

Because the gaps between plates are cemented with solidified magma, the 
plates tear away from each other as the earth expands, starting at a point in the 
gap. So the path of the continental drift is an arc. 

In the early days of the ocean floor spreading, the ocean crust (the gap be-
tween the primitive plates) was narrow and thin, although the water above the 
ocean crust has weight, but water has no stress to resist deformations, so as the 
magma pressure inside the Earth increased, some ocean ridges and the sur-
rounding ocean crust would be uplifted by underground magma to form new 
land and mountains above the sea level. This is why fossils of ancient marine 
animals and plants have been found in some mountains, such as the Himalayas. 

Because under the force of underground magma expansion the earth contin-
ues to expand and the plate curvature becomes smaller and smaller, the gap be-
tween the two plates will continue to bulge outward along the radius of the earth, 
causing these mountain ranges formed along the gap between two plates, such as 
the Himalayas, to rise. 

As the earth expands with the seafloor spreading, the curvature of the earth’s 
surface becomes smaller and smaller. Therefore, the older the plate, the greater 
the curvature. Since the continental crust is older than the oceanic crust, the 
boundary between the continental crust and the oceanic crust forms the trench. 

The continuous gas production of underground magma makes the expansion 
rate of underground magma larger than that of the water on earth, so the ratio of 
the volume of water, including ice, to the volume of the earth has been decreas-
ing and the ratio of land area to ocean area has been increasing. 

2.6. Explanation of Volcanic Eruptions by the Cosmic Expansion  
Geodynamic Model 

As the universe continues to expand, the magma atoms inside the Earth contin-
ue to grow and the magma continue to produce gases. Bubbles gathered by these 
gases are constantly floating upward under the buoyancy of the magma and 
converge in the plate fault zones and craters. In an active volcano, magma con-
taining bubbles is constantly spewing out of the crater. In an extinct volcano, 
when the pressure of the bubbling magma is greater than the threshold, the 
magma breaks through the crater blockage and erupts. 

2.7. Explanations of the Causes of Various Earthquakes by the  
Cosmic Expansion Geodynamic Model 

According to this geodynamic model, earthquakes are caused by cosmic expan-
sion that causes the underground magma to continuously separate out gases. 

As the universe continues to expand, the magma atoms continue to grow, 
leading to the continued generation of gases in the magma (primitive air, now 
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mainly nitrogen and carbon dioxide). Since these gases are produced in the 
mantle and core, and at high temperatures in the mantle and core gas molecules 
are ionized. These bubbles, driven upward by the buoyancy of the magma, ac-
cumulate beneath the plates and in cracks in the fracture zones. These high 
temperature and high pressure charged gases, which gather under the lithos-
phere, are constantly looking for a breakthrough to release. Because the solidifi-
cation layer at the junction between two plates is relatively weak, it is easy to be 
broken, resulting in the sudden release of this high temperature and high pres-
sure charged gases (explosion)—earthquake. 

On June 12, 2008, after Chinese Wenchuan earthquake, “People’s Weekly”, 
titled “Wang Shencun: A lonely fan of scientific research of the field of earth-
quakes”, reported on his thirty-two years of silent research and exploration of 
the mysteries of earthquakes, and published the full text of chapter 1 - 4 of his 
book “reveal the secret of nature-secrets of earthquakes”. “Reveal the secret of 
nature-secrets of earthquakes”, also known as “new theory of earthquakes” or 
“earthquake gas explosion theory”, was proposed by author Wang Shencun 
shortly after the 7.8-magnitude Chinese Tangshan earthquake on July 28, 1976, 
according to the phenomenon of gas explosion occurring during the earthquake: 
light (flash), sound (explosion), gas (gas breaking through the ground and rising 
into the air), and quake (earthquake), and after many years of difficult research 
and exploration and simulation tests, a more systematic theory of seismic gas 
explosion was preliminarily completed in October 1981, which opened up a new 
way to solve the world problem of earthquake [6]. 

The cause of earthquakes derived from this Cosmic Expansion Geodynamic 
Model is in perfect agreement with Mr. Wang Shencun’s Earthquake Gas Explo-
sion Theory. Since this Cosmic Expansion Geodynamic Model is derived from 
the conclusion of the Modified Special Relativity [3], and Mr. Wang Shencun’s 
Earthquake Gas Explosion Theory is summed up by a large number of seismic 
phenomena, the credibility of the conclusion that earthquake is caused by the 
explosion of high temperature and high pressure charged gas is very high. 

2.7.1. The Mechanism of Natural Earthquakes 
As the universe expands and the underground magma continues to produce 
gases, the pressure on the high-temperature and high-pressure charged gases 
that accumulate beneath the lithosphere increases. When the pressure is greater 
than the strength of the surrounding rock mass, a gas explosion occurs. This is 
how natural earthquakes occur. 

2.7.2. The Mechanism of Artificial Earthquakes 
The explosion of the high temperature and high pressure charged gases stored 
under the lithosphere can also be triggered by man-made factors, such as storage 
or release of water from reservoirs, underground nuclear experiments or large 
equivalent TNT underground explosions, which is the mechanism of artificial 
earthquakes. 
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2.7.3. The Mechanism of Deep-Focus Earthquake 
The deep-focus earthquake is the earthquake with a depth of more than 300 km, 
the deepest known deep-focus earthquake with a depth of 720 km. Studies have 
shown that rocks below tens of kilometers are in soft plastic state. Below 720 km 
the temperatures is above 1100˚C degrees and the rock is basically fluid. As the 
universe expands, magma atoms expand and separate gas molecules (actually 
ions) that gather into bubbles. These bubbles move upwards under the buoyancy 
of the magma. Because the farther away from the center of the earth, the lower 
the hydraulic pressure of the magma, the lower the temperature, the thicker the 
magma. Therefore, in the process of the bubble floating upward, the resistance 
encountered is increasing, and the surface tension of the bubble is also increas-
ing, and the hydraulic pressure outside the bubble is decreasing. Bubbles get 
bigger and bigger as they rise upward (more and more bubbles merge). Because 
the earth’s radius is very large and the velocity of the bubble floating up is very 
small (because the magma is very dense), the process of the bubble floating up is 
very long. In the long process of bubble floating, the elastic potential energy ga-
thering in the bubbles will be larger and larger, and when the pressure inside the 
bubble is greater than the sum of the hydraulic pressure of the external magma 
and the surface tension of the bubble, the bubble will explode. It can be seen that 
the deep-focus earthquake is the explosion of high pressure bubbles in the un-
derground magma. 

2.8. Explanations of Seismic Phenomena by the Cosmic Expansion  
Geodynamic Model 

In the long-term practice, the ancient Chinese people realized that earthquakes 
have precursors, and left a wealth of records about earthquake precursors. Liang 
Guanghe’s article “new knowledge of earthquakes” [7] and Yue Zhongqi’s blog 
“the causes that each airs his own views for strong seismicity and the prediction” 
[8] list a large number of natural phenomena that have been observed before, 
during and after earthquakes based on seismic investigations and research. The 
author summarized the above seismic phenomena and explained them one by 
one by using this cosmic expansion geodynamic model: 

2.8.1. Explanations of the Main Natural Anomalies before Earthquakes,  
the Accompanying Phenomena during Earthquakes and the  
Phenomena after Earthquakes 

Because there will be a lot of high temperature and high pressure charged gas 
gathering and activity in the underground of the earthquake area before the 
earthquake occurs, there will be many abnormal natural phenomena. The accu-
mulation and slow release of high temperature and high pressure charged gases 
will not only affect the nearby electromagnetic field but also change the temper-
ature and weather. In addition, the accumulation and release of these high tem-
perature and high pressure charged gases will also lead to local underground 
pressure changes, resulting in the formation deformation and abnormal sound. 
The variation of the underground pressure and the deformation of the formation 
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will lead to the change of the groundwater level. 
1) Groundwater anomalies: Groundwater includes well water, spring water, 

etc. The main anomalies are muddy, bubbling, churning, temperature rise, dis-
coloration, flavor change, sudden rise, sudden drop, well hole deformation, 
spring source suddenly dried up or gushing, etc.  

Explanation: The anomaly of groundwater is caused by the accumulation and 
release of underground high temperature and high pressure charged gases in the 
preseismic area. The slow release of high temperature and high pressure charged 
gases accumulated underground can cause particles of underground minerals or 
soil dust to enter the water and cause well or spring water to become muddy, 
bubbling, churning, warming, discoloring, or flavoring. Because the change of 
the high temperature and high pressure charged gas pressure in the under-
ground will change the hydraulic pressure of the groundwater and cause the de-
formation and movement of the formation, it will lead to the sudden rise or 
sudden drop of the well water, the deformation of the well hole, sudden deple-
tion or emission of the spring source, etc. 

2) Biological anomalies: Before the earthquake, in addition to animals have 
abnormal behavior, some plants also have abnormal response, such as inappro-
priate season of germination, flowering, fruiting or a large area of wither and 
unusually exuberant. 

Explanation: The abnormality of animals is mainly due to the underground 
high temperature and high pressure charged gas release in the pre-earthquake 
zone, which leads to the interference of the geomagnetic field, the abnormal 
sound and the peculiar smell. The plant anomaly is mainly due to the slow re-
lease of high temperature and high pressure charged gases in the in the 
pre-earthquake zone. Because the temperature of the gases is very high, the re-
lease of these gases can change the temperature of the soil and air in the zone, 
resulting in the germination, flowering and fruiting of plants during the inap-
propriate season. Because the main components of seismic gases are nitrogen 
and carbon dioxide, and these elements are the nutrients that plants need, the 
slow release of these gases can cause plants to become unusually lush. But if the 
released gas is too thick, it will cause the plant to wither in large area. 

3) Weather anomalies: Before earthquakes, the weather is often abnormal. The 
main abnormal phenomena of the weather are: sultry, long drought or steady 
rain, yellow fog everywhere, dark daylight, strange wind raging, hail in June and 
so on. 

Explanation: The gathering and slow release of underground high tempera-
ture and high pressure charged gases in the earthquake zone before the earth-
quake will certainly have an impact on the weather in the earthquake zone. The 
sultry weather is mainly caused by the release of the underground hot gases and 
the evaporation of the groundwater caused by the release of the underground 
hot gases. If there isn’t much ground water in the zone, then the released hot 
gases will lead to a prolonged drought, and if the zone is rich in groundwater, 
the released hot gases will lead to the evaporation of groundwater, resulting in 
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steady rain. Since the charged gases can absorb dust particles during the under-
ground flow, the release of these charged gases into the upper air may cause the 
high-altitude water vapor to form the hailstorm, so there may be hailstorms in 
June. The release of these charged gases containing dust particles from the 
ground can also lead to yellow fog and dark sunlight. The strange wind raging 
phenomenon should be caused by the rising hot air from the release of the high 
temperature and high pressure charged gases stored underground. 

4) The emergence of the Earthquake Cloud：Earthquake Cloud is a kind of 
cloud in non-meteorological classification that indicates earthquakes. At present, 
the academic community is skeptical about the Earthquake Clouds, believing 
Earthquake Clouds to be pseudoscience, because, according to the existing seis-
mic theory, earthquakes are caused by the accumulation and release of crustal 
plate stress due to crustal movement, and the slow movement of the crusts is not 
related to the meteorological phenomenon for a short time. There are only folk 
enthusiasts to explore the earthquake cloud in China, Japan, Indonesia and other 
countries. 

Explanation: Because a large amount of high-temperature and high-pressure 
charged gases will accumulate underground in the earthquake area before the 
earthquake occurs, when these high-temperature and high-pressure charged 
gases accumulate to a certain amount, they will overflow from the ground (be-
cause when the pressure exceeds a certain value the surrounding rock mass that 
gathers these high-pressure gases will leak). Because the charged gases can ab-
sorb dust particles during underground flow, the release of a large amount 
high-temperature charged gases from the ground above the surrounding rock 
mass (possibly source) where these gases are gathered into the atmosphere can 
lead to the generation of this particular cloud-earthquake cloud. As a result, 
many earthquake clouds are strip-shaped and point to the epicenter at one end. 
If these gases are released from multiple outlets (potential earthquake sources) in 
the fault zone, an earthquake cloud as shown in Figure 3 will result. The emer-
gence of the earthquake cloud is similar to the situation that the river level has 
exceeded the warning line and began to overflow (the possibility of a dam broke 
is very high). Therefore, the emergence of the earthquake clouds indicates that 
the probability of a large earthquake is very high. 

5) Underground sound anomaly: The underground sound anomaly refers to 
the sound from underground before earthquakes that is like the thunder of can-
non, or the sound of heavy vehicle driving, or the sound of the strong wind 
surge and so on. 

Explanation: Earthquakes are caused by the explosions of high temperature 
and high pressure charged gases in the ground. Because underground sound 
travels faster than the shock wave from gas explosions, the sound of cannon 
thunder will be heard before the earthquake. A large amount of gases released by 
a gas explosion flowing underground, especially in underground caves, can 
produce the sound of heavy vehicle driving, or the sound of the strong wind 
surge. 
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Figure 3. Earthquake clouds. 

 
6) Abnormal ground light: Abnormal ground light refers to the light from the 

ground before an earthquake, its color is varied, rare mixed colors in daily life 
can be seen, such as silver blue, white purple, but mainly red and white; its shape 
is also varied, there are ribbon, ball, columnar, diffuse, etc. Generally, ground 
light appears in a wide range, mostly in the first few hours to a few minutes be-
fore the earthquake, lasting several seconds. 

Explanation: A large amount of high temperature and high pressure charged 
gases will be gathered underground in the earthquake area before the earthquake 
occurs. The ground-light phenomenon should be the discharge on the ground of 
these charged gases when they flow from the ground to the air before the earth-
quake. 

7) Abnormal ground gas: Abnormal ground gas refers to the fog from the 
ground before the earthquake. This fog, with a variety of colors, such as white, 
black, yellow, and sometimes colorless, often occurs within a few days to a few 
minutes before the earthquake, often accompanied by a strange smell, some-
times accompanied by sound or high temperature. 

Explanation: The ground gas phenomenon is caused by the release of 
high-temperature and high-pressure charged gases gathered underground before 
the earthquake. Because the charged gas can absorb the dust particles of various 
substances it passing through during the underground flow, the odour should be 
caused by the dust particles of certain substances. Since the gases released are 
very hot, of course there will be high temperature phenomenon accompanied by. 
The rapid flow of a large amount of gas underground certainly will make some 
sounds. 

8) Abnormal ground movement: Abnormal ground movement refers to the 
shaking of the ground before the earthquake. Before the earthquake, people 
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sometimes feel the ground shaking, which is different from the earthquake. The 
shake is so slow that seismometers often miss it, but many people can feel it. 

Explanation: Abnormal ground movement is a small shaking caused by the 
high pressure gas accumulated underground in the seismic area before the 
earthquake, which pushes up the local strata and causes the strata to be unstable. 

9) Abnormal ground bulge: Abnormal ground bulge refers to bulges formed 
on the ground before the earthquake 

Explanation: The abnormal ground bulge is caused by the high pressure gases 
accumulated underground in the earthquake area before the earthquake. 

10) Electromagnetic phenomena associated with earthquakes: To sum up, the 
electromagnetic phenomena associated with earthquakes are the production of 
strong current and the sudden change of electromagnetic field near the quake 
zone. The electrical current generated by an earthquake is very strong. A mag-
nitude 6 earthquake can generate a current of up to 100,000 amperes and a mag-
nitude 7 earthquake can generate a current of up to 1 million amperes [7]. The 
maximum current on a typical household meter is usually no more than 60 am-
peres. How does such a strong current come about? 

Explanation: Because the earthquake is formed by the explosion of high tem-
perature and high pressure charged gases gathered underground, there will be a 
rapid underground flow of a large number of ionic gas molecules when the 
earthquake occurs, thus forming a strong current and producing a strong mag-
netic field. The strong magnetic field generated by an earthquake can cause a 
sudden change in the electromagnetic field near the earthquake area. 

11) Large earthquakes are often the metallogenic process of underground me-
talliferous minerals. Scientific research showed that earthquakes can precipitate 
gold deposits. 

Explanation: Because seismic gases are produced in the mantle and core, the 
temperature of these gases is very high. Large amounts of hot seismic gases 
flowing through the earth’s crust during a great earthquake can cause passing 
gold particles to melt and solidify into gold nuggets, or cause metalliferous min-
erals to melt and produce reduction reactions to form metals. 

12) During an earthquake, people first hear the sound and then feel the quake. 
Explanation: The earthquake is caused by the explosion of high-temperature 

and high-pressure gases formed by the accumulation of charged gas molecules 
separated by underground magma. Because the sound wave travels faster in the 
rock than the shock wave produced by the explosion of high-pressure gas, 
people first hear the sound and then feel the quake. 

13) A great earthquake may immediately darken the sky 
Explanation: The earthquake was caused by the sudden release (explosion) of 

high-temperature and high-pressure gases formed by the accumulation of 
charged gas molecules separated by underground magma. The charged gas traps 
dust particles as it travels underground. A great earthquake can immediately 
darken the sky because of the sudden release of a large amount of gas adsorbed 
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with dust particles from the ground into the atmosphere. 
14) The air temperature may begin to drop immediately during or after an 

earthquake 
Explanation: Because the earthquake is caused by the sudden release (explo-

sion) of high pressure gas underground, and the sudden decompression release 
of high pressure gas will absorb the heat of the surrounding material, the tem-
perature in the earthquake area will suddenly drop during the earthquake. 

15) Heavy rain or snow may fall in hours after a strong earthquake 
Explanation: Because the earthquake is caused by the sudden release (explo-

sion) of high pressure gas underground, and the sudden decompression release 
of high pressure gas will absorb the heat of the surrounding material, the tem-
perature in the earthquake area will suddenly drop during the earthquake. A 
sudden drop in temperature can cause water vapor in the air to quickly condense 
into water droplets, or snowflakes. So it may rain or snow in a few hours after a 
great earthquake. 

16) There is underground wind in an earthquake 
Explanation: Because the earthquake is caused by the sudden release (explo-

sion) of high pressure gas underground, the flow of the gas from the earthquake 
forms the underground wind. 

17) Before and after an earthquake, there may be natural gas ejection, explo-
sion, and combustion 

Explanation: Because the earthquake is caused by the sudden release (explo-
sion) of high-temperature and high-pressure gases formed by the accumulation 
of charged gas molecules separated by underground magma, if the source is be-
low the natural gas field, the earthquake can cause a large amount of gas to be 
released into the natural gas field, so the gas reserves and pressure in the natural 
gas field will increase. Because a large amount of charged gas enters into the 
natural gas field when an earthquake occurs, if this gas mixture in the natural gas 
field is ejected into the atmosphere, it could lead to spontaneous combustion or 
explosion. 

18) During an earthquake, a fire, even a huge fire, may break out in a city 
Explanation: Because earthquakes are caused by the sudden release (explo-

sion) of high-temperature and high-pressure charged gases formed by the ac-
cumulation of charged gas molecules separated by underground magma, the 
encounter of these high-temperature charged gases in the atmosphere with 
leaking liquefied petroleum gas, gasoline or other flammable gases or liquids can 
lead to the combustion or explosion of these flammable gases and liquids. 
Therefore, there may be a fire or even a huge fire in the city during the earth-
quake. 

