
9 772153 119007 609 772153 119007 21





Journal of Modern Physics, 2019, 10, 1401-1486 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

 

 
 

Table of Contents 
Volume 10   Number 12                              November 2019 
 
To the Complete Set of Equations for a Static Problem of General Relativity 

V. V. Vasiliev, L. V. Fedorov…………………………………………………………………………………………1401 

Implications for Discovery of Strong Radial Magnetic Field at the Galactic  
Center—Challenge to Black Hole Models 

Q. H. Peng, Z. Li…………………………………………………………………………………………………...…1416 

Probabilistic Cosmology 

M. Tamm……………………………………………………………………………………………………………...1424 

Local and Global Flatness in Cosmology 

R. Burghardt……………………………………………………………………………………………………..……1439 

Differential Homological Algebra and General Relativity 

J.-F. Pommaret……………………………………………………………………………………………………..…1454 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The figure on the front cover is from the article published in Journal of Modern Physics, 2019, Vol. 10, No. 12, pp. 
1416-1423 by Qiuhe Peng and Zheng Li. 

https://www.scirp.org/journal/jmp
https://www.scirp.org/


Journal of Modern Physics (JMP) 
Journal Information  
 
SUBSCRIPTIONS  
 
The Journal of Modern Physics (Online at Scientific Research Publishing, https://www.scirp.org/) is published monthly by 
Scientific Research Publishing, Inc., USA.  
 
Subscription rates:  
Print: $89 per issue. 
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org 
 

SERVICES  
 
Advertisements  
Advertisement Sales Department, E-mail: service@scirp.org 

Reprints (minimum quantity 100 copies)  
Reprints Co-ordinator, Scientific Research Publishing, Inc., USA. 
E-mail: sub@scirp.org 
 

COPYRIGHT 
 
Copyright and reuse rights for the front matter of the journal: 
Copyright © 2019 by Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

Copyright for individual papers of the journal: 
Copyright © 2019 by author(s) and Scientific Research Publishing Inc. 

Reuse rights for individual papers: 
Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights. 

Disclaimer of liability 
Statements and opinions expressed in the articles and communications are those of the individual contributors and not the 
statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to 
persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim 
any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a 
competent professional person should be sought. 
 

PRODUCTION INFORMATION  
 
For manuscripts that have been accepted for publication, please contact:  
E-mail: jmp@scirp.org 
 

https://www.scirp.org/
mailto:sub@scirp.org
mailto:service@scirp.org
mailto:sub@scirp.org
http://creativecommons.org/licenses/by/4.0/
mailto:jmp@scirp.org


Journal of Modern Physics, 2019, 10, 1401-1415 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2019.1012093  Oct. 29, 2019 1401 Journal of Modern Physics 
 

 
 
 

To the Complete Set of Equations for a Static 
Problem of General Relativity 

Valery V. Vasiliev, Leonid V. Fedorov 
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Abstract 
The paper is concerned with the formulation of the static problem of general 
relativity. As known, this problem is reduced to ten equations for the com-
ponents of the Einstein tensor and the solution of these equations is asso-
ciated with two principal problems. First, since the components of the Eins-
tein tensor identically satisfy four conservation equations, only six of these 
equations are mutually independent. So, the set of the Einstein equations ac-
tually contains six independent equations for ten components of the metric 
tensor and should be supplemented with four additional equations which are 
missing in the original theory. Second, for a deformable solid the Einstein 
tensor is associated with the energy tensor which is expressed in terms of six 
stresses induced by gravitation. These stresses are not known and the relativ-
ity theory does not propose any equations for them. Thus, the static problem 
of general relativity cannot be properly formulated because the set of govern-
ing equations is not complete. In the paper, the problem of completeness of 
the general relativity governing set of equations is analyzed in application to 
the spherically symmetric static problem and the proposed approach is fur-
ther described for the general case. As an example, linearized axisymmetric 
problem is considered. 
 

Keywords 
General Relativity, Coordinate Conditions, Compatibility Stress Equations, 
Spherically Symmetric Problem 

 

1. Introduction. General Relativity Equations 

The Einstein equation which specifies the Einstein tensor has the following form: 

1
2

j j j
i i iE R Rδ= − , ( ), 1, 2,3, 4i j =                     (1) 
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in which j
iR  ( i

iR R= ) are the components of the Ricci curvature tensor (we 
use mixed components because for the spherically symmetric problem consi-
dered further they coincide with the physical components). The Einstein tensor 
is associated with the energy tensor as 

j j
i iE Tχ=                               (2) 

where  
48 G cχ = π                              (3) 

is the relativity gravitational constant expressed in terms of the classical constant 
G and the velocity of light c. The energy tensor expressed with the aid of Equa-
tion (1) and Equation (2) identically satisfies the conservation equations 

, 0k
i kT =                                (4) 

For the static problem, 
j j

i iT σ= , 4 0iT =  ( ), 1, 2,3i j = , 4 2
4T cµ=                (5) 

where j
iσ  is the stress tensor and µ  is the density. 

Consider two problems associated with the formulation of the general relativ-
ity static problem. First, substituting Equations (2) in Equation (1), we arrive at 
ten equations for ten components of the metric tensor in four-dimensional Rie-
mannian space. However, the right parts of these equations identically satisfy 
Equations (4) which means that only six of ten Equation (1) are mutually inde-
pendent. Thus, we have six equations for ten unknown functions. The additional 
equations which are usually referred to as coordinate conditions should be im-
posed on the metric tensor. As known, the metric tensor of the Euclidean space 
must satisfy the Lame equations. Such equations do not exist for the Riemannian 
space. However, we can suppose that the Riemannian space induced by gravita-
tion cannot be arbitrary and must be somehow restricted, e.g., by coordinate 
conditions. The necessity of such conditions was first mentioned by D. Hilbert 
[1]. By now the widely recognized general form of these conditions has not been 
proposed. Existing particular conditions are discussed further in application to 
the spherically symmetric problem.  

Second, changing E to T and then to σ  in Equations (1), we arrive at the set 
of equations containing stresses on the left sides. These stresses are not known. 
Traditionally, Equation (1) is used to study the gravitation in the empty space 
for which 0j

iT =  and Equation (1) are homogeneous. For solids the stresses 
are not zero and the equations cannot be solved. The solution can be obtained if 
the solid is simulated with perfect fluid. In this case the nonzero stresses 

1 2 3
1 2 3 pσ σ σ= = = − , where p is the pressure that can be found from the corres-

ponding equation of Equation (4). However, in equilibrium state, the perfect 
fluid can have only spherical shape and the solution can be obtained for this par-
ticular case only. For the general case, consider the analogy with the theory of 
elasticity. Conservation equations, Equation (4), correspond to equilibrium equ-
ations of this theory, whereas Equation (1) is similar to the equations which al-
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low us to express the stresses in terms of stress functions and to satisfy the equi-
librium equations. Thus, the metric tensor of general relativity is analogous to 
the tensor of stress functions in theory of elasticity. In this theory, the stress 
functions are found from the compatibility equations which postulate that the 
geometry of the stressed solid is Euclidean. In general relativity, the geometry is 
Riemannian and the compatibility equations of the theory of elasticity cannot be 
directly applied. 

Thus, the traditional set of the general relativity equations is not complete and 
should be supplemented with some additional equations that are discussed fur-
ther. The proposed approach is demonstrated in application to the spherically 
symmetric problem which has the exact solution. 

2. Spherically Symmetric Static Problem 
2.1. Classical Linear Solution 

For comparison with the general relativity solutions that are discussed further, 
consider the problem of the theory of elasticity for a linear elastic isotropic solid 
sphere loaded with gravitation forces following from the Newton theory. For a 
sphere with constant density µ , the gravitational potential ϕ  is the solution of 
the Poisson equation 

2 4 G
r

ϕ ϕ ϕ µ′′ ′∆ = + = π                       (6) 

Here, ( ) ( )d dr′⋅ ⋅ ⋅ = ⋅⋅ ⋅  and r is the radial coordinate ( 0 r R≤ ≤ ). For the ex-
ternal space ( r R≥ , index “e”), 0µ =  and the solution of Equation (6) is 

e Gm rϕ = −  in which 

34
3

m R µ= π                           (7) 

is the sphere mass. Introduce the so-called gravitational radius 

2

2
g

Gmr
c

=                            (8) 

Then, 2 2e gr c rϕ = − . For the internal space ( 0 r R≤ ≤ , index “i”), the regular 
solution of Equation (6) is 

22
3i G r Cϕ µ= π +  

Determining constant C from the boundary condition ( ) ( )i eR Rϕ ϕ=  and us-
ing Equation (8), we get 

2 2

23
4
g

i

r c r
R R

ϕ
 

= − − 
 

                      (9) 

The equilibrium equation for the sphere under the action of gravitational body 
forces g if µϕ′= −  is 

( )
2

3

2 0
2

g
r r

r c
r

r Rθ

µ
σ σ σ′ + − − =                  (10) 
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where rσ  and θσ  are the radial and the circumferential stresses. The second 
equation for the stresses follows from the compatibility equation. There are two 
ways to derive this equation. First, introduce the corresponding strains ex-
pressed in terms of the radial displacement u as 

r uε ′= , u rθε =                        (11) 

The compatibility equation follows from these equations and has the form 

( ) rr θε ε′ =                            (12) 

Express the strains in terms of stresses with the aid of Hooke’s law 

( )1 2r rE θε σ νσ= − , ( )1 1 rEθ θε ν σ νσ= − −              (13) 

in which E is the elastic modulus and ν  is the Poisson’s ratio. Substituting the 
strains in Equation (12), we finally get 

( ) ( )( )1 1 0r rr θ θν σ νσ ν σ σ′− − + + − =                (14) 

Equation (12) means that the geometry of the deformed sphere is Euclidean. In 
general relativity, the geometry is Riemannian, the displacement u and Equa-
tions (11) do not exist. However, there is the second way to obtain Equation (14) 
not attracting Equations (11). This approach is based on the principle of mini-
mum of the complementary energy 

( )2 2 2

0

2 2 1 4 d
R

r rU r r
E θ θσ ν σ νσ σπ  = + − − ∫  

under the condition that the stresses satisfy the equilibrium equation, Equation 
(10). Introducing this equation with the aid of the Lagrange multiplier λ , con-
struct the augmented functional 

0

2 d
R

U F r
E
π

= ∫ , 

( ) ( ) ( )
2

2 2 2
3

22 1 4
2

g
r r r r

r c
F r r r

r Rθ θ θ

µ
σ ν σ νσ σ λ σ σ σ

 
  ′= + − − + + − −  

  
 (15) 

The Euler equations providing 0Uδ =  

d 0
dr r

F F
rσ σ
 ∂ ∂

− = ′∂ ∂ 
, 0F

θσ
∂

=
∂

                   (16) 

take the form 

( ) 2 22 2 0r r
rθσ νσ λ λ′− + − = , ( ) 32 1 2 0r rθ

λν σ νσ− − − =        (17) 

Expressing λ  from the second equation and substituting in the first equation, 
we arrive at the compatibility Equation (14). 

Thus, we get two equations, Equation (10) and Equation (14) for two stresses. 
The final solution which satisfies the boundary condition ( ) 0r Rσ =  is 

( )21r gkr rσ = − − , 211
3gkr rθ

νσ
ν

+ = − + − 
, 

( )
3

20 1
k ν

ν
−

=
−

       (18) 
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Here, 

2
r

r c
σ

σ
µ

= , 2c
θ

θ
σ

σ
µ

= , g
g

r
r

R
= , rr

R
=                 (19) 

For a sphere of perfect fluid, r pθσ σ= = −  and the pressure p can be found 
from the equilibrium Equation (10) not attracting the compatibility Equation 
(14). The result is 

( )21
4
grp r= −                            (20) 

In general relativity, the space geometry is Riemannian and the line element in 
spherical coordinates , ,r θ ϕ  is taken in the form 

( )2 2 2 2 2 2 2
11 22 44d d d sin d ds g r g g c tθ θ ϕ= + + −               (21) 

The components of the metric tensor depend on the radial coordinate only. For 
the foregoing linear solution, these components are [2] 

11 1 grg
r

= + , 2
22g r=                         (22) 

In case 0gr = , the space is Euclidean and gravitation vanishes. For real objects, 
the ratio gr , as a rule, is extremely small. For example, for Earth 61.4 10gr

−= × , 
for Sun 64.3 10gr

−= × , for the largest of the observed visible stars—red super-
giant UI Scutti ( 1111.9 10 mR = × , 3064 10 kgm = ×  [3]) 98 10gr

−= × . 

2.2. General Relativity Solution 

For a spherically symmetric problem, the field equations following from Equa-
tion (1), Equation (2) and Equation (5) reduce to 

2
22 22 44

22 11 22 22 44

1 1 1
4 2r

g g g
g g g g g

χσ
 ′ ′ ′ 
 = − + 
   

               (23) 

2 2
44 44 22 22

11 44 44 22 22

22 44 11 11 44

22 44 11 11 44

1 1 1
2 2 2

2 2

g g g g
g g g g g

g g g g g
g g g g g

θχσ
 ′′ ′ ′′ ′   
= − − + −   
    

′ ′ ′ ′ ′ 
+ − −  

  

          (24) 

2
2 22 22 11 22

22 11 22 22 11 22

1 1 1
4 2

g g g gc
g g g g g g

χµ
 ′′ ′ ′ ′ 
 = − − − 
   

           (25) 

The only one conservation equation, Equation (4), becomes 

( ) ( )222 44

22 44

0
2r r r

g g c
g gθσ σ σ σ µ
′ ′

′ + − + − =              (26) 

The solution of the external ( r R≥ ) problem must satisfy the asymptotic condi-
tions and to reduce to Equation (22) for r →∞ . The solution for the internal 
( 0 r R≤ ≤ ) problem must satisfy the symmetry condition at the sphere center 
according to which ( )11 0 1g = , ( )22 0 0g = . Both solutions must satisfy the 
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boundary conditions on the sphere surface, i.e. 

( ) ( )11 11
e ig R g r= , ( ) ( )22 22

e ig R g R= , ( ) ( )44 44
e ig r g R=       (27) 

As in the general case (Section 1), substitution of the left parts of Equations 
(23)-(25) in Equation (26) identically satisfies this equation. So, only three of 
four Equations (23)-(26) are mutually independent. Traditionally [4], the sim-
plest set of equations including Equation (23), Equation (25) and Equation (26) 
is used. The obtained solution identically satisfies Equation (24).  

To solve the problem, we should supplement Equation (23), Equation (25) 
and Equation (26) which include three components of the metric tensor and two 
stresses with one coordinate condition for the metric tensor and one equation 
for the stresses. The first coordinate condition was proposed by K. Schwarzchild 
[5] who changed the spherical coordinates to 3

1 3x r= , 2 cosx θ= − , 3x ϕ= , 

4x t=  and applied the condition 1g = , where g is the determinant of the me-
tric tensor components in coordinates ix . This condition is equivalent to 

2
22g r=  [6] and reduces the order of Equation (25). As a result, the solution 

does not contain the proper number of integration constants and the first boun-
dary condition in Equation (27) cannot be satisfied [6]. The internal problem 
was solved for a sphere of perfect fluid [7] and did not require the additional 
equation. The other way involves the application of the so-called harmonic 
coordinate conditions which in the general case have the following form [8] 

( ) 0ij
i g g

x
∂

=
∂

 

External spherically symmetric problem was solved with the harmonic coordi-
nate condition by V. Fock [9]. Internal problem and boundary conditions were 
not considered.  

To obtain the general solution of the spherically symmetric static problem, 
apply the set of Equation (23), Equation (25) and Equation (26). To simplify 
these equations, introduce new notations for the components of the metric ten-
sor, i.e., put 2

11g q= , 2
22g ρ= , 2

44g h= . Then, Equation (23), Equation (25) 
and Equation (26) reduce to 

2 2

1 2
r

h
hq

ρ ρχσ
ρρ ρ

′ ′ ′ 
= − + 

 
, 

2
2

2 2

1 1 2 2qc
qq

ρ ρ ρχµ
ρ ρ ρρ

 ′ ′′ ′ ′ 
= − + −  

   
 (28) 

( ) ( )22 0r r r
h c
hθ

ρσ σ σ σ µ
ρ
′ ′

′ + − + − =              (29) 

For the external space ( 0, 0r θσ σ µ= = = ), the solution of Equation (28) which 
satisfies the asymptotic conditions for r →∞  is [10] 

( )2
2 e e
e

e g

q
r

ρ ρ
ρ

′
=

−
, 2 1 g

e
e

r
h

ρ
= −                     (30) 

To determine ( )e rρ , we need to add a coordinate condition. Introduce a new 
interpretation of the Riemannian space [6] [11] according to which it is a ma-
thematical model of the actual nonhomogeneous Euclidean space characterized 

https://doi.org/10.4236/jmp.2019.1012093


V. V. Vasiliev, L. V. Fedorov 
 

 

DOI: 10.4236/jmp.2019.1012093 1407 Journal of Modern Physics 
 

with the space density R Ed g g=  in which Rg  and Eg  are the determi-
nants of the metric tensors in Riemannian and Euclidean three-dimensional 
spaces in the same coordinates. Assume that in space coordinates 1 2 3, ,x x x  the 
space density satisfies the following variational equation: 

0Dδ = , 1 2 3 1 2 3d d d d d dE RD d g x x x g x x x= =∫∫∫ ∫∫∫        (31) 

Equation (31), written for a four-dimensional space, is known in general relativ-
ity as a possible way to derive the field equations [12]. However, if the variations 

ijgδ  are mutually independent, 0Dδ ≠ . The situation becomes different if 
these variations are not independent. For spherically symmetric problem,  

2 2

2 2 1
e e e e

e
g e

q
d

r r r
ρ ρ ρ

ρ
′

= =
−

                    (32) 

The Euler equation similar to Equation (16) is satisfied identically which means 
that 0Dδ =  for any function ( )e rρ . To specify this function, we can minim-
ize ed  taking 1ed = . Thus, it is assumed that gravitation transforming Eucli-
dean space into Riemannian does not change the density of the metric tensor. 
For 1ed = , Equation (32) yields the following equation for ( )e rρ : 

2 2 1e e g er rρ ρ ρ′ = −                       (33) 

For the internal space ( constµ = ), the solution of the second equation in Equa-
tion (28) which satisfies the regularity condition at the sphere center is [10] 

( )2
2

21
i

i
i

q
u
ρ
ρ

′
=

−
, 21

3
u cχµ=                    (34) 

As for the external space, take Equation (31) as the coordinate condition in which 
2 2

2 2 21
i i i i

i

i

q
d

r r u

ρ ρ ρ

ρ

′
= =

−
                    (35) 

where id  is the space density. The Euler equation is satisfied identically and we 
can take 1id = . This means that that the sphere mass is not affected by gravita-
tion and is specified by Equation (7). Using this equation in conjunction with 
Equation (3) and Equation (8) for χ  and gr , we get 3

gu r R= . Then, Equa-
tion (34) and Equation (35) take the following final forms: 

( )2
2

2 31
i

i
g i

q
r R
ρ
ρ

′
=

−
, 

2

2 2 31
i i

i

g i

d
r r R

ρ ρ

ρ

′
=

−
 

Putting 1id = , we arrive at the following equation for ( )i rρ :  
2 2 2 31i i g ir r Rρ ρ ρ′ = −  

The solution of this equation which satisfies the boundary condition ( )0 0i rρ = =  
is [10] 

( )1 2 31 2sin 1
3i g i g i g

g

r r r r
r

ρ ρ ρ− − − =              (36) 
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where in addition to Equation (19) Rρ ρ= . For the sphere surface 1r = , 

1iρ ρ= , and Equation (36) yields  

( )1 2
1 1 1

1 2sin 1
3g g g

g

r r r
r

ρ ρ ρ− − − =               (37) 

The general solution of Equation (33) is [10] 

( ) ( )2 2 3 31 5 5 5 1ln
3 12 8 8 3e g e g e e g g e e gr r r r r r Cρ ρ ρ ρ ρ ρ + + − + + − = + 

 
 (38) 

The integration constant can be found from the boundary condition on the 
sphere surface according to which ( ) 11e rρ ρ= = . Then, 

( ) ( )2 2 3
1 1 1 1 1 1

1 5 5 5 1ln
3 12 8 8 3g g g g gC r r r r rρ ρ ρ ρ ρ ρ = + + − + + − − 

 
  (39) 

For 1gr  , Equation (36) and Equation (38) reduce to i e rρ ρ= = . 
Thus, the functions ( )i rρ  and ( )e rρ  are specified by Equation (36) and 

Equation (38). The obtained solution satisfies the asymptotic and the boundary 
conditions in Equation (27) [10]. As follows from Equation (39), the solution 
exists if 1 grρ ≥ . Otherwise, the solution becomes imaginary. The minimum 
possible value of 1ρ  is gr . Assume that this minimum value correspond to the 
sphere radius gR . Then, substituting 1 1 g g gR r Rρ ρ= =  in Equation (37), we 
get 

3

1 2
sin 1

3
g g g g g g

g g g g g g

R r r r r r
r R R R R R

−
   
  − − =      

 

The solution of this equation is 1.115g gR r= . Thus, the obtained solution gives 
the critical radius which is larger than the gravitational radius. In contrast to the 
Schwarzchild solution, for the sphere with the critical radius gR  the solution is 
not singular and gives finite values for the metric coefficients. Particularly, for 

1ρ ρ=  we get 1.243e iq q= =  and 0.8968e i Rρ ρ= = . For gR R< , the solu-
tion becomes imaginary which means that the general relativity is not valid for 
such high levels of gravitation. Dependences of the space metric coefficients on 
the radial coordinate for the sphere with the critical radius gR  is shown in 
Figure 1. 

As can be seen, ( ) 1g r →∞ =  and ( )r rρ →∞ =  (dashed line in Figure 
1).  

Consider the propagation of light from the sphere surface. The trajectory of 
light in the equatorial ( 2θ = π ) plane is specified by the following equations 
[13]: 

2
d 1
d

e e

e e

h shr c
t q ρ

 
= −  

 
, 

2
d
d

e

e

h
cs

t
ϕ

ρ
 

=  
 

                (40) 

in which eq  and eh  are given by Equation (30), ( )e rρ  is the solution of Eq-
uation (38) and s is the integration constant that can be found from the initial 
condition. Physical components of the velocity are 
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Figure 1. Dependences of the space metric coefficients on the radial coordinate for the 
sphere with the critical radius. 
 

2
d 1
d

e e
r

e e

g shrv c
h t ρ

 
= = −  

 
, e

e

sh
v cϕ ρ

=                 (41) 

so that 2 2 2
rv v cϕ+ = . Assume that light propagates from point A on the sphere 

surface ( 1ρ ρ= , 1r = ) at angle α  with respect to the radius (Figure 2).  
The initial conditions are cosrv c α= , sinv cϕ α=  and Equations (41) yield 

1 1sins hρ α= , where ( )1 1e eh h ρ ρ= = . Consider the case 0α =  for which 
0s =  and , 0rv c vϕ= = . This result allows us to conclude that in the radial di-

rection light propagates for any spherical object with velocity c. However, if 
0α ≠ , the situation can be different. Using Equation (30) and Equation (40), we 

can obtain the following equation for the light trajectory: 

2
2 2 2

11

d dd 1 11 1
d d d sin

g ge e
e

ee

r rr
r

ρ ρ
ρ

ϕ ϕ ρ ρρ α ρ
   

= = − − −   
   

         (42) 

Numerical integration of this equation allows us to plot ( )eρ ϕ . Using further 
Equation (38), we change eρ  to r. The resulting trajectory ( )r ϕ  for 2α = π  
and 0.5gr =  is shown in Figure 2 with the dashed line. As follows from Equa-
tion (42), for the sphere with the critical radius, 1 grρ =  the trajectory becomes 
imaginary and light does not propagate. 

Return to the internal problem and determine the stresses. Consider the first 
equation in Equation (28). Substitute iq  from Equation (34) and express 

( )
( )22 1

i i ri

i i

uh
h u

ρ ρ χσ

ρ

′ −′
=

−
                        (43) 

Here, 2 33 gu c r Rχµ= = . Substitute Equation (43) in Equation (29) to get 

( ) ( ) ( )( )2
2

2
0

2 1
i i i

r r r r
i i

u c
uθ

ρ ρ ρ
σ σ σ χσ σ µ

ρ ρ

′ ′
′ − − + − − =

−
       (44) 

The first equation for the stresses follows from this equation if we change variable 
r to ρ , use notations (19), and Equation (3), Equation (7) for χ  and gr , i.e., 
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Figure 2. Propagation of light from the sphere surface. 

