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Abstract 

It is demonstrated that the recently introduced semantic intelligence sponta-
neously maintains bounded logical and quantal error on each and every se-
mantic trajectory, unlike its algorithmic counterpart which is not able to. This 
result verifies the conclusion about the assignment of equal evolutionary val-
ue to the motion on the set of all the semantic trajectories sharing the same 
homeostatic pattern. The evolutionary value of permanent and spontaneous 
maintenance of boundedness of logical and quantal error on each and every 
semantic trajectory is to make available spontaneous maintenance of the no-
tion of a kind intact in the long run. 
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1. Introduction 

One of the major apprehensions of any theory of general intelligence is whether 
it is ever possible to create a type of intelligence that spontaneously maintains 
logical and quantal errors permanently bounded. The question is provoked by 
the opposition between our human intelligence on the one hand and on the oth-
er hand, the rapidly developing in the recent decades' algorithmic intelligence 
which serves as grounds for modern-day computers and as grounds for the cur-
rent comprehension of artificial intelligence. 

Human intelligence is executed by means of natural processes and is orga-
nized in a variety of individual responses. The persistence of the latter organiza-
tion prompts to suggest that in the long run, all individual responses share the 
same evolutionary value. 
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At the same time, the algorithmic intelligence, artificially designed and artifi-
cially maintained, is not able to keep boundedness of logical and quantal error in 
the long run in all three of its realizations, namely: deterministic, probabilistic, 
and mixed one. In the next section, it is considered in detail why each of the 
above types of algorithmic intelligence exhibits ill-definiteness of logical errors 
which result in their unrestrained accumulation in a long run regardless of how 
small quantal errors are maintained. The lack of restraint over logical error 
renders the fundamental task for the design and maintenance of algorithmic in-
telligence to be establishing the best relation between structure and functionality 
under the supervision of the “survival of the fittest” paradigm. 

Semantic intelligence is a new form of intelligence that naturally arises in the 
frame of the recently introduced concept of boundedness [1]. It is fundamentally 
different from the algorithmic intelligence both in the means of its physical rea-
lization and in the mathematical background. This culminates in the most pro-
nounced difference between them: the semantic intelligence acquires the prop-
erty of autonomous creation and comprehension of information while its algo-
rithmic counterpart needs external mind (that is our human mind) to create an 
algorithm and to comprehend the output. 

Semantic intelligence is executed spontaneously by natural non-linear and 
non-homogeneous physico-chemical processes subject to a general operational 
protocol that keeps the boundedness intact. To compare, the algorithmic intelli-
gence is executed by means of artificially designed and artificially maintained li-
near processes. Thus, the physical realization of the semantic intelligence by 
means of spontaneously executed natural physico-chemical processes renders 
similarity to human intelligence which, to remind, is also executed by means of 
spontaneous natural processes. 

The fundamental importance of maintenance of the linearity of all local 
processes for algorithmic intelligence consists of the fact that it provides holding 
of the parallelogram summation rule at each and every moment and throughout 
the entire hardware. In turn, the latter keeps the computing process free from 
local distortions which, it happens, would appear as unrestrained local errors. 
Consequently, the artificially maintained linearity provides the re-occurrence of 
any output of each and every algorithm on the re-occurrence of the same input. 
However, as proven in Section 2, the reproducibility of the outcome is inevitably 
accompanied by the reproducibility of once produced large enough logical error. 

The reproducibility of semantic computing is provided by the major outcome 
of the general operational protocol which keeps boundedness intact [1] [2]. It 
consists of the fact that the functional metrics are kept permanently Euclidean 
regardless of what the underlying spatio-temporal metrics of the computing sys-
tem are. The Euclidean of the functional metrics provides not only the unifor-
mity of “units” throughout the entire hardware and at each and every step of 
computation but it serves also as a crucial ingredient for holding the central for 
the entire theory of boundedness theorem, proven by the author, and called by 
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her decomposition theorem. It proves that any bounded irregular sequence, 
(BIS) subject to permanent boundedness of rates of exchanging matter/energy/ 
information with current environment and self-sustaining permanent bounded-
ness of the amplitudes of the corresponding terms, shares the property that the 
power spectrum of each and every such BIS is additively decomposed to a spe-
cific discrete pattern called homeostasis and a continuous component, called 
noise one, whose shape is universal. The crucial property is that the specific 
properties of any homeostatic pattern and the shape of the noise component are 
insensitive to the details of the statistics of the members of any sequence. As 
considered in our previous paper [2] the causal relations are concentrated in the 
discrete pattern while the noise component comprises no information content, 
although it commences from well-defined local physicochemical processes and 
thus it serves as a reservoir for providing an adequate current local response in 
an ever-changing environment. An immediate outcome of the decomposition 
theorem is that it provides reproducibility of established causal relations set in 
an ever-changing non-uniform environment let alone the latter is bounded. 

It should be stressed that the major difference in the mathematical back-
ground between semantic and algorithmic intelligence lies in holding of the de-
composition theorem for the former while the algorithmic intelligence is subject 
to the Central Limit Theorem. It is worth noting that the subjects of both theo-
rems have no common cross-section since, while the subject of the Central Limit 
theorem is independent random variables (yet not bounded), the subject of the 
decomposition theorem is bounded irregular variables (yet not independent). 

Consequently, the fundamentally different physico-chemical and mathemati-
cal background of the semantic intelligence and its algorithmic counterpart 
prompts the anticipation of completely different outcomes one of which is sub-
ject to the present paper. 

To continue, let us mention that the insensitivity of the specific properties of 
any set of causal relations to the details of current environment, obtained by the 
decomposition theorem, comes at a price: obviously, it is available only under 
the general condition that both the logical and the quantal error are kept per-
manently bounded on each and every semantic trajectory. The proof of this as-
sertion constitutes the major goal of the present paper. It is worth noting that an 
immediate consequence of the affirmation of that claim renders the semantic 
intelligence to share the property of the human intelligence of assigning equal 
evolutionary value to the variety of all the individual responses in a long run. It 
should be stressed on the difference with the “survival of the fittest” paradigm: 
the latter is available in a constant non-uniform environment while the semantic 
computing operates in a rapidly and permanently changing non-uniform envi-
ronment. The latter result is obvious since no long-term preference on any of 
semantic trajectories is available in an ever-changing non-uniform environment 
whilst a constant environment renders differences among different individuals 
to grow in the long run. 
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The following immediate outcome of the concept of boundedness makes the 
puzzle most intriguing: the central assertion of the concept of boundedness is 
that only bounded amount of matter and energy, specific to any local process, is 
involved; in turn, this implies that the precision of the semantic computing is 
bounded both from below and from above. This is because the computation of 
each and every number involves energy and matter proportional to the number 
of defining digits and thus it is available only for those values which belong to 
specific bounded margins of each and every semantic hardware. Thus, the origin 
of permanent boundedness for the quantal error from above is evident. Yet, the 
question of how the interplay between logical and quantal error is organized so 
that the limited form below the precision of semantic computing does not acce-
lerate the logical error remains; it will be considered in Section 3. 

2. Unrestrained Logical and Quantal Error  
at Algorithmic Intelligence 

The major goal of the present section is to consider in detail why the algorithmic 
intelligence is not able to maintain the logical error bounded even though the 
quantal error is kept very small. At first, the case of deterministic algorithms 
comes: 

1) Deterministic algorithms are artificially designed, specific to each case, se-
quences of logical steps. The verification of each logical step is provided by a 
positive answer to a cleverly enough posed question specially constructed for the 
purpose. In turn, the logic of the algorithms is represented by acyclic directed 
graphs where the computing is represented as a trajectory connecting an input 
and the corresponding output following the steps prescribed by a given algo-
rithm. However, a generic property of algorithms is to comprise at least one step 
of logical operation “IF”. The latter could change drastically the course of a cur-
rent trajectory by means of causing “jumps” to distant “branches” of the graph. 
The hazardous moment is that such deviations can be a result not only by the 
prescription of the corresponding algorithm (desired outcome) but to result in 
an unrestrained error due to finiteness of the precision (misleading outcome). 
To make it clear, let us present the most pronounced example: the computation 
of limit cycles as solutions of differential equations is inevitably bound to dege-
nerate into a motion on a spiral (ingoing or outgoing depending on any current 
realization of computing) which produces qualitatively different result in a long 
run: instead of bounded cycling motion, it approaches either steady point or in-
finity. The inevitability of this behavior is rooted in the fact that the operation 
“IF” separates two logically different regions by a single point (line in some cas-
es) while the precision restrains the digits to “intervals” regardless of how small 
the precision is. Thus, around unstable (and/or neutrally stable) solutions the 
logical “error” accelerates by each and every step. 

2) Next in the line comes the probabilistic approach to algorithmic compu-
ting. It is grounded on artificial assignment of specific probabilities to local 
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events and their permanent updating under apriori set local dynamical rules for 
the interaction with the neighborhood and the environment. The goal is to find 
out whether a system self-organizes so that to exhibit a collective behavior which 
in turn can serve as a physical background for an information symbol, i.e. a let-
ter in an alphabet. Such self-organization has been established in a number of 
concrete cases but not as a generic property of a certain class of systems and/or 
dynamical rules. Yet, self-organization is expected to behave as a type of critical 
phenomena. The major flaw of this approach is that any such self-organization if 
exists, is extremely sensitive to even infinitesimal noise added to any steady en-
vironment. It is worth noting the difference between vulnerability to small 
changes in the environment (a setback) and the robustness to local failures (one 
of the advantages of the approach). The above vulnerability becomes a stumbling 
block of the entire approach because it rules out any general operational proto-
col which could govern transitions among different collective states. Indeed, 
even the very existence of any such protocol turns out inherently contradictive 
since the vulnerability to any changes in the environment renders the impossi-
bility to define the exact amount of matter/energy and information involved in 
the substantiation of that transition. Consequently, this renders lack of any me-
trics in the state space which constitutes the ill-definiteness of the characteristics 
of any transition between any collective states. Thus, the logical operations 
among different information symbols, represented through different collective 
states, are subject to indefinite quantal error which is further loaded by the 
physical inability to substantiate any “jump” between the information symbols. 

3) The mixed case of algorithmic intelligence encompasses these types of algo-
rithms which have both deterministic and probabilistic components. In most 
cases, the “link” between the deterministic and the probabilistic part is set by 
means of specific optimization. Since I already have discussed the origin of un-
restrained and/or ill-definiteness of the logical error for deterministic and prob-
abilistic cases separately, now I will consider only why the optimization is not 
the “remedy” for the problem. The optimization is an artificially set constraint 
that holds along the entire optimal trajectory. Generally, it is of 3 types: minimax 
optimization, Bellman type optimization and Pontryagine type one. The com-
mon setback of all three types of optimization is that their fulfillment along the 
entire trajectory is accompanied by specific local discontinuities of the optimal 
trajectory. These discontinuities are hazardous not only for the physical main-
tenance of the corresponding hardware but they produce a massive change in 
logical error. As an example, the discontinuity of the optimal solution in the 
Pontryagine type of optimization is a product of the collapse of the current ef-
fective “Hamiltonian” and its substitution with a new one on the next part of the 
trajectory where it again will collapse when the next discontinuity occurs. Thus, 
this is not the only problem of the value of the logical error but it turns into a 
problem of identity of a system since the “Hamiltonian” is supposed to hold the 
identity of an object in physics. 
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3. Boundedness of Logical and Quantal  
Error for Semantic Intelligence 

Since the mathematical and physical grounds of the semantic intelligence and its 
algorithmic counterpart are completely different, it is to be expected that they 
yield completely different outcomes. In the previous section, it has been demon-
strated that algorithmic computing is not able to preclude the accumulation of 
logical error although the quantal error is maintained very small. In a nutshell, 
the root of the problem lies in the contradiction between the logic of the algo-
rithms which operates as “dots” whilst the precision operates as “intervals”. 
Further, the optimal trajectory is generically a “choice” of a single line among a 
volume of all available ones. Thus, each and every operation “IF” acts as a com-
parison between values of different dimensions, which, as it is well known, is 
never well-defined. 

The goal of the present section is to demonstrate that the semantic intelligence 
permanently maintains bounded logical error at self-sustaining the quantal error 
bounded from below and above. The first clue lies in the fact that the general 
protocol providing spontaneous execution of semantic intelligence is organized 
so that the semantic computing to operate only with sets of equal dimensions. 

Let me start the consideration by reminding how semantic intelligence is or-
ganized. It starts with the fact, proven in [1] that any non-uniform ev-
er-changing environment, let alone being bounded, is decomposable to an effec-
tive specific steady component and an effective noise component, latter pre-
sented as a BIS. One of the major outcomes of this exclusive for the boundedness 
decomposition is one-to-one correspondence between the state space and the 
effective control parameter space. Thus the state space acquires metrics which in 
turn defines the characteristics of any motion in it. Further, the state space turns 
divided into basins-of-attractions so that a specific to each basin homeostatic 
pattern appears as an intra-basin invariant and thus the latter serves as an in-
formation symbol. Since stable in a long run, solution could be only bounded 
ones, each basin-of-attraction has non-zero volume. Alongside, the bounded 
precision renders the motion on each and every trajectory to be confined in an 
open tube such that any current trajectory (a line) never leaves that tube. Fur-
ther, the boundedness renders the state space to be bounded which in turn 
renders the motion in it to be orbital. Yet, it should be stressed that, due to the 
boundedness of rates, each and every available orbit passes only through adja-
cent basins-of-attraction thus keeping local deviations permanently minimal re-
gardless of whatever the logical operation is. 

The crucial step forward is the association of the notion of a semantic unit 
with the performance of a non-mechanical engine built on the corresponding 
orbit which generically passes through at least 4 different information symbols 
(basins-of-attraction). The greatest value of this association is that semantic 
meaning acquires novel connotation irreducible to a mere algorithmic sequence 
of information symbols. To remind, so far it is taken for granted that the execu-
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tion of any algorithm is subject to the general laws of arithmetic (e.g. associative 
law, dissociative law, etc.). This irreducibility is best pronounced by the exclusive 
property of semantic intelligence to get hold permutation sensitivity of the oper-
ation of any engine to the change of the direction of its execution; e.g. the fam-
ous Carnot engine operates in one direction as a pump and in the opposite as a 
refrigerator. Note that the execution of a sequence of logical operations in the 
opposite direction could yield an uncontrolled change in the logical meaning 
most probably producing a non-sense; thus the latter cannot be classified as 
“permutation sensitivity”. Thus, the arithmetic laws alone are unable to provide 
meaningful permutation sensitivity as a generic property. It is worth noting that 
the permutation sensitivity of the semantic intelligence is indispensably linked to 
the boundedness of logical and quantal errors of any non-mechanical engine. 
The boundedness of logical and quantal errors are self-sustained by means of the 
confinement of the corresponding trajectories within specific “tubes” set by the 
corresponding precision. 

The next step forward lies in the assumption that different semantic units are 
separated by punctuation marks, e.g. space bars. The punctuations marks are 
substantiated by means of special volumes tangent to all semantic units at any 
given hierarchy. Details of these considerations can be found in Chapter 4 of [1]. 

Thus, the motion on any semantic trajectory is confined to be exerted within a 
torus (“donut”) “wrapped” onto an orbit which passes through different ba-
sins-of-attraction; the width of the torus is set correspondingly by the current 
lower and upper level of quantal error. Thus, due to the boundedness of rates 
and amplitudes, the quantal error never exceeds its margins throughout the mo-
tion on any semantic trajectory. Later it is considered the role of Euclideanity of 
the functional metrics for self-sustaining the margins of quantal error intact in 
the long run. 

Outlining, all ingredients of semantic computing, namely basins-of-attractions, 
punctuation marks, and trajectory confinements are volumes of the same di-
mension. Further, the execution of the semantic intelligence as a sequence of or-
bits, each of which of bounded length, automatically keeps the logical error also 
bounded. 

A crucially important point is about spontaneous self-sustaining of bounded 
quantal error. The latter is provided by the general operational protocol for ex-
tra-matter/energy dissipation. Now we make use of the property of that protocol 
to provide robustness of the Eucledianity of the functional metrics in the sense 
that the latter provides the global robustness of the same abstract quantal rela-
tions for each and every spatio-temporal point (for example, that is, 2 + 2 = 4 
everywhere and/or on repetition). In turn, the robustness of the quantal relations 
maintains the robustness of the thresholds thus providing permanent robustness 
of the margins of boundedness of rates and amplitudes which eventually culmi-
nates in maintenance of bounded quantal error regardless to the details of the 
environmental impact and regardless to the details of the local specificity of the 
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physico-chemical processes which substantiate any piece of semantic intelli-
gence. It is worth reminding that these processes are in general non-linear and 
operate in a non-homogeneous way in any non-uniform ever-changing envi-
ronment let alone the latter is bounded [2]. 

Note that this view renders the notion of abstract arithmetic relations equally 
available for continuous objects such as space and time zones, and for discrete 
objects such as apples and matter. Thus, as mentioned in the Introduction, the 
maintenance of Euclideanity of metrics provides the notion of a unit for differ-
ent spatio-temporal phenomena well-defined. Alongside this, it renders the law 
of parallelogram for the summation of vector variables insensitive to the spa-
tio-temporal point where it is applied. An immediate consequence of that is the 
covariance (viewed as insensitivity to the choice of reference frame) of the spe-
cific laws of Nature represented through the corresponding functional relations. 
Note that otherwise, the quantal relations would turn local and specific to the 
current spatio-temporal point of application. Consequently, the notion of boun-
dedness would turn ill-defined since the notion of thresholds turns local so that 
they can vary from one spatio-temporal point to another and under repetition of 
any current event. As an immediate consequence, this would result in a lack of 
any form of covariance for any relation. 

Let us now focus our attention on highly non-trivial feedback between the 
boundedness of quantal errors and the boundedness of logical errors. Next, I 
present arguments that provide long-term stability of any concrete realization of 
the notion of semantic intelligence. Indeed, the permanent non-distorted boun-
dedness of rates and amplitudes precludes both logical and quantal errors from 
exceeding their margins on each and every orbit and render both of them to turn 
to zero on completing each and every cycle on each and every semantic trajecto-
ry. To remind, turning errors to zero on completing a cycle is an immediate 
consequence of the fact that since successive orbits are separated by accumula-
tion point (e.g. space bar), one can consider each and every cycle starting and 
ending at the corresponding accumulation point, that is to consider each orbit 
starting and ending at the same point. Thus, the feedback operates via 
self-sustaining of Euclideanity of the corresponding functional metrics which, in 
turn, provides the characteristics of the boundedness of rates and amplitudes 
non-distorted. In turn, the non-distorted boundedness of rates and amplitudes 
sustains boundedness of logical and quantal errors which in turn provides ro-
bustness of the characteristics of the boundedness of rates and amplitudes. Tak-
ing into account that boundedness of rates and amplitudes has been put forward 
as the most general condition for providing long-term stability of complex sys-
tems, the conclusion derived is that the same conditions turns enough to provide 
not only long-term stable operating of a complex system but permanent 
self-sustaining of the boundedness of logical and quantal error of the corres-
ponding realization of semantic intelligence as well. 

The highly non-trivial feedback between logical and quantal error is best pro-
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nounced through the decomposition theorem. Indeed, the latter proves additivi-
ty of the decomposition of the power spectrum of each and every BIS to a spe-
cific homeostatic pattern and a universal noise component. In turn, namely, the 
additivity provides a constant error for that decomposition in the long run. So, 
the additive decomposition confirms permanent boundedness of the logical er-
ror for the corresponding causal relations in an ever-changing environment, and 
in the long run and regardless of the concrete values of the quantal error. To re-
mind, the causal relations are encapsulated in the homeostatic pattern while the 
noise component has no information content. 

It is worth to point out the fundamental difference between the above-considered 
feedback between logical and quantal error for the semantic intelligence and the 
case of algorithmic intelligence. Next, it is considered why the artificial main-
tenance of low quantal error is not enough to provide boundedness of logical 
error for algorithmic intelligence. This conclusion becomes evident through the 
following considerations: any piece of algorithmic intelligence is executed as a 
“string” of specific successive local computations by means of local linear 
processes (compare to orbits for semantic intelligence). Namely, the locality of 
each and every computation along with the execution as a sequence of computa-
tions immediately provides a disconnection between the corresponding logical 
and quantal errors. Consecutively, the consideration at the beginning of the 
present section comparison between variables of different dimensions renders 
unrestrained accumulation of logical error even though the quantal error is kept 
very small. 

Let us now focus the attention on the role of optimization for semantic com-
puting. The problem with the identity stands differently: the long-term bearer of 
identity for semantic intelligence is the current homeostatic pattern whilst the 
Hamiltonians acquire rather local meaning in the sense that they define local 
properties of participating in any given chemical reaction and/or physical 
process atoms/molecules. It should be stressed on the fact that the optimization 
can be useful in the short run only and for the purpose only. However, it should 
not yield to deviations from the current semantic trajectory because thus it re-
turns in hazardous long-run events. 

It is obvious that permanent self-sustaining of the boundedness of the logical 
and the quantal error renders all different semantic trajectories to be of equal 
evolutionary value from the point of view of the concept of general intelligence. 

The evolutionary value of permanent and spontaneous maintenance of boun-
dedness of logical and quantal error on each and every semantic trajectory is to 
make available maintenance of the notion of a kind intact in the long run. It is 
worth noting that the notion of a kind is corroborated by means of the diversity 
of individual responses executed as motion on different semantic trajectories so 
that, provided by the bounded logical and quantal errors on each of them, to as-
sign the same evolutionary value to the motion on all the semantic trajectories 
sharing the same homeostatic pattern. 

https://doi.org/10.4236/jmp.2020.112010


M. K. Koleva 
 

 

DOI: 10.4236/jmp.2020.112010 166 Journal of Modern Physics 

 

To compare, algorithmic computing is universal and reproducible if and only 
if the environment is kept permanently the same. In the ever-changing envi-
ronment, the logical and quantal errors at algorithmic computing turn 
ill-defined and unsaved from unlimited accumulation of error. Preventing the 
accumulation of logical and quantal errors by means of appropriate optimization 
is available also only for a steady environment. In an ever-changing environ-
ment, the effect of optimization turns only local because either the identity is vi-
olated and/or the optimization causes permanent discontinuity of the major flow 
function. 

4. Conclusions 

The obtained in the present paper result about permanent self-sustaining of 
bounded logical and quantal error for a newly introduced type of general intelli-
gence called by the author semantic intelligence prompts to outline the general 
strategy for the development of the notion of general intelligence, namely: the 
development is substantiated through a variety of yet to be discovered forms 
with radically different properties. The grounds for this suggestion lying in the 
verified in the present paper conclude that the semantic intelligence is exerted 
through a variety of individual responses, each substantiated by motion on a se-
mantic trajectory so that all individual responses, sharing the same homeostatic 
pattern, acquire the same evolutionary value in a long run. The latter comes in 
fundamental opposition to the algorithmic intelligence which is artificially 
created, maintained in a constant environment, and artificially comprehended, 
thus being subject to the survival of the fittest paradigm. Another conclusion 
drawn from the above comparison is that each evolutionary paradigm holds for 
its own subject and there is no cross-section for the subjects of different types of 
intelligence. 

The evolutionary value of permanent and spontaneous maintenance of boun-
dedness of logical and quantal error on each and every semantic trajectory is to 
make available spontaneous maintenance of the notion of a kind intact in the 
long run. It is worth noting that the notion of a kind is corroborated by means of 
the diversity of individual responses executed as motion on different semantic 
trajectories so that, provided by the bounded logical and quantal errors on each 
of them, to assign the same evolutionary value to the motion on all the semantic 
trajectories sharing the same homeostatic pattern. 

It should be stressed also on the difference in substantiation of these types of 
intelligence: whilst the algorithmic intelligence is fully governed by the human 
mind, the semantic intelligence is executed by means of spontaneously executed 
physico-chemical processes governed by general operational protocol which 
spontaneously and permanently maintains boundedness and whose major dis-
tinctive property is autonomous creation and comprehension of information. 

Yet, besides fundamental differences, there is a highly non-trivial synergy be-
tween semantic and algorithmic computing, which becomes most pronounced 
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in curved space-time. Thus, by means of self-sustaining Euclidean metrics [1] 
[2] the semantic computing provides boundedness of the quantal error for the 
corresponding semantic computation; on the other hand, the algorithmic com-
puting, where the “Eucledianity” of computation is artificially maintained 
through artificially designed and executed linear processes, “computes” the un-
derlying spatio-temporal structure. Outlining, the semantic intelligence “com-
putes” functionality while the algorithmic intelligence “computes” the underly-
ing spatio-temporal structure. The advantage of that interplay is crucial for the 
study and exploration of any unknown phenomena ranging from nano-devices 
to cosmological objects. 
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Abstract 
Dark matter is a major component of the universe, about six times more ab-
undant than ordinary visible matter. We measure the effects of its mass, but it 
escapes the telescopes. It has the particularity of emitting no radiation and 
interacting only by the action of gravity. The main purpose of this article is to 
try to answer what dark matter is: we conjecture that it is composed of mag-
netically charged neutrinos, true magnetic monopoles. But that requires a 
huge conceptual leap: Maxwell’s laws must be inverted and the electric charge 
becomes a magnetic charge. Asymmetric “reversed” Maxwell’s laws would 
provide the “dark” magnetic charge that would replace the electric charge. 
The very form of the Dirac equation, which imposed on ordinary matter that 
the particle carries an electric charge and obeys the principal properties of the 
electron, would impose in the dark matter that the “dark” particle obeys the 
main properties of a neutrino associated with a magnetic charge. The second 
aim of the article is to show that dark matter is derived from black holes, 
mainly from active supermassive black holes. This requires a second conceptual 
leap: the horizon of the black hole undergoes a high temperature and an intense 
pressure of magnetic fields which cause a blackout and a phase transition (or 
broken symmetry) when the matter crosses the horizon. The result is a reversal 
of Maxwell’s laws: a magnetic charge is substituted for the electric charge, and 
the electric current becomes a tributary of the magnetic current. A third im-
portant conceptual leap follows: sterile magnetic neutrinos created inside the 
black hole would cross the horizon to the outside to constitute dark matter. 
 

Keywords 
Dark Matter, Magnetic Monopole, Inverted Maxwell’s Equations,  
Magneto-Electric, Dirac Equation, Magnetic Sterile Neutrino, Active Black 
Hole, Event Horizon 

 

1. Introduction 

The problem of dark matter is well known: observational evidence and theoreti-
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cal arguments suggest that there is a lot more matter that gravitationally inte-
racts in the universe than what is accounted for. This is not the normal “baryo-
nic” material in the cosmos. Yet no direct evidence exists to explain what dark 
matter is. This hidden form of matter must be a kind of particles which do not 
feel the electromagnetic or strong forces and which, consequently, neither emit 
nor reflect light nor behave like atomic nuclei bound together. Observations 
suggest that most of the dark matter is “cold”. 

Scientists have theorized several potential explanations of dark matter that ap-
pears to exert a gravitational pull on normal matter in galaxies and clusters of the 
cosmos. These possibilities belong to different categories. Some scientists suggest 
a complex dark matter, a wide range of dark species. Wimps, axions, heavy and 
sterile neutrinos, low mass black holes and dark matter atoms are among the con-
tenders for dark matter envisioned by theorists. The simplest theories of dark 
matter postulate that only one type of particle contributes to the invisible mass [1]. 

Although cosmologists do not know what constitutes dark matter, they know 
something about its properties from their observations of how it influences or-
dinary matter and by simulations of its gravitational effects. They know that 
dark matter travels at a much slower speed than light, and that it therefore ag-
gregates more than fast-moving “hot” dark matter, that it must be electrically 
neutral because it does not absorb or emit electromagnetic radiation. The par-
ticles that make up dark matter are probably massive. They cannot interact by 
the strong force that binds the atomic nuclei together; otherwise we would have 
had evidence in the interaction of dark matter with cosmic rays. Until recently, 
scientists believed that dark matter might interact via the weak force, but new 
observations have wiped out this notion. 

In this article we conjecture a new force that belongs essentially to dark mat-
ter. It would be a magnetoelectric force (ME) that would be an inverted form of 
the electromagnetic force (EM). This would result in the existence of a magnetic 
charge that would replace the electrical charge. Maxwell’s four laws would be 
reversed. We imagine a sterile neutrino with a magnetic charge that would emit 
gravitons and plays the equivalent role of the electron that emits and captures 
photons. What’s more, these sterile neutrinos would come from black holes. 

At first glance, there is no relationship between dark matter and a substance 
emanating from a black hole, since black holes are often defined as the regions 
from which nothing can escape, not even light. Stephen Hawking demonstrated, 
however, that there are some reasons to think that particles can come out, by 
“tunnel effect”: the space-time in which we evolve would be modeled by the 
connections established between the black holes, via a purely quantum link. 

In recent years, a new vision of the world has put black holes in the center of 
the stage. Astrophysicists believe that black holes are responsible for phenomena 
ranging from X-ray emissions to huge jets of material ejected from galaxy cen-
ters. The big bang would hide a primordial black hole located in another un-
iverse and from which ours would have emerged. Space-time would be woven 
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with micro black holes connected together by a quantum phenomenon. Stars 
and galaxies are thought to have been created by jets of matter expelled by su-
permassive black holes. The black holes that were taken at first for the worst 
cosmic monsters would actually be the greatest builders [2]. 

The idea that black holes are dark matter has been proposed by several theor-
ists. They first thought of massive primordial black holes formed in the first 
second of the universe. But it would take billions to explain the missing mass, 
and we would see their influence on the motion of the stars. In the 1990s, they 
then thought of micro black holes, of the order of a nanometer, but weighing 
one hundredth of the mass of the Moon. Except that their evaporation would 
have been detected by the gamma satellites in the 2000s. They are currently 
studying the possibility of primordial black holes weighing between 20 and 100 
solar masses. Gravitational wave detectors have seen the fusion of objects in this 
category in recent years. 

Our hypothesis is not that black holes are dark matter, but that dark matter 
would consist of substances from black holes, including sterile neutrinos asso-
ciated with a magnetic charge. We say that a “black out” happens at the event 
horizon of a black hole (due to the enormous pressure and high temperature) 
that reverses the Maxwell’s laws, transforms the electric charge into a magnetic 
charge, and makes invisible and imperceptible particle emission. Active black 
holes are internally filled with “dark” energy. According to the theory of Rela-
tion [3] [4], this energy would be the dark energy of the beginning (amalga-
mated with the kinetic negative energy, with the cosmological constant) which 
has dissolved to form the ordinary matter with positive energy, according to the 
principle of Compensation. This energy is the same as that of polarized vacuum, 
except that it is all the more excited as the temperature is high. The strong fluctu-
ations cause the expulsion of sterile neutrinos inside the black hole horizon with a 
relativistic speed close to the speed of light. The emitted particles become slower 
and “magnetized” with cooling. They will automatically be magnetic monopoles. 

This paper will address three links between dark matter and the black hole. 
These are actually three conceptual leaps. In Section 2, “Dark Matter and Max-
well’s Laws Reversed”, we see that dark matter might interact with a form of 
light to which our eyes are blind (Sect. 2.1, 2.2). It would be a variant of electro-
magnetism, a “magnetoelectric” force that would be obtained by reversing 
Maxwell’s laws: this is the first conceptual leap (Sect. 2.3, 2.6, 2.7). From Dirac’s 
theory, which establishes a connection between the smallest electrical charge and 
the smallest magnetic pole (charge), we end up with a magnetic pole that looks 
like a dark matter and would be composed of magnetic sterile neutrinos (Sect. 
2.4, 2.5, 2.8). In Section 3, “Black Hole”, we see that black holes now play an im-
portant role in the birth and evolution of galaxies. Throughout the universe, 
black holes relativistic jets condense gases and trigger outbreaks of stars (Sect. 
3.1). We speculate that black holes are surrounded by magnetic walls that serve 
as an event horizon (Sect. 3.2). This is our second conceptual leap. These mag-
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netic walls, generated by the high temperature and the intense pressure of the 
magnetic fields, would disturb any object meeting them. There would be a con-
comitant blackout with an inversion of the laws of electromagnetism and the 
appearance of a magnetic charge that squeezes out the electric charge. The black 
hole would produce a dark substance similar to that of dark matter (Sect. 3.2.1 to 
3.2.5). In Section 4, “Creation of Magnetic Sterile Neutrinos inside the Active 
Black Holes that can Cross to the outside to Constitute Dark Matter”, we figure 
that the black hole space is filled with dark energy. In the theory of Relation, 
there was at the beginning a maximum energy (identified with dark energy) 
which declined by transforming itself into ordinary matter. The black hole does 
the opposite process by turning ordinary matter into energy (Sect. 4.1). Some 
will feel that this paper deals with the problem of dark energy in a manner that is 
not consistent with the standard model of particle physics and general relativity. 
We argue, on the contrary, that it is the problem of dark energy that is inconsis-
tent with the standard model of particle physics and general relativity, and we 
explain why (Sect. 4.2). It is logical to expect that the gravitational energy density 
inside the black hole can easily convert into virtual couples of particles and ma-
terialize them. This enormous energy would behave like an intense accelerator of 
materialization and annihilation. “Dark” particles and antiparticles could escape 
from the black hole. Third conceptual leap: the sterile “magnetic” neutrinos 
could be the dark matter (Sect. 4.3). In Section 5, “Efforts of Four Researchers”, 
we highlight some aspects of the work of four researchers who are contributing 
to the extension of knowledge about dark matter, magnetic monopoles, black 
holes and sterile neutrinos. In Section 6, “Heat, entropy and information have 
everything to do with black holes”, after describing the problem of entropy (Sect. 
6.1) and the information paradox (Sect. 6.2), we presume that not only informa-
tion escapes from the black hole, but also the destroyed matter (Sect. 6.3). In sec-
tion 7, “Comments and Conclusion”, we realize that dark matter, different from 
ordinary matter, generates a crisis. A major conceptual overhaul is needed. It 
concerns, in addition to dark matter, electromagnetism, sterile neutrino and 
black holes. A final summary serves as conclusive. 

2. Dark Matter and Maxwell’s Laws Reversed 
2.1. Omnipresence of Dark Matter in All Regions of the Universe 

The suspicion of the existence of a dark matter is due to the astronomer Fritz 
Zwicky in 1930. He noticed a dynamic anomaly within each cluster of galaxies 
whose mass he proposed to determine by measuring the speed of galaxies con-
stituting these clusters. The speeds of the galaxies were too great to be balanced 
by the gravitational pull of the cluster, which should have been scattered. He came 
to the conclusion that the mass of these clusters must be greater than all that was 
observable and that a hidden matter must be present in each cluster. He estimated 
that the hidden mass represents more than 90% of the mass of the cluster. 

Around 1960, astrophysicist Vera Rubin, while studying the dynamic behavior 
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of gaseous clouds orbiting the center of certain galaxies, discovered that this 
unknown dark matter was also distributed outside the clusters. These clouds are 
sometimes located at distances from this center that sometimes far exceed the 
visible radius of their galaxies and the rotational speeds of these galaxies should 
have decreased with their distance from the center of the galaxy. She realized 
that the speed of rotation of the gaseous clouds was independent of their dis-
tance from the galaxy. If all the matter, visible and dark, had been concentrated 
in the galaxies, the speed of rotation of these clouds should have been all the 
smaller as their distance in the center was great. All these experimental facts tes-
tified to the presence of dark matter, uniformly distributed not only within these 
galaxies, but also in vast external volumes. Observations on larger scales, clusters 
of galaxies that cover a few million light-years, have confirmed the presence of 
dark matter [5]. 

2.2. The Candidates 

Theorists consider radically different paths to explain this unknown fluid of or-
dinary matter that bathes the whole cosmos and whose nature remains to be ex-
plained. Over the decades they have scrolled through several candidates: wimps 
(neutralino, Kaluza-Klein particle, little Higgs particle), wimpzilla, axions, machos, 
black holes, sterile neutrinos, etc. 

Wimps (weakly interacting massive particles) are the preferred candidates. 
These hypothetical particles have in common to be more massive than the par-
ticles known today, and are supposed to be able to interact with the latter only 
via the force of gravity and the weak nuclear force. These are ideal candidates for 
dark matter, as it is assumed that they would have just the abundance required 
to explain the current structure of the universe. Several distinct theories, all 
supposed to correct the imperfections of the standard model that describes par-
ticle physics, predict different types of wimps. For twenty years, astrophysicists 
and particle physicists have given themselves the means to discover them. 
Whether it is a direct detection (the aim is to detect the impact of a wimp on a 
core of ordinary material in an underground laboratory) or indirect (the prod-
ucts of the collision of two wimps are tracked in galaxies, in the heart of the sun, 
in cosmic rays, in the LHC at CERN), no dark matter particles have been de-
tected to date [6]. 

The wimps’ track, as well as those of the other candidates, could be a dead 
end. So instead of looking for a new particle, why not change the law of gravita-
tion? This is what the followers of Mond (Modified Newtonian Dynamics) have 
been trying to do for thirty-five years. But neither this theory nor its most recent 
varieties can explain all the properties of dark matter. 

2.3. A Variant of Electromagnetism 

It seems that particle physicists are living a nightmare scenario. It turns out that 
they found no new particles beyond the standard model with their accelerators. 
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They took a first look everywhere and found nowhere. They still continue to 
move forward. They rely on the great diversity of detection approaches to hope 
to one day get their hands on the good particle(s). We believe that this crisis 
must be solved by a major conceptual overhaul. Without being guided by theo-
retical prejudices, we propose a variant of electromagnetism that will provide an 
explanation for dark matter. Why would something remarkable and unprece-
dented not have occurred at the heart of the electromagnetic theory that would 
make it incapable of emitting or absorbing electromagnetic radiation? 

There is almost complete symmetry between electrical and magnetic pheno-
mena. The difference lies in the fact that no free magnetic pole exists (north or 
south), while there are free electric charges (positive or negative): the two types 
of poles can never be physically separated. This makes us consider magnetism as 
a secondary phenomenon whose existence depends on the flow of an electric 
current [7]. 

Maxwell’s four equations fully describe the electromagnetic behavior on a very 
large scale, including that of light. The electromagnetic field is the space between 
the lines of force of the electric field E and the magnetic field B, and there is thus 
energy 

( ) ( )2 28 8U E Bε µ= π + π .                   (1) 

( ε : vacuum permittivity; µ : vacuum permeability) 
Suppose a severe astrophysical event has occurred that would cause the visible 

light to cease. And that to provoke this darkness, it would have been necessary 
that the electric charge no longer plays its role, that its physical size becomes 
another (the letter q, in Coulomb’s formula, would no longer play the exact role 
played by the letter m in the Newton’s formula). This last possibility has already 
been considered by Paul Dirac, while he was wondering about the reason for the 
existence of the smallest electric charge. 

2.4. Dirac’s Theory Establishes a Connection between the Smallest 
Electrical Charge and the Smallest Magnetic Pole 

Although in classical electromagnetism the existence of magnetic monopoles is 
not compatible with Maxwell’s equations, and although special relativity allows 
us to demonstrate all Maxwell’s laws, including that which predicts the 
non-existence of magnetic monopoles, Paul Dirac demonstrated in 1931 that the 
existence of magnetic monopoles was compatible with Maxwell’s equations in 
the hypothesis of the quantification of the electrical charge [8]. His theory estab-
lishes a connection between the elemental electric charge (that of the electron) 
and the hypothetical elementary magnetic charge. It showed symmetry between 
electricity and magnetism, which is still completely foreign to established con-
ceptions. 

We know that the smallest electric charge exists experimentally. With a purely 
electronic quantum condition, we obtain the value e (in CGS system) given ap-
proximately by 
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2 137.03ћc e = .                        (2) 

( )( ) ( )227 10 101.054512 10 erg sec 2.9979 10 cm s 4.8030 10 statcoul 137.03− −× × × =  

However, his theory, although at first intended to give a theoretical value to e, 
turned out, when it was developed, to establish a connection between the smal-
lest electric charge and the smallest magnetic pole, namely the equation 

( ) 2oћc eµ = .                         (3) 

( )( ) ( )( )27 10 10 81.054512 10 2.9979 10 4.803 10 3.29028 10 2− − − × × × × =   

( 83.29098 10 statcouloµ
−= × : quantum of magnetic pole). Although Dirac’s 

proof of the relation between pole strength, electric charge, and Planck’s con-
stant, is not simple, we can, by a simple estimate, explain the number 2 of the 
Equation (3) and briefly illustrate the character of the relation [9]. Here we con-
sider that poles exist and one isolated plate (a capacitor plate holding a magnetic 
pole charge) holds a pole density of 

oµ
σ  poles per unit area. By analogy with 

the calculation of the electric field from such a plate holding an electric charge 
density and the symmetry between the electric field E and the magnetic Bc, we 
find that the magnetic field near the plate is 

2
o

cB µσ= π .                         (4) 

The electric charge moving with a velocity v will move in a circle of radius r if 
the centrifugal force on the charged particle, 2mv r , is equal to the force on the 
moving charge generated by the magnetic field, Bev 

2mvBev
r

=  or 
2

mvrBe
r

= .                   (5) 

From the quantization of angular momentum, mvr is equal to nћ, where n is 
an integer. Substituting the pole density expression for B ( 2

o
B cµσ= π ), 

2

2
 

o nћe
c r

µσπ ⋅ =  or ( )22
o

r e nћcµσπ ⋅ = .              (6) 

This relation requires that the magnetic pole strength enclosed by the orbit of 
the electron be quantized. Setting that pole strength to be the smallest value, one 
single pole with a unit pole strength oµ , we have 2

o or µσ µπ =  and 

2o
ne ћcµ =⋅  hence ( ) 2oћc eµ = .                (7) 

Although this estimate is crude, it serves to illustrate the connection between 
the quantization of angular momentum and the quantization of charge and pole 
strength. Quantum mechanics requires a quantization of charge—if monopoles 
exist. 

Instead of finding a purely electronic quantum condition, such as (2), Dirac 
found a reciprocity between electricity and magnetism, a connection between 
the magnetic pole quantum and the electronic charge. His theory contains no 
arbitrary characteristic, gives no possibility to modify it, and would have the ef-
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fect of creating a magnetic monopole. For that, the theory requires a quantiza-
tion of the electric charge, because any charged particle moving in the field of a 
pole of intensity oµ  must have as it charge an integer multiple (positive or 
negative) of e, so that functions wave describing the motion may exist. 

Magnetic poles would have properties similar to those of electric charges. 
Each pole would emit 4 oµπ  of magnetic field lines B, where oµ  is the pole 
strength (corresponding to the charge q). The strength on a pole in an electro-
magnetic field would be 

o o
vF B E
c

µ µ= + ,                       (8) 

where, field vectors and velocity are orthogonal. The strength exerted on a fixed 
magnetic pole would be a measure of the magnetic field and the strength exerted 
on a moving pole would be proportional to the pole’s speed and the magnitude 
of the E field. The symmetry of the pole and the charge seems to be exact. 

If the charges and poles are so similar, why hasn’t nature provided us with 
poles? (Poles have not been seen despite careful searches.) However, if poles are 
found they must have much larger charges than the unit electrical charges found 
on elementary particles such as the electron. So this universe cannot be com-
pletely symmetric between pole and charge on the microscopic level. 

We might still ask why, if poles and charges are symmetric in principle, we 
have charges and not the poles. If the universe were constructed so that there 
was no electric charge, but only magnetic poles with the same value of pole 
strength as the fundamental charge strength, we believe that this universe would 
be indistinguishable from ours. If we could communicate with the inhabitants of 
that universe (who are made of protons, which have no electric charge, but hold 
a unit magnetic pole strength, and electrons, with no charge, but with an oppo-
site magnetic pole strength), we could not determine whether they live in a 
magnetic universe or an electric universe as we do [9]. 

2.5. Our Theory for Dark Matter: Sterile Particles Associated with 
Magnetic Monopoles 

And if the universe was constructed in such a way that there is no electrical 
charge, but only magnetic poles not having the same value of pole strength as the 
fundamental charge strength, so that the left-hand side of Equations (2) or (3) 
no longer corresponds to the experimental value 137 or the theoretical value 2, 
we think we would be in a total darkness that would have the appearance of a 
dark matter. We can imagine that the elements that make up this dark matter 
would be composed of elements charged magnetically, with electricity and the 
electric field considered as a relativistic consequence of the magnetic field, which 
involves reversing Maxwell’s laws. 

2.6. Inversion of Maxwell’s Laws 

The experimental dissymmetry of Maxwell’s equations with respect to the elec-
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tric-magnetic duality is related to the fact that the electric field is generated by 
the usual charges which give it a non-zero divergence, but the magnetic field is 
always of zero divergence because of the absence of corresponding punctual 
charge. Experimentally, the only source of the magnetic field comes from the ex-
istence of an electric current, that is to say a motion of electric charges. 

4 eE ρ∇ ⋅ = π ,                         (9) 

0B∇⋅ = ,                          (10) 

1 0E B c t∇× + ∂ ∂ = ,                     (11) 

  1 4 eB E c t J c∇× − ∂ ∂ = π .                   (12) 

( eρ : electric charge density; eJ : electric current density; 
oµ

σ : magnetic 
charge density; 

o
Jµ : magnetic current density; e: electric charge; oµ : magnetic 

charge) [10]. 
Assuming there is a magnetic charge density 

oµ
σ  and a current density 

o
Jµ  

but no corresponding electrical counterpart, the equations would be asymmetric 
being fully subject to the magnetic charge. Maxwell’s equations then become: 

4
o

B µσ∇ ⋅ = π ,                        (13) 

0E∇⋅ = ,                         (14) 

1 0B E c t∇× + ∂ ∂ = ,                     (15) 

1 4
o

E B c t J cµ∇× − ∂ ∂ = π .                  (16) 

The equations are still asymmetrical but no longer subject to the electric 
charge. Equations (14) and (15) seem to miss something on their right sides. To 
see exactly what they are missing, we need to explain the meaning of E∇⋅ , also 
called divergence of E or simply of divE. Let V be a volume surrounded by a 
surface S in space. E∇⋅  integrated on the volume V gives 4π times the total 
amount of electric charge e contained in V. Similarly, E∇⋅  evaluated at point x 
gives 4π times the electric charge density at x. Hence, Equation (14) indicates 
that there is no electric charge at any point in space. Basically, moving charges 
are equivalent to currents. But because the above reversed Maxwell’s equations 
assume that there is no electric charge in dark matter, there is no electric current 

eJ  on the right side of Equation (15). Equations (13) and (16) seem to have won 
something on their right sides. This means that B∇⋅  integrated on the volume 
V surrounded by a surface S in space gives 4π times the total quantity of mag-
netic charge oµ  contained in V. Similarly, B∇⋅  evaluated at the point x gives 
4π times the density of magnetic charge at point x. As a result, Equation (13) in-
dicates that there is a magnetic charge at any point in space. 

Because the Maxwell’s equations above assume that there is a magnetic 
charge, there is a magnetic current 

o
Jµ  on the right side of Equation (16). 

Therefore, the absence of electric charge and the presence of magnetic charge 
reverse the asymmetry. 

In fact, the electrical charge would become a magnetic pole, which would re-
sult in an attribution reversal, so that electricity should be considered as a sec-
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ondary phenomenon whose existence depends on the flow of a magnetic cur-
rent. The overthrow, in addition to the darkness caused, would in a way make 
that there would be free magnetic poles when there would be no more free elec-
tric charges. Magnetic monopoles would exchange “dark photons”. 

Note: There is no question of continuing by presenting a critical analysis of 
the hypothesis of Maxwell’s “inverted” laws, because these must not be consi-
dered in an absolute sense, as if the nature of dark matter had to conform pre-
cisely to these laws. It is only a simplistic schema of reality, a kind of approxima-
tion, an image. As such, it corresponds to reality, even if it does not identify with 
reality. 

2.7. Magnetoelectric Force 

The inversion that we have just presented shows that there would be a dark 
magnetoelectric force (ME) with a dark photonic wave, just as there is an elec-
tromagnetic force (EM) with a photonic wave. Dirac’s theory ensures that the 
magnetic monopole can coexist with an electric charge in ordinary matter. 
Maxwell’s laws are not reversed, they are completed in order to obtain a perfect 
symmetry: 0E ≠ , 0B ≠ . According to our hypothesis of the inversion of the 
laws of Maxwell, the magnetic pole would replace the electric charge: 0E = , 

0B ≠ . There would only be a magnetic pole, which evicted the electrical charge. 
We suggest the existence of an electric charge (known electric monopole) in 

ordinary matter and a magnetic pole (unofficial lightweight magnetic monopole) 
in dark matter. With rare exceptions, there is no coexistence of the two charges 
in ordinary matter or in dark matter. There would be no electric monopole in 
dark matter just as there would apparently be no magnetic monopole in ordi-
nary matter. 

2.8. “Magnetic” Sterile Neutrinos 

To penetrate the mystery of dark matter, we think that it is a different electro-
magnetism, a magnetoelectrology, with the necessity of qualifying this variant as 
a “new force”. And that it is also a new particle: “magnetic” sterile neutrino. 

Physicists know three types of neutrinos. Since the 1970s, many researchers 
have assumed that there is a fourth type, a “sterile” neutrino, much heavier, but 
which interacts even less than the others with ordinary matter. It is a hypotheti-
cal type of neutrino that does not interact via any of the fundamental interac-
tions of the standard model of particle physics except gravity. It is a right chiral-
ity neutrino or a left chirality antineutrino that can be added to the standard 
model and can take part in phenomena such as the mixing of neutrinos. 

We assume that there is a fifth type of neutrino. Our hypothesis is that there 
would be a sterile neutrino linked to magnetic pole, that would belong to dark 
matter and that would be a magnetic monopole. The term magnetic sterile neu-
trino is used to distinguish it from sterile neutrino. The mass of the neutrino in 
both cases is unknown and could take any value between less than 1 eV and 1015 
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GeV. 
Dark matter would consist of invisible magnetic sterile neutrinos that swarm 

in the universe and exert a gravitational attraction everywhere [11]. This sterile 
neutrino would depend on a magnetic pole that would be undetectable since it is 
not an integral multiple of the conventional electric charge. Where would it 
come from? Our idea is that they come from active black holes, which risks up-
setting our vision of black holes even more. 

3. Black Holes 
3.1. Black Holes Revolution outside the Event Horizon 

Black holes are giving birth to a new genesis of the universe at every level. Our 
universe would have emerged from a primordial black hole that would be the big 
crunch of another universe. Initially, the black holes were at first only a mathe-
matical singularity, a cosmic curiosity very difficult to observe. These gravity 
wells come from general relativity, they are an effect of the existence of a space- 
time curved by the masses and it is only in 1968 that John Wheeler invents the 
expression “black hole”. As early as 1916, Karl Schwarzschild found the solution 
of general relativity that describes the gravitational field around a star. A singu-
larity in its heart is seen as impenetrable before becoming, after the 1970s, the 
horizon of the black hole that swallows everything. From the 1990s, with the 
progress of observations, there is a need to believe that they really exist. Astro-
nomers build a bestiary of destructive black holes. There would be everywhere: 
in the primordial universe, at the center of our Milky Way and all galaxies. 
Cosmologists and physicists see the concept of the black hole as a means to 
marry the irreconcilable theories of relativity and quantum physics. The proof of 
their existence fell on September 14, 2015 when the Ligo experiment for the first 
time captured gravitational waves caused by the fusion between two black holes. 