19) Earthquakes can trigger forest fires (the author speculates) 
Explanation: There are frequent forest fires on Earth [9], such as the Amazon 

forest fire in August 2019, the forest fire in California in September 2019, and 
the forest fire in Victoria, Australia, in November 2019. How did these forest 
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fires come about? Noting that California and Amazonian forests are located in 
the Pacific seismic belt, Australia’s Victoria is also the region where the earth-
quake occurred. Because earthquakes are caused by the sudden release (explo-
sion) of high-temperature and high-pressure charged gases formed by the ac-
cumulation of charged gas molecules separated by underground magma, if the 
earthquake occurs in the forest area, especially in the forest area where there is 
no rain for a long time, the instantaneous release of a large amount of high tem-
perature charged gas is completely likely to ignite the hay, fallen leaves and dead 
trees of the forest from many large areas, thus leading to the occurrence of forest 
fire. It can be seen that the forest fire caused by the earthquake has the characte-
ristics of igniting in a large area and many places at the same time, and starting 
very quickly, it has no time to extinguish. 

20) In strong earthquakes, local mountain soil and rock are thrown out by gas, 
mountain collapse and earth crack, and the coseismic surface soil is broken (ten-
sile and shear type) 

Explanation: Because earthquakes are caused by the explosion of high tempera-
ture and high-pressure charged gas, in strong earthquakes, local mountain soil and 
rock will be thrown out by the gas, mountain collapse and earth crack. Because 
the shock wave produced by the underground gas explosion is spherical longitu-
dinal wave with the explosion point as the center, the rupture of the coseismic 
surface soil is tensional and shear type. 

21) There may be a huge increase in the underground natural gas reserve after 
the earthquake 

Explanation: If the earthquake source is below the natural gas field, because the 
earthquake may cause a large amount of gas to be released into the natural gas 
field, the gas reserve in the natural gas field may has a huge increase, but the to-
tal content of natural gas will not increase, and the nitrogen and carbon dioxide 
content in the natural gas will increase a lot. 

22) Earth’s rotation rate may accelerate after a great earthquake 
Explanation: Since a large quantity of high-pressure gas that accumulates be-

neath the earth’s crusts are released into the atmosphere during a great earth-
quake, the crust sinks slightly and the earth’s moment of inertia becomes small-
er. Because of the conservation of angular momentum on the earth’s rotation, 
the angular speed of the earth’s rotation will accelerate slightly. 

23) After a great earthquake, the ground has a large and wide range of hori-
zontal displacement and settlement 

Explanation: Because earthquakes are caused by the sudden release (explo-
sion) of high-temperature and high-pressure gases formed by the accumulation 
of charged gas molecules separated by underground magma. Before the earth-
quake, the local crust of the earthquake area is lifted up by the high pressure gas, 
and after the earthquake the high pressure gas is released from the underground 
into the atmosphere, so after a great earthquake, the ground in the earthquake 
area will settle down greatly and widely. Due to the geological structure of the 
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ground in the process of subsidence will also produce horizontal movement. 

2.8.2. Explanations to the Laws of Earthquake Occurrence 
1) The sites of the earthquake are located in the weak zones and deep fault 

zones of the crustal geological material 
Explanation: Earthquakes are caused by the sudden release (explosion) of high 

temperature and high pressure gases formed by the accumulation of charged gas 
molecules separated by underground magma. Because the weak zone of geologi-
cal materials can be easily destroyed by the high pressure gas, the sites of the 
earthquake are located in the weak zones of crustal geological material. Because 
the deep fault zones tend to gather bubbles of gas separated by underground 
magma (the bubbles float upward by the magmatic buoyancy, they can easily 
enter the cracks in the deep fault zone during the process of floating), and the 
fault zones are prone to rupture, the sites of the earthquake are located in the 
deep fault zones. 

2) Where many weak or small earthquakes occur, no strong or great earth-
quake will occur 

Explanation: Because in the place where many weak earthquakes and small 
earthquakes occur, the accumulated underground high pressure gas is released 
in time, and the energy gathered by the underground high pressure gas will not 
be large, so there will be no strong or great earthquake. 

3) The focal depth of medium and small earthquakes varies greatly, while the 
focal depth of strong and great earthquakes is usually shallow (within 25 km 
depth) 

Explanation: Because the deeper the underground, the higher the temperature, 
the softer the crust, the smaller the energy accumulated before the explosion of 
high-pressure gas; in addition, the deeper the underground pressure (mainly the 
pressure formed by the formation weight), the smaller the pressure difference 
between the bubbles formed by high-pressure gas and the outer space; therefore, 
the deeper the underground, the more difficult it is to form a strong or great 
earthquake. Within 25 km of depth, the underground temperature is not high, 
and the strength of underground rock is generally relatively large. In addition, 
the underground pressure within 25 km is relatively small. Therefore, if the sur-
rounding rock mass with the accumulation of underground gas is relatively 
strong, the pressure difference of the high pressure gas gathered in the rock bed 
before explosion can be very large relative to the outer space, and the elastic po-
tential energy accumulated can be very high. Therefore, the source depth of 
strong earthquakes and great earthquakes is usually shallow (within 25 km 
depth). If the surrounding rock mass for the accumulated underground gas is 
not strong enough, then within 25 km depth can also produce small and me-
dium earthquakes. 

4) The sequence of earthquake types is diverse, such as foreshock main shock 
aftershock type, main shock aftershock type, double main shock type, etc 

Explanation: Earthquakes are caused by the sudden release (explosion) of high 
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temperature and high pressure gas formed by the accumulation of charged gas 
molecules separated by underground magma. Foreshocks, main shocks and af-
tershocks are all formed by the explosion of this high-pressure gas. Due to the 
diversity of geological structures in the geological fault zone, that is to say, the 
surrounding rock masses containing such high temperature and high pressure 
charged gas are different in size and structure, so the sequence of series explo-
sions generated by the high-pressure gas gathered in the surrounding rock 
masses is of course diverse. 

5) Earthquakes can be repeated in one place, and the repeated periods vary 
widely among geological regions, for decades, hundreds or thousands of years 

Explanation: Because earthquakes occur in fault zones where underground gas 
is easily accumulated and the fault zone does not disappear as a result of earth-
quakes, earthquakes can be repeated in one place. After the earthquake, because 
of the formation of many underground gas channels in the earthquake area, it is 
temporarily difficult to gather gas below the earthquake area. Over time, the un-
derground magma solidifies in these gas channels, blocking them, and then al-
lows the underground gas to accumulate below the earthquake area. Due to the 
different time cycles for the blockage of underground gas channels in different 
seismic areas and the different time cycles of gas reaccumulation, the seismic 
repetition cycles in different geological areas vary greatly, which can be tens, 
hundreds or thousands of years. 

6) The earthquake area may have seismicity gaps 
Explanation: If there is a solid rock bed with a large mass or a solid rock bed 

connected to the plate as a whole above or obliquely above the earthquake 
source, the area above the rock bed may form a seismicity gap. Because earth-
quakes are caused by the explosion of underground high-pressure gas, the bulk 
of a solid rock bed with a large mass or a solid rock bed connected to a plate as a 
whole is largely unaffected by shock waves from gas explosions. 

7) Earthquakes can cause tsunamis  
Explanation: Earthquakes are caused by the explosion of underground 

high-pressure gas. Because the shock waves from underground gas explosions 
can be transmitted from the stratum to the ocean, they can cause tsunamis. 

8) Coseismic surface fractures observed on sites generally occur in weak strata 
such as surface soil, weathered soil and coal seams, while coseismic fractures of 
hard surface rock mass are rarely seen 

Explanation: Because the fault of the co-seismic surface is caused by the shock 
wave generated by the underground gas explosion, and the strength of the shock 
wave reaching the surface is not enough to break the hard rock mass, but can 
break the weak strata such as the surface soil, weathered soil and coal seam. 

9) The duration of a single earthquake is very short, from seconds to tens of 
seconds 

Explanation: A earthquake is usually caused by a series of explosions of many 
high-pressure gas pockets that form in a geologic fault zone. Because a single 
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earthquake is caused by the explosion of a single high-pressure gas pocket, the 
duration is very short, from seconds to tens of seconds. 

10) The attenuation rate of earthquake intensity along horizontal distance is 
much lower than that along depth 

Explanation: Because the earthquake is caused by the explosion of under-
ground high-pressure gas, on the surface of the ground the seismic wave is circle 
propagation centered on the epicenter, while in the earth it is spherical propaga-
tion centered on the seismic source. Since the circumference of the circle is pro-
portional to the radius of the circle and the surface area of the sphere is propor-
tional to the square of the radius of the sphere, the attenuation rate of the seis-
mic intensity along the horizontal distance is much smaller than that along the 
depth. 

11) The macro-epicentre of an earthquake is located in a weak zone of geo-
logical materials (such as in or near a basin) 

Explanation: Because the earthquake is caused by the explosion of under-
ground high pressure gas, and the weak zone of geological materials has little 
ability to withstand shock waves, it is easy to be destroyed by shock waves, so the 
macro epicenter of an earthquake is located in the weak zone of geological ma-
terial. 

12) The vertical acceleration of the epicentre is greater, and the horizontal ac-
celeration at a distance from the epicentre is greater 

Explanation: Because the seismic wave is the longitudinal wave propagating 
along the radius of a sphere with the gas explosion point as the center of the 
sphere, the epicentre has a greater vertical acceleration and at a distance from 
the epicentre has a greater horizontal acceleration. 

13) The period of calm in each fault zone prior to a strong earthquake is dec-
ades, hundreds, or thousands of years 

Explanation: Because fractures in the fault zone are vertical, they are particu-
larly good for the accumulation of gas bubbles that float vertically up from the 
mantle. The larger the space of the gas chamber formed by the fault zone, the 
greater the strength of the fault zone, the longer the time of collecting the un-
derground gas in the fault zone, the greater the elastic potential energy of the gas 
gathered, and the stronger the earthquake produced. So each fault zone has dec-
ades, hundreds, or thousands of years of calm before a strong earthquake. 

14) Casualties in meizoseismal areas are generally caused by mechanical ki-
netic energy such as building collapse and landslides. Some people feel uncom-
fortable due to breathing gases and dust during the earthquake, and no one 
seems to be harmed by the gases 

Explanation: Because the gases released by the earthquake are the original 
gases that makes up the air (air that is not absorbed and converted by animals 
and plants), the main components are nitrogen and carbon dioxide, which are 
non-toxic and harmless. 

15) The distribution of large seismic zones, large natural gas fields and large 
fault zones on the earth is consistent 
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Explanation: Because the large fault zone is easy to gather the bubbles formed 
by the high temperature and high pressure charged gases separated by the un-
derground magma (because the bubbles will float up under the magmatic 
buoyancy, and they are easy to enter the large fault zone during the process of 
floating), and the fault zone is easy to break, so the large fault zones are large 
seismic zones. And because large amounts of high temperature and high pres-
sure charged gases often accumulate underground in large seismic zones, the 
gases trapped underground are released slowly for a long time before an earth-
quake. The release of high temperature and high pressure gases will increase the 
temperature of the soil and air in the seismic zone, which is good for the growth 
of plants. Moreover, since the gases separated by the underground magma are 
mainly ionized nitrogen and ionized carbon dioxide, which are the nutrients 
needed by plants, and ionized gas is easy to be absorbed by plants, the slow re-
lease of these gases will lead to abnormal flourishing of plants. Because earth-
quakes often occur in the seismic zones, the plants that grow in the seismic 
zones are often buried underground to form coal fields and natural gas fields. 
Therefore, the distribution of large seismic zones, large natural gas fields and 
large fracture zones on the earth is consistent 

16) A huge earthquake may cause short-term increase or change in atmos-
pheric pressure 

Explanation: Earthquakes are caused by the sudden release (explosion) of 
high-temperature and high pressure gases formed by the accumulation of 
charged gas molecules separated by underground magma. A huge earthquake 
can cause a sudden release of large quantities of high pressure gas from the 
ground into the atmosphere, resulting in short-term increases or fluctuations in 
atmospheric pressure. 

17) There are a large number of active erupting volcanoes near many fault 
seismic zones 

Explanation: Because fractures in fault zones tend to form mantle passageways 
to the ground surface, and fault zones are also conducive to collecting and stor-
ing gases produced by underground magma, there are a large number of active 
erupting volcanoes near many fault seismic zones. 

3. Discussions 
3.1. About Earthquake Prediction 

Because there is a high temperature and high pressure charged gas accumulation 
process underground in the earthquake area. The accumulation of these 
high-temperature and high-pressure charged gases will inevitably cause the un-
derground pressure to rise and produce gas leakage. The rise of the underground 
pressure will cause the deformation (rise) of the formation, which will lead to the 
decrease of the groundwater level. The deformation of the formation can also 
lead to abnormal noise. The leakage of underground high temperature and high 
pressure charged gases will inevitably lead to the change of underground and 
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ground temperature, humidity, electromagnetic field, air composition and air 
ion concentration. So it’s possible to predict earthquakes by monitoring changes 
in those parameters. 

Because earthquakes that are harmful to human beings are mainly shal-
low-source earthquakes whose epicenters are located in or near cities, and be-
cause shallow-source earthquakes occur in geological fault zones, we can drill 
some detection wells (because the ground surface air is too influenced by at-
mospheric changes, some wells should be used to detect variations in various 
parameters of the air in the well) in the fault zones in or near cities, and install 
relevant instruments in the wells to monitor the changes in the composition, 
temperature, humidity, air pressure, ion concentration, sound waves and elec-
tromagnetic field of the air in the wells over the years, and centralize the data 
into data analysis centers and use computers to analyze the data and predict 
earthquakes. The parameters to be monitored are as follows: 

1) Monitor changes in air composition in the detection wells, in particular 
whether the concentration of nitrogen and carbon dioxide increases. The high 
temperature and high pressure charged gases gathered underground before the 
earthquake is mainly nitrogen and carbon dioxide (this can be verified by de-
tecting the composition of the gases released by the volcanic eruptions) 

2) Monitor the changes of air temperature and humidity in the detection 
wells, because the seismic gas that accumulates underground is hot and dry gas, 
the release of this gas will change the temperature and humidity of the air in the 
wells. 

3) Monitor the change of the concentration of charged ions in the air in the 
detection wells. Because the seismic gas accumulated underground is high tem-
perature and high pressure charged gases, the leakage of these gases will change 
the concentration of charged ions in the air in the wells. 

4) Monitor sound waves from underground in the detection wells to see if any 
anomalies occur. Because the underground high temperature and high pressure 
charged gas gathering will inevitably make the underground rock bed deforma-
tion or fracture, resulting in sound waves. 

5) Monitor the change of electromagnetic field in the detection wells. Because 
underground high temperature and high pressure charged gas accumulation and 
leakage will produce electromagnetic fields. 

6) Monitor the change of air pressure in the detection wells. Because the lea-
kage of underground high temperature and high pressure charged gas will 
change the pressure of the air in the sealed wells. 

7) Monitor air flow in uncovered detection wells. Because the leakage of high 
temperature and high pressure charged gas underground will produce under-
ground wind. 

8) Monitor the deformation and tilt of the detection wells. Because the under-
ground high temperature and high pressure charged gas accumulation will lead 
to formation rise and deformation, resulting in deformation or tilt of the detec-
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tion wells. 
9) Monitoring the changes in groundwater level in detection wells. Because 

the underground high temperature and high pressure charged gas accumulation 
will lead to formation rise and deformation, resulting in the decline of the well 
water level. 

10) Monitor whether the ground as a whole is rising (monitored by satellite 
and ground equipments). Because the accumulation of underground high tem-
perature and high pressure charged gas will lead to the rise of the formation. 

3.2. The Elimination of Earthquakes and the Utilization of Seismic  
Energy 

The focus of the earthquake elimination is to eliminate the shallow earthquakes 
with a focal depth of less than 30 km in cities especially in large and me-
dium-sized cities. Since most earthquakes occur in the fault zones, it can be con-
sidered to drill some deep Wells (such as 10 - 30 km deep) in the fault zones to 
release underground gas all the year round. Because fractures in the fault zone 
are covered by strata and connected to the mantle below, high pressure bubbles 
from the mantle can enter and accumulate in these fractures by the magmatic 
buoyancy. Since the underground gas that accumulates in the fault zone cannot 
be released into the atmosphere in time, it will accumulate more and more and 
the pressure will be higher and higher. When the pressure exceeds the limit, the 
accumulated high pressure gas will explode (the accumulated high pressure gas 
will open up the formation and release into the atmosphere). This is the process 
of shallow earthquakes. So deep Wells connected to fractures in the fault zone to 
release underground gas all year round can prevent shallow earthquakes from 
forming. 

When technology is highly advanced in the future, the controlled release of 
this underground high pressure gas can also be used to generate electricity.  

3.3. The Conjecture of the Cause of the Ice-Age  

The temperature of the earth’s surface (including the atmosphere) is affected by 
the radiation power of the sun, the radiation power of the sun received by the 
earth, and the rate at which geothermal energy (carried by magma and gases se-
parated from it) escapes from the earth’s crust. 

Because the solar system moves periodically around the Milky Way, changes 
in the speed of the solar system’s motion in the Milky Way’s etheric system af-
fect the solar radiation power, the radius of the Sun and the Earth, the distance 
between the Sun and the Earth, and the rate at which the Earth’s internal ther-
mal materials (magma and gases isolated from it) spill from the Earth’s crust. So 
the surface temperature of the earth changes periodically. 

1) The increase in the solar system’s speed of motion in the Milky Way’s 
etheric system will lead to a decrease in solar radiation power: According to 
formula (5.17) [3], the increase of the sun’s motion speed in the ether of the ga-
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laxy will slow down time on the sun, that is, the speed of energy (ether) flowing 
from the sun to space will decrease, so the radiation power of the sun will de-
crease. 

2) The increase in the solar system’s speed of motion in the Milky Way’s 
etheric system will lead to a reduction in the radius of the Sun and Earth: Ac-
cording to formula (5.31) [3], the increase in the speed of the solar system in the 
galactic ether will lead to a reduction in the radius of the atoms and ions that 
make up the sun and earth, thus resulting in a reduction in the radius of the sun 
and earth. A reduction in the radius of the sun and earth will result in a decrease 
in the power of solar radiation received by the earth. 

3) The increase in the solar system’s speed of motion in the Milky Way’s 
etheric system will lead to a decrease in the distance between the Sun and Earth: 
It is not difficult to prove that an increase in the speed of the solar system in the 
galactic ether would also lead to a decrease in the distance between the sun and 
the earth. The decreasing distance between the sun and the earth will lead to the 
increase of solar radiation power received by the earth. 

4) The accelerated motion of the solar system in the galactic ether will slow 
the rate at which hot material (magma and gas separated from the magma) in 
the earth’s interior escape from the crust: According to formula (5.31) [3], when 
the solar system moves faster in the Milky Way, the speed at which the atoms 
that make up the earth expand with the expansion of the universe will decrease. 
The decrease in the rate of atomic expansion of underground magma will lead to 
the decrease in the rate of magmatic gas production, which will lead to the de-
crease in the rate of magma and high temperature gas flowing out of the earth’s 
crust. 

Since three of the above four factors, 1), 2) and 4), cause the Earth’s tempera-
ture to drop, we have every reason to assume that the Earth’s Ice-Age is caused 
by the acceleration of the motion of the solar system relative to the Milky Way at 
certain intervals. The greater the speed of the solar system relative to the Milky 
Way, the more the earth’s surface temperature drops. 

3.4. The Conjecture of the Contraction and Orogenesis of the  
Earth Lithosphere during the Ice-Age 

Before the rupture of the earth’s lithosphere, when the solar system moves to the 
regions of the Milky Way that make the solar system move faster, that is, those 
that put Earth into the Ice-Age, by the formula (5.31) [3], if the Earth’s magma 
atoms begin to contract, it will cause the magma to stop producing gas, so the 
magma and the gas layer below the lithosphere will contract. In addition, the 
earth’s surface temperature will decrease during the Ice-Age. The contraction of 
magma and gas beneath the lithosphere, coupled with the lowering of the earth’s 
surface temperature, causes the lithosphere to contract. The contraction of the 
lithosphere causes the earth’s surface to wrinkle. This may be another possible 
cause of orogeny. So it is possible that the orogeny was caused by the earth’s 
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contraction and expansion. During the Ice-Age the earth contracted and the li-
thosphere contracted and wrinkled to build mountains. After the Ice-Age, the 
earth expanded and the lithosphere continued to build mountains under local 
uplift caused by underground high-pressure gas and expanding magmatism. 