 

( ) ( ) ( )( )2

d 2 1 3 1 0
d 2 1

g ir
r r r

i i g i

r

rθ

ρσ
σ σ σ σ

ρ ρ ρ
+ − − − − =

−
        (45) 

For a sphere of perfect fluid, r pθσ σ= = −  and Equation (45) reduces to 

( ) ( )( )2

d 1 3 1 0
d 2 1

g i

i g i

rp p p
r

ρ
ρ ρ

+ + + =
−

 

The solution of this equation which satisfies the boundary condition ( )1 0ip ρ ρ= =  
is [10] 

2 2
1

2 2
1

1 1

1 3 1
g i g

g i g

r r
p

r r

ρ ρ

ρ ρ

− − −
=

− − −
                   (46) 

In contrast to the Schwarzchild solution, the pressure is not singular. For 1gr  , 
Equation (46) degenerates into Equation (20). For the fluid sphere, Equation 
(43), being transformed to variables , ,i gp rρ , becomes 

( )
( )2

1 3d1
d 2 1

g ii

i i g i

r ph
h r

ρ
ρ ρ

+
=

−
 

Integrating, we can find ih  for the fluid sphere. The integration constant allows 
us to satisfy the last boundary condition in Equation (27).  

To obtain the stresses, we need to supplement Equation (45) with an addi-
tional equation. To derive this equation, we minimize the functional in Equation 
(15), where with regard to Equation (44)  
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Using Equation (34) for iq , we can present the Euler equations, Equation (16), 
as 

( ) ( )
2 2

2
22

2 2 2 ( 2 0
2 11

i i i i
r r

i ii

u c
uu

θ
ρ ρ ρ ρ

σ νσ λ χσ χµ λ
ρ ρρ

 ′ ′
  ′− + + − + − =
 −−    

( )
2

2
2 1 0

1
i

r
iiu

θ
ρ λν σ νσ

ρρ
− − − =  

−
 

Expressing λ  from the second equation, substituting in the first equation and 
reducing the resulting equation to the form similar to Equation (45), we arrive at 

( )2
2

d 12 2 4 3 3 0
d 1i r g i r

i g i

r
rθ

σρ σ νσ σ ρ σ
ρ ρ

   + − + + − − =  −  
     (47) 

where ( )1 rθσ ν σ νσ= − − . For 0gr =  and rρ = , this equation coincides with 
Equation (14). Numerical integration of Equation (45) and Equation (47) under 
the boundary conditions ( ) ( )0 0r i iθσ ρ σ ρ= = =  and ( )1 0r iσ ρ ρ= =  allows 
us to obtain the dependences of stresses on iρ  which can be changed to r  with 
the aid of Equation (38). The dependences ( )r rσ  and ( )rθσ  corresponding 
to 0.25gr =  and 0ν =  are shown in Figure 3 with solid lines. Dashed lines 
correspond to the linear classical solution in Equation (18). 

3. The General Theory 

Return to Section 1 and consider the general case. Ten Einstein’s equations 

1
2

ij ij ijR g R Tχ− =                         (48) 

in which the energy tensor 
ij ijT σ=  ( ), 1, 2,3i j = , 4 0iT =  ( )1,2,3i = , 44 2T cµ=  

satisfies the conservation equations 
 

 
Figure 3. Dependences of the normalized stresses on the radial coordinate corresponding 
to the obtained solution () and the classical linear solution (- - - -). 
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2
44 0ik i mk n ik i

k mk kn cσ σ σ µ∂ + Γ + Γ + Γ =                 (49) 

and includes 10 components of the metric tensor ijg . Because of Equation (49), 
only six of Equation (48) are mutually independent and we have six equations 
for 16 functions, i.e., 10 coefficients ijg  and six stresses ijσ . Assume that we 
use six independent equations of Equation (48) to express six metric coefficients 
in terms of four. To derive four additional equations, we propose to use the vari-
ational equation, Equation (31), in which six metric coefficients are expressed in 
terms of four. Variation with respect to these coefficients allows us to write four 
Euler’s equations and to obtain the set of 10 equations for the metric tensor. 

To derive the equations for stresses, introduce the strain energy 

1 2 31 d d d
2

ij
ij RU g x x xσ ε= ∫∫∫  

in which Rg  is the determinant of the metric tensor in the Riemannian 
three-dimensional space. Expressing strains in terms of stresses through Hooke’s 
la 

ij
mn mnijcε σ=  

in which mnijc  is the compliance tensor and introducing Equation (49) with aid 
of the Lagrange multipliers, construct the augmented functional 

1 2 31 d d d ,
2

U F x x x= ∫∫∫  

( )2
44

mn ij ik i mk n ik i
mnij R i k mk knF c g cσ σ λ σ σ σ µ= + ∂ + Γ + Γ + Γ  

Minimization with respect to the stresses and λ -multipliers yields 10 equations 
for six stresses and four multipliers [14]. Thus, we have arrived at the complete 
set of 20 equations for 10 metric coefficients 6 stresses and 4 multipliers. 

4. Linearized Axisymmetric Problem 

Spherically symmetric problem discussed above requires only one coordinate 
condition. To demonstrate a more complicated case, consider an axisymmetric 
problem for which we need two conditions. Since the general problem can hard-
ly be solved because the equations are too complicated, obtain the linearized so-
lution for the external space. The line element in cylindrical coordinates , ,r zϕ  
can be presented as 

( ) ( ) ( ) ( )2 2 2 2 2 2 2
11 22 33 13 44d 1 d 1 d 1 d d d 1 ds f r r f f z f r z f c tϕ= + + + + + + − +  

Assume that functions ( ),mnf r z  are small in comparison with unity. For the 
external space with zero stresses and density, Equations (1), i.e.  

11 13 22 33 44 0E E E E E= = = = = , reduce to 

( ) ( )

( ) ( )

2
13

22 44 33 442

2

22 44 11 22

2 0

0

f
r f f f f

r zz

r f f f f
r z z

∂∂ ∂
+ + + − =

∂ ∂∂
∂ ∂

+ − − =
∂ ∂ ∂

             (50) 
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( ) ( )

( ) ( )

2 2 2
13

33 44 11 442 2

2

22 44 11 22 442

2 0

2 0

f
f f f f

r z r z

r f f f f f
rr

∂ ∂ ∂
− + − + =

∂ ∂ ∂ ∂
∂ ∂

+ − − − =
∂∂

             (51) 

( ) ( )

( )

22 2
13

22 33 11 222 2

13
11 22 33

2

2 2 0

f
f f f f

r zr z
f

f f f
r z

∂∂ ∂
+ + + −

∂ ∂∂ ∂
∂∂

− − − − =
∂ ∂

                (52) 

For the axially symmetric problem, we have two conservation equations, so only 
three of five Equations (50)-(52) are mutually independent. Consider Equation 
(52) and subtract from it the first equation in Equation (50) and the first equa-
tion in Equation (51). The resulting equation 

2 2
44 44 44

44 2 2

1 0
f f ff

r rr z
∂ ∂ ∂

∆ = + + =
∂∂ ∂

                   (53) 

allows us to conclude that ( )44 ,f r z  is the classical gravitational potential which 
can be found in terms of exponential functions with respect to z and Bessel func-
tions with respect to r [15]. For the external problem, the solution must satisfy 
the asymptotic conditions according to which 44 0f →  for r →∞  and 
z →∞ . Proceeding, express 13f  from the first equation in Equations (50), i.e., 

( ) ( )
2

13
33 44 22 442

1
2 2

f rf f f f
z r z

∂ ∂ ∂
= + + +

∂ ∂ ∂
             (54) 

and substitute this result in the first equation in Equation (51) to get 

( ) ( )
3 2

22 44 11 222 2 0r f f f f
r z z
∂ ∂

+ − − =
∂ ∂ ∂

 

This equation can be ignored because it follows from the second equation in 
Equation (50). Integration of Equation (50) yields 

( ) ( )11 22 22 44 1f f r f f r
r

ϕ∂
= + − +

∂
                 (55) 

where ( )1 rϕ  is the integration function. Substituting Equation (55) in the 
second equation of Equation (51), we get 1 0ϕ′ = , so 1 Cϕ = . Thus, Equation 
(50) and Equation (51) allow us to express 13f  and 11f  in terms of two un-
known functions— 22f  and 33f . To proceed, we need to introduce two coordi-
nate conditions. As earlier, apply Equation (31), i.e., 0Dδ = . The linearized 
space density is 11 22 331d f f f= + + + . Using Equation (55), we can construct the 
following functional:  

d d dD F r zθ= ∫∫∫ , ( )22 22 44 331 2F r f r f f f C
r
∂ = + + + + + ∂ 

 

The condition 0Dδ =  is satisfied if 33 0f =  and 22f  is an arbitrary function. 
To identify this function, we use, as earlier, the minimum condition 1d = . 
Then, 22 11f f= −  and Equation (55) yields 

22 44
222

f fr f r C
r r

∂ ∂
+ = −

∂ ∂
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The solution of this equation is 

( )22 11 44 22

1 lnf f f C r z
r

ϕ= − = − +    

Integration of Equation (54) allows us to find the last metric coefficient, i.e., 

( ) ( )44 44
13 2 33

1d
f ff r z z r
z r r

ϕ ϕ
∂ ∂ ′= + + +
∂ ∂∫  

Using the asymptotic conditions, we can conclude that constant C and functions 

2 3,ϕ ϕ  are zero. Thus, the solution is 

44
11 22 2

ff f
r

= − = − , 44 44
13 d

f ff r z
z r

∂ ∂
= +

∂ ∂∫ , 33 0f =  

where 44f  is the solution of Equation (53). As follows from the foregoing deri-
vation, the space density is uniform in the external space. 

5. Gravitation and Space Density 

The space density introduced in Section 2.2 allows us to propose the new inter-
pretation of gravitation. As follows from the foregoing discussion, the isolated 
object in space can be in equilibrium under the action of gravitation and stresses 
induced by gravitation. It is important that the gradient of the space density out-
side the object is zero. Two objects in space cannot be in equilibrium and it is 
natural to suppose that the space density between them is not uniform. To take 
the equilibrium state and to reduce the gradient of the space density between the 
objects, they should move towards each other. Two situations are possible re-
sulting in stable equilibrium or stable motion. First, the collision and the merge 
into one object can take place resulting in the equilibrium of the new object and 
zero gradient of the space density. Second case can take place if the trajectories 
of the moving objects are affected by perturbations induced by other objects in 
space. In this case, the collision does not occur and the objects orbit in elliptical 
paths.  

6. Conclusion 

The general relativity equations are supplemented with the coordinate condi-
tions following from the stationarity condition of the three-dimensional metric 
tensor density and equations for the stresses similar to compatibility equations 
of the theory of elasticity. The solution of the obtained complete set of equations 
is demonstrated for linearized and general spherically symmetric problems and 
linearized axially symmetric problem. The space density which is the ratio of the 
three-dimensional metric tensor densities in Riemannian and Euclidean spaces in 
the same coordinates is introduced and used to explain the attraction of objects 
under the action of gravitation. 
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Abstract 
The black hole model will be excluded by a very strong radial magnetic field 
near the Galactic Center which has been detected in 2013. Following it, the 
explosion mechanism, for both supernova and the hot big bang of the Un-
iverse, driven by magnetic monopoles is proposed in this paper. 
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1. Two Dilemmas 

The radial magnetic field near the Galactic Center (GC) has been detected in 
2013 [1].  

( )
1

38 mG at 0.12 pc .
26 cm

en
B r

−

−

 
≥ ≈ 

 
                (1) 

where en  is the number density of electrons. The first question is what is the 
role of the strong radial magnetic field? It is well known that a charged particle is 
hard to transfer cross the magnetic field line by the Lorentz force. According to 
the principle of the Alphen magneto-hydrodynamic freezing effect, the accretion 
(plasma) disk will be prevented from approaching to the GC by the strong radial 
magnetic field when the magnetic field is stronger more than the Alphen critical 
magnetic field  

( )
1 2

Alphen 31.3 mG at 0.12 pc
26 cm

en
B B r−

 
> = ≈ 

 
          (2) 
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(The mass of the central supermassive object is taken as 64.6 10 M×


). 
And the accretion (plasma) disk may not enter in the neighborhood of the GC. 

Thus the radiations observed [2] from the GC direction are hardly emitted by 
the gas of accretion disk around the black hole (BH) of the GC which is the pop-
ular idea. This is a dilemma of the standard accretion disk model of BH in the 
GC [2] [3] [4]. 

The second question is what is the origin of the strong magnetic field near the 
GC? 

It is well known that the most efficiency dynamo of producing magnetic field 
up to now is the advanced α-turbulence dynamo in the sunspot (proposed by 
Parker) [5]. 

But the resulting magnetic field produced by the similar α-turbulence dynamo 
in the interstellar gas is only 0.1 GB ≤ µ  at 0.12 pcr ≈ , which is five-order of 
magnitude less than the observed lower limit for the field strength, 8 mG. The 
observed magnetic field with a lower limit of 8 mG near the GC is hardly pro-
duced by so far known generator mechanism. This is the second dilemma. 

To sum up, we conclude that the discovery of abnormally strong radial mag-
netic fields at the center of the GC presents the two dilemmas above for astro-
physics. 

However, these two dilemmas may simultaneously be solved by our model 
“Super-massive star with magnetic monopoles” [6] for quasars and active galac-
tic nuclei (AGNs) (including the super-massive object at the GC) proposed since 
1985. The discovered strong radial magnetic field near the GC is just consistent 
with our prediction on quantity. 

2. A Supermassive Star Model with Magnetic Monopoles  
(SMSMM) 

Taking the RC effect, that the MM may catalyze a nucleon decay, as an energy 
source, however, this dilemma in the GC may be naturally solved by our 
SMSMM at the GC (non BH). Three predictions, at least, in our model [6] are 
quantitatively confirmed by astronomical observations afterwards: 1) The radial 
magnetic field produced by the MMs condensed in the core of the super-massive 
object is about ( )10 ~ 50 mGB ≈  at 0.12 pcr =  which is consistent with the 
lower limit of the observed magnetic field. This is a key prediction. All other 
models will be excluded when the key prediction is confirmed by the astronom-
ical observation. 

2) Plenty of positrons are emitted from the GC, the production rate is 1043 
e+/sec or so. This prediction is consistent with high-energy astrophysical obser-
vations [7] in 2003. 

3) We predicted the surface temperature of the super-massive stellar object at 
the galactic center to be 123 K and the corresponding 1013 Hz (at the 
sub-millimeter range), and this is quite close to the observed value of 1012 Hz [8]. 

These observations may show the signals for existence of MMs such as the 
supermassive object at the GC. 
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To sum up, we conclude three important significances of our predictions 
above have been confirmed by the astronomical observations: 

1) The Black Hole model in the Galactic Center is nonphysical. 
2) These are the astrophysical evidences for the existence of MMs. 
I hereby declare that astronomical observations are actually physical experi-

ments in space. 
3) Our model is reasonable. Especially the RC effect may be real and we may 

use it as an energy source for the supernova explosion and for the Earth core. 

3. Query on the BH Models for Quasars and AGNs 

It is now generally believed by most astronomers that bright quasars observed at 
large redshift (for example, 1z >  or even 6z > ) are supermassive black holes 
formed in the primordial universe. 

The spectacularly huge luminosity is supplied by the matter of a rotating ac-
cretion disk around the BH. We point out that the most serious contradiction in 
the BH model comes from the mass of the quasars original black hole. 

We asked to compare birth in the early universe. In order to find the original 
mass of a quasar when it was born in the early universe, we need to subtract the 
mass added by accretion from the mass of the quasar determined today from the 
time of its birth ( 0t ≈ ) to the time of t(z). However, according to various possi-
ble accretion theories in the current research, taking the data of 105,783 quasars 
from [9] which are based by SLOAN Digital sky survey (SDSS), we find that the 
mass of these black holes (quasars) with medium and low redshift is mostly neg-
ative or very small after deduction (see Figure 1). This is totally ridiculous. 

However, the situation is totally different when we take our model (SMSMM). 
The mass of the supermassive object must decrease gradually due to the baryons 
decaying catalyzed by the MMs. And the nucleon decaying products (including 
the pions, muons, positrons and the radiation) would go out of the object con-
tinuously. 

In order to compare the mass of the quasars (active galactic nuclei) observed 
at different redshift in the primordial era, the mass lost during their evolution 
due to radiation by the nucleon decay catalyzed by MMs. should be added into 
the mass of the quasars (AGNs) observed at different redshift now. 

Adding the lost mass during their evolution, the statistic distribution of num-
ber of the quasars (AGNs) with their primordial mass of shows a Gauss distribu-
tion (see Figure 2). It is reasonable. 

4. Supernova Explosion Driven by MMs 

What role played by the MM in supernova (SN) explosion? 
The MMs in the interior of stars and planets are almost by captured from 

space during their life time after their formation. The total number of MMs 
captured from space by the progenitors of SN after their formation may be esti-
mated to be  
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Figure 1. Distribution of the mass of primordial mass of quasars in black hole model, the 
solid line represents the quasar mass error not considered in the statistics, dash-dot line 
and dotted line represent the upper and lower limits of the quasar mass error are consi-
dered separately in the statistics (Data for 105,783 quasars are from [9]), the result is from 
Zheng Li and Ming Zhang’s work (in preparing). 
 

 
Figure 2. Distribution of the primordial mass of quasars in the model of supermassive 
star with magnetic monopoles, the quasar masses we take log10 (Data for 105,783 quasars 
are from [9]), the result is from Zheng Li and Ming Zhang’s work (in preparing). 
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  Φ  = π Φ ≈ ×       Φ     

       (3) 

where R denotes the radius of the star (or planet) and t is the life time of the star 
(or planet), mΦ  is the flux of the MM flight in the space. The superscript (0) is 
the sign of its value in the space. The number of MMs captured from space by 
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the progenitor of SN is mainly obtained in its red giant stage due to the radius of 
corresponding red giant being hundreds of times larger than the radius of the 
corresponding main sequence star, although the life time of its red giant stage is 
about 1/10 of times shorter than the life time of its corresponding main sequence 
star. ( )up

mΦ  is the up limit of the flux for the MM flight in the space (Parker, 
1970) [10].  

( ) ( )12 16 2 1 110 ~ 10 cm s sr .up
m

− − − − −Φ ≈ ⋅ ⋅                   (4) 

Taking the RC effect as the energy source, the luminosity of the supernova is.  
( ) 1 2

43
112.5 10 erg s.

100 10 K

c
cB

m
nuc

TnL a
n

ξ    ≈ ×          
             (5) 

2

3 6 .
10 1 10 Yr

RG RGR t
a

R
   =      ×  

                       (6) 

( )

( )

0

30 2 2
.

10 cm 10
m

up
m

σξ − −

 Φ ≡      Φ 
                     (7) 

where ( )c
Bn  is the number density of the baryons in the center for the core of the 

SN, nucn  is the nuclear (number) density, σ  is the cross section of the RC ef-
fect. For collapsed supernova, its central density increase with the core mass of 
the collapsing supernova we use some approximate (reasonable) estimates:  

1
610 Yr

20RG
Mt
M

−
 

=   
 

                        (8) 

( )310 , 1.0 ~ 1.5 .
20

RGR M
R M

β

β
 

= ≈  
  

                 (9) 

Hence 
( )2 1

.
20

Ma
M

β −
 

≈   
 

                        (10) 

( ) ( )220 .c
B nuc cn n M M∝



                     (11) 

The relationship between the peak luminosity of a supernova and the mass of its 
progenitor may be written as  

( )
2 1 1 2

43
115.0 10 ergs s.

20 100 10 K
peak c

m
TML

M

β
ξ

+
    ≈ ×          

        (12) 

The supernova will explode when the peak luminosity of the supernova is high-
er than the Eddingtons luminosity which is the critical luminosity of a stable 
star:  

.peak EddL L>                           (13) 

1
384 1.3 10 ergs s.

0.4Edd
sun

cGM ML
M

κ
κ

−  π  = ≈ ×   
   

         (14) 
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We can use the ratio, b to measure the magnitude of the supernova explosion.  

.peak Eddb L L≡                           (15) 

2
42 10 .

20
Mb
M

β
 

≈ ×   
 

                      (16) 

For the super luminosity supernova ASASSN-15lh (Sep. /2015),  
492.2 10 ergs sL = ×  at the 15th day after the peak, it is easily explained by an 

assumption: 1) Its progenitor with the initial mass more than 410 M


, and its 
radius 4 510R R−≈



, 410 Yrt ≈ . 2) The number density of the baryons in the 
center for the core of the SN during its collapse is reach to ( ) 310c

B nucn n≈ . 
The SN may be very weak without strong explosion when its RC luminosity is 

not much higher than the Eddington’s luminosity, ( )381.3 10EddL M M≈ ×


. 
(Such as Cas A and the G1.9 + 0.3). The Equation (12) is the relationship of 

the peak luminosity of SN with the mass of their progenitors. 
Most of the MMs will be rapid thrown outwards with the plasma by the strong 

Coulomb electromagnetic interaction, and they will go away from the stars. 
However, trace MMs will return back to the core of the star. The residual MM 
still continue to catalyze the nucleons decaying. The corresponding radiation 
pressure is outward against material collapse.  

When the RC luminosity catalyzed by the MMs in the core is less than the Ed-
dington’s luminosity of the remnant, they will reach at the dynamic equilibrium. 
Neither material is pushed outward by the radiation pressure, nor will the core 
collapse to the center. The central density cannot tend to infinite and the SN 
remnant is not a black hole. It means that no black holes with stellar mass 
formed through supernova explosion of massive stars.  

Using the same idea we may also explain naturally following two mysteries: 1) 
why the Earth’s core is in a melting state. The parameter value in the Equation (5) 
and (12), Equation 100ξ ≈ , is estimated based on the measured outward heat 
flow from the earth’s core and on the energy yield rate of nucleon decay cata-
lyzed by magnetic monopoles (RC effect); 2) why no white dwarf with surface 
temperature lower than 103 K has not been observed up to now?  

5. Physics on the Hot Big Bang of the Universe Driven by MMs 

On the standard model of the hot big bang cosmology, the early universe is de-
picted by extrapolating back to a hot and dense initial state of Planck length and 
Planck time derived with the help of the uncertainty principle. However, the 
formation of the big bang itself has not been investigated, i.e. nobody gives an-
swer to the question what is the physical reason of Hot Big Bang of the Un-
iverse? 

Using the same idea that nucleons may decay catalyzed by the MM with 
strong interaction cross section (i.e. RC effect), we may also explain naturally the 
physical reason of Hot Big Bang of the Universe. 

It is generally estimated and believed that there are 2.0 × 1011 galaxies. Every 
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galaxy is roughly the size of over Milky galaxy with 1011 stars, then the total number 
of stars in the Universe is about 1023. The mass of the sun is 2.0 × 1033 gram, then 
the total mass of the Universe of the baryons is 2.0 × 1056 gram and the total 
number of the baryons is 1.0 × 1080. If the content of the magnetic monopoles of 
the same polarity contained in the Universe is ( )( )2010 up

m BN Nξ ξ ξ−= = , 
here mN  and BN  are the number of magnetic monopole and baryons, respec-
tively. ( )upξ  is the Parker up limit (Parker, 1970), and ( ) 10 ~ 20upξ ≈ . So the 
total number of the magnetic monopoles of the same polarity contained in the 
universe may be estimated to be ( )( )6010 up

mN ξ ξ=  (Peng and Chou, 2001; 
Peng et al., 2017). The magnetic monopoles in the high temperature baryon 
plasma are strongly compressed and moving very fast toward the center via elec-
tromagnetic interaction. The RC luminosity produced by nucleon decay which is 
catalyzed by the magnetic monopoles is given by  

( )
( )

( )2 75
80 210 ergs sec.

10 cm
RCc B

m m B T B up
nuc

nL N n m c
n

σξσν
ξ −

   
= ≈         

    (17) 

when the total mass in the universe is compressed to become super-massive 
body, the corresponding Eddington luminosity is given by 

38 6110 ergs sec 10 ergs sec.Edd
ML
M

 
= ≈  

 

              (18) 

If the whole universe is compressed such that 

( )

( )

1

10
80 210 .