Today, it seems that those who were thought to be the worst cosmic gluttons 
have become the great architects of the universe. They would have structured the 
primordial universe, modeled galaxies and lit up stars [2]. Supermassive black 
holes have been observed everywhere in the cosmos and astrophysicists believe 
that one of them sits at the center of most galaxies. They concentrate millions of 
times the mass of the Sun and would have created stars and galaxies. Observa-
tions made in the late 1990s were the first to reveal three creative roles of super-
massive black holes: 

First, a role of regulator, guardian of galaxies. 
Astrophysicists first realized that in nearby galaxies, the central black hole al-

ways seemed to weigh 1/1000 of the star bulb that shelters it, a sign that the two 
are linked. Then, from 2005, it became apparent that the energy of the most 
energetic black holes can modulate star formation, stopping the formation of 
galaxies that otherwise would be enormous. Plasma winds ejected by the disk 
from black holes could control the growth of galaxies. These winds reach 1/10 
the speed of light and carry enormous amounts of energy. In this way, today, 
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80% of the gas in the universe is found outside galaxies. Thus, the black holes 
play a regulatory role, soothing through their winds a cosmos too eager to gen-
erate stars. 

Second, a role of cleaner (ionizer) of the primordial universe. 
They could also, in other circumstances, have played the opposite role: con-

centrating the gas clouds, boosting the star formation, they would have been the 
main actors of the reionization process some 400,000 years after the big bang. 
Their X-rays, much more energetic than the UV of stars, could have been ex-
tracted from galaxies and ionized the intergalactic medium at greater distances 
than the UV of stars. Even smaller black holes, the stellar black holes a few dozen 
times the mass of the Sun, could have participated because in this primordial 
universe, they were always accompanied by a star whose matter they vampirized. 
What to maintain over the long term their production of X-ray at a high rate. 
They could thus disperse the thick neutral hydrogen fog by ionization of the 
atoms and make the cosmos transparent. 

Third, a trigger role of star births through their jets. 
A supermassive black hole compresses and heats the gaseous material that 

accumulates and revolves around it so much that this burning plasma begins to 
radiate and create an intense magnetic field. The radiation pressure exceeds 
gravity. Strong winds are generated in all directions and some of the matter es-
capes from the poles, in the form of two fine jets, several hundred km/s away. 
The winds blow the galaxy’s gas and regulate its star production. The jets strike 
distant clouds of gas, initiating their condensation into new stars. This is sug-
gested by the observation of some active galaxies. It seems proven, that with 
their jets, black holes form stars. It was discovered that a surge of new stars fol-
lowed the direction of the jet emitted by its central black hole. The jet is so po-
werful that in a short time it can form 10% of a galaxy, like a spider spinning its 
web. Although there are only a handful of examples, black holes are now taken 
into account in the theory of galaxy formations. 

3.2. Black Holes Revolution inside the Event Horizon 

The three previous roles involve the photon sphere and the accretion disk out-
side the event horizon. We propose here a fourth role, a role of creator of dark 
matter, by their emission of “magnetic” sterile neutrinos. This role concerns the 
internal space of the black hole, between the horizon and the center of the black 
hole. 

3.2.1. The Classic Horizon of the Black Hole 
Roger Penrose, wrote a short article in 1964 in the journal Physical Review Let-
ters, where he described the problem of the singularities associated with star im-
plosions and demonstrated a mathematical theorem that said that when a star 
collapses to the point where gravity becomes strong enough to form an apparent 
horizon around it that brings back the photons that are trying to emerge, noth-
ing can prevent the gravity from becoming strong enough to create a singularity. 
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Therefore, any black hole must contain a singularity. In the late 1960s, Penrose 
searched unsuccessfully for a mathematical example of a collapse that produced 
a naked singularity. In 1969, he issued the conjuncture of cosmic censorship: no 
object can, collapsing, give birth to a naked singularity. If a singularity is formed, 
it is dressed with a horizon that makes it invisible from the outside world [12]. 

This apparent horizon (like a spherical membrane) is in fact the Schwarzschild 
horizon. It is not singular in the strong sense, space-time is defined and it is 
permeable to incoming particles, it is a unidirectional membrane. The mem-
brane of a sphere formed of light rays which define its surface. At the center of 
Schwarzschild’s solution lies the true singularity, the heart of the black hole. The 
Schwarzschild sphere is an apparent singularity called horizon ( 22r GM c= ), 
while the point of space-time at the origin of coordinates ( 0r = ) is really singu-
lar and looks like what we call the big bang [13]. 

At the crossing of the horizon, time-coordinate t and radius- coordinate r 
have exchanged their roles because the sign assigned to them in the definition of 
the linear element of space-time turns over. Which means that time becomes 
space, and space, time. The time-coordinate t is not at all adapted to the local de-
finition of 2ds  since we no longer recognize the signs of time and space. In 
other words, the Euclidean metric does not extend inside the horizon. 

But if we take a quantum view of cosmic censorship, the collapse of the struc-
ture at the level of a singularity must not affect any physical measurement. A 
description of the particle in free fall should allow to drive the particle through 
the horizon to the center by a path integral [14]. 

The most general model of black holes, according to general relativity, says 
that imploding stars towards the state of the black hole must, by passing their 
horizon, lose all the differences to the spherical symmetry, “all their hair”, all 
their characteristics (except three parameters: mass, charge, angular momen-
tum), and therefore, for example, their protuberances, their asymmetries and 
their magnetic field; they must, willingly or forcibly, become “bald”. This lost 
structure must be evacuated previously in the form of radiation, in the form of 
an emission of gravitational waves. 

3.2.2. Power Failure at the Crossing of the Horizon 
It may be said that this model predicts the emission of gravitational waves, but 
the particle of the collapsing star does not end its life on the horizon, as if it were 
finally dying in the center, on the true singularity. At the crossing of the horizon, 
it seems to simply disappear on one side to reappear the other side. It becomes 
invisible to any observer left outside the sphere. Everything happens as if the 
sudden invisibility of the light was caused by a blackout that begins on the hori-
zon. How to understand what happens to a particle, whether material or lumin-
ous, immediately after it has crossed the horizon? One could perhaps under-
stand by taking an ordered magnetic field that would have settled on the “en-
larged horizon” of a black hole located in the center of a quasar. An enlarged ho-
rizon is a fictional area just outside the horizon while an “inner horizon” is a fic-
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tional area just inside the horizon. This black hole is surrounded by an accretion 
disk, composed of hot and ionized gases. When plasma detaches from the inner 
edge of the disc and plunges onto the enlarged horizon, it carries with it a skein 
of magnetic field lines. When this magnetic field crosses the enlarged horizon, it 
generates surface currents that dissipate energy by flowing into the very resistive 
membrane. In fact, the lines of the field do not cross the real horizon, but wrap 
around it and form loops. The density of these loops and the intensity of gravity 
are such that they cause symmetry breaking in the membrane. There is a charge 
reversal; the magnetic pole replaces the electric charge. It’s the blackout. 

3.2.3. Magnetic Field of the Horizon and Energy of the Quasars 
To provide the energy of a quasar, a magnetic field should cross the enlarged ho-
rizon throughout the life of the quasar. However, there is a source, outside the 
black hole, likely to generate such a field: the interstellar gas attracted to the 
black hole. The interstellar gases are the seat of magnetic fields and, when the 
gases heat up and ionize near a black hole, they form a plasma disk where the 
field lines are “frozen”. The rotation and turbulence of this plasma in accretion 
entangle the field lines, some of which settle on the enlarged horizon, during the 
fall of plasma fragments. In the membrane, surface currents continuously dissi-
pate the energy of this chaotic field, leaving only “clean”, ordered, field lines that 
penetrate the membrane at the South Pole and exit at the North Pole. After an 
ordered field line has been deposited on the black hole, it no longer disappears: 
the plasma of the accretion disk and the magnetic field make it persist as long as 
the disk does not explode or is not swallowed by the black hole. The black hole 
acquires a magnetic field more than 10,000 times more intense than the Earth’s 
magnetic field.  

3.2.4. Where Electromagnetism Becomes Magnetoelectricity 
It is known that the sphere of the event horizon is surrounded on the outside of 
a sphere of photons where, because of the considerable gravity, the particles of 
light no longer propagate in a straight line but begin to orbit. These spheres are 
surrounded by an accretion disk which is a plasma disc formed of matter taken 
by the attraction of black holes, compressed under the effect of gravity and 
heated to thousands of billions of degrees. The inner edge of the accretion disk is 
the last place where matter can orbit before falling into the black hole. A super-
massive black hole compresses and heats the matter around it so much that this 
hot plasma creates an intense magnetic field. The latter exerts on the horizon of 
the black hole forces perpendicular to itself. The magnetic tension force is in-
versely proportional to the radius of curvature of the field line: it acts by stret-
ching the field lines as if they were elastic cords. The behavior of the field can be 
interpreted as if it were endowed with a throttling pressure: when the forces of 
the magnetic field penetrate inside the horizon of the black hole there is a phase 
transition where the relation electricity/magnetism is changed due to too high 
pressure and excessive temperature. There is a charge reversal, during which the 
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electric charge disappears to become the magnetic pole. We go from light to 
darkness; we witness a kind of reversal of Maxwell’s laws, as described above 
[15]. 

With the reversal of charges, electric currents become electric fields and mag-
netic fields become magnetic currents. The result is that on the horizon, this re-
gion of space-time pressed by the electromagnetic tidal forces which culminate, 
the light does not act suddenly anymore. To illustrate the phase transition, con-
sider that electromagnetism, before breaking through the horizon, is like a piece 
of wood impregnated with water. In this analogy, wood is magnetism and water 
is electricity, and both (wood and water; magnetism and electricity) are inti-
mately intertwined, unified. Close to the horizon, according to our better under-
standing, the laws of quantum mechanics begin to combine with those of Eins-
tein’s general relativity and are already beginning to change the “rules of the 
game”. (They will be totally changed at the singularity, and the new rules will be 
called quantum gravity.) The horizon and the laws of gravity combined with 
those of the quantum mechanics that govern it are like a fire in which wood 
swollen with water is thrown. The fire boils the water coming out of the wood, 
leaving it alone and master. On the horizon, the laws of quantum gravity expel 
electricity, leaving magnetism alone and resistant. Electricity is reduced to a 
current without conduction, extinguished [12]. 

One could also explain what happens with invariance groups that have proven 
themselves in quantum mechanics. They are algebraic transformations that re-
tain the form of the equations and reveal physical properties. However, if we 
imagine a particle that crosses the horizon of the black hole, it “oscillates”, it has 
a charge no longer electric but magnetic: it is the magnetic monopole. The par-
ticle described by the Dirac equation thus acquires another gauge invariance: an 
inverted gauge invariance. The Dirac equation might have a gauge invariance 
that changes a bit the wave described by the equation, but the new particle does 
not just change “phase”, it is no longer an integral multiple of the charge of the 
electron. It no longer interacts with electromagnetism. Nevertheless, there are 
other “dark” invariance groups that fall under “magnetoelectrology” and that 
can intervene in accessible disintegration phenomena because these monopoles 
are not only magnetic but endowed with weak interactions. 

To summarize, on the periphery of the black hole, there is a horizon: a region 
where light no longer works and where electromagnetism has given way to 
magnetoelectricity. This means that with the reversal of charges, electric currents 
become electric fields and magnetic fields become magnetic currents. In a pic-
tured language, it will be said that electric fields are “frozen” in magnetic cur-
rents. 

3.2.5. Light Can Escape from the Black Hole 
In the context of general relativity, a black hole is defined as a gravitational sin-
gularity occulted by a horizon of events. It is a celestial object so compact that 
the intensity of its gravitational field prevents any form of matter or radiation 

https://doi.org/10.4236/jmp.2020.112011


R. Bagdoo 
 

 
DOI: 10.4236/jmp.2020.112011 183 Journal of Modern Physics 
 

from escaping it. According to quantum physics, a black hole is likely to evapo-
rate by the emission of black body radiation called Hawking radiation. In 1974, 
Stephen Hawking discovered that, contrary to classical mechanics, black holes 
could radiate near heat radiation. The “temperature” of the black hole, which is 
inversely proportional to its size, is associated with it. In an article published in 
2014, Hawking declared that there is no black hole, in the sense that light cannot 
escape to infinity [16]. According to him, these space ogres, capable of devour-
ing galaxies and making light disappear, could actually release some quantities of 
matter and particles. The matter and the energy could actually be held tempora-
rily, then modified, before being released into space. A phenomenon that would 
be inversely proportional to the mass of these objects: the smaller a black hole, 
the more it would let large quantities of matter escape. Black holes would not be 
so “black” as most cosmological models portray. 

4. Creation of Magnetic Sterile Neutrinos inside the Active 
Black Holes That Can Cross to the Outside to Constitute 
Dark Matter 

4.1. Dark Energy inside the Black Hole 

The deep meaning of the discovery of Hawking radiation emanating from black 
holes is that the quantum vacuum is polarized by the very intense gravitational 
field prevailing in the vicinity of a mini black hole; the gravitational energy of 
the latter is converted spontaneously into particles. Quantum vacuum means 
minimal energy. According to the theory of Relation [3] [4] [17], there was at 
the beginning a maximum energy (identified with dark energy) which declined 
by transforming itself into ordinary matter. Black hole does the opposite process 
by turning ordinary matter into energy. This enormous energy is like a vacuum 
energy (which has become very dense) inside the black hole since it is no longer 
materialized. It is logical to expect that the enormous density of gravitational 
energy (which has a colossal mass) inside the black hole can easily convert into 
virtual couples of particles and materialize them. 

Following the reversal of the charges explained above which converts visible 
ordinary matter into invisible matter, let us imagine a distribution of dark mat-
ter inside a black hole whose mass increases by engulfing a whole astrophysical 
jumble of gas pockets, stars, etc. As the mass of the black hole enhances, the dark 
matter sees its distribution contract, become more compact and denser. The 
black hole accumulates a colossal black mass that is equivalent to dark energy. 
The latter means a gigantic density of matter- dark energy inside the horizon. 
This enormous energy would behave like an intense acceleration of annihilation 
[18]. 

The boost in the mass of black holes thus augments the rate of annihilation of 
the dark energy-matter inside the horizon. In principle, because the density of 
dark matter is prodigiously high (inside the supermassive black holes, and even 
the intermediate-mass black holes of with a mass between a hundred and a mil-
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lion times the mass of the Sun), the probability exists that the rate of annihila-
tion of particles of dark matter will accelerate to the point of injecting outwardly, 
out of the horizon, ample energy to constitute the unknown substance known as 
“dark” which fills the universe. 

To describe the states of a magnetoelectric field, we will use an intra-horizon 
space, which is a first circle once crossed the horizon superimposed on several 
circles leading to the central point, called a singularity. In this intra-horizon 
space, the magnetoelectric field contains a huge concentration of energy, allow-
ing large fluctuations of the creative energy of particles. 

The inside of the active black hole could be comparable to the state of the un-
iverse during the 380,000 after the big bang, while the universe was a sea of 
darkness—just a fog of hydrogen atoms forged by the big bang and left to float 
in the absence of light. However, if it is constructed in such a way that there are 
only magnetic poles with a pole strength value other than the fundamental elec-
trical charge strength, the inside of a black hole would be different from the in-
side our primeval universe. This inside could be made of a particle (similar to 
proton) holding a unit magnetic pole strength and a particle (similar to electron) 
with an opposite magnetic pole strength. These poles would provide a source of 
magnetic field just as an electric charge provides a source of electric field. The 
energy coursing through the black hole is so strong that magnetic monopoles, 
characterized by equal magnetic poles of similar or opposite signs, which repel 
or attract each other, cannot assemble a magnetic dipole. 

4.2. The Idea of Dark Energy 

We have just seen that according to the theory of Relation there was at the be-
ginning a maximum energy (identified with dark energy) which declined while 
being transformed into ordinary matter. Some will feel that this paper deals with 
the problem of dark energy in a way that is not consistent with the standard 
model of particle physics and general relativity. A big nuance to bring: it is the 
problem of dark energy which is inconsistent with the standard model of particle 
physics and general relativity. Let’s take a closer look. 

According to official cosmologists, 70% of the contents of the universe are 
made up of a mysterious, undetectable and anti-gravitational dark energy that 
accelerates the expansion of the universe. It was through the observation of dis-
tant supernovae, which constitute “standard candles” intended to measure the 
universe on a large scale that they were able to deduce that dark energy existed. 
The latter was not predicted by any theory. It was introduced as a simple para-
meter in the equations of quantum particle physics and general relativity, which 
are two diametrically opposed theories. The result is that the dark energy, which 
looks like the energy of the quantum vacuum, seems to be 10120 times too strong 
compared to what the observations indicate. This gigantic gap is at the heart of 
the greatest crisis in contemporary physics.  

In our opinion, we have reached this gigantic gap, or rather this unacceptable 
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error, when astronomers, to measure the distance of very distant supernovae, 
have assumed that the intrinsic luminosity of the supernovae is the same for all, 
independent of the particular object measured. With this gratuitous hypothesis, 
impossible to prove, they came to the conclusion that expansion accelerates in-
stead of slowing down (slowing down is what it does in an honest Friedmann 
model, and this is what is predicted in the equation of the theory of Relation). 
They then thought it wise to use an engine of unknown origin to produce the 
desired effect: dark energy [19]. 

Astrophysicists have associated this dark energy with negative pressure on a 
cosmological scale that would translate into a “current acceleration” in the ex-
pansion of space. It corresponds to a quantum vacuum energy whose value 
would be disproportionately greater. They gave this energy density value of the 
vacuum the same status as a repulsive cosmological constant, which pushed 
them to rehabilitate Einstein’s cosmological constant, but about 10120 times larg-
er. There is a deep contradiction between the concepts of quantum field theory 
(according to which the energy density of vacuum is about 10120 times the densi-
ty of matter-energy of the present universe), and the ideas of general relativity 
(vacuum energy is a source of gravitation, hence of curvature of space-time) 
used to associate this estimate with astrophysical observations. This dark energy 
in the form of a repulsive cosmological constant imposed by the omnipresent 
quantum vacuum would produce hallucinating cosmological effects: our un-
iverse would bend so intensely that the visibility horizon would be at centimeter 
distances [5]. 

By decreeing that the supernovae of yesteryear were the same as those of to-
day, by affirming dogmatically that the first supernovae were necessarily of a 
similar chemical composition of the following [20], we are arrived at the “va-
cuum catastrophe” or the problem of the cosmological constant. The high degree 
of intoxication of the scientific community was manifested by the award in 2011 
of the Nobel Prize in physics to three astrophysicists belonging to two different 
teams for their discovery of the acceleration of the expansion of the universe. 
This discovery, based on the unconfirmed hypothesis of the uniformity of su-
pernovae and uncertain distance measurements, endorsed by the judgment’s 
passivity of official cosmology, is as aberrant as the Ptolemy’s epicycles. 

More and more, specialists advance the hypothesis that the acceleration of the 
expansion of the universe, which motivated the creation of the concept of dark 
energy, could in fact result from an observational bias [21]. What will be said in 
astrophysical publications (whose content was sadly uniform) the day when they 
will have to announce the non-uniformity of the concerned supernovae? 

4.3. Creation and Emission of Sterile Neutrinos in Black Holes 

Sterile neutrinos have often been proposed as dark matter candidates. It is also 
our preference. They would interact only by gravity with ordinary matter, with 
the exception of a small ability to mix with familiar neutrinos of the standard 
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model. Sterile neutrinos associated with a magnetic charge would be one of the 
only by-products of annihilations that would successfully leak from the inside of 
the black hole to the outside, as would solar neutrinos associated with an elec-
trical charge (electron) are the only ones who manage to escape from the heart 
of the Sun.  

We will therefore limit ourselves here to the creation of sterile neutrinos de-
pendent on a magnetic charge. The wave-corpuscle duality of photons, extended 
by de Broglie to the waves of matter, led to the quantum concept of matter field. 
This quantum field of matter is a set of operators, creations and annihilation of 
fermions, including the neutrino: the operator kv+  creates a neutrino of pulse k, 
and the operator kv  annihilates a neutrino of pulse k. 

In this intra-horizon space of the active (hot and dense) black hole, which is 
part of Dirac’s restless ocean, virtual pairs are constantly being created and de-
stroyed. For a brief moment, a particle and its antiparticle separate. There are 
four possibilities 

Process 1: The two partners meet and annihilate each other. 
Process 2: The antineutrino remains in the black hole and the neutrino mate-

rializes in the outside world. 
Process 3: the neutrino remains in the black hole and its antineutrino escapes 

into the outside world. 
Process 4: Both partners stay in the black hole. 
Particles escaping to the outside would be fermionic monopoles (refusing to 

put themselves in the same state). They would leave with a relativistic speed. 
Could there be several types of sterile magnetic neutrinos that can oscillate be-
tween them? Could the magnetic charge neutrino get the flavor of an electronic 
neutrino? Certainly not by an oscillation process, since all the neutrinos involved 
should be associated with the same type of charge. It is however possible to en-
visage that the sterile magnetic neutrino can decay into gamma rays (photons), 
into standard neutrinos (electric charge), into weaker sterile magnetic neutrinos 
(magnetic charge), and other particles. To return to the neutrinos escaped from 
the black hole, they would rather tend to slow down and regroup with the cool-
ing to form the dark cosmos whose rules do not reflect our bright world. They 
would obey other non-symmetry laws, Maxwell’s inverse laws, and be provided 
with magnetoelectric and weak interactions (very small compared to nuclear 
forces). The mass of these neutrinos affiliated with the magnetic charge would be 
rather small instead of being huge or zero, but sufficient to fill the missing mass 
gap. 

Scientists think that there may be more than just a type of dark matter. A pos-
sibility is that several classes of dark matter particles exist, as well as a variety of 
forces that act only on them. One idea is that particles of dark matter interact 
with each other by a force that ordinary matter cannot feel. These particles could 
carry a “dark charge” that attracts or repels them even if they are electrically 
neutral and could emit “dark photons”. Dark atoms would emit dark photons at 
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a different rate than ordinary matter that emits ordinary photons. We know by 
observing the shapes of galaxies that this rhythm must be very weak. 

5. Efforts of Four Researchers 

In line with our paper, we highlight certain aspects of the work of four tenacious 
researchers who contribute to the extension of knowledge on dark matter, mag-
netic monopoles, black holes and sterile neutrinos: 

Georges Lochak, president of the Louis-de-Broglie Foundation, is known for 
his work on magnetic monopoles: the magnetic monopole is a fermion endowed 
with weak interactions. He found an equation, analogous to that of Dirac, which 
no longer represents an electron but a magnetic monopole, which is, in a way, 
the other side of the electron. His equation finds Dirac’s formula which shows 
that the charge of a magnetic monopole is equal to an integer multiple of the 
charge of the electron multiplied by 68.5: its equation joins this result. For him, 
it indicates that if the multiple is equal to zero—so if the monopole has no 
charge and is neutral—its equations coincide with those of the neutrino [22]. 
Georges Lochak worked for ten years with Leonid Urutskoiev of the Kurtchatov 
Institute who had headed a team that was looking for the origin of the Cher-
nobyl disaster. Urutskoiev had hypothesized a flood of monopoles, resulting 
from an electrical explosion that occurred in the engine room. Some clues made 
him lean towards the hypothesis of a light magnetic monopole that corres-
ponded to the Lochak monopole. Dozens of physicists contributed to a joint re-
search work. The experiments were counted in the hundreds. The main theoret-
ical center was the Louis de Broglie Foundation. 

André Michaud explored the foundations of an electromagnetic mechanics of 
elementary particles whose laws apply to all levels. He described a space-time 
geometry that represents the mutual induction of electrical energy and magnetic 
energy within moving elementary particles in accordance with Maxwell’s equa-
tions [23]. He details an experiment he performed that proves out of any doubt 
the inverse cube relation with distance between the magnetic fields of a magnet 
whose both north and south poles physically coincide, proving by the fact that 
the same inverse cube interaction law also applies by similarity to the elementary 
electromagnetic particles colliding with quasi-punctual behavior. This experi-
ment also demonstrates that the magnet used behaves like a magnetic monopole 
[24]. 

Eue Jin Jeong basically demonstrated that the black hole jets and the dark 
matter problems are essentially one integrated physical phenomenon caused by 
dipole gravity. His outstanding discovery of the long ranged dipole gravity is in 
the fulfillment of Einstein’s general relativity in its simplicity of the equivalence 
principle. He explains the dark matter problem in his book by invoking the fact 
that jets from both the south and the north poles of the rotating black hole con-
stitutes a point source of the continuous outgoing matter following the dipole 
gravity force lines [25]. Jeong started early in 1982 when he was a graduate stu-
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dent, wondering why general relativity does not explain the jet phenomena from 
the black hole accretion discs. He was perplexed by the dismissed dipole gravity 
in the weak field limit of general relativity. His quest for the solution to the 
problem led him to realize in 1995 that the rotating hemisphere has a rotation 
frequency which depends on the relativistic shift of the center of mass. By inves-
tigating further, he derived Lense-Thirring force from the dipole gravity poten-
tial generated by the two hemispheres oppositely superposed inside the rotating 
sphere. The result is described with detailed mathematical derivation in an ar-
ticle published in 1999 [26]. 

Kevork Abazajian, an American physicist who works at the University of 
California, has demonstrated in an article the mechanism by which 7 keV sterile 
neutrinos can be produced and be the source of unknown gamma rays observed 
at 3.5 keV from center of galaxy cluster [27] [28]. Several teams of astrophysic-
ists have observed an X-ray (gamma) spectral line with energy of about 3.5 keV, 
which corresponds to nothing known and seems very real, that is to say statisti-
cally significant. The only remaining hypothesis to explain the existence of these 
photons seeming to come from where there is the most dark matter, is that they 
would come from the disintegration of sterile neutrinos. As they are a little 
heavy, they would disintegrate producing “normal” neutrinos and photons 
whose energy would be half their mass. Abazajian considers that all dark matter 
consists of such 7 keV sterile neutrinos. 

6. Heat, Entropy and Information Have Everything  
to Do with Black Holes 

6.1. The Entropy Problem 

Entropy is forbidden to black holes by general relativity, because the theory re-
quires them to be completely smooth, without substructure. General relativity 
describes a black hole as having a smooth geometry and indicates that every 
black hole of a given mass, spin and charge should be exactly the same: in other 
words, black holes have no hair. 

In contrast, quantum mechanics says black holes have a large amount of en-
tropy, meaning a microscopic structure, or a hair. In 1972, Jacob D. Bekenstein 
was the first to suggest that black holes should have a well-defined entropy. He 
wrote that a black hole’s entropy was proportional to the area of its event hori-
zon. Bekenstein also formulated the generalized second law of thermodynamics 
for systems including black holes. Both contributions were confirmed when 
Stephen Hawking (and, independently, Zeldovich and others) proposed the ex-
istence of radiation two years later. Hawking had initially opposed Bekenstein’s 
idea on the grounds that a black hole could not radiate energy and therefore 
could not have entropy [29]. However, in 1974, Hawking performed a lengthy 
calculation that convinced him that particles can indeed be emitted from black 
holes. Today this is known as Hawking radiation. 

Reflecting on the isolated black hole, Hawking noted that the light spectrum 
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of the eponymous radiation streaming away from it would look the same as that 
of a radiating hot body, meaning that the black hole has a temperature. In gen-
eral, temperature arises from the motion of atoms inside objects. The thermal 
nature of Hawking radiation, then, suggested that the black hole should have a 
microscopic structure made of some kind of discrete building blocks or bits. The 
work of Bekenstein and Hawking gives a formula for the number of bits, a 
measure known as the black hole entropy. Entropy is a gauge of disorder, which 
becomes greater as the number of states that an object can have grows. The larg-
er the number of bits in a black hole, the more possible arrangements they can 
have and the greater the entropy. 

So here is the contradiction: relativity says no hair, whereas quantum me-
chanics says black holes have a large amount of entropy, meaning some micro-
scopic structure, or hair. 

6.2. The Information Paradox 

In agreement with the standard picture of quantum mechanics, information can 
never be destroyed. Even when you burn a letter, for example, the original in-
formation encoded in the atoms of the letter is preserved in the ashes. In quan-
tum mechanics, every system is described by a formula called the wave function, 
which encodes the chances that the system will be in any particular state. 

In keeping with Hawking’s first calculation, the particles that escape from a 
black hole do not depend at all on the properties of the material that went into 
the hole. We could send a note with a message into the black hole, and there 
would then be no process to reconstruct the message from the final particles that 
would emerge. Hawking radiation implies that black holes destroy the informa-
tion about the matter that falls into them. In Hawking’s thought experiment, the 
loss of information means that we have no method to predict the wave function 
of Hawking radiation based on the properties of the mass that went into the 
black hole. Information loss is forbidden by quantum mechanics, so Hawking 
concludes that the laws of quantum physics had to be modified to allow for such 
loss in black holes. 

In an effort to resolve these puzzles (this information paradox), physicists 
looked for new approach to combine general relativity and quantum mechanics 
into a coherent theory that could describe black holes. In 1997, Juan Maldacena 
came up with an idea around the information loss problem—a solution some-
times called the Maldacena duality. This duality is equivalence between quantum 
mechanics and gravity—a quantum theory of gravity. It means that the quantum 
physics of a black hole is equivalent to that of an ordinary gas of hot nuclear par-
ticles. It also means that spacetime is fundamentally different from what we perce-
ive, more like a three-dimensional hologram projected from a two-dimensional 
surface of a sphere. If Maldacena’s assumptions are true, then ordinary quantum 
laws would apply to gravity of black holes as well, and information cannot be 
lost [30]. 
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Hawking had proposed that general relativity works for black holes but that 
quantum must be modified. Maldacena concludes that spacetime is holographic. 
In 2004 Hawking announced that he had changed his mind about the need for 
black holes to lose information.  

6.3. Entropy, Heat and Information of Black Hole  
According to the Theory of Relation 

We consider that quantum physics inside a black hole is equivalent to that of 
concentrated energy magma, or that of a gas of hot nuclear particles. According 
to the theory of the Relation, energy is “dark” for a double reason: it undergoes a 
change of energy (principle of Compensation) [31], and because a blackout ac-
companied by a charge reversal occurs at the passage of the event horizon. 

We conjecture that energy within active black holes—surrounded by an accre-
tion disk whose matter feeds them—is subject to high thermal quantum fluctua-
tions (kinetic energy of particle motion). The temperature, that is to say the 
energy absorption capacity, is very high. Not only quantity of energy is huge but 
also its availability. According to quantum mechanics, pairs of particles and their 
antimatter counterparts are born incessantly, then disappear a few moments lat-
er in the universe. Pairs of real thermal particles that can be as well leptonic than 
bosonic. A huge amount of radiation and particles escapes from the inside of the 
black holes. 

Under general relativity, no signal of any kind can come back from beyond 
the horizon because that would suppose exceed the speed of light. But if we rely 
on the equation that Hawking has derived from the temperature of a black hole 
[32], 

3

2

1
16

o c hT
GMk

= ×
π

,                      (17) 

( oT  is temperature, k is Boltzmann’s constant, okT  is energy), it is not re-
quired that a particle exceeds the speed of light to cross the horizon to the out-
side. And there is no indication that the mass M that melts contains only pho-
tons. It may contain hadrons. We stick to magnetic neutrinos. 

In the expression 
3

2
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π

,                     (18) 

oT  and M are inversely proportional: when the temperature, or energy, in-
creases, the classical mass declines. The contradiction between the diminishing 
mass and the growing energy seems flagrantly, since energy and mass are sup-
posed to be equivalent. Clearly, the energy okT  contains the quantum mass 

om  which is proportional to the temperature. [ om  comes from  
2o

okT hv m c= = . Equation (17) comes from 2 o
o ot c GM c h m c h kT= = = ]. 

The link between energy, entropy and temperature refers to the second law of 
thermodynamics, which says that entropy always rises. The law of entropy im-
plies irreversibility. The principle of irreversibility is that if you leave things to 
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themselves at different temperatures, with the passage of time, their tempera-
tures are getting closer and closer, and the availability of energy is continually 
decreasing. The one way always leads to a loss of energy availability. The drop in 
temperature, and therefore the decrease in the energy absorption capacity, goes 
hand in hand with an enlargement in entropy (which is a degraded energy) [33]. 

In the case of active black holes, there is a very high temperature around and 
beyond the horizon. The rise in temperature, and therefore the growth in energy, 
should go with a drop in entropy. But one concludes that the energy-mass in-
crement goes hand in hand with a gain in entropy. In this case, the second law of 
thermodynamics, which states that entropy rises, presents a serious problem 
with temperature and energy [34]. 

Energy is a subtle concept, hard to grasp. It can be said that energy stops the 
motion as much as it provokes it. Bekenstein first conjectured that black holes 
have entropy. Entropy always goes hand in hand with energy. In itself, the exis-
tence of entropy does not imply that a system has a temperature. For Hawking, 
the key was temperature, not entropy. He anticipated that black holes also have a 
temperature. They are not cold objects, dead. They radiate thanks to an internal 
heat, but, in the end, it is this heat that causes their destruction. 

On the subject of information, we think that the laws of general relativity are 
inapplicable beyond the horizon and that quantum mechanics must not be mod-
ified: information loss is forbidden. Imagine the particles falling into a black 
hole, each with its particular frequency that is its message. Very quickly, the 
sharply frequencies begin to dissolve, the message becomes almost impossible to 
discern in this magma of dark energy. The message becomes hopelessly scram-
bled in this inextricable mix of quantum fluctuations. The principles of quantum 
mechanics ensure that the message is always present within deformed particles 
moving in a chaotic manner. Although scrambled, not a single bit of informa-
tion was eradicated. Each bit of information ends up being transferred to pho-
tons and other particles that evacuate energy from the black hole. The informa-
tion is stored among the particles that form the Hawking radiation. The latter 
calculated that the disturbance of vacuum fluctuations due to black holes caused 
the emission of photons, as if the horizon of a black hole was a blackbody [32]. 
Hawking believed that a particle in a virtual pair escapes from the black hole but 
carries no information. Many theorists concluded that Hawking was wrong, that 
he had mistaken the scrambling of information for actual information loss. Our 
opinion is that not only information escapes from the black hole, but also the 
destroyed matter. 

Perhaps the truth is somewhere in a hologram. A hologram is a 
two-dimensional image that makes it possible to reconstruct three-dimensional 
images. The holographic principle is a speculative conjecture in the framework 
of quantum gravity theory, proposed by Gerard’t Hooft in 1993 and then im-
proved by Leonard Susskind in 1995. This conjecture proposes that all the in-
formation contained in a volume of space can be described by a theory that lies 
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on the edges of this region. For example, expanding cosmic space and black 
holes have horizons as an edge. The cosmic event horizon in an expanding un-
iverse is mathematically similar to the horizon of a black hole. The difference is 
that in the first case we are in and we look outward, and in the other we look at it 
from the outside. We can assume that the photons of the cosmic microwave 
background radiation that surround us are the messengers of the cosmic horizon 
that would carry the coded images of the megaverse. Just as one can surmise that 
the physical events that take place behind the horizon of the black hole would be 
telegraphed to the outside in a scrambled telegraph code in the form of Hawking 
radiation [35]. The idea that the universe is a kind of holographic image is sur-
prising. 

7. Comments and Conclusions 

More than 80 percent of the mass of the universe is invisible. The presence of 
this dark matter is detected thanks to its gravitational signature [36]. His nature 
remains one of the great enigmas of cosmology. But we at least know that it is, 
for the most part, of a different nature from the ordinary matter that composes 
planets and stars [37]. In practice, the observations show that we cannot explain 
the distribution of matter by supposing that it is, on the one hand, solely baryo-
nic and, on the other hand, governed only by the laws of gravitation. To recon-
cile theory and observation, scientists considered either changing the material 
content of the universe or changing the laws of gravitation. The hypothesis of an 
unknown form of matter remains the most accepted. A plethora of scenarios of 
high energy physics postulates new forms of matter that are difficult to detect 
[38]. Whether direct or indirect detection experiments, the tracks—especially 
the supersymmetric particle track—are very similar to a dead end. We will agree 
that in this moment of crisis, we must leave no track aside.  

In this paper, we have just presented a radically different track to explain the 
enigma of dark matter: a major conceptual overhaul that concerns, in addition 
to dark matter, electromagnetism, sterile neutrino and black holes. Our model 
predicts that dark matter may be accompanied by a hidden and reworked ver-
sion of electromagnetism (and possibly also a hidden weak force), implying that 
dark matter may emit and reflect hidden light. This “light” is invisible to us and 
so the dark matter remains unseen. Nevertheless, these new forces could have 
very significant effects. For example, they could distort interacting clouds of 
dark particles. Astronomers have sought this effect in the famous Bullet cluster, 
also called 1E 0657–56, which consists of two clusters of galaxies that have 
passed through each other. Observations show the co-mingling of clusters left 
the dark matter largely unperturbed, indicating that any dark forces are weak 
[39]. 

The new variant of electromagnetism, which we call magnetoelectricity, would 
also allow dark particles to exchange energy and momentum, a process that 
would tend to homogenize them and make the halos spherical. We can make 
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some conclusions about the strength of the dark electromagnetism force—and 
thus how often dark matter annihilation occurs—by considering how this force 
would affect galaxies. The reason galaxies have a flattened structure is that elec-
tromagnetism allows ordinary matter to lose energy and settle into disks. Clouds 
of gas inside galaxies radiate electromagnetic energy through the emission of 
photons. That radiation results in the spinning matter inside the clouds clump-
ing together and eventually relaxing into a dislike structure. Because we know 
that dark matter is primarily distributed spherically around most galaxies and 
does not collapse to a disk, we can conclude that it cannot lose energy via dark 
photon emission at the same rate that ordinary matter does [40].  

We have seen above that if we apply the reversed laws of Maxwell and that if 
we try the same steps as those that led to the equation of the electron, we find 
another particle, no longer an electron but a magnetic monopole. A modification 
of the laws of gravitation in a somewhat ad hoc way constitutes an alternative to 
dark matter. Maxwell’s reversed laws, on the contrary, justify the existence of 
this dark substance that would come from black holes. 

Supermassive black holes are emerging as the most prolific creators. Far from 
being passive, they spit, blow. They emit large amounts of energy accumulated 
around them with unparalleled power. Their jets of matter would have fertilized 
the cosmos on vertiginous distances, triggered outbreaks of stars, created galax-
ies [2]. And why should not the supermassive black holes also have engendered 
dark matter? Why would not they also play the role of dark matter producer? 
Certainly not by condensed gas jets. Dark matter is different from ordinary mat-
ter, as is matter inside the black hole. 

Our hypothesis of the inversion of Maxwell’s laws as well as that of the black 
hole producing dark matter may seem as strange as absurd. But let us say it, the 
very existence of the dark matter seems absurd. Likewise the idea of black holes, 
which was originally a mathematical “catastrophe” shunned by theorists, in-
cluding Einstein who had predicted them. Our view concerning the links be-
tween dark matter and black holes can be summarized as follows: 

Dark matter is intimately related to black holes. The darkness of dark matter 
and black holes is caused by the reversal of Maxwell’s laws. This inversion is 
triggered near the horizon of the black hole while the magnetic currents com-
bined with gigantic pressure and high temperature cause a phase transition 
which results in a reversion of Maxwell’s laws. This means that a magnetic 
charge is substituted for the electric charge, and that the magnetic current sub-
dues the electric current. It can be said that in the space of the black hole a mag-
netoelectric force is created. The substance of dark matter comes from black 
holes. The latter emit particles from the process of creation of pairs of particles 
triggered by the metamorphosis of high energy photons. Growth of energy-mass 
of black holes increases the rate of materialization and annihilation of the dark 
energy inside. Dark radiation will materialize by creating a neutrino and an an-
tineutrino, particles associated with the magnetic charge. If they are not annihi-
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lated, some will cross the black hole with a relativistic speed close to that of the 
light before slowing down to constitute the dark matter. But it can also happen 
that two opposite particles meet within the black hole. They dematerialize, they 
turn into two rays of the same energy and directed in the opposite direction. 
One of these dark rays, if not both, can cross the black hole without hitting an 
ordinary particle on the outside, and this dark radiation can materialize by 
creating a sterile magnetic neutrino and antineutrino accompanied by particles 
and by normal high energy photons. There is more than thermal evaporation; it 
is the spontaneous emission of particles. Black holes do not constitute dark mat-
ter, as we are led to believe. On the other hand, the black holes produce and emit 
the substance that constitutes the dark matter, in this case the sterile neutrino 
with magnetic charge. The black holes come undone, producing a dark matter 
that gradually disintegrates. 

Crises in science are often the most creative. This redesign should have pro-
found implications for theoretical physics and astrophysics. 
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Abstract 
A Schrödinger-like equation for a single free quantum particle is presented. It 
is argued that this equation can be considered a natural relativistic extension 
of the Schrödinger equation for energies smaller than the energy associated to 
the particle’s mass. Some basic properties of this equation: Galilean inva-
riance, probability density, and relation to the Klein-Gordon equation are 
discussed. The scholastic value of the proposed Grave de Peralta equation is 
illustrated by finding precise quasi-relativistic solutions for the infinite rec-
tangular well and the quantum rotor problems. Consequences of the 
non-linearity of the proposed equation for the quantum superposition prin-
ciple are discussed. 
 

Keywords 
Quantum Mechanics, Schrödinger Equation, Klein-Gordon Equation,  
Relativistic Quantum Mechanics 

 

1. Introduction 

Since the discovery of the quantum wave mechanics by Erwin Schrödinger in 
1925, the Schrödinger equation has been often used for introducing the funda-
mentals of quantum mechanics [1] [2] [3] [4] [5]. The one-dimensional 
Schrödinger equation for a free particle with mass m is given by the following 
equation [1] [2] [3] [4] [5]: 

( ) ( )
2 2

2, , .
2Sch Schi x t x t

t m x
ψ ψ∂ ∂

= −
∂ ∂



                 (1) 

where ℏ is the Plank constant (h) divided by 2π. However, the Schrödinger equ-
ation is not Lorentz invariant but Galilean invariant [6]; therefore, a relativistic 
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quantum mechanics cannot be based on Equation (1). A fully relativistic quan-
tum theory requires to be funded on equations that are valid for any two observ-
ers moving respect to each other at constant velocity. In contrast, the Galilean 
invariance of Equation (1) means that two such observers will only agree in the 
adequacy of Equation (1) for describing the movement of a massive free quan-
tum particle when the relative speed between the observers (Vo) is much smaller 
than the speed of the light in the vacuum (c). In practice, this is not a terrible li-
mitation of the Schrödinger equation because up to today humans have been 
only able to travel at speeds much smaller than c. This is one of the principal 
reasons why the Schrödinger equation is still relevant almost 100 years after its 
discovery. However, as it will be discussed in Section 2, there is another impor-
tant limitation of Equation (1): it describes a particle in which linear momentum 
(p) and kinetic energy (K) are related by a classical relation that is not valid at 
relativistic speeds [1] [2] [3] [6]. The famous relativistic equation Em = mc2, 
where Em is the energy associated to the mass of a particle [7] [8], implies the 
equivalence between mass and energy. This equivalence has profound implica-
tions for the formulation of any relativistic quantum mechanics theory. When 
the kinetic energy of a free particle with mass m equals the energy associated to 
the mass of the particle, i.e., K = mc2, a second particle with the same mass can 
be created from the kinetic energy of the original particle; therefore, the number 
of particles may not be conserved in a fully relativistic quantum theory [2] [8] 
[9]. A common argument used for guiding the search for the correct Lorentz in-
variant basic equation of a relativistic quantum mechanics is that in such equa-
tion the time and spatial variables should appear on equal footing as it happens 
in the Lorentz transformations [8] [9]. For instance, in contrast to Equation (1), 
in the Lorentz invariant Klein-Gordon equation does not appear the first partial 
derivative respect to time but the second one as shown in Equation (2), which is 
the Klein-Gordon equation for free particle [8] [9]: 

( ) ( ) ( )
2 2 2 2

2 2 2 2

1 , , , .KG KG KG
m cx t x t x t

c t x
ψ ψ ψ∂ ∂

= −
∂ ∂ 

          (2) 

Unfortunately, Equation (2) does not formally look at all like Equation (1), 
thus masking how the Klein-Gordon equation becomes the Schrödinger equa-
tion when the particle moves at speeds (V) much smaller than c. Moreover, there 
are solutions of Equation (2) with unwanted properties like superluminal phase 
velocity, negatives energies, and associated with negative probabilities [8] [9]. In 
Section 2, the consequences of an intriguing natural extension of the Schrödin-
ger equation to quasi-relativistic speeds are explored. The term “qua-
si-relativistic” is used in this work as meaning a particle moving at so large 
speeds that it is necessary to use the correct relativistic relation between p and K 
but still the number of particles is constant because K < mc2. The following equ-
ation is the center of attention here: 

( ) ( ) ( )
2 2

2, , .
1V

i x t x t
t m x
ψ ψ

γ
∂ ∂

= −
∂ + ∂




               (3) 
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where: 

2

2

1 .
1

V
V
c

γ =

−

                         (4) 

Clearly, the Grave de Peralta equation (Equation (3)) exactly coincides with 
the Schrödinger equation (Equation (1)) when V c

. As it will be discussed in 
Section 3, the formal similitude between Equation (3) and Equation (1) imme-
diately suggest that Equation (3) may be Galilean invariant and that probabilities 
can be associated to ψ in the same way that it is done for ψSch [1] [2] [3] [4]. 
However, Equation (3) describes the movement of a massive free quantum par-
ticle which momentum and kinetic energy are related by the correct relativistic 
relation. Therefore, Equation (3) extent the range of applications of the 
Schrödinger equation to quasi-relativistic speeds. Moreover, the formal simili-
tude between Equation (3) and Equation (1) provides a simple approach for ob-
taining quasi-relativistic corrections to the solutions of the Schrödinger equa-
tion, for a whole class of problems where the square of the particle speed (V2) is 
constant. Two interesting examples illustrating this point are presented in Sec-
tions 4 and 6. In both instances, explicit quasi-relativistic solutions of Equation 
(3) can be found with no more complexity than in standard textbook examples 
of solvable Schrödinger equation problems [1] [2] [3] [4] [5]. This illustrates the 
scholastic value of the Grave de Peralta equation for introducing learners to the 
intricacies of the fully relativistic quantum mechanics and quantum fields 
theory. In addition, it is demonstrated in this work that a plane wave solution of 
Equation (3) is subluminal and that this solution is related to a plane wave solu-
tion of Equation (2) by the following relationship: 

( ) ( )
2

, ., ,e miw t
mKGx t x t mcwψ ψ= =



                (5) 

where: 

( ) ( )

( ) ( )

, e ,

, e .

i px Kt

i px Et

KG

x t

x t

ψ

ψ

−

−

=

=





                      (6) 

The plane waves ψ and ψKG in Equation (6) are solutions of Equations (3) and 
(2), respectively. E, K and p are the relativistic total and kinetic energy and the 
linear momentum of a free particle, respectively [7] [8]. It is worth noting that 
two solutions of Equation (3) corresponding to two different particle’s speeds 
are not simultaneously solution of the same equation but solutions of two 
slightly different equations only differing in the value of γv. Even when the full 
discussion of this topic is outside of the scope of this work, due to its relevance, 
the implications of the non-linearity of Equation (3) for the quantum mechanics 
superposition principle are briefly discussed in Section 5. Finally, the conclu-
sions of this work are given in Section 7. 
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2. Schrödinger Equation Extension  
to Quasi-Relativistic Speeds 

Formally, Equation (1) can be obtained from the classical relation between K 
and p for a free particle when V c

 [1] [2] [3] [6]: 
2

, .
2
pK p mV
m

= =                        (7) 

Then, Equation (1) is obtained by substituting K and p by the following ener-
gy and momentum quantum operators [1] [2] [3]: 

ˆ ˆ ˆ, .E K i p i
t x
∂ ∂

= = = −
∂ ∂
                      (8) 

By analogy, Equation (3) can be simply obtained combining Equation (8) with 
the relation between the relativistic expressions of the kinetic energy and the li-
near momentum of a free particle traveling at quasi-relativistic speeds: 

( )
2

, .
1 V

V

pK p mV
m

γ
γ

= =
+

                   (9) 

Equation (9) can be easily obtained from the following well-known relativistic 
equations [7] [8]: 

( )( )2 2 4 2 2 2 2 2 2  ,E m c p c E mc E mc p c− = ⇔ + − =           (10) 

2 2, .VK E mc E mcγ= − =                    (11) 

The Klein-Gordon equation can formally be obtained from the first expres-
sion of Equation (10) by assigning the temporal partial derivative operator in 
Equation (8) to the total relativistic energy (E) of the free particle, which is the 
sum of its kinetic energy plus the energy associated to the mass of the particle [7] 
[8]. However, if one chooses to assign this operator to K, as it is done when ob-
taining the Schrödinger equation, then from Equations (9) and (8) follows Equa-
tion (3). This is not the customary choice, but in this work instead of simply 
discharging this option, it is explored the consequences of this natural choice. 
For instance, a simple substitution of ψ(x, t) given by Equation (6) in Equation 
(3) results in Equation (9), thus demonstrating that ψ(x, t) given by Equation (6) 
is a plane wave solution of Equation (3), which phase velocity Vph = K/p is re-
lated to the velocity of the particle by the following expression: 

.
1

V
ph

V

V V
γ

γ
=

+
                        (12) 

Consequently, Vph < V < c; i.e., the plane wave ψ(x, t) given by Equation (6) is 
subluminal and, as happen for a plane wave solution of the Schrödinger equa-
tion, Vph ~ V/2 when V c

. In contrast, the substitution of ψKG(x, t) given by 
Equation (6) in Equation (2) results in Equation (10), thus demonstrating that 
ψKG(x, t) given by Equation (6) is a plane wave solution of Equation (2), which 
phase velocity VKG = E/p is given by the following expression: 

https://doi.org/10.4236/jmp.2020.112012


L. Grave de Peralta 
 

 
DOI: 10.4236/jmp.2020.112012 200 Journal of Modern Physics 
 

2 2

  .V
KG

V

mc cV
mV V

γ
γ

= =                       (13) 

Consequently, ψKG(x, t) is superluminal because VKG > c. Equations (5) and (6) 
suggest that the time-independent equations corresponding to Equations (2) and 
(3) are equal. In fact, looking for solutions of the form X(x)T(t) of Equations (1),  

(2), and (3), where ( ) e
i Kt

T t
−

=   for Equations (1) and (3) but ( ) e
i Et

T t
−

=   
for Equation (3), produces the same time-independent equation in the three 
cases: 

( ) ( )
2

2
2

d 0, .
d

pX x X x
x

κ κ+ = =


                (14) 

As it will be illustrated below, often X(x) and κ are determined solving Equa-
tion (14) under adequate boundary conditions; then the possible values of p are 
determinate from the possible values of κ. However, the relation between K and 
p are different for non-relativistic and quasi-relativistic speeds; therefore, the 
solutions of Equations (1) and (3) have equal spatial dependences but different 
values of K. Also, the relation between E, K, and p are different for qua-
si-relativistic speeds; therefore, the solutions of Equations (2) and (3) have equal 
spatial dependences but different values of K and E. Equations (9) and (10) can 
be obtained from each other using Equation (11); however, Equation (10) admits 
solutions with positive and negative energies but K only can be positive in Equa-
tion (9). This is in correspondence to the presence of a second-order temporal 
partial derivative in Equation (2), which determines that Equation (2) has solu-
tions with positive and negative energies [8] [9]. In contrast, there is a first-order 
temporal partial derivative in Equations (1) and (3). This determines that Equa-
tions (1) and (3) only have solutions with positive energies. It is straightforward 
to show that Equation (5) can be obtained from Equations (11) and (6). Equa-
tion (5) gives a simple recipe from obtaining a plane wave solution of Equation 
(3) from a plane wave solution of Equation (2) with positive energy and vice 
versa. 