4. Conclusions 

1) Cosmic expansion is the dynamic force source of all planetary geological 
tectonic movements; 

2) As the universe expands, the underground magma atoms are expanding and 
releasing gases. The expanding magma and high-pressure gases gathered under 
the lithosphere are pushing the earth to expand, changing the lithosphere shape 
and leading to the continuous generation of volcanic eruptions and earthquakes. 

3) Seafloor spreading and continental drift are caused by the expansion of 
magma inside the earth, which pushes the earth’s expansion so that the plates 
move away from each other, the gaps between the plates keep widening and new 
oceanic crust is constantly formed in the gaps. It is the expanding forces of 
magma, not the mantle convection, that cause the seafloor to spread. The 
so-called mantle plume and plate subduction phenomenon do not exist; 

4) Since the earth is expanding and the plates are moving away from each 
other, the phenomena of plate collision and extrusion do not exist. Therefore, 
the theory that earthquakes are caused by the release of the elastic potential 
energy accumulated by plate extrusion and collision is not true. 

5) The earthquake is caused by the explosion of high temperature and high 
pressure gas formed by the accumulation of charged gas molecules separated by 
underground magma; 

6) The Earth’s Ice-Age may have been caused by the acceleration of the speed 
of movement of the solar system relative to the Milky Way as it moves into cer-
tain regions of the Milky Way. The greater the speed of the solar system relative 
to the Milky Way, the greater the drop in Earth surface temperature. 
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Abstract 
A multidirectional discrete space consists of numerous hypercubic lattices 
each of which contains one of the spatial directions. In such a space, several 
groups of lattices can be distinguished with a certain property. Each group is 
determined by the number of lattices it comprises, forming the characterizing 
numbers of the space. Using the specific properties of a multidirectional dis-
crete space, it is shown that some of the characterizing numbers can be asso-
ciated with a physical constant. The fine structure constant appears to be 
equal to the ratio of two of these numbers, which offers the possibility of cal-
culating the series of smallest numerical values of these numbers. With these 
values, a reasoned estimate can be made of the upper limit of the smallest 
distance of the discrete space of approximately the Planck length. 
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1. Introduction 

Once in a while there is speculation about the origin of the physical constants of 
nature. As can be seen in the review article by Barrow [1], some authors have 
noticed coincidences between these constants and numbers of cosmological 
proportions, others see similarities between the constants and some numbers 
obtained in a combinatorial manner. Wesson [2] has proposed to completely 
eliminate the physical constants through appropriately adjusting the quantities 
and parameters in the fundamental equations of physics.  

Here the possibility is investigated that the physical constants originate from a 
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discrete space with many spatial directions. A multidirectional discrete space 
consists of a large but limited number of sparsely connected four-dimensional 
subspaces, each forming one of the spatial directions. The huge number of mu-
tually equal subspaces offers possibilities not existing in the usual continuous 
space. The set of all subspaces consists of various subsets with a certain property. 
Because each subset consists of subspaces encompassing the entire space, the 
number of subspaces characterizing the subsets is timeless and valid throughout 
space. This property makes these characterizing numbers an ideal candidate to 
be related to the physical constants. For some physical constants, indeed there 
appears to be such a relation. This will be shown in two main steps. 

In the first step to be found in Chapter 2, some required physical quantities 
are expressed in the units of the multidirectional discrete space. Only two units 
are needed, the smallest distance of a discrete space and the unit representing the 
diversity of subspaces in which a phenomenon is present.  

In the second step of Chapter 3, it is shown that the different directions of a 
field in a multidirectional discrete space can be treated as independent entities. 
When this is combined with the results of the units’ conversion, it is showed that 
the field in a multidirectional discrete space likely has a granular appearance. By 
using this possibility in combination with the many subspaces of a multidirec-
tional space, it is shown that some of the characterizing numbers are propor-
tional to a physical constant. In Chapter 4 it is shown, based on the huge number 
of subspaces, that the fine structure constant is equal to the ratio of two charac-
terizing numbers, making the constant being an expression of the space struc-
ture. This ratio of two natural numbers, allows calculating the minimal values of 
the numerator and denominator from the empiric value of the fine structure 
constant. In Chapter 5, the minimum values of nearly all characterizing numbers 
are calculated in case an additional structural element of the discrete space ap-
plies. 

The last chapter shows how to determine the largest numerical value of smal-
lest distance of the discrete space with the found values of the characterizing 
numbers. The distance found appears to be of the same order of magnitude as 
the Planck length. 

2. Expressing Some Usual Physical Quantities in the Discrete  
Units 

A set of loosely connected hypercubic lattices (as given in [3]) is used here as an 
example of a multidirectional discrete space. Such a space is discrete at the level 
of the lattice and in the number of hypercubic lattices it consists of. The dis-
creetness of space is expressed in the unit-distance ( )x t∆ = ∆ , being the minim-
al distance both in space and time. Due to the many lattices, an object is present 
in a subset of all possible lattices. To describe a particle field, an additional unit S 
is required representing the lattices in which the object is present. 

A physical quantity expressed in obvious unit Δx and in the unusual unit S is 
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called a discrete quantity, indicated in the subscript: qd. Curiously, no more units 
are needed. To incorporation of the physical quantities in a discrete space, the 
centimetre and the second need to be converted into the unit-distances Δx in Δt. 
This fairly simple conversion will be described first. For that purpose it is as-
sumed that the arithmetically obtained classical electron radius re, the distance 
from which the electron field is present, is directly proportional to the smallest 
size Ld0 of the electron field in a lattice: 0e d conr L ρ= , wherein Ld0 is expressed in 
Δx.  

In a lattice, the distances Δx and Δt are equal: Δx = Δt. For the sake of clarity 
the two units Δx and Δt will be indicated separately.  

Name Symbol     Definition    Unit 

Conversion constant 0con e dr Lρ =  cm/Δx.                (1) 

Discrete distance d conx x ρ=  Δx.                    (2) 

The value of classical electron radius re of Equation (1) is an empirical fact. Ld0 
is defined in paragraph 4.3. The expectation could be that Ld0 equals the smallest 
distance Δx in a discrete space. However, in paragraph 6.2 where a method is 
given to determine the maximal numerical value of Ld0, it turns out to be 
enormous in terms of Δx. With a given Ld0 and re , the constant ρcon is defined. 

To determine the discrete velocity, it is assumed that the maximal velocity 
vdmax runs along the space-time diagonal of each lattice, making max 1dv =  so 
that: 

Discrete velocity dv v c=  Δx/Δt (=1),                (3) 

Discrete time d cont tc ρ=  Δt.                      (4) 

To describe the mass in a discrete space in terms of discrete units, use is made 
of the expression 2 2

e er e m c=  in the CGS-system (see, for example, [4]). Sub-
sequently, the quantities in this equation are replaced by discrete quantities, 
wherein the discrete speed of light equals 1. This result in the expression is 

2
de d deR e m=  with which the discrete electron mass becomes:  

Discrete electron mass 2 de dedm e R=  S/Δx.              (5) 

The discrete elementary charge ed is defined in the next chapter by Equation 
(14). Rde is the size of the virtual portion of the discrete field representing its field 
energy as defined in paragraph 4.3. There it is shown that in a lattice Rde is not 
equal to the smallest size Ld0 of the electron field. The unit S represents the lat-
tices over which the particle field is spread.  

As explained under Equation (9), the discrete and usual mass only differ by a 
proportionality constant making that the mass ratios are equal: 

 dp de p em m m m=                           (6) 

Expressed in discrete quantities, the discrete force is: d d d df m v t= ∆ ∆  and 
the discrete work is the product  d d dW f x= . Together with (2), (3), (4) and (6), 
the relation between discrete work Wd and conventional one W is:  

Discrete work 2
d de eW Wm m c=  SΔx/Δt2.                  (7) 
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The Coulomb energy expressed in the Gaussian unit system is: 2
cU e r=  [4]. 

Transcribing of the usual quantities in this relation by the discrete ones gives the 
discrete potential energy of the electron:  

Discrete Coulomb pot. 2
dC ddU e r=  S/Δx,                 (8) 

in which rd is the discrete distance between two particles. Above equation im-
plies that the discrete elementary charge ed is expressed in the unit S . Anoth-
er relation for the discrete electrical potential UdC can be obtained by inserting 
the usual 2

CU e r=  in the relation (7) between discrete and conventional work. 
Equating this relation for UdC with (8) gives a relation between the discrete dis-
tance rd and r. By using relation (2), these distances can be eliminated, resulting 
in a second expression for the conversion constant ( x t∆ = ∆ ): 

 2 2 2
con de dem m c e eρ =  cm/Δx.                   (9) 

The definition of the conversion constant ρcon is based on an electron. Alterna-
tively, another charged fundamental particle could be used. Because ρcon is the 
relationship between different kind of spaces independent of the particle used to 
define it, it follows from (9) that the particle independence of e/ed also applies to 
mdp/mp. 

According to the Gaussian unit system, the electric field strength is written as: 
3E er r=  [4], resulting in the analogue discrete electric field strength of an 

electron at distance rd of the electron core:  

Discrete field strength 2
d d dE e r= re  2S x∆ ,           (10) 

with er the unit vector between the two electrons. The discrete electric field 
strength will be used in the next chapter to relate ed with a natural number cha-
racterizing the discrete space.  

Replace the quantities in the de Broglie momentum equation mv h λ=  by 
the converted ones using Equations (2), (3), (6) and (9):  

2 2
d d dddp m v hce e λ= =  S/Δx. 

By defining the discrete Planck’s constant as 2 2
d dh hce e= , the discrete de 

Broglie momentum relation becomes: 

Discrete de Broglie d d dp h λ=  S/Δx.  

In 2 2
d dh hce e= , the usual Planck’s constant h can be replaced by the 

fine-structure constant 22 e hcα = π  written in the Gaussian unit system:  

Discrete Planck’s const. ( )222 2d ddh hce e e α= = π  S.       (11) 

By applying the discrete de Broglie relation to a photon, the discrete momen-
tum of the photon becomes: 

Discrete momentum photon photond d dp h λ=  S/Δx. 

The conversion of the usual photon energy photon photondW hc λ=  into discrete 
quantities by using (2), (7), (9) and (11) gives 

Discrete energy photon photond d dW h λ=  S/Δx.            (12) 
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3. Discrete Physical Quantities Expressed in Characterizing  
Numbers  

The correspondence of physical properties with space characteristics is possible 
in a multidirectional discrete space, a discrete space with many spatial directions 
within an overarching four-dimensional space. Reference [3] gives an example of 
such a space where the space consists of very many hypercubic lattices, the sub-
spaces. 

A multidirectional discrete space consists of an enormous number of only 
sparsely interconnected subspaces, each having a different spatial direction. The 
set of all subspaces can be subdivided into several sets containing a number of 
subspaces with a specific property, each number being one of the characterizing 
numbers of the discrete space. These are natural numbers of limited size which 
are valid throughout space, such as the total number of subspaces nsubspaces or the 
number of subspaces with different spatial directions ndirections. It can easily be 
shown that subspaces directionsn n  [3]. A phenomenon placed in such a space is 
scattered over a subset of nparticle subspaces. 

Using of the expressions for the discrete quantities of the previous chapter, it 
will be demonstrated that there is a relation between the characterizing numbers 
and some of the physical constants. Thereby it is assumed that a field with a cer-
tain direction is only present in those subspaces with an axis in the direction of 
the action. 

3.1. Elementary Charge in a Multidirectional Discrete Space 

Within a tangle of subspaces, there is always a subspace that has a connecting 
axis through two objects. The unit vector er of Equation (10) is such a connect-
ing axis within one of the subspaces. The electric field in one of subspaces will be 
used to obtain the expression of the field strength in the set of subspaces with an 
axis parallel to the unit vector er.  

Rewrite Equation (10) to the field in one subspace. With one subspace, there is 
no need for the dimension S . Further dimensional considerations indicate that 
the field strength in one subspace is only determined by 21 dr . When the field 
strength in one lattice is as simple as possible, it is only determined by the mu-
tual distances. The consequence is that in one subspace  1de = , so that the field 
strength in one of subspaces with spatial axis er is:  

 2
dd subE r= re  1/Δx2.                      (13) 

Each subspace of the discrete space consists of a three spatial axis-directions. 
In the set of ndirections subspaces, each axis direction is by definition present in npi-

vot subspaces, a property resulting from one of the regularities in the structure of 
the space [3]. This means that of the ndirections subspaces there are npivot subspaces 
with parallel axes, from which follows that the total field in a certain direction 
consists of npivot subspaces each of strength 2

drre . With this, the total discrete 
electric field strength Ed in the direction er at a distance rd of the electron core is:  
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pivot pivot
2

d d sub dE n E n r= = re  2S x∆ . 

Comparing this expression with (10) gives that the discrete elementary charge 
ed is equal to npivot. So in a discrete space, the elementary charge represents the 
number of parallel axes within a set of ndirections subspaces: 

Discrete elementary charge d pivote n=  S .             (14) 

The above equality defines the discrete elementary charge in a multidirection-
al discrete space assuming that npivot is a known quantity (see Table 1).  

3.2. The Granulation of the Discrete Field  

Take an electric field in the absence of another field. To abstract from the influ-
ence of any other field, the distance rd in expression (13) is rewritten in Ld, being 
a certain variable determining the field strength in one subspace. With omission 
of the unit vector er, the electrical field Ed sub in one subspace is:  

21d sub dE L=  1/Δx2. 

Apparently, Ld is a distance measure making that the field in one subspace is de-
termined by a surface area 2

dL . With the above equation, the energy density 
2
d subE  the field in one subspace is:  

2 41 dd subE L=  1/Δx4.  

The relation for the energy density indicates that the discrete field can be di-
vided into four-dimensional cubic-like entities of size 4

dL  of which the surface 
area 2

dL  forms a part. To obtain the field energy out of the energy density, a 
cube-shaped spatial part of the field of size 3

dL  is taken. To not be limited in 
possibilities, assume that within one subspace for unknown reasons the spatial 
part of the field has a repetition period in time Td, implying that it is only par-
tially present in time. With the gap in time, the spatial part of the field will only 
be present uninterrupted during the time Ld, and is not present at all in the re-
maining period Td. If present, the energy density of the part of the field is 41 dL , 
for the rest of the time Td there is no energy density at all. On average over the 
period Td, the energy density is Ld/Td part of 41 dL , making:  

3energy density 1 d dL T=  

with this, the average discrete field energy Wd sub in one subspace of a spatial part 
of the size 3

dL  is equal to:  

1d sub dW T=  1/Δt. 

3.3. The Field Energy of a Discrete Particle Field 

A particle field is unlimited present with decreasing strength at increasing dis-
tance to the particle core. For a particle field consisting of concentric parts, each 
part with size Ldi have an associated repetition distance Tdi, where 1/Tdi is the 
contribution to the energy of the field. The sum of these contributions results in 
the field energy 1/Td particle of the particle. Due to the finite nature of the total field 
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energy of a particle, all various parts can be replaced by one virtual quantity Rd 

particle with repetition distance Td particle. Being cumulative quantities, both Td particle 
and associated Rd particle are real numbers.  

The particle field is present in at least ndirections subspaces, being the minimal 
number of subspaces with all possible different directions, a small subset of the 
set of all subspaces. With ndirections mainly independent subspaces, the total field 
energy of the particle is the cumulative of the individual contribution 1/Td particle 
of each subspace1: 

 particle directions  particled dW n T=  S/Δt. 

when, as usual, the total field energy is equated to the particle mass, the discrete 
particle mass becomes: 

  particle directions  particled dm n T=  S/Δt.                (15) 

3.4. Relation Wavelength and Photon Energy  

With regard to motion in a discrete space, there is still no satisfactory descrip-
tion thereof, see [5] or [6]. Only in the case of the motion of a photon in a lattice, 
some remarks can be made based on the probable granulation of the field and its 
movement along the space-time diagonal.  

In a multidirectional discrete space, the photon field is distributed over nphoton 
subspaces, each with an axis in the direction of motion. Empirically, after anni-
hilation of an electron-positron pair in photons, there is no remainder of the ini-
tial electron fields. In the process, the electron field within ndirections subspaces 
with all possible directions is transformed into a photon field within nphoton sub-
spaces with an axis in the direction of motion. To make this transition possible, a 
subspace with an arbitrary direction is somehow connected to a subspace with a 
preferred axis. The space-point of the multidirectional space, being a time series 
of subspaces as explained in 4.1, forms such a connection. Apparently a trans-
formation of a part of the field in the one subspace to another field in another 
subspace can take place via the space-point in an unknown manner. This being 
the case, every subspace with random axes has a unique subspace with a pre-
ferred axis, so that photon directionsn n=  and  

photon directions photond dW n T= . 

The time length Td photon is equal to the spatial wavelength of the photon: At 
the moment of the conversion, each part of the electron field is transformed into 
a part of the photon field, making that the photon must also consists of parts. 
The photon field is moving with photon 1v =  so its parts are present along the 
space-time diagonal of the subspace, meaning that the parts are moving stepwise 
with step size photon photond dL T=  if the parts are contiguous. 

Let there be a perfect synchronization of the presence in time of all parts of 

 

 

1Note that in general a particle could be present in more, not less, than ndirections subspaces. Is that the 
case, it is necessary because the discrete Planck’s constant applies to all types of particles to split npar-

ticle in subsets of ndirections subspaces. 
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the photon field. This synchronization ensures that during each period Td photon 
the parts are simultaneously present at location ( )photon |  = integerdz nnT=  in 
all nphoton subspaces involved. Due to the relatively long-term presence at the lo-
cation of each step, the photon had a greater chance of interaction on the spot. 
By the fixed mutual distances of those locations, Ld photon can be interpreted as the 
discrete wavelength λd photon of the previous chapter:  

photon directions photond dW n λ=  S/Δx. 

By equating this expression with the same expression for the photon energy of 
the last chapter (12), the discrete Planck’s constant becomes: 

Discr. Planck’s constant directionsdh n=  S.                 (16) 

3.5. Relation Discrete Electron Radius and Its Repetition  
Frequency  

Equating the two expressions (11), (16) for the discrete Planck’s constant results 
in ( )direction

2
s 2dn e α= π . When this relation is subsequently inserted in the mass 

expression (15) one gets:  

( )electron
2 2 .d dedm e Tα= π  

The same discrete electron mass is also determined by (5): electron
2
dd dem e R= . 

Rde is, according to Section 3.3, the size of a virtual spatial part in which the total 
electron field is concentrated. In a multidirectional discrete space, the electron is 
thus determined by both a spatial size Rde and its repetition time Tde, related by:  

 2 .de deT R α= π                        (17) 

Equation (17) will be used to relate the origin of the fine structure constant to 
the structure of the discrete space considered2.  

4. The Fine Structure Constant Arising from the Space  
Structure  

In addition to the diversity of almost independent subspaces with a spatial direc-
tion, the multidirectional discrete space has characteristics resulting from the 
arrangement of subspaces along the time axes. This arrangement, necessary to 
provide for the plurality of directions, is the cause of the fine structure constant. 