10 cm

c
RCB

up
nuc

n
n

σξ
ξ

−

−
−

     >              
                (19) 

then 410m EddL L>  and the whole Universe must violently explode outward 
leading naturally to the hot big bang. This is just the physical mechanism for Hot 
Big Bang of the Universe. 

In view of this, we may propose an oscillating model of the Universe between 
the expansion phase of the big bang and then the contracting phase by the gra-
vitational attraction.  

6. Conclusion 

In the traditional standard hot big bang cosmology, it is extrapolated back to the 
initial singularity of the universe. This is done purely by theoretical speculation. 
Our model of the hot big bang is obtained in terms of the Rubakov-Callan lu-
minosity and no other theoretical arguments or anticipation is required. In our 
model, the expression phase may finally be ended and followed by the contrac-
tion phase due to gravitational attraction.  
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Abstract 
In this paper, an alternative approach to cosmology is discussed. Rather than 
starting from the field equations of general relativity, one can investigate the 
probability space of all possible universes and try to decide what kind of un-
iverse is the most probable one. Here two quite different models for this 
probability space are presented: the combinatorial model and the random 
curvature model. In addition, it is briefly discussed how these models could 
be applied to explain two fundamental problems of cosmology: Time’s Arrow 
and the accelerating expansion. 
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1. Introduction 

What is the most common way of solving a problem in physics? In the tradition 
which goes back at least to Newton, the dominating answer tends to be: Find the 
equations of motion (and solve them). 

This answer has been enormously successful in the history of modern physics. 
This was also the way modern cosmology started a century ago. To illustrate this 
approach, let us consider a closed universe of the simplest possible topological 
type, i.e. a 4-sphere. And let us in addition also assume it to be homogeneous 
and isotropic at every moment of time. Can we then determine how the radius 

( )a t  of the universe varies with time? The pioneering work for answering this 
question was based on the so called Friedmann equation (see Friedmann [1]):  

( )
( )

( ) ( )

2
0

2 2 3

66 d 6 .
d

aa t
ta t a t a t

  + = 
 

                  (1.1) 

This is essentially just the time-time-component of Einstein’s general field equa-
tions  
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8 ,ij ijG T= π                           (1.2) 

where ijG  is the Einstein tensor and ijT  is the stress-energy tensor (for further 
details, see e.g. Misner, Thorne, Wheeler [2] or Wald [3]). Multiplying by the 
factor ( )2 6a t , (1.1) can be rewritten as  

( ) ( ) ( ) ( )

2
0 0d d1 or 1,

d d
a aa at t

t a t t a t
  = − = ± − 
 

           (1.3) 

from which it is easy to see that a solution, starting from 0a =  at the Big Bang, 
will grow until it reaches its maximal value 0a  and then, by symmetric consid-
erations, decrease until it again becomes zero (at the Big Crunch). In fact, it is 
not difficult to see that the solutions of (1.3) are cycloidal curves, so the Fried-
mann equation made it possible to predict the time-development of the universe 
from the beginning to the end (see Figure 1). Nowadays however, this is neither 
the best nor the most popular model for cosmology. In particular, it fails to ex-
plain the accelerating expansion (see Adam, Riess et al. [4] and Perlmutter et al. 
[5]). 

But, if we now return to the original question, there are also other answers to 
how problems in physics can be solved. For example, in statistical mechanics a 
competing answer could be: Consider all possibilities and find the most probable 
kind. As a trivial illustration, consider the situation where a gas is initially con-
fined by a wall to a part of an otherwise empty container as in Figure 2 (left). 
What happens if the wall is removed? Clearly, the gas will immediately start to 
spread out (middle) to fill up the whole container, and at the end of this process 
(right), the gas will be very evenly distributed over the interior. How should we 
explain this phenomenon? It is of course in principle possible to try to use the  
 

 
Figure 1. The time development of the closed Friedmann model. 

 

 
Figure 2. Three stages of a gas filling up a container. 
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equations of motion for some set of initial conditions. But this would lead to ex-
tremely complicated computational problems, even for a moderate number of 
particles. A much simpler method, and in a sense a more convincing one, would 
be to note that the number of micro-states of the gas which correspond to the 
evenly distributed macro-state is enormously much larger than the number of 
micro-states which correspond to the un-evenly distributed macro-state we 
started with, and in fact much larger than the number of micro-states corres-
ponding to any other macro-state as well. Thus, neglecting almost everything 
about the microscopic processes that underlies the development and instead just 
considering it to be more or less a random process, we can, using little more 
than high school mathematics, convincingly argue that the gas will end up in a 
state of even distribution. 

The purpose of the present paper is to try to show how this way of reasoning 
could be used in modern cosmology, and also that it may have the potential to 
change our views on cosmology in general. 

How should this way of thinking be implemented? The idea is to consider the 
set of all possible universes as a huge probability space, and then try to find out 
what types of universes dominate in this probability space. 

It goes without saying that it is impossible to construct a model for the proba-
bility space of all universes in any kind of detail. Rather, the strategy in this pa-
per will be the opposite one; to find extremely simple models. Still, the hope is 
that these models will somehow reflect fundamental properties that are not so 
easy to spot within are more traditional framework. 

Is this a multiverse theory? Answering this question will mainly be left to the 
reader, since it is more a question about philosophical interpretation than about 
science. From the specific point of view of the author however, the answer may 
be said to be yes: to consider all universes to have the same ontological status 
does seem to be the most natural interpretation. But on the other hand, it should 
be kept in mind that we are here concerned with multiverses of a very restricted 
kind, which can be viewed as a natural outflow of Feynmann’s “Democracy of all 
Histories” approach to physics. Thus, this is (regardless of the interpretation) 
essentially based on ordinary quantum physics and has no relation to the more 
speculative multiverse theories that have been discussed in recent years. 

The main examples of such simplified multiverse models which I want to dis-
cuss in this paper are the following:  
• The combinatorial multiverse.  
• The random curvature multiverse.  

From a certain point of view, these examples are both extreme in the sense 
that it is difficult to imagine how the simplification could be driven much fur-
ther. Still, it is part of the ambition in this paper to show that even such simpli-
fied models have the potential to explain fundamental properties of our un-
iverse. The examples that will be taken to illustrate this point have been dis-
cussed separately before, so I will simply sketch what can be done in these two 
cases to illustrate the general method. For more detailed calculations, see Tamm 
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[6], Tamm [7], Tamm [8], Tamm [9]. The examples are as follows: 
• The asymmetry of time.  
• The accelerating expansion.  

It should also be said that the purpose here is not to make firm predictions to 
be compared to observations. Such predictions may very well be made at a later 
stage, but so far the ambition has rather been to make the models as simple as 
possible, and also they may contain various parameters which may be difficult to 
determine. 

I will be mainly concerned with closed universes. Part of the reason for this 
will become clearer as we proceed. But it is of course possible to try to apply the 
same way of thinking to open universes as well. It is just harder to treat them in 
the context of probability spaces, something which is well known from ordinary 
quantum physics. 

The underlying physics will mainly be treated in a kind of semi-classical set-
ting. This is in a way very natural since the problems are macroscopic, but still in 
the end it may be argued that a quantum mechanical treatment would be pre-
ferable. As has already been said, in this paper I consider simplicity in the pres-
entation to be the most important thing. However, I will briefly come back to 
this question in Section 7. 

2. The Combinatorial Multiverse 

In this section we will study the perhaps simplest of all models, namely the com-
binatorial one. Thus, for each moment of time between the endpoints 0T−  and 

0T  (corresponding to the Big Bang and the Big Crunch), consider the set of all 
possible configurations or “states” that a possible universe could be in. To simpl-
ify still further, let us assume time to be discrete (and integer valued). Thus, we 
have moments of time  

0 0 0 0 0 0, 1, 2, , 2, 1, ,T T T T T T− − + − + − −                (2.1) 

and for each such moment of time we have a certain number of possible states. 
At times 0T−  and 0T , we assume that there is only one unique state, but for 
each moment of time between the endpoints, there are many different states. All 
these states are then the nodes of a huge graph, and a universe is a path in this 
graph where the edges are specified by the dynamics of the model: between each 
pair of adjacent moments of time, say t and 1t + , there will be a certain number 
of edges between the corresponding states, indicating those time-developments 
which are possible, and the totality of all such edges defines what we mean by the 
dynamics of the model. A very schematic picture is shown in Figure 3.  

Remark 1. The word “state” here should be interpreted with some caution. It 
should not be interpreted as representing ordinary quantum states in the usual 
sense. Rather, states here may be thought of as “distinguishable configurations”, 
which is clearly a kind of semi-classical approximation (see Tamm [6]). 

In particular, it is important to note that a state can lead to different states in 
the future, i.e. each state may be thought of as a fork in the road of history. For  
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Figure 3. One universe in the combinatorial multiverse [7]. 

 
example, the decay or non-decay of a certain particle may lead to completely 
different futures within a reasonably short time, in spite of the fact that the de-
velopment of the underlying wave-function is supposed to be unique.  

As it stands however, this model is too simple to generate any results. In fact, 
there are no observable differences at all between the states, which means that there 
are no measurable variables which could be related to the (so far non-specified) 
dynamics. In the next section, which is devoted to the second law of thermody-
namics, we will therefore consider one additional variable: the entropy. 

3. Time’s Arrow 

The term “Time’s Arrow” was coined by Eddington [10] and refers to the fact that 
macroscopic time is directed; there is an arrow pointing from the past towards 
the future. For some reason we can remember yesterday but we cannot remem-
ber tomorrow. Another formulation, which perhaps lends itself better to physi-
cal reasoning, is to say that entropy grows in the direction towards the future. 

The problem with Time’s Arrow is that the underlying equations of motion, 
which are supposed to be responsible for the macroscopic behavior, are essen-
tially invariant under reversal of the direction of time. This can also be expressed 
by saying that on the microscopic level there is no arrow. So where does the ma-
croscopic arrow come from? 

There seems to be no question in physics where the tentative answers have 
been so diverse (see e.g. Barbour [11], Halliwell, Perez-Mercander, Zurek [12], 
Zeh [13]). One way to resolve this problem could be to simply just state that the 
boundary conditions of the universe are very different in the future and in the 
past. If we assume that the universe starts from a very improbable state of very 
low entropy immediately after the Big Bang, and then develops towards more 
and more probable states in the future very much like the gas in Figure 2, then 
the growth of entropy in between may appear to be perfectly natural, something 
which was in essence clear already to Ludwig Boltzmann. But assuming such 
differences in the boundary conditions would amount to little more than as-
suming an arrow of time from the start. 

Probabilistic cosmology however, offers a different view-point. We can con-
sider the probability space of all possible universes with a fixed four-volume, and 
this probability space may very well be perfectly time-symmetric, i.e. it would 
look exactly the same if we would reverse the direction of time. However, this 
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would not at all imply that the time in each single universe would share this 
property. In fact, it could very well be that the symmetry would be broken so 
that the overwhelming majority of all universes would have a directed time, in 
the sense that the entropy would be monotonic. To put it shortly, all these un-
iverses would have the same endpoints, but only half of them would have the 
same Big Bang as we have. In the other half, our Big Bang would instead be the 
Big Crunch. 

To model this in a way which is sufficiently simple to allow for computations, 
we will make use of the combinatorial multiverse in the previous section, but 
with the concept of entropy added to it. 

Thus, let us assume that to every state we can assign a certain number S which 
we call the entropy of the state. To make the model as simple as possible, let us 
also assume that S only takes integer values. 

How many states correspond to a given value of S? According to Boltzmann, 
we have that  

1log , e .BkS
BS k W W= Ω⇔ Ω = =                (3.1) 

Although this formula was derived under special circumstances, it does represent a 
generally excepted truth in statistical mechanics: the number of states grows ex-
ponentially with the entropy. In the following, this will be taken to hold true at 
every given moment of time for the universe as a whole. A schematic modifica-
tion of Figure 3 for a very small multiverse is shown in Figure 4. In this picture, 
one possible path (universe) is shown, in this case with monotonically increasing 
entropy. However, before the model can be put into use we still need to specify 
which paths are allowed, i.e. specify the (time-symmetric) dynamics of the model. 
In other words, we need to agree on some rule for deciding which states are ac-
cessible from a given state. 
 

 
Figure 4. A very small combinatorial multiverse with entropy, where 4W = . A particu-
lar universe with monotonically increasing entropy is also shown [8]. 
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To this end, simplifying still further, we assume that the entropy can only 
change by ±1 during each unit of time. The idea is then to make use of Boltzmanns 
intuition that the universe with time moves from less probable states to more 
probable ones. In its original form however, this idea has a definite direction of 
time built in to it, which obviously makes it unsuitable in the present context. 
Therefore, we will instead make use of the following probabilistic time-symmetric 
version:  

Principle 1. (The Time Symmetric Boltzmann Principle) For every state at 
time t with entropy S, the dynamics allows for a very large number K of “access-
ible states” with entropy 1S +  at times 1t −  and 1t + . But on the other hand, 
the chance δ  for finding an edge leading to a state with entropy 1S −  (at 
time 1t −  or 1t + ) is very small.  

Note that with this simplified dynamics, we do not compare the differences in 
probability between different paths in any detail. Rather, we just classify transi-
tions as possible or not possible.  

Remark 2. For the conditions in the symmetric Boltzmann principle to be 
compatible, it is necessary that K W , where W is the constant in (3.1). In 
fact, in this case it is easy to see that only a fraction K/W of states can be reached 
from states with lower entropy at the previous (or next) moment of time, so in 
this case, 1K Wδ =  .  

In addition to this, we also need some assumptions at the ends (BB and BC). 
In this case, let us assume that the entropy is zero, but that during the very first 
and last units of time, “everything is possible”, i.e. that there is a positive proba-
bility for a transition to any of the states at the next (previous) moment. Howev-
er, the probability does not necessarily have to be the same for all states. Rather, 
it seems very natural to assume that the probability for such a transition de-
creases rapidly with the entropy of the state, i.e. the by far most probable transi-
tions lead to states with very low entropy. This is of course just a coarse way of 
modeling the very extreme situation just after the Big Bang or just before the Big 
Crunch. 

Summing up the discussion, we can now define the combinatorial multiverse 
with entropy added in the following way:  

Definition 1. A universe U is a chain of states, one state tΣ  at time t for each 
t, with the property that the transition between tΣ  and t ′Σ  is always possible 
according to the dynamical laws, where 1t t′ = ± .  

Definition 2. The combinatorial multiverse (with entropy) M is the set of all 
possible universes U in the sense of Definition 1.  

Note that with the above definitions, the probability weight of a certain un-
iverse only depends on the weights of the first and last steps, since for all other 
steps we have simply put the weights equal to one. 

4. The Broken Symmetry 

I will in this paper not go into the technical details for computing the number of 
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universes with different kinds of behavior of the entropy, for this I simply refer 
to Tamm [6], Tamm [7], Tamm [8]. But it may still be worthwhile to briefly 
discuss how the combinatorial multiverse can be used to explain time asymme-
try. 

With suitable choices for the parameters of the model, it is easy to convince 
oneself that the probability for a universe with a monotonic behavior of the en-
tropy is enormously much larger than, e.g. the probability for a universe with 
low entropy at both ends. In fact, if δ  in the time symmetric Boltzmann prin-
ciple is small enough, then the probability for such a behavior will be so small 
that it is almost neglectable in comparison with the probability for a monotonic 
behavior, even if in the monotonic case the last (or first) step will be very im-
probable. 

Thus, since it seems to be an experimental fact that we live in a universe with 
low entropy at least one end, we have in a sense arrived at an explanation for the 
fact that an observer who is confined to such a universe will, with overwhelming 
probability, experience a directed time: there are simply so many more universes 
of this kind. 

Is this a sufficient explanation for the arrow of time? From the point of view 
of the author, this model should rather be considered as a first step towards such 
an explanation, and more refined models should be designed. Certainly, there 
are many simplifications in the above model, and some of them may even appear 
to be rather extreme. But on the other hand, most of them can be said to be quite 
harmless for explaining the underlying mechanism, e.g. discrete time and integ-
er-valued entropy. 

But there is one assumption which is somewhat problematic in the Symmetric 
Boltzmann Principle above: if we apply it probabilistically, then it leads to a kind 
of Markov property in the sense that the probability for the entropy to go up or 
down at a certain step is completely independent of the pre-history. This is quite 
in contrast to our own universe, where an event (e.g. a supernova), can leave 
traces that can still be seen billions of years later. 

However, one can attempt to construct slightly more complicated models 
which do not have this behavior. For example, a kind of assumption which 
would not have this Markov property would be to assume that the probability 
for the increase/decrease of the entropy at a certain step (forwards or backwards 
in time) should depend on the n previous (following) steps. If we for instance let 

2n = , this would mean that an increase (or decrease) of the entropy from time 

kt  to 1kt +  will be more likely if we already know that at the previous step from 

1kt −  to kt  the entropy has increased (decreased). 
In fact, it can also be argued that such a modified model would not only be 

more realistic, but would also in a sense give clearer results than the above mod-
el. For instance, one can attempt to prove that in such a model, the total proba-
bility mass of all universes with directed time (in anyone of the two directions) 
must be very close to 1. And certainly, there are other ways to improve further. 

Still, the gap to a more realistic dynamics based on, say, ordinary Newtonian 
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or quantum mechanical mechanics is of course large. This is, for better or for 
worse, both the strength and the weakness of probabilistic cosmology as it is 
presented here: extreme simplification may be the price we have to pay in order 
to see the forest in spite of all the trees. 

5. The Random Curvature Multiverse 

In this section, we will briefly discuss another kind of simple model for a multi-
verse, which is however quite different from the combinatorial multiverse in 
Sections 2, 3 and 4. Here it will not be the entropy but rather the scalar curvature 
which will be the central concept. Nevertheless, the basic approach is the same: 
we start from very general statistical assumptions and try to determine the most 
probable type of universe. 

Thus, let us consider the probability space of all possible metrics on a certain 
space-time manifold, only subject to the condition that the total 4-volume is a 
fixed number. Scalar curvature is essentially additive in separate regions, so what 
can we say about the probability for a certain value of the total scalar curvature 
in a region D which is a union of many smaller regions? 

Remark 3. It is generally believed that the fluctuations in R become more and 
more violent when we move towards shorter and shorter length scales. From this 
point of view, one can wonder if it makes sense to consider the total scalar cur-
vature in a region at all? 

The easiest way to get around this difficulty is to simply consider the mean 
scalar curvature at some (short) length scale. As it turns out, everything to come 
is essentially independent of the choice of this length scale, so I will not com-
ment further on this here.  

To each such smaller region we assume that there is a certain probability dis-
tribution for the different possible metrics. Exactly what this probability distri-
bution actually looks like on the microlevel is of course difficult to know, but the 
point is that under quite general assumptions this will not be important. Let us 
just suppose that it depends only on the scalar curvature. This is in fact very 
much in the spirit of the early theory of general relativity, where R plays a central 
role (compare e.g. the deduction of the field equations from the Hilbert Palatini 
principle in Misner, Thorne, Wheeler [2]). We also suppose, starting from the 
idea that zero curvature is the most natural state, that the mean value of this dis-
tribution is zero. This assumption may be non-obvious, but nevertheless serves 
as a good starting point. 

If we now consider the total curvature R in D to be the sum of the contribu-
tions from all the smaller subregions, and if we (roughly) treat these contribu-
tions as independent variables, then the central limit theorem (see Fischer [14]) 
says that the probability for a certain value of R is  

{ }2exp ,Rµ∆−                         (5.1) 

where ∆  is the volume of D. 
In the following, we will simply take this as the natural probability weight for 
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the metric g in D on a macroscopic scale where we do not observe any fluctua-
tions of the curvature. In other words, the factor in (5.1) can be considered as a 
kind of measure of the resistance of space-time against bending. 

What about the probability weight of a larger set Dα αΩ =   with metric g? 
Assuming multiplicativity (which essentially means that different regions are 
treated as independent of each other), and that all the regions have roughly the 
same volume ∆ , we get the (un-normalized) probability  

( ) { } { }2 2 2exp exp exp d .g g gP R R R V
α αα

α
µ µ µ∆ ∆ Ω

 Ω Π − = − ≈ − 
 

∑ ∫  (5.2) 

where µ  is a fixed constant. (Here we have, in the transition from sum to 
integral, tacitly made use of the additive property of the variance in normal dis-
tributions.) So what we get is a kind of Ensemble of all possible metrics in Ω , 
where each metric gets a probability weight as above. 

In classical general relativity, R is usually assumed to be zero everywhere, as 
long as there is no mass present. This is of course very well compatible with the 
present Ensemble, since 0R =  will obviously maximize the exponential in 
(5.2). However, when it comes to cosmology things become more complicated, 
and this kind of Ensemble may lead to non-trivial consequences. 

The word Ensemble originally steams from statistical mechanics. So the idea is 
now to apply methods from classical statistical mechanics to the whole multi-
verse (see e.g. Huang [15] for some background about Ensembles). First com-
pute the “state sum”: { }2exp dgg R Vµ

Ω
Ξ = −∑ ∫ . Minus the logarithm of the 

state sum, log= − Ξ , is what is usually refered to as the “Helmholtz Free 
Energy”. According to standard wisdom in statistical mechanics, the macrostates 
which minimize   (among all states with a given volume), are the by far most 
probable ones, i.e. the ones which may be realized. 

In general, finding these macrostates can be difficult, since they are deter-
mined by a sensitive interplay between the size of the terms in the state sum and 
their corresponding “densities of state”. However, in the case of interest here, 
corresponding to low curvature, it can be a reasonable first order approximation 
to assume that the density of states is the same for all competing states. In this 
case,   can essentially be computed as minus the logarithm of the largest term 
in Ξ :  

2d .gR Vµ
Ω∫                        (5.3) 

Remark 4. Note that terms like the “Helmholtz Free Energy” are used here to 
associate to a fundamental statistical principle. But it should of course be kept in 
mind that in this situation we deal with 4-dimensional states, and that this is not 
directly related to ordinary 3-dimensional energy. 

On the other hand, there is an analogy between the integral in (5.3) and the 
concept of action (which in a certain sense can be thought of as a kind of 
4-dimensional energy). From this point of view, the principle of minimizing the 
free energy as above also becomes analogous to the usual principle of least ac-
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tion.  
What happens if we minimize the action/free energy   in the case of a 

closed, homogeneous, isotropic universe? (Compare with the closed Friedmann 
model in Section 1). As long as we consider an empty universe without mass, the 
answer will be just a four-sphere. In fact, it turns out that in Lorentz geometry, 
such a sphere has 0R =  everywhere, which obviously makes it minimizing. 
Figure 5 looks rather similar to the closed Friedmann universe in Figure 1, but 
it is not exactly the same. 

Just as in the case with the combinatorial multiverse without entropy, the 
model is so far too simple to be able to generate any interesting results. To make 
it more interesting, we need to also include matter. This will be initiated in the 
next section. 

6. A Geometric Model for the Accelerating Expansion 

Can probabilistic cosmology explain the accelerating expansion? (or more gen-
erally, determine the scale factor, explain inflation etc.). 

A commonly made implication of the accelerating expansion is that the un-
iverse must be open. On the other hand, as has been pointed out in Section 1, 
probabilistic cosmology is most easily applied to closed universes, since there are 
problems with making the set of all open universes into a probability space. As it 
turns out however, this is not an issue in the present situation, since one of the 
conclusions is in fact that accelerating expansion may be a very natural pheno-
menon also in closed universes. In this section, I will sketch a very simple model 
based on the random curvature multiverse of the previous section. 

Let us now once more return to the closed, homogeneous, isotropic universe 
we started with in Section 1. If we accept the accelerating expansion as a reality, 
then the most common way of explaining it is to reinterpret the field equation, 
which leads to the idea of dark energy. But is it evident that the field equations 
are the right starting point? 

An alternative approach is offered by probabilistic cosmology. As we saw in 
the previous section, the cosmology of an empty random curvature multiverse is 
rather simple. But if we also take into account matter, the situation becomes 
much more interesting. So how should the gravitational forces be included? 

 

 
Figure 5. The form of an empty universe. 
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The easiest way, and also the most traditional one (although perhaps not the 
most fundamental one), is to actually continue the analogy between minimizing 
  and the principle of least action. In this case, we can simply add the ordinary 
action associated with gravitation to   to obtain the total action. 