3. Probability Density and Galilean Invariance 

Due to the formal similitude between Equation (3) and Equation (1), one can 
demonstrate that a probability continuity equation can be associated to the solu-
tions of the Grave de Peralta equation in the same way that it is done for the 
Schrödinger equation [1] [2] [3] [4]. In short, one can associate a probability 
density ρ(x, t) to a normalized solution of Equation (3) in the following way: 

( ) ( ) ( ) ( ), , , , , d 1.x t x t x t x t xρ ψ ψ ρ
+∞∗

−∞
= =∫             (15) 

The probability density corresponding to the Schrödinger equation is 
well-defined when both ψ/(2m) and ψ*/(2m) tend to zero when |x| is very large 
[1]. Similarly, provided that V2 and γV are constant, it can be shown than ρ(x, t) 
defined by Equation (15) is well-defined when both ( )1V mψ γ +   and 
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( )1V mψ γ∗  +   tend to zero when |x| is very large, which is a less restrictive 
condition when 1Vγ   than the one required for the Schrödinger equation. 
The rate of the temporal variation of ρ(x, t) is then given by the following ex-
pression: 

* *
* .

t t t
ψ ψρ ψ ψ∂ ∂ ∂

= +
∂ ∂ ∂

                    (16) 

The temporal derivatives of ψ and ψ* in Equation (16) can be substituted by 
expressions containing spatial derivatives of ψ and ψ* by using Equation (3) and 
its complex conjugate equation. In this way Equation (16) can be transformed in 
the following one: 

( )
2 * 2

*
2 2 .

1Vt mi x x
ψ ψρ ψ ψ

γ
 ∂ ∂ ∂

= − ∂ + ∂ ∂ 

               (17) 

But [1]: 
2 * 2 *

* *
2 2 .

x x xx x
ψ ψ ψ ψψ ψ ψ ψ

 ∂ ∂ ∂ ∂ ∂
− = − ∂ ∂ ∂∂ ∂  

             (18) 

Then using Equation (18) permits to rewrite Equation (17) as the one-dimensional 
(1D) probability continuity equation [1]: 

( )
*

*0, .
1V

J J
t x mi x x

ψ ψρ ψ ψ
γ

 ∂ ∂ ∂ ∂
+ = = − ∂ ∂ + ∂ ∂ 

          (19) 

Like for the Schrödinger equation [1], it is easy to show that Equation (19) can 
be generalized to three dimensions (3D). The absence of negative values of ρ and 
J is a consequence of the absence of a second time derivative in the Equation (3) 
[8] [9]. This concludes the demonstration that a probability continuity equation 
can be associated to the solutions of Equation (3) as it is done for the Schrödin-
ger equation. In what follows a qualitative discussion about the Galilean inva-
riance of Equation (3) is presented. A more formal discussion about this topic is 
presented in Annex A. At a first sight, Equation (3) does not look neither Gali-
lean nor Lorentz invariant. Equation (3) should not be Lorentz invariant because 
in Equation (3) the temporal and spatial partial derivatives do not have the same 
order [8] [9]. In contrast, it is well known that Equation (2) is Lorentz invariant 
[8] [9]. The formal similitude between Equations (3) and (1) suggests that Equa-
tion (3) may be Galileo invariant, but there is a problem. A well-defined Equa-
tion (3) requires a constant value of V2 and γV. As it will be illustrated in Sec-
tions 4 and 6, there are very interesting problems where this requirement is ful-
filled. For instance, one of these problems is the description of the movement of 
a massive quantum particle confined in a 1D box, which is at rest respect to an 
inertial reference frame S. An observer at rest respect S may think about the par-
ticle as moving with constant quasi-relativistic speed (V) but changing direction 
each time the particle bounced in the box’s walls. However, a second observer 
moving parallel to the box with velocity +Vo respect to the first observer, but at 
rest respect to a second inertial reference frame S', would see the particle moving 
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sometimes with speed V+′  and sometimes with speed V−′ , where [7] [8]: 

2

.
1

O

O

V V
V

VV
c

±

± −′ =
±

−
                       (20) 

Thus, the second observer would not find well-defined the value of V'2 and 

Vγ ′  that should be introduced in Equation (3). However, at quasi-relativistic 
particle’s speeds ~ ~ VV V+ −′ ′  when oV V . Consequently, at quasi-relativistic 
particle’s speeds when oV V , both observers will see the particle moving with 
(almost) the same values of V2 and γV. Moreover, in this quasi-relativistic limit p' 
~ p and K' ~ K. Consequently, both observers will agree in that they should solve 
Equation (3) for finding the possible quantum states of the massive particle 
moving at quasi-relativistic speeds inside of the 1D box. i.e., Equation (3) is Ga-
lilean invariant. Nevertheless, as it will be shown below, Equation (3) can be 
used for solving quasi-relativistic quantum problems. 

4. Infinite Rectangular Well 

An important but simple problem often solved in quantum mechanics textbook 
is a particle moving inside an infinite rectangular well at speeds much smaller 
than c [2] [3] [4] [5]. Using Equation (3), this problem can be solved for qua-
si-relativistic speeds following similar procedures than in the quantum mechan-
ics textbooks for V c

 [2] [3] [4] [5]. One should look for a wavefunction that 
is identically null outside of the well, null at x = 0 and x = L, and satisfies Equa-
tion (3) in the interval 0 < x < L. Solving Equation (3) means finding the quan-
tum states of a free particle with constant values of K. But due to Equation (9), a 
free particle moving with constant kinetic energy must have constant value of V2 
and vice versa; therefore, the solutions of Equation (3) correspond to quantum 
states of a particle moving with a constant value of V2. Separating variables and 
substituting in Equation (3) results: 

( ) ( ), e ,
i Kt

x t X xψ =                        (21) 

( ) ( ) ( ) ( ) ( )
2

2
2 2

1d 0, , 0 0.
d

V mK
X x X x X X L

x
γ

κ κ
+

= − = = = =


   (22) 

Looking for solutions of Equation (22) corresponding to constant values of K 
and V2, one can find that: 

( ) ( ), e , , 1, 2,n
i K t

n n
nx t X x n
L

ψ κ π
= = =

             (23) 

where: 

( ) 2 sin ,n
nX x x

L L
π =  

 
                    (24) 

( ) ( )

2
2

2 .
1 2

n

n
V

hK n
m Lγ

=
+

                   (25) 
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From Equation (24) follows that the spatial dependence of ψn(x, t) coincide 
with the spatial dependence of the wavefunction calculated using the Schrödin-
ger equation [2] [3] [4] [5]. As expected, Equation (25) gives the know values of 
the particle’s energies at low speeds when γV ~ 1 [2] [3] [4] [5]. From Equation 
(25) and the relativistic equation, ( ) 21VK mcγ= − , follow: 

2
2 2 2

1 .
n

C
V n

L
λ

γ  = +  
 

                      (26) 

where λC = h/(mc) is the Compton wavelength [7] [8]. Equation (26) gives 
2 2Vγ =  when n = 1 and L = 2λC; evaluating for these values Equation (25) re-

sults in K1 ~ 0.4mc2, which is smaller than the value K1 ~ 0.5mc2 that would be 
obtained, using the Schrödinger equation, for the ground state energy of a par-
ticle of mass m confined in an infinite rectangular well of length L = 2λC. More-
over, this result is precise because the calculated energy of the ground state is 
clearly quasi-relativistic. In contrast, Equation (26) gives 2 5Vγ =  when n = 1 
and L = λC; evaluating for these values Equation (25) results in K1 ~ 1.2mc2. The 
number of particles may not be constant at these energies. This result for a 1D 
infinite rectangular well can easily be extended to the 3D infinite rectangular 
well as it is done for the Schrödinger equation [4] [5]. Consequently, Equation 
(3) establishes a fundamental connection between quantum mechanics and 
especial theory of relativity: no single particle with mass can be confined in a 
volume much smaller than (λC)3 because when this occurs, K > mc2 and the 
number of particles may not be constant anymore; therefore, a single 
point-particle with mass cannot exist. Point-particles with mass can only exist in 
fully relativistic quantum field theories where the number of particles is not con-
stant. This is true for an electron, a quark, and probably may also be true for a 
black hole and the whole universe at the beginning of the Big Bang. This is con-
sistent, for instance, with the confinement of an electron in the Hydrogen atom 
because for an electron λCe ~ 2.4 × 10−3 nm, which is ~20 times smaller than the 
radius of the Hydrogen atom, rB ~ 5.3 × 10−2 nm [1] [2] [3] [4] [5]. Combining 
Equations (25) and (26) allows for rewritten Equation (25) in the following way: 

2
2

2 2
.

21 1
2

n

C

hK n
n Lm
L
λ

=
     + +        

               (27) 

When 2 CL nλ , Equation (27) gives the know values of the energies calcu-
lated using the Schrodinger equation for a particle in an infinite well [2] [3] [4] 
[5]. However, in general, the values of Kn calculated using Equation (27) are 
smaller than the ones calculated using the Schrödinger equation. This in excel-
lent correspondence with more involved numerical results obtained solving the 
Dirac equation for the 1D infinite rectangular well [10]. Moreover, and more 
significant for experiments, the differences in energies between different energy 
levels are slightly different when obtained using Equations (1) and (3). 
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5. Superposition Principle 

Besides allowing to obtain precise quasi-relativistic solutions of several interest-
ing problems, like tunneling through a barrier and other problems with piece-
wise constant potentials, following similar procedures than in the quantum me-
chanics textbooks for V c

 [1] [2] [3] [4] [5], Equation (3) may describe a 
new physics. The Schrödinger equation is linear, this means, for instance, that if 
ψSch1(x, t) and ψSch2(x, t) are two solutions of Equation (1) for a particle in an in-
finite rectangular well corresponding to different values of V2, then the wave-
function ( ) ( ) ( )1 2, , ,Sch Sch Schx t a x t b x tψ ψ ψ= + , where a and b are complex 
numbers such that 2 1a b+ = , is also a solution of Equation (1). ψSch(x, t) 
represents a legitime possible state of a particle in an infinite well. The superpo-
sition state represented by ψSch(x, t) is often interpreted as a state where the par-
ticle is neither in the state ψSch1(x, t) where the kinetic energy is K1 nor in the 
state ψSch2(x, t) where the kinetic energy is K2, but somehow the particle is simul-
taneously in both states. The existence of superposition states like ψSch(x, t) is 
then a fundamental consequence of the linearity of Equation (1) with no classical 
counterpart. This exemplifies the weirdness of quantum mechanics [6] [11]. 
Moreover, the superposition state ψSch(x, t) represent a qubit, concept that is at 
the heart of current attempts to demonstrate a practical quantum computer [11] 
[12]. In contrast to the Schrödinger equation, Equation (3) is not linear. If ψ1(x, 
t) and ψ2(x, t) are two solutions of Equation (3) for a particle in a rectangular in-
finite well corresponding to different values of V 2, then strictly they are not so-
lutions of the same Equation (3) but of slightly different Equations (3) with dif-
ferent values of γV. Moreover, ( ) ( ) ( )1 2, , ,x t a x t b x tψ ψ ψ= +  is not a solution of 
any Equation (3). Consequently, if the Grave de Peralta equation is a legitime 
extension of the Schrödinger equation to the quasi-relativistic domain, then the 
current understanding of the superposition principle in quantum mechanics 
should be revised because it appears to only be valid when the particle moves at 
speeds much smaller than c. The superposition principle is a corner stone of 
quantum mechanics; therefore, one could be interested in saving the superposi-
tion principle by stretching the meaning of “solution of Equation (3)”, such that 
“ ( ) ( ) ( )1 2, , ,x t a x t b x tψ ψ ψ= +  is a solution of Equation (3)” means that there is 
a set formed by several slightly different Equations (3) and aψ1(x, t) and bψ2(x, t) 
are solutions of a slightly different Equation (3) from this set, corresponding to a 
different value of V 2 each. For instance, strictly speaking, Equations (23), (24), 
and (27) give the solutions of a set of Equations (3) for the infinite rectangular 
well. This is somehow related with Section 3 discussion about the Galilean inva-
riance of Equation (3). Strictly speaking, two observers slowly traveling with 
constant velocity respect to each other should resolve a set of Equations (3) 
which values of γV are contained in a narrow continuous interval. The adoption 
of Equation (3) as a valid description of the quantum states of a massive free 
particle then breaks with the longstanding tradition of describing the dynamics 
of a physical system using a single equation. The second Newton law and the 
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Schrödinger equation are examples of this tradition. The future of the particle’s 
wave function is determined by the Schrödinger equation and the initial condi-
tions are the only source of indeterminacy. In contrast, the dynamics of a par-
ticle is described by a whole set of similar Equations (3), which introduces a new 
source of indeterminacy in the future of the particle’s wave function. This may 
be a welcome development for the understanding of the weirdness of quantum 
mechanics. 

Alternatively, the non-linearity of Equation (3) suggests that ψ1(x, t) and ψ2(x, 
t) could be understood as corresponding to two different phases-of-a-system 
which are described by a different equation each. ψ(x, t), which is not a solution 
of Equation (3), describes them a state of the system where no one of these two 
phases exists but where somehow, when a set of identical measurements is done 
on a system which is prepared in the state ψ(x, t) each time, then a fast transition 
of the system is induced by the measurement and the system randomly transits 
either to the phase represented by ψ1(x, t) with probability |a|2 or to the phase 
represented by ψ2(x, t) with probability |b|2. In this description, the state of the 
system represented by ψ(x, t) must be different from a state where a mixture of 
the phases ψ1(x, t) and ψ2(x, t) actually exist. For instance, let’s assume that ψ1(x, 
t) and ψ2(x, t) are two solutions, of the set of Equations (3) for the infinite rec-
tangular well, with kinetic energies given by K1 and K2, respectively. Loosely bor-
rowing the words “superheated” and “supercooled” from possible phase transi-
tions in liquids, one could say that the state ( ) ( ) ( )1 2, , ,x t a x t b x tψ ψ ψ= +  cor-
responds to a state of the system which is not a solution of any Equation (3). The 
state ψ(x, t) could be formed by superheating the state ψ1(x, t) or by supercool-
ing the state ψ2(x, t). When a set of N measurements is done on the system in the 
state ψ(x, t), |a|2N times a fast system’s transition occurs from the superheated 
state to the state ψ1(x, t), and |b|2 N times the transition occurs from the super-
cooled state to the state ψ2(x, t). This point of view may motivate the search for 
the unknown equation for which ψ(x, t) is a solution. 

6. Quasi-Relativistic Quantum Rotor 

Courses of Quantum Mechanics often include how to solve the Schrödinger eq-
uation for a quantum rigid rotator, which in general is a quantum particle mov-
ing with constant speed in a sphere. Therefore, all the kinetic energy of a quan-
tum rigid rotator is rotational. Instances of the quantum rigid rotor appear when 
describing the relative movement between two particles forming a system like a 
diatomic molecule (neglecting vibrations) [5]. The 3D Schrödinger equation for 
a particle moving in a central potential Φ(r) is given by the following equation 
[1] [2] [3] [4] [5]: 

( ) ( ) ( ) ( )
2

2, , , .
2Sch Sch Schi t t r t

t m
ψ ψ ψ∂

= − ∇ +Φ
∂



 r r r          (28) 

Which natural extension to quasi-relativistic speeds is the following equation: 
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( ) ( ) ( ) ( )
2

2, , , .
2Sch Sch Schi t t r t

t m
ψ ψ ψ∂

= − ∇ +Φ
∂



 r r r          (29) 

In spherical coordinates ( ), ,r θ ϕ=r , and the Laplacian operator in Equa-
tions (28) and (29) is defined in the following way [1] [2] [3] [4] [5]: 

( )
2

2 2
,2 2

1 1 .r
r r r θ ϕψ ψ ψ∂

∇ = + ∇
∂

                  (30) 

Where: 
2

2
, 2 2

1 1sin .
sin sinθ ϕ θ

θ θ θ θ ϕ
∂ ∂ ∂ ∇ = + ∂ ∂ ∂ 

             (31) 

Using Equations (30) and (31) permits to rewrite Equation (29) in the follow-
ing way: 

( ) ( )
( )

( )
2 2 2

2
,2 2 .

1 1V V

i r r
t mr r mr θ ϕψ ψ ψ ψ

γ γ
∂ ∂

= − − ∇ +Φ
∂ + ∂ +

 

      (32) 

The rotational kinetic energy of a quantum rigid rotator is given by the second 
term in the right size of Equation (32); therefore, the first term in the right size 
of Equation (32) vanishes for a quantum rigid rotator [5]. In addition, r = rS and 
Φ(r) = Φ(rS) are constants because the radius of the sphere containing the par-
ticle trajectory (rS) is constant; therefore, choosing Φ(rS) = 0, and introducing 
the moment of inertia of a rotating mass 2

SI mr= , reduces Equation (32) to the 
following expression for a quasi-relativistic quantum rigid rotator: 

( ) ( ) ( )
2

2
,, , .

1V

i
t I θ ϕψ θ ϕ ψ θ ϕ

γ
∂

= − ∇
∂ +



               (33) 

Equation (33) can be solved looking for a separable-variable solution of the 
following form: 

( ) ( ), , , e .
i Kt

tψ θ ϕ θ ϕ= Ω                      (34) 

Then, substituting Equation (34) in Equation (33), results in the well-known 
equation for the spherical harmonic functions [1] [2] [3] [4] [5]: 

( ) ( )2
, , , 0.θ ϕ θ ϕ η θ ϕ∇ Ω + Ω =                   (35) 

With: 

( )
2

1
.V I

K
γ

η
+

=


                       (36) 

where K is the quasi-relativistic kinetic energy of the rotor. Consequently, the 
normalized solution of Equation (35) satisfying the appropriated boundary con-
ditions is given by the following expressions [1] [2] [3] [4] [5]: 

( ) ( ) ( ) ( ), , , ; 1 ; 0,1, 2, ; , 1, ,0,1, , .m
l m lY l l l m l l lθ ϕ θ ϕ ηΩ ∝ = + = = − − +    (37) 

where ( )m
lY  are the spherical harmonic functions [1] [2] [3] [4] [5]. Therefore, 

the quasi-relativistic kinetic energy is given by the following expression: 
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( ) ( ) ( ) ( )
2 2

2
  1 1 .

1 1
l l

l
V V C

hK l l l l
I mLγ γ

= + = +
+ +



           (38) 

where LC = 2πrS is the maximum length of a circle contained in the sphere where 
the particle moves. From Equation (37) follows that the spatial dependence of 
ψl,m coincide with the spatial dependence of the wavefunction calculated using 
the Schrödinger equation [5]. As expected, Equation (38) gives the know values 
of the particle’s energies at low speeds when γV ~ 1 [5]. From Equation (38) and 
the relativistic equation, ( ) 21VK mcγ= − , follow: 

( )2
2

1 1 .
l

C
V

C

l l
L
λ

γ
 

= + + 
 

                    (39) 

Equation (39) gives 2 3Vγ =  when l = 1 and LC = λC; evaluating for these val-
ues Equation (38) results in K1 ~ 0.7mc2, which is smaller than the value K1 ~ 
mc2 that would be obtained, using the Schrödinger equation, for the state with 
minimum non-zero angular momentum (l = 1) of a quantum rotor with LC = λC 
[5]. Moreover, this result is precise because the calculated energy (K1 ~ 0.7mc2) 
is quasi-relativistic. In contrast, Equation (39) gives 2 9Vγ =  when l = 1 and LC = 
λC/2; evaluating for these values Equation (38) results in K1 = 2mc2. The number 
of particles may not be constant at this energy. Consequently, Equation (3) also 
establishes the following fundamental connection between quantum mechanics 
and especial theory of relativity: there is a stable orbit with minimum length that 
a quantum particle of mass m, moving with constant non-zero speed in a sphere, 
can have. This length is equal to the Compton wavelength associated to the par-
ticle’s mass. Combining Equations (38) and (39) allow for rewritten Equation 
(38) in the following way: 

( )
( )

2

2

2

  1 .
1

1 1

l

C
C

C

hK l l
l l

mL
L

λ
= +
  +  + +     

            (40) 

When ( )1C CL l l λ+ , Equation (40) gives the know values of the energies 
calculated using the Schrödinger equation for a non-relativistic quantum rotor 
[5]. However, in general, the values of Kl calculated using Equation (40) are 
smaller than the ones calculated using the Schrödinger equation. Moreover, and 
more significant for experiments, the differences in energies between different 
energy levels are slightly different when obtained using Equations (1) and (3). 

7. Conclusion 

Relativistic quantum mechanics has evolved a lot since 1925, when Erwin 
Schrödinger played with the Klein-Gordon equation but decided not to publish 
what he found and then, settled for publishing his finding about the today fam-
ous Schrödinger equation. Nevertheless, the existence of the quasi-relativistic 
Schrödinger-like equation discussed here should be considered the discovery of 
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a hidden gem. At low particle’s speeds, the proposed Grave de Peralta equation 
(Equation (3)) clearly coincides with the Schrödinger equation. Equation (3) is 
Galilean invariant for observers traveling at low speeds respect to each other, 
and a positive probability density can be defined for this equation by analogy of 
how it is defined for the Schrödinger equation. The plane wave solutions of Eq-
uation (3) are subluminal and are related through Equation (5) with the plane 
wave solutions with positive energies of the Klein-Gordon equation. From a 
practical point of view Equation (3) has a clear scholastic value. Moreover, as it 
was shown in this work, Equation (3) can be used for obtaining precise qua-
si-relativistic solutions of very interesting problems at energies smaller than mc2. 

Acknowledgements 

The author recognizes the valuable discussions with Ankit Pandey from the De-
partment of Chemistry at Texas Tech University and Arquimedes Ruiz-Columbié 
from the National Wind Institute at Texas Tech University. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

References 
[1] Bohm, D. (1964) Quantum Theory. 11th Edition, Prentice Hall, ‎Upper Saddle River. 

[2] Davydov, A.S. (1965) Quantum Mechanics. Pergamon Press, New York. 

[3] Merzbacher, E. (1970) Quantum Mechanics. 2nd Edition, J. Wiley & Sons, New 
York. 

[4] Griffiths, D.J. (1995) Introduction to Quantum Mechanics. Prentice Hall, Upper 
Saddle River. 

[5] Levine, I.N. (2014) Quantum Chemistry. 7th Edition, Pearson Education, New 
York. 

[6] Home, D. (1997) Conceptual Foundations of Quantum Physics: An Overview from 
Modern Perspectives. Plenum Press, New York. 

[7] Jackson, J.D. (1975) Classical Electrodynamics. 2nd Edition, J. Wiley & Sons, New 
York. 

[8] Strange, P. (1998) Relativistic Quantum Mechanics: With Applications in Con-
densed Matter and Atomic Physics. Cambridge University Press, New York.  
https://doi.org/10.1017/CBO9780511622755 

[9] Greiner, W. (1990) Relativistic Quantum Mechanics: Wave Equations. Spring-Verlag, 
New York. https://doi.org/10.1007/978-3-662-02634-2 

[10] Alberto, P., Fiolhais, C. and Gil, V.M.S. (1996) European Journal of Physics, 17, 
19-24. https://doi.org/10.1088/0143-0807/17/1/004 

[11] Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum In-
formation. Cambridge University Press, Cambridge. 

[12] DiVincenzo, D.P. (1995) Science, 270, 255-261.  
https://doi.org/10.1126/science.270.5234.255 

https://doi.org/10.4236/jmp.2020.112012
https://doi.org/10.1017/CBO9780511622755
https://doi.org/10.1007/978-3-662-02634-2
https://doi.org/10.1088/0143-0807/17/1/004
https://doi.org/10.1126/science.270.5234.255


L. Grave de Peralta 
 

 
DOI: 10.4236/jmp.2020.112012 209 Journal of Modern Physics 
 

Annex A: Lorentz or Galilean Invariance? 

It is well-known that Equation (10) is Lorentz invariant [7] [8] [9]. The 3D ver-
sion of Equation (10) can be rewritten in a covariant form in the following way 
[7] [8] [9]: 

2
2 2

2 , , , , .µ µ
µ x y z

E Ep p m c p p p p
cc

 = − ⋅ = =  
 

p p          (A1) 

Here covariance means that the module (pµpµ) of the four-component vector 
pµ is a scalar under Lorentz transformations because m2c2 is a scalar under the 
Lorentz transformations relating the coordinates {t, x, y, z}, respect to an inertial 
reference frame S, to the coordinates { }, , ,t x y z′ ′ ′ ′ , respect to a second inertial 
reference frame S’ which is moving with speed Vo respect to S in the positive di-
rection of the axis x [7] [8]: 

( )2 , , , .
o o

o
V V o

V
t t x x x V t y y z z

c
γ γ ′ ′ ′ ′ ′ ′= + = + = = 

 
        (A2) 

Equation (8) permits to associate a partial derivative operator to each compo-
nent of pµ, thus transforming Equation (A1) in the 3D version of Equation (2) 
[8] [9]: 

( ) ( )2 2ˆ ˆ , , , , , , ,

ˆ , , , .

KG KGp p x y x t m c x y x t

p i i i i
ct x y z

µ
µ

µ

ψ ψ=

 ∂ ∂ ∂ ∂
=  

∂ ∂ ∂ ∂ 
   

            (A3) 

The operator p̂µ  is a Lorentz-invariant four-component vector because 
ψKG(x, y, z, t), the wavefunction of a particle with spin-0, must be a Lorentz-scalar 
[8] [9], and because the four quantities formed by differentiation of a Lo-
rentz-scalar respect to the components of a Lorentz-invariant four-vector trans-
form as a four-component Lorentz invariant vector [7]. Therefore, the left term 
of Equation (A3) transform under Lorentz transformations as the module of a 
four-component Lorentz-invariant vector; i.e., as a Lorentz-scalar. Consequently, 
provided that ψKG(x, y, z, t) is a scalar under Lorentz transformations, Equation 
(A3) is relativistic covariant; i.e., both sides of the equation transform under Lo-
rentz transformations as Lorentz-scalars. Equation (A3) can then be directly 
written in differential form in the same way in both S and S’ references frames: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
2

2 2 2

2 2 2
2

2 2 2

1 , , , ,

1 , , , .

KG KG KG

KG KG KG

m ct t t
c t

m ct t t
c t

ψ ψ ψ

ψ ψ ψ

∂
= ∇ −

∂
∂ ′ ′ ′ ′ ′ ′ ′= ∇ −
′∂

′ ′ ′





r r r

r r r
        (A4) 

where ( ), ,x y z=r  is a 3D spatial vector is rectangular coordinates. Evidently, 
Equation (A4) is a 3D version of Equation (2). Therefore, a 3D version of Equa-
tion (6) is a plane wave solution of Equation (A4), which is a Lorentz-scalar be-
cause the wave’s phase can be rewritten as the scalar product of two Lo-
rentz-invariant four-components vectors [7] [8] [9]: 
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( ) ( ) ( ) { }, e e , , , , .
i iEt p x

KG t x ct x y z
µ

µ µψ
⋅ − −

= = = 

p r
r          (A5) 

Therefore, ( ), ,,KG x z tyψ ′ ′ ′′ ′  is the boosted wavefunction: 

( ) ( )
, ,, e .

i E t

KG x y z tψ
′ ′ ′ ′⋅ −

′ ′ =′ ′ ′ 

p r
                 (A6) 

In other words, ( ), ,,KG x z tyψ ′ ′ ′′ ′  can be obtained from ψKG(x, y, z, t) by 
making the formal substitutions x → x(x', t'), y → y', z → z', and t → t(x', t') using 
Equation (A2). In addition, the linear momentum and total energy of the par-
ticle should be boosted by substituting p → p' and E → E'. This ends the discus-
sion about the Lorentz invariance of the Klein-Gordon equation. One can then 
try to demonstrate the relativistic covariance of Equation (3) following similar 
steps than for the demonstration of the relativistic covariance of the Klein-Gordon 
equation. Looking for a solution of the 3D version of Equation (3): 

( ) ( ) ( )
2

2, , ,
1V

i t t
t m
ψ ψ

γ
∂

= − ∇
∂ +



 r r               (A7) 

Such that: 

( ) ( ) ( ) ( ),, e , e ,
i iKt K tttψ ψ

′ ′ ′ ′⋅ − ⋅ −′ ′′= = 

p r p rrr              (A8) 

Would require that: 

( ) ( ) ( ) { }, e e , , , , .
i iKt x

t x ct x y z
µ

µβ µψ
⋅ − −

= = = 

p r
r           (A9) 

But Equation (A9) would imply the following relation between K and p: 
2

2 2 2
2 0, , , , , .x y z

K Kp p p p K p c
cc

µ µ
µβ β  = − ⋅ = = = 

 
p p     (A10) 

This relation is only correct for relativistic massless particles (photons). For a 
particle with non-zero mass, the correct relativistic relation between K and p is 
given by Equation (9). This demonstrates that Equations (3) and A(7) are not 
Lorentz invariant. Qualitative arguments about the Galilean invariance of Equa-
tion (3) were given in Section 3; therefore, one should expect that Equation (3) is 
approximately Galileo invariant when the observers move respect to each other 
at much smaller speeds than the quasi-relativistic speed of the particle. One can 
then try to demonstrate the Galilean invariance of Equation (3) following similar 
steps than for the demonstration of the Galilean invariance of the Schrödinger 
equation [6]. Consequently, when oV V  and K ~ mc2, if an observer at rest 
respect to S’ find that: 

( ) ( )
, e ,

i p x K t
x tψ

′ ′ ′ ′−
′ ′ ′ =                      (A11) 

Is a solution of the equation: 

( ) ( ) ( )
2 2

2, , .
1V

i x t x t
t m x
ψ ψ

γ ′

∂ ∂′ ′ ′ ′ ′ ′= −
′ ′∂ + ∂




           (A12) 

Then, if Equation (A12) is Galilean invariant, an observer at rest respect to S 
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should be able to find that the following plane wave: 

( ) ( ) ( ) ( ) ( ), ,, , e e e ,
i p x K ti x t i x tx t x t ε εψ ψ

′ ′ ′ ′−
′ ′ ′= =             (A13) 

Is a solution of Equation (3) [6]. In Equation (A13), ( ),x tψ ′ ′ ′  should be ex-
plicitly rewritten as ( ),x tψ ′  by substituting the variables x', t' by the variables 
x, t using the Galileo transformations [6]: 

, .ot t x x V t′ ′ ′= = +                      (A14) 

In Equation (A13), ε(x, t) have a double function. First, it should make ψ(x, t) 
a Galilean boosted version of ( ),x tψ ′ ′ ′ , i.e.: 

( ) ( ) ( ) ( ),, e e e .o
i ip x V t K t px Kti x tx t εψ

′ ′ − − − = =              (A15) 

The equation in the variables x and t that results, after using Equation (A14) 
for transforming the differential operators of Equation (A12), do not need to be 
equal to Equation (3). Therefore, the second function of ε(x, t) is to guarantee 
that ψ(x, t) given by Equations (A13) and (A15) satisfies Equation (3). If there is 
a function ε(x, t) satisfying these two requirements, then ψ(x, t) and ( ),x tψ ′ ′ ′  
both satisfy the same equation and both have equal square module values; 
therefore, both described the same physical reality [6]. i.e., Equation (3) would 
be Galilean invariant. It can be shown that for the Schrödinger equation, εSch(x, 
t) is given by the following equation [6]: 

( ) 21 1, .
2Sch o ox t mV x mV tε  = − 

 

               (A16) 

Therefore, ψSch(x, t) is a boosted version of ( ),Sch x tψ ′ ′′  because for a 
non-relativistic particle: 

( ) ( )

( )

( ) ( )

( )

2
2

2

2

,

1 1
2 2

2

.
2

Sch

o o o

o
o

i p x K t x t

i pp x V t t mV x mV t
m

p mVi p mV x t
m

i p ipx t px Kt
m

ε′ ′ ′ ′− +

 ′  ′= − − + −   
  

 ′ +
′ = + −

  
 

= − = − 
 



 



 

          (A17) 

In addition ψSch(x, t) satisfies Equation (1) [6]. What follows is the demonstra-
tion that Equation (3) is approximately Galileo invariant when oV V , and K 
~ mc2. One should find a function ε(x, t) for Equation (A12) that satisfies the 
two requirements discussed above. First, using the Galilean relations given by 
Equation (A14), the differential operators in the variables x' and t' in Equation 
(A12) transform to the following differential operators in the variables x and t 
[6]: 

, .o
t x t t xV

t t t t x t x x x t x x x
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = + = + =
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    (A18) 
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After transforming Equation (A12) using Equation (A18) and making γV’ ~ γV 
because oV V , and K ~ mc2, one can propose: 

( ) ( ) ( ),, , e .i x tx t x t εψ ψ ′=                    (A19) 

where ( ),x tψ ′  is ( ),x tψ ′ ′ ′ , i.e., a solution of Equation (A12), after making the 
substitution x' → x'(x, t), and t' → t using Equation (A14). Then one can substi-
tute ψ(x, t) given by Equation (A19) in the equation that results after transform-
ing Equation (A12) using Equation (A18). This permits finding out that ε(x, t) 
must satisfy the following conditions provided ψ(x, t) is a solution of Equation 
(3): 

( ) ( )

22

2

2 0.
1 1o o

V V

V V
m x m x x tx

ε ε ε ε ε
γ γ

∂ ∂ ∂ ∂ ∂ − = = − − = + ∂ + ∂ ∂ ∂∂  

      (A20) 

These conditions are very similar to the ones corresponding to the Schrödin-
ger equation [6]. The three conditions given by Equation (A20) determine that 
ε(x, t) is given by the following expression: 

( ) ( ) ( ) 21 1 1, 1 1 .
2 4V o V ox t mV x mV tε γ γ = + − +  

          (A21) 

Comparing Equations (A16) and (A21), one realizes that both include a linear 
momentum term and a kinetic energy term. Equation (A16) includes the  
non-relativistic expressions po = mVo and ( )2 2o oK p m= . Equation (A24) in-

cludes the relativistic expressions ( )1 1
2r v op mVγ= +  and ( )2~ 1r r vK p mγ +  .  

This is because the Schrödinger equation describes a non-relativistic particle but 
Equation (3) describes a particle moving at quasi-relativistic speeds. Finally, one 
should check if ε(x, t) given by Equation (A21) transforms ψ(x, t) in a Galilean 
boosted version of ( ),x tψ ′ ′ ′ . i.e., one should check if: 

( ) ( ) ( ) ( )
2 2

       
1 1,e e e .

o
V V

i p i pp x V t t px t
m mi x tγ γε

   ′
′ − − −   

+ +      ≈              (A22) 

But: 

( ) ( ) ( ) ( )

( )
( )

( )

2
2

2

1 1 11 1
1 2 4

1 1
1 21 .
2 1

o V o V o
V

V o

V o
V

i pp x V t t mV x mV t
m

p mV
i p mV x t

m

γ γ
γ

γ
γ

γ

 ′  ′ − − + + − +   +    
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  

 



  (A23) 

When oV V , and K ~ mc2, then ( )~ 1v rp mV pγ′ +   and  
~ ~rp p p p′ ′+ . Therefore, Equation (A23) can be approximated to the fol-

lowing expression: 

( ) ( )
2

.
1V

i p ipx t px Kt
mγ

 
= − = − 

+   

             (A24) 
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Consequently, Equation (3) is Galilean invariant for observers that move at 
constant but small speed respect to each other. Nevertheless, the Grave de Peral-
ta equation describes a massive free quantum particle moving at quasi-relativistic 
speeds. 
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Abstract 
General Relativity implies an expanding Universe from a singularity, the 
so-called Big Bang. The rate of expansion is the Hubble constant. There are 
two major ways of measuring the expansion of the Universe: through the 
cosmic distance ladder and through looking at the signals originated from the 
beginning of the Universe. These two methods give quite different results for 
the Hubble constant. Hence, the Universe doesn’t expand. The solution to 
this problem is the theory of gravitation in flat space-time where space isn’t 
expanding. All the results of gravitation for weak fields of this theory agree 
with those of General Relativity to measurable accuracy whereas at the begin-
ning of the Universe the results of both theories are quite different, i.e. no 
singularity by gravitation in flat space-time and non-expanding universe, and 
a Big Bang (singularity) by General Relativity. 
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1. Introduction 

General Relativity (GR) implies an expanding universe where the expansion rate 
is the Hubble constant. There are two different methods to measure the Hubble 
constant. The results of these two methods are two different values for the Hub-
ble constant (see e.g. [1] [2]). Hence, the assumption that the universe expands is 
not correct and the universe doesn’t expand (see e.g. [2]). The expansion is a 
generally accepted assumption supported by GR. We can say that GR isn’t a 
correct description of gravitation. There are authors who ask for new physics 
(see [1]). Therefore, we will use the theory of gravitation in flat space-time 
(GFST) instead of GR which is studied by the author in the book and in several 
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articles (see e.g. the articles [3] [4] [5] [6]). GFST gives non-expanding space for 
the universe. The metric is the pseudo-Euclidean geometry and the proper time 
is formally similar to the metric of GR. The source of the gravitation field is the 
total energy-momentum tensor including that of gravitation. This is in full 
agreement with Einstein who stated that matter is equal to energy and reverse. 
GR doesn’t satisfy this condition and in addition the energy-momentum of 
gravitation by GR is not a tensor. It is worth to mention that GFST was already 
studied in article [7] with application to non-singular cosmological models in 
[8]. Surface data show evidence for a non-expanding universe [9]. The possibil-
ity of non-expanding, cosmological models is already given in the article [10] by 
the use of GFST. Non-singular universes by GFST with matter creation and en-
tropy production are also studied in [11]. 

2. GFST 

The theory of GFST is shortly summarized. The metric is flat space-time given 
by 

( )2d d di j
ijs x xη= −                        (1) 

where ( )ijη  is a symmetric tensor. Especially, pseudo-Euclidean geometry has 
the form 

( ) ( )1,1,1, 1ijη = − .                       (2) 

Here, ( ) ( )1 2 3, ,ix x x x=  are the Cartesian coordinates and 4x ct= . Let 

( )det ijη η= .                         (3) 

The gravitational field is described by a symmetric tensor ( )ijg . Let ( )ijg  
be defined by 

kj j
ik ig g δ=                           (4) 

and put similar to (3) 

( )det ijG g= .                         (5) 

The proper time τ  is defined by 

( )2d d di j
ijc g x xτ = − .                      (6) 

The Lagrangian of the gravitational field is given by 

( )
1 2

/ / / /
1
2

mn ik jl ij kl
ij kl m n m n

GL G g g g g g g g
η

 −  = − −   −   
           (7) 

where the bar “/” denotes the covariant derivative relative to the flat space-time 
metric (1). The Lagrangian of dark energy (given by the cosmological constant 
Λ ) has the form 

( )
1 2

Λ 8Λ GL
η

 −
= −  − 

.                      (8) 

Let 
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44 k cκ = π                           (9) 

where k is the gravitational constant. Then, the mixed energy-momentum tensor 
of gravitation, of dark energy and of matter of a perfect fluid is 

( ) ( )l
1

n
/ / / /

2
1 1 1

8 2 2
i ir km kl mn i

kl mn j r j r jJ

GT G g g g g g g g L Gδ
κ η

  −  = − +    −     
  (10a) 

( ) ( )1Λ Λ
16

i i
jjT Lδ

κ
=                     (10b) 

( ) ( ) 2i k i i
jk jjT M p g u u pcρ δ= + + .               (10c) 

Here, ρ , p and iu  denote density, pressure and four-velocity of matter. it 
holds by (6) 

2 i j
ijc g u u= − .                        (11) 

Define the covariant differential operator 
1

/

2

/
i kl mi
j jm l

k

GD g g g
η

  −
=   −   

                   (12) 

of order two. Then, the field equations for the gravitational potentials ( )ijg  
have the form 

1 4
2

i i k i
j j k jD D Tδ κ− =                       (13) 

where 

( ) ( ) ( )Λi i ii
j j j jT T G T M T= + + .                 (14) 

Define the energy-momentum tensor 

( ) ( )ij jik
kT M g T M= .                     (15) 

Then, the equations of motion in covariant form are 

( ) ( )//

1
2

k kl
kl ii kT M g T M= .                   (16) 

In addition to the field Equation (13) and the equations of motion (16) the 
conservation law of the total energy-momentum holds, i.e. 

/ 0k
i kT = .                          (17) 

The results of this chapter may be found in the book [12] and in the subse-
quently appeared articles [3] [4] [6]. In article [5] the gravitation theories of 
GFST and GR and their results are compared with one another. Furthermore, 
the redshift formula for GFST is derived. 

4. GFST and the Universe 

GFST is defined in flat space-time metric, e.g. in the pseudo-Euclidean geometry 
which is used in the following to study homogeneous, isotropic, cosmological 
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models. The matter tensor is given by a perfect fluid with velocity equal to zero. 
The total matter is given by the sum of density of matter mρ  and of radiation  

rρ  with the corresponding pressure density of matter 0mp =  and of radiation 
1
3r rp ρ= . It holds for homogeneous, isotropic, cosmological models 

( ) ( )2 1,2,3ijg a t i j= = =  
( ) ( )1 4ijg h t i j= − = =  
( )0tjg i j= ≠ . 

The initial conditions at present time 0 0t =  are 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 00 0 1, 0 ,0 0 0,, m m r ra h a H h h ρ ρ ρ ρ= = = = = = 

  
where 0H  is the Hubble constant and 0h  is an additional constant not ap-
pearing in GR. Relation (16) for i = 4 implies under the assumption that matter 
and radiation do not interact 

( )1 2 2
0

1
0 ,m m r rh ahρ ρ ρ ρ= =                 (18) 

It follows by the use of the field Equation (13) 
3

3 4
4

d 1 1 Λ2
d 2 3 2m r

a aa h c
t a c h

κ ρ ρ
κ

   = + +  
   



          (19a) 

( )
3

3 4
4 2

d 1 1 Λ4
d 2 8 2m r

h aa h c L G
t h c c h

κ ρ ρ
κ κ

   
= + + −   

  



     (19b) 

where 

( )
22

3
2

1 16 6
2

a a h hL G a h
c a a h h

    = − + +        

 

 

 

The expression ( )1
16

L G
κ

 is the density of gravitation field. The conserva-

tion law of the total energy is 

( ) ( )
3

2 21 Λ
16 2m r

ac L G c
h

ρ ρ λ
κ κ

+ + + =              (20) 

where λ  is a constant of integration. Define the quantity 

0 0
0

13 1
6

hH
H

ϕ
 

= + 
 



. 

The field Equation (19) imply by the use of the conservation law (20) and the 
initial conditions the relation 

3 4 2
02 1a h c t tκ λ ϕ= + + .                   (21) 

It follows from (20) with the present time 0 0t =  by the use of the initial 
conditions and the standard definitions of the density parameters of matter, ra-
diation and of the energy given by the cosmological constant with the abbrevia-
tion 
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0 1m r mκ ΛΩ = Ω +Ω +Ω −                    (22) 

the differential equation 

( )
( )

2 2
2 3 60

024 2
02 1

m r m
Ha a a a

a c t t
κ

κ λ ϕ
Λ

  = −Ω +Ω +Ω +Ω 
  + +



.    (23a) 

Here, rΩ , mΩ  and ΛΩ  are the density parameters of radiation, matter 
and the energy given by the cosmological constant. The initial condition for the 
differential Equation (23a) is 

( )0 1a = .                         (23b) 

Relation (20) with 0 0t t= =  gives by elementary calculations 

( )

24
0

2
00

8 12 m o
c

HH
ϕκ λ κ

 
− = Ω 
 

                   (24) 

The assumption 

00 κ<                            (25) 

implies that the solution of (23) is non-singular for all t∈ . It exists 1 00t t< =  
with ( )1 0a t = , that is 

( ) ( )1 1 0a t a t a> = >  for all 1t t≠ .               (26) 

It follows from (23a) 
2 3 6
1 1 1 0r m ma a a κΛΩ +Ω +Ω = Ω . 

The time 1t  must be long time before the present time 0 0t =  implying 

10 1a<  , i.e. 

0 1κ  .                          (27) 

Therefore, ( )a t  starts at a positive value at time equal to minus infinity, de-
creases to 1a  at 1t t=  and then increases for all t. The function ( )h t  can 
then be calculated from relation (21). Let us introduce the proper time τ  in-
stead of the time 𝑡𝑡by 

( ) ( )1 d
t

t h t tτ
−∞

= ∫                      (28) 

The differential Equation (23a) can by the use of (21) be rewritten 
2

2 0
0 6 4 3

1 d
d

m mra H
a a a a

κ
τ Λ

Ω ΩΩ   = − + + +Ω      

.            (29) 

This differential equation is for not too small functions ( )a t  nearly identical 
with that of GR for a flat homogeneous, isotropic universe by virtue of (25) and 
(27). 

Then, the conditions (25) and (27) give 

10 1a<  ,                         (30) 

i.e. 1t  corresponds to the time of the big bang of GR with value 1a  very small 
but not zero. This result is received by GFST without any additional assumption 
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or change of the theory. 

5. Conclusions 

There are two methods of measuring the Hubble constant of the universe: the 
cosmic distance ladder and looking at the signals originated from the beginning 
of the universe. Two different results for the Hubble constant are received. 
Therefore, the universe doesn’t expand because the methods use the expansion 
of the universe. It is worth to mention that GR implies expansion because the 
universe starts from a point singularity and the observed universe is very big. 
Furthermore, the universe must be inflationary expanding because the observed 
universe is flat. Summarizing, it follows that GR doesn’t correctly describe 
gravitation if two Hubble constants are measured. 

A theory of gravitation in pseudo-Euclidean geometry has been given in arti-
cle [12]. Later on, it is studied more generally in flat space-time. The applications 
of this theory to homogeneous, isotropic, cosmological models are given in arti-
cle [8] where non-singular solutions are received, i.e. big bang did not exist. It 
was proved that for weak gravitational fields the results of GFST and GR agree to 
measurable accuracy. The theory and the applications of GFST is studied in sev-
eral articles and summarized in the book [12]. Differences of the results of GFST 
and GR arise for cosmological models in the beginning of the universe. The met-
ric of GFST is the pseudo-Euclidean geometry, i.e. space is not expanding. It is 
worth to mention that by virtue of the covariance of GFST an expansion of the 
universe would also be possible by a suitable transformation. But this is not real-
istic. A non-expanding universe is important because expansion of the universe 
implies two different Hubble constants. For cosmological models of GFST the 
source is the total energy-momentum tensor inclusive that of the gravitational 
field (as it should be by Einstein: matter is equal to energy and reverse) whereas 
the source is only the matter tensor and no gravitational energy-momentum for 
cosmological models of GR which is no tensor for GR. The redshift of distant 
objects follows by the energy of time-dependent gravitational fields which is 
converted to matter where the total energy is conserved and it doesn´t follow 
from velocities (expanding space). 
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Abstract 
The paper is concerned with the problem of reduction of the general relativity 
theory to the Newton gravitation theory for a gravitation field with relatively 
low intensity. This problem is traditionally solved on the basis of linearized 
equations of general relativity which, being matched to the Newton theory 
equations, allow us to link the classical gravitation constant with the constant 
entering the general relativity equations. Analysis of the linearized general 
relativity equations shows that it can be done only for empty space in which 
the energy tensor is zero. In solids, the set of linearized general relativity equ-
ations is not consistent and is not reduced to the Newton theory equations. 
Specific features of the problem are demonstrated with the spherically sym-
metric static problem of general relativity which has the closed-form solution. 
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1. Introduction. General Relativity Equations 

The basic equation of general relativity which specifies the Einstein tensor has 
the following form: 

1
2

j j j
i i iE R Rδ= −                         (1) 

in which j
iR  ( i

iR R= ) are the components of the Ricci curvature tensor (we 
use mixed components because for the spherically symmetric problem consi-
dered further they coincide with the physical components). The Einstein tensor 
is associated with the energy tensor as 

j j
i iE Tχ=                            (2) 
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where χ  is the relativity gravitational constant. The energy tensor expressed 
with the aid of Equations (1) and (2) identically satisfies the conservation equa-
tion 

0k
k iT∇ =                            (3) 

For the static problem, 
j j

i iT σ= , ( )4 0 , 1, 2,3iT i j= = , 4 2
4T cµ=               (4) 

where j
iσ  is the stress tensor and µ  is the density. 

For gravitation with relatively low intensity, the general relativity must reduce 
to the Newton theory in which the gravitation potential ψ  satisfies the Poisson 
equation 

4 Gψ µ∆ = π                          (5) 

in which G is the classical gravitation constant. Traditionally, the linearized ver-
sion of Equation (1) is obtained and matched to Equation (5). The result is 

4
0 8 G cχ χ= = π                         (6) 

2. Linearized Equations and the Reduction Problem 

Consider the space referred to Cartesian coordinates ( )1,2,3ix i =  and present 
the line element of the Riemannian space as 

2 2 2
44d d d di j

ijs g x x g c t= −  
Assume that the components of the metric tensor have the following forms: 

ij ij ijg fδ= +  and 44 441g f= +  in which the amplitude values of functions f are 
much smaller than unity. Undertaking linearization of Equation (1) and taking 
into account Equations (2) and (4), we arrive at the following set of the linea-
rized general relativity equations: 

( )1
1 22,33 33,22 23,23 44,22 44,33

1 2
2

f f f f fχσ = − − + − −            (7) 

( )2
1 33,12 12,33 13,23 23,13 44,12

1
2

f f f f fχσ = + − − +              (8) 

( )3
1 22,13 12,23 13,22 23,12 44,13

1
2

f f f f fχσ = − + − +              (9) 

( )2
2 11,33 33,11 13,13 44,11 44,33

1 2
2

f f f f fχσ = − − + − −            (10) 

( )3
2 11,23 12,13 13,12 23,11 44,23

1
2

f f f f fχσ = − − + +             (11) 

( )3
3 11,22 22,11 12,12 44,11 44,22

1 2
2

f f f f fχσ = − − + − −            (12) 

( )2
11,33 11,22 22,11 22,33 33,11 33,22 12,12 13,13 23,23

1 2 2 2
2

c f f f f f f f f fχµ = − + + + + + − − −  (13) 

Notation ( ),i⋅ ⋅ ⋅  means the derivative with respect to ix . The linearized form 
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of the conservation equation, Equation (3), with regard to Equations (4) is 

( )1 2 3 2 1 2 3
1,1 1,2 1,3 44,1 1 44,2 1 44,3 1

1 1 1 0
2 2 2

f c f fσ σ σ µ σ σ σ+ + − − + + =  (1, 2, 3)  (14) 

Here, (1, 2, 3) means permutation which allows us to obtain two more equa-
tions from the written one (only three Equations (14) exist for a static problem). 
For linear approximation, we can neglect the nonlinear terms with stresses in 
Equation (14) and simplify it as 

1 2 3 2
1,1 1,2 1,3 44,1

1 0
2

f cσ σ σ µ+ + − =  (1, 2, 3)              (15) 

This equation has a simple physical meaning—it is the equilibrium equation 
for a solid element loaded with gravitation forces. 

Using the traditional way to derive Equation (6) for the gravitation constant, 
express the derivatives 23,23 13,13 12,12, ,f f f  from Equations (7), (10), (12) and 
substitute them in Equation (13). The resulting equation is 

( )2
44f cχ µ σ∆ = −                       (16) 

in which 1 2 3
1 2 3σ σ σ σ= + +  is the invariant of the stress tensor. For the linear 

approximation, we neglect σ  in comparison with 2cµ  and finally get 
2

44f cχµ∆ =                          (17) 

Matching Equations (5) and (17), we can conclude that 2
44 2f cψ=  and 

0χ χ= , where 0χ  is specified by Equation (6). Thus, it looks like the general 
relativity reduces in the linear approximation to the Newton gravitation theory. 