The discrete space studied here consists of many four-dimensional lattices 
linked together over the time axis of each lattice. The subspaces differ only in the 
direction of the three spatial axes. The resulting number of subspaces due to this 
space structure is countless. This number becomes less exuberant when there are 
regularities in the presence of subspaces. The connection via a space-point of 
two subspaces at regular space-time positions in both the one as the other sub-
space is one of these regularities when it applies to all subspaces. 

 

 

2In the case there is no time gap in the presence of a part of the field in one subspace, the discrete 
electron mass would be: ( )electron

2 2d ed dm e Rα= π . This combined with (5) results in 1 2 α= π , a 

difficult to explain result. The time gap is therefore a necessity. 
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In case these regularities in space-time positions are such that the set of sub-
spaces is limited, the space is a discrete space determined by the structural regu-
larities. This makes the multidirectional discrete space a framework whose regu-
larities have yet to be found. The only criteria for this are the properties of the 
reality and the phenomena occurring therein. 

4.1. The Space-Point of the Multiple Directional Space  

Let one of the regularities of space be such that each time axis consists of groups 
of npoint directly connected vertices, each of them belonging to a lattice with a 
different spatial direction. After npoint vertices, there is a connection with a vertex 
of the original lattice. By this way of organizing, every lattice of the space re-
mains an ordinary hypercubic lattice with equal smallest distances in time Δt 
and space Δx. A space-point is an endless series of vertices connected in time. It 
consists of equal parts of npoint vertices, each of them belonging to a different lat-
tice. The parts are repeated over time, such that after npoint vertices the vertex be-
longs to the same subspace. 

One of the supposed regularities of the space is that npoint represents the same 
number for every space-point. Because of the succession of npoint intermediate 
lattices, the smallest distance of a lattice Δt can be subdivided into even smaller 
differential time steps δt with: 

point .t n tδ∆ =   

The space thus formed consists of parallel time axes by definition, the three 
spatial axes perpendicular thereto are only in exceptional cases parallel. In Fig-
ure A1 of the Appendix, a visualization is given of a limited series of coupled 
lattices with different spatial orientations.  

4.2. The Imbalance in the Occurrence of Subspaces 

To keep all possibilities open, presume that there is an imbalance in the number 
of subspaces with all possible spatial directions ndirections in relation to the number 
of subspaces of each space-point: directions pointn n . The consequence of this im-
balance is that the set of ndirections subspaces is part of a bundle of space-points. 
Because all subspaces are interconnected via the space-points and the diverse 
lattices, many chains of space-time connections can be distinguished comprising 
all ndirections subspaces. Within these chains, take the chain consisting of tdirections 
consecutive equal time steps δt that comprises all ndirections subspaces of the bun-
dle. Then the ratio  

directions directions pointt t n n∆ =  

represents the duration of the chain in question expressed in Δt. The first and 
last subspaces of the chain will have three parallel spatial axes, but both sub-
spaces cannot be the same because the ratio will generally not be an integer, 
necessary to be the same subspace. It will appear that above ratio is equal to 
(2π/α).  
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4.3. The Fine Structure Constant and the Particle Field 

According to paragraph 3.3, the particle field in each subspace consists of parts 
of size Ldi, each part with a repetition distance Tdi. During the time Tdi – Ldi no 
part is present in one subspace. Because the parts must always be present some-
where, the parts are spread in time and space over the ndirections subspaces. The 
scattered parts of the particle field are contiguous, meaning that when in one 
subspace the presence of a part stops after the time Ldi, the presence of another 
part starts in a subsequent subspace. This implies that there must be a connec-
tion between the successive parts in the different subspaces in an unknown way. 
These connections form a chain over ndirections consecutive subspaces with each t 
= Ldi a subsequent connection in another subspace. The total time distance of the 
chain is then directions pointdi diT L n n=  expressed in Δt. To have the beginning and 
end of the chain in the same subspace, the size of each Ldi is such that Tdi is an 
integer. So the following relation between of two ratios of integers applies:  

directions pointdi diT L n n= . 

According to paragraph 3.3, particle field will consist of numerous field parts 
of various sizes, each part contributing 1/Tdi to the total energy. Therewith the 
total energy per subspace becomes: 

particle point directions1 1 1d di diT T L n n= ∑ = ∑ . 

Td particle can also be expressed in the smallest size Ld0 of the particle field  

particle 01 d p dT c T= , 

in which cp is an easy to define particle dependent constant. The term 1/Td particle 
determines the discrete particle mass (15). Define the associated virtual spatial 
part Rd particle by particle 01 1d di p dR L c L= ∑ = , where cp is the same constant as in 
the above relation. When applied to the electron, the ratio becomes: 

 directions point 0 0de de d dT R n n T L= = .               (18) 

The value of Ld0 can be calculated as shown in paragraph 6.2, however, that 
does not apply to Rde which determines the discrete electron mass (5).  

By combining (17) and (18), Tde/Rde can be eliminated resulting in a particle 
independent relation for the fine structure constant in a discrete space:  

 directions point 2 .n n απ=                   (19) 

Equation (19) expresses the fine structure constant in just two characterizing 
numbers showing that the natural constant seems to stem from a discrete cha-
racter of the space structure.  

5. Calculation of the Numerical Values of the Characterizing  
Numbers  

The fine structure constant 1/(2π/α) is a well known real number. Because the 
fine structure constant is a ratio of two integers (19), this enables to calculate the 
minimal values of ndirections and npoint.  

Instead of calculating these values directly, a regularity in the arrangement of 
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the subspaces of the space-point will be postulated. The chosen regularity re-
markably gives the possibility to calculate almost all values of the characterizing 
numbers of the discrete space in the form of a broken series of natural numbers. 
It is used that the empirical value of (2π/α) only is fraction larger than 861.  

5.1. Clustering of Subspaces of the Space-Point as Regularity of  
the Space Structure  

Investigate the possibility that the subspaces of each space-point can be grouped 
into clusters of contiguous subspaces with a certain property. Each cluster covers 
an equal time interval: 

cluster clustert n∆ =  δt. 

wherein ncluster is the number of subspaces of the cluster and δt is the differential 
time step of the space-point. Let a space-point consists of ngroupP clusters: 

 point groupP clustern n n=  S.                     (20) 

Let the ndirections subspaces with different direction also be composed by a set of 
ncluster subspaces, each cluster containing mutually different spatial directions. 
When the set consist of ngroupD clusters, the total number of subspaces is: 

 directions groupD clustern n n=  S,                  (21) 

with groupD groupPn n> , because directions pointn n> . 
The last inequality means that the clusters must be present in a bundle of 

space-points. The space-points of the bundle do not mutually differ in the num-
ber of subspaces but in the spatial directions of the subspaces. Inserting equa-
tions (20) and (21) in relation (19) gives:  

 directions point groupD groupP2 n n n nα =π = .              (22) 

5.2. The Characterizing Number Which Determines a Cluster of  
Subspaces 

Let each cluster be determined by nspin with spin pivotn n< . npivot is textually described 
near Equation (14). The characterizing number nspin stands for the number of sub-
spaces within the cluster with a certain property. In the Appendix an example is 
given in which nspin represents the number of subspaces in the cluster with a parallel 
axis. In accordance with the Appendix, ncluster is written as a quadratic function of 
nspin with parameters nc1 and nc2. These are such that ncluster is a natural number:  

2
cluster spin 2 spin 12 c cn n n n n= + + . 

Due to the natural numbers that make up the characterizing numbers, equa-
tion with a ratio such as (22) can be split into two linked equations. With the ex-
tended number of equations thus obtained, nearly all characterizing numbers 
can be expressed in ncluster and nspin as will be shown. 

5.3. Factorizing of (2π/α) 

Use of the property that the value of (2π/α) is very close to an integer. With this, 
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(2π/α) can be expressed in an integer value multiplied by the fraction of ncluster and 
nspin: 

( ) ( ) ( )( )2 2
cluster spin 2 spin 1 spin2 2 2 1 2 .c cTrunc n n Trunc n n n nα α α= =π π + +π (23) 

Use this equation and (22) to eliminate (2π/α): 

( ) 2
groupD groupP cluster spin2 .n n Trunc n nαπ=  

The above relation only consists of quantities representing an integer. The rela-
tion can therefore be split into two linked relations, one determining the nume-
rator and the other the denominator: 

 ( )groupD cluster2 ,n Trunc nρ απ=                   (24) 

 2
groupP spin .n nρ=                          (25) 

with which ngroupD and ngroupP are expressed in nspin. The parameter ρ  must be 
such that both ngroupD and ngroupP are natural numbers. 

More relations can be obtained by equating the expressions (11) and (16) for 
the discrete Planck’s constant: ( )direction

2
s 2dn e α= π . Inserting the expressions 

(14), (21) and (23) in this equation results in 

( )2 2
groupD spin pivot 2 ,n n n Trunc απ=  

where the parameter ρ is gone by equating. Together with (24), this relation 
gives an expression of npivot in nspin: 

 2 2
pivot cluster spin .n n n=                          (26) 

5.4. Relation Discrete Electric Charge and the Space-Point 

After combining (14), (20), (25), and (26) one obtains: 

 2 2
point pivot spin clustern n n nρ= =  S,                   (27) 

2
pivot p t

2
oinde n n= =  S. 

ncluster is a natural number. When (27) is rewritten as pivot spin clustern n nρ= , this 
implies that ncluster is quadratic:  

 ( )2
cluster spin 2 ,cn n n= +                       (28) 

and 2
1 2.c cn n=   

Combining relation (27) with (14) and (28) gives a simple expression for the 
discrete electric charge ed:  

 ( )pivot spin 2 spind ce n n n nρ= = +  S .              (29) 

Above relation implies that the numerical value of ρ  is such that 
( )spin 2 spincn n nρ +  is a natural number. Because ρ  must also meet the condi-

tions formulated in the text under (25), the most simple value of 1ρ = . This 
will be used for further calculations. 

5.5. The Minimum Numerical Values of the Characterizing  
Numbers  

The numerical value of (2π/α) is known within a certain measurement uncertainty.  
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Table 1. Some smallest characterizing numbers of discrete space.  

nc2 nspin ncluster (28) npivot (29) npoint (27) ndirections (21)(24) 1/α (23) {Δ} 

1 76,263 5.8162 109 5.8160 109 3.3827 1019 2.9126 1022 137.035 999 706 {27} 

1 76,264 5.8164 109 5.8163 109 3.3829 1019 2.9128 1022 137.035 999 658 {−20} 

1 76,265 5.8165 109 5.8164 109 3.3831 1019 2.9129 1022 137.035 999 611 {−68} 

2 152,525 2.3264 1010 2.3264 1010 5.4122 1020 4.6600 1023 137.035 999 729 {50} 

2 152,526 2.3265 1010 2.3265 1010 5.4124 1020 4.6602 1023 137.035 999 706 {27} 

2 152,527 2.3265 1010 2.3265 1010 5.4125 1020 4.6603 1023 137.035 999 682 {3} 

2 … …      

 
By using a search procedure, it is easy to calculate the numerical values of nspin 
out of Equation (23) via the inequality: ( ) ( ) ( )2 2 2α α α

− +
π π <= π<= . The 

following empirical values are used: ( ) ( )2 861 1.00002622502 69α
+−

∗π = . 
The calculation results in a series of natural numbers for nspin in dependence 

of nc2. Table 1 shows only the smallest values for nspin and, in addition, the re-
lated numerical values of some characterizing numbers. Of the numerical values 
shown in Table 1 are only those of nspin the exact values. The other values are 
rounded numbers whose exact values can easily be calculated with the value of nspin 
and the specified equations. To check, the last column shows the back-calculated 
fine structure constant using (23). For convenience: ( )1 137.035999679 94α = . 

The individual values of the characterizing numbers have no error margins. 
The error margins can be found in the range of numerical values. Only the val-
ues of nspin are contiguous, the other numbers have a broken range of values. 

6. Concluding Remarks  

An old question is whether the real space is a continuous or discrete. For a long 
time the possibility of a discrete space was not taken seriously, mainly because of 
the fundamental problems with such a space such as the motion problem and 
the anisotropy problem [6]. With the introduction of a multidirectional hyper-
cubic lattice seems the anisotropy problem, the problem with the many direc-
tions, to have been tackled. The multitude of equal discrete subspaces therein 
offers the possibility that the physical constants arise from this omnipresent ab-
undance. In a continuous space, these constants are only difficult to explain 
facts.  

6.1. The Physical Constants as a Property of the Discrete Space 

The multidirectional discrete space differs from the usual Euclidean space only 
at the level of the smallest distance Δx. Within Δx, the space has the counterin-
tuitive property that there are no interconnections between space-points. Also 
the space is unusual in the division into many sparsely connected subspaces 
which differ only in the spatial direction. The scarce connections enable to treat 
the subspaces as almost completely separate items. This has repercussions for the 
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positioning of fields in a multidirectional discrete space.  
The first consequence is that an additional unit is required indicating the 

subspaces in which the field is present. This makes it possible to convert the 
usual physical quantities into just two units. Secondly, the barely connected 
subspaces makes it very likely that the field is distributed over the various sub-
spaces as loosely connected entities acting almost separately. This enables to ex-
press the discrete elementary charge in a number characterizing the discrete pace 
(14).  

The implication of the units-conversion is that fields in a multidirectional 
discrete space should be described as a set of granulations. The graining allows 
expressing the discrete constant of Planck as a characterizing number of the 
multidirectional space (16). The consequence is that in each subspace these 
grains must have a gap in the presence over time, whereby the different granules 
form a consecutive series present in a set of subspaces. The distribution of parts 
of the particle field over subspaces belonging to multiple space-points can be 
seen as the reason for the occurrence of the fine structure constant.  

6.2. The Maximal Value of the Smallest Distance of Discrete Space 

By adding another regularity to the, as far as known, regularities in the space 
structure, nearly all characterizing numbers can be calculated from the fine 
structure constant. The diverse characterizing numbers are presented as a range 
of values starting with the minimal one. The size of these values depends on the 
measurement accuracy of the fine structure constant. The sheer size of the values 
found is an indication of their realism. 

Not all characterizing numbers are linked here to a physical constant, such as 
the total number of subspaces nsubspaces. This number must be much larger than 
the number of subspaces with different directions 22

directions 2.91 10n = ×  (Table 
1), indicating that the physical constant associated with nsubspaces will be very tiny. 
The gravitational constant is good candidate.  

To obtain an indication of the smallest size Ld0 of a particle field, ratio (18) is 
combined with (22): 

0 0 directions point groupD groupPd dT L n n n n= = . 

Above relation indicates that various smallest sizes Ld0 are possible, depending 
on the various ways the fraction ndirections/npoint can be expressed in smaller num-
bers by reduction using the numerical values of ndirections and npoint. When each 
thus obtained Ld0 belongs to a fundamental particle, a series of such particles is 
possible varying from particles with relatively light mass for large Ld0 to heavier 
particles with a small Ld0. 

The smallest size Ld0 of discrete electron field is needed to determine the conver-
sion constant ρcon. The electron probably has the relatively large value  

 0d pointL n= , enabling heavier particles with smaller Ld0. With  
19

point 3.3827 10n = ×  from Table 1 and the empirical electron radius 
152.82 10 mer
−= × , the conversion constant ρcon can be calculated with (1). This 
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ρcon inserted in (2) gives as the largest possible value of the unit-distance of the 
lattice: 

35 8.33 10x −∆ = ×  m, 

based on the electron radius 19
0 3.38 10dL = ×  Δx.  

Δx is in accordance with the Planck length 354.05 10 mP lL K −= × , with Kl a 
dimensionless constant, as obtained by dimensional analysis (see Meschini [7]). 
This is remarkable because the method to obtain Δx only depends on the value 
of the fine structure constant and a model of electron radius Ld0, without the use 
of the gravitational constant.  

Expressed in Δx, the size of the discrete electron radius Ld0 is enormous. This 
implies that within Ld0 the field is uniformly constant, because there are no 
smaller parts of the field than Ld0. Therewith, the problem with the electron ra-
dius is not solved, but shifted to the problem of describing fields in a discrete 
space. 
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Appendix A. A Possible Clustering of Subspaces  

Take the possibility that the subspaces of a space-point are clustered into groups 
of subspaces with a spatial axis in a specific direction. The direction differs for 
each cluster. Within each cluster there are n|| subspaces with mutual parallel 
spatial axes, the other axes of these subspaces have arbitrary directions. All clus-
ters have an equal number of ncluster subspaces. 

Take as parameter the number of subspaces in a cluster with a parallel axis: 
nspin. Let these subspaces be evenly spread over the time axis with an mutual time 
distance proportional to nspin: nspin + nc (see Figure A1). So  

number of subspaces with parallel axes: spin ,n n=  
time difference of the consecutive parallel axes: spin ,ct n n∆ = +  
time interval to the next cluster ,ct∆  
gives as the number of subspaces of a cluster:  

2
cluster cluster spin spin. c c cn t n t t n n n t= ∆ = ∆ + ∆ = + + ∆  

Depicted a series of time connected vertices, each belonging to different sub-
spaces, forming a small part of the time-axis of a space-point. A cluster is formed 
by ncluster vertices in which there are n|| parallel spatial axes positioned at regular 
time interval Δt||. The other spatial axes are random. Also in other clusters are 
subspaces with an axis parallel to ||. Only within the cluster the parallel axes are 
at regular distances in the time. 
 

 
Figure A1. Clustering of subspaces. 
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Abstract 
A novel model of charged leptons is presented, which contains two basics hy-
potheses. The first hypothesis is that the Yukawa coupling between Higgs field 
and charged leptons is the weak interaction, the Higgs field is a scalar interme-
diate boson which changes the chirality of charged leptons in the weak interac-
tion. The other hypothesis is that the flavor eigenstates of charged leptons are 
the superposition states of left-handed and right-handed elementary Weyl spi-
nors before the electroweak symmetry breaking. According to this model, the 
Yukawa coupling constants between Higgs field and three generations of 
charged leptons are considered to be a universal constant, and the difference 
of the masses of different charged leptons is due to the different left-right 
mixing angles of their flavor eigenstates. 
 

Keywords 
Charged Leptons, Weak Eigenstates, Left-Right Mixing Angle 

 

1. Introduction 

Up to now, with the discovery of the 125 GeV Higgs boson in 2012 at the CERN 
LHC [1] [2], the Weinberg-Salam (WS) model [3] [4] of the electroweak interac-
tion of particle physics stands triumphant, and almost all relevant experimental 
results in particle physics are consistent with this model. Although the WS mod-
el has achieved impressive success in correlating all observed low-energy data in 
terms of a very few parameters, it cannot be called perfect. For example, the 
model is based on too many assumptions and leaves many fundamental ques-
tions unanswered. The success of the WS model only involves the gauge sector 
of the theory, in which only one free parameter, the Weinberg angle Wθ , is used 
to understand numerous neutral-current data. But for the fermionic sector, the 
fermion mass spectrum ranges from 170 GeV of the top-quark to 0.511 × 10−3 
GeV of the electron. We do not know why there exists such a large difference 
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among the masses of these fermions, and we have no deep understanding of the 
origin of these masses. Since the fermion masses are related to the Yukawa 
couplings, we can only understand these differences and the mass-generation 
phenomenon by studying the Yukawa couplings in detail [5] [6] [7] [8]. 