To make everything as easy as possible, let us just make use of the usual clas-
sical concept of potential energy. In this case it is easy to see that the total gravi-
tational energy at a certain moment of time t should be of the form  

( )
1 ,const

a t
⋅                             (6.1) 

which then leads to a contribution to the total action:  

( )
0

0

1 d ,
T

T
t

a t
β

−
− ∫                           (6.2) 

for some constant β . 
Remark 5. The form of the expression in (6.1) of course just expresses the fact 

that the (negative) potential energy between two bodies is inversely proportional 
to their distance. From this it follows easily e.g. that an expanding homogeneous 
gas will behave exactly in this way. 

However, our universe as we know it does not expand as a homogeneous gas. 
This may have been a reasonable picture during the very first part of our history. 
But for the present expansion, it is much better to imagine the expansion as tak-
ing place in between galaxies of more or less fixed size and mass. This will still 
give rise to an expression like in (6.2) for the action, but possibly with quite a 
different value of β . The distribution of galaxies is by the way also an interest-
ing field for probabilistic cosmology, but it would lead too far to go into this 
here. 

This is one reason why the present model should not be expected to give ac-
curate results near the endpoints. Another reason is that in this case, gravita-
tional physics alone may not be enough to explain the expansion rate.  

Summing up, the problems becomes to minimize  

( )
0

0

2 1d d
T

T
R V t

a t
β

Ω −
Φ = −∫ ∫                     (6.3) 

where Ω  stands for the whole universe, under the condition that  

( )0

0

2
3d d

2
T

T
V V a t t

Ω −

π
= =∫ ∫                     (6.4) 

is a fixed number, corresponding to the total 4-volume of Ω . What do the solu-
tions to this minimizing problem look like? 

A traditional method of attack is to look at the Euler-Lagrange equation for 
the functional  

( ) ( )0

0

2 1d d d .
T

T
R V t V V

a tλ β λ
Ω − Ω

Φ = − + −∫ ∫ ∫           (6.5) 

It should be noted that a solution to this equation is in general not the same as a 
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global minimum of Φ , even if condition (6.4) is satisfied, since there could also 
be other stationary solutions. As it turns out, there are strong indications that 
the solution in this case is unique, which would then imply that finding the 
global minimum is in this case equivalent to solving the Euler-Lagrange equa-
tion. This is simply because the solutions to the equations in this paper tend to 
be uniquely determined (at least in the time-symmetric, homogeneous and iso-
tropic case). But a rigorous treatment of this question leads to difficult and un-
solved problems, which also require a much heavier mathematical machinery 
than I can go into here. 

Having said this, we can still study the solutions to the Euler-Lagrange equa-
tion on a time-interval corresponding to the main part of the time-span of each 
universe. An example is plotted in Figure 6. If we compare this plot with the one 
in Figure 5, we note that here there is an interval of time in the beginning of the 
development where the function ( )a t  is convex (and a similar interval towards 
the end). This corresponds exactly to a phase of accelerating expansion.  

Remark 6. It is quite a mathematical task to give a complete treatment of the 
minimizing problem in this section. Some more details are given in Tamm [9], 
but still a lot of work remains to be done. 

However, it may be worthwhile to comment on the difference in underlying 
intuitive perspective between the classical theory and the present one. 

In the classical closed Friedmann universe in Section 1, matter gives rise to an 
attractive force which makes the universe re-contract into a Big Crunch. From 
the intuitive point of view of a classical initial value problem, this makes the be-
havior in Figure 1 very natural. 

In the present context however, the perspective is somewhat different. Here 
the total volume is given from the start. Perhaps we may think of the universe as 
built up from a fixed number of elementary constituents of some kind, each with 
a fixed “elementary” volume. So how will the empty universe in Figure 5 react 
when we add mass? Clearly, the influence should still be contractive, and the 
contractive force should be strongest close to the endpoints. But since the vo-
lume is fixed, contraction near the ends must imply expansion somewhere in 
between. From this point of view, the behavior in Figure 6 becomes very natu-
ral.  

 

 
Figure 6. An example of a solution of the Euler-Lagrange equation [9]. 
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Remark 7. As has already been stated, the above Lagrangian approach may be 
the easiest way to include mass in the model. But there are bolder alternatives. 
One can for instance conversely attempt to interpret gravitational action in 
terms of curvature instead. In fact, it can be argued that in general, the presence 
of mass implies non-zero scalar curvature, and thus that mass in itself will con-
tribute to the scalar curvature. Moreover, it can also be seen that two interacting 
bodies will give rise to less curvature than the sum of their separate contribu-
tions, in fact in a way similar to (6.2). This way of viewing the problem has the 
interesting property that in a sense it puts mass and the curvature of space-time 
on an equal footing: in both cases their influence on the physical development 
comes from their contributions to the integral  

2d .R V
Ω∫                           (6.6) 

However, it would lead too far to go into all this here, so this discussion will have 
to be continued elsewhere.  

7. Conclusions 

The two examples in this paper both represent extremely simplified models for 
the multiverse, but they also represent two very different kinds of simplification. 
This is in fact one of the main reasons for choosing them as examples in this pa-
per; to show that there are very different ways to implement probabilistic cos-
mology. 

But would it not be better to try to create a common model which could in-
clude all aspects of probabilistic cosmology in a unified way? This would very 
much be like wishing for a grand unifying theory for all of fundamental physics: 
it would be wonderful to have one, but it is not obvious that we do ourselves a 
favor by advocating such a theory if the time is not ripe for it. From this point of 
view, the only reasonable way forward would seem to be to use different kinds of 
simplifications in different contexts, and only in the end we may hope that all 
these different aspects will unite into a more complete and unified picture. 

Having said this, it is still worth pointing out that the best (at least in the opi-
nion of the author) proxy to such a united approach that we have is Feynmann’s 
democracy of all histories approach to physics. And, at least from an abstract 
point of view, this approach seems to be very well suited for the use of probabil-
istic cosmology. From a more applied point of view however, there may still be a 
long way to go before e.g. both the Combinatorial Multiverse and the Random 
Curvature Multiverse can be treated within such a common framework. 

Summing up, it has been my purpose in this paper to show that a probabilistic 
approach could be a powerful tool for producing new answers in cosmology. But 
will the answers be the right ones? This is of course just the usual problem in 
science: new ideas and perspectives can be fascinating and interesting. But that 
does not necessarily make them correct. What is right and what is wrong can 
only be answered after the long and tedious process of comparing with observa-
tions and alternative explanations. Still, the more instruments we have in our 
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tool box, the better are the perspectives for a success. 
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Abstract 
We raise the question of how the curvature parameter k is related to the cur-
vature of the universe. We also show that, for a cosmological model that can 
be interpreted geometrically as a pseudo-hypersphere with a time-dependent 
radius, the Einstein field equations are not sufficient to fully describe the 
model. In addition, the differential equation system of Bianchi identities is 
required to describe the temporal evolution of the universe. We discuss the 
facts using the example of the de Sitter universe, the subluminal universe and 
the hR ct=  model by Melia. In particular, we discuss the formal differences 
between the two latter models and claim that both models are identical. We 
also examine the possibility of introducing non-comoving coordinates. 
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Curvature Parameter, Bianchi Identities, de Sitter Cosmos, Subluminal  
Cosmos, hR ct=  Cosmos, Geometric Horizon 

 

1. Introduction 

In many papers on expanding cosmological models, the topic is introduced with 
findings on the curvature parameter k. An expanding model is based on the me-
tric in the canonical form 

2 2 2 2 2
2

2

1d d ' ' d d '
'1

s r r t
rk

= + Ω −
−

R

.                (1.1) 

Here, 'r  is the comoving radial coordinate of an observer participating in an 
expanding motion and Ω  the solid angle. 't  is the cosmic time, which ap-
plies equally to all comoving observers and, at the same time, is the proper time 
of these observers. For 1k =  the underlying space should be positively curved 
and closed. For 0k =  the space is described as flat and 1k = −  negatively 
curved. The two latter universes are open, they exhibit infinite extension. 
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In an earlier paper [1], we showed that 0k =  does not necessarily mean that 
the universe described by the line element (1.1) is flat. We discuss this problem 
once again in Sec. 2. Sec. 3 deals extensively with the two versions of the de Sitter 
universe and its inconsistencies. In Sec. 4, we extend the considerations to the 
subluminal universe and to Melia’s model in Sec. 5. We also discuss the 
3-dimensional Ricci scalar and how meaningful the relation 3 0R =  is for 

0k = . In Sec. 6, we explore the possibilities of finding coordinate systems for 
non-comoving systems. 

Furthermore, we will use the following variables: R  radius of the universe, 
K  scale factor, H Hubble parameter, , ,B C U  curvature quantities, D tidal 
forces. 

2. The Curvature Parameter 

In our paper [1], we examined in detail the free fall in the Schwarzschild field, 
with the intention of extending the associated methods to expanding cosmolog-
ical models. With the transformation 

2M r
r

=
R

                           (2.1) 

the Schwarzschild metric 

2 2 2 2 21 2d d d 1 d
21

Ms r r t
M r
r

 = + Ω − − 
 −

              (2.2) 

can be converted into the canonical form 
2

2 2 2 2 2
2 2

2

1d d d 1 d
1

rs r r t
r

 
= + Ω − − 

 −
R

R

.              (2.3) 

Here, ( )r=R R  is half the radius of curvature of the Schwarzschild parabola 
and according to (2.1) has the validity range [ ]2 ,M= ∞R . At the waist of 
Flamm’s paraboloid one has 2M=R  and this marks the event horizon. 

Comparison with (1.1) shows that the curvature parameter of the metric is 
1k = , Schwarzschild geometry thus builds on a positively curved space. Fur-

thermore, (2.3) formally corresponds to the line element of the de Sitter universe. 
We will build on this. 

Lemaître used a coordinate transformation to transform the Schwarzschild 
metric into the form 

2 2 2 2 2 2d d ' d d ' , rs r t = + Ω − = K R K
R

.              (2.4) 

As in the cosmological models, K  is referred to here as a scale factor. The line 
element is of type 0k = . The new coordinate system ( 'i ) accompanies a 
free-falling observer family. 't  is the common time for all observers and 'r  
the comoving radial coordinate. From the metric (2.4), we learn that 4 '4 ' 1g = . 
This means that there is no gravity present in this system. To get more insight 
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into the problem, we should remember the following: Observers hover in a 
closed elevator. Since they are not familiar with their environment, they consider 
themselves motionless in a flat gravitation-free space. Such considerations have 
been discussed in the literature under the term “Einstein’s elevator”. 

There is no doubt that there has been no change in the curvature of space due 
to the motion of the free-falling observers. 0k =  does not mean that the un-
derlying space is globally flat, but rather that it is only locally flat for the 
free-falling observers. This consideration is missing in papers which deal with 
cosmological models that expand in free fall. 

3. The Two Versions of the de Sitter Universe 

De Sitter designed a static cosmological model with a metric in the form (2.3). Its 
metric is of type 1k =  and can be interpreted as a metric on a 4-dimensional 
pseudo-hypersphere embedded in a 5-dimensional flat space. The pseu-
do-hypersphere has the time-independent radius R . A transformation given by 
Lemaître [2] [3] transforms this metric into the form (2.4) with the scale factor 

'eψ=K  via:
 

 
2 2 2 2 2 2 2 2 2d d ' ' d ' sin d d 's r r r tϑ ϑ ϕ = + + − K .         (3.1) 

It is of type 0k = . Other models, the anti-de-Sitter model, the Lanczos and 
the Lanczos-like model have similar characteristics. These models are grouped 
into the de Sitter family. The behavior of these models in transformations from 
comoving to non-comoving coordinates has been extensively studied by Florides 
[4]. We [5] [6] [7] have complemented the Lemaître coordinate transformations 
using Lorentz transformations. 

Since the scale factor over ' 't ψ= R  is time-dependent, the dS metric is con-
sidered in the form (2.4) as the metric of an expanding universe. However, this 
interpretation leads to contradictions. First of all, this view violates the principles 
of the general theory of relativity: A coordinate transformation cannot change 
the physical content of a theory. All possible coordinate systems are equal, and 
the choice of a particular coordinate system is usually a matter of utility. 

The conservation law leads to another discrepancy. If one has redefined the 
cosmological constant that is unpopular with many authors using 23λ = R , 

23pκ = − R , 2
0 3κµ = R , one realizes that the mass density 0µ  of the un-

iverse is constant, despite assumed expansion. Some authors have therefore tried 
to explain the constant mass density by producing new mass. However, this ap-
proach has proved unsatisfactory. Furthermore, Mitra [8] pointed out that, due 
to the equation of state 0 0p µ+ = , no matter flow and no energy transport can 
be detected, even for the non-comoving observer. 

The possibility of assigning a Lorentz transformation to the Lemaître coordi-
nate transformation sheds some light on the problem [5] [6]. A Lorentz trans-
formation transforms the static observer system into an accelerated one. In the 
static system, there are forces at every point in the cosmos that want to move the 
observers apart in all directions. The comoving observer system now follows 
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these forces in free fall. According to Einstein’s elevator principle [1], these 
forces are no longer perceptible in the comoving system. Instead of said forces, 
tidal forces [9] [10] occur. Mathematically, this process is carried out via the in-
homogeneous transformation law of the Ricci-rotation coefficients. 

This also makes it clear that neither a coordinate transformation nor a Lorentz 
transformation can change the geometric base structure of the space. 0k =  in 
(3.1) thus results from Einstein’s elevator principle and cannot be considered as 
a criterion for the flatness of the space. The question of how the de Sitter model 
is to be understood in its two versions was widely discussed among German 
physicists at the time. Finally, they turned to the great mathematician Klein [11]. 
His detailed answer ended the discussion. It is not known whether Klein’s au-
thority or the argumentative content of his work was the decisive factor. How-
ever, we cannot find any link between the geometries of the hyperspheres or 
their space-time slices and Klein’s statements. We have not found any work that 
responds to Klein’s publication. 

The geometric structure of the pseudo-hypersphere may best expressed with 
the metric in the form of 

2 2 2 2 2 2 2 2 2 2 2 2 2d d sin d sin sin d cos d
sin , d d .

s i
r i i t

η η ϑ η ϑ ϕ η ψ
η ψ

= + + +
= =

R R R R

R R
  (3.2) 

From it one takes the differential of the proper time 
2 2d cos d , cos 1i T i rη ψ η= = −R R .              (3.3) 

Parallel slices through the pseudo-hypersphere at an arbitrary position r gen-
erate pseudo-circles (hyperbolae of constant curvature) with the r-dependent ra-
dii cosηR  and the imaginary angle iψ . The pseudo-circles are open, they 
range from −∞  to +∞  and have the same curvature everywhere, even at in-
finity. The pseudo-circle is drawn in the literature as a hyperbola in pseudo-real 
representation, which visualizes the dS cosmos as a one-shell hyperboloid. This 
has the advantage that the infinity of the timelines is recognizable. However, 
taking this representation literally can lead to errors. No hyperbolic property is 
recognizable in the dS model, no slice through the pseudo-hypersphere leads to a 
hyperbola. 

At the point r = R , the equator of the pseudo-hypersphere, cos 0η =R  and 
the pseudo-circle degenerates to a point in the pseudo-real representation. No 
time passes there, just as time stops at the event horizon of the Schwarzschild 
field. As can be seen from (3.3), this point lies at r = R , i.e. at the equatorial 
spherical surface of the 3-dimensional hypersphere, which is assigned to an ob-
server at an arbitrarily chosen pole. We call this area the geometric horizon. 

The above-mentioned Lorentz transformation is associated with the Lemaître 
transformation. From it, the relative speed of the observers, which are driven 
apart by the forces of the universe, can be read from 

sin rv η= =
R

.                       (3.4) 
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Thus, the relative velocity is geometrically determined. At a pole arbitrarily 
fixed with 0r = , it has the value 0v =  and, on the equatorial spherical surface, 
the value 1v = , which is the value of the speed of light in the natural system of 
measurement. Thus, this horizon is also a cosmic horizon. In [12], we have 
shown that the observers’ recession velocity can only reach the speed of light 
asymptotically. This means that in the dS universe, the basic laws of special rela-
tivity are not violated. 

4. The Subluminal Model 

The dS universe dealt with in the last section is not particularly suitable for the 
adaptation of astrophysical data. Nevertheless, it is significant for historical rea-
sons. It has been instrumental in driving research into expanding cosmological 
models and is still the starting model for new expanding approaches. It has also 
been criticized that in expanding universes whose metric is known in comoving 
systems and to which a mass distribution can be assigned, no forces are acting 
on the masses. The expansion in free fall is responsible for the missing forces 
and consequently the common cosmic time for all observers. In [12], we envi-
saged an extended dS model in which the observers drift apart more slowly than 
in free fall and recognized forces acting on such observers. This model is only of 
mathematical importance, but the presented technique may be useful for build-
ing more sophisticated models. 

Another, rather promising attempt was a model [13] that builds on the dS 
universe, but drops the condition .const=R . We have called it a subluminal 
model because it definitively rules out that the recession velocity of the galaxies 
exceeds the speed of light. The subluminal universe is positively curved and closed. 
It has the position-independent pressure 21pκ = − R  and the time-dependent 
mass density 2

0 3κµ = R  with the equation of state 0 3 0pµ + = . Pressure and 
mass density result from the exact solutions of Einstein’s field equations. The 
subluminal model therefore differs significantly from the FRW standard model 
in which the pressure is inserted by hand and is therefore not an exact solution 
to Einstein’s field equations. Since the Einstein field equations do not fully de-
termine FRW models, it is necessary to introduce numerous parameters, namely, 
the Ωs and the deceleration parameter. These quantities must then be filled us-
ing astrophysical data. The subluminal model needs only one parameter, the ra-
dius of curvature of the universe, or the scale factor. The Friedman equation 
takes the simple form 1=R , 0=R . The expansion rate of the model is con-
stant. 

For models that build on a pseudo-hypersphere with a non-constant radius, 
Einstein’s field equations are insufficient to determine all the quantities of the 
model. The metric on a surface will determine the properties of that surface, but 
it will not be able to predict the change in the curvature of that surface. This is 
what the contracted Bianchi identities [ || ] 0s

m n r sR ⋅ ⋅ =  provide. They describe possi-
ble changes of the Riemann curvature tensor. For a genuine expanding cosmo-
logical model, two differential equation systems are needed 
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|| ||

1(I)
2

1(II) 0
2

mn mn mn

n
m n m

R g R T

R R

κ− = −

− =
.                    (4.1) 

The system (II) leads to the conservation law || 0n
m nT = . This is often used in the 

literature to establish an outstanding relation to variables. However, little refer-
ence is made to the above considerations. For models with constant R , the 
conservation law is trivial. Therefore, there is no need to use the system (II) to 
complement such a model. 

The subluminal model has a geometric horizon, namely the equatorial surface 
of the hypersphere. As with the dS universe, it is determined by the relation (3.4) 
and, at the same time, it is the cosmic horizon. No galaxy can exceed the speed 
of light; it can only reach it asymptotically. Therefore, a galactic island formation 
is excluded. The possibility that superluminal speeds can occur has been de-
duced from Hubble’s law. Using the redshift, it describes a linear relation be-
tween the recession velocity of the galaxies and the distance to a dislocated ob-
server. However, this relation only allows for superluminal speeds if one assumes 
that in the Hubble equation v Hr=  the variable r is unbounded. Arbitrary dis-
tances are only possible in open infinite universes. In a closed universe with a 
geometrical horizon, the radial variable can only take the amount R , the radius 
of the universe, as the highest value. 

We favor the view that infinite universes, be they flat or open, negatively 
curved ones, are ruled out as a way of describing Nature, this is because, on the 
one hand, infinities are hard to imagine, and on the other hand because we want 
to avoid conclusions from Hubble’s law, which lead to acausalities and contra-
dictions to the special theory of relativity. 

Attempts have also been made to avoid the disagreeable implications of Hub-
ble’s law by arguing that the Hubble velocity is a coordinate speed that does 
not make reliable predictions. This problem does not apply to the subluminal 
model. If one differentiates sinr η= R  according to cosmic time, one first  

obtains the non-invariant expression r r=




R
R

, which reduces to 1=R  due  

to sinv r r η= = = R . However, we have shown in [13] that this expression 
can be translated to 1d dv x T= . Here, 1dx  and dT  are the proper length and 
proper time of a non-comoving observer. Thus, the recession velocity is defined 
independently of the coordinates and is also the velocity used in the Lorentz 
transformation, which transforms the non-comoving system into the comoving 
system. 

In the introduction we explained, with the aid of the well-known Schwarz-
schild model, why gravity cannot be experienced in a free-falling elevator; we 
then transferred the problem to cosmic free-falling observers. We now want to 
address the problem in greater mathematical depth by borrowing a quantity 
from the Ricci-rotation coefficients that is closely related to the curvature of the 
space-like greater circles of the pseudo-hypersphere. 
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The static dS metric is of type (2.3) and is the seed metric for the subluminal 
model. From this metric, using the standard technique of the tetrad representa-
tion, we obtain the above-considered quantity 

1 cos ,0,0,0 , 1, 2,3, 4mB m
r

η = = 
 

.                (4.2) 

Here η  is the polar angle of the pseudo-hypersphere and 2 2cos 1 rη = − R . 
After a Lorentz transformation from the static system into the comoving system, 
this variable takes the form 

'
1 1cos ,0,0, cosmB i v
r r

α η α η = − 
 

.                 (4.3) 

Here, according to (3.4), sinv η=  is the relative velocity between the two sys-
tems and 21 1 sin 1 cosα η η= − =  is the assigned Lorentz factor. Finally, we 
have 

1 ,0,0,m
iB

r′
 = − 
 R

.                        (4.4) 

The spatial part of the quantity B is '
1 ,0,0 , ' 1', 2 ',3'B
rα α = = 

 
 and corresponds  

to the expression of a flat geometric form. The same1 applies to the curvature of 
the space-like parallels of the pseudo-hypersphere 

'
1 1, cot ,0,m

iC
r r

ϑ = − 
 R

                     (4.5) 

and for a time-like slice on the pseudo-hypersphere, so for a pseudo-circle 

{ }1 ',0,0,0 ' 0,0,0,m m
iU U U  = → = − 

 R
.             (4.6) 

From (4.3) it can be seen that even in the free-falling system, the space curva-
ture is still present via the geometric term cosη , but is compensated by the ki-
nematic term α . If one writes all components of the quantity B in the 
5-dimensional embedding space of the pseudo-hypersphere, one has with the 
local extra dimension 0 '  

'
1 1 1sin , cos ,0,0, cos , ' 0 ',1', 2 ',3', 4 'aB i v a
r r r

η α η α η = − = 
 

.  (4.7) 

This quantity can hardly be assigned to a flat space. Since all of the above ex-
pressions can be deduced directly from the type 0k =  metric, 

( )2 2 2 2 2 2d d ' ' d d 's r r t= + Ω −K                 (4.8) 

one will not be able to assume that 0k =  inevitably leads to a flat space. 
It should not be overlooked that after the Lorentz transformation, or, if one 

wishes, after the Lemaître transformation, fourth components appear in the 
three basic quantities of the model, the sum of which produces the expansion 
scalar. To understand the meaning of these quantities, let us return to the 

 

 

1Details on the calculation of Ricci-rotation coefficients can be found in our monographs [9] [10]. 
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Schwarzschild model. 
The new forces are the tidal forces, which act on the observer in Einstein’s 

elevator but are too weak in Earth’s proximity to be perceived by observers. 
Misner, Thorne, and Wheeler [14] derived these forces in their textbook with the 
aid of the geodesic deviation from the Riemann curvature tensor and Sharan [15] 
also illustrated them in his textbook. However, in an early article [16], we de-
duced the tidal forces directly from Einstein’s field equations. We now want to 
transfer the process to the cosmological problem. 