However, more careful analysis shows that the foregoing derivation is not 
correct for solids. The problem is in Equations (7)-(13) which are, in general, 
not compatible. As can be directly checked, the left-hand parts of these equa-
tions must satisfy the following relationship: 

1 2 3
1,1 1,2 1,3 0σ σ σ+ + =  (1, 2, 3)                  (18) 

Consider first the empty space for which 0j
iσ =  and 0µ = . In this case, 

Equation (18) coincides with Equation (15) and the set of Equations (7)-(13) is 
compatible. Equation (17) is homogeneous and coincides with Equation (5) 
which is also homogeneous. Thus, for the empty space, the general relativity 
theory reduces to the Newton gravitation theory for gravitation with relatively 
low intensity. However, the situation is different in case of solids for which the 
equilibrium equation, Equation (15), must be satisfied. As follows from Equa-
tions (15) and (18), the equilibrium equations are satisfied only if 44 0f =  
which means the absence of gravitation. Thus, the linearized equations of gener-
al relativity do not describe gravitation and the linearized general relativity does 
not reduce to the Newton theory for solids. The reason is evident—whereas the 
terms with the stresses in Equation (15) are linear and refer to the first-order 
approximation, the last term with 44f  belongs to the second-order approxima-
tion. Naturally, this does not mean that the last term can be neglected—in this 
case, the gravitation disappears. This situation is not unique in mechanics of 
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solids. For example, to construct the two-dimensional theory of thin plates from 
three-dimensional equations of theory of elasticity by the asymptotic method, we 
need to retain small terms of the first and of the second orders. Neglecting the 
second-order terms, we arrive at the plate theory which is not physically consistent 
[1]. Consider further the spherically symmetric problem for which closed-form 
solutions can be obtained. 

3. Spherically Symmetric Problem 
3.1. Classical Linear Solution 

For comparison with the general relativity solutions that are discussed further, 
consider the problem of the theory of elasticity for a linear elastic isotropic solid 
sphere with radius R and constant density µ  loaded with gravitation forces 
following from the Newton theory. The gravitational potential ψ  is the solu-
tion of the Poisson equation 

2 4 G
r

ψ ψ ψ µ′′ ′∆ = + = π                     (19) 

Here, ( ) ( )d dr′⋅ ⋅ ⋅ = ⋅⋅ ⋅  and r is the radial coordinate. For the external space 
( r R≥ , index “e”), 0µ =  and the solution of Equation (19) is e Gm rψ = −  in 
which m is the sphere mass. Introduce the so-called gravitational radius 

2

2
g

Gmr
c

=                           (20) 

Then, 2 2e gr c rψ = − . For the internal space ( 0 r R≤ ≤ , index “i”), the regu-
lar solution of Equation (19) is 

22
3i G r Cψ µ= π +

 
Determining constant C from the boundary condition ( ) ( )i eR Rψ ψ=  and 

using Equation (20), we get 

( )
2

2 22
3 2

g
i

r c
G R r

R
ψ µ= − π − −

 
The equilibrium equation for the sphere under the action of gravitational 

body forces g if µψ ′= −  is 

( ) 22 4 0
3r r G r

r θσ σ σ µ′ + − − π =                  (21) 

where rσ  and θσ  are the radial and the circumferential stresses. Consider the 
case of the perfect fluid for which r pθσ σ= = − . The pressure p can be found 
from Equation (21) which takes the form 

24 0
3

p G rµ′ + π =                        (22) 

The solution of this equation that satisfies the boundary condition ( ) 0p r R= =  
is 

( )2 2 22
3

p G R rµ= π −                      (23) 
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In general relativity, the space geometry is Riemannian and the line element in 
spherical coordinates , ,r θ ϕ  is 

( )2 2 2 2 2 2 2
11 22 44d d d sin d ds g r g g c tθ θ ϕ= + + −            (24) 

The components of the metric tensor depend on the radial coordinate only. 
For the foregoing linear solution, the general relativity interpretation of the ob-
tained results is [2] 

11 1 grg
r

= + , 2
22g r= , 44 1 grg

r
= −                (25) 

In case 0gr = , the space is Euclidean and gravitation vanishes. 

3.2. General Relativity Equations 

For a spherically symmetric problem, the field equations following from Equa-
tion (1) reduce to [3] 

2
1 22 22 44
1

22 11 22 22 44

1 1 1
4 2

g g gЕ
g g g g g

 ′ ′ ′ 
 = − + 
   

               (26) 

2 2
2 44 44 22 22 22 44 11 11 44
2

11 44 44 22 22 22 44 11 11 44

1 1 1
2 2 2 2 2

g g g g g g g g gE
g g g g g g g g g g

 ′′ ′ ′′ ′ ′ ′ ′ ′ ′     
 = − − + − + − −     
       

 

(27) 
2

4 22 22 11 22
4

22 11 22 22 11 22

1 1 1
4 2

g g g gE
g g g g g g

 ′′ ′ ′ ′ 
 = − − − 
   

             (28) 

in which in accordance with Equations (2) and (4) 
1 1
1 1 rE Tχ χσ= = , 2 2

2 2E T θχ χσ= = , 4 4 2
4 4E T cχ χµ= =        (29) 

The only one conservation equation, Equation (3), becomes 

( ) ( ) ( )1 1 2 1 422 44
1 1 2 1 4

22 44

0
2

g gT T T T T
g g
′ ′′ + − + − =              (30) 

The solution of the external ( r R≥ ) problem must satisfy the asymptotic con-
ditions and to reduce to Equations (25) for r →∞ . The solution for the internal 
( 0 r R≤ ≤ ) problem must satisfy the symmetry condition at the sphere center 
according to which ( )11 0 1g = , ( )22 0 0g = . Both solutions must satisfy the 
boundary conditions on the sphere surface, i.e. 

( ) ( )11 11
e ig R g R= , ( ) ( )22 22

e ig R g R= , ( ) ( )44 44
e ig R g R=        (31) 

Substitution of the obtained equations for i
iT  in Equation (30) identically sa-

tisfies this equation. So, only three of four Equations (26)-(28) and (30) are mu-
tually independent. Traditionally [3], the simplest set of equations including 
Equations (26), (28) and (30) is used. The obtained solution identically satisfies 
Equation (27). To solve the problem, we should supplement Equations (26), (28) 
and (30) which include three components of the metric tensor 11 22 44, ,g g g  and 
two stresses ,r θσ σ  with one coordinate condition for the metric tensor [4] and 
one equation for the stresses [5]. For the case of perfect fluid which is considered 
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further, r pθσ σ= = −  and we have four unknown functions and need only one 
coordinate condition for the metric tensor. 

3.3. Linearized Solution 

Decompose the components of the metric tensor in Equation (24) as 11 11g f= + , 
( )2

22 21g r f= + , 44 41g f= +  and assume that the absolute values of functions 
( )f r  are much less than unity. Undertaking linearization of Equations (26)-(28), 

we arrive at 

( ) ( )1
1 421

1E f rf
r

′= − , ( ) ( )2
2 41

1
2

E f rf
r

′′= − , ( ) ( )4
4 21

1E rf
r

′=      (32) 

where ( )1 2f f rf ′= − . Using Equations (29), we can present these equations as 

( )42

1
r f rf

r
χσ ′= − , ( )4

1
2

f rf
rθχσ ′′= − , ( )2

2

1c rf
r

χµ ′=        33) 

The conservation equation, Equation (30), transformed with aid of Equation 
(29) becomes 

( ) ( )2
1 2 4

2 1 0
2r rf c

r
σ σ σ σ µ′ ′+ − + − =                (34) 

Neglecting rσ  in comparison with 2cµ  in the last term of this equation, we 
can conclude that it is analogous to the equilibrium equation, Equation (21). 

Proceeding, express f from the first equation of Equation (33), f ′  from the 
second of these equations, i.e., 

2
4rf r rfχσ ′= + , 4 42f r f rfθχσ′ ′ ′′= + +  

and substitute in the third equation to get 

( )2
4 4

2f f c
r

χ µ σ′′ ′+ = −  

in which 2r θσ σ σ= +  is the invariant of the stress tensor. Neglecting σ  in 
comparison with 2cµ , we arrive at 

2
4f cχµ∆ =                          (35) 

Formally, taking 2
4 2f cψ=  and 48 G cχ = π , we can reduce this equation 

to the Newton theory equation, Equation (19). However, as in Section 2, the 
foregoing derivation is not correct. For the external space 0r θσ σ= =  and 

0µ = . Both Equations (19) and (35) are homogeneous and the linearized gener-
al relativity reduces to the Newton theory. Taking 0r θσ σ= =  in Equations 
(33), we can conclude that the second equation is a derivative of the first one. 
Thus we have only two independent Equations (33) for three functions 1,2,4f  
and need a coordinate condition to find these functions. For the internal space, 
the first two Equations (33) have different left-hand parts and include one un-
known function 4F f rf ′= −  in the right-hand parts. This means that, in gener-
al, these equations are not compatible. To derive the compatibility condition, 
express F from the first equation and substitute in the second one. The resulting 
equation is 
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( )2 0r rr θσ σ σ′ + − =
 

This equation coincides with the equilibrium equation, Equation (21) only in 
the absence of gravitation which is, naturally, not the case. Thus, the linearized 
equations of general relativity are not compatible for a solid sphere and to arrive 
at the consistent theory, we need to construct the second-order approximation. 

3.4. Second-Order Asymptotic Approximation 

Present the components of the metric tensor entering Equation (24) as 
2

11 1 11g fε ε ϕ= + + , ( )2 2
22 2 21g r fε ε ϕ= + + , 2

44 4 41g fε ε ϕ= + +   (36) 

in which ε  is a small parameter. Substitution in Equation (1) yields 

( ) ( )2

1 2

i i i
i i iE E Eε ε= +                     (37) 

Here, the components ( )
1

i
iE  are specified by Equations (32) and 

( ) ( )

( ) ( )

( )

1 2 2
1 1 2 2 122

2 4 1 4 4 1 2 2

2
2 4

1

1

2
4

E f f
r

f f f f f f
r
f f f

ϕ ϕ

ϕ ϕ

= − + −

′ ′ ′ ′+ − − + + + +  

′
′ ′+ +

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 1 2 4 1 4 4 1 2 2 1 12

2 2
2 4 2 4 1 2 1 4 2 2 4 4

1 2 1 4 2 4

1 2 2 2
2

1 2 2
4

E f f f f f f f f
r

f f f f f f f f f f

f f f f f f

ϕ ϕ ϕ

ϕ ϕ

′ ′ ′ ′ ′ ′= − − + + + + −  

 ′′ ′′ ′ ′ ′′ ′′ ′′ ′′+ − + + + + + + +

′ ′ ′ ′ ′ ′+ + − 

 (38) 

( ) ( ) ( )

( ) ( )

4 2 2
4 1 2 1 2 1 2 1 1 1 2 2 222

2
2 1 2 2 1 2 2

1 1 3 2 3 3

1 4 2 4
4

E f f f f f f f f
r r

f f f f f f

ϕ ϕ ϕ ϕ

ϕ

′ ′ ′ ′ ′= − − + + − − + +

 ′′ ′ ′ ′ ′′+ − + + + +   
Recall that the Einstein tensor i

iE  must satisfy the conservation equation, 
Equation (30), which can be written as 

( ) ( ) ( )1 1 2 1 422 44
1 1 2 1 4

22 44

0
2

g gE E E E E
g g
′ ′′ + − + − =

 
Substituting expressions (36) for the metric tensor, we arrive at the following 

two equations corresponding to ε  and 2ε : 

( ) ( ) ( )1 1 2
1 1 21 1 1

2 0E E E
r

′  + − =                    (39) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 2 1 4
1 1 2 2 1 2 4 1 42 2 2 1 1 1 1

2 1 0
2

E E E f E E f E E
r

′      ′ ′+ − + − + − =       (40) 

Substituting Equations (32) and (38), we can conclude that both equations, 
Equations (39) and (40), are satisfied identically. Thus, the second approxima-
tion, in contrast to the first one discussed in Section (2.3), is consistent. This 
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means that only two of three Equations (38) are mutually independent and we 
can proceed using only two equations, namely those for 1

1E  and 4
4E . However, 

these two equations include three unknown functions with indices 1, 2 and 4. To 
solve the problem, we need to supplement the aforementioned two equations 
with a coordinate condition. According to the condition used further, the 
so-called space density R Ed g g=  in which Rg  and Eg  are the determi-
nants of the metric tensor in Riemannian and Euclidean three-dimensional 
spaces is minimized [5]. For the spherically symmetric problem, the introduced 
coordinate condition has the form [5] 

2
11 22g g r=                         (41) 

For the internal space, this condition has a simple physical meaning – gravita-
tion transforming the Euclidean geometry into Riemannian does not affect the 
volume element and the sphere mass, i.e., 

2 3
11 22

0 0

44 d 4 d
3

R R

m g g r r r Rµ µ µ= π = π = π∫ ∫             (42) 

So, the sphere mass is the same that in Euclidean space [6]. 
Using Equations (36), we can write Equation (41) as 

2
21 1 1 1 2

2 2 0
2 2 8 2
f f f ff ϕε ε ϕ

  + + + − + =  
     

and get two coordinate conditions for the first and the second approximations, 
i.e., 

1 22f f= − , 2
1 2 23 2fϕ ϕ= −                    (43) 

Taking into account these results, we can transform Equations (32) and (38) 
for 1

1E  and 4
4E  to 

( ) ( )1
1 2 2 421

1 3E f rf rf
r

′ ′= − + +                   (44) 

( ) ( )4
4 2 221

1 3E r f rf
r

′′= − +                     (45) 

( ) ( ) ( )1 2
1 2 4 2 2 2 4 4 4 2 4 222

3 1 12 2
4

E f f f f f f f f f
rr

ϕ
ϕ ϕ′ ′ ′ ′ ′ ′ ′ ′= − − + + + − − +    (46) 

( ) ( ) ( )24
4 2 2 2 2 2 2 2 222

3 5 3
4

E f f f f f
rr

ϕ ϕ ϕ ′′ ′ ′ ′ ′′= − + + + + +  
        (47) 

Consider the external space ( R r≤ < ∞ ) for which ( ) ( )
1 2

0i i
i iE E= = . Inte-

gration of Equation (45) yields 

( ) 1
2 23e e Cr f f

r
′ + = −

 
Further integration and the first equation of Equations (43) give 

1 2
2 32
e C Cf

r r
= − + , 1 2

1 3

2e C Cf
r r

= −                 (48) 
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Applying Equation (44) and using Equations (48), we get 

( ) ( ) 1
4 2 23e e e Cr f f r f

r
′ ′= − − =

 
Thus, 

1
4
e Cf

r
= −                           (49) 

Transforming Equation (47) with the aid of Equations (48), we have 

( ) ( )
2 2

2 1 2 1 2
2 2 2 2 6 4

9 15 35 3
16 4 4

e e e C C C Cr r
r r r

ϕ ϕ ϕ′′ ′+ + = − −
 

This is the Euler equation whose solution is 
2 2

3 4 1 2 1 2
2 3 2 6 4

9
16 4 4

e C C C C C C
r r r r r

ϕ = + − − −                 (50) 

From the second equation of Equations (43) it follows that 
2 2

3 4 1 2 1 2
1 3 2 6 4

2 2 15 7 5
8 2 2

e C C C C C C
r r r r r

ϕ = − − + + −              (51) 

Using Equation (46) and taking into account Equations (48)-(50), we get 

( ) 3 1 2
4 2 5

2e C C C
r r

ϕ ′ = − −
 

Integration yields 

3 1 2
4 54

2
4

e C C C C
r r

ϕ = + +                      (52) 

Substituting Equations (48)-(52) in Equations (36), we arrive at the following 
expressions for the components of the metric tensor in the external space: 

2 2
21 2 3 4 1 2 1 2

11 3 3 2 6 4
2 2 2 15 7 51

8 2 2
e

e e
C C C C C C C Cg
r r r r r r r

ε ε
  = + − + − − + + −  

     
2 2

2 21 2 3 4 1 2 1 2
22 3 3 2 6 4

91
2 16 4 4

e
e e

C C C C C C C Cg r
r r r r r r r

ε ε
   = + − + + + − − −   

      

21 3 1 2
44 54

21
4

e
e e

C C C Cg C
r r r

ε ε  = − + + + 
   

For r →∞ , the asymptotic behavior of the metric tensor is specified by Equ-
ations (25). Matching the obtained solution to these equations, we can conclude 
that 1 3 51, 0C C C= = =  and e grε = . Thus, for the external space, parameter 

eε  is equal to the gravitational radius in Equation (20) and the solution be-
comes 

2
22 4 2 2

11 3 3 2 6 4

2 2 7 51 151
8 2 2

e
g g

C C C Cg r r
r r r r r r

  = + − + − + + −  
   

        (53) 

2
2 22 4 2 2

22 3 3 2 6 4

1 91
2 16 4 4

e
g g

C C C Cg r r r
r r r r r r

   = + − + + − − −   
    

       (54) 
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2 2
44 41

4
ge

g

r Cg r
r r

= − +                      (55) 

The integration constants that enter this solution should be found from the 
boundary conditions on the sphere surface. To formulate the boundary conditions, 
we need to consider the internal ( 0 r R≤ ≤ ) problem. Assume that the sphere con-
sists of the perfect fluid for which r pθσ σ= = − . Thus, 1 2

1 2E E pχ= = −  and 
4 2
4E cχµ= . In addition to Equations (36) and (37), decompose the pressure as 

2
1 2i ip p pε ε= +                        (56) 

Then, we should take in Equations (37) 

( ) ( )1 2
1 2 11 1

E E pχ= = − , ( ) ( )1 2
1 2 22 2

E E pχ= = −            (57) 

Substituting the first of these equations in Equation (39), we get 1 0p′ = . Tak-
ing into account the boundary condition for the pressure ( )1 0p r R= = , we can 
conclude that 1 0p = . This result explains the problem discussed in Section 2.3 
in connection with the linearized solution. The pressure corresponding to this 
solution is zero which means that the linearized solution does not describe gra-
vitation in solids. 

To proceed, specify the parameter iε  for the internal problem. Assume that 
2

i cε χµ= . Then, the corresponding equation in Equations (37) yields 

( )4
4 1

1E = , ( )4
4 2

0E =                      (58) 

Then, Equation (45) becomes 

( ) 2
2 23 i ir f r f r

′  ′+ = −      
The solution of this equation is 

2
1 2

2 315
i r B Bf

r r
= − + +

 
This solution is regular at the sphere center 0r =  if 1 2 0B B= = . Using the 

first equation of Equations (43), we get 
2

2 15
i rf = − , 

2

1
2
15

i rf =                      (59) 

Taking 1 0p =  in Equations (57) and applying Equation (44), we arrive at 

( ) ( )2 2 43 0i i if r f r f′ ′+ + =
 

Substituting the first equation of Equations (59) and integrating, we have 

( )2
4 3

1
6

if r B= +                        (60) 

Now, we can find the pressure in the fluid. Recall that 1 0p = , so that 
2 2 2 4

2 2ip p c pε χ µ= =                      (61) 

Here, 2p  can be determined from Equation (40) which can be transformed 
with the aid of Equations (57), (58) and (60) to 
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2 0
6
rpχ ′ + =

 
The solution of this equation which satisfies the boundary condition 
( )2 0p r R= =  is 

( )2 2
2

1
12

p R r
χ

= −
 

Substituting this result in Equation (61), we finally get 

( )
2 4

2 2

12
cp R rχµ

= −                      (62) 

This solution must coincide with Equation (23) corresponding to the Newton 
theory. Matching Equations (23) and (62), we can conclude that 0χ χ= , where 

0χ  is given by Equation (6). Thus, Equation (6) is proved for the second-order 
asymptotic solution for the spherically symmetric problem. Using the obtained 
result and applying Equations (19) and (42) for gr  and m, we can obtain the 
final form for parameter iε , i.e., 

2
3

3 g
i

r
c

R
ε χµ= =                        (63) 

Thus, for the internal problem, the parameter is also expressed in terms of the 
gravitational radius. 

Determine the metric tensor components for the second-order approximation. 
Consider Equation (47) whose left-hand part is zero because of Equations (58). 
Substituting the first equation of Equations (59), we obtain the following equation: 

( ) ( )
2

2 2 22
5 3

15
i i i r

r r
ϕ ϕ ϕ′′ ′+ + = −

 
The solution of this equation is 

4
4 5

2 3525
i r B B

r r
ϕ = − + +

 
Using the regularity condition and the second equation in Equations (43), we 

get 4 5 0B B= =  and 
4

2 525
i rϕ = − , 

4

1
3
175

i rϕ =                     (64) 

The function ( )4
i rϕ  can be found from Equation (46) in which ( )1

1 22
E pχ= − . 

Using Equations (59), (60), (62) and (64) and integrating, we find 
2

2 2
4 3 6

1 5 5
60 4 2 3

i rr R B Bϕ
  

= + + +  
   

               (65) 

Finally substituting Equations (59), (60), (64) and (65) in Equations (36) and 
using Equation (63) for iε , we arrive at the following expressions for the metric 
tensor components of the internal space: 

2 2 4

11 3 6

2 27
1

5 175
g gi r r r r

g
R R

= + +                     (66) 
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2 2 4
2

22 3 6

3
1

5 175
g gi r r r r

g r
R R

 
= − −  

 
                   (67) 

( )
2 2

2 2 2
44 3 3 63 6

3 5 51
4 2 32 20

g gi r r rg r B r R B B
R R

  
= + + + + + +  

   
      (68) 

Determine the integration constants using the boundary conditions in Equa-
tions (31). Equating the terms with gr  in Equations (53) and (66) and doing 
the same for the terms including 2

gr , we get 

2
2

3
10

C R= , 2
3 3B R= − , 4

9
14
RC = , 4

6
11
4

B R=  

Thus, the boundary conditions (31) for 11g  and 44g  are satisfied. The 
boundary condition for 22g  is satisfied because of Equation (41). Finally, we 
arrive at the following expressions for the components of the metric tensor in 
the external and internal spaces: 

2
11 3 2 3 4 6

1 3 15 9 3 631
5 8 7 8 200

e
g gg r r

r r r r r r
   = + + + − − +   
     

2 2
22 3 2 3 4 6

1 3 1 1 1 11 9
2 10 16 14 120 400

e
g gg r r r

r r r r r r
    = + − + + − + − −          

2

44 4

3
1

40
g ge r r

g
r r

= − +
 

2 2 6
11

2 271
5 175

i
g gg r r r r= + +                    (69) 

2 2 2 4
22

1 31
5 175

i
g gg r r r r r = − − 

   

( ) ( )
2

2 2 2
44

3
1 3 10 11

2 80
g gi r r

g r r r = + − + − +   
Here, 

rr
R

= , g
g

r
r

R
=  

For real objects, the ratio gr  is rather small. For example, for Earth 
61.4 10gr
−= × , for Sun 64.25 10gr

−= × , for the largest of the observed visible 
stars—red supergiant UI Scutti ( 1111.9 10 mR = × , 3064 10 kgm = × ), 98 10gr

−= ×  
[7]. 

Thus, the classical expression for the gravitational constant in Equation (6) is 
proved, but under the following conditions: 
• The problem is spherically symmetric and static. 
• The sphere consists of a perfect fluid with constant density. 
• The asymptotic equations are of the second order, not of the first. 
• The coordinate condition in Equation (41) is valid. 

If the last of these conditions is violated, the result can be different. For exam-
ple, take the coordinate condition in the form 2

22g r=  or 2 2 0f ϕ= =  which 
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corresponds to the Schwarzchild solution of the spherically symmetric static 
problem for a fluid sphere [3]. Using decompositions in Equations (36) and (37) 
under the conditions 2 2 0f ϕ= = , we arrive at the following equations analog-
ous to Equations (44)-(47): 

( ) ( )1
1 1 421

1E f rf
r

′= −                      (70) 

( ) ( )4
4 121

1E rf
r

′=                        (71) 

( ) ( ) ( )1 2 4 4
1 1 1 1 422

1 fE f f f
r rr
ϕ

ϕ
′ ′

= − − + +               (72) 

( ) ( )4 2
4 1 122

1E r f
r

ϕ ′ = −                      (73) 

Consider the external problem for which 0i
iE = . Integration of Equations 

(71) and (73) yields 

1
1
e Cf

r
= , 

2
1

1
e C

r
ϕ  =  

 
                     (74) 

Using Equations (74), we can transform Equations (70) and (72) to 

( ) 1
4 2
e Cf

r
′ = , ( ) ( )( )4 1 4 4

e e e ef f fϕ ′ ′= +  

Integration gives 

1
4 2
e Cf C

r
= − + , 1 2

4 3
e C C C

r
ϕ = − +                 (75) 

Using Equations (74) and (75), we can present Equations (36) for the external 
space as 

2
21 1

11 1e
e e

C Cg
r r

ε ε  = + +  
 

, 2
22
eg r= , 21 1 2

44 2 31e
e e

C C Cg C C
r r

ε ε   = + − + + − +   
   

 

Comparing these expressions with Equations (25), we can conclude that 

1 1C = , 2 3 0C C= =  and e grε = . Thus, the components of the metric tensor 
for the external space become 

2

11 1 g ge r r
g

r r
 

= + +  
 

, 2
22
eg r= , 44 1 ge r

g
r

= −             (76) 

This result demonstrates a specific feature of the Schwarzchild solution for the 
external space—it does not include the integration constants which allow us to 
satisfy the boundary conditions on the sphere surface. This result follows from 
the form of the coordinate condition used to obtain the solution. Indeed, the 
Einstein equation, Equation (28), includes 22g ′′  which is zero if 2

22g r= . So, 
Equation (28), being initially of the second order, reduces to the equation of the 
first order, and its solution contains only one integration constant which is 
found from the asymptotic condition. The second constant that could be used to 
satisfy the boundary condition for 11g  is missing and this condition is not sa-
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tisfied in the Schwarzchild solution [8]. 
Consider the internal space for which, as earlier, assume that 2

i cε χµ= . 
Then, Equations (71) and (73) allow us to find 1

if  and 1
iϕ . The regular solu-

tions of these equations are 
2

1 3
i rf = , 

4

1 9
i rϕ =  

Thus, the radial component of the metric tensor for the internal space be-
comes 

22 2
2 4

11 1
3 3

i c cg r rχµ χµ 
= + +  

 
                 (77) 

Matching this expression with the first equation in Equations (76), we can con-
clude that the boundary condition on the sphere surface ( ) ( )11 11

e ig r R g r R= = =  
can be satisfied if 2 3 3 gc R rχµ = . Formally, Equation (77) can be used to find 
χ . Indeed, using Equation (20) for gr , we arrive at the following expression for 
the gravitational constant: 

3 4

6mG
R c

χ
µ

=                          (78) 

If m is specified by Equation (42), then 0χ χ= , where 0χ  is specified by 
Equation (6). However, this not the case for the Schwarzchild solution for which 

11 22
0

22 2
2 4 2

0

2 2 2 4
2 4 2

0

2 2 2 2 4 4
3

4 d

4 1 d
3 3

4 1 d
6 18

4 1
3 10 42

R

R

R

m g g r

c cr r r r

c cr r r r

c R c RR

µ

χµ χµµ

χµ χ µµ

χµ χ µµ

= π

  
 = π + +  
   

 
≈ π + + 

 
 

= π + + 
 

∫

∫

∫

 
Substituting this result in Equation (78), we arrive at 

2 2
2 2 4 4

0 1
10 42

c R c Rχµ χ µχ χ
 

= + + 
   

As can be seen, 0χ χ≠ . Moreover, the obtained equation cannot be used to 
find χ  because χ  is the gravitational constant and cannot depend on R and 
µ . Thus, the asymptotic analysis of the Schwarzchild solution does not allow us 
to derive the proper expression for the gravitational constant. 

4. Light Ray Deviation in the Vicinity of Sun 

Having proposed the new metrics in Equations (69), we need to check whether it 
allows us to predict the experimentally found shift angle which specifies the light 
ray deviation from the straight trajectory in the vicinity of Sun. For the gravitat-
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ing sphere with radius R, this angle can be determined from the following equa-
tion [4]: 

2Iα = − π                          (79) 

in which [9] 

11

22 44
22

22 44

d
1

R
R

R

gI r
g gg
g g

∞

=
 

− 
 

∫                    (80) 

and ( )R
ii iig g r R= = . 

Consider the linearized solutions for which 

11 11g f= + , ( )2
22 21g r f= + , 44 41g f= +             (81) 

For the Schwarzchild solution in Equations (76), we have 

1
grf
r

= , 2 0f = , 4
grf
r

= −                   (82) 

and Equation (81) becomes 

( )

( )

2 2
4 4

2 22 2

2 2

d 1
2

d 1
2 2

2
2

R

R

g g

R

g

r f R frI R
r Rr r R

r r rrR
r R r Rr r R

r
R

∞

∞

 − = −
 −−  
 

= + + 
+ −  

π
= +

∫

∫               (83) 

Substitution in Equation (79) yields 

2 grα =                            (84) 

in which, as earlier, g gr r R= . Calculation for Sun [4] gives the traditional re-
sult 1.75α ′′=  which is in good agreement with the existing experimental data 
[10]. 

For the obtained linearized solution in Equations (69), 
2

1 3

1 3
5g

rf r
r R

 
= − 

 
, 

2

2 3

1 3
2 10g

Rf r
r R

 
= − + 

 
, 4

grf
r

= −         (85) 

Substitution in Equation (80) yields 

( ) ( ) ( )
2 2 2 2

4 4 2 2
1 2 2 42 2 2 22 2

d 11
22 2

R R
R

R

r f R f r f R frI R f f f f
r R r Rr r R

∞  − − = − + − + + −
 − −−  

∫  (86) 

The first two terms in this equation are the same that in Equation (83), be-
cause function 4f  is the same in Equations (82) and (85). As can be directly 
checked, the result of integration of the two last terms in Equation (96) is zero. 
Thus, the result of integration in Equation (86) is the same that in Equation (83), 
and the shift angle is specified by Equation (84). 

Now, calculate the integral in Equation (80) using the second-order approxi-
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mation of the metric tensor in Equations (69). Omitting rather cumbersome 
transformations, present the final result which is 

2 2139 1282 2 0.955
320g g g gr r r rα π −

= + = +
 

Taking into account that for Sun 64.25 10gr
−= × , we can conclude that the 

second term is negligible in comparison with the first one, and that the shift an-
gle for the obtained metric coefficients in Equations (69) is specified by the tra-
ditional Equation (84) which is in good agreement with experiment. 

5. Conclusion 

As follows from the foregoing analysis, the general relativity theory reduces for 
low intensity gravitation to the Newton theory only for the empty space. For 
solids, the linearized equations of the general relativity do not describe gravita-
tion and the second-order asymptotic equations should be applied. For this ap-
proximation, the traditional expression for the gravitational constant is found for 
spherically symmetric static problem under special coordinate condition. The li-
nearized Schwarzchild solution is not reduced to the Newton solution. The ob-
tained solution for the metric tensor of the spherically symmetric empty space 
yields the traditional result for the angle of light ray deviation in the vicinity of 
Sun. 
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Abstract 
In the previous paper (JMP 2014) we showed that there exists a NeoMin-
kowskian Gravitational Expanding Solution of GR (General Relativity) with 
CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum 
(non-baryonic Fluid), with gravitational (first) density (dark energy) and gra-
vitational waves (at light speed), corresponds to the Gravitation Field of a 
Cosmological Black Hole (CBH). The latter predicts furthermore a basic 
emission of Radiation (CBR) from Hubble spherical singular Horizon to the 
inside of CBH (unlike Hawking’s emission) at an initial singular time. Our 
solution is then compatible with a well-tempered Big Bang and Expanding 
Universe (Escher’s Figure, see Penrose, 3) but incompatible with inflation. 
The latter is based on Hypothesis of a so-called Planck’s particle (Lemaitre’s 
primitive atom) characterized by a so-called Planck length. We prove that we 
can short-circuit this unstable particle with a stable cosmological Poincaré’s 
electron with gravific pressure. It is well known that electron is a stranger in 
usual Minkowskian vacuum (dixit Einstein). The stranger electron can be 
perfectly integrated in NeoMinkowskian Radiation fluid and then also (with 
its mass, charge and wavelength) in (second density of) CBR. Everything 
happens as if the leptonic mass of the electron were induced by our cosmo-
logical field. The unexpected cosmological model proposed here is the only 
one that predicts numerical values of (second) density and temperature of 
CBR very close to the observed (COBE) values.  
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Introduction: NeoMinkowskian Gravitational Vacuum  
as Solution of GR with CC 

Let’s summarize first how we come to an unexpected Gravitational NeoMinkowskian 
Expanding Vacuum which “looks like” de Sitter’s Expanding Vacuum [1] [2]. 

(1) Gravitational Density of NeoMinkowskian Vacuum 
Let us consider Einstein’s equation of General Relativity (GR) with Cosmo-

logical Constant (CC) Λ  and Perfect Fluid ( ) 2

u u
T p pg

c
µ ν

µν µνρ≡ + −  (stan-

dard notations: energy density ρ , pressure p and 4-velocity u uµ ν ): 

( )4 4 2

8 8 u uG GG g T T p pg
c c c

µ ν
µν µν µν µν µνχ ρπ π  
+ Λ = = = + − 

 
      (0) 

Let us introduce Minkowskian Metric (MM) gµν µνη=  in (0) with therefore 
cancellation of Einstein’s curvature tensor 0Gµν = : 

( )4 4 2

8 80
u uG GG T p p

c c c
µ ν

µν µν µν µνη ρ η
 

= ⇒ Λ = = −
π π

+ 
 

  (0-MM) 

A non-trivial NeoMinkowskian Solution with pρ = −  ( 0pρ + = ) is then: 
4

8
VACUUM cT

Gµν µν µνρη η
π
Λ

= =                    (1) 

The density of VACUUM, simulated by a Non-Baryonic ( 0Gµν = ) NeoMin-
kowskian Fluid, depends therefore on the Gravitational Constant (see 14): 

4

0
8

cp
G

ρ ρ ρΛ
Λ

=
π

+ = ⇒ =                 (1bis) 

This Gravitational NEO-Minkowskian Vacuum (GMV) does not correspond 
to the usual ElectroMagnetic Vacuum (EMV) (with permittivity, permeability, 
impedance...) of the standard Minkowskian Vacuum of Special Relativity (SR). 
We reject here any attempt of putsch1 that consists in canceling (a priori) this 
gravitational density (1bis): 0p ρ= = . 

We are looking first for the determination of the global gravitational field ( 1) 
which corresponds to this density and then for Poincaré’s Gravific Waves (in the 
framework of Lorentz Transformation, (LT, see 1-3, 8). The operation 0p ρ= =  
is characteristic of de Sitter’s Vacuum whose metric (dSM) and not that of Minkowski 
( MM dSM≠ ). In basic equation (0), NeoMinkowskian Vacuum is based on cancella-
tion ( 0pρ + = ) of Einstein’s Tensor ( 0Gµν = ) whilst deSitterian Vacuum is 
based on cancellation ( 0p ρ= = ) of Tensor of Perfect Fluid ( 0Tµν = ): 

0G gµν µν+ Λ =                     (0-dSM) 

At first glance, these two approaches to Vacuum (0-dSM and 0-MM) are very 
far apart. We first show (in introduction, see also JMP previous paper) that they 
are indeed very close (6). 

 

 

1Given that Einstein’s (local) curvature tensor 0Gµν = . is canceled, it is generally admitted that 

Global NeoMinkowskian space is flat and so the basic density (1bis) is canceled. Let us note that CC 
dimensionally corresponds to a global (negative) curvature, see 3-3-2). 
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The only way to develop the role of CC in NeoMinkowskian Vacuum is to 
start from that of CC in Riemanian Vacuum. 

(2) Cosmological Constant (CC) in Expanding Riemannian Vacuum 
In cosmological literature we never find (1) but we always find (anti-1) with 

Riemannian Metric (RM) gµν  ( 0Gµν ≠ ): 
4

0
8

DarkEnergy cT g p
Gµν µν

ρΛ
⇒ +

π
= =            (anti-1) 

The cosmological term gµνΛ  (first member) is associated, by the cosmolo-

gists, with the density term (second member) 4

8 G g
c µνρπ . This so-called “com-

ponent of vacuum” (Dark Energy) is then associate to 0pρ + =  (next to other 
components: radiation component, matter component...). 

In order to avoid the fateful. 0Gµν =  ⇒  gµν µνη=  (1), the strategy of 
cosmologists consists of multiplying (0) into several equations (phases or pe-
riods): one equation for matter, one equation for radiation, one equation for 
curvature, one equation for dark energy (before the matter and then 0Gµν = )... 
(each equation corresponding to a period of the inflation). 

We have in our strategy “one and only one equation (0)” with one and only 
one solution (1 bis, 9, 12)2. 

In order to find the characteristics of Dark Energy, cosmologists develop the 
thermodynamics underlying the relationship 0pρ + = : 

0 0 d d d 0 0p H U pV H U p V pρ ρ+ = ⇒ = + = ⇒ = + = ⇒ + =  (1-&-anti-1) 

Local transformation 0pρ + =  leads by integration to a global Volume 
U Vρ= . By differentiation d d 0U p V+ =  we return to the local starting point 

0pρ + =  ( d
d
U
V

ρ= ) if and only if d 0V ≠ . 

The variable volume results from a well known property of Enthalpy 
( H U pV= +  isentropic d 0S =  and non isochoric variation d 0V ≠ ). 

Nothing prevents then introducing a variability over time and therefore a 
growing energy in an expanding empty universe: 

( ) ( )0p U t V tρ ρ+ = ⇒ =                   (2) 

which can be developed d 0V ≠  on the basis of any metric gµν  included 

µνη . This is our starting point (2) with a very binding determination of the me-
tric: gµν µνη=  (as we will see it, NeoMinkowskian constraint of inaccessible 
singular (<c or >c) velocity is very strong). 

(3) Cosmological Constant (CC) in Exponential Expanding NeoMin-
kowskian Vacuum 

The first Minkowskian constraint on (2), in a pseudoEuclidean space-time 4D 
framework, involves a spherical (Euclidean) 3D symmetry: 

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

3 24 4 3 3
3 3

U t V t R t
V t R t V t R t R t

U t V t R t
= ⇒ = ⇒ = =π π

  

   (2 bis) 

The non-static NeoMinkowskian GMV has to be treated with a radial scale 

 

 

2We will see ( 5) that another density that corresponds (see 4) to the same solution. 
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factor ( )R t  and a radial velocity ( )R t  and therefore with a radial ratio  
( )
( )

R t
R t



. Given that we have indifferently a constant density of energy or a constant 

density of mass 2M c
ρρ ρΛ= =  as well, NeoMinkowskian spherical symmetry  

imposes Einstein’s equivalence relation between (dark) pseudo-energy ( )U t  
and (non-baryonic) pseudo-mass ( )M t : 

( ) ( ) ( )2 34
3

M t c U t R tρ= = π                    (3) 

We have thus a global variable pseudo-mass a ( ) ( )3
2

4
3

M t R t
c
ρ

π=  and a 

local constant pseudo-mass density 2c
ρ  (in radial Friedman’s equation it is 

usually the opposite situation). 
Nothing prevents a priori that this pseudo-mass from being sensitive to New-

ton law of gravitation. 

On one hand a static model with potential energy P
GME

R
= −  is excluded 

because unstable (collapse). 
On the other hand a dynamical model, based on an equilibrium between ki-

netics energy cE  and potential energy PE , is possible: 

( ) ( )
( ) ( ) ( )2 2 2

2

1 1 4 0
2 2 3

GM t
R t R t G R t

R t c
ρ

π− = − =             (4) 

(YP12 with common numbering in the French and English version of our 
previous research [1] [2])3. We simplified with a Non-Zero enigmatic 
Non-Baryonic (NB, 0Gµν = ) (micro) mass NBm : 

( ) ( )
( )

21 0
2

NB
NB

GM t m
m R t

R t
− =                 (4 bis) 

We can then determine the desired ratio (2 bis): 

( )
( ) 2

1 8
3 3

R t G c H
R t c

ρ Λ
Λ

= = =
π

                  (5) 

From 0pρ + =  we return to CC with4 4

8 G
c
ρ

Λ =
π . 

That means that our dynamical equation (4, YP12) is an alternative to histor-
ical Einstein’s determination of constant χ  in (0) with weak Newtonian Gra-

 

 

3A dynamic fatal objection seems to be however formulated here at this stage: Our model (YP12, 4) 
is neither Minkowskian nor NeoMinkowskian because gravitational law with especially kinetics 
energy would non relativistic. That would be true for a material (baryonic) point ( 3). We urge the 
reader to be cautious (and patient, 3) because no one has tried until now to apply scalar (temporal) 
Newton law of gravitation to a space point (we are in the framework of GR) that is to say a 
non-baryonic (non-material) pseudo-mass. Nobody really knows (at this stage) if this law (4) is in-
compatible or not with MM. 

4With 0Λ =  we return to static Minkowskian usual solution 
( )
( )

0
R t
R t

=


. 
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vitation Field (metric g hµν µν µνη= + ). Indeed from (0) Tµν µν µνη χ χρηΛ = =  

we have ρ
χ
Λ

=  and from (5) 4

8 G
c

χ
ρ
Λ
=

π
= . The determination of constant 

χ  with NeoMinkowskian gravitation field (4) is then much more direct than 
that with the weak gravitation field. 

On the basis of YP12 we rediscover gravitational (critical) density (1-bis) in 
function of (measurable) Hubble’s constant (see numerical value in annex 1 with 
Gauss cgs-units): 

2

2

3
8M
H

Gc
ρρ ρ Λ

Λ= =
π

=                   (5 bis) 

Our non-usual solution consists therefore in an Exponential Expanding (EE) 
of Global Vacuum with a Hubble (measurable) Constant which defines the ki-
nematics underlying the future gravitational dynamics, 1): 

( ) ( ) ( ) ( )0 e , 0 e .H t H tR t R R t RΛ Λ= =                  (6) 

It was at this point that we had arrived in our previous work [1] [2], (6) in 
keeping with recent observations of an accelerating (see 10) expanding universe 
[3]. 

Nevertheless the originality of our NeoMinkowskian EE of Vacuum, very 
close to deSitterian EE of Vacuum (with zero density, 1-4), did not seem ob-
vious yet. 

So the binding singularity of light velocity, underlying any Minkowskian (or 
NeoMinkowskian) solution, does not appear in (6). Except if we impose a struc-
tural speed of NeoMinkowskian space-time ( )0R c=  in Initial Conditions (IC). 

This is the reason why we suggest to examine first, on a kinematic point of 
view, the contrast “deSitterian IC ( 1-1) versus NeoMinkowskian IC” ( 1-2). 

1. [TACHYON] Only Can Escape (to the Outside) from  
Cosmological Horizon of NeoMinkowskian Black Hole 

The structure of the paper will follow 3-partition of NeoMinkowskian 
space-time: Tachyon (v > c) 1, Photon (v = c) 2, Bradyon (v < c) 3. 

1.1. Undetermined Initial Conditions (IC) in deSitterian EE (Inflation) 

Let’s take a look at deSitterian solution that consists of canceling the second 
member: 0Tµν =  or 0p ρ= =  in (0): 

( )
( )

2

20
3

a t
G g

a tµν µν
Λ

= + Λ = −


               (0-dSM) 

On the left we write Einstein’s equation (0) and on the right radial Friedman’s 
equation5 with Robertson-Walker’s metric. The latter is based on two factors 
(scale factor ( )a t  and curvature factor K). 

 

 

5Let us note that NeoMinkowskian solution (1 or 5) is also a solution of Friedman’s equation with 
( ) 1a t =  ( 0K = ). The scale factor disappears. Everything seems static. Unless the scale factor is 

hidden in a scale hyperbola ( 2-3). We note that our model does not correspond to pseu-
do-hyperbolic value of parameter 1K = −  in RW (see 3-3). 
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The simplest deSitterian solution is then Parabolic ( 0K = ) Vacuum (dSV) 
without matter 0ρ = , without structural light velocity c and even without gra-

vitational constant G: the factor 4

8 G
c
π  being eliminated from both Einstein’s 

and Friedman’s equation (Hubble’s constant is the same (true constant) con-

nected with CC in both cases 
3

c HΛ
Λ

= ): 

( )
( ) ( ) ( ) ( ) ( )0 e , 0 e

3
H t H ta t

c H a t a a t a
a t

Λ Λ
Λ

Λ
= = ⇒ = =



     (anti-6) 

We propose the numbering “anti”-6 for three reasons: 
1) deSitterian Hubble constant is not connected with density ( 0ρ = ) and so 

to a determined gravitational dynamic (5 bis). 
2) deSitterian IC are undetermined, ( ) ( )0 , 0a a , for the radial distance ( )0a  

and radial velocity ( )0a  as well. We can choose to introduce the radius of the 
so-called Planck’s particle (Planck’s length, see annex 1), Poincaré’s radius of 
electron, Bohr’s radius of atom, Erathostène’s radius of Earth, diameter of solar 
system, diameter of Milky Way as well. 

3) In de Sitter’s model (dSV) there is no singular IC (Horizon). It means that 
the spherical surface (for example the radius of Hubble) ( )0a  is continually 
moving (instantly) at the time 0t =  with velocity ( )0a  (for example 
( ( )0a c= ). 

1.2. Determined IC in NeoMinkowskian EE: From Singular  
Velocity to Singular Cosmological Horizon 

If we set the light speed ( )0R c=  in (6) to an initial time, say zero ( 0t = ), then 
this singular constant speed immediately implies, with HH R cΛ =  a singular 

constant Radius ( ) 30 HR R= =
Λ

. (H for Horizon and for Hubble). 

The only physical (and logical) consistent interpretation of this double dis-
continuity (Horizon) involves a singular EMISSION of light, at the (fixed) speed 
c, from a singular spherical surface Horizon whose Radius ( )0 HR R=  is fixed 
in 0t =  (unlike deSitterian continuity). 

Unlike de Sitter’s initial radius, NeoMinkowskian initial radius ( ( )0 HR R= ) 
must be the Horizon of Hubble (binding determination induced by CC). 

Unlike usual Minkowskian theory, NeoMinkowskian theory (6) has a 
DOUBLE HORIZON ( ), Hc R : Horizon of Velocity and Horizon of Space. 

The complete explicit solution (6), that takes into account imposed IC in 
0t =  ( ( )0R c=  and ( )0 HR R= ) is then: 

( )
( ) ( ) ( )8 e , e

3
Tachy H t H t

H H
Tachy

R t GH R t R R t c c H R
R t

ρ
Λ Λ

Λ Λ
π

= = ⇒ = = ⇒ =


  (6 bis) 

For a time later 0t >  we will have therefore supra-luminous speeds ( )R t c>  
of TACHYONS (the first member of Feinberg’s trio) that move away from the 
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singular Horizon ( )0 HR R=  We have a law of Hubble but for tachyons 
( ) ( )R t H R tΛ= ! (for bradyons see, 19 bis). 
Our tachyonic model of an expanding Universe fits well in the framework of 

GR where nothing forbids that the speed of a space point is greater than a singu-
lar (light) speed. And therefore nothing forbids that the speed of a space point is 
ALWAYS greater than a singular (light) speed. 

Given that the velocity MUST be super-luminous ( )R t c>  for tachyons if 
and only if we have no negative time 0t >  the original time 0t =  is then a 
(true) singularity. 

The latter must logically correspond to a finite time 1
HT H −

Λ=  in the same 
way that we have a finite space Horizon. Our NeoMinkowskian model with a fi-
nite time is then compatible with a Big Bang. 

Given that the Hubble Horizon HR  is given at initial time 0t = , our Neo-
Minkowskian model is NOT compatible with (deSitterian) inflation of a sup-
posed “Planck’s particle” that delete ( 0H PR l  ) Hubble’s Horizon6. 

The paper could stop here: We deduce the first expanding GR-Solution with 
STRICT NeoMinkowskian inequality ( ( ) ( )HR t R R t c> − > ): Only tachyons can 
escape from the Horizon. 

But what are they escaping from? ( 1-3) 
Unlike deSitterian zero density, NeoMinkowskian non-zero gravitational den-

sity (1bis) defines a gravitational field (constant G). What is this searched gravi-
tational field GMV ( 1-3)? 

The paper could then not stop here because we are looking for a full descrip-
tion (kinematic and dynamic) of NeoMinkowskian space-time (tachyon, photon, 
bradyon). 

1.3. NeoMinkowskian Cosmological Black Hole (CBH)  
and Poincaré’s Gravific Waves 

So far we have developed the (Radial) Kinematic (6, 6 bis) aspect of the Neo-
Minkowskian solution. Let’s now develop the Gravific (Scalar) Dynamic aspect. 
In order to do that, let us now introduce our Kinematic NeoMinkowskian IC in 
Dynamic YP12 (5) at singular time 0t = : 

( ) ( )
( ) ( ) ( )

( )
2 2 201 1 10 0

2 2 0 2
H

H

GM t GM GMR t R c
R t R R

− = − = − =         (7) 

With a new gravific dynamic IC 3
2

4
3H HM R

c
ρ

= π  we deduce the threshold 

escape speed: 

2 2 H

H

GMc
R

=                          (8) 

An Horizon from which a PHOTON cannot escape (only Tachyon can es-

 

 

6Since there is neither observed expansion of the galaxies themselves nor the solar (or atomic) sys-
tem itself, the existence a priori of a Hyperbolic Horizon is then consistent with current observations 
( 3-3). 
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cape) is by definition a Schwarzshild’s Horizon of a BLACK HOLE. 
More precisely: A Cosmological Black Hole (CBH) whose Universal Schwarz-

shild’s Horizon is Hubble’s Horizon. 
In parallel with a 3-partition of the speed space (tachyons, photons and bra-

dyons), our CBH involves a 3-partition of space itself (out, on and in). 
THE searched GRAVITATIONAL FIELD GMV which corresponds to gravi-

tational density (1, 1 bis) is given by A UNIVERSAL NEOMINKOWSKIAN 
BLACK HOLE (CBH). 

Underlying Minkowskian Metric MM must be then written as follows: 

2 2 2 2 2 22d d d d dH

H

GMs r c t r t
R

= − = −                 (9) 

It was enough to think about it! 
According to GR transformations of coordinates with MM are LINEAR 

LORENTZ TRANSFORMATION (LT) (see 2-3, 18 scale hyperboles). 

On such grounds it is no longer possible to claim that MM is incompatible 
with gravitational density (1 bis), with gravitational field in vacuum (8) and then 
also with possible existence of GRAVITATIONAL WAVES at light velocity. 

This is exactly Poincaré’s position in 1905 with his “Gravific Waves”7: 
“Quelles modifications elle [la transformation de Lorentz] nous obligerait? ap-
porter aux lois de la gravitation. C’est ce que j’ai cherché à déterminer. J’ai été 
conduit à supposer que la propag ation de la gravitation [ondes gravifique dixit 
Poincaré] n”est pas instantanée mais qu’elle se fait à la vitesse de la lumière” (in-
troduction) [4]. 

So we are led to rehabilitate Poincaré’s work on LT in 1905 but on the basis... 
of Einstein’s GR in 1916 (with CC 1917). So there is no polemical intention on 
our part (see annex 2). 

Formula (8) looks like Laplace’s (Mitchell’s) non-relativistic formula of static Stel-

lar Black Hole (SBH). There is neither singular escape velocity ( 2 2 2 S

S

GM
v c

R
= = ) 

nor singular Horizon in non-relativistic Laplace’s approach. 
IN SUMMARY: The only way to make relativistic Laplace’s formula (9 with 

10) consists in claiming that alone tachyonic points can escape from event Ho-
rizon. But we need then a gravitational field (CBH) which does not exist in usual 
SR. YP-12 involves that the desired GMV is then CBH in NeoMinkowskian 
global solution (with a negative hyperbolic curvature, see 3). 