2. A Charged Lepton Model  

Quarks and leptons constitute the basic building blocks of matter in the standard 
model. In the WS model, there are three generations of quarks and leptons with 
identical quantum numbers but different masses. Since quarks are supposed to 
be confined by virtue of their strong interactions, the meaning of the quark mass 
is not obvious [9]. Therefore, in the present paper, for simplicity, we will limit 
ourselves to three generations of leptons. Let’s start with discussing the lepton 
sector. Observationally, we must incorporate a neutral, left-handed neutrino 
(For simplicity, the neutrino is assumed to be massless, and hence right-handed 
neutrino is absent.) along with a charged lepton, which can be considered to be 
the sum of left-handed and right-handed Weyl spinors. The left-handed fer-
mions form an isodoublet, consisting of the neutrino and the charged lepton:  

 ( )5
1 1 ,
2 L

L
ν ν

γ    
= + =   

   
 



 

                       (1) 

while the right-handed sector consists of an isosinglet, the right-handed charged 
lepton:  

 ( )5
1 1 ,
2 RR γ= − =



                           (2) 

where , ,e µ τ=  denote the flavor indexes of the charged leptons, and the sub-
scripts L and R refer to the left- and right-handed components, respectively. In 
the standard WS model, the usual default setting is that the flavor eigenstates of 
charged leptons are the same as their mass eigenstates (An eigenstate of finite 
mass is a superposition of left and right-handed states with equal weight [9]), 
i.e.,  

 .L R= +                               (3) 

with the chiral fermions given in Equation (1) and Equation (2), the most gener-
al ( ) ( )2 1L YSU U×  gauge-invariant lepton part of the Lagrangian density of 
WS model can be written as 

( ) ( )†

1 1
2 2

.

i iL ig A ig B L

R ig B R G L R R L

µ µ µ µ

µ µ µ

γ τ

γ φ φ

 ′= − ∂ − + 
 

′− ∂ + − +

  

      

L
           (4) 

By defining the mass eigenstates of gauge fields 

( )1 2

3

3

1 ,
2

sin cos ,

cos sin ,
W W

W W

W A iA

Z B A

A B A

µ µ µ

µ µ µ

µ µ µ

θ θ

θ θ

± =

= −

= +



                    (5) 
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where Wθ  is the Weinberg angle with tan W g gθ ′= , the interaction term that 
leptons coupled to gauge fields and Higgs field in Equation (4) can be written as 

( ) ( )

( ) ( )

( )

2 2 2

†

2 2

2

sin
2

.

L LL L

L LL L
W

gi W W

i g g Z

ggi A G L R R L
g g

µ µ µ µ

µ µ
µ µ

µ µ

ν γ γ ν

ν γ ν γ
θ γ

γ φ φ

+ − ′= + + 

 −
′− + + 

  
′

− − +
′+

  

 

    

 

 

 

 

L

      (6) 

The last term on the right side of Equation (6) is the gauge invariant Yukawa 
coupling between Higgs field and fermions,  

 ( )† ,Y G L R R Lφ φ= − +
    

L                    (7) 

where G


, an additional parameter, gives the strength of the Yukawa coupling. 
In the standard WS model, all the charged leptons are massless as long as elec-
troweak symmetry is unbroken, and they can get masses from Yukawa interac-
tions only after electroweak symmetry breaking. A convenient way to implement 
this is to introduce a doublet Higgs field  

 
0

,
φ

φ
φ
+ 

=  
 

                           (8) 

where the subscripts refer to the electric charge. Replacing φ  by its vacuum 
expectation value  

 
0

,φ
υ
 

=  
 

                          (9) 

the mass term of the charged leptons can be given by the Yukawa coupling Equ-
ation (7) as  

 .m Gυ= −




L                        (10) 

Thus we can identify the masses of the charged leptons  

 .m Gυ=
 

                         (11) 

However, it does not specify the value of the masses since the Yukawa coupling 
constant G



 is arbitrary. So far, the standard model of the electroweak interac-
tion has not given more further information on the origin of charged lepton 
masses. Furthermore, it is important to notice that since the strength of interac-
tion between the Higgs field and any particle is proportional to the mass of that 
particle, this means that there is a new type of interaction that is different from 
the strong interaction, the electroweak interaction and even the gravitational in-
teraction, which is very unnatural. 

Since the mass of the Higgs boson is similar to that of W and Z bosons, so we 
could find it on the LHC in 2012. To some extent, they are all the same particles, 
or fields that presumably mediate weak interactions. In this sense, the Higgs bo-
son will be no different from W and Z bosons. If these considerations are rea-
sonable, the coupling constants of the four interaction terms in Equation (6) will 
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be of the same order of magnitude, which means the Yukawa coupling in Equa-
tion (4) can be written as  

 ( )† ,Y g L R R Lφ φ′′= − +
   

L                    (12) 

where g′′  is the universal coupling constant of the Yukawa coupling. Based 
on the above discussion, we assume that the Yukawa coupling is the weak in-
teraction, and the Higgs field is a scalar intermediate boson which changes the 
chirality of particles in the weak interaction. Since in low-energy processes the 
Higgs-meson and the W-meson carry small momentum, the propagators of 
them may be taken to be 2

HM −  and 2
WM − . By considering Equation (6) and 

Equation (12), we can then obtain the following relation between the coupling 
constant g ′′  and the gauge coupling constant g  as  

 
2 2

2 2 ,
2 W H

g g
M M

′′
=                           (13) 

which gives the universal Yukawa coupling constant  

 
2

H

W

g Mg
M

′′ =                           (14) 

Replacing φ  by its vacuum expectation value φ , Equation (12) changes to 
be the mass term of the charged leptons  

 ,
2

H
m

W

g Mg
M

υυ′′= − = −


 L                   (15) 

The massess of the charged leptons derived from Equation (15) can be easily 
shown as  

 2 .
2

H
H

W

g Mm M
M

υ
= =



                   (16) 

The comparison between Equation (16) and Equation (11) shows that this result 
is obviously wrong. The question now is whether the assumption Equation (12) 
is wrong or our understanding of it is incomplete. If we accept Equation (12), 
the only thing we can do is to reinterpret the flavor eigenstates of the charged 
leptons. 

The form of the Lagrangian density given by Equation (4) indicates that the 
basic spinor fermion fields are not 4-component Dirac spinors, but rather their 
left and right-handed projections. Thus, for the weak interactions, the elemen-
tary entities are states of chirality with zero mass [9]. Based on these viewpoints, 
we propose a hypothesis here that the flavor eigenstates of the charged leptons 
are the superposition states of left-handed and right-handed Weyl spinors before 
electroweak symmetry breaking, i.e.,  

 ( )2 cos sin .L Rψ θ θ= +
  

                      (17) 

where θ


 are three left-right mixing angles (Hereafter, we will limit the angles 
θ


 to 0 2θ≤ ≤ π


.), and factor 2  is to ensure that Equation (17) is the 
same as Equation (3) when cos sin 1 2θ θ= =

 

. L  and R  refer to the 

https://doi.org/10.4236/jmp.2020.113028


D. F. Wang et al. 
 

 

DOI: 10.4236/jmp.2020.113028 452 Journal of Modern Physics 
 

elementary entities, the left- and right-handed Weyl spinors, respectively. 
By using Equation (17), the left- and right-handed charged leptons given in 

Equation (1) and Equation (2) should be replaced by  

 
( )

( ) ( )

5

5

1 1 ,
2
1 1 .
2

L

R

L

R

ν ν
γ

ψ ψ

γ ψ ψ

   ′ = + =   
   

′ = − =

 



 

  

                    (18) 

Consequently, the Yukawa coupling in Equation (4) becomes  

 ( )† .
2

H
Y

W

g M L R R L
M

φ φ′ ′ ′ ′= − +
   

L                   (19) 

By using Equation (18) and Equation (19), the Lagrangian density which cha-
racterizes the coupling of leptons to gauge fields and Higgs field in Equation (4) 
changes to be  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2 2

†

2 2

2

2sin
2

.
2

L L L L

WL L L L

H

W

gi W W

i g g Z

gg g Mi A L R R L
Mg g

µ µ µ µ

µ µ µ µ

µ µ

ν γ ψ ψ γ ν

ν γ ν ψ γ ψ θ ψ γ ψ

ψ γ ψ φ φ

+ − ′= + + 

 ′− + − + 
′

′ ′ ′ ′− − +
′+

    

     

     

L

 (20) 

In Equation (20), all the terms except the Yukawa term do not involve cross 
term of left- and right-handed states. Thus, in these terms, according to quan-
tum principles, it can be seen from Equation (17) that the left-handed fermion 
state ( ) 2 cos LLψ θ=

 

  and L  correspond to the same state, and for the 
same reason, the right-handed fermion state ( ) 2 sin RRψ θ=

 

  and R  cor-
respond to the same state, too. However, in the Yukawa term, because of the in-
terference between left-handed state ( )Lψ



 and right-handed state ( )Rψ


, the 
coefficients 2 cosθ



 and 2 sinθ


 are indispensable. 
Based on the above considerations, after parameterization and unitary gauge 

transformation, replacing φ  by  

 
0

,
υ η
 
 + 

                            (21) 

where η  is the real Higgs field. The Yukawa term in Equation (20) changes to 
be  

 ( )( )sin 2 .
2

H
Y

W

g M
M

θ υ η= − +


L                  (22) 

Meanwhile, Equation (20) becomes  

 

( )

( ) ( )

( )( )

2 2 2

2 2

( )
2

2sin
2

sin 2 .
2

L L LL

L L WL L

H

W

gi W W

i g g Z

gg g Mi A
Mg g

µ µ µ µ

µ µ µ µ

µ µ

ν γ γ ν

ν γ ν γ θ γ

γ θ υ η

+ − ′= + + 

 ′− + − + 
′

− − +
′+

  

 



 

   

  

L

    (23) 
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This result is completely consistent with the standard WS model. 
From Equation (22), we can obtain the masses of the charged leptons as  

 ( )2 sin 2 .Hm M θ=
 

                      (24) 

Equation (24) shows that the difference of masses among the charged leptons of 
three generations comes from the different left-right mixing angles θ



 of their 
flavor eigenstates. 

Comparing Equation (11) with Equation (24), the usual Yukawa coupling 
constant G



 is given by  

 ( ) ( )2 sin 2 sin 2 .
2

H
H

W

g MG M
M

θ θ
υ

= =
  

             (25) 

From Equation (24), we can obtain  

 ( )sin 2 ,
2 H

m
M

θ = 



                       (26) 

where 2 Hm M


  means ~ 2 2 1Hm Mθ
 

 . Now put ~ 0.511 MeVem , 
~ 105.66 MeVmµ , ~ 1776.86 MeVmτ  and ~ 125 GeVHM , one can obtain 

the magnitude of the three left-right mixing angles are about  

 

6

4

3

~ 1.45 10 ,

~ 2.99 10 ,

~ 5.03 10 .

e

µ

τ

θ

θ

θ

−

−

−

×

×

×

                        (27) 

This result implies that the charged leptons, as the superposition states of left- 
and right-handed elementary Weyl spinors, have an extreme left-right asymme-
try. It is noteworthy here that the existence of left-right asymmetry should be re-
lated to the destruction of parity conservation in weak interactions [10]. 

3. Conclusion  

The present paper mainly discusses the origin of the masses of charged leptons. 
The proposed model is based on two basic hypotheses: the first one is that there 
exists a universal constant of the Yukawa coupling term, this constant has the 
same order of magnitude as the gauge coupling constant; the other one is that 
the flavor eigenstates of the charged leptons are the superposition states of 
left-handed and right-handed Weyl spinors with different weights before elec-
troweak symmetry breaking. Based on these two hypotheses, it is found that the 
difference in masses among the three generations of charged leptons is due to 
the difference in the left-right mixing angles in the definition of the flavor ei-
genstates of the different charged leptons. In fact, the lines of thought presented 
in this paper may be applied to three generations of neutrinos and even to the 
three generations of quarks. The origin of neutrino masses is one of the most 
compelling evidences for physics beyond the Standard Model (SM) [11], and 
there is no reliable theory to explain it. We will discuss the problem of neutrinos 
in our forthcoming works. 
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Abstract 
We calculate the energy levels of He+ ion placed in a uniform magnetic field 
directed perpendicular to the direction of its center of mass (CM) velocity 

vector, correct to relative order 
2

2
v
c

. Our calculations are within the frame 

work of an approximately relativistic theory, correct to relative order 
2

2
v
c

, of 

a two-particle composite system bound by electromagnetic forces, and writ-
ten in terms of the position, momentum and spin operators of the constituent 
particles as proposed by Krajcik and Foldy, and also by Close and Osborn. 
Since the He+ ion has a net electric charge, the total or the CM momentum is 
not conserved and a neat separation of the CM and the internal motion is not 
possible. What is new in our approach is that, for the basis states in a first or-
der degenerate perturbation theory to calculate the effects of the external 
magnetic field, we use the direct product of the coherent state of the Landau 
Hamiltonian of the He+ ion in a uniform magnetic field and of the simulta-
neous eigenstate of the internal Hamiltonian h, 2j , 2l , 2s  and zj , where 
j , l  and s  are the internal total, orbital and spin angular moments of the 

He+ ion. The coherent state is an excellent approximation to the expected 
classical circular motion of the center of mass (CM) of the He+ ion. In addi-
tion to the 2 2Z α  corrections to the usual nonrelativistic results, including 
the small corrections due to the nuclear motion, we also obtain corrections 
which depend on the kinetic energy ( CME ) of the CM circular motion of the 
He+ ion, in a nontrivial way. Even though these corrections are proportional 

to 2
CME

Mc
, where M is the mass of the He+ ion, and are small for nonrelativistic 

CM motion, the results should be verifiable in careful experiments. Our re-
sults may also have application in astrophysical observations of the spectral 
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lines of He+ ions in magnetized astrophysical objects. 
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Relativistic Corrections, Zeman Effect, Helium Ion in a Magnetic Field,  
Coherent State, Landau Hamiltonian, Energy Levels 

 

1. Introduction 

When a composite system with a nonzero net electric charge is placed in a uni-
form magnetic field, neither the total canonical or mechanical momenta are 
conserved. So there is no inertial frame where the total momentum is zero at all 
times. So the problem of separating the c.m. motion from the internal motion 
for such a system will be different from that of an isolated system where the total 
or the c.m. momentum is conserved. In the past, several authors [1]-[8] have 
studied the problem of calculating the corrections to the internal energy levels of 
composite ions in a magnetic field. Some of them [1] [2] [3] [4] are based on a 
constant of motion introduced initially by Baye. And some of the works treated 
N-body problem [6] [8]. There are also aothors introducing new momentas us-
ing the coordinates transformation [5], however the coupling term is not small 
when one of the particles is much heavier than the other. In the paper [7], the 
the center of mass motion in an electromagnetic radiation is researched. In this 
paper, we take a different approach to this problem which is more physical. First 
of all we note that the overall or the c.m. motion of the ion in a uniform mag-
netic field under ordinary circumstances, is the familiar classical circular motion, 
if the uniform magnetic field is directed perpendicular to the plane of motion of 
the ion. In a recent paper [9] we have shown that the quantum state which most 
closely resembles the classical state of a charged particle moving in a uniform 
magnetic field, is the coherent state of the Landau quantum Hamiltonian of such 
a particle. In this paper, we will calculate the corrections to the energy levels of a 
H like ion (specifically He+ ion) in a uniform magnetic field, by treating the state 
of the c.m. motion of the ion as a coherent state of the Landau Hamiltonian. One 
of the interesting features of our results is that the shifts in energy levels of the 
ion, including their first order relativistic corrections, depend on the energy of 
the c.m. motion, in a significant way. Even though these corrections are of the  

order of 2
CME

Mc
 times the usual results where M is the mass of the He+ ion, and  

hence small for nonrelativistic c.m. motion, which we assume, it is important to 
include them, since in the future, more precise spectroscopic measurements may 
be able to detect such small corrections. 

The format of the rest of the paper is as follows: In Section 2, we describe the 

approximately relativistic (correct to the order 
2

2
v
c

) Hamiltonian of the isolated 

He+ ion, and from there, how we obtain the Hamiltonian of the system in the 
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presence of an external magnetic field. We also introduce the approximately re-

lativistic [10] [11] relations, again correct to order 
2

2
v
c

, between the constituent  

and the c.m. variables. We then express these Hamiltonians in terms of these va-
riables. In Section 3, we give the details of our perturbative calculation of the 
corrections to the energy levels due to the external uniform magnetic field. We 
also give particular attention to the basis states used in the first order perturba-
tion calculations. The basis states we used, are the direct product of an internal 
state and the c.m. state which is the coherent state of the Landau Hamiltonian of 
a particle of charge ( )1Z e−  and mass ( )e NM m m= +  in a uniform magnetic 
field. In Section 4 we give our final results. Finally in Section 5, we make some 
concluding remarks. 

2. Hamiltonian of the He+ Ion in a Uniform Magnetic Field,  

Including Their First Order 
 
 
 

v
c

2

2  Relativistic Corrections 

2.1. Isolated He+ Ion 

First let us consider the isolated He+ ion, which is a weakly bound composite 
system of two particles where the first particle is the electron of mass m and  

electric charge -e, and spin 1
2

s =  and the second particle is the He4 nucleus of  

electric charge Ze  and mass Nm  with zero spin and zero magnetic moment. 
We will put 2Z =  only when we do numerical calculations. The Hamiltonian 
of such an electromagnetically bound system can be written, correct to order  

2

2
v
c

 using the methods of Close and Osborn [12]. 

( ) ( ) ( )

( ) ( )

2 2 4 4 2 2
1 2 1 2

1 23 2 3 2 2
1 2 1 2

2
1 1 2 2

1 1 2 1 2 23 32
1 2 1 2

2 2
1 1 2 1

1 2 32 2 2 2
1 2

1
2 2 8 8 4

1 . .

4 2

N N N

N

p p p p Ze ZeH
m m m c m c mm c

ZeH C
mm c

Ze Ze
m c m c

δ


= + − − − + ⋅− −

 ⋅ − ×  + ⋅ − − ⋅ + −
− −

⋅ − ×  − π − +
−

p p
r r r r

s r r p
p r r r r p

r r r r

s r r p
r r

r r

 (1) 

The first line in the above equation represents the kinetic energy terms, in-

cluding their first order 
2

2
v
c

 
 
 

 corrections and the Coulomb potential energy of  

the two charges Ze  and -e. The second and third lines are the straight forward 
Breit interaction, resulting from the unretarded transverse one photon exchange. 
The fourth line represents the interaction between the spin magnetic moment of 
the electron and the magnetic field produced by the motion of the charged nuc-
leus. The fifth line represents the effect of the zitterbewegung of the electron’s 
motion, coming from the Darwin term, in the nonrelativistic reduction of the 
Dirac Hamiltonian of the electron. The sixth line represents the conventional 
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spin-orbit interaction, including the so called Thomas precession. The above ex-
pression for the Hamiltonian is also the same as the expression for the Hamilto-
nian of a two particle system interacting electromagnetically, given by Krajcik 
and Foldy [10], specialized to our case, where one of the particles He4 nucleus 
has zero spin and zero magnetic moment. We have also put the electronic spin  

magnetic moment eµ  in their expressions [10] [11] as 
2e

e
mc

µ = −  which  

neglects the radiative corrections. This is consistent with the spirit of their ap-
proach which neglected the radiative corrections to the one photon exchange 
between two charged particles. It should also be noted we have used the Gaus-
sian system of units, where as Close and Osborn [12] and Krajcik and Foldy [10] 
used rationalized Gaussian units. Also in Equation (1) we have used the system 
of units where 1= , but 1c ≠ , where as the previous authors [10] [11] have 
put 1c= = . 

It has already been demonstrated [10] [13] that the above Hamiltonian is part  

of a consistent relativistic theory to order 2
1
c

, by giving explicit expression [10] 

for the ten generators of the Poincare group in terms of the basic variables of the 
theory, µr , µp  and µs  ( )1,2µ =  and showing that they satisfy the commu-

tation relations of the Poincare group to the same 2
1
c

 order. The relativistic 

c.m. and internal variables are defined by the requirement that when the ten ge-
nerators are expressed in terms of them, they take the single particle form [10] 

[11] [12] to the same order 2
1
c

. 