We summarize the three new components in (4.4), (4.5) and (4.6) to a quan-
tity2 Dαβ  

11 22 33 [ ], 0iD D D D αβ= = = − =
R

.                (4.9) 

These are the gravitational forces that act on a freely expanding observer. As the 
space expands, they uniformly enlarge a volume around the observer in all three 
spatial directions. The Ricci-rotation coefficients are decomposed according to 

* *s s s s
mn mn mn mnA B C D= + + .                   (4.10) 

where *B  and *C  are the spatial parts of B and C. They appear to be flat, as 
stated above, and the subequations of Einstein’s field equations drop out of Eins-
tein’s field equations with these quantities. As such, we only need to consider 

{ }, , 0,0,0,1s s s s s
mn n m mn sn n s nD u D u D D u D u= − = = .     (4.11) 

The Ricci only contains relations with tidal forces: 

 [ ]2s s s s r sr
mn mn s mn s n s m m n s r srR D u D D u D u u D u D D∧ ∧ ∧   = − + − − +    . (4.12) 

Here 1, 2,3m =  and | * *s s
m n m n nm s nm sB C∧Φ = Φ − Φ − Φ  defines the space-like 

covariant derivative. The relation 

[ ] 0s
s sD ∧ =                            (4.13) 

indicates that the curvature of the model is location-independent and considera-
bly simplifies the Ricci. The two remaining brackets in (4.12) lead to the results 
obtained using the Friedman equation. Of the Einstein field equations, only the 
relations 

3

4
44

,

,

s s
s s

s s
s s

R D u D D R D u D D

R D u D D R D u D D

γ γ δ γ
αβ αβ αβ γ γ δ γ

γ αβ γ αβ
γ αβ γ αβ

∧ ∧

∧ ∧

   = − + = − +   
   = − + = − +   

    (4.14) 

remain. After a short calculation, one obtains 

3 4
442 2

1 62 , , 0, 0R g R R Rαβ αβ= = = =
R R

.          (4.15) 

We note that the 3-dimensional Ricci scalar 3R  does not vanish. Finally, for the 
Einstein tensor one has 

442 2

1 3,G g Gαβ αβ= − = −
R R

                  (4.16) 

 

 

2Since we handle everything in the comoving system, we now omit the primes on the indices. 

https://doi.org/10.4236/jmp.2019.1012096


R. Burghardt 
 

 

DOI: 10.4236/jmp.2019.1012096 1447 Journal of Modern Physics 
 

and from that one obtains 2 2
01 , 3pκ κµ= − =R R  and 0 3 0pµ + = , the re-

sults which are already known. 
It can be seen from the above system of equations that curvature effects can 

also be described in the freely expanding system with the Einstein field equations. 

5. The Model of Melia 

In numerous papers3, Melia has proposed a cosmological model that is flat and 
infinite and thus also contains an infinite amount of matter. Matter, space, time, 
and infinity were thus created at the Big Bang. Melia has called his model the 

hR ct=  model, where hR  is the non-comoving radial coordinate at the cosmic 
horizon of the expanding model but t is the cosmic time, i.e. the time in the sys-
tem that comoves with the expansion. 

A flat infinite model has no geometric horizon that defines the cosmic horizon. 
Melia, building on a flat universe, creates an event horizon by comparing it with 
the Schwarzschild theory. An enclosed mass ( )hM M r=  of a certain volume in 
the universe determines the Hubble radius4 22hr GM c=  and leads to the rela-
tion 'hr ct= , ( )hR ct= . The Hubble radius is the distance light has traveled 
since the Big Bang and 't  the age of the universe. hr  is the point at which the 
rate of expansion has reached the speed of light. From a point beyond hr , there 
is no connection to an observer within hr . Therefore, all considerations about 
whether Olbers’ paradox can significantly influence the brightness of the sky of 
fixed stars are ruled out. 

Since we believe that, despite the different view of the curvature parameter k, 
Melia’s model is identical to our subluminal model, we have to show how Me-
lia’s quantities relate to our quantities. On the pseudo-hypersphere, sinr η= R  
applies with R  as the time-dependent radius of curvature and η  as the polar 
angle. At the equatorial surface, sin 1η = , thus 

hr = R .                            (5.1) 

This is the basic relation which connects the two models under discussion. The 
geometric horizon corresponds to the Hubble horizon and thus to Melia’s event 
horizon. From 'hr ct=  one immediately gains c=R  or in the natural mea-
suring system 

1=R ,                           (5.2) 

a relation that we obtained with the equation system II from (4.1) and which 
leads to the solution of the Friedman equation. Equation (5.2) accounts for the 
simplicity of the subluminal model. This model also has a geometric speed, like 
all models based on a concrete geometric form. It is, as already addressed in Sec. 
3, 

sin rv η= =
R

                         (5.3) 

 

 

3Most papers by Melia and colleagues are listed in [13]. 
4Melia’s variables ,R t  correspond to our variables , 'r t , as we have used in earlier papers. 
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and is the recession velocity of galaxies. For hr r= , one has 1hv = . The reces-
sion velocity has reached the speed of light (asymptotically) at the equator. 
Higher speeds than the speed of light do not occur in either model, so the fun-
damental laws of special relativity remain. 

To examine the relationship between the two models in greater depth, let us 
return to the above-mentioned definition of Melia’s cosmic horizon. With re-
spect to the cosmological principle of Weyl and the Birkhoff theorem, Melia de-
termines the Hubble radius with 

( )
2

2 h
h

GM r
r

c
= .  

Here, 

( )
3

02

4
3

h
h

r
M r

c
µπ

=   

is the mass enclosed by the sphere with the radius hr  and 0µ  is the assigned 
mass density. Thus, with the aid of (5.1) 

 
4

0 0

3 3
8h

cr
Gµ κµ

= = =
π

R .                 (5.4) 

This immediately results in 

0 2

3κµ =
R

.                        (5.5) 

The mass density decreases as the universe increases in the radius R . These 
and similar relations can also be found in the Einstein universe, Friedman un-
iverse and the models of the dS family. However, this relation is not evident in 
the hR ct=  model. 

In addition, the discussion of whether the velocity defined by (5.3) is an inva-
riant expression or a coordinate velocity remains brief. As was already explained 
in Sec. 4, (5.3) can be reduced to the invariant relation 1d dv x T= , with the de 
Sitter proper length 1dx  and the proper time dT  in the non-comoving sys-
tem. 

Both models describe the relation between the non-comoving radial coordi-
nate r and the comoving 'r  with 

( )' 'r t r= K ,                        (5.6) 

where K  is the time-dependent scale factor. We still have to show that the 

hR ct=  model is compatible with the curvature of the pseudo-hypersphere. 
With 

0 0 0sin , ' sin , , .r r constη η= = = =R R R KR R         (5.7) 

we can write the Hubble parameter with both the scale factor and the pseu-
do-hypersphere’s radius of curvature 

H = =
 R K

R K
.                      (5.8) 
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0R  is the radius of curvature of the pseudo-hypersphere, if it is measured with 
the aid of comoving, i.e. expanding rods and therefore appears to be a constant 
quantity for the comoving observer. 

Lastly, it would still be necessary to investigate whether the evaluation of 
Einstein’s field equations results in different criteria for space curvature. Melia 
essentially relies on the Friedman equation; however, this is only one part of 
Einstein’s field equations, namely the 44-components of Einstein’s field equa-
tions. We did not find the remaining three subequations of Einstein’s field equa-
tions in his papers. But they are precisely what is needed to provide information 
about the curvature structure of space. Two methods are available for working 
through the problem: the coordinate method with the Christoffel symbols Γ  as 
connexion coefficients and the tetrad formalism with the Ricci-rotation coeffi-
cients. Both types of coefficients depend on the relation 

|

s ss k i j j
nm j ki j m nn m

A e e e e e= Γ + . 

The Ricci-rotation coefficients yield three quantities, the curvatures of the great-
er circles, parallels, and pseudo-circles on the pseudo-hypersphere. The Chris-
toffel symbols provide a larger number of components, most of which contain a 
collection of trigonometric functions that can only be assigned very indirectly or 
perhaps not at all to geometric objects. The procedure is therefore not particu-
larly suited for clarifying the question of whether 0k =  must lead to a flat space. 

Unless new arguments are submitted later that indicate a global flat space of 
the hR ct=  model, the current situation is to be interpreted in such a way that 
both models, the hR ct=  model and the subluminal model, are positively 
curved and therefore identical. 

Melia has an extensive set of astrophysical data and has shown in some articles 
that this data can be best adapted to the hR ct=  model, much better than to 
other FRW models. Thus, our subluminal model is well supported by Melia’s 
data and analyses. 

When developing our model, we did not envisage finding a model that closely 
relates to astrophysical data. Our goal was to provide mathematical foundations 
for a model that 

1) is an exact solution to Einstein’s field equations, 
2) involves pressure, which is a result of this exact solution and is not inserted 

by hand, as is the case with numerous models, 
3) does not allow superluminal speed and, 
4) can be fully described geometrically. 
The fact that this model is supported by astrophysical data was initially sur-

prising to us, but it justifies our efforts. However, Melia’s model also has an ad-
ditional mathematical profile due to the subluminal model. 

6. Coordinate Systems 

Most cosmological models assume a metric written in comoving coordinates. 
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This metric is also the natural framework for a model, because the rods and 
clocks associated with such a system are the ones we currently have available. 
Nevertheless, there is a need to present the obtained model in non-comoving 
coordinates as well. Of course, the question remains as to which new insights 
can be gained when looking for new representations. If one processes a model in 
tetrad calculus, a single coordinate system is sufficient to carry out operations 
such as differentiation and integration. Different coordinate systems are gener-
ally useful, but are of essentially equal value for certain problems. Comoving ob-
servers are characterized by ' .r const= , non-comoving observers by .r const= . 
The question is how to realize the latter in practice. The position of such an ob-
server must be continuously recalculated and a fixation to the calculated point in 
space requires significant technical effort. 

It is preferable to search for non-comoving coordinates if one does not have a 
static reference system, because one does not know the Lorentz transformation 
which converts expanding systems into static ones. This is the case if the model 
does not provide geometric velocities or if one has not fully exploited the geo-
metry. 

If one has successfully set up an expanding model and knows the metric in 
comoving coordinates, one also has the corresponding tetrads 

'
'

m
ie . If one also 

knows the geometrical speed or has determined the recession velocity in another 
way, one can also adjust the Lorentz transformation into a non-comoving system. 
With this and the inhomogeneous law of transformation of the Ricci-rotation 
coefficients, all field quantities can be calculated in the non-comoving system. 
With these, one can set up the stress-energy-momentum tensor and the conser-
vation law and recalculate the field equations. These operations can all be done 
without the explicit use of a coordinate system. 

However, if one wants to immediately start with a static system, the following 
possibility is a viable option: First of all, one transforms the expanding 4-bein 
( 'm ) with a Lorentz transformation into a static (m) 

'
' ' '

m m m
i m ie L e= .  

This would be enough to calculate the Ricci-rotation coefficients for the 
non-comoving system. However, it is also quite inconvenient, since the new te-
trads are still indicated in the comoving coordinate system ( 'i ). Now the ques-
tion arises as to whether the new 4-bein system can be diagonalized with a coor-
dinate transformation Λ  with 

' '
' '

m m m i
i m i ie L e= Λ .                       (6.1) 

If, with a little intuition, one has found Λ , it must be ascertained whether this 
transformation is holonomic, i.e. whether it relates to coordinate lines. Thus, the 
relations 

' ' '
[ | ] |0i i i
i k i ixΛ = ⇒ Λ =                    (6.2) 

must apply. That this need not always be the case has been demonstrated by a 
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generalized dS model [12]. Λs can indeed be found for this model. However, 
these do not fulfil the relations (6.2). Therefore, the coordinates are anholonom-
ic, meaning that there are no coordinate lines. The Ricci-rotation coefficients 
can therefore not be calculated with the 4-bein alone, but must be comple-
mented by the object of the anholonomity 

'' '' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' [ ' | ']' '

' ,
si ks s s s s s j j

m n m n m n m n n m m n j j k im n
A A e e e= + Λ + Λ + Λ Λ = Λ Λ . (6.3) 

This of course questions the usefulness of the method. 
The subluminal model provides a geometric velocity, with which the Lorentz 

matrix can be formed. With it, all field quantities can be transformed into the 
non-comoving system [13]. In particular, with the aid of the transformation 
analogous to (4.6) one has derived the radial force 

{ }2 2
4 1

'
' '

1ˆ ˆ, ,0,0,0 , ,0,0,

10,0,0, ,0,0,

m m m m m

m
m m m m

U U f U v f i v i v

i iL v

α α α

α α

 = + = − = − 
 

   = − = = − −   
   

F F
R

F , F F
R R R

  (6.4) 

which one is accustomed to derive from 44g  or 4
4e . Since 1U  is not a gra-

dient, it is not possible to go in the opposite direction and derive the metric 
coefficient 44g  from (6.4). The quantity mF  prevents this from being possible, 
wherein said quantity was obtained from the expansion of the universe. It is only 
if one switches off the expansion ( )0=F  that the whole expression is reduced 
to the known dS quantity Û , which can be derived from 44g . Thus, to a 
non-comoving observer cannot be assigned a fully non-comoving coordinate 
system. It should also be remembered that in (6.4) we are looking for the quan-
tity 44g , which is a solution to the differential equation system I. However, the 
expression containing the quantity F  is a solution to the differential equation 
system II. 

The search for the lapse function 44g  is probably historical. Even in the 
Schwarzschild model, the metric coefficients 44g  were used to calculate the 
gravitational redshift and/or time dilation. Recalling our discussion of free fall in 
the Schwarzschild field, we find that the ratio of the proper time of the 
free-falling observer and that of the static observer  

d ' 1 21
d
T M
T rα

= = −   

is identical to 44g . The time dilation can thus be deduced from the transfor-
mation behavior of the two observer systems. This applies equally to cosmologi-
cal problems. For the subluminal model, one has 

2

2

d ' 1 1
d
T r
T α

= = −
R

. 

In this model, there is no need to resort to a possibly existing metric component 

44g . If a model has a geometric velocity, the Lorentz factor can be created for 
observer systems moving relatively to each other and thus determine the redshift 
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as a function of r. 
No general method is known from the literature with which one could deter-

mine for which model static coordinates are possible. Investigations in this di-
rection have been undertaken by Mitra [17] and Gautreau [18] [19], among oth-
ers. In his papers, Melia has also tried to bring FRW metrics into the Schwarz-
schild form. 

Apart from some marginal notes, we cannot contribute anything to this. It 
could be that Florides [4], with his six models, has already exhausted all the pos-
sibilities. 

The subluminal model was developed by the simple generalization ( )'t=R R  
from the dS model. The subluminal model therefore consists of a set of self-similar 
dS universes dislocated in the 5-dimensional space. The question thus arises as 
to whether these universes, together with time, can be covered by a single coor-
dinate system. 

On the other hand, one tries to set up a metric for a surface in non-comoving 
coordinates which describes not only the properties of the surface but also the 
temporal change of this surface. This attempt is reminiscent of the German story 
of Baron Münchhausen, who pulls himself out of the swamp by his own braid. 
The properties of the surface would have to be separated here, distinguishing 
between those belonging to system I and those belonging to system II. 

7. Conclusion 

In this paper, we have tried to establish a connection between our subluminal 
model and Melia’s hR ct=  model. We have argued that a cosmological metric 
with the curvature parameter 0k =  does not necessarily require global flatness 
of the universe, but rather a local flatness due to the free fall of the expanding 
universe. We have confirmed our point of view by gradually introducing curva-
ture variables into the hR ct=  model, bringing the hR ct=  model into the 
formal vicinity of the subluminal model. The identity of both models is thus en-
sured. 
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Abstract 
In 1916, F.S. Macaulay developed specific localization techniques for deal-
ing with “unmixed polynomial ideals” in commutative algebra, transform-
ing them into what he called “inverse systems” of partial differential equa-
tions. In 1970, D.C. Spencer and coworkers studied the formal theory of 
such systems, using methods of homological algebra that were giving rise to 
“differential homological algebra”, replacing unmixed polynomial ideals by 
“pure differential modules”. The use of “differential extension modules” 
and “differential double duality” is essential for such a purpose. In particu-
lar, 0-pure differential modules are torsion-free and admit an “absolute pa-
rametrization” by means of arbitrary potential like functions. In 2012, we 
have been able to extend this result to arbitrary pure differential modules, in-
troducing a “relative parametrization” where the potentials should satisfy 
compatible “differential constraints”. We recently noticed that General Rela-
tivity is just a way to parametrize the Cauchy stress equations by means of the 
formal adjoint of the Ricci operator in order to obtain a “minimum parame-
trization” by adding sufficiently many compatible differential constraints, 
exactly like the Lorenz condition in electromagnetism. In order to make this 
difficult paper rather self-contained, these unusual purely mathematical re-
sults are illustrated by many explicit examples, two of them dealing with con-
tact transformations, and even strengthening the comments we recently pro-
vided on the mathematical foundations of General Relativity and Gauge 
Theory. They also bring additional doubts on the origin and existence of gra-
vitational waves. 
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1. Introduction 

The main purpose of this paper is to prove how apparently totally abstract ma-
thematical tools, ranging among the most difficult ones existing in differential 
geometry and homological algebra today, can also become useful and enlighten 
many engineering or physical concepts (see the review Zbl 1079.93001 for the 
only application to control theory).  

In the second section, we first sketch and then recall, with more specific ref-
erences, the main (difficult) mathematical results on differential extension mod-
ules and differential double duality that are absolutely needed in order to under-
stand the purity concept and, in particular, the so-called purity filtration of a 
differential module ([1] [2] [3] [4]). We also explain the unexpected link existing 
between involutivity and purity allowing to exhibit a relative parametrization of 
a pure differential module, even defined by a system of linear PD equations with 
coefficients in a non-constant differential field K. It is important to notice that 
the reduced Spencer form, which is used for such a purpose, generalizes the 
Kalman form existing for an OD classical control system and we shall illustrate 
this fact.  

The third section will present for the first time a few explicit motivating aca-
demic examples in order to illustrate the above mathematical results, in particu-
lar the unexpected striking situations met in the study of contact and unimodu-
lar contact structures.  

In the fourth section, we finally provide examples of applications, studying the 
mathematical foundations of OD/PD control theory (CT) ([3] [5]), electromag-
netism (EM) ([6] [7]) and general relativity (GR) ([8] [9] [10]). Most of these 
examples can be now used as test examples for certain computer algebra pack-
ages recently developed for such a purpose ([11] [12]).  

2. Mathematical Tools 

Let [ ] [ ]1, , nD K d d K d= =  be the ring of differential operators with coeffi-
cients in a differential field K of characteristic zero, that is such that K⊂ , 
with n commuting derivations 1, , n∂ ∂  and commutation relations  

,i i id a ad a a K= + ∂ ∀ ∈ . If 1, , my y  are m differential indeterminates, we may 
identify 1 mDy Dy Dy+ + =  with mD  and consider the finitely presented 
left differential module DM M=  with presentation 0p mD D M→ → →  
determined by a given linear multidimensional system with n independent va-
riables, m unknowns and p equations. Applying the functor ( ),Dhom D• , we get 
the exact sequence ( )0 , 0m p

D Dhom M D D D N→ → → → →  of right diffe-
rential modules that can be transformed by a side-changing functor to an exact 
sequence of finitely generated left differential modules. This new presentation 
corresponds to the formal adjoint ( )ad   of the linear differential operator   
determined by the initial presentation but now with p unknowns and m equations, 
obtaining therefore a new finitely generated left differential module DN N=  and 
we may consider ( ),Dhom M D  as the module of equations of the compatibility 
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conditions (CC) of ( )ad  , a result which is not evident at first sight (see [3] 
[13]). Using now a maximum free submodule ( )0 ,l

DD hom M D→ →  or, 
equivalently, a maximum number of differentially linearly independent CC, and 
repeating this standard procedure while using the well known facts that the co-
kernel of this monomorphism is a torsion module and ( )( )ad ad =  , we 
obtain therefore an embedding ( )( )0 , , l

D Dhom hom M D D D→ →  of left diffe-
rential modules for a certain integer 1 l m≤ <  because K is a field and thus D is 
a Noetherian bimodule over itself, a result leading to  

( )( ) ( ),D D Dl rk hom M D rk M m= = <  as in ([14], p. 341, [15] p. 1228) (see Section 
3 for the definition of the differential rank Drk ). Now, the kernel of the map 

( )( ) ( )( ) ( ): , , :D DM hom hom M D D m m f f m→ → =  , ( ),Df hom M D∀ ∈  is 
the torsion submodule ( ) { }| 0 , 0t M m M P D Pm= ∈ ∃ ≠ ∈ =  and   is injective 
if and only if M is torsion-free, that is ( ) 0t M = . In that case, we obtain by 
composition an embedding 0 lM D→ →  of M into a free module (that can also 
be obtained by localization if we introduce the ring of fractions 1 1S D DS− −=  
when { }0S D= − ). This result is quite important for applications as it provides 
a (minimal) parametrization of the linear differential operator D and amounts to 
the controllability of a classical control system when 1n =  ([3] [16]). This pa-
rametrization will be called an “absolute parametrization” as it only involves ar-
bitrary “potential-like” functions (see [4] [8] [9] [15] [17] [18] [19] [20] for more 
details and examples, in particular the fact that the Einstein equations cannot be 
parametrized).  

It is however essential to notice that such an approach is leading to a “vicious 
circle” because the only constructive way to check whether M is torsion-free or 
not is to use the differential double duality. For this reason, we briefly recall the 
five steps of the corresponding test allowing to know whether a given differential 
system or operator can be parametrized or not:  
• STEP 1: Write down the system in the form of a differential operator 1 .  
• STEP 2: Construct its formal adjoint ( )1ad  .  
• STEP 3: Construct the generating CC of such an operator as a new operator 

and use the fact that ( )( ) ,ad ad P P P D= ∀ ∈  in order to denote it by 
( )ad  .  

• STEP 4: Write down ( )( )ad ad=  .  
• STEP 5: As ( ) ( ) ( ) ( )1 1 10 0 0ad ad ad ad= = = ⇔ =        , we just 

need to check whether 1  generates the CC of   or not.  
If “yes”, we shall say that 1  is parametrized by  .  
If “no”, we shall say that 1  cannot be parametrized.  
The purpose of this paper is to extend such a result to a much more general 

situation, that is when M is not torsion-free, by using unexpected results first 
found by F.S. Macaulay in 1916 ([21]) through his study of “inverse systems” for 
“unmixed polynomial ideals”.  

Introducing ( ) ( ){ }|rt M m M cd Dm r= ∈ >  where the codimension of Dm is 
n minus the dimension of the characteristic variety determined by m in the cor-
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responding system for one unknown, we may define the purity filtration as in 
([1] [3] [4]): 

( ) ( ) ( ) ( ) ( )1 1 00 n nt M t M t M t M t M M−= ⊆ ⊆ ⊆ ⊆ = ⊆  

The module M is said to be r-pure if ( ) 0rt M = , ( )1rt M M− =  or, equivalently, 
if ( ) ( ) ,cd M cd N r N M= = ∀ ⊂  and a torsion-free module is a 0-pure module. 
Moreover, when ( )K k cst K= =  is a field of constants and 1m = , a pure 
module is unmixed in the sense of Macaulay, that is defined by an ideal having 
an equidimensional primary decomposition.  

Example 2.1: As an elementary example with K k= = , 1m = , 2n = , 
2p = , the differential module defined by 22 0d y = , 12 0d y =  is not pure be-

cause 2z d y′ =  satisfies 2 0d z′ = , 1 0d z′ =  while 1z d y′′ =  only satisfies 

2 0d z′′ =  and ( )( ) ( ) ( )2 2
2 1 2 2 1 2, ,χ χ χ χ χ χ=  . We obtain therefore the purity 

filtration ( ) ( ) ( ) ( )2 1 00 t M t M t M t M M= ⊂ ⊂ = =  with strict inclusions as 
( )10 z t M′≠ ∈  while ( )0z t M′′∈  but ( )1z t M′′∉ .  

From the few (difficult) references ([1] [2] [3] [4] [5] [22]-[31]) dealing with 
the extension modules ( ) ( ),r r

Dext M ext M D=  and purity in the framework of 
differential homological algebra, it is known that M is r-pure if and only if there 
is an embedding ( )( )0 r rM ext ext M→ → . Indeed, the case 0r =  is exactly 
the one already considered because ( ) ( ) ( )0 0 , ,D Dext M ext M D hom M D= =  and 
the ker/coker exact sequence ([4] [5]): 

( ) ( )( ) ( )1 0 0 20 0ext N M ext ext M ext N→ → → → →  

allows to test the torsion-free property of M in actual practice by using the 
double-duality formula ( ) ( )1t M ext N=  as in ([3] [5]). 