At this stage our NeoMinkowskian Black Hole (CBH) seems very close to that 

 

 

7We purposely used the term GRAVIFIC WAVE used by Poincaré in 1905. Laplace considered that 
a velocity CAN be super-luminous: “La gravitation se déplace au moins 300 fois plus vite que la lu-
mière. Poincaré criticizes Laplace in 1905 by proposing that the speed of a gravitational wave must 
be the limit (singular) speed of light on the basis of Lorentz Transformation (LT)”. Poincaré’s posi-
tion on gravific waves is non orthodox because SR is reputed without gravitation, without density (1 
bis, the putsch note 1) and then without gravific waves, note 8). 

He shows also (in 6 of the same paper) that ELECTRON undergoes a GRAVIFIC pressure (
5-2) in the framework of LT. Thanks to NeoMinkowskian approach, we will be able to synthesize the 
G-wave and the G-pressure ( 5-2). 
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of cosmology of FLAT Universe (Tatum8, [5]). 
Let us precise in order to complete the dynamic that we have also an accelera-

tion ( )R t  deduced with a second derivation: 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

2
2 2 2

0 0
0 1 1

0
H MR t R t R R RR t H R t q
cR t R
α

Λ Λ− = ⇒ = − = − ⇒ = =
 



 

 (10) 

with a new basic invariant constant Mα  determined in 0t = . YP-12 introduc-
es a global singular pseudo-mass HM  of CBH (singular dark Energy 

2
H HU M c=  which might seem unrealistic if it did not fit with a singular acce-

leration Mα . This basic acceleration Mα  cannot be applied to the constant 
singular velocity of emission of photon but can be applied to tachyons (centri-
petal Mα ) and to bradyons (centrifugal Mα ) as well ( 3.3). 

So we have to continue our path from very formal and abstract maximal (cen-
tripetal) acceleration for tachyon, to a very physical and concrete minimal (cen-
trifugal) acceleration for bradyon (25)9. We will show that this hyperbolic acce-
leration is a universal invariant ( 3-3) and therefore all the above dynamic gra-
vitational equations are perfectly relativistic in NeoMinkowskian meaning. 

Finally we check the consistence of our approach with the deduction of the 
“second” usual cosmological parameter (Hubble HΛ  and acceleration qΛ ): 

2

21 H
M

H

GMq H c
p R
ρ αΛ Λ= = − = =              (11) 

In truth they are here both sides of the same coin. Let us insist on the necessi-
ty of not confusing 1qΛ = −  with 1K = − . In the first case it is a reference to a 
basic global hyperbolic motion ( 1qΛ = − ) with constant acceleration Mα  whilst 
in the second case it is a reference to the pseudo-hyperbolic value of local curva-
ture ( 1K = − ) parameter in RW metric (note 5). 

By conferring a positive role to an essential component (tachyons) of the 
NeoMinkowskian non-baryonic framework ( 0Gµν = ) the unique solution (1 or 
9) can henceforth be written: 

4

1 0 0 0
0 1 0 0
0 0 1 08
0 0 0 1

VACUUM cT
Gµν µνη ρ−

Λ

− 
 

Λ  = =
 π
 
 

             (12) 

Supra-luminous speed of tachyon is perfectly allowed in GR for space-points. 

 

 

8We have somehow established a theoretical horizon for formulas of flat universe ( 0K =  in RW, 
see note 5). The problem is that this Horizon must be Hyperbolic (see 3). 
9Outside the CBH (minimal light velocity) we have a minimal HR  coupled with a maximal (cen-

tripetal) Mα . Inside the CBH we will have exactly the opposite (minimal centrifugal Mα  3-3). 
The objection that the acceleration cannot be a relativistic invariant is inadmissible because both 
theories are not in competition at this stage. The question will arise when the bradyon that matches to 
tachyon will be defined. To reassure the reader, we will have ( 3) STRICT inequalities in both cases 

(tachyons and bradyons) but in inverted sense ( ( ) ( )HR t R R t c> − >  and ( ) ( )Hr t R v t c< − < ). It 
will be solve with hyperbolic acceleration which is a relativistic invariant (( 3-3). IDEM for New-
ton’s laws (dynamic and gravitation as well). 
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Our GR-solution (1-1bis-1-ter) is always valid whatever the value of velocity (> 
= and <) because the basic operation 0pρ + =  makes disappear the factor  

( ) 2

u u
p

c
µ νρ+  with 4-velocities (the temporal component is here −1 in 00). The 

positive role of tachyons induces internal density of dark energy (
2

3

3
4

H

H

M c
R

ρΛ =
π

). 

Is this the only possible density? Is there another density defined by  
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

µνη+

 
 − =
 −
 

− 

 (see 3-3) which is not directly the unique solution (1, 

12) but which is coupled ( 4 see the ratio anti-32 & 5) with the density (1-bis, 
1-ter)? 

1.4. A Cosmological Hidden Non-Baryonic Micro-Mass? 

Both Newton s laws (Gravitation and Dynamic) are coupled ( 0t = ): 
4

2

2
2

H
G H M H

H

GMcF M M
G R

α= = =                 (13) 

(density 1bis can be write 2

3
4

G

H

F
R

ρΛ =
π

). We have not only a Non-Baryonic (NB) 

Macro-Mass HM  but also a NB micro-mass NBm  (4 bis): 

21 0
2

H NB
NB

H

GM m
m c

R
− =  (YP12)    2

2

2 H NB
NB H

H

GM m
m c R

R
⇒ =   (4 ter) 

We see that we have next to a Macro Force (13) a Newton’s law of dynamic a 
micro force (14): 

2 2

2
2H NB H

G NB M NB
H H

GM m Mf m m G
R R

α= = =              (14) 

If GF  (13) is determined, Gf  (14) is, at this stage, undetermined (NB mi-
cro-mass will be precise in 4). This will be a very important point for Poin-
caré’s “dynamic of electron” ( 5) with a gravitational force ( NB em m= ?). 

1.5. From Static Stellar Black Hole (SBH) to Dynamic Cosmological 
Black Hole (CBH) 

Let us show now that CBH, with non-static MM (13) is the cosmological limit of 
Schwarzschild’s static metric (Stellar Black Hole, SBH). The latter is written 
(Outside the SBH): 

2 2 2 21d 1 d d ,
1

S
S

S

R
s r c t r R

Rr
r

 = − − > 
  −

 (Schwarz-out)       (15) 

coupled with formula of Laplace ( 2

2 S
S

GM
R

c
= ). It is well known that the infinite 

behavior r ∞  of (schwarz-out), brings back to the usual static Minkowskian 
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limit 2 2 2 2d d ds r c t= − . A sad destiny for the SBH which seems to be evapo-
rated! 

In dynamic NeoMinkowskian limit of RG with CC we have rSBH CBH∞→


 
with S HR R  ( S HM M ). 

2 2 2 2 2 221d lim 1 d d d d
1

S H

r S H

R GMs r c t r t
Rr R
r

∞

 
  = − − = −  
  −  



  (Mink-out) (15-out) 

This is a happy destiny for Stellar SBH which becomes Universal CBH (9). 
It has been showed (Kruskal) that “singularity of Schwarzschild” SR  is not a 

true physical singularity. We have to analyze the essential difference with the 
singularity (of Horizon) of Hubble HR  which is a true physical (hyperbolic) 
singularity ( 3). 

The structure of the paper will follow Feinberg’s partition of NeoMinkows-
kian space time: Tachyon (OUT) 1, Photon (ON) 2, Bradyon (IN) 3 [6]. 

2. [PHOTON] Emitted to the Inside: From CBH to CBR  
(Cosmological Background Radiation) 

NeoMinkowskian Universal coupling ( ),HR c  involves NECESSARILY a basic 
emission of waves (with constant velocity c) from the spherical surface of radius 

HR  (at singular initial time 0t = ). 
Let us write LikeLight interval: 

2 2 22 2dd d d 0
d

H H

H H

GM GMrs r t c
R t R

= − = ⇒ = =  (Mink-on)   (16-on) 

(If there is no emission we have to apply the acceleration to the singular speed 
(of the photon) which becomes therefore no longer singular) 

In what sense of radial direction should this radiation be emitted? To the out-
side or to the Inside of CBH? 

Given that only tachyons can escape to the outside ( 1), the photons ( 2) can 
only be emitted TO THE INSIDE from the border HR  and then in the bradyo-
nic universe. 

This is logically unstoppable. 
Unless we invoke quantum fluctuations (Hawking 1974) in order to justify an 

emission of Black Radiation to the outside from event horizon of SBH ( 2-1). 

Our basic emission of light resembles that of Hawking but it is not that of 
Hawking. Except on one point: the emitted radiation MUST be a Black Radia-
tion. Indeed we have an emission of radiation from a global spherical surface of 
last diffusion, based on an isentropic transformation (2 & 40). 

Our CBH is consistent with a singularity of the type Big Bang coupled with an 
emission of the type of CBR (Cosmological Black (Background) Radiation (a 
CBR at the Horizon of the CBH?). We will show in the next paragraph that is 
also compatible with an expansion of the type Hubble ( HR  is an Hyperbolic 
Horizon, 3).  
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We focus attention on a very important point that (Mink-on, 16) defines a 
NeoMinkowskian STRUCTURAL space-time velocity (von Ignatowski): it can cor-
respond to light wave (photon) or gravific wave (graviton) as well (see Table 1). 

2.1. From Hawking’s (Local) Black Radiation  
to (Global) CBR Black Radiation 

Let us remember that Hawking’s black radiation [7]. is emitted from Horizon of 
Events of SBH to the outside (see also Unruh, [8]). The expression “singularity 
of Schwarzschild” is henceforth outdated (still used in the old scientific litera-
ture). We confirm this point by making 2d 0s =  in Schwarzschild’s metric (15): 

2
2 2 2 d1 d d 0, lim

d 1S

S

r R S

R r cr c t
Rr t
r

 − − = = ∞ 
  −



  (Schwarz-on)    (16) 

We are indeed getting a non singular speed as large as we wish for SBH. But a 
speed of what? It is not speed of light c. Given that we are in the framework of 
GR, this supra-luminous speed can only be that of space point and therefore to 
the speed of propagation of gravitation (see Laplace, note 8). 

In contrast with (Schwarz-on), for CBH the singular Horizon of Hubble HR  
is coupled ( ),HR c  with singular Horizon of light velocity c (Zero interval, or 
LightLike interval, see Table 1, we repeat 16-on, just above): 

( )2 22 2dd d 0, 0 ,
d

H H
H

H H

GM GMrr t R c r R
R t R

− = = = =


 (Mink-on) (16-on) 

Our Black Hole emits not only CBR (see Table 1) but also gravific waves at 
the speed of light (Poincaré, 1905, [4]) to the inside. 

Inside the SBH we have: 

2 2 2 21d d 1 d ,
1

S
S

S

R
s c t r r R

R r
r

 = − − < 
 −

 (Schwarz-in)      (17) 

 
Table 1. Stellar black hole versus cosmological black hole. 

Schwarzschild’s Horizon of SBH 2 2 S

S

GMc
R

=  Hubble’s Horizon of CBH 2 2 H

H

GMc
R

=  

(Schwarz-out) spacelike TACHYON (Mink-out) 

Sr R>  (15) ( ) HR t R> , ( )R t c> , 2 2 2 2d d ds r c t= −  

Hawking’s Black Radiation (outside) lightlike PHOTON (Graviton?) (CBR inside) 

Sr R , d
d
r
t

∞  (16) (Schwarz-on) ( )0 HR R= , ( )0R c= , 2 2 20 d dr c t= −  (Mink-on) 

 timelike BRADYON (Galaxy or Electron) 

Sr R<  (17) (Schwarz-in) ( ) Hr t R< , ( )r t c< , 2 2 2 2d d ds c t r= −  (Mink-in) 
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see Mink-in (17-in) in Table 1. 
The density (1-1bis) is then internal density of CBH (see 3-3, 4) which can 

be written in cubic form of density of dark energy in 3

1

HR
 and radiation form in 

4

1

HR
: 

2 2

3 4

3 3
24

H H

H H

M c MG
R R

ρΛ = =
ππ

                 (1 ter) 

In the last case it’s as if our universe HM  is “in collision” with itself HM . 

2.2. Tri-Partition of NeoMinkowskian Space-Time: TACHYON, 
PHOTON (GRAVITON) AND BRADYON (Table 1) 

We now present a summary (and also a plan) by transposing to our NeoMin-
kowskian World (spacelike, lightlike, timelike) the 3-partition of zones of usual 
SBH Sr R> , Sr R= , Sr R<  (see Table 1 first column, 15, 16, 17). 

In second column of Table 1 we have 3-PARTITION according to velocity 
and according to space itself. 

To each member of Feinberg’s Trio (OUT, ON and IN) is attached a specific 
MM (15-out, 16-on, 17-in). 

We already have examined the tachyons ( 1) and (almost, 2-3) the photons 
( 2). Finally we will examine non-baryonic bradyons galactic point ( 3) and 
electron 4-5). 

If it is almost impossible for an observer to get into a usual SBH, it is radically 
impossible for a (bradyonic) observer to get out of a CBH. 

Fortunately the interior of CBH is precisely the Universe or the World itself. 
Fortunately also the observer is in the right place to measure the CBR emission 
(see abstract). 

This the reason why we suggest going beyond the notion the notion of “ Hole” 
and replace it with that of the “W(hole) World” or “The Black Whole Universe” 
given that it is filled with Cosmological black radiation of the kind CBR (emitted 
from Horizon of Hubble of CBH (in 0t = ). 

2.3. Cosmological NeoMinkowskian Scale Hyperbolas  
and Perfect Cosmological Principle 

Given that cosmological kinematics is radial ( r x= ) we can reduce space-time at 
2D usual diagram (Otx) with scale unit Minkowskian Hyperbolas 2 2 2 1x c t− =  
and 2 2 2 1c t x− = . Which is not usual in NeoMinkowskian space-time is that we 
have two singular Unit Hyperbolas directly induced by the CC. 

Let us follow the photon that is emitted (towards the inside ( 3-2) in 0t = ) 
from HR . It is received in O at time HT  (no negative time, see 1 6ter). 

Both points ( ),0HR  and ( )0, HT  determine both singular Unit scale hyper-
bolas 2D (more precisely half hyperbola in the first quadrant, respectively along 
axis Ox and along axis Ot): 
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2 2 2 2
Hx c t R− =  (bradyonic) x ct=  (photo-gravitonic) 

2 2 2 2
Hc t x T− =  (tachyonic)                   (18) 

We rediscover the 3-partition with singular asymptote (c = 1): a point on this 
asymptote can be photonic or gravitonic as well [4]. We can transform the coor-
dinates of a point-graviton with LT into another point-graviton on asymptote 
(with zero interval). 

The first Hyperbole along Ox (Tangent velocity WITHIN the light cone) is a 
bradyonic Hyperbole (see the Worldline10 of uniform acceleration 3) whilst the 
second Hyperbole, along Ot, is a tachyonic Hyperbole (Tangent velocity OUT 
the light cone). 

NeoMinkowskian hyperboles are compatible (a priori, see 3) with a Finite 
Time ( 1

HT H −
Λ= ) underlying “BIG BANG” but also with a “PERFECT 

COSMOLOGICAL PRINCIPLE”. Indeed we align a finite time HT  on a finite 
space HR  whilst in Steady State of Gold-Bondi-Hoyle, they align infinite time 

HT  on a infinite space HR . In our Hyperbolic Structure (Figure of Escher, see 
3), NeoMinkowskian space-time determine in fact a new kind of Steady-Sate. 

We must now focus on bradyonic hyperbole (18. It must now be shown that 
Hyperbole (18) is the global (intergrated) form of local (differential) metric: 

2 2 2 2d d ds c t r= −  (Mink-in, see Table 1). 
(The structure of the paper will follow Feinberg’s 3-partition of NeoMinkows-

kian space time: Tachyon 1, Photon-Graviton 2, Bradyon 3) 

3. [BRADYON] Galaxies That Are Approaching a Hyperbolic 
Horizon (Escher Figures) 

Let the tachyons go (We caught the comet by the tail!) and install us in the inside 
of CBH (in the Black Universe) in order to complete NeoMinkowskian 
pace-time with non-baryonic ( 0Gµν = ) bradyons (“as long as we have not eve-
rything, we have nothing”). The Whole Hole is the Whole Universe if we can 
express ourselves in this way. 

3.1. Boundary Conditions for Bradyons, Law of Hubble and 
Double Special Relativity (THESIS DSR) 

In order to introduce the second constant HR  in SR we have therefore to define 
a DSR (Doubly Special Relativity) with. Unlike standard DSR the second constant 

HR  is not usual Planck’s length but Hubble’s length HR  directly induced by 
GR with CC (if we cancel CC (0) the second horizon disappears HR R= →∞ ). 

Everything happens as if the bradyons ( ) ( )Hr t R v t c< − <  constitute a kind 
of inverted image (a kind of “Mirror Effect”) of tachyons ( ) ( )HR t R R t c> − >  
with STRICT inequalities in both cases. 

The Boundary Condition of coexistence of both Horizons ( ), Hc R  (with 
standard notations for space points 1v u v cβ= = = ) is as follows: 

 

 

10Minkowski himself (1908) considered that his theory was a cosmological theory of the Whole 
World (a trajectory becomes a WorldLine). 
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( ) ( ) ( )
1

H

r t v t
t

R c
β= = <                      (19) 

Inside the CBH the (radial) law of Hubble, coupling “large velocity-large dis-
tance ( r x= )”, must therefore govern the expanding of galactic space points of 
the cosmological fluid (at a fixed time): 

v c H rβ Λ= =                      (19 bis) 

This CONDITION OF RADIALITY11 (coupling “large velocity-inter-galactic 
distance”) is quite basic. There is no expansion for “short” (non-large) distance 
and then for Planck’s length. 

The problem is now that it is difficult to see how a MM (see Table 1 
2 2 2 2d d ds c t r= − , Mink-in) could be at the basis of such expanding kinematics 

(this is our THESIS). 
Remember that so far there is only one solution (12) with spacelike signature 

( )1,1,1,1−  and that we are looking for a coupled solution with timelike signa-
ture ( )1, 1, 1, 1+ − − − . 

Thanks to the “mirror effect” we have a guide with the acceleration Mα  (10, 
11). Indeed if we have tachyonic minimal Horizon HR  (coupled with maximal 
acceleration Mα ), we have now bradyonic minimal acceleration Mα  (coupled 
with maximal Horizon HR ). 

3.2. Accelerated Motion of Material Point and Lobachevskian  
Velocity Space (HYPOTHESIS SR) 

Pauli remarks that the Worldline of usual (standard) relativistic Uniformly Ac-
celerated Rectilinear Motion UARM in SR coincide with usual scale hyperbola 
(along Ox, 18). Indeed we have the following hyperbolic worldline UARM 
(Minkowski 1908) in inertial system K ( 0t = , 0v = , x R= ): 

4
2 2 2 2 2 2 2

2 2, 1c Rr c t x c t R
c
α

α
− = − = = =          (anti-18) 

In usual Minkowskian UARM ( R →∞ , 0α → ) α  represents a constant 

centrifugal (proper in K ′ ) acceleration 
( ) ( )d
d
t v t

t
γ

α =  from which Minkows-

ki deduced in 1908 by a double integration (18 bis). Minkowski’s proper time of 
accelerated particle interests us particularly because it is directly connected with 

( )22 2d dc t x t−  (
2 2

21

tv
t

c

α

α
=

+

 with 0t τ= = ): 

( ) ( )
2

2
2d d 1 d 1

v t
t t t

c
τ β= − = −                 (20) 

 

 

11This is the basic concept of Radial: Expansion only applies on a very large scale (distance and ve-
locity). In fact this paper is devoted to translations (dark energy). The next will be devoted to rota-

tion (dark matter, see conclusion). The one-third factor 1
3

 (
3

c HΛ

Λ
= ) are there to remind us 

that we are in space 3D (see also initial ratio, 2 bis, electron and density-pressure for EM radiation 5). 
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Explicitly we have 
( )2 2 2

1
2 20

1 d ln 1 sinh
t v t c t c tt t

c cc c
α α ατ

α α
−

 
 = − = + + =
 
 

∫ . 

And then a hyperbolic sinus written with hyperbolic (index h for hyperbolic) 

velocity hw
c
ατ

= 12: 

1sinh sinhc t ct
c c
α αττ

α α
−= ⇒ =                (21) 

Using for hyperbola (anti-18) the hyperbolic polar coordinates ( ), hR w  (Va-
ricak, Borel): 

cosh , sinhh h
Rx R w t w
c

= =                   (21) 

d d sinh , d d coshh h h h
Rx R w w t w w
c

⇒ = =          (21-bis) 

we deduce by differentiation (we refer 18 for Hyperboles, 19 for inequalities, 20 
for metric): 

( )22 2 2 2 2d d d d hs c t x t R w= − =              (20-MM?) 

which corresponds to proper time (20) and “looks like” to Mink-in signature 
( )1, 1, 1, 1+ − − − . 

We specify that 20-MM is not a true MM because either “ hw  is variable with 
fixed R (one hyperbole)” or “R is variable with fixed hw  (a continuum set of 
hyperboles x R≤ )”. 

This is the reason why Rindler () introduces a NON-MM for his cosmological 
model based on (UARM): 

( ) ( )22 2 2d d dhs R w t R t= −              (20-Rindler) 

There is no singular hyperbole HR  (18)13 ( d 0R ≠ ). 
Already in 1913, M. Born shows that the basic equations of UARM x R≥  

are also that of Rigid Motion x R≤  of the axis Ox (Or) of Rigid motion of the 
“rod” OR x R≤  (a kind of Einstein’s successive boost). 

With Rigid Motion (a continuum set of hyperboles x R≤ ) we are very close 
to concept of metric (see demonstration, 3-3). 

Let us now return to the motion of accelerated material point and focus on his 
hyperbolic velocity which is defined by the inverse hyperbolic tangent (see 21) 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1d
tanh tanh

d
1

ln ln
1

h h

h h

x t
t w t w t t

t
t

w t k t
t

β β

β
β

−= = ⇒ =

+
⇒ = =

−

        (22) 

We have then a centrifugal proper acceleration which is derivative, with re-
spect to proper time, of hyperbolic velocity: 

 

 

12Or Rapidity of Robb: 1 2w w w+ = . 
13Rindler introduces, on the same basis (UARM) induces also a Black Hole but not a CBH. 
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( )d
d

hc w t
α

τ
=                         (23) 

We have therefore here an accelerated Global (hyperbolic) motion which 
seems to correspond to (21-MM)? This kinematic UARM without dynamic 
(gravitation) is very strange (see Pauli, 3-3-3). 

Let us now take a look to the geometry underlying UARM. 
It is well known that in pseudoEuclidean SR, the space itself is Euclidean 

whilst the “space of velocity” is non-Euclidean, in Lobachevskian meaning (rela-
tivistic addition of velocities) 

More precisely according to Borel [9] global “space of speed” is characterized 

by a negative curvature 2

1
c

−  given by the inverse of square of light velocity 

(velocity of light being the radius of curvature. 
It is then useful to develop the geometrical aspect of the hypothesis. In Bel-

trami’s disc model for Hyperbolic geometry we introduce Cayley-Klein’s hyper-
bolic DISTANCE hd  induced from the CROSS-RATIO formula is given by 
[10]: 

1tanhh
H

dd
d

−=                         (24) 

where d is usual distance defined smaller than Hd d<  the radius Horizon. If we 
apply this definition ( ,hd d  and Hd ) to “space of velocity” ( hw , v and c) we re-
discover (22): 

1 1tanh ln
1hcw c c ββ

β
− +

= =
−

             (22 bis) 

We underline that in usual SR the velocity space is a true complete Hyperbolic 
space (with distance introducing by cross ratio) in strong sense of the term 
non-Euclidean (Penrose [11]). 

This is not the case of the pseudo-hyperbolic spaces defined in Friedman’s 
equation with 1K = −  (where scale factor is given by a sinh (20) and not a tanh 
(24) which defines a Non-Euclidean Distance (24) (see 3-3-2) (Note in 21 bis 
that the time and the space are respectively given by a sinh and a cosh). 

3.3. DEMONSTRATION: From SR without  
Gravitation to Gravitational DSR 

The demonstration must be done in three stages (Gravitation and Geometry): 
1) Hubble constant with its corresponding global Gravitation field ( 3-3-1). 
2) Law of Hubble itself with its corresponding global Geometry ( 3-3-2). 
3) Finite Time from negative Lobatchevskian curvature: tanh versus sinh (

3-3-3). 

3.3.1. NeoEinsteinian Principle of GLOBAL Equivalence between  
Gravitational Field and Minimal Acceleration 

Let us introduce now NeoMinkowskian singular bradyonic hyperbole (18) in GR 
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with CC or, in other words, the second invariant (maximal) space HR  (or mi-
nimal centrifugal acceleration Mα ) in DSR: 

4
2 2 2 2 2 2 2

2 2, 1H M
H

M

Rcr c t x c t R
c
α

α
− = − = = =          (18-RH) 

Let’s look closely at the limit (19) Hr R< . In truth we have first HR R< . (an-
ti-18, 18-RH). Given that we have (Rindler 20, [12]) r R≤  we deduce finally 
(19) Hr R< . 

We have therefore now a true metric (Born’s rigid motion becomes an ex-
panding motion of space): 

2 2 2 2 2 2d d d dH hs c t x R w= − =             (20 G-MM) 

with hyperbolic coordinate ( ),H hR w  on the basis ( d 0HR = ). In tensorial form 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

µνη+

 
 − =
 −
 

− 

 (20 G-MM). 

This MM (17-in) corresponds to a global gravitation field.14 (G-DSR) with 
Hubble Horizon: 

( )
2

d 2
d
h M H

H

w t GMH
c cR
α

τ Λ= = =            (23-G-DSR) 

The answer to first Pauli’s question (“To which global gravitational field in 
GR does this UARM corresponds15? [13])” is then (23) and therefore (33). We 
answer with a global (cosmological) NeoEinsteinian principle of equivalence 
(23) between Milgrom’s minimal centrifugal acceleration ( Mα α> ) and ex-
panding gravitation field within the CBH (Universe). 

Part one of the thesis ( 3-3-1) is thus demonstrated: we have Hubble constant 
but we do not yet have Hubble law itself (19bis) ( 3-3-2). We are at this stage 
close (except Planck’s mass) to cosmology of flat Universe [5]. 

3.3.2. CC Induces in G-DSR a Global Negative Lobachevskian  
Curvature of Space (Escher) 

Until now our NeoMinkowskian Universe seems to be a Flat Universe, in the 
meaning of Tatum [5] because LOCAL Einsteinian curvature tensor is zero 
( 0Gµν = ). There is no contradiction because we will prove now that there is a 
GLOBAL curvature for Euclidean 3D space (Penrose). 

After the G of Gravitation let us now deal the G of Geometry. What about the 
geometry of space 3D itself in G-DSR? 

Let us apply formula of Cayley-Klein’s hyperbolic distance (24), respectively 
with ( ,hs r  and HR ), which can be considered here as the singular RADIUS OF 

 

 

14We thus ended the forced cancellation of the gravitational NeoMinkowskian density (the putsch, 
note 1). We follow the same path as Unruh ([8]: Behind Hawking’s local radiation there is a kine-
matic of uniform HYPERBOLIC acceleration. We transform therefore Unruh “local” effects into 
global (cosmological) effects (we change also the sense—and the meaning—of the emission). 
15Historically Pauli did not find this field because he was using the GR WITHOUT CC! 
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ESCHER DISC (or Sphere): 

1
1

1tanh ln ln
11

H
h H H H H h

H

H

r
Rrs R R R R w
rR

R

β
β

−

+
+

= = = =
−−

      (25) 

The thesis, the (global) law of Hubble (19-19 bis) 

H

rc c H r
R

β Λ= =                 (25-G-DSR) 

is then demonstrated (large distance-large velocity)! The GLOBAL (negative) 

curvature ( 2

1
3HR

− Λ
= − ) of the Whole Universe (3D) is then given by the CC itself 

(this is the end for the putsch, note 1). 
THIS IS AN EXTRAORDINARY RESULT: In G-DSR it is not only the “ve-

locity space” (22 bis) but the “space itself” (25) that is Lobachevskian. 
We obtain a whole (Global) Lobatchevskian “distance” (a scale factor) with 

hyperbolic function of tanh (22 and 24) and not a scale factor defined with sinh 
(21 bis and Friedman’s model with 1K = −  (see Penrose [11]). There is no 
contradiction between the cancellation of the local curvature factor 0K =  in 
RW metric (note 5). 

Beltrami’s abstract disc is concretized by famous aesthetic hyperbolic Escher’s 
disc. The fact that the W(hole) Universe (with our observer) is inside a CBH is 
not tragic because first we are enlightened by CBR and then we fit in a harmo-
nious (in Penrose’s meaning) hyperbolic figure (disc) of Escher (Cayley-Klein’ s 
hyperbolic distance). Hyperbolic Universe is then compatible with radial ex-
panding (without end) of galaxies and with Perfect Cosmological Principle (a 
horizon of finite space is aligned on a horizon of finite time). 

While the tachyons move away as they escape (without end) from gravitation-
al field (25) the galaxies move away infinitely (hyperbolic velocity) as they ap-
proach (without end) the (hyperbolic) horizon ( 3-3-2) according to the law of 
Hubble (19-19 bis). 

Milgrom’s minimal acceleration [14] or Hubble’s constant are then effects of 
hyperbolic (negative) curvature of space 3D. 

By taking into account the CC (Einstein 1917) in GR (Einstein 1915) and 
therefore a minimal acceleration Mα  in equation of geodesic (Einstein 1915): 

d d d0 0 0
d d d

i j
ij

u u uu u
µ µ µ

µ

τ τ τ
+ Γ = + ≠ ⇔ ≠             (26) 

Exactly as in the flat universe [5], Christoffel ij
µΓ  cancel (with again disap-

pearance of i ju u  (see 0-MM) but a radial component of acceleration does not 
cancel: 

1
2d 0

d 3M
u cα
τ

Λ
≠ = =                  (26 bis) 

So geodesics represent inertial systems with Straight lines “in global curved 
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space” (or Hyperbolic Straight Lines). All our border relations are validated by 
hyperbolic global curvature (14, 14 bis, 7, 8, 12). 

We have now not only a (Radial) Kinematic UARM (DSR based on the Duo 
( ), Hc R , but also a double (Scalar) Dynamic Newton’s laws (G-DSR) (8, 13 and 
14): 

4

,
2G H M G NB M
cF M f m
G

α α= = =        (13 bis-14 bis) 

Both are hyperbolic invariant but the second (see 14, 1-4) between a mi-
cromass NBm  and macroacceleration Mα  is enigmatic. 

3.3.3. Hyperbolic Tangent versus Hyperbolic Sinus:  
The “Big Bang”, An Effect of (Negative) Curvature? 

We have to apply the same hyperbolic definition (24) for space ( ,hs r  and HR ), 
and time ( ,h tτ  and HT ) (contrast between sinh (21) and tanh (27) is obvious, 
see note 5): 

1
1

1tanh ln ln ,
11

H
h H H H h h h

H

H

t
Tt T T T w s c
tT

T

βτ τ
β

−

+
+

= = = = =
−−

    (27) 

The comobile (proper) time (in K’)16 hτ  in function of a parametric time t (in 
K). Parameter values of universal time in K are included between 0 and HT  
( 0 Ht T< < ) in bradyonic Universe (“whole hole”). 

THIS IS AN EXTRAORDINARY RESULT!: The finite time HT  (“Big Bang”) 
becomes an effect of the (negative) curvature of hyperbolic straight line of time 
(27). 

Physical comobile time hτ  (also valid for comobile distance h hs cτ= ) is ob-
viously INFINITE. 

Since then the effective expanding universe (with infinite hs  and infinite hτ ) 
is a Steady State of Hoyle with (see 2-3) Perfect Cosmological Principle (with 
constant density and CBR fluid defined at rest in K, see our deduction of the ob-
served Temperature 6). 

The (double) derivative (10) with respect to the comobile time τ  (represented 
here with a point): 

( ) ( ) ( ) ( )2, 0Bradyons Bradyonsk t H k t k t H k tΛ Λ= − =             (28) 

which is internal EE corresponding to basic external EE YP12 (4), (6-6 bis). 

 

 

16Pauli was intrigued by the notion of proper acceleration in proper system K' which follows the flu-
id (medium) at rest in K (in SR): In relativistic kinematics we will naturally describe by as “uniform-
ly accelerated” a motion for which in a system K' moving with the medium or particle is always of 
the same magnitude α . The system K' is a different one at each instant; for one and the same Gali-
lean system K the acceleration of such a motion is not constant in time [13]. In SR “The system K' is 
a different one at each instant” (successive K-K' Lorentz boost). Pauli considers then a single global 
(hole) system K' is a non-Galilean system and moves therefore to GR (without CC. which was not 
fashionable in his day, see note 16). According to Pauli, the proper time becomes then a COMOBILE 
time relative to (bradyonic) medium. 
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( e , eH Hk k Hτ τΛ Λ
Λ= = ). There is a “principle of correspondence” ta-

chyons-bradyons (taking care of the correspondence of times): 

( ) ( ) ( ) ( ) ( ),H HR t R k t R t R k t ck t↔ ↔ =
          (28 bis) 

The “fatal” objection of the note 3 is therefore refuted: Our basic equation 
YP12(4) is perfectly relativistic (in GR and in DSR meaning as well17). 

In G-DSR Doppler Galactic Redshift formula R E

E

z λ λλ
λ λ

−∆
= = ) with fixed 

time (Reception and Emission), s R Et t t= −  is given by hyperbolic factor hk  
which coincide with radial (note 10) or longitudinal Doppler factor of Bondi 
[15] Bk : 

( )
( )

( )2 3 4

2
2

2

11 e
1

1 11
2 2

11
2

hR wR
B

E E

r t
k z

r t

O

r rH H
c c

λ β
λ β

β β β β

Λ Λ

+
= + = = = =

−

+ + + +

+ + +





              (29) 

We notice a quadruple contrast. 
In contrast with radial Doppler formula in SR the velocity β  is the velocity 

of a space-point. 
In contract with the other Redshift z formulas in GR, velocity β  is strictly 

infra-luminous (<1). 
In contrast with de Sitter, where there is not singular velocity for 

space-points) in G-DSR there is a double singular velocity for light wave (Pho-
ton) and for gravific wave (Graviton), as well. 

In contrast with de Sitter, the expanding (29) G-DSR is only valid for large 
distances coupled with large velocities18. 

4. Intermediate Conclusions: Lepton Electron Is Not a Baryon 

Our NeoMinkowskian non-baryonic solution of GR with CC defines a Universe 
characterized by a (very large) finite Hyperbolic Hubble Horizon HR  at its 
(singular) origin. Hyperbolic Universe is incompatible with inflation but com-
patible with the most undeniable observations: Galactic expansion and emission 
of non-galactic black radiation (CBR) a (very long) finite time HR  ago. 

 

 

17Among the two speeds ( ),bradyon tachyonc ckβ  only the first is physical (<c), the second (>c) is a purely 

mathematical construction (a phase velocity). According to de Broglie ( 5-4), the supra-luminous 

velocity of electron (velocity of phase 
2c

v
) is coupled with its infra-luminous (velocity of group 

v c< ) of electron. Can we replace the galactic point (Macro-force, 13) with an electron (micro-force 
14)? 
18Both elongation of lengths and elongation of wavelengths are in the same boat exactly as in of 
Poincaré’s Elongated Light Ellipsoids By applying the basic condition large velocity v c≈ -large dis-
tance Hr R≈  they acquire a cosmic scope. According to Poincaré elongation (expansion) with a 

longitudinal factor k is a consequence of Lorentz’ contraction of factor 1γ − . Elongated Light Ellip-
soids will be not developed here (see annex 2). 
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Our paper could stop here.  
The situation is somewhat disappointing because at this stage, we are not pro-

viding any new (numerical) information on the emission of the basic CBR. 
The physicist must always be in search of unity: On one side we have Neo-

Minkowskian Vacuum with Gravitational Waves ( ), , , ,H Mc G R αΛ  whilst in 
the other side we have usual EM Minkowskian Vacuum (withOUT Gravitational 
Waves) with usual EM constants (c, permittivity ε , permeability µ , imped-
ance Ω , WITHOUT CHARGE e). Both sets seem irremediably disjoint. 

The usual series of “ Gc ” 
2

2
c
G

, 
4

2
c
G

, 
5

2
c
G

 respectively linear density, cos-

mological force (
4

2G
cF
G

= , 13), power of vacuum...(see L. Kostro) is not a real 

synthesis (only c is in common, see 30). 
Is there a missing element that is neither on one side (Macro) nor the other 

side (micro)? 
ANSWER: the charge e. And therefore the concrete electron with charge e, 

mass em  and “classical” radius er  which is absent in SR and (until now) in 
G-DSR as well. 

According to Einstein’s famous quotation: “electron (e, em , er ) is a stranger 
in classical electrodynamics”(Minkowskian Vacuum is without charge). 

Until now NeoMinkowskian model is without non-baryonic light emitter. 
Without the missing link, Poincaré’s gravific electron (pressure of ether, 5), 

we cannot, at this stage make, any numerical evaluation or prediction. 

4.1. A (Stable) “Cosmological” Electron to Short Circuit the  
(Unstable) Primitive Atom? 

Let’s test the candidate electron [16] in our equations NB em m=  (14, 14 bis): 

22 H
G e M e

H

Mf m m G
R

α= =                 (14 ter) 

This electro-dynamics (hyperbolic) force involves a connection between Ma-
cro ( HM ) and micromass em . It defines a “Cosmological (Global) Electron” 
which could answer to second question of Pauli (see first question, 3-3-1). “To 
which global EM field does ELECTRON in UARM corresponds?”. 

Pauli’s answer (p 93): “Hyperbolic motion thus constitutes a special case for 
which there is no formation of a wave zone nor any corresponding radiation”. 
Pauli find a ZERO magnetic field (and then no radiation19) and hastens to speci-
fy that locally (parabolic) the electron emitted a radiation (see note 16 and also 
numerical annex). 

In NeoMinkowskian limit of GR with CC, we can suspect a link between this 

 

 

19Einstein’s Boost is based in SR on infinitely slow acceleration ( 0Mα → ), Einstein 1905 Pauli’s de-

duction is logical because UARM consists in a series of infinitely slow boost globally without emis-
sion). In G-DSR we have a Big (cosmological) Boost with slow acceleration ( Mα ) globally with 

emission (CBR). We remark that galactic Milgrom’s minimal acceleration is here moved to cosmo-
logical radically relativistic (DSR and GR) framework. 
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cosmological electron and cosmological radiation? The paper could then not 
stop here. 

Note for this intermediate conclusions that Lorentz’s electron has remained 
perfectly unperturbed (stable and elementary) for more than a century. Moreo-
ver Poincaré’s discovers an enormous (negative) pressure ( 5-3) that ensures 
stability of the free electron in 1905. 

Our future integrated (stable) electron is the ideal candidate to Short-Circuit 
(unstable) Planck’s particle (Lemaître’s primitive atom)? 

Reset then by using following writing of MM: 

2 2 22d d dH
tachyon

H

GMs t r
R

= −  (10)   
2

2 2 2d d delectron
e e

es t r
m r

⇒ = −    (30) 

We could then proceed to an original electro-gravific synthesis under the 
presidency of c (in other word a new non-usual approach of Einstein’s unitary 
field): 

2
2 2 H

H e e

GM ec
R m r

= =                   (30 bis) 

4.2. The First and the Second Density 

This enigmatic force Gf  of synthesis will have to be placed, next to 
4

2G
cF F
G Λ= =  (13) in the framework of usual electrostatic force ef  coupled 

with (electro-)gravitational force Gef : 

4

2G
cF
G

=  (1)    
2

2e
e

ef
r

=  (2)    
2

2
e

Ge
e

Gm
f

r
=  (3)        (31) 

with the ratio of forces
2

42
2 4.1604 10e

Ge
Ge e

f e
f Gm

κ= = ≈ ×  (see annex, numerical 

values Gauss-cgs) which becomes a basic universal constant. We have the fol-
lowing trio with: 

Ge Ge
G e GeF f fκ κ← →                     (32) 

An electric force well framed by two gravific forces 
2 G e

Ge
e Ge

F f
f f

κ= = . Most 

physicists judge that the third force is ridiculous small compared to the other 
two (we note that Gf  is very close to Gef  (see annex 1)). 

This balance of forces change completely if we consider the corresponding 

balance of densities (pressures) ρΛ  (1 bis) and 
2

4
e

Ge
e

Gm
w

r


 (the ratio 

e e
Ge

Ge Ge

w f
w f

κ = =  does not change) 

Ge
e Gew wκ ρ Ω

Λ← ←                 (anti-32) 

The ratio Gew
ρΛ

 (see 12, the “unique” solution) being directly defined with 
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2

3 Ge

G

f
f

 
 
 

 of the order of 55 10−Ω ×  (49 and 74, see numerical annex 1). 

How can we justify the entry into scene of electron with this second density 
(pressure) in our NeoMinkowskian Universe? 

At the beginning of 3 we claimed that “we caught the comet (devil) by the 
tail (tachyons)”. We have now reached the head with bradyons: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

VACUUMTµν µνρ η ρ−
Λ Λ

− 
 
 = =
 
 
 

 (tachyons) 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

µνη+

 
 − =
 −
 

− 

 (bradyons)              (33) 

We draw attention to the fact that there is “tachyonic” FIRST density (dark 
energy) but until now no “bradyonic” (electro-photonic) SECOND density (see 
57 bis). 

There is no multiplier coefficient for timelike metric (Mink-in) unlike (12) for 
spacelike metric (1-1 bis, the Unique solution whatever the velocity). However 
for bradyons (and photons) inside the (W)Hole Universe we have another me-
tric and why not another perfect fluid EM tensor, another density, another 
pressure with EM

emT pµν µνη= ? 
In other words: would the metric (33-bradyons) be hidden in Perfect Neo-

Minkowskian fluid? 

5. The Second Density: From Electronic Density  
to Density of Gravific Waves 

Cosmologists distinguish three different types of Fluid which corresponds to 
three periods of the universe: 1) the dust or inconsistent matter ( 0p = ), 2) the  

dark energy 0p ρ+ =  (anti-1) and 3) the so-called “Radiation” 1
3em emp w=  

(35) (generally reported, in cosmological literature to a “radiative period of Un-
iverse”)20. 

In cosmological literature the fluid (37) is always called “Fluid of Radiation” 
(always written in Riemannian metric gµν ). 

2

1 4 1
3 3 3

EM
em em em em

u u
p w T w w g

c
µ ν

µν µν= ⇒ = −           (34) 

Nothing to do (at first sight) with electron. 

 

 

20There are other fluids such as the ultra-relativistic electronic gas which seem not taken in consid-
eration by cosmologists. So far no trace of the electron (charge e and mass em ) in cosmological 

usual representations. 
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5.1. Hidden Electron and Hidden Graviton in  
NeoMinkowskian Perfect Fluid “Radiation” 

We absolutely need to introduce the light (emission of CBR in 0t = ) in Neo-
Minkowskian Fluid: 

2

4 1
3 3

EM
em em

u u
T w w

c
µ ν

µν µνη= −                   (35) 

It is generally claimed that, if we replace gµν µνη=  in (34) from a Riemanian 
Fluid to a NeoMinkowskian Fluid the gravitation (and then gravific waves) 
would be eliminated (see the putsch note 1). It is obviously wrong because 
NeoMinkowskian limit imposes only a LIGHTLIKE 4-vector. The latter can 
correspond to a photon or could correspond to a (hypothetical) graviton (like 
light) as well. 

In other words, for a classical light wave or a (hypothetical) “classical gravific 
wave” as well: 

( ) ( ), , Ge
Ph ph Ph ph Ge Ge Ge Ge

ph Ge

EE ac c
P P a

λ ν λ ν λ ν λ ν= = = = = =




 (35-36) 

(a being dimensionally an ACTION). We are therefore perfectly entitled to write 
next to “Radiation” Fluid (35) a “Gravitation” Fluid (36): 

2

4 1 1
3 3 3

GW
Ge Ge Ge Ge

u u
T w w p w

c
µ ν

µν µνη= − ⇒ =            (36) 

where the index GW refers to Poincaré’s Gravitational Waves and index Ge re-
fers to Gravific-electron because there is a hidden electron in “Radiation” fluid 
of cosmologists ( 5-1). 

Photon and Graviton are compatible with 0Gµν =  (without rest mass) whilst 

Electron 1
3e ep w<  (with leptonic rest mass) seems incompatible with 0Gµν = . 

The relationship (36) GWTµν  in MM (33) is much more restrictive than it 
seemed at first glance. 

We will prove that Poincaré’s GW not only COULD exist but that they MUST 
exist (determined action a and Geλ ). 

The difficulty being here more logical than mathematical, we resume the situ-
ation with the following Table 2 (tachyons are gone): 

 
Table 2. Photon, electron and graviton. 

New trio (“GraPhoTron”) ON or IN singularity 

(spacelike) ( v vTµ µρη= , 0vGµ = ) 

LIGHTLIKE (PHOTON or GRAVITON) 1
3em emp w= , 1

3Ge Gep w=  

 2 2 2 0Ph PhE P c− =  and Hypothetical 2 2 2 0Ge GeE P c− =  

timelike ELECTRON 1
3e ep w< , 2 2 2 2 2 2c c cγ γ β− =  
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5.1.1. Hidden Electron in (Cosmological) Fluid “Radiation” 
For the first time we take now explicitly in consideration TIMELIKE 4-vectorial 
writing for velocities in the so called Radiation fluid (38). 

Let us try to transpose the notations of the previous Table 2 ( ) ( ),R t r t

  us-
ing those of radial timelike 4-vector velocity that can be reduced ( 0 1,u u ) to tem-
poral 0u  and spatial component 1u  (we stay at 3D because we have 

3em emw p= ). 
Given that it is impossible to put directly the velocity of light c in such a time-

like 4-vector, the radical singularity of our basic border “ v c= ” is then structu-
rally inscribed in temporal component 0u c=  for an “electronic point” (at rest) 

1 0u = . 
There is then a hidden electron in Cosmological tensor of “Radiation” (a 

cosmological electron?). Let us see this crucial point in details: 

40 0 0 1 0 0 00 0 0
3

0 0 0 0 1 0 00 0 0 0
0 0 0 0 0 1 00 0 0 0
0 0 0 0 0 0 10 0 0 0

em em

emEM
em

em

em

w w
p

T p
p

p

µν

          −   = = −    −      −      

 (37) 

1) The first tensor (left member) is usual EM tensor of radiation with null 

trace 1
3em emp w= . This is the reason why the perfect fluid (38) is called “Radia-

tion” in cosmological literature. 
2) The second tensor looks like that of an “electron” at rest 1 0u =  which 

would hide behind its density (see Poincaré, 5-2). 
3) The third tensor (of pressure) with timelike MM is exactly the one we were 

looking (33) in Gravitational G-DSR ( 3-3, 23-G and 33) with a (possible) way 
to the determination of the missing coefficient (or the second density). 

This triple statement is not very original because it corresponds exactly to that 
of Poincaré in 1905 (“La dynamique de l’électron”, 5-2). So far we have, at this 
stage an abstract electronic point but not yet a concrete electron ( ), ,e ee m r . 

Let us remark that we can put in (35 or 37) the pressure to the left: 

2

4
3

EM
em em

u u
T p w

c
µ ν

µν µνη+ =                (37 bis) 

In details: 

0 0 0
41 1 0 0 0 0 0 00 0 0 33 0 1 0 0 0 0 0 01 0 0 1 00 0 0 0 0 0 03

0 0 0 11 0 0 0 00 0 0
3

em

emem

em
em

em

w

ww

p
w

w

 
           −   + =     −      −       
 

 (37 bis) 

EM_RADIATION +?GRAVIFIC? (positive) PRESSURE-⇒ ?FREE ELECTRON? 

Given that the putsch was canceled, we have also from (36) a hidden electron 
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in Gravitation Field: 

2

4
3

GW
Ge Ge

u u
T p w

c
µ ν

µν µνη+ =               (37 TER) 

This analysis shows that in “Radiation” tensor of Cosmologists there is not 
only a hidden electron but also a connection of this electron with gravific waves. 

5.1.2. Hidden Electron in (Cosmological) Black Radiation 
The concrete radiation in our cosmological problematic is black radiation in 
CBR. Let us remark, in this respect, that the situation of concrete electron 
( ), ,e ee m r  is exactly the same. All formulas of Planck’s black body are with 
Planck’s constant h and without ( ), ,e ee m r . 

The concrete electron ( ), ,e ee m r  is hidden (behind or below h) while the 
black radiation is emitted by electronic oscillators21. 

Everything happens as if concrete electron is excluded both in the fluid and in 
the black body (for example in the formula of Stephan-Boltzmann, see 6 and 
annex 1). 

Let us finally note that according cosmological usual “Isentropic Expansion of 
Spherical CBR” (see basic Equation (1)-anti(1)): 

3 3

1d d d 0,
3

4 1 4d d 0
3 3 3

em

em em

U w V T S

w R w R

+ = =

   π + π =   
   

               (38) 

the variable density emw  depends on variable Radius (in 4

1
R

) connected with 

variable Temperature T (in degrees Kelvin K) with formula of Stephan-Boltzmann 
(see annex 1): 

4
em Stephanw Tσ=                         39) 

(see annex 1, 80) 

4
4 4

1 1
emw T RT cte

R R
⇒ ⇒ =               (40) 

Remember that we have a fixed hyperbolic horizon HR  (directly induced by 

CC, 
2

4

3
2

H

H

MG
R

ρΛ =
π

) which could correspond to a new basic constant Temperature  

KT  of our Black Universe ( 6) do not confuse with Time of Hubble HT ). Eve-
rything happens as if Radiation Fluid and Black Radiation were the two sides of 
the same coin (electronic). 

5.2. Synthesis between Poincaré’s Gravific Electron  
and Poincaré’s Gravific Waves 

We have to find a new synthesis for our Trio: ELECTRON-PHOTON 

 

 

21Given that non-baryonic ( 0Gµν = ) Redshift is based on light emission by galactic... baryons, we 
are missing non-baryonic emitters. Leptonic electron (a renowned emitter!) could be a good candi-
date 3-6 and 4). 
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(L-Wave)-GRAVITON (G-Wave). In order to do that we need to start a con-
crete electron ( ), ,e ee m r . 

5.2.1. Poincaré’s Historical Induction of the Mass  
of Electron with Gravific Pressure 

In 1905 in his basic paper on “La Dynamique de l’Electron, Poincaré is looking 
for a determination of mass em  electron from its EM emitted field (July, 6 
Lorentz’ Contraction, see note 20). He discovers that a purely EM induction of 
the mass is not possible because we have to take into account a strange Non-EM 
pressure (probably) of gravitational origin [4]. 

From Energy-Impusion tensor EMTµν  Poincaré notes (with LT) that energy 
and impulsion of a purely EM Electron are not transformed ( 2

0E mc= ) as the 
components of a timelike 4-vector: it appears parasitic factors 1/3, 4/3: 

Gravific Pressure2
0 0 0 0

1 41 , ,
3 3e e eE E P E E E P Eγ β γβ γ γβ = + = → = = 

 
  (41) 

Poincaré then adds to the EM tensor a Non-EM tensor in such a way that 
these parasitic thirds are eliminated (41). Mathematically it means that the di-
agonal terms of new tensor ( -EM Non EMT Tµν µν+ ) are compensated, except the first 

one (00) 
2

2
2

1 1
8 8em l

ew E
r

 = =  π π  
 (Electric field lE ) in the system of electron 

at rest (
2 2

8
l

em
E H

w
+

=
π

) with 0H = , see 45 and Landau 31-5, p106, [17]). 