Using this requirement, the relativistic relations between the constituent va-
riables ( µr , µp  and µs , 1,2µ = ) and the c.m. and the internal variables ( R , 
P , q , p  and µσ , ( 1,2µ = )) for a two particle composite system made up of 
two particles, particle 1 being the electron of mass m and charge -e and particle 2 
being the nucleus of mass Nm  and charge Ze+ , are given by [10] [11] (correct  

to order 
2

2
v
c

). 

( )

2
1 2 2

2 2

2

2 2 2 2 2

1 1 . .
2 2 2

1 1 1 . .
2 2 2

1
2 2 2

N N

N

N N

N
e e N

m m m p H C
M c mm M M

m m H C
M c m M

m Ze m m
mMc mM c M c q

 −
= + − + ⋅ + 

 
 + ⋅ − − + 
 

− × + × + −

qr R q P p

q P p p P

qp Pσ σ

       (2a) 

( )

2
2 2 2

2 2

2

2 2 2 2 2

1 1 . .
2 2 2

1 1 1 . .
2 2 2

1 1
2 2 2

N

N

N

e e N

m m m p H C
M c mm M M

m m H C
M c m M

Ze m m
mMc M c M c q

 −
= − − + ⋅ + 

 
 

+ ⋅ − + + 
 

− × − × + −

qr R q P p

q P p p P

qp Pσ σ

        (2b) 
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( ) ( )( )

2
1 2

2 2

2 2 2 2 3

2 2

1
2 2

N

N

N N

m m m p
M mm M Mc

Ze Zem m m m
M c q M c q

  − ⋅
= + + +  

  

− − + − ⋅

p P Pp p P

qP q P

         (3a) 

( ) ( )( )

2
2 2

2 2

2 2 2 2 3

2 2

1
2 2

N N

N

N N

m m m p
M mm M Mc

Ze Zem m m m
M c q M c q

  − ⋅
= − + − +  

  

+ − + − ⋅

p P Pp p P

qP q P

         (3b) 

( )
22

e
e e mMc

× ×
= −

p P
s

σ
σ                          (4a) 

( )
22

N
N N

Nm Mc
× ×

= +
p P

s
σ

σ                         (4b) 

where, NM m m= +   

 ( )1 2 0=
= −

P
q r r                              (5) 

1 20 0= =
= = −P Pp p p                            (6) 

1 2= +P p p                                (7) 

1 2

0

Nm m
M =

+
=

P

r rR                            (8) 

We also notice, since we put 1= ,  

 ,i j ijq p iδ  =                               (9) 

,i j ijR P iδ  =                              (10) 

Also R  and P  commute with the internal variables q  and p  as well as 

eσ  and Nσ . In our case, for the He4 nucleus, Ns  and Nσ  both vanish. Nσ  
is the spin operator of the electron in the 0=P  frame. The reader can easily 
verify that when expressed in terms of the c.m. and the internal variables, the 
Hamiltonian of Equation (1) takes the single particle form,  

 2 2 2H c P h= +                           (11) 

to order 
2

2
v
c

. The other nine generators also take the single particle form again 

to order 
2

2
v
c

, In particular, to order 
2

2
v
c

, Equation (11) takes the form,  

 ( ) ( )
2 4

0 12
2 2 3 21

2 8
P PH Mc h h

M c M c
 

= + − + − 
 

             (12) 

where ( )0h  is the nonrelativistic internal Hamiltonian and ( )0h  is the first or-

der 
2

2
v
c

 
 
 

 correction to ( )0h . We find,  

 ( )
2 2

0

2
p Zeh

qµ
= −                          (13) 
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( )

( )

( ) ( )

4 4 2
1

3 2 3 2 2

2 2

2 3 2 3

2 2

2 2 2 2 3

1 . .
8 8 4

1 . .
4

4 2

N N

e

N N

e

p p Zeh H C
m c m c mm c q

Ze ZeH C
mm c q mm c q

Ze Ze
m c m c q

δ

 
= − − − ⋅ + 

 
⋅ × 

− ⋅ ⋅ ⋅ + + 
 

⋅ ×
− π +

p p

q p
p q q p

q p
q

σ

σ

      (14) 

In Equation (16) µ  is the reduced mass  

 N N

N

mm mm
m m M

µ = =
+

                       (15) 

It should be stressed that Equation (1) would not have taken the single particle 
form of Equation (12) if we had used the nonrelativistic c.m. variables, which  

means neglecting the 2
1
c

 terms in Equation (2) and Equation (3). Also we will  

find with the nonrelativistic c.m. variables, the center of mass itself does not 
move uniformly and that the internal angular momentum, = ×l q p  is not 
conserved. We should emphasize that eσ  in Equation (14) and elsewhere in the  

paper is not the Pauli matrix, but the spin 1
2

 operator of the electron, es , in  

the 0=P  frame, which is really one half the usual Pauli matrix. 
In order to derive Equations (12)-(14) we made use of the following conve-

nient relations between the constituent and linearly independent c.m. and inter-
nal variables R , P , q  and p , which can be derived from Equations (2)-(4) 
using Equation (6) and Equation (7).  

 
( ) ( )

( )

1 2 2 2

2 2 2

1
2
1

2 2

N

N

e

m m
M c m m

M c mMc

 
− = − − ⋅ + ⋅    

 
×

− ⋅ −

r r q q P p p q P

Pq P P σ
           (16) 

( )( ) ( )( )

( ) ( )

1 2 2 2 2

2
2 2 2 2 2

1 11
2

1 1
2 2

N

N

e

m mq
M c m m q

M c q mMc q

  
− = − − × ⋅ ⋅ + ⋅ ⋅     

 
⋅ × 

− ⋅ − 


r r q P q p q p q P

q P
q P

σ
   (17) 

The nonrelativistic internal Hamiltonian ( )0h  of Equation (13) gives the Bohr 
energy levels of a particle of reduced mass µ  given by Equation (15). The first 
order relativistic correction to this Hamiltonian, ( )1h  of Equation (14), gives the 
fine structure corrections to the energy level due to the spin-orbit, magnetic and 
Darwin terms. It is important to note our expressions for ( )0h  and ( )1h  in-
cludes the effects of nuclear motion, that is terms of all orders in  

N

m
m

 
 
 

 correct to order 
2

2
v
c

. We will calculate the corrections to the Bohr energy  

levels due to ( )1h  in the first order degenerate perturbation theory where the 
basis states are chosen as the simultaneous eigen stats of ( )0h , 2l , 2

eσ , 2j  and 
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zj , where,  

 = ×l q p                              (18) 

e= +j l σ                              (19) 

2.2. The Hamiltonian of the He+ Ion in a Uniform Magnetic Field 

The main goal of this paper is to calculate the corrections to the eigenvalues or 
energy levels of ( ) ( )0 1h h+  of the He+ ion due to the presence of an external 
uniform magnetic field, the so called Zeeman effect on a composite system with 
a net electric charge. The Hamiltonian of He+ ion in the presence of an external 
magnetic field B  is obtained from the Hamiltonian of Equation (1) by means 
of two requirements. 1) The resulting Hamiltonian should be gauge invariant in 
the sense that the Hamiltonian should be invariant under the gauge transforma-
tions  

 A A Aµ µ µ µχ′→ = + ∂                         (20) 

where χ  is an arbitrary function of x  and t , and Aµ  is the four vector po-
tential representing the external e.m. field = ∇×B A . In our case where there is 
only an external magnetic field, this requirement reduce to,  

 χ′→ = + ∇A A A                          (21) 

2) The resulting Hamiltonian should reduce to the sum of the Foldy-Wouthuysen  

reduced Hamiltonians (to order 
2

2
v
c

) of two relativistic free particles in the absence  

of any internal interaction between the particles. 
The first requirement can be satisfied if every momentum operator µp  in  

Equation (1) is replaced by 
e
c
µ

µ µ
 

− 
 
p A  where 1,2µ =  is the particle label  

and ( )µ µ=A A r . The second requirement can be satisfied by adding two terms 
which depend on B  and the spin operator of the electron and which are ob-
tained from the Dirac Hamiltonian of the electron in the presence of a magnetic  

field by the Foldy-Wouthuysen reduction to order 
2

2
v
c

. Using the two require-

ments, the Hamiltonian of the He+ ion in the presence of an external uniform 

magnetic field to relative order 
2

2
v
c

, is given by the following expression:  

( ) ( )

2 2 2 2

1 1 2 2 1 1 1 12

3 2
1 2

2 2

2 2 2 2 2

1 1 2 23 2 2
1 2

1 1 1 2 1 2 23
1 2

2 2 8

1
8 4

1

N

N N

e Ze e e
Zec c c cH

m m m c

Ze Ze
Ze e Zec c

c cm c mm c

e
c

       + − + +       
       = + − −

−

   − −          − + + −   −   

 + ⋅ − × − ⋅ − 
  −

p A p A p A p A

r r

p A p A
p A p A

r r

p A r r r r p
r r

2 . .Ze H C
c

  +    
A
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( )
( )

( )

1 1 2 2 22 2

1 22 3 2 2
1 2

1 1 2 1 12
2

1 1 12 2 3 3 3
1 2

4

,
2 4

N

Zes
cZe Ze

mm c m c

es
cZe e e p

mcm c m c

δ

+

  ⋅ − × −    − − π −
−

  ⋅ − × +      + + ⋅ − ⋅ −

r r p A
r r

r r

r r p A
s B s B

r r

(22) 

The last two terms on the right hand side of Equation (25) represents the terms 
obtained from the second requirement mentioned above. In Equation (25) we  

have to keep terms up to order 3
1
c

 because of the 1
c

 factor in 1
c
A  when p  

is replaced by q
c

 − 
 
p A  where q is the electric charge of the particle. 

We have reasons to believe we are on the right track with the Hamiltonian of 
Equation (21). In previous works, [14] we have shown that the Hamiltonian in 
the presence of an external radiation field obtained by means requirements (1) 
and (2) reproduced the relativistic invariance of the one and the two photon 
transition amplitudes together with the use of the relativistic c.m. variables in-
troduced above. It has also been shown [13] [14] [15] that the same Hamiltonian 
would reproduce the well-known low energy theorems on Compton scattering 
of photons by bound composite systems. 

In Equation (22),  

 ( )µ µ=A A r                          (23) 

where 1,2µ =  is the particle label. In the case of the external uniform magnetic 
field B ,  

 ( )1
2µ µ= ×A r B                         (24) 

where we have chosen the symmetric gauge to define the vector potential. If B  
is along the Z-axis, the vector potential A  will only have x and y components, 
so that  

 1 1ˆ ˆ
2 2

By Bxµ µ µ= − +A i j                     (25) 

Substituting Equation (25) in Equation (22) and using the first order relativistic 
relations between the constituent and c.m. variables of Equations (2)-(4) and 
Equation (6) and Equation (7) in the resulting Equation (22) and after a series of 
simplifications and rearranging, we obtain the following expression for the Ha-
miltonian of He+ ion in a uniform magnetic field directed along the Z-axis.  

( )

2 2 2
4

3 2 3 2 2 2 3

2 2

2 2 2

1 1 1 1 2
2 8 8 2

1 1
2 4

e
NN

N

p Ze Ze mH p
q mm c m c m c q

Ze Ze
q qmm c m c

µ

δ

   
= − − + + ⋅ +       

 
− ⋅ + ⋅ ⋅ − π 

 

l

p p p q q p q

σ
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( ) ( )

( ) ( ) ( )

( ) ( )

2 22 22 2
2 2 2 2

2 2

22 2 2
2 2

2

22 4 2 2 2
2 2 2

2 2 3 2 2 2 2

1 1
2 28 8

1 11
2 8

1
2 2 8 8

X Y

Z
N

N
Z z

N

Z e Z eP P
B X B Y

M MMc Mc

Z eB Ze B ZL X Y
Mc m m Mc

Z eB mP P e B m mL q q Z
Mc mM c M c mc M M

   − −
   + + + +
   
   

 − −
 − + + − +
 
 

−  
+ − + − +  

 

 

2 2 2 2 2

2 2 2 2

2 2 2

2 2

2

2 2

2

2

2

2 2

1 2
2 2 2

2 2 2

1 1
2 2

1
2 2

31 3
2 4 2 2

z N
z ez

N

N N
z

N

N
z

N N

z
N

p Ze P m p m P
q M c M M M c

p P eB m m eBZ l
M c mc M m M mc

eB p m m ml
mc m M mc m Mc

ZeB p m m l
m c M m Mc

eB P m m ml Z
mc M c M m M

µ µ

σ
µ

µ

   + − − −   
  

 
− + − + 

 
 −

− + 
 
 

− − 
 

  − − − +  
 




 

 
( )

2

2

2 2 2
2 2

2 3 2

2 2 2

2 2 2 2

2

2

31
2 2 2 2

1
2 2 2 2

1 1
2 2 2 2

1
2 2

z N

N

z ez ez
z

N N

Z
ez

N

Z

N

eB Ze l m m m mZ
mc q Mc M m M

eB p p m ZeB ZeZ q q
mc m Mc m m c q Mc

eB P m m eB p L mZ Z
mc M c M M mc m Mc m

eB Ze L mZ
mc q Mc m

σ σ

σ

 −  − − − +  
  

 −
− + − − 

 
  − + − − −  

   
 

+ − 
 

     (26) 

where the c.m. orbital angular momentum operator,  

 ,=L R P                           (27) 

the operator eσ  is the spin operator of the electron in the 0=P  frame, except 
for the factor   which we have put equal to 1 in all of the above equations. 

Several comments are in order about Equation (26). First, we have included 
terms of order 2B  only in the nonrelativistic part of the Hamiltonian. In the 
relativistic correction terms, we have kept only terms which are linear in B, 
mainly because the contribution of the quadratic and the higher order terms in B 
are demonstrably negligible, even for any reasonably strong values of the mag-
netic field. In the next section we will write the Hamiltonian of Equation (26) as 
the sum of an unperturbed Hamiltonian 0H  and a perturbation Hamiltonian V. 
The unperturbed Hamiltonian will contain ( ) ( )0 1h h+  plus the Landau Hamil-
tonian of a charged particle of electric charge ( )1Z e−  and of mass M, moving 
in the xy plane perpendicular to the magnetic field B  directed along the Z-axis. 
The remaining terms on the right hand side of Equation (26) will be treated as 
the perturbation V. 
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3. Perturbative Calculation of Corrections to the Energy  
Levels of He+ Ion Due to the External Uniform Magnetic  
Field 

For the first order perturbation calculation, we first write down our explicit ex-
pressions for 0H  and V.  

 

( )

( )

( ) ( )

2 2
4

0 3 2 3 2

2 2 2

2 2 3 2 3 2 2

2 222
2 2

2 2

2 22
2 2

2

1 1=
2 8 8

1 1
2 4

11 1
22 8

1 1
2 28

N

e e
N

X

N

Y
Z

p ZeH p
q m c m c

Ze Ze Ze
m c q mm c q m c

Z ePZe B X
q q Mmm c Mc

Z e Z eBP B Y L
M McMc

µ

δ

  
− − +  

   

+ ⋅ + ⋅ − π

 − 
 − ⋅ + ⋅ ⋅ + +      

 − −
 + + −
 
 

l l q

p p p q q p

σ σ

  (28) 

We can write 0H  as,  

 ( ) ( )0 1
0 0

LH h h H= + +                        (29) 

where ( )0h  is the nonrelativistic internal Hamiltonian and ( )0h  is its first order  

(of order 
2

2
v
c

) correction, proportional to 2
1
c

. 0
LH  is the Landau Hamiltonian 

of a particle of mass M and electric charge ( )1Z e− .  

 
( ) ( ) ( ) ( )22 2 2 2

2 2
0 2

1 1
2 8 2

X YL
Z

P P Z e B Z eB
H X Y L

M Mc Mc
+ − −

= + + −       (30) 

where ZL  is given by Equation (27).  

( ) ( ) ( )

( )

22 2 2 2 4
2 2

2 2 2 3 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2
2 2 2

2 2 2

2

1 11
8 2 2 8

1 2
2 2 2 2 2

8 2

2 2

Z
N

z

N N
z z ez

N N

Z Z eBe B Z P PV X Y L
c m m M Mc M c M c

p Ze P m p m P p P
q M c M M M c M c

e B m m m eB m m eBq q Z Z l
mc M m M mc M m M mc

eB p l
mc m

µ µ µ

σ

 − −
= + − + + − 

 
 

   + − − − −   
  

   
+ − + + − +   

   

−
2

2 2 2

2

2

1 1 1
2 2

31
2 2 2 2

N N N
z z

N N N

z N

N

m m m ZeB p m m l
M mc m Mc m c M m Mc

eB Ze l m m m mZ
mc q Mc M m M

µ
   −

+ − −   
   

 −  − − − +  
    

( )
2 2 2

2 2
2 3 2

2

2 2

2

2 2

1
2 2 22

31 3
2 2 24

1
2 2

ez ezz
z

N N

z
N

ez

p peB m ZeB ZeZ q q
mc m m m cMc q Mc

eB P m m ml Z
mc M m MM c

eB P m mZ
mc M MM c

σ σ

σ

 −
− + − − 

 
  − − − +  

  

 − + − 
 
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2 2 2

2 2 21 1
2 2 2 2

Z Z

NN

L LpeB m eB Ze mZ Z
mc m mc q mMc m Mc

   
− − + −       

         (31) 

There are three types of terms in the expression for V given by Equation (31):  
1) terms which depend only on the CM variables, contained as the first two 

lines of the right hand side of Equation (31)  
2) the terms which depend only on the internal variables which are the re-

maining terms in Equation (31), except for the third, the fourth and the last four 
lines and  

3) coupled terms which depend on the internal as well as the c.m. variables, 
namely, the third, the fourth and the last four lines of Equation (31). The fact 
that there are coupled terms is not surprising. When the composite system with 
a net electric charge is in an external magnetic field, the total momentum P  is 
not conserved and we can not go to a frame where 0=P  for all times and so 
we do not expect the Hamiltonian to be uncoupled between internal and c.m. 
variables, as in the case of an isolated composite system. 

For future reference, we will write the perturbation V as  

 0 BV V V= +                             (32) 

where 0V  is the sum of terms in V which are independent of B and BV  is the 
sum of terms which depend on B. 

Since the unperturbed Hamiltonian 0H  is the sum of the internal Hamilto-
nian ( ) ( )0 1h h+  and the Landau Hamiltonian 0

LH , we will take the basis states 
for the first order degenerate perturbation theory calculations, the direct product 
of the simultaneous eigenstates of ( ) ( )0 1h h+ , 2j , zj , 2l  and 2s , and the co-
herent states of the Landau Hamiltonian, described above. The coherent state of 
the Landau Hamiltonian is the simultaneous eigenstate of the annihilation oper-
ators a+  and a−  of the two dimensional simple harmonic oscillator [9], as de-
fined in reference [9]. In this reference, we show that the coherent state is the 
best approximation to the classical state where the charged particle moves in a 
circle in the xy plane with the cyclotron angular frequency  

 ( )1
2c

Z e
Mc

ω
−

=                            (33) 

The coherent state can be represented by the ket vector α α+ −  where the com-
plex numbers α+  and α−  are the eigenvalues of the annihilation operators a+  
and a− . The basis states for the perturbation calculations can then be written as  

1, , , , , ,
2jn j m l sα α+ − = , where the quantum number n, j, jm  and l have the  

usual meaning. For the coherent state to approximate [9] the classical state,  

 1α+                              (34) 

In the above basis, the perturbation part of the Hamiltonian, V, will be diagonal. 
The expectation value of V in these basis stats will give the corrections to the 
energy levels of 0H , which are taken to be the sum of the eigenvalues of 

( ) ( )0 1h h+  and the energy of the coherent states of the Landau Hamiltonian, 
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which for all practical purposes [9] is the kinetic energy of circular motion of the 
He+ ion in the uniform magnetic field. 