Independently of the previous results, the following procedure, where one 
may have to change linearly the independent variables if necessary, is the heart 
towards the next effective definition of involution. It is intrinsic even though it 
must be checked in a particular coordinate system called δ -regular ([32] [33] 
[34]) and is quite simple for first order systems without zero order equations.  
• Equations of class n: Solve the maximum number n

qβ  of equations with re-
spect to the jets of order q and class n. Then call ( )1, , nx x  multiplicative 
variables. 

• Equations of class 1i ≥ : Solve the maximum number i
qβ  of remaining eq-

uations with respect to the jets of order q and class i. Then call ( )1, , ix x  
multiplicative variables and ( )1, ,i nx x+

  non-multiplicative variables. 
• Remaining equations of order 1q≤ − : Call ( )1, , nx x  non-multiplicative 

variables. 
In actual practice, we shall use a Janet tabular where the multiplicative “va-

riables” are represented by their index in upper left position while the 
non-multiplicative variables are represented by dots in lower right position ([3] 
[32] [35]) (compare to ([36]).  

DEFINITION 2.2: A system of PD equations is said to be involutive if its first 
prolongation can be achieved by prolonging its equations only with respect to 
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the corresponding multiplicative variables. In that case, we may introduce the  

Cartan characters 
( )
( ) ( )

1 !
1 ! !

i i
q q

q n i
m

q n i
α β

+ − −
= −

− −
 for 1, ,i n=   and we have  

( ) 1 n
q q q qdim g α α α= = + +∑   and ( ) 1

1 1i n
q q q qdim g i nα α α+ = = + +∑  . More-

over, one can exhibit the Hilbert polynomial ( )q rdim R +  in r with leading term 
( )! dd rα  with d n≤  when α  is the smallest non-zero character in the case 
of an involutive symbol. Such a prolongation allows to compute in a unique way 
the principal ( pri ) jets from the parametric ( par ) other ones. This definition 
may also be applied to nonlinear systems as well.  

REMARK 2.3: For an involutive system with n
q mβ β= < , then ( )1, , my yβ +

  
can be given arbitrarily and may constitute the input variables in control theory, 
though it is not necessary to make such a choice. In this case, the intrinsic num-
ber 0n

q mα α β= = − >  is called the n-character and is the system counterpart 
of the so-called “differential transcendence degree” in differential algebra and 
the “rank” in module theory. As we shall see in the next Section, the smallest 
non-zero character and the number of zero characters are intrinsic numbers that 
can most easily be known by bringing the system to involution and we have 

1 0n
q qα α≥ ≥ ≥ .  
In the situation of the last remark, the following procedure will generalize for 

PD control systems the well known first order Kalman form of OD control sys-
tems where the derivatives of the input do not appear ([3], VI, Remark 1.14, p 
802). For this, we just need to modify the Spencer form and we provide the pro-
cedure that must be followed in the case of a first order involutive system with 
no zero order equation, for example an involutive Spencer form. 
• Look at the equations of class n solved with respect to 1 , ,n ny yβ

 . 
• Use integrations by parts like: 

( ) ( )( ) ( ) ( )1 1 1 1 1 1 1
n n n n n ny a x y d y a x y a x y y a x yβ β β β+ + + +− = − + ∂ = + ∂  

• Modify 1, ,y yβ
  to 1, ,y y β

  in order to “absorb” the various 1, , m
n ny yβ +
  

only appearing in the equations of class n. 
We have the following unexpected result providing what we shall call a re-

duced Spencer form: 
THEOREM 2.4: The new equations of class n contain 1, ,y yβ

  and their 
jets but only contain 1, , m

i iy yβ +
  with 0 1i n≤ ≤ −  while the equations of class 

1, , 1n −  no longer contain 1, , my yβ +
  and their jets. Accordingly, as we 

shall see in the next section, any torsion element, if it exists, only depends on 
1, ,y y β
 . 

If 1, , nχ χ  are n algebraic indeterminates or, in a more intrinsic way, if 
*i

idx Tχ χ= ∈  is a covector and ( ) ( ): : k
kE F a x xτµ

µξ ξ→ → ∂  is a linear 
involutive operator of order q, we may introduce the characteristic matrix 
( ) ( )( )1, ,k na x a x qτµ

µχ χ µ µ µ= = + + =  and the resulting map  
( ) : E Fχσ →  is called the symbol of   at χ . Then there are two possibil-

ities:  
• If ( )( ) 0n

qmax rk mχ χσ α< ⇔ > : the characteristic matrix fails to be injec-
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tive for any covector. 
• If ( )( ) 0n

qmax rk mχ χσ α= ⇔ = : the characteristic matrix fails to be injec-
tive if and only if all the determinants of the m m×  submatrices vanish. 
However, one can prove that this algebraic ideal [ ]K χ∈a  is not intrinsi-
cally defined and must be replaced by its radical ( )rad a  made by all poly-
nomials having a power in a . This radical ideal is called the characteristic 
ideal of the operator. 

DEFINITION 2.5: For each x X∈ , the algebraic set defined by the characte-
ristic ideal is called the characteristic set of   at x and xx XV V

∈
=


 is called 
the characteristic set of   while we keep the word “variety” for an irreducible 
algebraic set defined by a prime ideal. 

One has the following important theorem ([3] [13]) that will play an impor-
tant part later on:  

THEOREM 2.6: (Hilbert-Serre) The dimension ( )d V  of the characteristic 
set, that is the maximum dimension of the irreducible components, is equal to 
the number of non-zero characters while the codimension ( ) ( )cd V n d V= −  is 
equal to the number of zero characters, that is to the number of “full” classes in 
the Janet tabular of an involutive system.  

If [ ]P a d D K dµ
µ= ∈ =  with implicit summation on the multi-index, the 

highest value of µ  with 0aµ ≠  is called the order of the operator P and the ring 
D with multiplication ( ),P Q P Q PQ→ =  is filtred by the order q of the opera-
tors. We have the filtration 0 10 qK D D D D D∞⊂ = ⊂ ⊂ ⊂ ⊂ ⊂ =  . Moreo-
ver, it is clear that D, as an algebra, is generated by 0K D=  and 1 0T D D=  
with 1D K T= ⊕  if we identify an element i

id Tξ ξ= ∈  with the vector field 
( )i

ixξ ξ= ∂  of differential geometry, but with i Kξ ∈  now. It follows that 

D DD D=  is a bimodule over itself, being at the same time a left D-module by 
the composition P QP→  and a right D-module by the composition P PQ→ . 
We define the adjoint map ( ) ( ): : 1opad D D P a d ad P d aµµ µ

µ µ→ = → = −  
and we have ( )( )ad ad P P= . It is easy to check that  

( ) ( ) ( ), ,ad PQ ad Q ad P P Q D= ∀ ∈ . Such a definition can also be extended to 
any matrix of operators by using the transposed matrix of adjoint operators (see 
[3] [5] [8] [17] [20] [37] [38] for more details and applications to control theory 
and mathematical physics).  

Accordingly, if ( )1, , my y y=   are differential indeterminates, then D acts 
on ky  by setting k kd y yµ µ=  with 1i

k k
id y yµ µ+=  and 0

k ky y= . We may there-
fore use the jet coordinates in a formal way as in the previous section. Therefore, 
if a system of OD/PD equations is written in the form:  

0k
ka yτ τµ

µΦ ≡ =  

with coefficients ka Kτµ ∈ , we may introduce the free differential module 
1 m mDy Dy Dy D= + +   and consider the differential submodule  

I D Dy= Φ ⊂  which is usually called the module of equations, both with the 
differential module M Dy D= Φ  or D-module and we may set DM M=  if 
we want to specify the ring of differential operators. The work of Macaulay only 
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covers the case 1m =  with K replaced by ( )k cst K⊆ . Again, we may intro-
duce the formal prolongation with respect to id  by setting:  

( )1i

k k
i k i kd a y a yτ τµ τµ

µ µ+Φ ≡ + ∂  

in order to induce maps 1: :
i

k k
id M M y yµ µ+→ →  if we use to denote the resi-

due : k kDy M y y→ →  by a bar as in algebraic geometry. However, for sim-
plicity, we shall not write down the bar when the background will indicate clear-
ly if we are in Dy or in M. 

As a byproduct, the differential modules we shall consider will always be finitely 
generated ( 1, ,k m= < ∞ ) and finitely presented ( 1, , pτ = < ∞ ). Equivalently, 
introducing the matrix of operators ( )ka dτµ

µ=  with m columns and p rows, 
we may introduce the morphism ( ) ( ): :p mD D P P P P Pτ

τ τ→ → Φ → Φ =   
over D by acting with D on the left of these row vectors while acting with   
on the right of these row vectors and the presentation of M is defined by the ex-
act cokernel sequence 0p mD D M→ → → . It is essential to notice that the 
presentation only depends on ,K D  and Φ  or  , that is to say never refers 
to the concept of (explicit or formal) solutions. It is at this moment that we have 
to take into account the results of the previous section in order to understand 
that certain presentations will be much better than others, in particular to estab-
lish a link with formal integrability and involution.  

DEFINITION 2.7: It follows from its definition that M can be endowed with 
a quotient filtration obtained from that of mD  which is defined by the order of 
the jet coordinates qy  in qD y . We have therefore the inductive limit  

0 10 qM M M M M∞⊆ ⊆ ⊆ ⊆ ⊆ ⊆ =   with 1i q qd M M +⊆  and qM DM=  
for 0q  with prolongations , , 0r q q rD M M q r+⊆ ∀ ≥ . We shall set  

( ) 1q q q qgr M G M M −= =  and ( ) q qgr M G G= = ⊕ .  
Having in mind that K is a left D-module for the action  

( ) ( ), : ,i iD K K d a a→ →∂  and that D is a bimodule over itself, we have only 
two possible constructions:  

DEFINITION 2.8: We define the system ( ) *,KR hom M K M= =  and set 

( ) *,q K q qR hom M K M= =  as the system of order q. We have the projective limit 

1 0qR R R R R∞= → → → → →  . It follows that : k k
q qf R y f Kµ µ∈ → ∈  with 

0k
ka fτµ

µ =  defines a section at order q and we may set f f R∞ = ∈  for a section 
of R. For a ground field of constants k, this definition has of course to do with 
the concept of a formal power series solution. However, for an arbitrary diffe-
rential field K, the main novelty of this new approach is that such a definition 
has nothing to do with the concept of a formal power series solution (care) as il-
lustrated in ([39]). 

DEFINITION 2.9: We may define the right differential module  
( ) ( )0 ,Dext M hom M D= .  

PROPOSITION 2.10: When M is a left D-module, then R is also a left 
D-module.  

Proof: As D is generated by K and T as we already said, let us define:  
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( )( ) ( ), ,af m af m a K m M= ∀ ∈ ∀ ∈  

( )( ) ( ) ( ), ,i
if m f m f m a d T m Mξ ξ ξ ξ= − ∀ = ∈ ∀ ∈  

In the operator sense, it is easy to check that i i id a ad a= + ∂  and that 
[ ],ξη ηξ ξ η− =  is the standard bracket of vector fields. We finally get 

( ) ( )( ) 1i

k k k k
i i id f d f y f fµ µ µµ += = ∂ −  and thus recover exactly the Spencer operator 

though this is not evident at all. We also get  

( ) 1 1 1 1 , , 1, ,
j i i j

k k k k k
i j ij i j i j j id d f f f f f d d d d i j nµ µ µ µµ + + + += ∂ − ∂ − ∂ + ⇒ = ∀ =   and 

thus 1i q q id R R d R R+ ⊆ ⇒ ⊂  induces a well defined operator  
* : i

iR T R f dx d f→ ⊗ → ⊗ . This result has been discovered (up to sign) by 
Macaulay in 1916 ([21]). For more details on the Spencer operator and its appli-
cations, the reader may look at ([14] [40] [41] [42]).  

Q.E.D.  
DEFINITION 2.11: ( )rt M  is the greatest differential submodule of M hav-

ing codimension > r.  
PROPOSITION 2.12: ( ) ( ) 0n r

qcd M cd V r α −= = ⇔ ≠ ,  
( )1 0n r n

q q rt M Mα α− + = = = ⇔ ≠ , ( ) ( ) ( )1 0rt M t M t M M− = = = =  and this 
intrinsic result can be most easily checked by using the standard or reduced 
Spencer form of the system defining M.  

We are now in a good position for defining and studying purity for differen-
tial modules.  

DEFINITION 2.13: M is r-pure ( ) 0rt M⇔ = , ( ) ( )1rt M M cd Dm r− = ⇔ = , 
m M∀ ∈ . More generally, M is pure if it is r-pure for a certain 0 r n≤ ≤ . In 

particular, M is 0-pure if ( ) 0t M =  and, if ( )cd M r=  but M is not r-pure, 
we may call ( )rM t M  the pure part of M. It follows that ( ) ( )1r rt M t M−  is 
equal to zero or is r-pure (see the picture in [3], p. 545). When ( )1nM t M−=  is 
n-pure, its defining system is a finite dimensional vector space over K with a 
symbol of finite type, that is when 0qg =  is (trivially) involutive. Finally, 
when ( ) ( )1r rt M t M− = , we shall say that there is a “gap” in the purity filtra-
tion:  

( ) ( ) ( ) ( ) ( )1 1 00 n nt M t M t M t M t M M−= ⊆ ⊆ ⊆ ⊆ = ⊆  

PROPOSITION 2.14: ( )rt M  does not depend on the presentation or on the 
filtration of M.  

EXAMPLE 2.15: If K =  and M is defined by the involutive system 

33 23 130, 0, 0y y y= = = , then 3z y=  satisfies 3 2 10, 0, 0d z d z d z= = =  and 
( ) 3cd Dz =  while 2z y′ =  only satisfies 3 0d z′ =  and ( ) 1cd Dz′ = . We have 

the purity filtration ( ) ( ) ( ) ( ) ( )3 2 1 00 t M t M t M t M t M M= ⊂ = ⊂ = =  with one 
gap and two strict inclusions.  

We now recall the definition of the extension modules ( ),i
Dext M D  that we 

shall simply denote by ( )iext M  and the way to use their dimension or codi-
mension. We point out once more that these numbers can be most easily ob-
tained by bringing the underlying systems to involution in order to get informa-
tions on M from informations on G. We divide the procedure into four steps 
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that can be achieved by means of computer algebra ([11] [12]):  
• STEP 1: Construct a free resolution of M, say:  

1 0 0iF F F M→ → → → → →   

• STEP 2: Suppress M in order to obtain the deleted sequence:  

1 0 0iF F F→ → → → →   

• STEP 3: Apply ( ),Dhom D•  in order to obtain the dual sequence heading 
backwards:  

( ) ( ) ( )1 0, , , 0D i D Dhom F D hom F D hom F D← ← ← ← ←   

• STEP 4: Define ( )iext M  to be the cohomology at ( ),D ihom F D  of the dual 
sequence in such a way that ( ) ( )0 ,Dext M hom M D= .  

The following nested chain of difficult propositions and theorems can be ob-
tained, even in the non-commutative case, by combining the use of extension 
modules and bidualizing complexes in the framework of algebraic analysis. The 
main difficulty is to obtain first these results for the graded module ( )G gr M=  
by using techniques from commutative algebra before extending them to the fil-
tered module M as in ([1] [2] [3] [4] [24] [25] [26] [27] [37] [42]).  

THEOREM 2.16: The extension modules do not depend on the resolution of 
M used.  

PROPOSITION 2.17: Applying ( ),Dhom D•  provides right D-modules that 
can be transformed to left D-modules by means of the side changing functor and 
vice-versa. Namely, if DN  is a right D-module, then n

D K DN T N= ∧ ⊗  is the 
converted left D-module while, if DN N=  is a left D-module, then 

*n
D KN T N= ∧ ⊗  is the converted right D-module. 
PROPOSITION 2.18: Instead of using ( ),Dhom D•  and the side changing 

functor in the module framework, we may use ad  in the operator framework. 
Namely, to any operator : E F→  we may associate the formal adjoint 

( ) * * * *: n nad T F T E∧ ⊗ → ∧ ⊗  with the useful though striking relation 
( )( ) ( )D Drk ad rk=  .  

PROPOSITION 2.19: ( )iext M  is a torsion module 1 i n∀ ≤ ≤  but 
( ) ( )0 ,Dext M hom M D=  may not be a torsion module.  

EXAMPLE 2.20: When M is a torsion module, we have ( ), 0Dhom M D = . 
Indeed, if m M∈ , we may find 0 P D≠ ∈  such that 0Pm = . Hence, if 

( ),Df hom M D∈ , we have ( ) ( ) ( )0 0Pf m f Pm f= = =  in D and thus 
( ) 0,f m m M= ∀ ∈ , that is to say 0f =  because D is an integral domain. When 

3n =  and the torsion-free module M is defined by the formally surjective div  
operator, the formal adjoint of div  is grad−  which defines a torsion module. 
Also, when 1n =  as in classical control theory, a controllable system with coef-
ficients in a differential field allows to define a torsion-free module M which is 
free in that case because a finitely generated module over a principal ideal do-
main is free if and only if it is torsion-free and ( ),Dhom M D  is thus also a free 
module.  

THEOREM 2.21: ( ) ( )0,iext M i cd M= ∀ <  and 1i n∀ ≥ + .  
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THEOREM 2.22: ( )( )icd ext M i≥ .  
THEOREM 2.23: ( ) ( ) 0,icd M r ext M i r≥ ⇔ = ∀ < .  
PROPOSITION 2.24: ( ) ( )( )rcd M r cd ext M r= ⇒ =  and ( )rext M  is 

r-pure.  
PROPOSITION 2.25: ( )( )r rext ext M  is equal to 0 or is r-pure, 0 r n∀ ≤ ≤ .  
PROPOSITION 2.26: If we set ( )1t M M− = , there are exact sequences 
0 r n∀ ≤ ≤ :  

( ) ( ) ( )( )10 r r
r rt M t M ext ext M−→ → →  

THEOREM 2.27: If ( )cd M r= , then M is r-pure if and only if there is a 
monomorphism ( )( )0 r rM ext ext M→ →  of left differential modules.  

THEOREM 2.28: M is pure ( )( ) ( )0,s sext ext M s cd M⇔ = ∀ ≠ .  
COROLLARY 2.29: If M is r-pure with 1r ≥ , then it can be embedded into a 

differential module L having a free resolution with only r operators.  
The previous theorems are known to characterize purity but it is however 

evident that they are not very useful in actual practice. For more details on these 
two results which are absolutely out of the scope of this paper, see ([2], pp. 
490-491) and ([3], p. 547). Proposition 3.24 and Theorem 3.25 come from the 
Cohen-Macaulay property of M, namely ( ) ( ) ( ){ }| 0icd M g M inf i ext M= = ≠  
where ( )g M  is called the grade of M (see [2] and [3] [4] for more details).  

THEOREM 2.30: When M is r-pure, the characteristic ideal is thus unmixed, 
that is a finite intersection of prime ideals having the same codimension r and 
the characteristic set is equidimensional, that is the union of irreducible alge-
braic varieties having the same codimension r.  

In 2012 we have provided a new effective test for checking purity while using 
the involutivity of the Spencer form with four steps as follows ([4]):  
• STEP 1: Compute the involutive Spencer form of the system and the number 

r of full classes.  
• STEP 2: Select only the equations of class 1 to ( )d M n r= −  of this Spencer 

form which are making an involutive system over ( )1, , n rK d d −
 
 

.  
• STEP 3: Using differential biduality for such a system, check if it defines a 

torsion-free module ( )n rM −  and work out a parametrization.  
• STEP 4: Substitute the above parametrization in the remaning equations of 

class 1, ,n r n− +   of the Spencer form in order to get a system of PD equ-
ations which provides the parametrizing module L in such a way that 
M L⊆  and L has a resolution with r operators.  

THEOREM 2.31: As purity is an intrinsic property, we may work with an in-
volutive Spencer form and M is r-pure if the classes 1, ,n r n− +   are full and 
the module ( )n rM −  defined by the equations of class 1 +   + class ( )n r−  
is torsion-free. Hence M is 0-pure if it is torsion-free.  

We shall now illustrate and apply this new procedure in the next two sections.  

3. Motivating Examples 

EXAMPLE 3.1: With 3, 1n m= =  and K = , let us consider the following 
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polynomial ideal:  

( ) ( )( ) [ ] [ ]2 2
3 2 3 1 3 2 1 2 1 2 3, , , ,K Kχ χ χ χ χ χ χ χ χ χ χ χ= − − ⊂ =a  

We shall discover that it is not evident to prove that it is an unmixed polynomial 
ideal and that the corresponding differential module is 1-pure.  

The first result is provided by the existence of the primary decomposition ob-
tained from the two existing factorizations ([23]):  

( )( ) ( )2
3 2 1 3 2, ,χ χ χ χ χ ′ ′′= − = a q q  

Taking the respective radical ideals, we get the prime decomposition:  

( ) ( ) ( ) ( ) ( )3 2 1 3 2, ,rad rad radχ χ χ χ χ ′ ′′ ′ ′′= − = =  a p p q q  

The corresponding involutive system is:  

33

23 13

22 12

0 1 2 3
0 1 2
0 1 2

y
y y
y y

=
 − = •
 − = •

 

with characters 3
2 1 1 0α = − = , 2

2 2 2 0α = − = , 1
2 3 0 3α = − =  and 

( )2 3dim g α= =∑ .  
Setting ( 1 2 3 4

1 2 3, , ,z y z y z y z y= = = = ), we obtain the involutive first order 
Spencer form:  

4 3 4 2 4 1 4
3 3 1 3 1 3
4 4 3 3 2 3 1 3
2 1 2 1 2 1 2
1 2
1

0, 0, 0, 0 1 2 3
0, 0, 0, 0 1 2
0 1

z z z z z z z
z z z z z z z z
z z

 = − = − = − =
 − = − = − = − = •
 − = • •

 

with new characters 3
1 4 4 0α = − = , 3

1 4 4 0α = − = , 1
1 4 1 3α = − =  and simi-

larly ( )1 3dim g α= =∑ . Both class 3 and class 2 are full while class 1 is defining 
a torsion-free module ( )1M  over [ ]1K d  by means of a trivially involutive sys-
tem of class 1. Hence the differential module M is such that ( ) 2cd M =  and is 
1-pure because it is 1-pure in this presentation.  

Suppressing the bar for the various residues, we are ready to exhibit the relative 
parametrization defining the parametrization module L because we may choose 
the 3 potentials ( )1 3 4, ,z y z z=  while taking into account that 2

1 1z y d y= = :  
4
3
3 4
3 1
1 4
3
4 4
2 1
3 3
2 1
1 3
2

1 2 30
1 2 30
1 2 30
1 20
1 20
1 20

z
z z
z z
z z
z z
z z

 =
 − =
 − =
 •− =
 •− =


•− =

 

Both ( )3 4, ,y z z  are torsion elements and we can eliminate ( )3 4,z z  in order to 
find the desired system that must be satisfied by y which is showing the inclu-
sion M L⊂  but we have indeed M L=  because 3 4

2 3,z y z y= = . It follows 
that M admits a free resolution with only 2 operators, a result following at once 
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from the last Janet tabular, contrary to the previous one.  
The reader may treat similarly the example ( ) ( )1 2 3 4, ,χ χ χ χ= a  and look 

at ([39]) for details. (Hint: use the involutive system 44 14 0y y+ = , 34 13 0y y+ = , 

33 23 0y y+ = , 24 13 0y y− = ).  
EXAMPLE 3.2: With 3n = , 1m = , 2q = , K = , [ ]1 2 3, ,D K d d d= , let 

us consider the differential module M defined by the second order system 

33 0Py y≡ = , 13 2 0Qy y y≡ − =  first considered by Macaulay in 1916 ([19] 
[21]). We shall prove that M is 2-pure through the inclusion  

( )( )2 20 M ext ext M→ →  directly and by finding out a relative parametrization, 
a result highly not evident at first sight.  