Usually 4-tensor Energy-Impulsion can be reduced to a 4-vector Ener-
gy-Impulsion only in the absence of a charge (Minkowskian Vacuum is without 
charge, see introduction). Thanks to Poincaré’s Gravific Pressure, 4-tensor 
Energy-Impulsion can be reduced to a 4-vector Energy-Impulsion also in pres-
ence of a (spherical) charge e (41). The basis idea is to define the electron ( ew ) 
from its field ( emw ): 

e emw w=                           (42) 

This internal density ew  (40) in the electron (according to Poincaré) is expli-
citly written by Langevin (in 1913) on the basis of the model of surface charge 
distribution in the spherical radius er  of Poincaré’s electron or “hole in ether”22  

(in details we have after integration 
2

34 1
3 3 2e e

e

er w
r

π = ) (1913): 

2

4

1
8e

e

ew
r

=
π

                         (43) 

Poincaré does not write in 1905 any formula for its internal density (or pres-
sure) but specifies (in the sentence where he claims gravitational origin) that the 
density is proportional to the “fourth power of experimental mass em  of elec-

 

 

22Such a name “classical radius of electron” is inappropriate in Poincaré’s theory because he desig-
nates his electron as a “Hole in the ether”. In modern language this is similar to that of quantum 
theory of field (QED of Dirac-Feynman): Poincaré’s electron would be “singularity in the field”. 
From which cosmological field the mass of electron is inducted? We are waiting for the answer from 
QED. We have a WED answer ( 5-6). 
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tron”. With basic relation (32 bis) we find indeed the proportionality with 4
em  

announced by Poincaré: 
4 82

3
2 6 3

1 1 8
8 8

e e
e e e e e

e e

m c mer r w m w r
m c e r

= = ⇒ = = ⇒ = π
π π

     (44) 

The mass em  of free electron is therefore entirely induced from cubic (in 
volume) density of mass ew  by taking into account the surface distribution of 
the charge. This classical attempt to integrate the concrete electron ( ), ,e er e m  
in the framework of SR was historically not followed because such a gravific eth-
er is obviously unthinkable from the dominant Einsteinian point of view (1905, 
June, removal of ether). The few physicists who became interested (Langevin, 
von Laue, Born, Fermi) in Poincaré’s supplementary Potential (overthrowed by 
qnantum theory), interpreted as a purely AD HOC anti-electrostatic pressure 
without any (Wave) ElectroDynamics perspective underlying Poincaré’s conti-
nuous approach. 

According to Poincaré the main physical argument for the gravitational origin 
of his pressure is that it must be attractive (anti-electrostatic). With the same 
argument being that, in a rather enigmatic way, that his gravific pressure must 
be negative (nothing to do here with 0p ρ+ = ). 

In scientific literature about Poincaré’s pressure (Langevin, von Laue, 
Fermi ...) the EM factor 1/3 between emw  and emp  is obviously NOT extended 
(except Born see below) between gravific ep  and gravific ew . 

5.2.2. Poincaré’s Negative Pressure and NeoMinkowskian Perfect Fluid 
Poincaré’s historical deduction ( 6 Lorentz contraction, [4]) has apparently 
nothing to do with equation of Perfect fluid (formulated apparently by von Laue 
or Born ten years after 1905). And therefore with (35 bis-36 bis). Let us try to 
extract, with the perfect fluid, the deepest root of Poincaré reasoning: the role of 
NEGATIVE pressure in the addition of two basic tensors (EM + Non-EM) (we 
do a reconstitution as in a judicial investigation). 

Poincaré wonders: “Which tensor should I add to the first in order to remove 
the diagonal terms in the third”? (except the first one (00), 42): 

0 0 0
1 ? 0 0 0 ? 0 0 00 0 0
3 0 ? 0 0 0 0 0 0

1 0 0 ? 0 0 0 0 00 0 0
3 0 0 0 ? 0 0 0 010 0 0

3

em

em emem

em

emem

em

em

w

w ww
p

pw
p

w

 
 

    
    
   + = 
           

  
 

 (45) 

M (The first is classical EM with zero trace). Poincaré’s mathematical answer 
would be logically: 

1 0 0 0
1 0 03

0 1 03
0 0 13
0 0 0 3

em

em em

em em

em em

w
p w

p w
p w

 
 
 = −
 = − 

= − 
 

          (46) 
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and therefore mathematically the gravific pressure indeed must be negative 
1
3 ep w= −  because it is then NOT an EM pressure 1

3 ep w= +  (non zero trace 

4
3 ew ). Physically his gravific pressure is anti-electrostatic repulsion. 

Let us develop the addition (EM + Non-EM) (with 45): 

10 0 0 0 0 0
3

1 10 0 0 0 0 03 3
1 10 0 0 0 0 03 3

1 10 0 0 0 0 03 3
4 0 0 0
3

0 0 0 0
0 0 0 0
0 0 0 0

em em

em
em

em
em

em
em

em

w w

w w

w w

w w

w

          −     +     −         −    
 
 
 

=  
 
  
 

  (47) 

This is exactly the perfect fluid (39) with an electron at rest ( 5-1). 

EM_RADIATION + GRAVIFIC NEGATIVE PRESSURE-⇒  FREE ELECTRON? 

(see 37 bis) Therefore Poincaré’s historical (long) deduction is the same as our 
deduction gµν µνη=  from Riemanian Fluid to NeoMinkowskian Fluid 
(35-36-37). 

There is however a CRUCIAL CONTRAST because (35-36-37) is formulated 
with MM: 

2

4

1 0 0 0
0 1 0 01 1
0 0 1 03 8
0 0 0 1

e
e

ep
rµνη

 
 − =
 −π
 

− 

                (48) 

and therefore the pressure is no longer negative! 
Poincaré’s negative gravific pressure becomes in NeoMinkowskian Fluid a 

positive pressure with MM (see 37bis and 37ter). 
Nothing prevents then to affirm (dixit Born) that everything returns in a 

purely EM order with 1
3e ep w= +  aligned on radiation 1

3em emp w= ! 

Equation (35-36-37) exerts a huge constraint that did not exist in Poincaré’s 
historical calculation. The gravitational origin of Poincaré’s pressure seems to  
have evaporated but the basic relationship of purely EM fluid (Born) is contra-

dictory because we should have 1
3e ep w<  for any electron (see 5-2-4). 

The situation seems hopeless so we must ask questions (we propose the three 
following questions). 
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5.2.3. Did Poincaré (Langevin) Choose the Right Density? 
Did Poincaré (Langevin) choose the right density? In other words: Is the coeffi-
cient (density ew ) considered the right one in (33)? 

The missing link (see 33) density of the anti-electrostatic force is very huge 108 
g/cm3 (stability of elementar electron) and not very credible in the role of density 
of radiation, Reported to black radiation of CBR this first attempt involves 

e CBRw w=  (see 40, the density involves a temperature) we obtain about 1015 K! 
At this stage we have not discovered yet the missing coefficient. 
Moreover Langevin-Poincaré’s density (35-10) is connected with gravitational 

theory but the constant G is hidden (in 48). 
Constant G is however NOT hidden in the third formula of gravific density. 
Remember ( 4) that there are three densities that we can report (logically) to 

Feinberg’s trio (tachyon, electron, photon (+graviton):  
4

8
c
G

ρ ρΛ
Λ

= =
π

 (1) 

2

4

1
8e

e

ew
r

=
π

 (2) 

2

48
e e

Ge Photon
e

m wGw w
r κ

= = =
π

 (3)                 (49) 

1) The first tachyonic density is the density of dark Energy (CC). 
2) The second density is internal mass density of electron (Poincaré’s formula, 

44). 
3) The third enigmatic (Ge) Gravifico-electronic (very tiny) density (40) with 

very weak gravitational long range force (in contrast with the first, huge gravita-
tional long range force). 

The ratio e e
Ge

Ge Ge

w f
w f

κ = =  does not change. 

This third density could be reported (logically) to Photon or Graviton, Radia-
tion or Gravitation. The question is: a density of what? (this is not a density of 
mass in electron, see 44). 

It can only be a density of light waves or density of gravific waves. 

5.2.4. Can an Electron Moving at the Speed of Light Turn into ... Photon? 

Let us go back to Born’s deadlock. Such an alignment of electron 1
3e ep w=  on 

photon 1
3em emp w=  is impossible. Indeed if we follow the equation of fluid of 

radiation (35-37-38) (this is not the case of historical Poincaré’s demonstration) 
it is a real problem because we have now, from the symmetry underlying Neo-

Minkowskian fluid, 1
3e ep w=  while we should have 1

3e ep w< ! 

In Summary, with underlying symmetry in “radiation” fluid (35) that: in-

volves “ 1
3

p w= ” for photon and for electron as well. Consequently we have  
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“ E Pc= ” for electron (with non zero proper mass) and photon (with zero 
proper mass) as well! In other words, can an electron moving at the speed of 
light turn into ... photon? No! Ask the (almost) same question but otherwise. 

5.2.5. Does the “Perfect Ultra-Relativistic Electron” (“PURE”) Exist? 

For photonic gas we have rigorous relationship 1
3ph php w=  whilst for an Ul-

tra-Relativistic (hot) electronic gas we have an approximate relationship 
1
3e ep w≈ . “Ultra-relativistic” usually means that the proper energy (mass at 

rest) 2
0 0E m c=  of the electron becomes negligible (almost zero) compared to 

its kinetic energy 1γ  ). 

Perfect Ultra-Relativistic (“ v c= ”) Electron (PURE) with zero mass seems 
impossible because leptonic electron has a (proper) mass. The situation seems  

desperate because (35) leads inexorably to a contradiction between 1
3e ep w≈  

and the limit 1
3e ep w= . 

That is to say: Does the “PURE” exist? 
If limit electron ( v c= ) or Cosmological Electron does not exist, then the 

primitive atom exists. 
All the above is based on (35 and 35 bis)23. So let’s forget for a few moments 

(35) and let’s take a look on (36 and 36 bis). 
Remember that Poincaré never establishes any direct link between his 

GRAVIFIC waves (introduction) and his GRAVIFIC pressure on electron ( 6) 
[4]). 

5.3. From ELECTRON TO GRAVITON: Synthesis towards (Second) 
Density of Gravific Waves 

Let’s reverse the reasoning from (36) that defines the Graviton (or Gravific 
Wave) by assuming that there is (maybe) a link with “PUR” electron (Ge). 

If PURE exists then it defines a Gravific wave (lightlike Graviton, SEE pre-
vious Table 2 and [16]): 

( )2 2 2 0, , Ge
Ge Ge Ge G Ge Ge

Ge

EaE P c c
P a

λ ν λ ν− = = = =     (35-36) 

where ( ),Ge GeP E  are respectively impulsion and energy of “light” electron (the 
graviton) where the “Action” a remains to be determined (52). 

Let’s locate the problem at the level of basic relation (in NeoMinkowskian ap-
proach) for electron24: 

 

 

23Such a passage (from 35) to the limit, 1β →  ( v c→ ), 0 0m → , γ →∞ ) from a timelike 

4-vector ( )22 2 4 2 2 2 4 2 2
0 0 0 0m c m c E m cγ γ β− = =  to a lightlike 4-vector is obviously impossible (inde-

terminate (35). This PUR or light Electron ( v c= ) is an Horror (exactly as Einstein's LichtKomplex 
(1905) is a terror (see annex 2, historical epilogue). 
24It doesn’t exist such a relationship for baryons. Evidence: the quarks. 
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2 2 2 2

2
e

e
e Ge Gee

re c e c e c e cr
m c P c Em c

= = ⇒ = =              (50) 

The first Ge eP m c=  is an Horror (a “PURE” Horror) whilst the second 
2

Ge eE m c=  is a Wonder (curious discrimination!). 
Given that Poincaré’s concept of “Hole in ether” recalls de Broglie’s Diffrac-

tion of an electronic wave in “hole of a screen”, let us associate to Poincaré’s 
length er  a de Broglie’s wave ( ),Ge Geλ ν  [16]: 

22 2

2 2
Ge e

Ge Ge
Ge e

E m ce c e c
P m c e c e c

λ ν= = = =
            (51) 

that defines logically a wavelength and then a frequency and finally a “lightlike 
gravitational wave” Ge Ge cλ ν =  or a lightlike graviton Ge GeE P c=  (a radius is a 
length that becomes a wavelength and therefore a wavelength) 

( )
2

2
Ge Ge Ge

Ge

e cP E e c ν
λ

= =
                (52) 

where Impulsion GeP  Energy GeE  with Action a is now determined ( 2a e c=  
replaces  ). CQFD. 

Does the (Cosmological) “PURE” exist? The answer is: YES but it’s not the 
photon: it is the GRAVITON. 

The wavelength associated with the Graviton Geλ  is not the wavelength eλ  
(Compton) of a (quantum) electron: 

e e e
e

P E ν
λ

= =


                     (53) 

A GRAVITON is A PUR (WAVE v c= ) ELECTRON WHOSE THE 
WAVELENGTH IS Geλ . 

Frequency Geν  will be connected with angular velocity of Thomas 2T Geω ν= π  
see conclusions25. 

The limit electron does not give a photon but a graviton26. 
Concretely it means that gravific waves (1905, intro) are inseparable from a 

very special gravific density connected to Poincaré’s electron (1905, 6). 
The lightlike graviton is without proper mass. The mass of electron is in fact 

carried by the G-wave in (51). We suggest calling this mass em  (without proper 
mass 0Gµν = ) a “comobile mass” of graviton (without charge27) exactly like 
galactic fluid (see also comobile time, 3-5). 

In NeoMinkowskian G-DSR the “Wonder” 2
Ge eE m c=  and the “Horror” 

Ge eP m c=  will be on the same boat (end of the discrimination, 50). 
Let us specify also the ratio with wavelength of Compton and radius of Bohr 

(with fine structure constant): 

 

 

25See proportionality Energy-Frequency of LichtKomplex of the young Einstein in annex 2. 
26Given that RADIAL Kinematics corresponds in this paper, to SCALAR Dynamics, Graviton might 
have something to do with SCALAR Boson (Englert, ULB). 
27Charge disappears in a pure coefficient of proportionality 2e c  (see 5-4). 
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2 2

2 2,e Bohr e

Ge Ge Ge

c
e c e

λ λ λ
λ λ λ

   = = =   
  

 

           (53 bis) 

(see 59, ratio of densities). 
Objection: This is a Graviton without Gravity (without constant G)? 
Answer: G is in the amplitude (energetic intensity) of the G-wave. Gravity (G) 

is directly inscribed in density of energy of G-interaction between two point 
electron (a “double electron” e em m , see 16-on) separated by basic wavelength 

Geλ  (a kind of “string”): 
2

2
e

Ge
Ge

m
f G

λ
=  (30-3)     

2

48
e

Ge
Ge

mGw
λ

=
π

 (49-3)           (54) 

So (49-3) is a density of Poincaré’s Gravific Waves. Most physicists think that 
the gravitational (density of) force between electrons (separated with Geλ ) is 
perfectly negligible. This verdict was true before 1965 and it’s still true after 
1965. 

Poincaré had the right reasoning ( 5-2) but not the right density (see 49-3, in 
54 and 6). 

5.4. GRAVIFIC SUBQUANTUM SUBSTRATUM: WED (Poincaré-de 
Broglie) versus QED (Dirac-Feynman) 

de Broglie, specialist of the diffraction of the wave electron, distinguishes (in 
1957) three basic levels in physics28. 

1) The first level is (macroscopic) according to de Broglie is classical physics 
(dynamic and thermodynamics). 

2) The second level is (microscopic) Quantum physics (baryonic or atomic 
matter 0Gµν ≠ ). 

3) The third level (hypomicroscopic) is the deepest level (photonic-electronic, 
non baryonic 0Gµν = ): “the deepest level is Hypomicrophysics SubQuantum 
Substratum constituted by this Vacuum a huge reservoir of underlying energy of 
which we still know almost nothing” (in French: Le niveau le plus profond, hy-
pomicrophysique ou subquantique pourrait-on dire, constitu? par ce “vide” 
réservoir immense d’énergie sous-jacente dont nous ignorons encore presque 
tout) 

The third level “Hypomicrophysics SubQuantum Substratum” is particularly 
suitable for our problematic. 

According to de Broglie, relativistic Wave Mechanics or Wave ElectroDy-

 

 

28Cours professé par de Broglie à la Sorbonne durant l’année scolaire 1957-1958 [16]: 
1) le niveau macrophysique des phénomènes macroscopiques directement observables? notre 

échelle qui est le domaine propre de la Physique dite classique (the macrophysic level of macroscop-
ic phenomena directly observable on our scale which is the proper domain of so-called classical 
physics). 

2) le niveau microphysique ou quantique qui est celui des molécules, des atomes, des noyaux ou 
plus généralement des particules élémentaires, qui est le domaine propre de la Physique quantique. 
(the microphysical or quantum level which is that of molecules, atoms, nuclei or more generally 
elementary particles, which is the proper domain of quantum physics): 

The first level is (macroscopic) according to de Broglie is classical physics.  
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namic (WED) ( 5) should preside over the destiny of Quantum Mechanics or 
Quantum ElectroDynamic (QED). 

We know a little more today with NeoMinkovskian CONTINUUM which 
adds a decisive gravitational component (G-WED) to de Broglie’s subquantum sub-
stratum [16]. The unified field (G-DSR is a G-WED) is photonico-electro-gravific (
5-4). 

We suggest here to continue with relativistic mind of de Broglie. The only dif-
ference is that we use both SR and GR (and therefore G-WED) in order to de-
termine (we put in evidence sub-hypo) the SUB (microphysics quantum stra-
tum). 

The most fundamental principle of QED (microphysics) is that the LEAST ac-
tion corresponds to h (or  ). In G-WED (Hypomicrophysics) we have the fol-
lowing LEAST action (52): 

2

QED
WED

e
c

 
 
 

 
                       (55) 

the subquantum “continuum” of action 
2

WED

e
c

 
 
 

, in harmony with continuous 

spectrum of CBR, is smaller (SUB) than the “ quantum” of action. 
The fine structure constant becomes then a decisive factor between G-WED 

and QED in its two forms (Sommerfeld or Planck Einstein): 

2 2137, 860,c hc
e e

≈ ≈


                (55 bis) 

In order to treat of (the density of) non-baryonic SUBquantum VACUUM 
G-WED is then better adapted: 

G-WEDPoincare-deBroglie   QEDDirac-Feynman                   (55 ter) 

Given that we have a direct basic connection (graviton) between electron and 
photon without the positron (annihilation e e+ − ), Poincaré-de Broglie’s G-WED 
involves then a (cosmological) Break of symmetry (in cosmological observation 
there is no antimatter, QED). 

However, as long as we have no precision (56) about SUB formula of density 
of gravitational waves (49-3, 54) exactly as we have density of light waves, this 
inequality (55) seems purely formal. 

6. Theoretical Deduction of the (Second) Density  
and the Temperature of CBR 

After the first attempt (42, e emw w= ), let us now introduce (second attempt) 

Ge CBRw w=  the density of Gravific Waves (53) and then also that of CBR (54 
and annex 1): 

2
34 3

4 3.8 10 g cm
8

e
Ge CBR

Ge

mGw w
λ

−= = ×
π


             (56) 

With Stefan-Boltzman’s formula (39, 40 and 80) and numerical annex 1) we 
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suggest a theoretical29 deduction of the absolute temperature of CBR ( H KR T cte= ): 

2.6 KKT ≈                          (57) 

very close to COBE observation (see annex 1). 
The right missing coefficient in (33) (with constant G) (instead of 48, Poin-

caré 1905): 

2

4

1 0 0 0
0 1 0 01 1
0 0 1 03 3 8
0 0 0 1

e
Ge Ge

Ge

mGp wµν µνη η
λ

 
 − = =
 −π
 

− 

          (58) 

We can now complete (33): 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

µνρ η ρ−
Λ Λ

− 
 
 =
 
 
 

 (dark Energy) 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Ge Gew h wµν
+

 
 − =
 −
 

− 

 (CBR)          (58 bis) 

We have not only the density of CBR but also the basic ratio (see 12) with 
critical density (see anti-32 and 75) directly deducted from NeoMinkowskian 
limit of GR with CC: 

2
5 15.22 10

3
CBR Ge

CBR
G

w f
fρ

−

Λ

 
= Ω = × =  

 
              (59) 

(very close to observation 5.38 × 10−5). The coincidence is obviously not perfect 
(with the factor 4/3 it’s even better, 48). For the evaluation of the cosmic sub-
stratum density our WED error is of the order 10 to the power −1. It must be 
compared (see Unruh) with that of QED that is of the order of 10 to the power 
120: 

“The cosmological constant problem arises because the magnitude of vacuum 
energy density predicted by quantum mechanics is about 120 orders of magni-
tude larger than the value implied by observations of accelerating cosmic expan-
sion.” [8] 

This CC problem reported by Unruh disappears with WED. We prove that his 
monstrous error comes from the misuse (extrapolation) of baryonic quantum 
theory to a radically non-baryonic subquantum vacuum (confusion between lev-
el 2 and 3 according to de Broglie). Note also that this last ratio (59) is also very  

close to (53) 
2 21

137
Ge

e

λ
λ

   ≈   
  

. 

 

 

29No inflationary model predicts such a result (to our knowledge). Flat Cosmology (Tatum) predicts 
this temperature using not the Planck's particle but Planck's mass. It is very curious (see 83). 
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7. Conclusions: From Cosmological Electron  
to Galactical Electron? 

Rather than the Quantization of GR (main stream) we chose here the GR-ization 
of Quantum (electron). 

The NeoMinkowskian synthesis between Poincaré’s GRAVIFIC waves and 
Poincaré’s GRAVIFIC pressure on electron is now complete. 

Planck’s unstable cosmological particle is then shorted (short-circuited) by 
stable cosmological electron which is in fact the graviton. 

Hyperbolic NeoMinkowskian Universe not only predicts a CBR but also the 
Temperature observed of this CBR. 

We follow Penrose [18] on two essential points: 
1) “There is something particularly elegant about hyperbolic geometry”. 

G-DSR (introduction and 1-2-3) 
2) “I should say that I do not really believe these (inflationary) theories”. 

G-DSR ( 4 intermediate conclusions and 5 conclusions) 
The most beautiful result of Lobatchevskian interpretation of “Big Bang” or 

“Big Boost” may be: The finite time HT  is an effect of the curvature of hyper-
bolic straight line of time ( 3-3-3, 27). 

Cosmology joins geology: catastrophism or inflationism (with a Big excep-
tional Bang of primitive atom) against unifomitarism or gradualism (with Big 
Well tempered Boost). 

We are aware of the incompleteness of this present exploration. 
In our approach everything seems RADIAL: there is no RADIAN (no aberra-

tion). We have a cosmological electron (Translation) but not a galactical electron 
(Rotation). 

Nothing is circular (UCM), everything seems rectilinear (UARM). Everything 
is longitudinal, nothing is transversal: the magnetism seems gone (der ver-
dammte magnetismus, sagte der junge Albert zu Mileva). It could come back in 
force transversely. 

An alternative to the escape velocity (Dark Energy) of this paper however ex-
ists: the orbiting velocity (Dark Matter). The only difference is given by a factor 
1/2 (in YP12).  

The composition of two LT not in the same direction involves Thomas’ Rota-
tion (angular velocity connected with frequency of wave electron, 52). 

According to Pauli’s, Thomas’ rotation is a decisive correction of factor 1/2 in 
Dirac’ spin 1/2 of electron. 

A Gravitational REVOLUTION in Dirac’s electronic spin? De revolutionibus 
orbium spinorium ...? 

(Remember also that all this was done in the absence of baryons ( 0Gµν = ) 
and also especially in the absence of neutrinos). 
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1. Numerical Annex 1: From Cosmological Electron  
to Gravific Density of CBR 

1.1. Some Cosmological Constants and Poincaré’s  
Cosmological Electron 

Critic density of tachyonic dark energy from Hubble’s constant (1 bis): 

( )218
30 3

8

2.168 103 8.6412 10 g cm
8 6.67428 10

ρ
−

−
Λ −

×
= = ×

π ×
          (60) 

Kinematic and Dynamic values: 28= 1.38 10 cmHR × ,  
8 27.3543 10 cm sMα
−= × , 559.311 10 gHM = ×  

with (
2 2 2 2 24

2 4 3

33 3 33
8 8 8 24 4

GM H H

H H H

FH c M M cc G
G G G R R R

α
ρ Λ
Λ

Λ
= = = = = =

π π π ππ π
). 

A coincidence: 
56 2 56 210 cm 10 g 1 g cmHM − −Λ ⋅ = × ≈  

Enigmatic force between an electronic mass and a cosmological acceleration 
(Poincaré’s force): 

28 8 35
22 9.11 10 7.35 10 6.3 10 cgsH

G e M e
H

Mf m m G
R

α − − −= = = × × × = ×    (61) 

Gf  is very close to Gef  (63, 31). 

1.2. Game of Units (of Thrones?) 

It should not be confused Planck’s black body theory ( ), ,Bc k   with Hypothesis 
of the so-called Planck’s cosmological particle ( ), ,c G  . The latter is an unstable 
primitive atom (inflation) based on a game of units with 3 constants ( ), ,c G    

(tiny Planck’s length 33
3 10 cmPl

hG l
c

−= = , huge Planck’s density  

94 310 g cmPlρ +=  and medium Planck’s mass 510 gPll −≈ ), 86.67428 10G −= × . 

We have also a game of Stoney’s units (i.e. Stoney mass 
2

610 g
2
e
G

−≈ ) with 

also 3 constants ( )2, ,c G e c  connected to Planck’s units by constant of fine 

structure 2 137hc
e

≈ , .... 

These “games of units” are short-circuited by a basic electronic (or gravific) 

length 
2

13
2 2.8289 10 cmGe e

e

e r
m c

λ −= = = ×  and therefore also by the mass of 

electron 289.109 10 gem −= ×  and the charge 104.803 10e −= × . 

The stable cosmological electron (in fact the graviton) is hidden in electro-gravific 
correspondence (under the presidency of velocity c of light, see 30 & 32, 

102.99792 10 cm sc = × ) 
2

2 2 H

H e e

GM ec
R m r

= =                       (62) 
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We have to show that Gf  (14, 61) is perfectly integrated in new (cosmologi-
cal) theory of unified field. 

1.3. Ratio of Forces 

Next to the macro-force (
4

2G
cF
G

= ) both classical forces respectively electros-

tatic and gravific ef  & Gef , 

22
6 37

2 22.8826 10 cgs, 6.9216 10 cgse
e Ge

e e

Gmef f
r r

−= = × = = ×       (63) 

there exists an electrogravific connection (basic constant Geκ ) between “infi-
nitely large” ( HM  and HR ) and “infinitely small” ( em  and er ). 

2
42

2 4.1604 10e
Ge

Ge e

f e
f Gm

κ= = ≈ ×                 (64) 

We have three forces ( ), ,G e GeF f f  where ef  is well supervised ( Geκ ) by the 
other two 2 2e G Gef F f= : 

2
2

2

2 2
,G e G

Ge Ge
e Ge Gee

F f Fe
f f fGm

κ κ= = = =               (65) 

See 4 intermediate conclusions: 

Ge Ge
G e GeF f fκ κ← →                     (32) 

At this stage Gf , very close to Gef , is missing (70). 

1.4. Ratio of Lengths and Integration of the Missing Force 

Ratio of linear density respectively for Universe and electron is also given by 
fundamental physical constant of NeoMinkowskian continuum: 

2 1,
2

H

H H H
Ge Ge

ee e

e

M
M R R

mm r
r

κ κ= =                  (66) 

Numerically let us remark that we have approximately H
Ge

e

R
r

κ≈  and then 

22 H
Ge

e

M
m

κ≈ . More precisely let us introduce   in such a way that: 

, 90H
Ge

e

R
r

κ= ≈


                       (67) 

with the current measures 90≈ : 
2

22e H e
Ge

H e H

r M r
R m R

κ= =                      (68) 

Hypothetical “acceleration” 2
e

m
e

m
G

r
α =  is very close to cosmological accele-
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ration Mα : 

2 22 , eH
G e M e Ge e e m

H e

GmMf m m G f m m
R r

α α= = = =           (69) 

Exactly the same ratio   for the lengths (68): 
2

22 90G H eM

m Ge e H

f M r
f m R

α
α

= = = ≈                   (70) 

The set of formulas with (61) is therefore perfectly coherent (see the final ratio 
of densities 49, 72, anti-32): 

1.5. Ratio of Densities 

Leaving aside the first historical attempt (42-43) 
2

4

1
8Electron e

e

ew w
r

= =
π

 (2) with 

the ratio ( El
Ge

Ph

w
w

κ = ), it remains two densities (see anti-32): 

24 3
8 8

M
Tachyon

c
G G

α
ρ Λ

= =
π π

 (1)   
2

2
4

1
8 8

e
Photon Ge m

e

mGw w
Gr
α= = =

π π
 (2)   (71) 

Our theoretical deduction of the basic (couplage, 12) ratio with G-interaction be-

tween respectively, “two Universes” and “two Electrons” 
2

4

3
2

H

H

MG
Rπ

 and 
2

48
e

e

mG
rπ

: 

2
2 2

2

2

3
8 3 3 3 19200
1

8

M

GM

Ge m Ge
m

fG
w f

G

α
ρ α

αα

Λ    π= = = = ≈   
   

π

          (72) 

Two basic DENSITIES are (density of mass): 

30 3 34 3
2 28.6412 10 g cm , 3.8 10 g cmGew

c c
ρρ − −

Λ = ≈ × ×       (73) 

The second in details: 

( )
( ) ( )

28 28
34 3

2 4 213 10

6.67428 10 9.11 101 3.85 10 g cm
8 2.8289 10 2.99 10

Gew
c

− −
−

−

× × ×
= × ≈ ×

π × × ×
    (74) 

Or the usual inverse ratio: 
2

5 15.22 10
3

CBR Ge
CBR

G

w f
fρ

−

Λ

 
= Ω = × =  

 
               (75) 

With Stefan-Boltzman’s formula with Ge CBRw w=  we find an absolute tem-
perature of (57). 

Observed CBR (COBE) values: 
34 34.6 10 g cmCOBEw −= ×                    (76) 
30

34

8.6412 10 18823
4.5908 10CBRw

ρ −
Λ

−

×
= =

×
                 (77) 
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or inverted: 

55.38 10CBR
CBR

w
ρ

−

Λ

Ω = = ×                    (78) 

Finally let us note that (74-76) are very close to 
21

137
 
 
 

 the ratio (53) be-

tween Poincare Geλ λ=  and Bohrλ . 

So with 1CBR= Ω =  it would remain only one “density-pressure”: 

3 CBRpρΛ =                          (79) 

Which of the two? Ask the question (between mass of electron and Hubble 
constant) is answer it. CONJECTURE 1: If our universe HR  was about 102 
larger than the current evaluation from Hubble constant we would have (79). 
Another CONJECTURE is possible (see annex 2). 

1.6. Law of Stefan: Radiation and Gravitation 
4 15, 7.56564 10 cgsCBR Stephan Stephanw Tσ σ −= = ×           (80) 

If we admit (56) we have: 

( )
( )

3 32 6 8 2 4 83 3 3
4

4 3 4 8 4 4 2 4 6 4

1515 15
8 8 64 64

Ge e e e e

B e B B B

cw m m c m m cG c cT G G
r k e k e e kσ

= = = =
π π π π



    (81) 

This formula (CBH or CBR) might have something to do with Hawking’s 
formula for SBH [9] (especially in his Tatum cosmological interpretation (mean 
mass) [11]). 

( ) ( )
42 24 344 4 3 4 4 2

2 3

64 137137
15 15 4

e e
B Ge B e

m m c
k T G k T m c

e
κπ π

= ⇒ =
π

   (82) 

4 32 4
15 137

e
Ge

B

m c
k T

κ
  π π =   

  
                   (83) 

The electron is so integrated in CBR and thus also in universal substratum. 
Observers located inside the universe can be happy they have light with electric-
ity! 

2. Annex 2 Historical Epilogue: The “Fine Structure” of  
Special Relativity (Poincaré-Einstein, Conjecture 2) 

It seems that the question of the limit ( v c= ) “Perfectly UltraRelativistic Elec-
tron” (PURE) has never been considered in physics. 

It’s wrong because this question is already considered in 1905 in the two pa-
pers of Poincaré and Einstein [4] [18]. 

We have shown that from a historical point of view there was not only one 
theory of SR but two theories of SR (quasi-simultaneous, 1905) theories of SR: 
that of Einstein (June) and that of Poincaré (July). 

Both theories are very close but not confused. So there is a “Fine Structure” of 
SR in epistemological meaning (with quotes [19]). Both theories are based on LT 
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and invariance (limit) of light velocity but they are singularities that seemed ir-
reducible: In Poincaré’s SR we have for examples: Light elongated ellipsoids 
[20]30, gravific pressure on electron, gravific waves .... In Einstein’s SR we have 
for example: Doppler formula and LichtKomplex. Poincaré’s point of view is 
then very close to NeoMinkoskian Limit of ... Einstein’s GR. 

2.1. Einstein’s “LichtKomplex” and Poincaré’s Graviton 

LichtKomplex are introduced by Einstein in June basic paper 8 [5] three 
months after his famous LichtQuant (1905). The latter became (with impulsion) 
the photon for which Einstein got in 1922 the Nobel Prize. Einstein’s LichtKomplex 
has (almost) nothing to do with that. 

Einstein’s LichtKomplex were considered as horrors (or terrors) by Lorentz, 
and Planck (and most of physicists). LichtKomplex were rejected by the com-
munity of physicists because they presuppose that a certain amount of matter 
travels at the speed of light. Einstein eliminated them in all subsequent pres-
entations of his SR (already in 1907 ...). Their radical elimination will persist 
even after 1922. They were ejected from both History of Physics and Physics 
itself. 

Why? 
Both they use LT of a spherical volume but Poincaré considers (1905 1) a 

sphere driven with an electronic point (invariance of charge and action 2e c ) 
whilst Einstein’s considers (1905 8) a sphere driven with a photonic point 
(LichtKomplex). BY MAKING v c=  (SIC) in Poincaré’s spherical Electron., 
Einstein deduces the existence of spherical particles “whose energy transforms 
proportionally the frequency”. The coefficient of proportionality is then not 


 

but 2e c  (see 52). 
Thanks to GR (Einstein 1915) with CC (Einstein 1917) with Poincaré’s (Neo-

Minkowskian) Limit, we now know that when (the young) Einstein makes 
:v c=  (reSIC) in Poincaré’s electron, he determines not a photon but a graviton 

(see 52). The history of physics is highly nonlinear. 
Let us finally not that Einstein uses also Langevin’s formula (43) for density 

(1/8π), see also Landau 31-5, p106 [17]. 

2.2. Poincaré’s Velocity with Respect to the  
Gravific Ether (Conjecture 2) 

The fine structure (without quotes) constant is thus hidden in the synthesis be-
tween the two SR (a “Double” SR). called by Einstein “factor 900”: 

2 860h
e c

≈                          (84) 

 

 

30Electron, atom, solar system, galaxy are not in expansion. Poincaré could seem “inflationist” at this 
respect, “Mon lit est en expansion ...”. Et il précise “mais je ne peux pas m’en apercevoir”! Le prin-
cipe einsteinien (quantique) de l’identité des unités de mesure (des atomes) est à cet égard plus clair. 
Le fait est que Poincaré avait une théorie de l’expansion (ellipsoédes lumineux allongés, note 18) en 
1907 basée sur ... la contraction de Lorentz (20 ans avant l’univers de Hubble. 
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With Poincaré’s [21] (relative) speed with respect to the gravific ether:31 (CBR), 
we have the right to formulate a second conjecture (conjecture of “Big Boost”): 

860 360 km sc ≈                       (85) 

This is very close of the observed COBE value. A dipolar effect on 3 K. of the 

order of 3 mK ( 3 110
900

− ≈ ). Compatible with the inflationist hot BB 10+3 

(3000K)? 
If we were at rest with respect to the ether, the “quantum” h and the “conti-

nuum” 2e c  would be thus reconciled. 
 
 
 
 
 

 

 

31Einstein had suppressed in his SR (1905) the ether (with the possibility of measuring a speed with 
respect to it). Poincaré did not remove the ether because it was a (gravitational) source of the mass 
of the electron. Note that Einstein reset an ether in 1922 (see L. Kostro) but he could not make the 
connection with CBR discovered (1965) after his death (1955). 

https://doi.org/10.4236/jmp.2020.112015


Journal of Modern Physics, 2020, 11, 281-284 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2020.112016  Feb. 20, 2020 281 Journal of Modern Physics 
 

 
 
 

How Do Electric and Magnetic Fields Move? 

Vladimir Alexander Leus 

Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK 

 
 
 

Abstract 
In nature, there are two fundamentally different types of motion of the elec-
tric and magnetic fields: dynamic and kinematic. A typical manifestation of 
the first type of motion takes place in a plane harmonic EM-wave. For already 
more than a century the question about the ratio of the phases of the electric 
and magnetic fields, oscillating in such a wave, remains open. From time to 
time in this regard, fierce disputes arise. The point is that far from any phase 
difference turns out to be compatible with the full system of Maxwellian 
equations. Maxwell’s classical theory as applied to such a wave leads to the 
conclusion that the electric and magnetic vectors in it oscillate harmoniously 
with zero phase shift. In the framework of this theory, a rigorous mathemati-
cal proof is given. 
 

Keywords 
Electromagnetic Wave, Transverse Oscillations in Phase, Longitudinal  
Immobility of Field Vectors, Electro-Kinematics, Magneto-Kinematics 

 

1. Introduction 

After Heinrich Hertz, a famous German physicist, discovered experimentally the 
existence of electromagnetic waves propagating in vacuum, all physicists be-
lieved that the movement of energy in space occurs due to the periodic process 
of mutual induction of electric and magnetic fields. The following picture of the 
phenomenon looked quite logical. When the magnetic field at a given point in 
space decreases, the electric field increases, reaching a maximum on the moment 
of zeroing the magnetic, and vice versa. The zero value of the magnetic vector 
corresponds to the maximum rate of its change, which in turn implies the 
maximum value of the induced electric vector, and also vice versa. The beautiful 
idea of a mutual transfer of energy from a magnetic form to an electric one and 
back proved to be extremely tenacious. Outbreaks of this “faith” sometimes still 
occur [1], although rigorous proof of its falsity has already been found. 
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Too scholastic, schooling-wise, even trivial as this might seem, the question 
about phase shift between electric and magnetic vectors in EM-wave has a pecu-
liar, just Shakespearian tension for the Maxwell’s theory of electromagnetism: 
“To be” —Figure 1(a), or “not to be” —Figure 1(b). 

2. Solution of the Problem 

Show that in a plane harmonic EM-wave propagating in a vacuum, there is no 
periodic conversion of energy between magnetism and electricity. It is known 
that in such a wave, the electric and magnetic vectors are orthogonal to the di-
rection of propagation and mutually orthogonal, therefore, we choose the coor-
dinate system in the following way. The x axis is oriented along the propagation 
direction, the y axis is parallel to the electric vector, the z axis is parallel to the 
magnetic vector so that there is a right-oriented triple of unit basis vectors (Figure 
1). In this system, the electric vector E has coordinates ( )0, ,0E , and the magnetic 
one H has coordinates ( )0,0, H . The “electric” and “magnetic” coordinates  
depend on time and space according to a harmonic law. We can take 

0 cosE E t x
c
ωω = − 

 
, then 0 cosH H t x

c
ωω δ = − + 

 
. Here, 0E  and 0H  are  

half-amplitude values, and δ is an unknown phase shift.  
Since there are no currents in a vacuum, both vectors obey two Maxwell equa-

tions, which in a Gaussian system of units have the form: 

1 1, .curl curl
c t c t
∂ ∂

= − =
∂ ∂
H EE H  

In the orthonormal coordinate system ( ), ,x y z , the curl of the vector field 

( ), ,x y zF F F=F  is a vector whose coordinates are expressed in terms of the spa-
tial partial derivatives of the coordinates of the field vector as follows: 

, , .y yx xz zF FF FF Fcurl
y z z x x y

∂ ∂ ∂ ∂∂ ∂
= − − − ∂ ∂ ∂ ∂ ∂ ∂ 

F  

In our case, from all the spatial partial derivatives of the electric vector, non-zero 
one would be only 

 

 
Figure 1. Phase shift in EM-wave. 
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0 sin ,yE
E t x

x c c
ω ωω

∂  = − ∂    
therefore vector 

00,0, sin .curl E t x
c c
ω ωω  = −  

  
E                 (1) 

Let us find the partial time derivative of the magnetic vector. Since only the 
third its coordinate is different from zero, then 

00,0, sin .H t x
t c

ωω ω δ∂   = − − +  ∂   

H                (2) 

From a comparison of (1) and (2), it is seen that a necessary and sufficient con-
dition for the satisfying of the first of the two above Maxwell equations is a mul-
tiple of the constant 2π value of the phase shift 0, 2 , 4 ,δ π± ± π=  . 

Let us verify this condition for the second of the equations. We have 

00, ,0 0, sin ,0 ,zHcurl H t x
x c c

ω ωω δ
∂     = − = − − +   ∂     

H        (3) 

and 

00, sin ,0 .E t x
t c

ωω ω∂   = − −  ∂   

E                  (4) 

Comparing between (3) and (4) shows the fairness of the above mentioned con-
dition also for the second of Maxwell's equations. Thus, we can draw the follow-
ing conclusion. In a plane harmonic EM wave propagating in vacuum, the elec-
tric and magnetic vectors oscillate in phase. At any point in space, they simulta-
neously pass through zero and simultaneously reach their semi-amplitude values 
( 0 0E H=  in the Gaussian system of units). A complete energy exchange be-
tween the electric and magnetic components requires a specific phase shift that 
is equal to the definite value π/2, but Nature does not want to provide even a 
partial energy transfer between the electric and magnetic forms. 

3. Conclusions 

As we can see, the relationship between the phases of the electric and magnetic 
vectors in a plane EM wave has far from just a simple “educational” value. The 
correct solution to this issue is rather of more philosophical, even worldview 
significance. The adequacy of our perception of the surrounding reality depends 
on the accepted answer. 

Certainly, intuition is a wonderful thing, but, alas, it isn`t omnipotent. In ad-
dition to the example of intuitionistic failure discussed above, there is another 
similar case in the doctrine of electromagnetism. In essence, it has folk rather 
than scientific character, and consists of a magical belief that the fields in the EM 
wave move at the speed of light. In this misconception, the main role is played 
by confusion with energy transfer in space. In fact, electrodynamics implements 
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a complete analogy with waves on the surface of a pond. Because of the stone 
falling into the pond, water moves only in the vertical direction, but these coor-
dinated shifting are transporting horizontally (at a speed of meters per second) 
the energy that destroys the bank. Similarly, in an EM wave the electric field and 
magnetic field do not move anywhere in the source’s own system, and only their 
coordinated transverse oscillations provide energy transport in the longitudinal 
direction [2]. Such behavior of field vectors returns to life the idea of worldwide 
ether. 

As for the true spatial displacements of the electric and magnetic fields, they 
objectively exist, but are not related to electrodynamics. The study of such 
movements is carried out in the framework of electro-magneto-kinematics—a 
specific region in the doctrine of electricity and magnetism [3] [4] [5] [6] [7]. 
Two Russian engineers, N. Zaev and V. Dokuchaev, opened this new page in the 
electromagnetic doctrine half a century ago due to an experiment with a rotating 
electromagnet. 
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Abstract 
Based on a model of fermions which implies a model of photons, a model of 
the neutron is constructed by merging two photons of equal energy propa-
gating in opposite directions. The fermion model is outlined, and the merging 
of two photons is described in detail. The radius of the neutron obtained in 
this way is Rn = 0.84008… fm. This value is four times the reduced Compton 
wavelength of the neutron. Assuming the same model for the proton, one 
obtains a value of Rp = 0.84123… fm, which agrees with the most recent ex-
perimental value for the charge radius of the proton within the given limits of 
error. The neutral charge of the neutron is reproduced, and the positive 
charge of the proton follows within the model, if the proton is formed via the 
anti-neutron by losing one electron. S = ±ħ/2, and zero dipole moment, is al-
so reproduced for proton and neutron. Further, a value of the magnetic mo-
ment of the neutron of μ = −2.00μN (μN: nuclear magnetic moment), and of 
the proton of μ = 2.666… μN is predicted. The deviation by ca. 5% from the 
recommended respective values of (−1.9130μn), and (2.793μn) is ascribed to 
the (g-2)-anomaly. Finally, the relation of the model with the established de-
scription of the nucleons in terms of three quarks bound by gluons is shortly 
discussed. 
 

Keywords 
Quantum Physics, Modeling of Nucleons, Classical Probability 

 

1. Introduction 

The fermion model developed in three recent publications [1] [2] [3], is used in 
the present paper to construct a model of the nucleons. In paragraph 2, it is out-
lined. Qualitatively, it describes particles in terms of paths of a quantum around 
a fixed point in space. The position of the particle is the position of this point, 
and its mass is the localized energy of the motion. It takes an observation time of 
at least one period of the periodic motion of the quantum until the particle “ex-
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ists” as an observable entity. This time is very short, and depends as 1/m on the 
mass of the considered fermion. In case of the electron it is on the order of the 
period of the well-known “Zitterbewegung” [4] [5] [6]. For longer observation 
times the particle described in this way has internal structure, and therefore can 
own properties. Properties of the particle at rest can be obtained from the sta-
tionary spatial density distribution of the quantum, which reflects the topology 
of its path. Mass, size, spin, and magnetic moment of the electron have been 
correctly described in this way. For a description of properties of the moving 
particle, a more detailed use of the motion of the quantum in space and time is 
necessary. The emergence of the property “de Broglie wavelength” and the im-
plied interference phenomena of the moving particle have also been demon-
strated to be a natural consequence within the model [3]. 

Similar models as the one developed in [1] [2] [3] have been proposed and 
discussed earlier in the literature [see f.i., [7] [8] [9] [10]]. What we intend to 
prove in this paper, is the fact that, our fermion model, sketched above qualita-
tively, allows to construct nucleons and to calculate their properties. In para-
graph 2, we describe the fermion model in sufficient detail to demonstrate its 
application to the construction of the nucleons. In paragraph 3, the “merging” 
into nucleons is outlined, and results are reported. In paragraph 4, we summar-
ize the results and address shortly the question of a relation between the pro-
posed model and the established theory. 

2. The Fermion Model 

The basic quantity determining the spatial distribution is the reduced Compton 
wavelength 

L mc=  ,                          (1) 

with (  ) being the quantum of action, (m) the mass of the fermion, and (c) the 
velocity of light. The distribution of the quantum in a topology that characterizes 
a fermion, arises when a ring of radius (L/2) containing the quantum is rotated 
around an axis that lies in the plane of the ring, and goes through one point on 
the ring (see Figure 1). 

The population probability of the quantum on the ring is uniform. The possi-
ble positions of the quantum form the surface of a torus (see Figure 2). The po-
sitions are described by the position vector 

( ) ( ) ( )2 2cos cos ,cos sin ,sin 2
2 2

t t
c c tL

ϕ ϕ
ϕ ϕ ϕ

    =     
    

r         (2) 

The angles (φc) and (φt) are, respectively, the azimuth-, and the torus angle. 
The probability density on the surface of the torus is independent of (φc), and its 
dependency on the torus angle (φt) is determined by the condition that the 
probability on the ring is uniform (Figure 1). The probability for the position 
vector to point into a certain area (dφcdφt) thus becomes simply ρ = 1/(4π2), in-
dependent of the angles. Averages of functions of the position vector, F(r), can  
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Figure 1. The figure shows the plane containing the quantum. The quantum is distri-
buted with constant probability density on the ring. The plane containing the ring rotates 
around the rotation axis in the way shown in the figure. The rotation frequency is ωc = 
c/(L/2), and the center of the ring has speed (c). The angle (φ) in the figure is the torus 
angle (φt) used in the text, and the angle defining the angular position of the ring is the 
angle (φc = ωct) used in the text. 

 

 
Figure 2. The possible positions of the quantum during its cyclic motion around the ro-
tation axis. The coordinates are given in units of L. The shape of the entity formed after 
one period of the “Zitterbewegung” is a torus on whose surface the quantum circles. The 
radius of the entity, which we identify as the fermion, has a radius R = L = ħ/mc. 

 
therefore be obtained as the integral 

( ) ( )2

1 d d
4 c tavF r F ϕ ϕ =  

 π ∫∫ r                   (3) 

The momentum ( p mc L= =  ) perpendicular to the ring (see Figure 1) is 
ascribed to the quantum, so that its momentum vector becomes 

( ) ( ){ }sin ,cos ,0c cL
ϕ ϕ = − 

 

p                   (4) 

This leads to an instantaneous angular momentum caused by the quantum at 
position (r), which is given by ×=S r p , so that the property “spin” can be ob-
tained simply as the average 

2

1 d d
4av c tϕ ϕ = × 

 π ∫∫S r p  ( ,c tϕ ϕ  from 0 to 2π).         (5) 

The result, using (2), is { }0,0, 2av = S , which identifies the spin as the av-
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erage instantaneous angular momentum caused by the quantum during one pe-
riod of its motion on the torus surface. 

The instantaneous spin vectors during the motion form a distribution shown 
in Figure 3. 

This distribution was shown to explain the results of spin measurements in 
directions forming an angle with the average spin of the particle [1], and led to 
the construction of our fermion model. 

If the elementary charge (e) is ascribed to the quantum, the average magnetic 
moment caused by the rotation of the ring can be calculated. The frequency of 
rotation is ( )v c L= π , the well-known “Zitterbewegung” frequency. With this 
frequency, the current around the axis is ( )I ec L= − π . The classical expression 
for the magnetic moment is IAµ = , with (A) being the average area enclosed by 
the current. The average of (A), is easily calculated using position vector (2) of 
the quantum on the torus. The result is 2 2avA L= π . The magnetic moment 
calculated in this way becomes 

( )( ) ( )2
classic2 2 2av e c L L ecL e mµ µ= − = − = − = −          (6) 

This agrees with the value obtained for the Dirac electron. We point out for 
later use that the anomaly of the magnetic moment of the electron is given by 
( 0.00232α π =  ), so that the magnetic moment becomes  

( )( )classic 1µ µ α= − + π , with (α) being the fine structure constant. 
The fermion model outlined above is completely general. The predicted prop-

erties, spin 2S =  , and magnetic moment, classicavµ µ= , are independent of 
the mass, and the radius of the described particle is ( )R mc=  . For fermions 
of arbitrary mass, therefore, we have the general relation 

Rm c=                             (7) 

We point out that, the radius predicted by (7) depends on the relative velocity  
 

 
Figure 3. The instantaneous spin vector in units of (ħ) during one period of the motion 
of the quantum with momentum (mc) around the center of the particle. The average is 
the observable spin vector { }0,0 2,avS =  . 
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(v), because the mass in the model is the relativistic mass ( )2
0 1m m v c= − , 

so that (R) decreases as ( ) ( )2
0 1R m c v c= − , and reproduces the point-like 

character of the electron observed in scattering experiments at velocities ap-
proaching (c). 

3. The Nucleons 

If we apply the general relation (7) to the mass (M) of the proton, we find that 
the radius ( )R Mc=   is much smaller than the recommended value. This 
means that, within the described fermion model, the proton is not a single fer-
mion. Although, within the established “standard model of elementary par-
ticles”(SM), the proton is described as being composed of three quarks bound by 
gluons, we consider—as the most obvious possibility within our fermion mod-
el—the “merging” of two quanta of equal energy (mc2) into a particle of mass (M = 
2m). Since the “merging” leads to a topology of the paths of two quanta that does 
not allow to distinguish different “particles” at all, the relation to the standard mod-
el is not clear, especially, because quarks do not exist as free particles. This will be 
shortly discussed in paragraph 4 in the light of the results to be described below. 