The eigenvalues of the internal Hamiltonian ( ) ( )0 1h h+  are themselves calcu-
lated in the first order perturbation theory, treating ( )1h  as a perturbation to 

( )0h . So in our calculation we implicitly assume that the corrections to the ener-
gy levels due to the external magnetic field, the so called Zeeman splittings, are 
much smaller than the fine structure splittings induced by ( )0h . This assump-
tion is justified for any external magnetic field whose strength is such that,  

 ( )4 2
BB Z cµ α µ                        (35) 

where Bµ  is the Bohr magneton 
2
e
mc

 
 
 

  and α  is the fine structure constant 

2e
c

. Numerically this condition is satisfied for any B whose magnitude is less 

than 10 Tesla or 105 gauss. For 10 Tesla, 55.79 10 eVBBµ −≈ ×  whereas  

( )4 2 38.5 10 eVZ cα µ −≈ × . It is important to emphasize that the corrections to 

the energy levels due to ( )0h  include the effects of nuclear motion to all orders 

in m
M

, at least to order 
2

2
v
c

. 

Some important comments are in order about the B dependent terms in V of 
Equation (32), which we label as BV . In the expression for BV , we only included 
those terms whose time averages over one cycle of revolution of the circular mo-
tion represented by the coherent states, do not vanish. We calculated the time 
dependent expectation value of the c.m. operators, XP , YP , X YP P , 2

XP , 2
YP , X, 

Y, X2, Y2 etc. by using the following expression for the time dependent coherent 
state,  

( ) ( ) ( )2e e 0 0c c

i t i tt D D
ω ωα α

− −
+ + + − + −

Ψ = ⊗             (36) 

where D+  and D−  are unitary operators, as defined in our previous work [9]. 
The ket reactor 0

+
 and 0

−
 are the eigenstates of the number operators [9]

†N a a+ + +=  and †N a a− − −=  with zero eigenvalues. We also note that  

 ( ) ( )† e e ec c ci t i t i tD a D aω ω ωα α α− − −
+ + + + + + += +              (37) 

and its adjoint relation  

 ( ) ( )† † † *e e ec c ci t i t i tD a D aω ω ωα α α− − +
+ + + + + + += +              (38) 

Using Equation (37) and Equation (38) and the expressions for X and Y in terms 
of a+  and a−  we would obtain,  

 ( ) ( ) ( )0
2 sinc c

c

t X X t t
M

α ω δ
ω +Ψ − Ψ = +


          (39) 

( ) ( ) ( )0
2 cosc c

c

t Y Y t t
M

α ω δ
ω +Ψ − Ψ = +
            (40) 

where 0cX  and 0cY  are the x and y coordinates of the center of the circular 
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orbit which are given by the expressions  

 ( )0
2 Rec

c

X
M

α
ω −=
                       (41) 

( )0
2 Imc

c

Y
M

α
ω −= −
                       (42) 

( ) ( )Re
sin

α
δ

α
+

+

=                          (43) 

( ) ( )Im
cos

α
δ

α
+

+

=                          (44) 

We also note that the Landau Hamiltonian 0
LH  of Equation (30), in terms of 

a+  and †a+  becomes [9],  

 †
0

1 .
2

L
cH a aω + +
 = + 
 

                       (45) 

The expectation value of 0
LH  in the coherent state α α+ −  is,  

 2
0

1
2

L
CM cE E ω α+

 = = + 
 

                    (46) 

So the energy of the coherent state depends only on α+  and completely inde-
pendent of α− . So for a given expectation value of the Landau Hamiltonian, 
there can be an infinite number of values for α− , corresponding to the infinite 
degeneracy of the Landau energy levels. Equations (41)-(44) suggest that this in-
finite degeneracy of the coherent state for a given α+ , correspond to an infinite 
number of possible centers of the circle and the different phases of α+  
representing different phases of the circular motion, for a given radius and a 
given energy of the circular motion. We have the freedom to choose he center of 
the circular orbit at the origin of the xy coordinate system and from Equation 
(41) and Equation (42) if follows that  

 0α− =                               (47) 

with this choice we will find,  

 ( ) ( ) ( )2 sin c
c

t X t t
M

α ω δ
ω +Ψ Ψ = +
                (48) 

( ) ( ) ( )2 cos c
c

t Y t t
M

α ω δ
ω +Ψ Ψ = +
                (49) 

( ) ( ) ( )( )22 1 1 cos 2 c
c

t X t t
M

α ω
ω +

 Ψ Ψ = + + 
            (50) 

( ) ( ) ( )( )22 1 1 cos 2 c
c

t Y t t
M

α ω
ω +

 Ψ Ψ = + − 
            (51) 

( ) ( ) ( )22 2 2 1
c

t X Y t
M

α
ω +Ψ + Ψ = +
                 (52) 
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( ) ( ) ( )cos
2

c
X c

Mt P t tω α ω δ+Ψ Ψ = +
               (53) 

( ) ( ) ( )sin
2

c
Y c

Mt P t tω α ω δ+Ψ Ψ = − +
               (54) 

( ) ( ) ( )( )22 1 1 cos 2
4

c
X c

Mt P t tω α ω+
 Ψ Ψ = + − 
            (55) 

( ) ( ) ( )( )22 1 1 cos 2
4

c
Y c

Mt P t tω α ω+
 Ψ Ψ = + + 
            (56) 

( ) ( ) ( )22 2 1
2

c
X Y

Mt P P t ω α+Ψ + Ψ = +
                 (57) 

( ) ( ) ( ) ( ) ( ) ( )2 2Re sin 2 Im cos 2
4

c
X Y c c

Mt P P t t tω α ω α ω+ +
 Ψ Ψ = − 
   (58) 

From Equation (48), Equation (49), Equation (53), Equation (54) and Equation 
(58) it is clear that the time averages of XP , YP , X, Y and X YP P  will vanish 
over any cycle of circular revolution. Since the cyclotron frequency of revolution  

( )1
c

Z eB
Mc

ω
−

=  is of the order of 1010 s−1 even for B as small as 1000 gauss, what  

we can observe for the CM variables of the circular motion will be time averages. 
This is why we neglected terms in the perturbation Hamiltonian BV  whose 
time average over one cycle of revolution vanished. 

4. Results of the Perturbative Calculations in the First Order 

We now give the results of the first order perturbative results where V of equa-
tion (31) is the perturbation and the basis states are the direct product of the ei-
genstates of ( ) ( )0 1h h+ , of the Equation (28) and Equation (29) and the coherent 
states of the Landau Hamiltonian of Equation (30). We can write the first order 
results which depend only on the quantum numbers n, l, j and jm  as well as 
the magnetic field B and CME , as,  

 ( ) ( ) ( )0 1
j jnljm nlj nljmE E E B= + ∆                      (59) 

where ( )0
nljE  are the eigenvalues of the internal Hamiltonian ( ) ( )0 1h h+  to first 

order in ( )1h , and ( ) ( )1
jnljmE B∆  are the first order corrections due to the perturba-

tion V of Equation (31) which depend on the external uniform magnetic field B.  

( ) ( )

( )

( )

2
40 2 2 2 2

2 3

2
4 2

3

3
4 2

4
3

1 1 1 1 1 3
12 2 4
2

1 1 1 3
2 4

1 1 3
12 4
2

N
nlj

N

m
E Z c Z c

M nn n j

m mZ c
M M j nn

mZ c
M nn l

α µ α µ

α µ

α µ

 
  

= − − −  
   + 

 

  
+ −  

   
 
    − −      +    
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( )
( )

( ) ( ) ( ) ( )

( ) ( )

4 2
3 2

4 2
0 4 2

22
2

2 20 0

1 1 1
12 1
2

3 1 1 21 1 1 1
14 2
2

d d
2 d d

d2 d

N

N
l

nl nl
nl nl CM

N

mm
Z c

n M l l l

mm nj j l l Z c
n M l

R RZe R r r R r r r E
rmm c r

α µ

δ α µ

∞ ∞

+
 + + 
 

 
  × + − − + − + −     + 
 

 
− + + 

 
∫ ∫

 (60) 

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( )

1

2 22
2 2

2 2 2

2 2 22 2 2
2 20

2 2 2

2 2

,

31 21 3 4
4 2 2 1 2 3 2 1 2 1 2 3

5 1 3 1
8 2

31 441 2
2 1 2 3 2 1 2 1 2 3

1

j CMnljm

j jCM

N

N

j j

B

E B E

l l m mEcZ Z
l l l l ln M c

m a ne B mZ n l l
m mM c Z

l l m m
l l l l l

B

µα

µ

∆

 + − −  
= − − + +   − + − + +    

 

 
 + + + − +    

 

 + − − 
× − −  − + − + + 


+ −
( ) ( )

( )
2

2

31 1
41

2 1 j
N

j j l lm mZ m
M j jm

+ + + −   − ×     +   

 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

2 2
2

2 2 2

2 2

2 2
2

2
2 2

2

3 31 1 1 114 4
1 4 1

1

31 11 3 42
2 2 4 1

1 1 1
4

31
4

B j B

N N

N N

N
B j

N

N
B

N

j j l l j j l l
B m BZ

j j n j j

m m m m mZ
M m M M M m

j j l lm m m m mBZ Z m
n M m M M M j j

m m mBZ Z
n M M m

j j

µ µ α

µ α

µ α

+ + − + + + + −
+ −

+ +

    
× − + −    

    

+ + + −  − − +   +  

  − +  
   

+ +
×

( )
( )

( )
( )( )( )

2 21 2 1
2 1 2 1 2 1 2 3

j
j

l l j j m
m

j j l l l

 − + + − − 
− + − + + 

 

 

( )

( ) ( ) ( )

( ) ( )

( )

2
2 2 2

2

2

2

1 31 2 1
4

31 14 4
2 1 2 1 2 3 2 1

31 3
2 2

B j

j
j

CM
B

N

mZ BZ l l m
Mn

j j l lm
m

l l l j j

E m m mB Z
M m MMc

µ α

µ

   − − + − −      

+ + − +− ×
− + + +

    − − − +    
    

 

https://doi.org/10.4236/jmp.2020.113029


K. Sebastian, W. Y. Li 
 

 

DOI: 10.4236/jmp.2020.113029 470 Journal of Modern Physics 
 

 

( ) ( )

( )

( ) ( )

( )
( )

2

2 2

31 1
4 1

4 1
31 1 1 54

4 1 2 8

CM
j B

CM CM
j CM CM

j j l l E m mm B Z
j j M MMc

j j l l Z E E
m E E

j j Mc Mc

µ
+ + + −    × − + −   +   

+ + − + −    
× − −   +    

       (61) 

Several comments are in order about Equation (60) and Equation (61). In 
these equations CME  is the energy of the circular motion of the C.M. of the He+ 
ion, corresponding to the coherent state of the Landau Hamiltonian of Equation 
(30). Its explicit expression is given by Equation (46). Since the CM motion 
represented by the coherent state [9] is practically classical, the eigenvalue of the 
annihilation operator a+  satisfies the condition,  

 1α+                               (62) 

which means the 1
2

 in Equation (46) can be neglected. So,  

 2 CM

c

Eα
ω+ ≈


                           (63) 

where cω  is given by Equation (33). In obtaining Equation (61) we also made 
use of the relation,  

 
( )

( )
† †

2 2 2

ZL a a a aα α α α α α α α

α α α

+ − + − + − − − + + + −

− + +

= −

= − = −



 

           (64) 

In obtaining the last equality in Equation (64) we have put 0α− = , by choosing 
the center of the circular orbit at the origin of the xy plane. We also made use of 
the relation,  

 
4 42 2

2 2 2 2 2 24 2 4 8 8
c c CM

Z
c

P M EL
M c M c Mc Mc

α αω ωα α α α
ω

+ +
+ − + − = = =

 



    (65) 

Also, in Equation (61) the symbol Bµ  represents the Bohr magneton of the 
electron. In regular Gaussian units, where 1≠   

 5 1 9 15.79 10 eV T 5.79 10 eV G
2B
e
mc

µ − − − −= = × ⋅ = × ⋅
           (66) 

In deriving Equation (31) and Equation (61) we included terms quadratic in B, 
only in the nonrelativistic terms, but not in the first order relativistic correction, 
for reasons mentioned before. There is only one term quadratic in B in the  

expression for ( )1
jnljmE  of Equation (61). This term is of order 2 2

BB
c

µ
α µ
 
 
 

 com-

pared to the dominant term for Zeeman splitting, which are the first two terms 
proportional to BBµ  in Equation (61). For a magnetic field B even of the order 

of 10 Tesla, 2 2
BB

c
µ
α µ
 
 
 

 is of the order of 10−2, which is really small compared to 

the leading term. 
The results of Equation (61) includes the usual nonrelativistic result for the  
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Zeeman effect, including the effects of nuclear motion, plus all relativistic cor-

rections of order 
2

2
v
c

. The first two terms proportional to BBµ  in Equation (61) 

goes over to the usual nonrelativistic results in text books [16] if we let 1Nm
M

→  

or equivalently 0m
M

→ . The dominant relativistic correction is the first term 

proportional ( ) 2 2
BB Zµ α  in Equation (61). The other terms proportional to 

( ) 2 2
BB Zµ α  are reduced by factors of m

M
 
 
 

 or higher powers of m
M

 
 
 

. What 

is really new in our approach is the correction to the Zeeman splitting due to the 
circular motion of the center of mass of the He+ ion given by the terms propor-

tional to ( ) 2
CM

B
EB
Mc

µ  
 
 

 in Equation (61). These corrections are really small,  

even smaller than the dominant 2 2Z α  correction term, for nonrelativistic 
energies of the circular motion, which we have assumed in this paper. Neverthe-
less, they are interesting and can be checked in accurate experiments. Of course 
these terms will vanish if 0CME =  or if the velocity of the He+ ion is directed 
entirely along the direction of the applied magnetic field. 

The last term in Equation (60) and the last two terms in Equation (61) which 
depend only on CME  is like a constant addition to the energies and does not 
affect the transition energies and hence frequencies of spectral lines and so may 
be neglected. 

We should also make some important comments about Equation (60) which 
gives the fine structure splittings of the He+ ion, including the effects of nuclear  

motion. If we let 0m
M

→  or equivalently 1Nm
M

→ , our results will go over into  

the usual text book results [16]. In Equation (60), ( )nlR r  is the radial part of 
the eigenfunction of ( )0h , which are the well-known product of the exponential 
function and the associated Laguerre polynomials [16]. It can be shown,  

 ( )
( )

3

23 40
0

d 4 1 1d
d !

nl
nl

R ZR r r
r a n n l

∞
= −

+  
∫                  (67) 

The other integral involving the second derivative of ( )nlR r  is too long to write  

down. But from dimensional arguments, it is also proportional to 3
0

1
a

 where 

0a  is the Bohr radius. So the contribution from both integral terms in Equation 

(60) to the energy levels is of the order of 3
1 m

Z M
 
 
 

 times the dominant fine  

structure term, which is the first term proportional to ( )4Zα  in Equation (60), 
and hence utterly negligible, compared to it. The integral terms in Equation (60) 
come from the magnetic interaction between the moving electron and the mag-
netic field produced by the moving He4 nucleus, and it will of course vanish in 
the limit of the infinite mass for the nucleus. 

Another important point we should make about our calculations is that we 
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have chosen the Z-component of the CM momentum P , namely,  

 0ZP =                              (68) 

In the general case, when 0ZP ≠ , the He+ ion is moving with a uniform velocity 
along the Z-axis, since there is no external force in the Z-direction. So the results 
in the general case when 0ZP ≠ , can be obtained by a Lorentz transformation  

to the appropriate order in v
c

, of the total energy, including the rest mass ener-

gy. So the results for 0ZP ≠  can be obtained from our expressions in Equation 

(60) and Equation (61) by adding the term, 
2

2
ZP
M

 to CME  on the right hand 

side of Equation (60) and multiplying the remaining terms in Equation (60) by 
2

2 21
2

ZP
M c

 
+ 

 
. We should also add 

4

3 28
ZP

M c
 to the right hand side of Equation 

(61) while multiplying all the term on the right hand side of Equation (61), ex-

cept the last two terms involving only CME , by the factor 
2

2 21
2

ZP
M c

 
+ 

 
. 

5. Summary and Concluding Remarks 

We have calculated the order 
2

2
v
c

 relativistic correction to the Zeeman Effect in  

He+ ion, when its CM moves in a circular orbit under the action of a uniform 
magnetic field perpendicular to its plane of motion. We have assumed the weak 
field approximation in the sense that the splittings of energy levels due to the 
magnetic field are much smaller than the fine structure splittings. This is justi-
fied so long as the strength of the magnetic field is less than two Tesla or 20,000 
Gauss. We also assumed the CM circular motion is approximately nonrelativistic. 
Even if the kinetic energy of the CM circular motion is 1 MeV, it is much less 
than the rest mass energy of the He+ ion which is about 93.76 10 eV× . 

What is novel in our approach is that we have chosen the basis states, for the 
first order degenerate perturbation theory, to be the direct product of the cohe-
rent states α α+ −  of the Landau Hamiltonian 0

LH  of Equation (30) and the 
internal state which is a simultaneous eigenstate of the internal nonrelativistic 
Hamiltonian ( )0h , 2j , 2l , 2s  and Zj , namely jnljm . The coherent state is 
an excellent approximation [9] to the classical state of circular motion, so long as 
the magnitude of the eigenvalue of the annihilation operator a+  of the Landau 
Hamiltonian 0

LH  is much greater than one. For example, for 10 keVCME = , 
410α+ ≈ , when 1 MeVCME = , 510α+ ≈ , and they suggest excellent classical 

approximations. Since the He+ ion has a net electric charge the total momentum 
is not conserved and so we do not expect complete separation of CM and inter-
nal motion. In fact the coupling terms between CM and internal motion give  

corrections of order 2
CME

Mc
 to the Bohr energy levels which should be detectable 

in careful spectroscopic experiments involving He+ ion in a uniform magnetic 
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field, even though 2
CME

Mc
 is of the order of 10−5, when CME  is of the order of 10 

keV. 
The study of Zeeman effect in He+ ion is important in astrophysical situation 

[17] [18], where there are He+ ions in magnetic fields. We have only considered 
He4 ion, where the He4 nucleus has zero spin and zero magnetic moment. But  

our treatment can be easily extended to He3 ion, where He3 nucleus has spin 1
2

  

and a spin magnetic moment. In this case there will be extra terms in the Ha-
miltonian of Equation (1) and hence in Equation (22) which will give extra 
terms in the expressions of Equation (60) and Equation (61). Equation (60) will 
then include hyperfine splittings in the energy levels, due to the interaction of 
the electronic and the nuclear spin magnetic moments. The study of composite 
systems with net electric charge in a magnetic field has also received considera-
ble attention [19] [20] in atomic and solid state physics. 
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Abstract 
According to quantum mechanics, the commutation property of the energy 
Hamiltonian with the momentum operator should give the definite values not 
only for energy but also for the momentum quantum levels. A difficulty pro-
vided by the standing-like boundary conditions of the electron gas is that the 
Hamiltonian eigenfunctions are different than eigenfunctions of the momen-
tum operator. In results the electron momenta are obtained from the corres-
pondence rule between the classical and quantum mechanics given by Landau 
and Lifshits. As a consequence the statistics of solutions representing not only 
the energy values but also the electron momenta should be taken into ac-
count. In the Heisenberg picture of quantum mechanics, the momenta are 
easily obtained because the electron oscillators are there directly considered. 
In fact, the Hamiltonian entering the Heisenberg method can be defined in 
two different ways each giving the set of the electron energies known from 
the Schrödinger’s approach. 
 