First of all, in order to find out the codimension ( ) 2cd M = , we have to con-
sider the equivalent involutive system:  

4
33

3
23 1 3

2
22 11 13 2

1
13 2

1 2 3
1 2
1 2
1

y u
y d u d v
y d u d v d v
y y v

Φ ≡ =
 •Φ ≡ = −
 •Φ ≡ = − −
 • •Φ ≡ − =

 

The Janet tabular on the right allows at once to compute the characters 3
2 0α = , 

2
2 0α = , 1

2 3 1 2α α= = − =  and to construct the following strictly exact se-
quence of differential modules:  

4 40 0pD D D D M→ → → → → →  

Also, we have  

( ) ( ) ( )( ) ( ) ( )2 2
3 2 3 2 1 3 3 2, , , , 1rad rad dim Vχ χ χ χ χ χ χ χ= = = ⇒ =a p .  

As the classes 3 and 2 are full, it follows that  
( ) ( ) ( )1 1 2d M d Dy cd M n= = ⇒ = − =  if we denote simply by y the canonical 

residue y  of y after identifying D with Dy . We have constructed explicitly in 
([29]) a finite length resolution of ( )2N ext M=  by pointing out that N does 
not depend on the resolution of M used and one can refer to the single compati-
bility condition (CC) 0P Qy Q Py− =   for the initial system in the exact se-
quence made by second order operators:  

1 2
20 0pD D D M→ → → → →   

Indeed, introducing differential duality through the functor ( ),Dhom D•  and 
the respective adjoint operators, we may define the torsion left differential mod-
ule N by the long exact sequence:  

( ) ( )1 20 0ad adqN D D D← ← ← → ←   

showing that ( ) ( )0 1 2 1 0D Drk M rk N= ⇒ = − + =  because of the additivity 
property of the differential rank and the vanishing of the Euler-Poincaré charac-
teristic of the full sequence. It follows that ( ) ( )( )2 2 2M ext N ext ext M= = .  

Similarly, using certain parametric jet variables as new unknowns, we may set 
1z y= , 2

1z y= , 3
2z y= , 4

3z y=  in order to obtain the following involutive 
first order system with no zero order equation:  
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1 4 2 3 3 4
3 3 3 3

1 3 2 3 3 4
2 2 1 2 2

1 2 4 3
1 1

class 3 0, 0, 0, 0 1 2 3
class 2 0, 0, 0, 0 1 2
class 1 0, 0 1

d z z d z z d z d z
d z z d z d z d z d z
d z z d z z

 − = − = = =
 − = − = = = •
 − = − = • •

 

where we have separated the classes while using standard computer algebra no-
tations this time instead of the jet notations used in the previous example. Con-
trary to what could be believed, this operator does not describe the Spencer se-
quence that could be obtained from the previous Janet sequence but we can use 
it exactly like a Janet sequence or exactly like a Spencer sequence. We obtain 
therefore a long strictly exact sequence of differential modules with only first 
order operators while replacing Dy  by 1 2 3 4Dz Dz Dz Dz Dz= + + +  as fol-
lows:  

2 8 10 4
1 1 10 0D D D D M→ → → → → →  

and we still have the vanishing Euler-Poincaré characteristic 2 8 10 4 0− + − = .  
The differential module 1M  is defined over [ ]1K d  by the two PD equations 

of class 1 and is easily seen to be torsion-free with the two potentials ( )1 4,z y z= . 
Substituting into the PD equations of class 2 and 3, we obtain the generating dif-
ferential constraints:  

1 4
3

4
3

1 4
2 1

4
2

1 2 30
1 2 30
1 20
1 20

d z z
d z
d z d z
d z

 − =
 =
 •− =
 •=

 

They define the parametrization module L and the inclusion M L⊆  is ob-
tained by eliminating 4z  but we have indeed M L=  because 4

3z d y= .  
EXAMPLE 3.3: We have provided in ([4], Example 4.2) a case leading to a 

strict inclusion M L⊂  that we revisit now totally in this new framework. With 
, 1, 4, 2K m n q= = = = , let us study the 2-pure differential module M defined 

by the involutive second order system:  

44

34

33

24 13

0 1 2 3 4
0 1 2 3
0 1 2 3

0 1 2

y
y
y
y y

=
 = •
 = •
 − = • •

 

From the Janet tabular we may construct at once the Janet sequence:  
1 20 1 4 4 1 0→Θ→ → → → →   

where 1  is defined by the involutive system:  

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

4 34 3 44

4 33 3 34

4 24 13 2 44 1 34

3 24 13 2 34 1 33

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3

d y d y
d y d y
d y y d y d y
d y y d y d y

− =
 − =
 − − + =
 − − + = •

 

and so on. We have therefore a free resolution of M with 3 operators:  
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4 40 0D D D D M→ → → → → →  

and thus discover that ( ) 3pd M ≤ .  
However, we have  

( ) ( )( ) ( ) ( )2 2
4 3 4 3 2 4 1 3 4 3, , , , 1rad dim Vχ χ χ χ χ χ χ χ χ χ− = = ⇒ =p .  

Let us transform the initial second order involutive system for y into a first 
order involutive system for ( )1 2 3 4 5

1 2 3 4, , , ,z y z y z y z y z y= = = = =  as follows:  
1 5 2 5 3 4 4 5

4 4 1 4 1 4 4
1 4 2 4 3 4 4 5

3 3 1 3 2 3 3
1 3 2 3 5 4

2 2 1 2 1
1 2

1

1 2 3 40, 0, 0, 0, 0
1 2 30, 0, 0, 0, 0
1 20, 0, 0
10

d z z d z d z d z d z d z d z
d z z d z d z d z d z d z d z
d z z d z d z d z d z
d z z

 − = − = − = = =
 •− = − = − = = =
 • •− = − = − =
 • • •− =

 

with five equations of full class 4, five equations of full class 3, three equations of 
class 2 and finally one equation of class 1. The equations of classes 2 and 1 are pro-
viding an involutive system over [ ]1 2,d d  defining a torsion-free module ( )2M  
that can be parametrized by setting 1 2 3 4 5

1 2 2 1, , , ,z y z d y z d y z d z z d z= = = = =  
with only 2 arbitrary potentials ( ),y z . Substituting in the other equations of 
classes 3 and 4, we finally discover that L is defined by the involutive system de-
scribing the relative parametrization:  

4 1

4

3 2

3

0 1 2 3 4
0 1 2 3 4

0 1 2 3
0 1 2 3

d y d z
d z
d y d z
d z

− =
 =
 − = •
 = •

 

We have the strict inclusion M L⊂  obtained by eliminating z because now 
z Dy∉  if we take the residue or, equivalently, the residue of z does not belong 
to M. The differential module L defined by the above system is therefore 2-pure 
with a strict inclusion M L⊂  and admits a free resolution with only 2 opera-
tors according to its Janet tabular.  

EXAMPLE 3.4: (Contact structure) With 3n m= =  and ( )1 2 3, ,K x x x=  
let us introduce the so-called contact 1-form 1 3 2dx x dxα = −  and consider the 
first order system of infinitesimal Lie equations obtained by eliminating the 
contact factor ρ  from the equations ( )L ξ α ρα= . We let the reader check 
that he will obtain only the two equations 1 20, 0Φ = Φ =  which is nevertheless 
neither formally integrable nor even involutive. Using crossed derivatives one 
obtains the involutive system:  

( )

3 3 2 3 2
3 2 1

2 1 3 2
3 3

21 1 3 2 3 1 3 2 3
2 2 1 1

2 0 1 2 3
0 1 2 3

1 20

x
x

x x x

ξ ξ ξ
ξ ξ

ξ ξ ξ ξ ξ

Φ ≡ ∂ + ∂ + ∂ =Φ ≡ ∂ − ∂ =
 •Φ ≡ ∂ − ∂ + ∂ − ∂ − =

 

with the unique CC 1 2 3 2 3
3 2 1 0xΨ ≡ ∂ Φ − ∂ Φ − ∂ Φ +Φ = . The following injective 

absolute parametrization is well known and we let the reader find it by using 
differential double duality:  
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3 1 2 3 3 1 3 2
3 3 2 1, ,x x xφ φ ξ φ ξ φ φ ξ ξ ξ φ− ∂ = − ∂ = ∂ + ∂ = ⇒ − =  

We obtain the Janet sequence  
1 10 1 3 3 1 0

φ ξ

−→ → → → →
Φ Ψ

 

 

with formally exact adjoint sequence:  
( ) ( ) ( )1 10 1 3 3 1 0ad ad ad

θ ν µ λ

−← ← ← ← →  

 

and the resolution of the trivially torsion-free module M D :  
3 30 0D D D M→ → → → →  

which splits totally because it is made with free and thus projective modules.  
EXAMPLE 3.5: (Unimodular contact structure) With 3n m= =  and 

( )1 2 3, ,K x x x=  let us introduce the 1-form 1 3 2dx x dxω = −  used as a geo-
metric object and consider the first order system of infinitesimal Lie equations 
from the equations ( ) 0L ξ ω = . One obtains the system using jet notations:  

1 3 2 1 3 2 3 1 3 2
3 3 2 2 1 10, 0, 0x x xξ ξ ξ ξ ξ ξ ξ− = − − = − =  

We let the reader prove that these three PD equations are differentially inde-
pendent and we obtain the free resolution of M:  

3 30 0D D M→ → → →  

and its adjoint sequence is:  
( )3 30 0adN D D← ← ← ←  

because ( ) ( ) 3 3 0D Drk M rk N= = − = , that is both M and N are torsion mod-
ules with ( ) ( ) ( )( )1 1 1 1N ext M M ext N ext ext M= ⇒ = =  and M is surely 
1-pure. However, this system is not formally integrable, as it can be checked di-
rectly through crossed derivatives or by noticing that ( ) 0dξ ω =  with 

2 3d dx dxω = ∧  and ( )( ) 0dξ ω ω∧ =  with 1 2 3d dx dx dxω ω∧ = ∧ ∧ . Hence, 
we have to add the 3 first order equations:  

2 3 3 2 1
2 3 1 1 10, 0, 0 0ξ ξ ξ ξ ξ+ = = = ⇒ =  

Exchanging 1x  and 3x , we obtain the equivalent involutive system in δ
-regular coordinates:  

3
3
2
3
1
3
2 3
2 1
1 1 3 3
2 1
1 1 2
1 1

1 2 30
1 2 30
1 2 30
1 20
1 20
10

x
x

ξ
ξ
ξ
ξ ξ
ξ ξ ξ
ξ ξ

 =
 =
 =
 •+ =
 •+ − =


• •− =

 

The differential module ( )2M  over [ ]1 2,K d d  is defined by the three bottom 
equations. Setting now 1 1 2xφ ξ ξ= − , we deduce from the last bottom equation 
that 2

1dξ φ= −  and thus 1 1
1x dξ φ φ= − . Finally, substituting in the equation 
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before the last, we get 3
2dξ φ= . We have thus obtained an injective parametri-

zation of ( )2M  which is therefore torsion-free and M is 2-pure in a coherent 
way. Substituting into the three upper equations, we obtain the desired relative 
parametrization by adding the differential constraint 3 0d φ = . Coming back to 
the original coordinates, we obtain the relative parametrization:  

3 1 2 3 3 3
3 3 2 1 2 1, , with 0x d d d d d x dφ φ ξ φ ξ φ ξ φ φ φ ξ− = − = = = ⇒ + =  

which is thus strikingly obtained from the previous contact parametrization by 
adding the only differential constraint 1 0d φ =  obtained by substituting it in the 
new system of Lie equations.  

4. Applications  

Before studying applications to mathematical physics, we shall start with an ex-
ample describing in an explicit way the Janet and Spencer sequences used the-
reafter, both with their link, namely the relations existing between the dimen-
sions of the respective Janet and Spencer bundles.  

EXAMPLE 4.1: When 2, 2n m q= = = , ω  is the Euclidean metric of 
2X =   with Christoffel symbols γ  and metric density ( )detω ω ω= , we 

consider the two involutive systems of linear infinitesimal Lie equations  
( )2 2 2R R J T⊂ ⊂  respectively defined by ( ) ( ){ }0, 0L Lξ ω ξ γ= =  and  

( ) ( ){ }0, 0L Lξ ω ξ γ= = . We have 2 2 0g g= =  and construct the following 
successive commutative and exact diagrams followed by the corresponding di-
mensional diagrams that are used in order to construct effectively the respective 
Janet and Spencer differential sequences while comparing them.  

( )

( )

*
2 0

2 2 0

1 1 0

0 0 0

0 0

0 0

0 0

0 0 0

S T T F

R J T F

R J T F

↓ ↓
′′→ ⊗ → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
′→ → → →

↓ ↓ ↓





 

0 0 0

0 6 6 0

0 3 12 9 0

0 3 6 3 0

0 0 0

↓ ↓
→ → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓





 

In the present situation we notice that  
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( ) ( ) ( ) ( )( )2 1 1 1 1 2 1 1R R J R J T J J Tρ= = ⊂  and thus ( )0 1 0F J F ′  with  
* *

0 0 2F T F S T T′′ ′⊗ ⊗   by counting the dimensions because we have surely 
( )0 1 0F J F ′⊂  with 2 0g = .  

( ) ( )

( )

* *
3 0 1

3 3 1 0 1

2 2 0

0 0 0

0 0

0 0

0 0

0 0 0

S T T T F F

R J T J F F

R J T F

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓



 

0 0 0

0 8 18 10 0

0 3 20 27 10 0

0 3 12 9 0

0 0 0

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓





 

SPENCER 

( ) ( ) ( )

1 2

1 2

1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0

0 0

0 0

0 0

0 0 0

q

q

j D D

j D D

C C C

T C T C T C T

T F F F

↓ ↓ ↓

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓Φ ↓Φ

→ Θ → → → → →
↓ ↓ ↓

 



 

JANET 
2 1 2

2 1 2

2 1 2

1 2

1 2

0 1 2

0 4 8 4 0

0 3 6 3 0 SPENCER

0 2 12 16 6 0 HYBRID

0 2 9 10 3 0 JANET

0 2 8 8 2 0

j D D

j D D

j D D

→ Θ → → → →

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓Φ ↓Φ

→ Θ → → → → →

→ Θ → → → → →





 

 


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( )*
0 0 1 1

* *
3 0 1

* *
3 0 1

0 0

0 0

0 0

0 0

0 0 0

T C C C C

S T T T F F

S T T T F F

↓ ↓

→ ⊗ = →

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓

 

 



 

0 0

0 2 2 0

0 8 18 10 0

0 8 16 8 0

0 0 0

↓ ↓
→ → →

↓ ↓ ↓
→ → → →

↓ ↓
→ → → →

↓ ↓ ↓



 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*
0 0

r
r r r r

r r r r

r r r r

C C ker F F T C C

dim C dim C dim F dim F

dim C dim F dim C dim F

→ ∧ ⊗

⇒ − = −

⇒ + = +

 

 

 

 

 

In this new situation, we now notice that  

( ) ( ) ( ) ( )( )2 1 1 1 1 2 1 1R R J R J T J J Tρ = ⊂  

   

and the induced morphism ( )0 1 0F J F ′→   is thus no longer a monomorphism 
though we still have an isomorphism *

0 2F S T T′′ ⊗

  because 2 0g =  again. 
Finally, we may extend such a procedure to the conformal group of space-time 
by considering the system of infinitesimal conformal transformations of the 
Minkowski metric defined by the first order system ( )1 1R̂ J T⊂  in such a way 
that we have the strict inclusions ( )2 2 2 2

ˆR R R J T⊂ ⊂ ⊂  with ( )2ˆ 4dim g n= = .  

For this, we just need to introduce the metric density ( )( )
1

ˆ ndetω ω ω
−

=  and 

consider the system ( ) ˆ 0L ξ ω =  ([13]):  

2ˆ ˆ ˆ ˆ ˆ 0r r r r
ij rj i ir j ij r r ijn

ω ξ ω ξ ω ξ ξ ωΩ ≡ ∂ + ∂ − ∂ + ∂ =  

A) Control Theory:  
EXAMPLE 4.A.1: (OD control theory) In classical control theory we have 

1n =  and the only independent variable is the time, simply denoted by x but we 
may choose any ground differential field like ( )K x= . In that case, we shall 
refer to ([5] or [14]) for the proof of the following technical results that will be 
used in this case (compare to [43]). Instead of the standard “upper dot” notation 
for derivative we shall identify the formal and the jet notations, setting thus 
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x xd y dy y= = . With 2m = , let us consider the elementary Single Input/Single 
Output (SISO) second order system ( )1 2 2 0xx xy y a x y− + =  with a variable coef-
ficient a K∈ . The corresponding formally surjective operator is  

( )1 2 2
xx x a xη η η ζ∂ − ∂ + = . Treating such a system by using classical methods is 

not so easy when a is not constant as it cannot be possible to transform it to the 
standard Kalman form. On the contrary, multiplying by a test function (or La-
grange multiplier) λ  and integrating by parts, we obtain the adjoint sys-
tem/operator:  

1 1

2 2

1xx

x

y

y a

λ µ

λ λ µ

 → =
 •→ + =

 

This system has a trivially involutive zero symbol but is not even formally in-
tegrable and we have to consider:  

( )

1

2

2 2 1 2

1xx

x

x x

a

a a a

λ µ
λ λ µ

λ µ µ µ

 =
 + = •
 •∂ − = − −

 

We have thus two possibilities:  
• We have 2 0xa a− ≠  and the adjoint system has the only zero solution, that 

is the adjoint operator is injective. In this case 0N =  and thus 
( ) ( )1 0t M ext N= =  that is M is torsion-free. However, as 1n =  it follows 

that [ ]D K d=  is a principal ideal ring which is therefore free and thus pro-
jective ([26] [30]), that is M is torsion-free if and only if 0N =  and the sys-
tem is controllable.  

• The Riccati equation 2 0xa a− =  is satisfied, for example if 1a x= − , and 
we get the CC 2 1 2 0x aµ µ µ− − = . Multiplying by a test function ξ  and in-
tegrating by parts, we get the adjoint operator:  

1 1

2 2
x a

µ ξ η

µ ξ ξ η

 → − =


→ − − =
 

with only one first order generating CC, namely 1 2 1 0x aη η η∂ − + = . It follows 
that ( )10 0N ext N≠ ⇒ ≠  is a torsion module generated by the residue of 

1 2 1
xz y y ay= − + , even though 1y  and 2y  are free separately and M is not 

pure. We obtain indeed a torsion element as we can check at once that 
0xz az− =  and wish good luck for control people to recover simply this result 

even on such an elementary example because the Kalman criterion is only 
working for systems with constant coefficients (compare [5] and [43]).  

EXAMPLE 4.A.2: (PD control theory) With 2n = , let us consider the (tri-
vially involutive) inhomogeneous single first order PD equations with two inde-
pendent variables ( )1 2,x x , two unknown functions ( )1 2,η η  and a second 
member ζ :  

1 2 2 2
2 1 1xη η η ζ η ζ∂ − ∂ + = ⇔ =  

The ring of differential operators is [ ]1 2,D K d d=  with ( )1 2,K x x= . Mul-
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tiplying on the left by a test function λ  and integrating by parts, the corres-
ponding adjoint operator is described by:  

( )
1 1

2
12 2 2

1

ad
x

η λ µ
λ µ

η λ λ µ

 → −∂ = ⇔ =
→ ∂ + =

  

Using crossed derivatives, this operator is injective because  
2 1 2 1

2 1 xλ µ µ µ= ∂ + ∂ +  and we even obtain a lift λ µ λ→ → . Substituting, we 
get the two CC:  

( )

2 1 2 1 1 1
22 12 2

22 1 2 1 2 2 2 1 2 2
12 11 1 2

2 1 2
12

x

x x x

µ µ µ µ ν

µ µ µ µ µ µ ν

∂ + ∂ + ∂ + =
 •∂ + ∂ + ∂ + ∂ + − =

 

This system is involutive and the corresponding generating CC for the second 
member ( )1 2,ν ν  is:  

2 1 2 1
2 1 0xν ν ν∂ − ∂ − =  

Therefore 2ν  is differentially dependent on 1ν  but 1ν  is also differential-
ly dependent on 2ν . Multiplying on the left by a test function θ  and integrat-
ing by parts, the corresponding adjoint system of PD equations is:  

( )
1 2 1

1
12 2

2

x
ad

ν θ θ ξ
θ ξ

ν θ ξ
−

 → ∂ − = ⇔ =
→ −∂ =

  

Multiplying now the first equation by the test function 1ξ , the second equa-
tion by the test function 2ξ , adding and integrating by parts, we get the canon-
ical parametrization Dξ η= :  

( )

2 1 2 2 2 2 2
22 12 2

21 1 2 1 1 2 2 2 2 2 1
12 2 11 1

2 1 2
12

x

x x x

µ ξ ξ ξ ξ η

µ ξ ξ ξ ξ ξ ξ η

 → ∂ + ∂ − ∂ − =
 •→ ∂ − ∂ + + ∂ − ∂ + =

 

of the initial system with zero second member. This system is involutive and the 
kernel of this parametrization has differential rank equal to 1 because 1ξ  or 

2ξ  can be given arbitrarily.  
Keeping now 1ξ ξ=  while setting 2 0ξ = , we get the first second order mi-

nimal parametrization ( )1 2,ξ η η→ : 
2

22
2 1

12 2

1 2
1x

ξ η
ξ ξ ξ η

∂ =
 •∂ − ∂ + =

 

This system is again involutive and the parametrization is minimal because 
the kernel of this parametrization has differential rank equal to 0. With a similar 
comment, setting now 1 0ξ =  while keeping 2ξ ξ′= , we get the second order 
minimal parametrization ( )1 2,ξ η η′→ :  

( )22 2 1
11 1

2 2
12 2

2

2

x x

x

ξ ξ ξ η

ξ ξ ξ η

 ′ ′ ′∂ − ∂ + =


′ ′ ′∂ − ∂ − =
 

which is again easily seen to be involutive by exchanging 1x  with 2x .  
With again a similar comment, setting now 1

1 2 2,ξ φ ξ φ= ∂ = −∂  in the ca-
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nonical parametrization, we obtain the third different second order minimal pa-
rametrization:  

2 2
22 2

2 2 2 1
12 2 1

1 22
1( )

x
x x

φ φ η
φ φ φ η

 ∂ + ∂ =
 •∂ − ∂ + ∂ =

 

We are now ready for understanding the meaning and usefulness of what we 
have called “relative parametrization” in ([4]) by imposing the differential con-
straint 1 2

2 1 0ξ ξ∂ + ∂ =  which is compatible as we obtain indeed the new first 
order relative parametrization:  

( )

1 2
2 1

2 2 2 2
2

22 2 2 2 1 1
1

0 1 2
2 1 2

1
x

x x

ξ ξ
ξ ξ η

ξ ξ ξ η

∂ + ∂ =− ∂ − =
 •− ∂ + + =

 

with 2 equations of class 2 (thus with class 2 full) and only 1 equation of class 1.  
In a different way, we may add the differential constraint 1 2

1 2 0ξ ξ∂ + ∂ =  but 
we have to check that it is compatible with the previous parametrization. For this, 
we have to consider the following second order system which is easily seen to be 
involutive with 2 second order equations of (full) class 2, (only) 2 second order 
equations of class 1 and 1 equation of order 1:  

( )

2 1
22 12

1 2 2 2 2 2
22 12 2

2 1
12 11

21 2 1 1 2 2 2 2 2 1
12 2 11 1

2 1
2 1

0 1 2
2 1 2

0 1
12

0

x

x x x

ξ ξ
ξ ξ ξ ξ η
ξ ξ

ξ ξ ξ ξ ξ ξ η

ξ ξ

∂ + ∂ =
∂ + ∂ − ∂ − =
∂ + ∂ = •
 •∂ − ∂ + + ∂ − ∂ + =

• •∂ + ∂ =

 

The 4 generating CC only produce the desired system for ( )1 2,η η  as we 
wished.  

We cannot impose the condition 1θ ξ− =  already found as it should give 
the identity 0 η= .  

It is however also important to notice that the strictly exact long exact se-
quence:  

1 12 20 0D D D D−→ → → → →   

splits because we have a lift ζ η ζ→ → , namely:  

( )2 1 2 2 1 2 2 2
1 2 2 1,x xζ ζ ζ η η η η η η ζ→ −∂ + = −∂ = → ∂ − ∂ + =  

We have thus an isomorphism 2D D M⊕  in the resolution  
1 20 0pD D M→ → → →  and all the differential modules defined from the 

operators involved are projective, thus torsion-free or 0-pure with vanishing 
r-extension modules ( ) 0, 1rext r= ∀ ≥ .  