Below we describe how the two quanta are “fused” into a new particle of mass 
(M) containing two quanta in periodic motions around a fixed point in space. 
The topology of the paths describing the synchronized motion of the two quan-
ta, then, determines the properties of the new particle. 

We consider two quanta which have equal probability on a ring in a plane 
perpendicular to their velocity vector. If the velocity is the velocity of light (c), 
the distributions on the rings are static. The radius of the ring is equal to the re-
duced Compton wavelength ( ( )L mc=  , and therefore determines the mo-
mentum (mc), and the energy ( 2mc ω=  ). Each ring, with momentum 
( mc L=  ), and speed (c) along the normal to the plane defined by the ring, 
represents the properties of a photon. We consider a situation, where the two 
quanta can “fuse”. This is illustrated in Figure 4. 

 

 
Figure 4. The situation when two photons represented by the two rings, have opposite 
directions, meet, and “stick together” in the way shown in the figure. The two rings then 
rotate as a whole around the center, which is at rest in space. The two photons, indicated 
as (ph), keep their velocity (c), and rotate on circles of radius (L) with frequency ν = 
c/(2πL). The radius of the “entity” formed is R = 2L. 
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The situation is described in the legend of the figure. The position vectors of 
the two quanta on the two rings are { }1 , ,x y z=r , and { }2 , ,x y z= − − ±r , and 
are given by relation (2), except that (L) has to be replaced by (2L): 

( ) ( ) ( )2 2
1 2 cos cos ,cos sin ,sin 2

2 2
t t

c c tL
ϕ ϕ

ϕ ϕ ϕ
    =     

    
r        (8) 

( ) ( ) ( )2 2
2 2 cos cos , cos sin , sin 2

2 2
t t

c c tL
ϕ ϕ

ϕ ϕ ϕ
    = − − ±    

    
r     (8a) 

The common torus formed in the periodic motion of the two quanta 
represents an “entity” of energy Mc2, and of radius 2 4L Mc=   at rest in 
space. We identify this torus with the neutron. A parametric plot of the positions 
of the two quanta using relations (8) is shown in Figure 5. The nucleon radii 
predicted in this way are: 

neutron 2 4 0.84007 fmR L Mc= = =                 (9) 

proton 0.84123 fmR =                       (9a) 

This proton value is—within the limits of error—equal to the most recent value 
for the charge radius of the proton, which has been obtained from an evaluation of 
Lamb-shift measurements on myonic hydrogen using quantum electrodynamic 
methods [11]. To our knowledge our result (9a) is the only purely theoretical 
prediction available today. Therefore, if the complete agreement between the 
value given in (9a), and the experimental result, is accepted to be not “acciden-
tal”, it has to be concluded that the “Ansatz” implied in our fermion model, 
which is alternative to quantum mechanics and standard model, merits further 
attention. 

The spin caused by the common motion of the two quanta can be obtained by 
defining the relative coordinate as 1 2= −R r r , and a reduced mass  

( )1 2 1 2 2m m m m m+ = . For these reduced quantities, the momentum becomes, 
( ) ( ) ( ){ }4 sin ,cos ,0c cL ϕ ϕ= −P  , and the instantaneous spin is = ×S P R . 

The average spin calculated for (R), and (−R), using expression (8) becomes 

{ } { }proton 0,0, 2 and 0,0, 2S = −                  (10) 

 

 
Figure 5. Representation of the nucleon by the possible positions of the two quanta dur-
ing their periodic motion. The coordinates are given in units of (L). The instantaneous 
positions of the two quanta are on opposite sides of the axis, and the radius of the nucle-
on is four times its reduced Compton wavelength. 
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Assigning a charge (Q) to the position ( 1 2= −R r r ), we obtain from the gen-
eral relation IAµ = , with the current ( )4I Qc L= π , and the average surface 
(A) calculated with (8, 8a) two different magnetic moments, depending on the 
(+)-, or (−)-sign chosen in (8a) for the z-coordinate. We obtain, respectively, 

( ) ( )
( ) ( )

6

8
n

n

a Q e

b Q e

µ µ

µ µ

=

=
                      (11) 

In (11), (μn) is the classical nuclear magnetic moment. 
We have not investigated the role of the quantity “charge” in the context of 

our model. We point out, however, that with Q/e = ±1/3 one obtains possible 
magnetic moments of 

( ) 2 naµ µ= ±                         (12) 

The (±)-signs we ascribe to the possible formation of particle and an-
ti-particle. The magnetic moment for the particle neutron is negative. If this re-
quired (−) sign is chosen, ( ) 2 naµ µ= −  deviates by only ca. 5% from the estab-
lished value of the neutron magnetic moment of neutron 1.91 nµ µ= −  . We 
therefore conclude that the model predicts 

neutron 2 nµ µ= −                         (13) 

The total charge of the neutron is zero, so that for the charges (q1) and (q2) of 
the quanta relation 1 2 0q q+ =  is required. With the condition 1 2= −R r r , 
which implies ( )1 2 1 3Q q q e= − = − , we thus obtain q1/e = −1/6 and q2/e = 1/6, 
for the neutron. In addition we point out that the (+)-sign in relation (8) cha-
racterizes the neutron (antineutron). 

The proton magnetic moment has the (+)-sign, and by loss of one electron 
from the neutron, the total charge increases to +1e. For symmetry reasons we 
assume that the extra charge (e) is added equally to the charges q1 = −(1/6)e and 
q2 = (1/6)e, leading to q1 = (1/3)e, and q2 = (2/3)e, for the proton. The required 
positive (Q) can only be obtained for ( )2 1 1 3Q q q e= − = , which corresponds to 
the topology given by 2 1= −R r r . This shows that the formation of a proton 
proceeds by loss of an electron from an anti-neutron. Relation (11), and Q = 
(1/3)e lead to ( ) ( )8 3 nbµ µ= . Since this value deviates by only ca. 5% from the 
established value of the proton magnetic moment of 2.79 … μn, we therefore 
conclude that the model predicts a value of the proton magnetic moment of 

( ) ( )proton 8 3 2.67n nbµ µ µ µ= = =                 (14) 

We point out that the proton in this way is characterized by the (−)-sign in 
relation (8), so that the proton topology differs from the neutron topology. 
Within the model, therefore, the transition (anti-neutron → proton +e−) is ac-
companied by a topology change. This topology change probably characterizes 
the loss of an antineutrino implied in the transition. 

We expect the values (13, 14) to be correct at the level where the magnetic 
moment for the fermion becomes equal to μclassic. For the neutron we derive a 
correction factor caused by the ( 2g − ) anomaly by comparing the predicted value 
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(13), with the recommended value of 1.9130μn, as 1 1.9130 2 0.0435k = − = . For 
the proton formed from the anti-neutron by loss of an electron we include the 
established correction factor of (0.00232), and obtain 

( )( )proton 8 3 1 0.0435 0.00232 2.7888 ,n nµ µ µ= + + =          (15) 

which agrees very closely with the recommended value. To our knowledge, a 
calculation from first principles of the magnetic moments of the nucleons is not 
yet available. 

4. Summary 

We have shown in this paper that our extended fermion model is able to predict 
the proton radius in “complete” agreement with the most recent experimental 
value of the charge radius. The radius predicted is—simply—four times the re-
duced Compton wavelength of the proton. This result 

proton 4 0.84123 fmR Mc= =                   (16) 

is of special interest because it confirms the result of the most accurate value ob-
tained in 2010 from an evaluation of Lamb-shift measurements on myonic hy-
drogen using quantum electrodynamic methods [11]. This value is 

( )proton 0.84184 0.0007 fm.R = ±                  (17) 

Since this value disagrees with the actual recommended value, of 

( )proton 0.8875 0.0051 fm,R = ±                   (18) 

by more than the given limits of error, there existed since (2010) for some years 
a so-called “proton-radius puzzle”. In (2019), new electron-proton scattering 
experiments [12], which yielded a value of 

( )proton 0.831 0.007 fm,R = ±                   (19) 

have explained the “puzzle” as having been due to unknown experimental arte-
facts of earlier experiments [12]. To our knowledge, our predicted value (16) is 
the only theoretical value available today. 

The spin (±ħ/2) of the nucleons is predicted, and values of the magnetic mo-
ments of proton and neutron are obtained. These values deviate by ca. 5% from 
the established recommended values. This deviation we ascribe to the 
(g-2)-anomaly also presents for the electron. By determining the correction fac-
tor for the neutron from our predicted value (13), one obtains from (14) for the 
proton a predicted value of 

proton 2.7888 ,nµ µ=                       (20) 

which is very close to the recommended value. To our knowledge, a calculation 
from first principles of the magnetic moments of the nucleons is not yet available. 

It is remarkable that the quark “particles”, invoked in the rather involved de-
scription of the nucleons within the standard model (SM), appear in the form of 
charges (1/3)e and (2/3)e in our model as a consequence of the topology of the 
autonomous motion of two quanta. Different “particles”, cannot be distin-

https://doi.org/10.4236/jmp.2020.112017


A. Niehaus 
 

 

DOI: 10.4236/jmp.2020.112017 293 Journal of Modern Physics 
 

guished in our model, where the topology of the paths of two quanta defines one 
“entity”, which, for sufficiently long observation times, can be viewed as one 
particle, in the present case as one of the nucleons. The validity of the standard 
model, and of the quantum chromodynamics treatment of the nuclei is, of 
course, not questioned. On the other hand, the successes of the fermion model, 
demonstrated for the electron in references [1] [2] [3], and for the nucleons in 
this paper, suggest that there exists a close relation between the two descriptions, 
which deserves further investigations. 

The outline given of the model shows that, it follows from an “Ansatz” which 
is “alternative” to quantum mechanics and (SM): instead of “particles”, quanta 
are the basis, which form photons, fermions, and nucleons, in autonomous pe-
riodic motion. With this description, the nucleons are not composed of particles, 
but are rather “elementary”, in a similar way as fermions are. These elementary 
particles have internal structure and can own properties. For their radius (R) we 
have the general relation 

( )4 ,RM c=                          (21) 

with (M) being the relativistic mass, which implies a velocity dependence of the 
radius. 

The model is completely general because it does not involve any free parameters. 
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Abstract 
The relationship E = −K holds between the energy E and kinetic energy K of 
the electron constituting a hydrogen atom. If the kinetic energy of the elec-
tron is determined based on that relationship, then the energy levels of the 
hydrogen atom are also determined. In classical quantum theory, there is a 
formula called the Rydberg formula for calculating the wavelength of a pho-
ton emitted by an electron. In this paper, in contrast, the formula for the wa-
velength of a photon is derived from the relativistic energy levels of a hydro-
gen atom derived by the author. The results show that, although the Rydberg 
constant is classically a physical constant, it cannot be regarded as a funda-
mental physical constant if the theory of relativity is taken into account. 
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1. Introduction 

In the classical quantum theory of Bohr, the energy levels of the hydrogen atom 
are given by the following formula [1] [2]. 

4
e

BO, 2 2
0

1 1
2 4n

m e
E

nε

2
  1

= − ⋅ π  

                 (1a) 

2 2
e
2 1 .

2
m c

n
n

α
= − ,     = , 2,⋅ ⋅ ⋅                 (1b) 

Here, BOE  refers to the total mechanical energy predicted by Bohr. Also, α is 
the following fine-structure constant. 

2

0

.
4

e
c

α
ε

=
π 

                          (2) 
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Bohr thought the following quantum condition was necessary to find the 
energy levels of the hydrogen atom. 

e 2 2 .n nm v r n⋅ π = π                         (3) 

The energy of the hydrogen atom is also given by the following formula. 

( )
2

0

1 1 1
2 2 4

eE K V r
rε

= − = = −   .
π

                 (4) 

If E in Equation (1b) is substituted into Equation (4), then the following for-
mula can be derived as the orbital radius of the electron. 

2
2

0 2
e

4 , 1, 2, .nr n n
m e

ε= π     = ⋅⋅ ⋅
                   (5) 

The photonic energy emitted during a transition between energy levels 

( )BO, BO,n mE E−  and wavelength λ for principal quantum numbers m and n can 
be expressed as follows. 

BO, BO, 2 2 , 1, 2, , 1, 2,n m
hcE E h hcR m n m m

m n
ν

λ ∞
 − = = = −   =    = + + .  
 

 

１ １  (6) 

Here, R∞  is the Rydberg constant, which is defined by the following equa-
tion. 

2 2 4
e e

3

2
.

2
m c m e

R
h ch

α
∞

π
= =                      (7) 

The Rydberg formula can be derived from Equation (6) as indicated below. 

BO, BO,
2 2

1 , 1, 2, , 1, 2,n mE E
R m n m m

hc m nλ ∞

−  = = −    =    = + + . 
 

 

１ １    (8) 

2. Relationship Enfolded in Bohr’s Quantum Condition 

This section to Section 4 are excerpts from another paper, but this material is 
repeated because it is needed here. The Planck constant h can be written as fol-
lows [3]: 

e C .
2 2

m ch λ
= =

π π
                         (9) 

Here, Cλ  is the Compton wavelength of the electron. 
When Equation (9) is used, the fine-structure constant α can be expressed as 

follows. 
2

2
0 e C

.
2

e
m c

α
ε λ

=                        (10) 

Also, the classical electron radius er  is defined as follows. 
2

e 2
0 e

.
4

er
m cε

=
π

                        (11) 

If er α  is calculated here, 

e C .
2

r λ
α

=
π

                          (12) 
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If Equation (5) is written using er  and α, the result is as follows. 
22 2

2 2 20 e
0 2 2 2 2

e 0 e

4
4 .

4n
c rer n n n

m e m c e
ε

ε
ε α

π = π = = π  


         (13) 

Next, if   in Equation (9) and nr  in Equation (13) are substituted into Eq-
uation (3), 

2e e C
e 22 2 .

2n
r m c

m v n n
λ

α
⋅ π = π

π
                  (14) 

If Equation (12) is also used, then Equation (14) can be written as follows. 

2e e e
e 22 2 .n

r m cr
m v n n

αα
⋅ π = π                   (15) 

From this, the following relationship can be derived [4]. 

.nv
c n

α
=                           (16) 

3. The Relation between Kinetic Energy and Momentum  
Derived from the STR Relationship 

The energy-momentum relationship in the special theory of relativity (STR) 
holds in an isolated system in free space. Here, if 0m  is rest mass and m relati-
vistic mass, the relationship can be written as follows. 

( ) ( )2 22 2 2 2
0 .m c p c mc+ =                    (17) 

What is the relationship between relativistic kinetic energy and momentum if 
this relationship holds? 

Incidentally, Sommerfeld once defined kinetic energy as the difference be-
tween the relativistic energy 2mc  and rest mass energy 2

0m c  of an object [5]. 
That is, 

( )
2 2 2

0 0 1 22

1 1 , .
1

vK mc m c m c
c

β
β

 
 = − = −    =
 −  

          (18) 

Sommerfeld believed that Equation (18), which can be derived from Equation 
(17), can also be applied to the electron in a hydrogen atom. 

First, it is clear that the following formula holds [4]. 

( ) ( )2 22 2 2 2
0 0 .m c mc m c mc + − =                  (19) 

Expanding the left side of this equation yields the following. 

( ) ( ) ( )( )22 4 2 4 2 4 2 2 2 2
0 0 0 0 0 .m c m c m c m c m m mc m c c+ − = + + −       (20) 

Using this, Equation (19) becomes as follows. 

( ) ( )( ) ( )2 22 2 2 2 2
0 0 0 .m c m m mc m c c mc+ + − =            (21) 

Since this equation and Equation (17) are equal, the following relationship 
must hold when Equation (18) is taken into account. 
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( )( ) ( )2 2 2
0 0 0 .p m m mc m c m m K= + − = +              (22) 

The following formula is obtained from this. 
2
re

re
0

.
p

K
m m

=
+

                        (23) 

Here, reK  is relativistic kinetic energy and rep  relativistic momentum. The 
“re” in reK  and rep  stands for “relativistic”.  

Equation (23) is the formula for relativistic kinetic energy. Classical 
(non-relativistic) kinetic energy, in contrast, is defined as follows. 

2
2 cl

cl 0
0

1 .
2 2

p
K m v

m
= =                      (24) 

In classical theory, mass does not depend on velocity. That is, Equation (23) 
and Equation (24) are the same if 0m m= . 

4. Energy-Momentum Relationship of the Electron Derived 
with Another Method 

The author has previously derived the following relationships applicable to the 
electron constituting a hydrogen atom [6]. 

( ) ( )2 22 2 2 2
e .n nm c p c m c− =                    (25) 

Here, 
2 2

e re, .n nm c m c K= −                       (26) 

nm  is the mass of an electron in a state where the principal quantum number 
is n. 

These energy relationships can be illustrated as follows (Figure 1). 
In this paper, Equation (25) will be derived more simply by using a method 

different from that used previously. The logic of Equations (19) to (23) is bor-
rowed to accomplish that purpose. 

Now, it is clear that the following equation holds. 

( ) ( )2 22 2 2 2
e e .n nm c m c m c m c + − =                 (27) 

Expanding and rearranging this equation, the following equation is obtained. 

( ) ( )( ) ( )2 22 2 2 2 2
e e e .n n nm c m m m c m c c m c+ + − =           (28) 

Next, the relativistic kinetic energy of the electron can be defined as follows by 
referring to Equation (23). 

2
re,2 2

re, e
e

.n
n n

n

p
K m c m c

m m
= − =

+
                 (29) 

From this, 

( )( )2 2 2
e e re, .n n nm m m c m c p+ − =                  (30) 

Finally, Equation (28) matches Equation (25). 
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Figure 1. Energy levels of a hydrogen atom derived from Bohr’s classical quantum theory 
and this paper: According to the virial theorem, BO, cl,n nE K= −  and re, re,n nE K= − . An 

electron at rest in free space emits a photon when it is taken into a hydrogen atom. Also, 
the electron acquires the same amount of kinetic energy as the energy of the emitted 
photon. If BO re0, 0E E= =  are described using an absolute energy scale, then the elec-
tron is at rest in free space, and this corresponds to the state of having a rest mass energy 
of 2

em c . 
 

Incidentally, re,n n np m v=  [4], and thus it is clear that the following equation 
holds. 

re, .n n np c m v c=                         (31) 

Here, if we substitute re,np c  in Equation (31) into Equation (25) and rear-
range, then the following value is obtained. 

1 22

e 21 .n
n

v
m m

c

−
 

= + 
 

                     (32) 

If the relation in Equation (16) is used here, Equation (32) becomes as follows. 
1 2 1 22 2

e e2 2 21 .n
nm m m

n n
α

α

−
   

= + =   +   
              (33) 

Hence, the energy levels of a hydrogen atom re,nE  are: 
1 22

2 2 2
re, re, e e 21 1 , 0,1,2, .n n nE K m c m c m c n

n
α

−  
 = − = − = + −    = 
   

    (34) 
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5. Relativistic Energy of a Hydrogen Atom Derived  
from Equation (16) 

When both sides of Equation (16) are squared, and then multiplied by e 2m , 
2 2

e e
2 2

1 1 .
2 2

nm v m
c n

α
=                       (35) 

Hence, 
2 2

2 e
BO, e 2

1 .
2 2n n

m c
E m v

n
α

= − = −                   (36) 

If Equation (16) is taken as a departure point, the energy levels of the hydro-
gen atom derived by Bohr can be derived immediately. Equation (16) has tre-
mendous power. However, from a relativistic perspective, ( ) 2

e1 2 nm v  is an ap-
proximation of the kinetic energy of the electron. Therefore, the energy in Equa-
tion (1) is also an approximation of the true value. 

Next, let’s try to derive the energy levels in the hydrogen atom from Equation 
(16). If both sides of Equation (16) are first squared, and then both sides are 
multiplied by ( )2

en nm m m+ . 
2 2 22 2

2
e e

.n n n

n n

m v mc
m m m mn

α
=

+ +
                   (37) 

Here, the left side of Equation (37) is the relativistic kinetic energy of the elec-
tron, and thus the energy levels are: 

2 2 22 2

re, re, 2
e e

.n n n
n n

n n

m v mcE K
m m m mn

α
= − = − = −

+ +
            (38) 

Next, if Equation (33) is taken into account, the right side of Equation (38) is 
as follows. 

2 22 2
e

re, 2 2 2 1 22

e 2 2

1 .

1
n

n mcE
n n nm

n

α
α

α

 
= − × × 

+     
 +  +   

          (39) 

Next, the numerator and denominator of Equation (39) are multiplied by: 
1 22

2 21 .n
n α

 
−  + 

 

When this is done, Equation (39) is as follows. 
1 22 2 2 2 2

2
re, e2 2 2 2 2 21n

n n nE m c
n n n
α α

α α α

      +  = − × −     + +       
      (40a) 

1 22
2

e 2 2 1nm c
n α

  
 = − +   

                            (40b) 

1 22
2

e 21 1m c
n
α

−  
 = + −  . 
   

                            (40c) 
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Equation (34) can also be derived taking Equation (16) as a starting point. The 
discussion thus far in this section has provided an explanation by quoting 
another paper. 

Now, if a Taylor expansion is performed on the right side of Equation (34), 
2 4 6

2
re, e 2 4 6

3 51 1
2 8 16nE m c

n n n
α α α  

= − + − + −  
   

           (41a) 

2 4 6
2

e 2 4 6

3 5
2 8 16

m c
n n n

α α α 
= − − + − 

 
                (41b) 

2 2 2 4
e
2 2 4

3 51 .
2 4 8
m c
n n n

α α α 
= − − + − 

 
                 (41c) 

Comparing Equation (41c) and Equation (1b), it is evident that Equation (1) 
is an approximation of Equation (34). That is, 

re, BO, .n nE E≈                         (42) 

Next, Table 1 summarizes the energies of a hydrogen atom obtained from 
Equation (1) and Equation (34) [7]. 

The following values of CODATA were used when calculating energies. 

37.2973525693 10 .α −= ×  
8 -12.99792458 10  m s .c = × ⋅  

31
e 9.1093837015 10  kg.m −= ×  

The results derived from section 3 to 5 are summarized here in Table 2. 
In deriving the energy levels of a hydrogen atom, Sommerfeld began from 

Einstein’s energy-momentum relationship. However, that is a mistake. The 
Einstein relation that holds in an isolated system in free space is not applicable 
in the space inside a hydrogen atom where there is potential energy. The author 
derived, for the first time, Equation (25) that is applicable to an electron in a hy-
drogen atom. 

6. Discussion 

In the sections up to the previous section, the groundwork was laid for finding a 
formula for the wavelength of a photon emitted from a hydrogen atom. 

The differences in energy between different energy levels in the hydrogen 
atom can be found with the following formula. 

 
Table 1. Comparison of the energies of a hydrogen atom predicted by Bohr’s classical 
quantum theory and this paper. 

 Bohr’s Energy Levels This Paper 

n = 1 −13.60569 eV −13.60515 eV 

2 −3.40142 eV −3.40139 eV 

3 −1.511744 eV −1.511737 eV 
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Table 2. Formulas and energies derived from the standpoint of STR and Sommerfeld, and formulas and energies derived by the 
author: Equations marked at the right with an asterisk are quoted from Reference [4]. When discussed by depicting a classical 
picture, like the Bohrmodel, the electron moving within the atom becomes lighter as its velocity increases. 

 Formula of STR and Sommerfeld (SO) This Paper 

Kinetic Energy 2 2
re 0 .K mc m c= −     (18) 

2
re

re
0

.pK
m m

=
+

    (23) 

2 2
re, e .n nK m c m c= −    (26) 

2
re,

re,
e

.n
n

n

p
K

m m
=

+
    (29) 

Energy-Momentum Relationship ( ) ( )22 2 2 2
0 .m c p c mc+ =   (17) 

Holds in isolated systems in free space 

( ) ( )2 22 2 2 2
e .n nm c p c m c− =   (25) 

Applicable to an electron in a hydrogen atom 

Energy Levels of a Hydrogen Atom 2 2
SO re 0 .E K m c mc= − = −   (18) 

1 22
2

SO, e 2 21 1, 2,n

nE m c n
n α

  = −  , = .  −   
  * 

2 2 2 4
e

SO, 2 2 4

3 51 .
2 4 8n

m cE
n n n

α α α ≈ − + + 
 

 * 

2 2
re, re, e .n n nE K m c m c= − = −   (34) 

1 22
2

re, e 2 2 1 0,1,2,n

nE m c n
n α

  = −  , = .  +   
   (40b) 

2 2 2 4
e

re, 2 2 4

3 51 .
2 4 8n

m cE
n n n

α α α ≈ − − + 
 

  (41c) 

1E  SO,1 13.60624 eV.E = −  * re,1 13.60515 eV.E = −  * 

 

( ) ( )2 2 2 2 2 2
re, re, e en m n m n m

cE E m c m c m c m c m c m c h hν
λ

− = − − − = − = =
 

1 2 1 22 2
2

e 2 21 1 , 1, 2,m c n m m
n m
α α

− −    
 = + − +      = + + .   
     

   (45) 

The following equation is also known. 

C
e

h
m c

λ = .                          (46) 

Taking into account Equation (46), 

2
e

C

hcm c
λ

= .                          (47) 

Based on this, Equation (45) can be written as follows. 

re, re,

1 2 1 22 2

2 2
C

1

1 1 1 , 0,1, 2, , 1, 2,

n mE E
hc

m n m m
n m

λ

α α
λ

− −

−
=

    
 = + − +   =   = + + .   
     

 

  (48) 

Equation (48) is the formula for wavelength, taking into account Equation 
(25). If the Taylor expansion of Equation (48) is taken, the following formula is 
obtained. 

2 4 6 2 4 6

2 4 6 2 4 6
C

1 1 3 5 3 51 1
2 8 16 2 8 16n n n m m m
α α α α α α

λ λ
    

= − + − + − − + − +    
     

     (49a) 

2 2 4 2 4

2 4 6 2 4 6
C

1 3 5 1 3 5
2 4 8 4 8m m m n n n
α α α α α
λ

    
= − + − − − + −    

     
            (49b) 
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Table 3. Wavelengths of photons emitted due to transitions between different energy le-
vels: the 3 values in the table, in order from the top, are the values found from Equation 
(8), the values found from Equation (48), and the actual measured values. 

 m = 1 2 

n = 2 
121.502 nm 
121.508 nm 

121.6 nm 
 

3 
102.517 nm 
102.522 nm 

102.6 nm 

656.112 nm 
656.121 nm 
656.29 nm 

 
2 2 4 2 4

e
2 4 6 2 4 6

1 3 5 1 3 5
2 4 8 4 8
m c
h m m m n n n

α α α α α    
= − + − − − + −    

     
       (49c) 

2 4 2 4

2 4 6 2 4 6

1 3 5 1 3 5
4 8 4 8

R
m m m n n n

α α α α
∞

    
= − + − − − + −    

     
          (49d) 

2 2 4 4

2 2 4 4 6 6

1 1 3 3 5 5 .
4 4 8 8

R R
m n n m n m

α α α α
∞ ∞

  ≈ − + − − +  
   

              (49e) 

It is evident here that the approximation value of Equation (49e) matches the 
Rydberg formula Equation (8). That is, 

1 2 1 22 2

2 2 2 2
C

1 1 11 1 1, 2,R n m m
n m m n
α α

λ

− −

∞

       + − + ≈ −  ,   = + + .     
      

   (50) 

Here, if the wavelengths of photons emitted due to transitions between dif-
ferent energy levels are calculated using Equations (8) and (48), the results are as 
indicated in Table 3.  

Precision up to 4 significant digits is required for experiments. Therefore, 
there will be no problems even if the approximation of Equation (8) is used in-
stead of Equation (48) to calculate wavelengths. 

However, Equation (8) for calculating the wavelength of the spectra of a hy-
drogen atom is strange because it does not include the Compton wavelength of 
the electron. 

7. Conclusions 

In classical quantum theory, the wavelength of a photon emitted due to a transi-
tion by an electron to a different energy level is calculated using Equation (8). 
However, this paper has shown that Equation (48) is a formula more exact than 
calculating the wavelength of the photon. 

Thus, it has been shown that the existing Equation (8) is an approximation for 
Equation (48). 
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Abstract 
We discuss, giving all necessary details, the boundary-bulk propagators. We 
do it for a scalar field, with and without mass, for both the Feynman and the 
Wheeler cases. Contrary to standard procedure, we do not need here to ap-
peal to any unfounded conjecture (as done by other authors). Emphasize that 
we do not try to modify standard ADS/CFT procedures, but use them to eva-
luate the corresponding Feynman and Wheeler propagators. Our present 
calculations are original in the sense of being the first ones undertaken expli-
citly using distributions theory (DT). They are carried out in two instances: 1) 
when the boundary is a Euclidean space and 2) when it is of Minkowskian 
nature. In this last case we compute also three propagators: Feynman’s, An-
ti-Feynman’s, and Wheeler’s (half advanced plus half retarded). For an oper-
ator corresponding to a scalar field we explicitly obtain, for the first time ever, 
the two points’ correlations functions in the three instances above mentioned. 
To repeat, it is not our intention here to improve on ADS/CFT theory but 
only to employ it for evaluating the corresponding Wheeler’s propagators. 
 

Keywords 
ADS/CFT Correspondence, Boundary-Bulk Propagators, Feynman’s  
Propagators, Wheeler’s Propagators 

 

1. Introduction 

Propagators and correlators are one of the essential tools to work, for example, 
in Quantum Field Theory (QFT) and String Theory (ST), in particular, in for-
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mulating the correspondence ADS/CFT (Anti-de Sitter/Conformal Field 
Theory). This correspondence was established by Maldacena [1] in 1998 and is 
universally regarded as a very useful model for many purposes. 

The bibliography on this subject, for scalar fields, is quite extensive. We give 
here just a small representative in [2]-[12]. For a more complete bibliography 
the reader is directed to the report [13]. 

One of the ADS/CFT correspondence’s prescriptions (see [2]) will allow us to 
evaluate the correlators on the boundary of ADS space. The first boundary-bulk 
propagator was calculated by Witten a few months after the appearance of [1], 
entitled Anti de Sitter space and holography. In this case the boundary is a Euc-
lidean space [2] [3]. 

In this work, instead, we evaluate the boundary-bulk propagators for the case 
in which the boundary is a Minkowskian space. In such regards, remark that 
some attempts have been made before in [14] [15] [16]. 

1.1. The Wheeler Propagator 

The Feynman’s propagator for a free real scalar field is a time-ordered correla-
tion function of two scalar fields ( )xΦ  and ( )yΦ  in the vacuum state 

( ) ( ) ( )ˆ0 0 .FG x y T x y− = Φ Φ                 (1.1) 

This propagator is a Green function of the Klein-Gordon equation, and is 
discussed in almost any text-book on quantum mechanics. Not so well-known at 
all is the Wheeler propagator. In fact, to provide a fairly complete description of 
it constitutes one of the present goals. 

More than half a century ago, J. A. Wheeler and R. P. Feynman published a 
work [17] in which they represented electromagnetic interactions by means of a 
half advanced and half retarded Green functions. The charged medium was 
supposed to be a perfect absorber, so that no radiation could possibly escape the 
system. 

We are going to call this kind of Green function a “Wheeler function’’ (or 
propagator). It has been used before by P. A. M. Dirac [18], when trying to avoid 
some run-away solutions, in which one finds rapid increases that cannot be con-
trolled. Later on, in 1949, J. A. Wheeler and R. P. Feynman showed that, in spite 
of the fact that the Green function contains an advanced part, the results do no 
contradict causality [19]. 

A causal, unitary, and Lorentz invariant quantification of tachyons was performed 
in reference [20]. The corresponding propagator is precisely a Wheeler’s one. 

The same happens with complex mass particles that appear in higher order 
supersymmetric models [21]. For these particles, the propagator is also a Whee-
ler’s propagator. 

We review some precedent work below. 

1.2. The Starinets and Son Paper 

The main previous attempt to try to calculate boundary-bulk propagators in the 
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Minkowskian boundary for the Anti-de Sitter space [in the ADS/CFT corres-
pondence] was made by Son and Starinets (SS) in 2002 [22]. However, SS needed 
to formulate a conjecture that we show here to become unnecessary if one uses 
the full distributions-theory of type S’ (of Schwartz). SS literally state (the neces-
sary symbols will be explained later in the text) “We circumvent the difficulties 
mentioned above by putting forward the following conjecture 

( ) ( )2 ,
B

R
z

G k F k z= −                   (3.15)” 

For this conjecture no rigorous mathematical basis is presented. Instead, we 
will nor need here any conjecture at all. SS’ work was entitled “Minkowski-space 
correlators in AdS/CFT correspondence: recipe and applications”. 

1.3. The Freedman et al. Paper 

We must also mention the work of Freedman et al. [23], in which the authors 
deal with the case of a Euclidean boundary. Freedman, however, did not treat 
the case of a Minkowskian boundary, at least in the way that Son and Starinets 
did. To repeat, we make full use here of distribution theory. This does not entail, 
of course, a simple i  prescription, but a much more elaborate treatment, that 
has not been performed before in this field. Let us also remark, as this is an im-
portant point for us, that in this paper we do not evaluate renormalized correla-
tion functions.  

1.4. Our Treatment 

As stated above, in the present effort we evaluate, without any a la Starinets and 
Son conjecture, the boundary-bulk propagators corresponding to the following 
three cases i) Feynman, ii) Anti-Feynman, and iii) Wheeler (half advanced plus 
half retarded). We do this both for massless and massive scenarios (a scalar field 
involved). Later we calculate the two points correlators (TPC) for operators cor-
responding to this scalar field in the three instances previously mentioned. We 
clarify that in this paper we do not evaluate the renormalized TPC. 

We demonstrate as well that the Feynman propagator must be a function of 
0iρ +  (see below for the notation) in momentum space, and therefore a func-

tion of 2 0x i−  in configuration space. We show that something similar hap-
pens with the Anti-Feynman propagator. For the first time ever, we calculate the 
Wheeler’s propagator (half advanced plus half retarded) as well. 

As usual, we use here regularity conditions 1) at the origin (Dirichlet’s) and 2) 
of rapid decay at infinity (boundary condition). This applies, for instance, to 
Equations (2.8), (2.9), and (2.10). 

It may be asserted that propagators are always to be interpreted in a distribu-
tional sense, but most authors do not employ, in dealing with them, the FULL 
distribution theory developed by Laurent Schwartz [24] and Israelovich M. 
Guelfand et al. [25]. 

Note also that, until the 90’s, the only field propagators that had been calcu-
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lated were Anti-de Sitter (spatial) ones. 

1.5. Organization of This Work 

The paper is organized as follows: Section 2 deals with the Euclidean case. In it, 
the three different propagators referred to above cannot be distinguished (nei-
ther in the massive nor in the massless instances). 

In Section 3, we tackle similar scenarios as those of Section 2, but now in 
Minkowski’s space, where the three propagators can be distinguished. 

In Section 4, we compute in Euclidean space the TPC for a scalar operator 
corresponding to a scalar field via Witten’s prescription.  

In Section 5, we generalize the calculations of Section 4 to Minkowski’s space. 
We obtain in this fashion the two-point correlations functions corresponding to 
the three different propagators of our list above. 

Finally, some conclusions are drawn in Section 6. 

2. Euclidean Case 
2.1. Massless Scalar Field Propagator 

The Klein-Gordon equation in 1ADSν +  for the scalar field ( ),zφ x  reads, in 
Poincare coordinates, 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 1 , , , 0,z zz z z z z z zφ ν φ φ ν φ∂ + − ∂ + ∇ −∆ ∆ − =x x x x   (2.1) 

where ( ) 0ν∆ ∆ − ≥  plays the role of 2m . We exclude tachyons form of this 
treatment. Here ∆  is the conformal dimension, ν  the boundary’s dimension, 
and x  their coordinates. The Fourier transform in the variables x  of the 
field ( ),zφ x  is 

( ) ( )ˆ , , e d .iz z xνφ φ ⋅= ∫ k xk x
                  

(2.2) 

Using (2.2), (2.1) takes the form 

( ) ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0.z zz z z z z k zφ ν φ ν φ ∂ + − ∂ − + ∆ ∆ − = k k k
    

(2.3) 

We analyze now the massless case given by 0,ν∆ = . For it we have the mo-
tion equation 

( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z z z z k zφ ν φ φ∂ + − ∂ − =k k k          (2.4) 

or equivalently (for 0z ≠ ), 

( ) ( ) ( )2 21ˆ ˆ ˆ, , , 0.z zz z k z
z
νφ φ φ−

∂ + ∂ − =k k k
            

(2.5) 

In the variable z, this equation is of the Bessel type (see [26]) 

( ) ( ) ( )
2 2

2
2

1 2 0F z F z k F z
z z
α µ α − −′′ ′+ − + = 

            
(2.6) 

The pertinent solution (that does not diverge when the argument tends to in-
finity) is 

( ) ( ).F z z kzα
µ=                        (2.7) 
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Thus, the solution of (2.5) becomes 

( ) ( )2

2

ˆ , .z k z kz
ν

νφ = 
                     

(2.8) 

One easily verifies that, for infinitesimal z [26], 

( )
( )

( )

1
2

2
2

2 2

2
2 .kz O kz

kz

ν

ν

ν ν

ν−

− +

 Γ    = +  
 



              

(2.9) 

Equation (2.9) is just a Bessel-McDonald distribution (defined by Guelfand 
[25]) in Euclidean space. As a consequence, 

( )

1
2

2
0

2 2

2
2lim .

z
z kz

k

ν

ν

ν ν

ν−

→

 Γ 
 =

                 

(2.10) 

In other words, the solution is regular at the origin and vanishes at infinity (in 
the variable z). Accordingly, we have, for the field in the bulk, the solution 

( )
( )

( ) ( )
2

2

, e d .
2

izz a kz k

ν

ν
ννφ − ⋅=

π
∫ k xx k 

            
(2.11) 

This solution must reduce itself to the field ( )0 xφ  on the boundary, so that 

( ) ( )
( )

( )
( )

( )

1
2

2
0 0

2
12 ˆ0, e d e d .

2 2
i ia k k k

ν

ν
ν ν

ν ν

ν

φ φ φ

−

− − ⋅ − ⋅

 Γ 
 = = =

π π
∫ ∫k x k xx x k k

 
(2.12) 

From this last equation we can obtain ( )a k  as a function of 0̂φ  and then 
write 

( )
( )

( ) ( )
1

2 2
2

0
2

2 ˆ, e d ,
2

2

izz k kz k

ν ν
ν

ν
ν

ν
φ φ

ν

−

− ⋅=
 π Γ 
 

∫ k xx k

        

(2.13) 

or, equivalently, 

( )
( )

( ) ( ) ( )
1

2 2
2

0
2

2, e d d .
2

2

izz k kz k x

ν ν
ν

ν ν
ν

ν
φ φ

ν

−
′− ⋅ −′ ′=

 π Γ 
 

∫∫ k x xx x

     

(2.14) 

From (2.14) we then obtain an expression of the boundary-bulk propagator 

( )
( )

( ) ( )
1

2 2
2

2

2, e d .
2

2

izK z k kz k

ν ν
ν

ν
ν

ν ν

−
′− ⋅ −′− =

 π Γ 
 

∫ k x xx x 

        

(2.15) 

To carry out the integration in the variable k we appeal to the expressions for 
the Fourier transform and its inverse obtained by Bochner [27]. For the Fourier 
transform we have 
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( ) ( ) ( ) ( ) ( )
2

2
11 0 22

2ˆ e d d ,if k f x r kr f r r
k

ν
ν

ν
νν

∞
⋅

−−

π
= =∫ ∫k xx 

       

(2.16) 

and for its inverse 

( )
( )

( )
( )

( ) ( )2
11 0 222

1 1ˆ ˆe d d .
2 2

if r f k k kr f k k
r

ν
ν

νν νν

∞
− ⋅

−−
= =

π π
∫ ∫k xk 

  

(2.17) 

Using these relations we have now 

( )
( )

( ) ( ) ( )
1

2 2 2

11 0 2 22

22, d .
2

2

zK z k kz k k

ν ν ν

ν
ν νν

ν ν

− ∞

−−

π
′ ′− = −

  ′−π Γ 
 

∫x x x x
x x

 

 

(2.18) 

So as to evaluate the last integral we appeal to a result from [26] 

( ) ( ) ( )
( )

1
12 20

1
d 2 ,x bx ax x a b

a b
µ ν µ ν µ ν

ν µ µ ν

µ ν∞
+ + +

+ +

Γ + +
=

+
∫  

       

(2.19) 

Our deduction follows a different, simpler and complete path than that of [2]. 
Our approach also has a didactic utility. 

( ) ( )
( )22

2

, ,

2

zK z
z

ν

ν

ν

ν

 Γ
′− =  

′+ −    π Γ 
 

x x
x x

           

(2.20) 

which leads to 

( ) ( ) ( )0, , d ,z K z xνφ φ′ ′ ′= −∫x x x x
              

(2.21) 

an expression that, in turn, leads to 

( ) ( )
0

lim , .
z

K z δ
→

′ ′− = −x x x x
                 

(2.22) 

2.2. Massive Field Propagator 

We now consider the massive case 0,ν∆ ≠ . The equation of motion for this 
case reads 

( ) ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z z z z k zφ ν φ ν φ ∂ + − ∂ − + ∆ ∆ − = k k k
   

(2.23) 

or equivalently, 

( ) ( ) ( ) ( )2 2
2

1ˆ ˆ ˆ, , , 0.z zz z k z
z z

ννφ φ φ
∆ ∆ − −

∂ + ∂ − + = 
 

k k k
      

(2.24) 

The solution for this last equation is 

( ) ( )2ˆ , ,z k z kz
ν

µφ =                      (2.25) 

with 
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( )
2

.
4
νµ ν= ± + ∆ ∆ −

                   
(2.26) 

Since ( ) ( )z zµ µ−=  , we select for µ  in (2.26) the plus sign. We have then 

( )
( )

( ) ( )
2

, e d .
2

izz a kz k

ν

ν
µνφ − ⋅=

π
∫ k xx k 

            
(2.27) 

For 0∆ ≠ , this solution is not regular at the origin. To overcome this prob-
lem we select 

( ) ( )
( )

( ) ( )
( )

( )
2 1 ˆ, e d e d ,

2 2
i ia k k k

ν

ν ν
µν νφ φ φ− ⋅ − ⋅= = =

π π
∫ ∫k x k xx x k k 


  

  
(2.28) 

where   is infinitesimal. From (2.28) we have then 

( ) ( )

( )2

ˆ
.a

k
ν

µ

φ
=

k
k 

                        

(2.29) 

Replacing the result of (2.29) into (2.27) we obtain 

( )
( )

( )
( ) ( )

21 ˆ, e d ,
2

ikzzz k
k

ν

µ ν
ν

µ

φ φ − ⋅ =  
 π

∫ k xx k



  
         

(2.30) 

or similarly, 

( )
( )

( )
( ) ( ) ( )21, e d d .

2
ikzzz k x

k

ν

µ ν ν
ν

µ

φ φ ′− ⋅ −  ′ ′=  
 π

∫∫ k x xx x



  
      

(2.31) 

From this last equation we see that the propagator is 

( )
( )

( )
( )

( )21, e d .
2

i
m

kzzK z k
k

ν

µ ν
ν

µ

′− ⋅ − ′− =  
 π

∫ k x xx x


  
        

(2.32) 

As a consequence we can write 

( ) ( ) ( ), , d .mz K z xνφ φ′ ′ ′= −∫x x x x               
(2.33) 

From (2.33) we immediately gather that 

( ) ( ), .mK δ′ ′− = −x x x x                   (2.34) 

2.3. Wrong but Popular Approach for Approximate  
Massive Field Propagators 

It is instructive to discuss here a popular but non-valid approach for the func-
tion ( )k  . The issue here is that, although   is infinitesimal, it cannot adopt 
a 0-value. As k is an unbounded variable, when k →∞ , we have k →∞ . No-
tice first that 

( ) ( )
( )

( )( )
1

22
.k O k

k

µ
µ

µ µ

µ−
−Γ

= +  
               

(2.35) 

Some people make now the approximation 
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( ) ( )
( )

12
.k

k

µ

µ µ

µ− Γ
= 

                     
(2.36) 

From (2.32) one obtains an approximation for the propagator K that can be 
called M. Ome has then 

( )
( ) ( )

( ) ( )2

1

1, e d .
22

i
m

zM z k kz k
ν

µ
µ ν

µν µ µ
′− ⋅ −

−

 ′− =   Γ π
∫ k x xx x 



   

(2.37) 

Using again the Bochner formula one arrives at 

( ) ( ) ( ) ( ) ( )
2

2
11 0 22

2
e d d .ik kz k k kz k k

ν
νµµ ν

µ µ νν

∞ +′− ⋅ −

−−

π
′= −

′−
∫ ∫k x x x x

x x
  

 

(2.38) 

By recourse to (2.19) it follows that 

( ) ( ) ( )

22

22
2

2, .m
zM z

z

νν µµ

ν

νµ

µ

+−
 Γ +    ′− =  
Γ ′+ −  π

x x
x x



       

(2.39) 

Defining 

( )
2

,
2 2 4
ν ν νγ µ ν= + = + + ∆ ∆ −

               
(2.40) 

one can write 

( ) ( )
( )22

2

, .

2

m
zM z

z

γ
γ ν

ν

γ
νγ

−  Γ
′− =  

  ′+ −  Γ −π  
 

x x
x x



        

(2.41) 

It is then realized that, by construction, 

( ) ( ), ,mM δ′ ′− ≠ −x x x x                   (2.42) 

and define 

( ) ( ), , ,m mN z M z ν γ−′ ′− = −x x x x                (2.43) 

which allows one to write for mN  the expression 

( ) ( )
( )22

2

1, .

2

m
zN z

z

γ

ν

γ
νγ

 Γ
′− =  

  ′+ −  Γ −π  
 

x x
x x

         

(2.44) 

Therefore, one has constructively proved that 

( ) ( )
0

lim , .mz
N z δ

→
′ ′− ≠ −x x x x

                
(2.45) 

Note that (2.44) is indeed the well known expression for the boundary-bulk 
propagator for a scalar field in configuration space. However, this expression can  

only be used as an approximation to the propagator K when 
2
νµ ≅ . 

The above recounted approximation, not very well founded, is precisely the 
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one most people use in current literature to obtain the propagator (2.32). From 
it, people deduce the approximation (2.44).  

Indeed, one of the main goals of our paper is to overcome the problems posed 
by this approximation. We will try below to do better than current usage, and 
shall indeed achieve our goal. 

3. Minkowskian Case 
3.1. Massless Field Propagator 

Let us now deal with the case in which the boundary of the 1ADSν +  is the ν
-dimensional Minkowskian space. In the massless case the field-equation is 

( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z k z z k z k z kφ ν φ φ∂ + − ∂ + =          (3.1) 

where 2 2 2
0k k ρ= − =k . Thus, we can write 

( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆ, 1 , , 0,z zz z z z z zφ ρ ν φ ρ ρφ ρ∂ + − ∂ + =          (3.2) 

or, rewriting this last equation, 

( ) ( ) ( ) ( ) ( )
21

2 2 2 2ˆ ˆ ˆ, 1 , 0 , 0.z zz z z z z i i zφ ρ ν φ ρ ρ φ ρ ∂ + − ∂ − ± =  


    
(3.3) 

The distribution ( )0i λρ ±  is defined as (see reference [24]) 

( )0 e ,ii λ λ λ λρ ρ ρ± π
+ −± = +                    (3.4) 

and can be cast in terms of ( )H x , the Heaviside step function [24]. We recast 
now (3.3) in the form of a Bessel equation 

( ) ( ) ( ) ( )
21

2 2
1ˆ ˆ ˆ, , 0 , 0.z zz z i i z

z
νφ ρ φ ρ ρ φ ρ−  ∂ + ∂ − ± =  



       
(3.5) 

The solution of this equation that is 1) regular at the origin and 2) vanishes for 
ρ →∞ , becoming 

( ) ( )
1

2 2

2

ˆ , 0 .z k z i i z
ν

νφ ρ = ±  


                
(3.6) 

One must take into account that lim e 0ikx
k→∞ =  (see below in this section 

and [25]). 

( )
( )

( )

1
2

21 1 2
2 2

12 2
2

2
20 0 .

0

i i z O i i z

i i z

ν
ν

ν ν

ν

ρ ρ

ρ

−
− +

 Γ         ± = + ±           ±  

 





   

(3.7) 

Equation (3.7) is just a Bessel-McDonald distribution (defined by Guelfand 
[24]) in Minkowskian space. We have then 

( )
( )

( ) ( ) ( )
12
2

2

ˆ, 0 e d , e d .
2

ik x ik xzz x a i i z k z k k

ν

ν ν
ννφ ρ φ− ⋅ ⋅ = ± =  π

∫ ∫k



 

(3.8) 

From this last equation we deduce that 
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( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2 0

2

2 ˆ, 0 0 e d ,
2

2

ik xzz x i i i i z k k

ν ν ν

ν
ν

ν
φ ρ ρ φ

ν

−

− ⋅   = ± ±        π Γ 
 

∫

 

 

(3.9) 

or, equivalently, 

( )
( )

( ) ( )

( ) ( )

1
1 12 2 2
2 2

2

0

2, 0 0
2

2

e d d .ik x x

zz x i i i i z

x k x

ν ν ν

ν
ν

ν ν

φ ρ ρ
ν

φ

−

′− ⋅ −

   = ± ±        π Γ 
 

′ ′×

∫∫

 

    

(3.10) 

The ensuing propagator becomes then 

( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

i x xzK z x x i i i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−
′− ⋅ −   ′− = ± ±        π Γ 

 

∫ k


  (3.11) 

Thus, the corresponding Feynman’s propagator is 

( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

i x x
F

zK z x x i i K i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−
′− ⋅ −   ′− = − + − +        π Γ 

 

∫ k (3.12) 

Note that the Feynman propagator is a function of 0iρ + , as it should. For 
the anti-Feynman propagator we have instead 

( )
( )

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

i x x
AF

zK z x x i i K i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−
′− ⋅ −   ′− = − −        π Γ 

 

∫ k (3.13) 

The expression for the Wheeler’s propagator (half advanced plus half retarded) 
is: 

( ) ( ) ( )1, , , .
2 F AFW z x x K z x x K z x x′ ′ ′− = − + −           

(3.14) 

Using the relations 

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 ,

2

F
zK z i i i i z

ν ν ν

νρ ρ ρ
ν

−
   = − + − +        Γ 

 



      

(3.15) 

and 

( ) ( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 ,

2

AF
zK z i i i i z

ν ν ν

νρ ρ ρ
ν

−
   = − −        Γ 

 



       

(3.16) 

we can define, as usual, the retarded propagator 

( ) ( ) ( ) ( ) ( )0 0, , , ,R F AFK z H k K z H k K zρ ρ ρ= + −
        

(3.17) 

and the advanced propagator 
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( ) ( ) ( ) ( ) ( )0 0, , , .A AF FK z H k K z H k K zρ ρ ρ= + −
        

(3.18) 

We are going to show now that lim e 0ikx

k→∞
=  (see [28]). Let φ̂  be a test func-

tion belonging to a sub-space   of Schwartz’s one [24] [25]. Its Fourier trans-
form is 

( ) ( )ˆ e d ,ikxk x xφ φ
∞

−∞

= ∫
                    

(3.19) 

where φ  belongs to  . Then one can verify that 

( ) ( ) ( )ˆ ˆ0 lim lim e d lim e d .ikx ikx

k k k
k x x x xφ φ φ

∞ ∞

→∞ →∞ →∞
−∞ −∞

= = =∫ ∫
        

(3.20) 

As a consequence, we obtain 

lim e 0.ikx

k→∞
=

                        
(3.21) 

(3.21) is an extremely well-known fact established by Distribution Theory, 
and can be found in the text-book by Jones [28]. The Feynman propagator is, 
according to (3.12), 

( )
( )

( ) ( )
1

1 12 2 2
2 2

2

2, 0 0 e d .
2

2

ik x
F

zK z x i i i i z k

ν ν ν

ν
ν

ν
ρ ρ

ν

−

− ⋅   = − + − +        π Γ 
 

∫ 

 

(3.22) 

Since 
2
ν  is exponentially decreasing or oscillating, we can evaluate the 

integral that defines FK  by means of a Wick rotation over 0k . Therefore we 
have the change of variables 0 0Ek ik= , 0 0Ex ix= , 2 2 2

0E Ek k= + k , and 
2 2 2

0E Ex x= + x . Casting the integral that defines the propagator in terms of these 
new variables, we obtain 

( )
( )

( )
1

2 2
2

2

2, e d .
2

2

E Ei
F E E E E

izK z k k z k

ν ν
ν

ν
ν

ν ν

−

− ⋅=
 π Γ 
 

∫ k xx 

        

(3.23) 

Using Bochner’s formula together with (3.19) we have 

( ) ( )
2 2

2

, .