Keywords 
Fundamentals of the Modern Quantum Theory, Heisenberg Picture, Its  
Momentum Results and the Energy Matrix, Schrödinger Picture and Its 
Energy Results 

 

1. Introduction 

Historically we had a competition of the Schrödinger and Heisenberg formal-
isms in their approach to develop the modern quantum mechanics. Certainly, 
the Schrödinger method [1] [2] [3] [4] occurred to be more practical in calcu-
lating the physical properties of numerous electron systems. But, on the other 
hand, Heisenberg was the first one who presented foundations of the idea of the 
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observables and operators belonging to them [5] [6]. 
Nevertheless, a practical background of the Heisenberg theory remained ra-

ther poor. In fact only the oscillators of different kinds and their properties, es-
pecially those concerning the behaviour of the matrix elements, are dominating 
in the Heisenberg approach. 

Our idea is to compare the Heisenberg and Schrödinger methods in examining a 
very simple system represented by the electrons enclosed in a one-dimensional 
potential box. To the author’s knowledge this comparison seems to have never 
been done before. A wave-mechanical treatment of such a system performed ac-
cording to the Schrödinger method occurred to be very simple. On the other hand, 
the oscillating character and properties of the system remained fully neglected. 

An alternative method, suitable for the oscillatory examination, became the 
Heisenberg theory and an approach to it presented in [7]. The both methods of 
quantum mechanics could be examined for a non-interacting electron gas case. 
Physically they indicate a different behaviour of electrons in each kind of the 
examined theory, as well as in course of their application in statistics. 

We note that the Schrödinger’s approach to the one-dimensional electron gas 
can be done in a unique way. On the other hand, the Heisenberg theory could be 
applied to the same gas in two different ways, each basing on a different Hamilto-
nian formula used for the same gas object. In consequence the statistics leading to 
the states occupation by the electrons in the Schrödinger theory should be also 
slightly changed respectively to the examined Heisenberg’s Hamiltonian case. 

This is so because of the boundary conditions imposed on electrons entering 
the Schrödinger model. In effect the electron wave functions represent the 
standing waves and they are not the eigenfunctions of the momentum operator, 
contrary to situation due to the Bloch’s boundary conditions applied usually to 
solids. In this second case, however, the requirement of a finite and strictly 
one-dimensional gas model cannot be satisfied. 

A difficulty with the boundary conditions entering the Schrödinger method 
can be removed when the correspondence rule due to Landau and Lifshits [8] 
concerning the classical and quantum approaches to the mechanics of electron 
motion is applied. Because the free-electron Hamiltonian commutes with the 
operator of the electron momentum, the stationary states of energy should be 
accompanied by the stationary states of momentum. This is easily obtained on 
a semi-classical way when the Landau-Lifshits rule is assumed to hold. In ef-
fect we should obtain the electron momenta corresponding to the quantum 
energy levels given by the Schrödinger method, on condition the quantum 
number n of energy is large. In fact the electron momenta obtained with the 
aid of the Heisenberg method are found identical with those deduced with the 
aid of the Schrödinger model also for the low quantum numbers n; see Sec. 5. 
This imposes a question of statistics with which both the energy and momenta 
of free-electron particles can be satisfactorily considered. 

In brief, an alternative method to Schrödinger’s—much suitable for the oscil-
latory examination—is that of Heisenberg; see e.g. [7] [9]. 
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2. Schrödinger’s Approach to the Free-Electron Particles   

This approach represents an elementary Schrödinger quantization process and 
its parameters; see e.g. [10]. 

Within a one-dimensional potential box of length L we have the free electrons 
whose energies are defined by the eigenvalues of the Hamiltonian operator:  

2 2 2

2

ˆdˆ ;
2 d 2

x

e e

pH
m x m

= − =
                        (1) 

ˆ xp  is the electron momentum operator, em  is the electron mass. In effect we 
have the eigenequation:  

 ( ) ( )ˆ .n n nH x E xψ ψ=                        (2) 

The wave functions ( )n xψ  satisfy the following boundary conditions at the box 
ends, viz.  

 ( ) ( )0 0.n nx x Lψ ψ= = = =                    (3) 

Suitable ( )n xψ  are easily verified to be  

 ( ) 2 sin ,n
nx x

L L
ψ π =  

 
                     (4) 

the eigenenergies are (see e.g. [10]):  

 
2 2

2 ;
8n

e

n hE
m L

=                          (5) 

Because of (3) the wave functions (4) are called the standing-like wave functions 
in the potential box.  

3. Oscillating Character of Electrons Described by nψ  and  

nE   

Free electrons should satisfy the equation  

 2

2
e

n n
mE v=                           (6) 

where the absolute value of the electron velocity nv  is  

 
1 2 1 22 2

2 2
2 .

4 2
n

n
e e e

E n h nhv
m m L m L

   
= = =   
   

               (7) 

This value of the velocity is expected to be dominating in course of the electron 
oscillation within the interval  

0 .x L< <                            (8) 

Evidently the electron motion is going from 0x =  to x L=  and vice versa. 
The time period nT  of the oscillation satisfies the formula  

 2 ,n
n

L v
T

=                               (9) 

so  
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22 2 42 .e e

n
n

L m L m LT L
v nh nh

= = × =                    (10) 

The motion frequency ν  due to nT  is  

 2
1 .

4n
n e

nh
T m L

ν = =                          (11) 

In effect the energy provided by nν  becomes  

 
2

24
osc
n n n

e

nhE h
m L

ν ω= = =                      (12) 

so  

 
2

2 2
1

4 2n
e e

nh nh
m L m L

ω π
= =



                     (13) 

and its reversal is  

 
21 2 e

n

m L
nhω

=
π

                         (14) 

Now our idea is to match results of Sec. 2 with those of Sec. 3. 
Before we do such comparison let us note that parameters Tn and vn satisfy the 

original Heisenberg relation [5]: 

( ) 2
e

d dnh h m x dt
dn dn

= = ∫ 



                         (14a) 

For, from (10) and because of nx v=  given in (9), we obtain for (14a): 

( )
22 2 4

e e n n e e
n e

d d d L d nhm x dt m v T m m h
dn dn dn T dn m

   
= = = =   

   
∫ 



      (14b) 

which is identical to the result in [8] and (14a). 
In the same way we have 

( )2
2

2

2
2 4 .

4e e n e e
n e

L nhpdq m xdx m v L m m L nh
T m L

= = = = =∫ ∫ 

 

      (14c) 

If the result in (14c) is considered as the action J, it becomes evident that the 
derivative of energy in (5) done with respect to J provides us with the electron 
oscillation frequency (11). 

4. Heisenberg Approach Applied to the Electron Oscillators  

In the first step of the Heisenberg approach to the electron gas enclosed in a po-
tential box we consider the Hamiltonian of an oscillator moving in direction of 
the axis x [7]:  

 

01 10
2 2

01 10 12 212 2

12 21 23 32

0 0
0 0ˆˆ
0 02 2

x e
e

e

x x
x x x xp mH x m

x x x xm
ω ω

+
= + =

+







   

 (15) 

where  

 01 10 ,
2 e

x x
m ω

=
                           (16) 
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 12 21 2 ,
2 e

x x
m ω

=
                       (16a) 

 23 32 3 ,
2 e

x x
m ω

=
                      (16b) 

 34 43 4 ,
2 e

x x
m ω

=
                      (16c) 

  

The mnx  are the matrix elements of x calculated between the oscillator states m 
and n, the frequencies ω  are those calculated in (13) taken for 1n = . 

When the results in the (16) formulae are substituted to (15) they give the fol-
lowing diagonal elements for the matrix presented in (15):  

 
2

01 10 2 ,
2
Lx x =
π

                        (17) 

 ( )
2 2

01 10 12 21 2 2
31 2 ,

2 2
L Lx x x x+ = + =
π π

             (17a) 

 ( )
2 2

12 21 23 32 2 2
52 3 ,

2 2
L Lx x x x+ = + =
π π

             (17b) 

 ( )
2 2

23 32 34 43 2 2
73 4 ,

2 2
L Lx x x x+ = + =
π π

             (17c) 

  

which give the following result for (15):  

 

2

2

2

2

2 2

2

2

2

0 0 0
2

30 0 0
2

ˆ 50 0 0
2

70 0 0
2

e

L

L

H m L

L

ω

π

π
=

π

π









    

           (18) 

Because of 1ω ω=  calculated in (13), the diagonal matrix elements in (18) give 
the oscillator energies  

 ( ) ( ) ( )
22 2 2

2
2 2 2 22 1 2 1 2 1

2 2 2 8
osc
m e e

e e

L h L hE m m m m m
m L m L

ω
 π

= + = + = + π π 
 (19) 

where  
 0,1,2,3,m =                        (19a) 

Let us note that the oscillator frequency ω  in [7] is considered as a known 
parameter. In our calculations this frequency is deduced from the electron mo-
tion in the potential box; see Sec. 3. 

This feature enables us to present the matrix elements entering the oscillator 
energy in terms of the matrix elements dependent on the properties characteris 
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tic for the motion in the potential box. Typically for the Heisenberg’s treatment 
of an oscillator we choose only a single oscillation frequency ω  for calculating 
all quantum states. In the Schrödinger picture this frequency is associated with 
the lowest quantum state 1n = ; see (13). 

A passage to the particle energy in the box is very simple. We note that the sums 
entering the partial traces of the diagonal matrix elements given in (19), viz.  

 ( )
1

0
2 1 ,

m n

m
m

= −

=

+∑                        (20) 

give respectively  

 

2 2

2 2

2 2

2 2

2 2

1 for 1,
1 3 2 for 2,
1 3 5 3 for 3,
1 3 5 7 4 for 4,
1 3 5 7 9 5 for 5,

n n
n n
n n
n n
n n

= =

= + = =

= + + = =

= + + + = =

= + + + + = =


                (21) 

In effect the (21)—combined with the factor entering the last term in 
(19)—provide us with the Schrödinger energy results presented in (5). 

5. An alternative Heisenberg Treatment of Free Electrons in  
the Potential Box  

In this case we apply the Hamiltonian different than in the oscillator case ex-
amined in Sec. 4. This kind of treatment takes into account only the kinetic part of 
the Hamiltonian and neglects the whole of the x-dependent (potential) part in the 
first row of (15):  

 
2ˆˆ .

2
x

e

pH
m

=                           (22) 

Certainly the constant parameters become different than those applied in the 
Hamiltonian case of Sec. 4. 

The first of the diagonal terms of 2
xp  belonging to the energy matrix 

representing the Hamiltonian in (22) is:  

 
2

2 2 2 2
01 10 01 10 2 22 2 2 .

2 2 2 2 4e e e e
e e

h h hp p x x m m m m
m m L L

ω ω ω
ω

π
= = = = =

π
   (23) 

In fact  

 01 1 2 2e e
e

h hp m v m
m L L

= = =                     (24) 

if we note that 1v  entering (24) and  

 
2

1 01 10 2
1

2 8e e

hE p p
m m L

= =                      (25) 

calculated from (23) are equal respectively to 1v  and 1E  obtained in the 
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Schrödinger theory; see Sec. 3. 
The next diagonal element of the matrix 2ˆ xp  is  

 

2 2 2 2
02 20 12 21

2

2 2

22 2
2 2

33 2 3 .
2 42

e e
e e

e e
e

p p x x m m
m m

h h hm m
m L L

ω ω
ω ω

ω

 
= = + 

 
π

= = =
π

 



           (26) 

When divided by 2 em  the expression (26) becomes  

 
2

02 20 2
1 3 .

2 8e e

hp p
m m L

=                        (27) 

This result added to that obtained in (25) gives  

 
2 2 2

01 10 02 20 2 2
1 1 4 2

2 2 8 8e e e e

h hp p p p
m m m L m L

+ = =               (28) 

which is precisely the next Schrödinger value for the free-electron energy, i.e. it 
is corresponding to the quantum level 2n = . 

If we take the next diagonal term for the matrix of 2ˆ xp  which is  

 
( )2

03 30

2

2 2

3 32 1 2
2 2

5 52 5 ,
2 2 2 4

e e
e e

e e
e

p p m m
m m

h h hm m
m L L

ω ω
ω ω

ω

   = + = +   
  

π
= = =

π

 





         (29) 

it gives, when multiplied by 1
2 em

, the result  

 
2

03 30 2
1 5 .

2 8e e

hp p
m m L

=                       (30) 

The sum of terms (25), (27) and (30) becomes  

 ( )
2 2

2
01 10 02 20 03 30 2 2

1 1 3 5 3
2 8 8e e e

hp p p p p p h
m m L m L

+ +
+ + = =       (31) 

which is the Schrödinger energy of a free electron on the level 3n = . 
The procedure can be readily extended to an arbitrary quantum level n. 

6. Some Special Statistical Behaviour of the Electron Energy  
Quanta Present in a One-Dimensional Potential Box  

Till the present point of our considerations we neglected the properties of the 
electron statistics applied to the electron gas. In fact the problem of the electron 
spin, and the Pauli exclusion principle connected with it, were not developed 
enough at the time of an early competition of the Heisenberg and Schrödinger 
theories. In principle both the boson and fermion statistics seem to be here ap-
plicable, first because of the electron oscillation waves considered in the Heisen-
berg picture, next because of the double spin-dependent occupation of the ener-
gy levels connected with the Schrödinger electron gas state. The fermion-like 
behaviour of electrons seems however to predominate and our task is to make 
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only a supplementary insight into the Fermi statistical distribution considered 
before. 

Our point concerns the question whether the highest occupied Fermi level 

maxn  in the one-dimensional gas should be considered as identical with the 
Fermi energy, or it does represent a distinct energy value. By assuming the 
second point of view, the Fermi energy—in accordance with former investiga-
tions [11] [12]—should be considered as an inflexion point on the Fermi distri-
bution function ( )F E  plotted as a function of the electron energy E. 

The function ( )F E —as it is well known—depends also on the absolute 
temperature parameter T:  

 ( ) 1 .
e 1E kTF E −=

+
                        (32) 

Let us assume E to be an abbreviation of a small value of the difference be-
tween the Fermi energy FE  and the electron energy on the highest occupied 
level maxn  in the gas which is  

 ( )
2 2

max
max 28 e

h nE n
m L

=                         (33) 

so  

 ( ) ( ) ( ) ( )1 1 1
max 0.FE E E E n= ∆ = − >                   (34) 

The superscript (1) indicates that—for simplicity—only the gas having a single 
electron on each of its energy levels is considered. In principle we assume that E 
in (34) is a small number. 

The first derivative of ( )F E  in (32) calculated with respect to the energy E 
gives  

 
( ) ( )2 2

d 1 1 e 1e ,
d e 1 1

E kT
E kT

E kT E kT

F
E kT kTe

−
−

− −

−  = − = 
 + +

         (35) 

whereas the second derivative of ( )F E  is represented by the derivative of the 
result obtained in (35):  

 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

2 2

2 2 3 22

2 3

2 3

d 1 d e 1 2e e
d d e 1 e 1 e 1

1 1 2e e e 1
e 1

1 e 2 e 1 .
e 1

E kT E kT E kT

E kT E kT E kT

E kT E kT E kT

E kT

E kT
E kT

E kT

F
E kT E kT

kT

kT

− − −

− − −

− − −

−

−
−

−

   
   = = −
   + + +   

 = − + +

 = − − 
+

 (36) 

The E in the inflexion point should make (36) equal to zero. To attain that it is 
enough to require the square-bracket to be vanishing  

 e 1 0E kT− − =                          (37) 

which for small E kT  gives the equation  
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21 11 1 1 0.

2! 2!
E E E E
kT kT kT kT

   − + − ≅ − =   
   

             (38) 

The last equation is satisfied when  

 ( )1 2! ,E E kT= ∆ =                         (39) 

so in this case [see (32)]  

 ( )( )1

2

12 1 1
e

F E E kT= ∆ = ≅
+

                   (40) 

is obtained at the inflexion point. 
In the next step we consider a double occupation of the energy levels in the 

gas by the electrons having an opposite spin. By assuming that  

 ( ) ( )2 12F FE E=                             (41) 

and putting for E in (32) the expression  

 ( ) ( )2 12 ,E E E= ∆ = ∆                         (42) 

we obtain the energy E twice as large as ( )1E E= ∆ . 
A substitution of ( )12E E= ∆  instead of ( )1E E= ∆  into Equation (38) gives:  

 
( ) ( )1 11 2 21 0

2!
E E

kT kT
 ∆ ∆
− =  

 
                    (43) 

so  

 ( ) ( )2 12 2 .E E kT∆ = ∆ =                      (44) 

Therefore the result (44) obtained for a double occupation of the quantum states 
implies a reduction of ( )1E∆  defined in (39) to a single kT . 

Both results for ( )1E∆  and ( )2E∆  vanish at 0T =  giving respectively  

 ( ) ( )1
maxFE E n=                          (45) 

and  

 ( ) ( )2
max2 .FE E n=                        (45a) 

7. Possible Duality of Statistics Applied to the Electron  
Quantum Levels  

A duality of the boson and fermion statistics which can be applied to the elec-
tron levels can be detected by examining the energy of the level ensembles ob-
tained in two different ways. For the electron-gas case a better insight seems to 
be provided by the Schrödinger’s method because of its simplicity. 

The eigenvalues of the free-electron Hamiltonian considered by Schrödinger 
(see Sec. 2) are:  

 
2 2

28n
e

n hE
m L

=                            (46) 
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where  

 1,2,3,n =                            (46a) 

giving the results identical to those obtained in (5). These results can be suc-
cessfully considered with aid of the Fermi-Dirac statistics. 

But another approach than that in (46) and (46a) can be obtained for the elec-
trons in a one-dimensional box when instead of the stationary states of the 
energy Hamiltonian in (1) a spectrum of energies due to the electron oscillations 
within the potential box is considered. 

Because of a free-electron character of the particles we obtain from (11) and 
(12):  

 
2

osc
2 .

4n
e

nhE
m L

=                           (47) 

Clasically the electron having the velocity nv  undergoes the way 2L along the 
box in course of the time period nT ; see (9) and (10). 

Evidently the energy in (47) is by a factor of  

 2n                               (48) 

smaller than the energy obtained in (5) and (46). This means that 2n  oscilla-
tors are required to provide the energy equal to a single eigenenergy state labeled 
by a given n indicating a large degeneracy of the oscillator energies necessary for 
any large n. 

In effect the energy of a one-dimensional electron gas can be considered also 
as a superposition of a large number of the boson energy quanta due solely to the 
electron oscillations. 

8. Summary  

The paper compares two approaches to the energy levels of a free-electron 
one-dimensional gas done respectively from the point of view of the Heisenberg 
and Schrödinger quantum theory. This comparison seems to be absent in the li-
terature. 

As a starting point we take into account the Schrödinger wave-mechanical cal-
culation which is very simple. In the next step the electrons are considered as os-
cillators and the Heisenberg matrices are applied. In fact two different kinds of the 
Heisenberg’s Hamiltonian can be examined for free electrons on condition the 
constant parameters entering the matrices are suitably modified. 

A short calculation concerning the position of the Fermi level in the gas as a 
function of the absolute temperature has been added. It should be noted that the 
statistics of quantum energy levels presented in both Heisenberg and Schrödin-
ger theories can be different from that valid for the fermions alone. 
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