As an exercise, we finally invite the reader to study the situation met with the 
system ( )1 2 2

2 1 a xη η η∂ − ∂ +  whenever a K∈  (Hint: The controllability con-
dition is now 1 0a∂ ≠ ). The comparison with the previous OD case needs no 
comment.  
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B) Electromagnetism:  
Most physicists know the Maxwell equations in vacuum, eventually in dielec-

trics and magnets, but are largely unaware of the more delicate constitutive laws 
involved in field-matter couplings like piezzoelectricity, photoelasticity or 
streaming birefringence. In particular they do not know that the phenomeno-
logical laws of these phenomena have been given ... by Maxwell ([7]). The situa-
tion is even more critical when they deal with invariance properties of Maxwell 
equations because of the previous comments ([44]). Therefore, we shall first 
quickly recall what the use of adjoint operators and differential duality can bring 
when studying Maxwell equations as a first step before providing comments on 
the so-called gauge condition brought by the Danish physicist Ludwig Lorenz in 
1867 and not by Hendrik Lorentz with name associated with the Lorentz trans-
formations.  

Though it is quite useful in actual practice, the following approach to Maxwell 
equations cannot be found in any textbook. Namely, avoiding any variational 
calculus based on given Minkowski constitutive laws F   between field F 
and induction   for dielectric or magnets, let us use differential duality and 
define the first set 1M  of Maxwell equations by 2 * 3 *:d T T∧ → ∧  while the 
second set 2M  will be defined by ( ) 4 * 2 4 *:ad d T T T T∧ ⊗∧ → ∧ ⊗  with 

* 2 *:d T T→∧ , in a totally independent and intrinsic manner, using now con-
travariant tensor densities in place of covariant tensors. As we have already 
proved since a long time in ([3] [7] [13] [14] [33] [40]), the key result is that 
these two sets of Maxwell equations are invariant by any diffeomorphism, con-
trary to what is generally believed ([44]). We recapitulate below this procedure 
in the form of a (locally exact) differential sequence and its (locally exact) formal 
adjoint sequences where the dotted down arrow in the left square is the standard 
composition of operators:  

( )
potential field induction current

ad dd

A F
→ → →
→ → → 

 

which is responsible for EM waves, though it is equivalent to the composition in 
the right square:  

( )
3 *pseudopotential induction field

ad d d
T→ → →∧  

The main difference is that we need to set 0=  in the first approach be-
cause of 2M  while we get automatically such a vanishing assumption in the 
second approach because of 1M , avoiding therefore the Lorenz condition as in 
([35], Remark 5.5) and below.  

( ) ( ) ( )

( ) ( )
( )

1

2

potential field 0

current induction pseudopotential

Md

i i j j i ij i jk j ki k ij

ad dM
ij j ij

i

A A A F F F F= → ∂ − ∂ = = → ∂ + ∂ + ∂ =

= ∂ = ← = ←  

 

https://doi.org/10.4236/jmp.2019.1012097


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.1012097 1476 Journal of Modern Physics 
 

( ) ( )

1

2

* 2 * 3 *

4 * 4 * 2 4 * 3

3 * 2 * *

d Md

ad d M ad d

d d

A F

T T T

T T T T T T

T T T

=

=

→ ∧ → ∧

∧ ⊗ ← ∧ ⊗∧ ← ∧ ⊗∧

∧ ← ∧ ←

  

  

 

 

Using symbolic notations with an Euclidean metric instead of the Minkowski 
one because they are both locally constant while using the constitutive law 

F=  for simplicity in vacuum while raising or lowering the indices by means 
of the metric, we have the parametrization i j j i ijd A d A F− =  and obtain by 
composition in the left upper square:  

( ) ( )
( ) 0

i j j i i j j i j
i i i

i j j i j
j i i j

d d A d A d d A d d A

d d d A d d A d

− = − =

⇒ − = =




 

with implicit summations on i and j. However, such a result does not prove at all 
that the density of current does not satisfy other CC. Nevertheless, we have:  

LEMMA 4.B.1: The system ( )i j j i j
i id d A d d A− =  is involutive whenever 

0j
jd =  but the differential module defined by the corresponding homoge-

neous system is not torsion-free.  
Proof: When 0= , this second order system is formally integrable because 

it is homogeneous. However, even if we know a priori that necessarily 0j
jd = , 

it is not evident that such a condition is also sufficient, contrary to what is 
claimed in the literature. When 4n = , using the Euclidean metric for simplicity, 
one can rewrite the system in the form:  

( )
( )
( )

3 3 3 3 4 3 2 1 3
44 33 22 11 3 4 3 2 1

2 2 2 3 4 3 2 1 2
44 33 22 11 2 4 3 2 1

1 1 1 3 4 3 2 1 1
44 33 22 11 1 4 3 2 1

3 2 1 4 4 4 4
34 24 14 33 22 11

1 2 3 4
1 2 3 4

d A d A d A d A d d A d A d A d A

d A d A d A d A d d A d A d A d A

d A d A d A d A d d A d A d A d A

d A d A d A d A d A d A

 + + + − + + + =

 + + + − + + + =

 + + + − + + + =


+ + − − − = −









1 2 3 4
1 2 3 •

 

Let us check that the second order symbol is involutive with three equations of 
class 4 and only one equation of class 3. Indeed, we have successively:  

3 2 1 4 4 4 4
344 244 144 334 224 114 4

3 3 3 3 4 3 2 1 3
344 333 223 113 334 333 233 133 3

2 2 2 2 4 3 2 1 2
244 233 222 112 224 223 222 122 2

1 1 1 1
144 133 122 111

d A d A d A d A d A d A d

d A d A d A d A d A d A d A d A d

d A d A d A d A d A d A d A d A d

d A d A d A d A

+ + − − − = −

− − − − + + + + = −

− − − − + + + + = −

− − − − +






4 3 2 1 1

114 113 112 111 1d A d A d A d A d+ + + = − 

 

Summing the four equations, the left member is vanishing and we get the de-
sired only CC. The four characters are (1 7 12 16< < < ) and we check that 

( ) ( )2 1 7 12 16 36 10 4 4dim g = + + + = = × − . This procedure cannot be avoided 
though it cannot be found in the literature.  

In addition, rewriting the homogeneous system in the form 0i i j i j id d A d d A− =  
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with implicit summation on i, we obtain successively ([10]):  

( )
( ) ( )
( ) ( )
( ) ( )

0

i i jk i i j k k j

j i i k k i i j

j i k i k i j i

j k i i k j i i

d d F d d d A d A

d d d A d d d A

d d d A d d d A

d d d A d d d A

= −

= −

= −

= −

=

 

It follows that each component of the field is a torsion element of the corres-
ponding differential module M, which is killed by the Dalembertian. According-
ly, M is not torsion-free and thus not pure because we have just proved that 

( ) 1Drk M = . In particular, each component of the potential is free by itself. Such a 
situation is similar to the one met in the study of Single Input/Single Output (SISO) 
ordinary differential control systems. For example, if we have 0xx xy u− = , then 

xz y u= −  is a torsion element with 0xz =  even though both the input u and the 
output y are free separately. Bringing the system to first order by choosing the new 
unknowns ( )1 2 3, ,xz y z y z u= = = , we obtain the Spencer form over K = :  

1 2 2 30, 0x x xz z z z− = − =  

Setting a new 1 1 2 2 3 3 3, ,z z z z z z z= = − = , we obtain the reduced Spencer form:  

( )1 2 3 20, 0 , 1 2x x Kz z z z z Az Bu rk B AB− − = = ⇔ = + ⇒ = <  

which is a Kalman form because no jet of the input 3 3z z u= =  is indeed ap-
pearing.  

Finally, the character 2
nα  is obtained by considering nn j jn nd A d A−  for the 

equation giving j . For n  we get 0nn n nn nd A d A− =  and thus  
( )2 1 1n n nα = − − =  a result showing that the corresponding differential module 

has rank 1 and there is thus only one CC, namely 0j
jd =  with implicit 

summation on j.  
Q.E.D.  

We now prove that we may add the Lorenz condition 0i
id A =  to bring the 

rank to zero. Indeed, we have now the inhomogeneous system i j j
id d A =  

and the differential constraint thus brought is compatible with the conservation 
of current. The corresponding homogeneous system obtained by adding the Lorenz 
constraint has second order symbol obtained by considering both 0i j

id d A =  
and 0i

ijd A =  or 0j
ijd A = . We obtain therefore 0, 0nn j nn nd A d A= =  showing 

that we have now 2 0nα =  and a torsion differential module. As a more impor-
tant and effective result that does not seem to be known, we have:  

PROPOSITION 4.B.2: When 4n = , the system:  

44 11
4 3 2 1 4 2 4 4

4 34 24 14 33 22 11
4 1

3 34 13
4 1

2 24 12
4 1

1 14 11
4 1

4 1

1 2 3 4
1 2 3
1 2 30
1 20
10

0

j j j jd A d A
d d A d A d A d A d A d A
d d A d A
d d A d A
d d A d A

d A d A

Ψ ≡ + + =
 •Φ − Ψ ≡ + + − − − = −
 •Φ ≡ + + =
 • •Φ ≡ + + =
 • • •Φ ≡ + + =


• • • •Φ ≡ + + =













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is involutive with four equations of class 4, two equations of class 3, one equa-
tion of class 2 and one equation of class 1. The 11 resulting CC only provide the 
conservation of current.  

Proof: Using the corresponding Janet tabular on the right, one can check at 
once that the 4 CC brought by the only first order equation 0Φ =  do not bring 
anything new, as they amount to crossed derivatives, and that we are only left 
with the 4 upper dots on the right side. However, for 1,2,3i = , we have 

( ) ( )4 4
4 4i i id d d d dΦ = Φ −Ψ + Ψ  and we are thus only left with a single CC, get-

ting successively:  

( )4 3 2 1 4 2 1
4 4 344 244 144 334 224 114

3 3 3 3 3
3 344 333 223 113

2 2 2 2 2
2 244 233 222 112

1 1 1 1 1
1 144 133 122 111

d d d A d A d A d A d A d A

d d A d A d A d A

d d A d A d A d A

d d A d A d A d A

Φ −Ψ ≡ + + − − −

− Ψ ≡ − − − −

− Ψ ≡ − − − −

− Ψ ≡ − − − −

 

( )
( )

4 3 2 1
3 3 334 333 233 133

4 3 2 1
2 2 224 223 222 122

4 3 2 1
1 1 114 113 112 111( )

d d d A d A d A d A

d d d A d A d A d A

d d d A d A d A d A

Φ ≡ + + +

Φ ≡ + + +

Φ ≡ + + +

 

Summing these 7 equations, we are left with the identity  
( )44 11 0j j

j jd d d d− Φ + + Φ + Ψ = =  . It is important to notice that no other 
procedure can prove that we have an involutive symbol in δ -regular coordi-
nates and this is the only way to compute effectively all the four characters 
( 0 6 11 15< < < ) with ( ) ( )6 11 15 32 4 10 4 4+ + = = × − +  for the dimension of 
the symbol of order 2, a result not evident at first sight. Accordingly, the 
so-called Lorenz gauge condition is only a pure “artifact” amounting to a relative 
minimum parametrization with no important physical meaning as it can be 
avoided by using only the EM field F ([6] [10] [45]).  

Q.E.D.  
REMARK 4.B.3: Using the exactness of the Euler-Poincaré characteristic for 

the Poincaré sequence and its adjoint sequence, we have:  

( ) ( ) ( ) ( )( )1 10 1 1 2 1 2 2D Dn n n rk d M rk d M n n= − + − − = ⇒ = = − −  

( ) ( ) ( )( ) ( )( )2 20 1 1 2 1 2 2D Dn n n rk d M rk ad d M n n= − + − − = ⇒ = = − −  

by counting the ranks from left to right in the upper row and then from right to 
left in lower row of the previous diagram. We obtain therefore: 

( ) ( )
( )( ) ( )( ) ( )

1

2 *
2 3 3 6

D D

D D

rk d rk d M

rk ad d M rk ad d dim T

+ =

= = + = + = ∧ =
 

when 4n =  by using successively the exactness of the upper and lower rows of 
the diagram. Hence, the image of the dotted arrow on the left is equal to the im-
age of ( ) 2ad d M= , a result explaining why both operators have the same CC, 
namely the conservation of current obtained by extending the previous diagram 
one step more to the left. As the linear Spencer sequence for a Lie group action 
(isometries, isometries plus dilatation, conformal isometries in Example 4.1) is 

https://doi.org/10.4236/jmp.2019.1012097


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.1012097 1479 Journal of Modern Physics 
 

(locally) isomorphic to the tensor product of the Poincaré sequence by a finite 
dimensional Lie algebra (10 11 15< <  when 4n =  in Example 4.1), the same 
comment remains valid. This result justifies by itself the specific importance of 
the linear Spencer sequence for infinitesimal Lie equations.  

Such a new approach to a classical result is nevertheless bringing a totally un-
satisfactory consequence. Using the well known correspondence between elec-
tromagnetism (EM) and elasticity (EL) used for all engineering computations 
with finite elements:  

EM potential EL displacement, EM field EL strain,
EM induction EL stress

↔ ↔
↔

 

where EL means elasticity, and instead of the left upper square in the diagram, ... 
we have to consider the right upper square.  

We finally prove that the use of the linear and nonlinear Spencer operators 
drastically changes the previous standard procedure in a way that could not even 
be imagined with classical methods. For such a purpose, we make a few com-
ments on the implicit summation appearing in differential duality. For example, 
we have, up to a divergence:  

( ) ( ), , , ,
,

r k r k k r k r k
k r k r r r k k rX ξ ξ ξ ξ= ∂ − = −∂ − +     

In the conformal situation, we have 1 2
1 2

1n r
n rn

ξ ξ ξ ξ= = = =  and obtain there-

fore, as factor of the firs jets:  

( ) ( ),1 1 ,2 2 , , , 1
1 1 2 2 1

1n n r r r
n n r r rn

ξ ξ ξ ξ ξ+ + + = =      

Going to the next order, we get as in ([26]), up to a divergence:  

( )1, 1 1, 1
1 1 1 1

r r
r rξ ξ∂ = − ∂ +   

Collecting the results and changing the sign, we obtain for the first time the 
Cosserat equation for the dilatation, namely the so-called virial equation that we 
provided in 2016 ([34], p. 35):  

1, ,
1 0r r

r r∂ + =   

generalizing the well known Cosserat equations for the rotations provided in 
1909 ([46], p. 137):  

, , , 0ij r i j j i
r∂ + − =    

As for EM, substituting r r
i rj j riξ ξ∂ − ∂  in the dual sum 1

2
i j ij

i j ijF F<
< =   and 

integrating by parts, we get a part of the Cosserat equations for the elations, 
namely: 

,0 0 0ir i i r
r i r∂ − = ⇒ ∂ = ⇒ =     

saying that the trace of the EM impulsion-energy tensor must vanish ([45], p. 
37).  

REMARK 4.B.4: When 1 0qg + = , introducing the linear Spencer sequence 
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with Spencer bundles * ˆr
r qC T R= ∧ ⊗ , we obtain the following diagram de-

scribing the Cosserat procedure ([4] [40] [46]):  

( ) ( )

( ) ( )

1 2

1 2

1 2

0 1 2

* * * * * *
0 1 2

* 1 * 2 *

potential field

induction pseudopotential

D D

ad D ad D
n n n

ad D ad D
n n n

q q q

C C C

T C T C T C

T M T M T M− −

→ →

∧ ⊗ ← ∧ ⊗ ← ∧ ⊗

∧ ⊗ ← ∧ ⊗ ← ∧ ⊗

  

  

 

where we have used the isomorphism *
q qR M . It just remains to consider the 

various Spencer bundles ˆ
r r rC C C⊂ ⊂  that we have already considered with 

2q =  (see [17] for an explicit example).  
We sum up all these results in the following tabular only depending on the 

Spencer operator:  
 

FIELD INDUCTION 

NONLINEAR LINEAR DUAL 

*
1q q qDf T Rχ+ = ∈ ⊗  *

1q q qD X T Rξ + = ∈ ⊗  * *n
q qT T R∈∧ ⊗ ⊗  

,
k
rχ  

,
k
i rχ  

,
r
r iχ  

,
k
ij rχ  

, ,
r r

i r j j r i ijχ χ ϕ∂ − ∂ =  

,
k k k

r r rXξ ξ∂ − =  

, ,
k k k

r i i r i rXξ ξ∂ − =  

,
r r r

i r ri r i iX Xξ ξ∂ − = =  

,
k k k k

r ij ijr r ij ij rXξ ξ ξ∂ − = ∂ =  

, ,
r r

i r j j r i ijFξ ξ∂ − ∂ =  

( ), ,

1
2

r r
i r j j r i ijRξ ξ∂ + ∂ =  

,r
k  

,i r
k  

i  
,ij r

k  
ij  

? 

 
We notice that ( ) ( )2 * *

2,ij ijF F T R R S T= ∈∧ = ∈  and the part of the first 
Spencer bundle made by the 1-forms with value in the 4n =  elations provides 
the splitting:  

( ) 2 * * * *
2,F R T S T T T∈∧ ⊕ ⊗  

because of the well known exactness of the Spencer δ -sequence:  
* * * 2 *

20 0S T T T Tδ δ→ → ⊗ →∧ →  

As a byproduct, the surprising shift of exterior powers is simply obtained by 
applying the Spencer δ -map to * * *

2
ˆ ˆr r

r rC C T g T T= ∧ ⊗ ∧ ⊗

  because 

( ) ( )1* * *rrT T Tδ +∧ ⊗ ⊂ ∧ .  
C) General Relativity:  
Roughly speaking, we shall say that a parametrization of an operator is mi-

nimal if its corresponding operator defines a torsion module or, equivalently, if 
the kernel of the parametrizing operator has differential rank equal to 0. It is not 
so well known even today that, up to an isomorphism, the Cauchy stress opera-
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tor essentially admits only one parametrization in dimension 2n =  which is 
minimum but the situation is quite different in dimension 3n = . Indeed, the 
parametrization found by E. Beltrami in 1892 with 6 potentials ([9]) is not mi-
nimal as the kernel of the Beltrami operator has differential rank 3 while the two 
other parametrizations respectively found by J.C. Maxwell in 1870 and by G. 
Morera in 1892 are both minimal with only 3 potentials even though they are 
quite different because the first is cancelling 3 among the 6 potentials while the 
other is cancelling the 3 others. In particular, we point out the technical fact that 
it is quite difficult to prove that the Morera parametrization is providing an in-
volutive system. These three tricky examples are proving that the possibility to 
exhibit different parametrizations of the stress equations that we have presented 
has surely nothing to do with the proper mathematical background of elasticity 
theory as it provides an explicit application of double differential duality in dif-
ferential homological algebra. Also, the example presented in Section 3. A is 
proving that the existence of many different minimal parametrizations has sure-
ly nothing to do with the mathematical foundations of control theory. Similarly, 
we have just seen in the previous section that the so-called Lorenz condition has 
surely nothing to do with the mathematical foundations of EM. Such a comment 
will be now extended in a natural manner to GR.  

With standard notations, denoting by *
2S TΩ∈  a perturbation of the 

non-degenerate metric ω , it is well known (see [8] [10] and [47] for more de-
tails) that the linearization of the Ricci tensor ( ) *

2ijR R S T= ∈  over the Min-
kowski metric, considered as a second order operator RΩ→ , may be written 
with four terms as:  

( )2 2rs
ij ij rs rs ij ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =  

Multiplying by test functions ( ) 4 *
2

ij T S Tλ ∈∧ ⊗  and integrating by parts on 
space-time, we obtain the following four terms describing the so-called gravita-
tional waves equations:  

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω  

where   is the standard Dalembertian. Accordingly, we have:  

0rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − − =  

The basic idea used in GR has been to simplify these equations by adding the 
differential constraints 0rs

rd λ =  in order to find only rs rsλ σ= , exactly like 
in the Lorenz condition for EM. Before going ahead, it is important to notice 
that when 2n = , the only Lagrange multiplier λ  is just the Airy function φ  
and, using an integration by parts, we have the identity: 

( ) ( )11 22 22 11 12 12 22 11 12 12 11 222 2d d d d d d divφ φ φ φΩ + Ω − Ω = Ω − Ω + Ω +  

providing the Airy parametrization of the Cauchy stress equations:  
11 12 21 22

22 12 11, ,d d dσ φ σ σ φ σ φ= = = − =  

where the Airy function has, of course, nothing to do with any perturbation of 
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the metric.  
However, even if it is clear that the constraints are compatible with the 

Cauchy equations, we do believe that the following result is not known as it does  

not contain any reference to the usual Einstein tensor ( )1
2ij ij ijE R tr Rω= −   

where ( ) rs
rstr R Rω= , which is therefore useless because it contains 6 terms in-

stead of 4 terms only, even though the corresponding operator is self-adjoint.  
PROPOSITION 4.C.1: The system made by rs rsλ σ=  and 0rs

rd λ =  is a 
relative minimum involutive parametrization of the Cauchy equations describ-
ing the formal adjoint of the Killing operator, that is ( )Cauchy Killingad=  as 
operators.  

Proof: For each given 1,2,3,4s =  the system under study is exactly the sys-
tem used for studying the Lorenz condition in Proposition 4.B.1. Accordingly, 
nothing has to be changed in the proof of this proposition and we get an involu-
tive second order system with 0rs

rd σ =  as only CC in place of the conservation 
of current. Needless to say that this result has nothing to do with any concept of 
gauge theory as it is sometimes claimed ([8] [47]).  

Q.E.D.  

5. Conclusion 

In 1916, F.S. Macaulay used a new localization technique for studying unmixed 
polynomial ideals. In 2012, we have generalized this procedure in order to study 
pure differential modules, obtaining therefore a relative parametrization in place 
of the absolute parametrization already known for torsion-free modules and 
equivalent to controllability in the study of OD or PD control systems. Such a 
result is showing that controllability does not depend on the choice of the con-
trol variables, despite what engineers still believe. Meanwhile, we have pointed 
out the existence of minimum parametrizations obtained by adding, in a conve-
nient but generally not intrinsic way, certain compatible differential constraints 
on the potentials. We have proved that this is exactly the kind of situation met in 
control theory, in EM with the Lorenz condition and in GR with gravitational 
waves. However, the systematic use of adjoint operators and differential duality 
is proving that the physical meaning of the potentials involved has absolutely 
nothing to do with the one usually adopted in these domains. Therefore, these 
results bring the need to revisit the mathematical foundations of Electromagnet-
ism and Gravitation, thus of Gauge Theory and General Relativity, in particular 
Maxwell and Einstein equations, even if they seem apparently well established.  
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Main Notations 

K differential field containing   with n commuting derivations 1, , n∂ ∂ .  

1, , nd d  formal derivatives acting on the m differential indeterminates 1, , my y .  
[ ] [ ]1, , nD K d d K d= =  ring of differential operators ,P Q  with coefficients 

in K. 
, ,L M N  filtered differential modules over D.  
( )1, , nµ µ µ=   multi-index with length 1 nµ µ µ= + +  and  

( )11 , , 1, ,i i nµ µ µ µ+ = +  . 
X manifold with tangent, cotangent, symmetric and exterior bundles  

* * *, , , r
qT T S T T∧ .  

( ) ( ), , , ,0k k k k
q i ijy y y y y qµ µ= = ≤ ≤  jet coordinates up to order q.  
( )ad   formal adjoint defined by ( ) ( ), ,ad divλ ξ λ ξ= +   for any test 

row vector λ .  
,E F  vector bundles over X or free modules over D.  

V characteristic algebraic variety with dimension d and codimension 
cd n d= −  over K.  

( ) ( )00 nt M t M M= ⊆ ⊆ ⊆  purity filtration with  
( ) ( ){ }|rt M m M cd Dm r= ∈ > .  
( ) ( ) { }0 | 0 , 0t M t M m M P D Pm= = ∈ ∃ ≠ ∈ =  the torsion submodule of M.  

( ),KR hom M K=  differential module over D associated with M, also called in-
verse system.  

*: i
K id R T R f dx d f→ ⊗ = → ⊗  Spencer operator with ( ) 1i

k k k
i id f f fµ µµ += ∂ − .  

* * * 2 *
2XT T S T T⊗ ⊕∧  with ( ) *

2ijR R S T= ∈  Ricci tensor and  
( ) 2 *

ijF F T= ∈∧  EM field. 
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