2

F E
E

i zK z x
z x

ν

ν

ν

ν

Γ  
=  +   π Γ 

                 

(3.24) 

Now, making the change to Minkowskian variables and taking into account 
that the Fourier transform of a distribution that depends on 0iρ −  is a distri-
bution that depends on 2 0x i+ , we obtain 

( ) ( )
2 2

2

, ,
0

2

F

i zK z x
z x i

ν

ν

ν

ν

Γ  =  − −  π Γ 
               

(3.25) 

which is the expression of the Feynman propagator in terms of the variables of 
the configuration space. For the anti-Feynman propagator we analogously find 
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( ) ( )
2 2

2

, .
0

2

AF

i zK z x
z x i

ν

ν

ν

ν

Γ  =  − +  π Γ 
               

(3.26) 

3.2. Massive Field Propagator 

For the massive case, the field-motion equation is 

( ) ( ) ( ) ( ) ( )
21

2 2
2

1ˆ ˆ ˆ, , 0 , 0,z zz z i i z
z z

ννφ ρ φ ρ ρ φ ρ
 ∆ ∆ −−   ∂ + ∂ − ± + =     


(3.27) 

with, again, 

( )
2

.
4
νµ ν= + ∆ ∆ −

                    
(3.28) 

The pertinent solution is now 

( ) ( )
1

2 2ˆ , 0 .z z i i z
ν

µφ ρ ρ = ±  



               

(3.29) 

The field-expression in configuration space is then 

( )
( )

( ) ( )
12
2, 0 e d .

2
ik xzz x a i i z k

ν

ν
µνφ ρ − ⋅ = ±  π

∫ k



        

(3.30) 

Once again we choose 

( ) ( )
( )

( ) ( )

( )
( )

12
2, 0 e d

2
1 ˆ e d ,

2

ik x

ik x

x x a i i k

k k

ν

ν
µν

ν
ν

φ φ ρ

φ

− ⋅

− ⋅

 = = ±  π

=
π

∫

∫

k 




  

     

(3.31) 

and from (3.23) we obtain 

( ) ( )

( )
1

2 2

ˆ
.

0

k
a k

K i i
ν

µ

φ

ρ
=

 ±  




 
                

(3.32) 

We have then the following relation for the solution 

( )
( )

( )

( )
( ) ( )

1
2

2

1
2

0
1, e d d ,

2 0

ik x x
i i z

zz x x k x
i i

ν
µ

ν ν
ν

µ

ρ
φ φ

ρ

′− ⋅ −

 ±     ′ ′=     π ±  

∫∫









  
  

(3.33) 

so that the propagator is now 

( )
( )

( )

( )
( )

1
2

2

1
2

0
1, e d .

2 0

i x x
m

i i z
zK z x x k

i i

ν
µ

ν
ν

µ

ρ

ρ

′− ⋅ −

 ±    ′− =     π ±  

∫ k








  
    

(3.34) 

The corresponding Feynman’s propagator becomes 

https://doi.org/10.4236/jmp.2020.112019


A. Plastino, M. C. Rocca 
 

 

DOI: 10.4236/jmp.2020.112019 316 Journal of Modern Physics 
 

( )
( )

( )

( )
( )

1
2

2

1
2

0
1, e d .

2 0

i x x
mF

i i z
zK z x x k

i i

ν
µ

ν
ν

µ

ρ

ρ

′− ⋅ −

 − +    ′− =     π − +  

∫ k


  
   

(3.35) 

For the anti-Feynman propagator we obtain the expression 

( )
( )

( )

( )
( )

1
2

2

1
2

0
1, e d .

2 0

i x x
mAF

i i z
zK z x x k

i i

ν
µ

ν
ν

µ

ρ

ρ

′− ⋅ −

 −    ′− =     π −  

∫ k


  
    

(3.36) 

Finally, the definition of Wheeler propagators, half retarded and half advanced, 
is similar to that of the preceding subsection, this is: 

( ) ( ) ( )1, , , .
2m mF mAFW z x x K z x x K z x x′ ′ ′− = − + −          

(3.37) 

3.3. An Approximation 

We now evaluate in approximate fashion the propagator ( )
1
20i iµ ρ − +  

   

( ) ( )

( ) ( )

11
2

2

2
0 ,

0
i i

i i

µ

µ µµ µ

µ
ρ

ρ

− Γ − + =   − +
 

             

(3.38) 

entailing 

( )
( ) ( )

( ) ( )
1 12 2
2 2

1, 0 0 e d .
22

ik x
mF

zM z x i i z i i k

ν νµ µ
ν

µν µ ρ ρ
µ

−

− ⋅
−

   = − + − +   Γ    π
∫




 
(3.39) 

Effecting again the above Wick’s rotation we obtain 

( )
( ) ( )

( )
2 2

1, e d .
22

E Ei
mF E E E E

izM z k k z k

ν νµ
µ ν

µν µ µ

−

− ⋅
−=
Γπ

∫ k xx 


      
(3.40) 

This integral is evaluated as in the previous cases. One has 

( ) ( )
2 2

2 2
2

2, .mF E
E

i zM z
z x

ν νµ µ

ν

νµ

µ

− +
 Γ −    =  Γ + π

x 

          

(3.41) 

Changing variables as above we arrive at 

( ) ( )
2 2

2

, ,
0

2

mF
i zM z x

z x i

γγ ν

ν

γ
νγ

− Γ  =  − −   Γ −π  
 



          

(3.42) 

where 

( )
2

.
2 4
ν νγ ν= + + ∆ ∆ −

                  
(3.43) 

Now we return to the inequality 
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( ) ( ),mFM x xδ≠                      (3.44) 

The following relation is valid for FN  

( ) ( ), , .mF mFN x M xν γ−=                    (3.45) 

Proceeding in analogous fashion with the Anti-Feynman propagator we ob-
tain the approximation 

( ) ( )
2 2

2

,
0

2

mAF
i zM z x

z x i

γγ ν

ν

γ
νγ

− Γ  =  − +   Γ −π  
 



          

(3.46) 

4. Glaring Mistakes of Son and Starinets’  
Calculation [22] Corrected 

By appeal to the unproved conjecture mentioned in Subsection 1.2, Son and Sta-
rinets evaluated the retarded propagator for a scalar field in a work regarded as a 
standard-bear of the ADS/CFT field. They found 

( ) ( )
2 4

2 2
2, ln

64R
N kK z k i H k sgnρ ω = − π − π            

(4.1) 

We will show below that this result is both wrong and incomplete. 
The retarded propagator reads 

( ) ( ) ( ) ( ) ( )0 0, , , .R F AFK z H k K z H k K zρ ρ ρ= + −
         

(4.2) 

For 4ν =  one has 

( )

( ) ( ) ( ) ( )

1
22

1
12

0

1 10 ln ln 0 , , ,
4 2 2

K i i z

ii i z C z i f z g z

ρ

ρ ρ ρ ρ−

 − +  
π = − + + + − − − + +    

(4.3) 

where 

( ) ( )
( )

1 2 2

0
, ,

! 2 ! 2

s s

s

zf z
s s

ρ
ρ

+ +∞

=

−  =  +  
∑

                
(4.4) 

and 

( ) ( )
( )

1 2 2 2

0 0 0

1 1, .
! 2 ! 2

l l l l

l s s

zg z
l l s s

ρ
ρ

+ +∞ +

= = =

−   = +   +    
∑ ∑ ∑

           
(4.5) 

Using [26] we have 

( )

( ) ( ) ( ) ( )

1
22

1
12

0

1 10 ln ln 0 , , .
4 2 2

K i i z

ii i z C z i f z g z

ρ

ρ ρ ρ ρ−

 −  
π = − − − − + + + − +     

(4.6) 

This, Feynman’s propagator becomes 
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( ) ( )

( ) ( ) ( )

2 1
2

2

, 0
8 4

1ln ln 0 , , ,
2 2 2

F
z iK z i z

z i C z i f z g z

ρρ ρ

ρ ρ ρ ρ

= − +

π − − − − + +      

(4.7) 

while the anti-Feynman one turns out to be 

( ) ( )

( ) ( ) ( )

2 1
2

2

, 0
8 4

1ln ln 0 , , .
2 2 2

AF
z iK z i z

z i C z i f z g z

ρρ ρ

ρ ρ ρ ρ

= + −

π + + + + − +      

(4.8) 

With the two last results OUR version of Starinets and Son retarded propaga-
tor becomes 

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
0

1 1
0 02 2

2
0 0

, , ln ,
8 4 2

0 0

ln 0 ln 0 , , ,
4

R
z i z zK z sgn k f z C z f z

iz H k i H k i

z H k i H k i f z g z

ρ ρ ρρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

π
= − + +

 − + − −  

 + + + − − +   

(4.9) 

and for the advanced one 

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
0

1 1
0 02 2

2
0 0

, , ln ,
8 4 2

0 0

ln 0 ln 0 , , .
4

A
z i z zK z sgn k f z C z f z

iz H k i H k i

z H k i H k i f z g z

ρ ρ ρρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

π
= + + +

 + − − +  

 + − + − + +   

(4.10) 

With a little algebra the two propagators reappear as 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1
0 02 2

2
0 0

, ln , 0 0
8 2

ln 0 ln 0 , , ,
4

R
z zK z C z f z iz H k i H k i

z H k i H k i f z g z

ρ ρρ ρ ρ ρ

ρ ρ ρ ρ ρ

 = + + − + − −  

 + − − + − − + +   

(4.11) 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1
0 02 2

2
0 0

, ln , 0 0
8 2

ln 0 ln 0 , , .
4

A
z zK z C z f z iz H k i H k i

z H k i H k i f z g z

ρ ρρ ρ ρ ρ

ρ ρ ρ ρ ρ

 = + + + − − +  

 + − + + − − − +   

(4.12) 

Consider now the penultimate term of the retarded propagator. It is 

( ) ( ) ( ) ( ) ( )
2

0 0ln 0 ln 0 , .
4

z H k i H k i f zρ ρ ρ ρ − − + − − +        
(4.13) 

Considering just the first term ( 0s = ) in ( ),f z ρ  we can write (up to a sign) 

( ) ( ) ( ) ( )
2 2

0 0ln 0 ln 0 ,
4 8

z zH k i H k iρ ρρ ρ − − + − − +         
(4.14) 

that can be recast as 
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( ) ( )
4 2

0ln .
32

z i sgn k Hρ ρ ρ − π                 
(4.15) 

2k  reads, using Son and Starinets’ metrics 
02 2 2k kρ = − = −k : 

( ) ( )
4 4

2 0 2ln ,
32

z k k i sgn k H k − π −                
(4.16) 

which coincides with (4.1) after calling 2 2 42N z= π . 
Thus, expression (4.1) is just a single term of the full expression for the re-

tarded propagator of (4.11). This last propagator verifies ( )lim , 0z RK z ρ→∞ =  
while (4.1) does not. We conclude then that (4.1) CAN NOT be used as a prop-
agator. 

Starinets and Son expression (SS) (4.1) cannot be regarded as a propagator for 
the massless scalar field. The same happens for the Feynman propagator of Eq. 
(3.21) in page 9 of [22]. These erroneous results demonstrate that their conjec-
ture is inadequate. 

4.1. Son and Starinets Surprising Elimination of a Divergence 

To justify the results of their paper, in page 22 of [22], Son and Starinets en-
counter an infinite in their equation (A.22). They eliminate it by setting 
( ) ( )1 ! 1 0− = = Γ , which is absurd since ( )zΓ  has a pole in 0z = , and, as a 
consequence, it has a divergence in this value of z. This procedure is mathemat-
ically unacceptable. However, it was applauded by many ADS/CFT practitioners. 
Read and learn! 

5. Two Points Correlation Functions in Euclidean Space 
5.1. Massless Case 

To evaluate the two-point correlation function of a scalar operator, we use the 
result obtained in [29]. This is 

( ) ( ) ( ) ( ) 1
1 2 0 1 0 2, , d ,g K y K y yµ ν

µ
+= − ∂ − ∂ −∫x x y x y x 

    
(5.1) 

where 00 y z≤ = < ∞ , y xµ µ= , 0µ ≠ , and then 

( ) ( ) ( ) ( )1
1 2 1 20

lim , , d .zz
Boundary

z K z K z xν ν−

→
 = − − ∂ − ∫x x x x x x 

  
(5.2) 

As ( ) ( )1 2 1 20
lim 0,
z

K δ
→

− = −x x x x , we obtain 

( ) ( ) ( )1
1 2 1 20

lim , .zz
z K zν−

→
 = − ∂ − x x x x 

           
(5.3) 

Using now the expression for K given in Equation (2.20) we have 

( ) ( ) ( )
( )1 2 2

2 1 2

1 1 .

2

ν ν

ν

ν

Γ +
= −

− π Γ 
 

x x
x x

 

             

(5.4) 

Accordingly, we have here arrived to the usual, well-known result. 
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5.2. Massive Case 

For the massive case we obtain, similarly, 

( ) ( ) ( ) ( )1
1 2 1 2, , d .m zm

Boundary

z K z K z xν ν− = − − ∂ − ∫x x x x x x 
   

(5.5) 

As ( ) ( )1 1,mK δ− = −x x x x  we can write 

( ) ( ) ( ) ( )1
1 2 1 2, d .zm z

z K z xν νδ −

=
 = − − ∂ − ∫x x x x x x


 

     
(5.6) 

Thus we arrive at 

( ) ( ) ( )1
1 2 1 2, .z mm z

z K zν−

=
 = − ∂ − x x x x


 

          
(5.7) 

Now, we use the expression for mK  given in (3.32) and write 

( ) ( )
( )

( )
( )

( )1 2
1 2

1 2 e d ,
2

i
zm

z

kzz k
k

ν
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or, equivalently, 
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(5.9) 

Using now the following result, given in [26], 

( ) 1,z
zµ µ µ
µ
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(5.10) 

we obtain 
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(5.11) 

Note that we have not renormalized the correlation functions. We will do that 
using the results of [23] in a forthcoming paper. 

6. Two Points Correlation Functions in Minkowskian Space 
6.1. Massless Case 

Similarly to the Euclidean case we obtain for the Minkowskian one the result 

( ) ( ) ( )1
1 2 1 20

lim , .z FF z
x x i z K z x xν−

→
 = ∂ −  

          
(6.1) 

Thus, we obtain for the Feynman’s propagator 
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(6.2) 

For the Anti-Feynman instance one has 
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(6.3) 

and for Wheeler’s situation, 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
1 .
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(6.4) 

6.2. Massive Case 

Again, following the developments of the Euclidean case, we have, for the Min-
kowskian instance, the two points Feynman’s correlator: 
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Thus, we have 
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or equivalently, 
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Using again (5.10) we finally obtain 
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For the Anti-Feynman propagator we obtain in analogous fashion 

( ) ( )

( )
( )

( )
( )

( )
( )1 2

1 2

1
211 1

21 2 1
2

0
0 e d .

2 2 0

mAF

ik x x

x x

K i i
x x i k

K i i

µν
ν ν

ν

µ

ρ
νµ δ ρ

ρ

−−
− ⋅ −−

 −    = − − − −     π −  

∫

 







 

(6.9) 

and for Wheeler 
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Note again that we have not re-normalized the correlation functions. We will 
do that using the results of [23] in a forthcoming paper. 

7. Conclusions 

In this work we have firstly calculated, without using any conjecture, the boun-
dary-bulk Feynman, Anti-Feynman, and Wheeler propagators (half advanced 
plus half retarded) for both a massless and a massive scalar field, by recourse to 
the theory of distributions. 

We conclusively showed that a previous 2002 work by Son and Starinets [22] 
(discussing only the Feynman propagator) is wrong. 

As further novelties, in the paper we showed that, for massive scalar fields, the 
expression for the boundary-bulk propagator in Euclidean momentum space 
does not correspond to the expression used in configuration space, but it is ra-
ther a mere approximation. 

Subsequently, using the previous results, we have evaluated the correlation 
functions of scalar operators corresponding to massless and massive scalar fields. 

Unlike the results obtained in [22], with the ones obtained here you can cal-
culate the n-points correlation functions from gravity. This is feasible for a scalar 
operator when n is an arbitrary natural number. This is perhaps our main 
present contribution. 
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Abstract 
The article explains that: 1) relativistic formulas obtained in the existing ver-
sion of the special theory of relativity (STR) are incorrect; 2) relativistic for-
mulas obtained in the existing version of the STR are explained incorrect due to 
the use of the nonexistent in nature principle of light speed non-exceedance; 3) 
conclusions on physical unreality of imaginary numbers and existence of only 
our visible Monoverse drawn from relativistic formulas of the existing version 
of the STR are incorrect due to the use of the incorrect principle of light speed 
non-exceedance. In other words, the existing version of the STR created in 
the 20th century is not quite true. Moreover, the correct STR could not be 
created in the 20th century, since 1) the principle of physical reality of imagi-
nary numbers refuting experimentally the postulated (i.e. being an unproven 
assumption) principle of light speed non-exceedance was published only in 
the 21st century; 2) experimental data whose mathematical analysis discerned 
the quaternion structure of the hidden Multiverse consisting of twenty to 
twenty-two invisible parallel universes in six-dimensional space were ob-
tained by WMAP and Planck spacecraft only in the 21st century; 3) explana-
tion of the way how astronomical observations of constellations of the starry 
sky in portals can experimentally prove the existence of invisible universes 
was published only in 2019. Therefore, the article presents an alternative ver-
sion of the STR, free from the shortcomings of its existing version. Other re-
lativistic formulas that have been obtained in the alternative version of the 
STR are explainable both at sub-light and hyper-light speeds, and for real and 
imaginary values of all quantities corresponding to these formulas. Therefore, 
the principle of light speed non-exceedance is excluded from this version of 
the STR. For the same reason, the alternative version of the STR states that 
there is a Multiverse of mutually invisible parallel universes, rather than a 
Monoverse, since all the mutually invisible parallel universes are relative to 
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each other beyond the event horizon. It also explains how the existence of 
these invisible parallel universes can be proved by astronomical observations 
in portals. Moreover, the WMAP and Planck spacecraft data are used in the 
alternative version of the STR to clarify the structure of the hidden Multi-
verse. Their mathematical processing has testified that the hidden Multiverse 
has a quaternion structure and contains twenty-twenty two invisible un-
iverses in six-dimensional space. 
 

Keywords 
Imaginary Numbers, Special Theory of Relativity, Dark Matter, Dark Energy, 
Dark Space, Multiverse, Hyperverse 

 

1. Introduction 

The existing version of the special theory of relativity (STR) [1] [2] [3] created in 
the 20th century is a great scientific achievement of physics. But its creators Jo-
seph Larmor [4], Nobel Prize laureate Hendrik Antoon Lorentz [5], Jules Henri 
Poincaré [6], Nobel Prize laureate Albert Einstein [7] and other outstanding 
scientists were in advance of their time and could not complete the theory, since 
they began to develop a theory for completion which in physics there was no 
necessary knowledge at that time. Therefore STR creators had to replace this 
missing knowledge with postulates, i.e. unproven assumptions. In other words, 
they had to guess this knowledge. But they did not guess. As a result, the version 
of the STR that was created in the 20th century and still exists is unfinished. 
Therefore, the STR was not actually created in the 20th century1. In fact, at that 
time only a task of its creation was set and an attempt to find at least its partially 
correct solution was made. 

Nevertheless, such an unfinished version of the STR is a great scientific 
achievement of Albert Einstein and other authors of SRT, since it induced phys-
ical community to persistent efforts in solving the problem of creating the cor-
rect STR. 

2. The Logic of Reasoning That Led to Creation  
of the Existing Version of the STR 

Before proceeding to consideration of shortcomings of the existing version of 
the STR, it would be useful to understand the logic of its creation and the cir-
cumstances in which it was created. Then it would become clear that the STR 
version created in the 20th century was a great scientific achievement, and its er-
rors couldn’t be avoided at that time. 

First of all, creating the STR it should be determined what space we lived in. 
However, we have not the slightest idea about other space, than the space of our 

 

 

1We can say that Albert Einstein laid the foundation of SRT and began to build the building of this 
theory, but due to the lack of necessary experimental data this building was not completed. 

https://doi.org/10.4236/jmp.2020.112020


A. A. Antonov 
 

 

DOI: 10.4236/jmp.2020.112020 326 Journal of Modern Physics 
 

home and the nature surrounding it, because we have got no experimental clue. 
Therefore, it was not possible to guess any other metric of the space, apart from 
the usual three-dimensional space of real numbers, in the 20th century. 

And therefore, relativistic formulas in the existing version of the STR were de-
rived precisely for such a space. They gave some idea of relativistic effects 

( )
0

21

m
m

v c
=

−
                        (1) 

( )2
0 1t t v c∆ = ∆ −                        (2) 

( )2
0 1l l v c= −                         (3) 

where 0m  is the rest mass of a physical body; 
m is the relativistic mass of a moving physical body; 

0t∆  is the rest time of a physical body; 
t∆  is the relativistic time of a moving physical body; 

0l  is the rest longitudinal length of a physical body; 
l is the relativistic longitudinal length of a moving physical body; 
v is the velocity of a moving physical body; 
c is the speed of light. 
Naturally, these formulas and their graphs (Figures 1(a)-(c)) should then be 

explained in the STR. No wonder, explaining the formulas (1)-(3) in the range 
0 v c≤ <  of the v argument change, the authors of the existing version of the 
STR found the only three-dimensional space of real numbers known. At the 
same time they were confronted with an incomprehensible and insuperable cir-
cumstance. Relativistic mass m, relativistic time t∆  and relativistic longitudinal 
length l of a moving physical body calculated by formulas (1)-(3) turned out to  

 

 
Figure 1. Graphs of functions (1)-(3) and (4)-(6). 

https://doi.org/10.4236/jmp.2020.112020


A. A. Antonov 
 

 

DOI: 10.4236/jmp.2020.112020 327 Journal of Modern Physics 
 

assume imaginary values at с v≤ . No one could explain this. And there was not 
the slightest hope that this could be somehow explained in the near future, since 
none of great mathematicians and physicists of that time managed to explain 
physical meaning of imaginary numbers discovered in mathematics four hun-
dred years before creation of the existing version of the STR. Moreover, in the 
graphs of Figures 1(a)-(c), it can be seen that at 0 v c≤ <  and c v≤ < ∞  the 
functions ( )m v , ( )t v∆  and ( )l v  change in a significantly different way. 
Therefore, the graphs ( )m v , ( )t v∆  and ( )l v  shown in Figures 1(a)-(c) 
turned out to be incompletely explained. 

All this discouraged the creators of the STR. Therefore, further development 
of the STR ceased for a century at this stage of its creation. In order to protect 
the available results from scientific2 and pseudoscientific3 criticism, there was 
made the only right decision at that time to deny physical reality of imaginary 
numbers, since it was not proved. For this purpose, the STR introduced the 
postulate of light speed non-exceedance. It was almost refuted by Nobel Prize 
received by Pavel Alekseevich Cherenkov, Igor Evgenievich Tamm and Ilya 
Mikhailovich Frank for discovering and explaining Cherenkov radiation [8] 
arising when electrically charged particles move through a transparent medium 
at a speed exceeding the speed of light in the medium. However, later the situa-
tion was saved by clarifying that the principle of light speed non-exceedance im-
plied only the speed of light in vacuum. 

Nevertheless, a certain natural distrust of the postulated principle of light 
speed non-exceedance has been preserved. Therefore, attempts to refute it were 
made. The last was the OPERA experiment. On September 23, 2011 the OPERA 
collaboration published [9] a sensational report on registration of superluminal 
neutrinos. However, on March 15, 2012 the ICARUS collaboration published 
[10] a no less sensational report on refutation of the OPERA experiment. This 
even created illusion of incontrovertibility of the existing version of the STR. 

However, creation of such an illusion was conceivably the true goal of the un-
successful OPERA experiment, since alternative successful experiments [11]-[29], 
including those conducted in 2008-2010 [12] [13] [14] [15] [16], i.e. prior to 
publication of OPERA experiment results, were not taken into account in the 

 

 

2The STR was criticized by Oliver Heaviside, Nikola Tesla, Nobel Prize laureateFriedrich Wilhelm 
Ostwald, Nobel Prize laureateJoseph John Thomson, Nobel Prize laureate Svante August Arrhenius, 
Nobel Prize laureatePhilipp Eduard Anton von Lenard, Nobel Prize laureate Alvar Gullstrand, No-
bel Prize laureateWilhelm Carl Werner Otto Fritz Franz Wien, Nobel Prize laureateWalther Her-
mann Nernst, Nobel Prize laureateErnest Rutherford, 1st Baron Rutherford of Nelson, Nobel Prize 
laureateJohannes Stark, Nobel Prize laureateFrederick Soddy, Nobel Prize laureatePercy Williams 
Bridgman, Nobel Prize laureateEdwin Mattison McMillan, Nobel Prize laureateHideki Yukawa, 
Nobel Prize laureate Hannes Ol of Gösta Alfven and many other outstanding scientists. 
3For example, decisions on banning criticism of the theory of relativity were made three times in the 
Soviet Union: in 1934, by the resolution of the Central Committee of the All-Union Communist 
Party (Bolsheviks) on the discussion of relativism; in 1942, by the resolution of the Presidium of the 
Academy of Sciences of the Soviet Union on the theory of relativity; and in 1964, by the closed de-
cree of the Presidium of the Academy of Sciences of the Soviet Union that forbade all scientific 
councils, journals and departments to accept, consider, discuss and publish works criticizing the 
theory of Albert Einstein. 
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Internet, although they refuted the principle of light speed non-exceedance and 
made the OPERA experiment needless. Therefore, assumption that the unsuc-
cessful OPERA experiment was just a promotional event allows us at least 
somehow explanation of an irrational situation, in which attention was so dili-
gently attracted to the needless and false experiment and successful alternative 
experiments were ignored. 

So, concluding what has been said above, it can be argued that the STR was 
not created in the 20th century [30] [31], because 
• relativistic formulas obtained in its existing version turned out to be incor-

rect; 
• its relativistic formulas were explained incorrectly due to the use of the in-

correct principle of light speed non-exceedance; 
• conclusions on existence of only our visible Monoverse drawn from its rela-

tivistic formulas were incorrect due to the use of the principle of light speed 
non-exceedance. 

Moreover, in the 20th century correct relativistic formulas (10)-(12) could not 
be obtained and correct version of the STR could not be created, since; 
• the principle of physical reality of imaginary numbers refuting experimental-

ly the postulated (i.e. being an unproven assumption) principle of light speed 
non-exceedance was published only in the 21st century; 

• experimental data whose mathematical analysis discerned the quaternion 
structure of the hidden Multiverse were obtained by WMAP and Planck 
spacecraft only in the 21st century; 

• explanation of the way how astronomical observations of constellations of 
the starry sky in portals can experimentally prove the existence of invisible 
universes was published only in 2019. 

An alternative version of the STR free of the shortcomings of its existing ver-
sion is presented below in the article. 

3. The Logic of Reasoning That Led to Creation  
of the Alternative Version of the STR 

Creation of the alternative version of the STR differed from its generally recog-
nized version. Its basic premise was experimental proof of the principle of phys-
ical reality of concrete imaginary numbers, so indisputably refuted by the light 
speed non-exceedance postulate available in the existing version of the STR. 
Further, the analysis of WMAP and Planck experimental data using the principle 
of physical reality of imaginary numbers allowed determining4 the metric of 
space we live in and refining the structure of our Multiverse. Our Multiverse 
turned out to consist of twenty to twenty two mutually invisible parallel un-
iverses and have a quaternion structure in six-dimensional space. Therefore, it is 
called the hidden Multiverse. Notably, existence of invisible parallel universes 
can be confirmed by astronomical observations made from portals available on 

 

 

4And do not guess it with the postulates, as in the existing version of the STR. 
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Earth. 
Details are given below. 

3.1. Proofs of Physical Reality of Concrete Imaginary Numbers 

In contrast to existing version of the STR, its alternative version primarily proves 
the principle of physical reality5 of concrete imaginary numbers6. And even three 
experimental proofs have been proposed: 
• The first one has been obtained in analysis of oscillatory transient processes. 

Hence, it follows that there would be no tsunami, church bells would not ring 
and even children’s swing wouldn’t sway after being pushed by parents [16] 
[17] [20] [21] [27] [28] [29], if the statement of physical unreality of imagi-
nary numbers contained in the existing version of the STR were true. 

• The second one has been obtained in analysis of oscillatory resonant 
processes. Hence, it follows that there would be no television and telecom-
munication, radiolocation and radio navigation, as well as many other exact 
sciences [12] [13] [14] [15] [19] [20] [27] [28] [29], if the statement of physi-
cal unreality of imaginary numbers contained in the existing version of the 
STR were true. 

• The third one has been obtained in analysis of forced oscillatory processes in 
alternating current electric circuits. Hence, it follows that Ohm’s law 
wouldn’t exist for alternating current electric circuits [22] [23] [24] [25] [26], 
[28] [29], if the statement of physical unreality of imaginary numbers con-
tained in the existing version of the STR were true. 

All these experimental proofs, unlike the extremely complex and expensive 
unique OPERA experiment, can be verified in any radio engineering laboratory. 
Now they are daily confirmed by practical activities of millions of electric and 
radio engineers. Consequently, they are guaranteedly faithful and absolutely 
conclusive. Nevertheless, the physical reality of imaginary numbers still has to be 
proved, even contrary to Ohm’s law [23] [24], which indicates the imperfection 
of modern physical education, since in SRT the principle of not exceeding the 
speed of light is still assumed to be true7. 

Therefore, it can be argued that physically real imaginary numbers correspond 
to an invisible world unknown to us, which remains to be known to the science 
of the future. The utmost importance of imaginary numbers in the science was 
noted by Sir Roger Penrose: “The very system of complex numbers has a pro-
found and timeless reality which goes beyond the mental constructions of any 
particular mathematician… They were put there neither by Cardano, nor by 

 

 

5Which in the current version of SRT is denied by the postulated principle of non-exceeding the 
speed of light. 
6Naturally, it makes sense to talk about physical reality of imaginary, complex and hypercomplex 
numbers, as well as real numbers, only when it comes to concrete numbers provided with refer-
ences to units used to measure parameters of corresponding physical objects and processes. 
7The situation when postulates are sometimes used for lack of experiments is acceptable in science. 
But when the postulates disprove experiments, such a situation goes beyond common sense and is 
unacceptable in science. 
 

https://doi.org/10.4236/jmp.2020.112020


A. A. Antonov 
 

 

DOI: 10.4236/jmp.2020.112020 330 Journal of Modern Physics 
 

Bombelly, nor Wallis, nor Coates, nor Euler, nor Wessel, nor Gauss, despite the 
undoubted farsightedness of these, and other, great mathematicians; such magic 
was inherent in the very structure that they gradually uncovered”. 

From the alternative version of the SRT, the principle of not exceeding the 
speed of light is therefore excluded. And the principle of the physical reality of 
imaginary numbers, on the contrary, now needs to be recognized as a general 
scientific one, and in accordance with this principle all theories and hypotheses 
should be corrected. 

Let us show how this can be done, for example, in the STR. 

3.2. Relativistic Formulas of the Alternative Version of the STR 

Relativistic formulas (1)-(3) of the existing version of the STR are corrected in 
the alternative version of the STR as follows. Since the principle of physical real-
ity of imaginary numbers disproves the postulate of not exceeding the speed of 
light, formulas (1)-(3) might be explainable at argument values v that are both 
lesser and greater than c. However, since they still defy explanation at с v≤ , 
formulas (1)-(3) have to be recognized as incorrect. And for the corrected relati-
vistic formulas to be explainable, graphs of functions ( )m v , ( )t v∆  and ( )l v  
should be comparable at argument values v that are both lesser and greater than 
c, i.e. should be as shown in Figures 1(d)-(f). They correspond to the following 
formulas 

( ) ( )
0 0

2 21 1

q qm i m i
m

v c q w c
= =

− − −
                 (4) 

( ) ( )2 2
0 01 1q qt t i v c q t i w c∆ = ∆ − − = ∆ −              (5) 

( ) ( )2 2
0 01 1q ql l i v c q l i w c= − − = −                (6) 

where q v c=     is the “floor” function of argument v c ; 
w v qc= −  is the local velocity for each universe, which can take values only 

in the range 0 w c≤ < ; 
v is the velocity measured from our universe; 
c is the speed of light. 
Albert Einstein did not exclude such correction of the STR in future. He 

wrote: “There is no single idea, which I would be sure that it will stand the test of 
time”. 

3.3. Structure of the Hidden Multiverse 

It follows from formulas (4)-(6) that there is a Multiverse [32]-[39], rather than 
a Monoverse, as stated in the existing version of the STR. And different quanti-
ties q in formulas (4)-(6) correspond to different physically real universes. The 
quantity 0q =  in formulas (4)-(6) corresponds (as 0 1i = ) to our universe, and 
the quantity 1q =  corresponds (as 1i i= ) to the adjacent universe, in which 

2с v c≤ <  and which is therefore invisible from our universe, since it is located 
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beyond the event horizon. Consequently, this is the universe containing ta-
chyons that do not violate the principle of causality [40]-[45]. 

Let us, therefore, call it a tachyon universe. For the same reasons our universe 
shall be referred to as a tardyon universe. Subsequently: 
• the quantity 2q =  in formulas (4)-(6) corresponds to the invisible (as 

2 3с v c≤ <  for it) tardyon antiverse8 (as 2 1i = − ); 
• the quantity 3q =  in formulas (4)-(6) corresponds to the invisible (as 

3 4с v c≤ <  for it) tachyon antiverse (as 3i i= − ); 
• the quantity 4q =  in formulas (4)-(6) corresponds to the invisible (as

4 5с v c≤ <  for it) another tardyon universe (as 4 1i = ); 
• the quantity 5q =  in formulas (4)-(6) corresponds to the invisible (as

5 6с v c≤ <  for it) another tachyon universe (as 5i i= ) etc. 
All universes in this Multiverse are mutually invisible and therefore it shall be 

called the hidden Multiverse. Distribution of physical contents in this hidden 
Multiverse is described by the function ( ), ,qf x y z iq+ , where , ,x y z  are the 
coordinates of physical contents in a corresponding parallel universe, and q is 
the coordinate of this universe in the fourth spatial dimension. 

Moreover, invisible parallel9 universes do not actually stand still in such a 
four-dimensional space10, but continuously drift and very often slightly penetrate 
into each other in many spots, generating transition zones11. Such zones are 
usually called portals12 or star gates [46] [47] [48] [49] [50]. Figure 2 shows an 
example of structure of such a hidden Multiverse, which, as can be seen, is heli-
cal. Numerous bidirectional portals in the structure are indicated by single 
two-sided arrows. 

3.4. Explanation of the Phenomenon of Dark Matter  
and Dark Energy 

The WMAP [51] and Planck [52] spacecraft were launched into space to solve 
problems that would seem to have nothing to do with the contents of this article. 
They did not aim to promote the creation of an alternative version of the STR 
instead of its existing version, which is still considered unshakably true. They 
were created to study relic radiation produced by the Big Bang. 

They also allowed to determine that the universe is composed of: 
• 4.6% baryonic matter according to WMAP data (or 4.9% according to Planck 

data); 
• 22.4% dark matter according to WMAP data (or 26.8% according to Planck 

data); 
• 73.0% dark energy according to WMAP data (or 68.3% according to Planck 

data). 

 

 

8Which contains antimatter, like other antiverses. And it does not annihilate with matter, because 
tardyon and tachyon universes and antiverses alternate in the hidden Multiverse. 
9Since they never intersect despite their infinity. 
10Non-Minkowski space. 
11In which the quantity q varies by one from one integer value to another, corresponding to adja-
cent parallel universes. 
12Which have nothing to do with ‘wormholes’ in the general theory of relativity. 
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Figure 2. Probable structure of the hidden Multiverse corresponding to the principle of 
physical reality of complex numbers.  

 
That is, the universe (more precisely, the hidden Multiverse) turned out to be 

more than 95% composed of dark matter and dark energy. Dark matter was dis-
covered by Jan Hendrik Oort [53] and Fritz Zwikky [54] in 1932-33. Dark ener-
gy was discovered by Saul Perlmutter [55], Brian Schmidt [56] and Adam Riess 
[57] in 1998-1999. They were awarded the Nobel Prize for this discovery. Stress-
ing the importance of the discoveries, the Nobel Prize laureate Adam Riess 
wrote: “Humanity is on the verge of a new physics of the Universe. Whether we 
want it or not, we will have to accept it”. The new physics of the Universe is 
concerned below. 

Despite extremely diligent efforts to study dark matter and dark energy 
[58]-[64], they still seem completely incomprehensible in the existing version of 
the STR. Therefore, they were called dark. The famous astrophysicist and pro-
fessor MichioKaku argued: “Of course, a whole bunch of Nobel Prizes is waiting 
for the scientists who can reveal the secrets of the ‘dark energy’ and ‘dark mat-
ter’.”  

However, it is easy to see that the phenomenon of dark matter and dark ener-
gy is incomprehensible only because its explanation has so far been sought ex-
clusively within the framework of the Monoverse hypothesis corresponding to 
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the existing version of the STR. 
In this regard, it would not be out of place to take into account the opinion of 

Albert Einstein: “Insanity: doing the same thing over and over again and ex-
pecting different results.” 

And when using the hypothesis of the hidden Multiverse, the phenomenon of 
dark matter and dark energy turned out to be quite explainable [20] [25] [26] 
[29] [35] [36] [37] [45] [65]-[70]: 
• dark matter and dark energy are actually a kind of image (gravitational rather 

than optical or even electromagnetic), something like a shadow, evoked by 
existence of invisible parallel universes; 

• therefore, any physical content, such as molecules, atoms or subatomic par-
ticles, will never be found in dark matter and dark energy; 

• the dark matter phenomenon is evoked by invisible parallel universes adja-
cent to our visible universe, whereas the dark energy phenomenon is evoked 
by other invisible parallel universes of the hidden Multiverse. 

Consequently, believing that mass-energy of invisible parallel universes has 
been substantially averaged over billions of years due to existence of portals, 
their mass-energy can be accurately assumed to be equal. Therefore, we deduce 
the following: 
• The total number of invisible parallel universes in the hidden Multiverse is 

100% 4.6% 21.7=  universes according to WMAP data and  
100% 4.9% 20.4=  universes according to Planck data, i.e. 20 … 22 universes; 

• The number of invisible parallel universes evoking the phenomenon of dark 
matter is 22.4% 4.6% 4.9=  universes according to WMAP data and 
26.8% 4.9% 5.5=  universes according to Planck data, i.e. 5 … 6 universes; 

• The number of invisible parallel universes evoking the phenomenon of dark 
energy is 73.0% 4.6% 15.9=  universes according to WMAP data and 
68.3% 4.9% 13.9=  universes according to Planck data, i.e. 14 … 16 un-
iverses. 

3.5. Relativistic Formulas of the Alternative Version  
of the STR (Continued) 

Thus, although the WMAP and Planck spacecraft were sent to space for another 
purpose, the data they received allowed clarifying the structure of the hidden 
Multiverse and thereby provided experimental support for creation of the alter-
native version of the STR. 

But it is easy to see that results of mathematical processing of WMAP and 
Planck spacecraft data are inconsistent with formulas (4)-(6) and the structure of 
the hidden Multiverse shown in Figure 2. In Figure 2 only one tachyon universe 
and one tachyon antiverse are actually adjacent to each tardyon universe and an-
tiverse, rather than five or six tachyon universes and antiverses as according to 
the calculations. The thing is that there is no space for placing five or six invisi-
ble parallel universes near each tardyon universe or antiverse in the structural 
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diagram given in Figure 2. Consequently, there are three extra dimensions 
, ,q r s  in our hidden Multiverse, rather than one q. In this regard, formulas 

(4)-(6) corresponding to the principle of physical reality of complex numbers 
should be corrected in accordance with the principle of physical reality of qua-
ternions [71] containing three imaginary units 1 2 3, ,i i i  interconnected by the 
relations 

2 2 2
1 2 3 1i i i= = =                          (7) 

1 2 3 2 3 1 3 1 2 1i i i i i i i i i= = = −                      (8) 

1 3 2 2 1 3 3 2 1 1i i i i i i i i i= = =                       (9) 

The corrected formulas are written as follows 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

0 1 2 3 0 1 2 3

2 211

s sq r q rm i i i m i i i
m

w cv c q r s
= =

−− − + +  

          (10) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
0 1 2 3

2
0 1 2 3

1

1

sq r

sq r

t t i i i v c q r s

t i i i w c

∆ = ∆ − − + +  

= ∆ −
           (11) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
0 1 2 3

2
0 1 2 3

1

1

sq r

sq r

l l i i i v c q r s

l i i i w c

= − − + +  

= −
            (12) 

where q is the total number of parallel universes, penetration into which is made 
through portals, corresponding to the imaginary unit 1i , with increasing dis-
tance from our tardyon universe; 

r is the total number of parallel universes, penetration into which is made 
through portals, corresponding to the imaginary unit 2i , with increasing dis-
tance from our tardyon universe; 

s is the total number of parallel universes, penetration into which is made 
through portals, corresponding to the imaginary unit 3i , with increasing dis-
tance from our tardyon universe; 

v is the velocity measured from our tardyon universe; 
c is the speed of light; 

( )w v q r s c= − + +  is the local velocity for corresponding universe, which 
can take values only in the range.  

And it is quite obvious that the above given WMAP and Planck research data 
that allowed deriving relativistic formulas (10)-(12) for the alternative version of 
the STR could be guessed by no postulates. Therefore, the Nobel Prize laureate 
Stephen Weinberg clearly remarked on the theories created using the postulates: 
“Scientific theories cannot be deduced by purely mathematical reasoning”. In 
other words, no true physical theory can be created without experimental clues. 

3.6. Structure of the Hidden Multiverse (Continued) 

As can be seen, the results obtained are inconsistent with perceptions generally 
accepted in relativistic physics and astrophysics. However, Sir Isaac Newton ar-
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gued: “No great discovery was ever made without a bold guess”. The same opi-
nion was held by the Nobel laureate Niels Henrik David Bohr who said his catch 
phrase: “There is no doubt we have faced a mad theory. But the question is this. 
Is it really crazy enough to be right?” 

The hidden Multiverse corresponding to formulas (10)-(12) can have the 
structure shown in Figure 3. The structure looks like an open helical ring the 
ends of which are connected to two other Multiverses. Besides, the hidden Mul-
tiverse can be connected to other Multiverses in another way. As can be seen, the 
quaternion structure [72] differs from the structure shown in Figure 2 by con-
taining three tachyon universes 1 2 3, ,i i i  and three tachyon antiverses 1 2 3, ,i i i , 
which provides three necessary extra dimensions. Thus, six-dimensional space of 
the hidden Multiverse (Figure 4) has actually three extra dimensions , ,q r s  
containing parallel universes, and three dimensions , ,x y z  containing physical 
contents of each of these universes. That is, space of such a hidden Multiverse is 
described by the formula ( ), . 1 2 3, ,q r sf x y z i q i r i s+ + + , where the function 

( ), , , ,q r sf x y z  describes distribution in coordinates , ,x y z  of physical content 
in the corresponding parallel universe having the coordinates , ,q r s . 

A member of the US National Academy of Sciences Lisa Randall wrote in this 
regard: “We can be living in a three-dimensional space sinkhole in a high-
er-dimensional universe”. Apparently, her assumption was justified. 

 

 
Figure 3. Example of structure of the hidden Multiverse corresponding to the principle of 
physical reality of quaternions. 
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3.7. Explanation of the Phenomenon of Dark Space 

Previous Figure 3 shows that our hidden Multiverse is united with other Multi-
verses through the corresponding portals and forms the Hyperverse together 
with them. Therefore, it can be argued that other invisible Multiverses of the 
Hyperverse except our hidden Multiverse form dark space [29] [73]. Herewith, 
invisible parallel universes of the Multiverses of dark space may presumably be 
connected to our visible tardyon universe through the corresponding portals, as 
in Figure 5(b), or may not, as shown in Figure 5(a). 

However, availability or lack of such connections cannot be ascertained by as-
trophysical studies of the WMAP and Planck spacecraft, since otherwise the reg-
istered universes would have been classified as universes of dark matter or dark 
energy. 

 

 
Figure 4. Six-dimensional space of the hidden Multiverse. 

 

 
Figure 5. Structure of the Hyperverse. 
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So, how to make sure of existence of dark space invisible universes? And can 
this be verified anyway? Apparently, yes. Even in two different ways. First way is 
astrophysical research of portals. This can be unsafe for people. But for this 
purpose robotic mobile systems similar to WMAP and Planck spacecraft can be 
created. Second way is astronomical observations of starry sky constellations 
made from portals. They are described below. 

3.8. Experimental Proof of the Alternative Version of the STR 

Thus, we can state that two hypotheses of dark matter and dark energy have 
been proposed by now. And both are unusual enough to claim to be true in ac-
cordance with the criteria of Isaac Newton and Niels Bohr. 

The first hypothesis—corresponding to the existing version of SRT—is better 
known. It suggests that explanation of dark matter and dark energy should be 
sought in the microcosm. Therefore, it is sought by research at the Large Hadron 
Collider. 

The second hypothesis—corresponding to the alternative version of 
SRT—is almost unknown set forth in the article. It suggests that explanation 
of dark matter and dark energy should be sought in the macrocosm. And it is 
based on the existence of invisible parallel universes of our hidden Multi-
verse. 

There is a good chance that a third hypothesis may be proposed and that it 
may be even more unusual and appear to be the truest. 

But for the time being all of them are just hypotheses. And only an experiment 
can show which of them will ultimately become a theory [74]. As concerns 
science, only experiments decide which hypotheses are true or wrong13. There-
fore, supporters of the first hypothesis search for such a decisive argument at the 
Large Hadron Collider so persistently. The second hypothesis will also be recog-
nized as true only if it gets experimental confirmation. 

It can get the confirmation in the course of astronomical observations of star-
ry sky constellations made from portals [75]. Let’s give a comparison to make 
this idea more clear. The room of our house we are in now is our visible world, 
whereas the next room is invisible world. However, we can make certain of its 
existence by TV sounds heard there from. We can see it partially, coming closer 
to the door and sticking head therein. We can even see the next room entirely, 
entering it through the door. In this case the room we were in before would be-
come invisible to us. 

Similarly, we can partially see the invisible universe, entering the portal. And 
the further we are, the more we see. The next invisible universe can be seen en-
tirely after entering it through the portal. Thus the last visible universe would 
become invisible to us. The snag is that portals are invisible too. It is not easy to 

 

 

13In the Thirty Years’ War Cardinal Richelieu, driven by the same reasons, ordered to inscribe upon 
cannons the following text: “Ultima ratio regum”. And the last argument of scientists is experi-
ments. Only by experiments can the postulates be confirmed or disproved. But the experiments 
cannot be either confirmed or disproved by postulates. 
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get into the next universe through them. Much easier is to get lost in portals and 
not to return to our world. 

Therefore, deepening into portals requires special portal orientation equip-
ment (just as a marine compass used by sailors). Creating the equipment, it 
should be taken into account that all radio signals fade down with your dipping 
into the portal and gradually disappear once you are in the adjacent universe. 

However, people should not put themselves in danger for such research. In-
stead, robotic systems can be sent to the portals. They are much easier to create 
than WMAP and Planck spacecraft. 

Moreover, one can see the edge of the adjacent universe even with a shallow 
dipping into portals. This can be verified by observation of the changed constel-
lation pattern similar to that made by Sir Arthur Stanley Eddington in 1919 [76]. 

4. Conclusions 

Thus, the relativistic formulas obtained in the existing version of the SRT were 
incorrect due to the lack of experimental support, their conclusion was not com-
pleted, they were incorrectly explained, and the conclusions drawn from them 
about the physical unreality of imaginary numbers and the existence of only our 
visible Mono-Universe in nature were also incorrect. In other words, the existing 
version of SRT is incorrect. 

Nevertheless, the existing version of STR is a great scientific achievement of 
Albert Einstein, who created the relativistic physics. Without creating an existing 
version of the SRT, it would be impossible to create its alternative version. 

But in the alternative version of STR, relativistic formulas were created using 
experimental data obtained already in the 21st century14: 
• experimentally proven principle of physical reality of imaginary numbers re-

futing the postulated principle of light speed non-exceedance; 
• WMAP and Planck data whose mathematical processing allowed to deter-

mine the structure of the hidden Multiverse. 
The new relativistic formulas using the principle of physical reality of imagi-

nary numbers are fully explainable. It follows from them that in reality there is 
not a Monoverse, as stated in all physics textbooks, but a multitude of mutually 
invisible parallel universes, which together form a hidden Multiverse. And from 
the data obtained by the WMAP and Planck spacecraft, it follows that the hidden 
Multiverse exists in six-dimensional space and has a quaternionic structure. In 
addition, it follows from these data that the invisible Multiverses exist outside 
the hidden Multiverse, with which they form the Hyperverse. 

Such a hypothesis of the hidden Multiverse and Hyperverse made it possible 
to explain the phenomenon of dark matter and dark energy by a peculiar gravi-
tational shadow of other invisible universes of our visible universe. Such an ex-
planation of the phenomenon of dark matter and dark energy also made it poss-
ible to understand why in studies at the Large Hadron Collider it was not possi-

 

 

14And it is possible that as a result of new experimental data obtained in the future, the relativistic 
formulas presented in this article will be corrected again, possibly even repeatedly. 
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ble to detect material carriers of this phenomenon. And the invisible universes, 
located beyond the borders of the hidden Multiverse, generated the phenome-
non of dark space. 

The hypothesis of the hidden Multiverse and Hyperuniverse set forth in the 
alternative version of SRT also explains where antimatter is located and why it 
does not annihilate with matter, as well as where are tachyons, which do not vi-
olate the principle of causality. These explanations are simple and straightfor-
ward. Antimatter is found in numerous antiverses, since there are many un-
iverses. And tachyons that do not violate the principle of causality are in nu-
merous tachyon universes and anti-universes. 

The invisible parallel universes of the hidden Multiverse and Hyperuniverse in 
six-dimensional space naturally drift relative to each other. Therefore, in many 
places, neighboring invisible universes are slightly immersed in each other, 
forming portals through which exchange of their material contents between 
these universes is possible. On our planet, at least some of the existing anomal-
ous zones are such portals. And from these portals, even with a shallow penetra-
tion in them, one can see the edge of the starry sky in neighboring universes with 
constellations other than we see outside the portals. Thus, such astronomical 
observations can prove the existence of invisible universes. And for the entire 
history of the existence of astronomy, there was no more interesting and more 
important task in it. 
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