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Abstract 
This paper considers a dynamical system defined by a set of ordinary auto-
nomous differential equations with discontinuous right-hand side. Such sys-
tems typically appear in economic modelling where there are two or more re-
gimes with a switching between them. Switching between regimes may be a 
consequence of market forces or deliberately forced in form of policy imple-
mentation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of 
this paper is to show that a metric function defined between two adjacent tra-
jectories contracts in forward time leading to exponentially asymptotically 
stability of (non)smooth periodic orbits. Hence, we define a local contraction 
function and distribute it over the smooth and nonsmooth parts of the peri-
odic orbits. The paper shows exponentially asymptotical stability of a periodic 
orbit using a contraction property of the distance function between two adja-
cent nonsmooth trajectories over the entire periodic orbit. Moreover it is 
shown that the ω-limit set of the (non)smooth periodic orbit for two adjacent 
initial conditions is the same.  
 

Keywords 
Non-Smooth Periodic Orbit, Differential Equation, Contraction Mapping, 
Economic Regimes, Non-Smooth Dynamical System 

 

1. Introduction 

Economic systems may not always satisfy the usual smoothness condition 
everywhere. In particular, a discontinuity in an economic system may occur due 
to a change in economic regime or policy implementation. In this paper, we 
consider an economic system defined by a planar ordinary differential equation 
with discontinuous right-hand side. Similar dynamical systems are considered in 
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various economic models [2] [3] [4] [5] [6]. For such models, there exists a well 
developed existence and uniqueness theory [7]. However, little is known about 
stability results of non-smooth periodic orbits. Moreover, such results depend 
on the explicit calculation of the periodic orbit and employ a global stability 
theory based on Poincaré’s map. Since such explicit calculations may not always 
be possible, we want to establish existence and exponentially asymptotical 
stability of a nonsmooth periodic orbit without its calculation. The advantage of 
such a local stability theory would allow economists to derive analytic results for 
the purpose of economic policy analysis. The theory developed in Stiefenhofer 
and Giesl [1] allows us to do so. In this paper we study the distance function 
between two adjacent trajectories and show it’s contraction property in forward 
time and calculate its ω-limit set. Section two discusses the dynamical system 
with a switching regime and recalls the theorem introduced in Stiefenhofer and 
Giesl [1]. Section three states the main results and provides the proofs. Section 
four is a conclusion. 

2. The Model 

We consider a differential equation 

( ) ,x f x=                              (1) 

where f is a discontinuous function at 2 0x =  and 2x∈  such that for 
:f f ±=  we have  

( ) ( )
( )

2

2

if 0
if 0

f x x
x f x

f x x

+
±

−

 >= = 
<

                     (2) 

This dynamical system is introduced in Stiefenhofer and Giesl [8]. On the 
right-hand side, we provide a condition for switching between economic regimes 
f ± . For simplicity, we consider only two regimes and an exogenously given 

switching condition between them. A stability theory for this dynamical system 
is provided by the following theorem. 

Theorem 1 (Stiefenhofer and Giesl [1], Theorem 2 p. 11). Let 2K∅ ≠ ⊂   
be a compact, connected and positively invariant set with ( ) 0f x± ≠  for all 
x K ±∈ . Moreover, assume that 2:W ± ± →   are continuous functions and 
let the orbital derivatives ( )W ± ′  exist and be continuous functions in ±  and 
continuously extendable up to 0

± . Let following conditions hold: 
1) 

( ) ( ) ( )
( )

e ,

: max , 0
W xW x W

v v f x

L L x v ν± ±±−± ± ±

±

= ⊥

= ≤ − <   

( ) ( ) ( ) ( ) ( ) ( ){ }T 22, : e ,W x
W

L x v v Df x v W x f x v
±

±
± ± ± ± ± ± ± = + ∇   

for all x K ±∈ .  

2) 
( )
( )

( )( ) ( )( )
( )( ) ( )( )

( ) ( )1 1

2 2

1 1 2 1 ,0 ,02 1

2 2
2 1

1 1 2 1

,0 ,0,0
e 1

,0 ,0 ,0

W x W x
f x f xf x

f x f x f x

±
± ±

−
±

+
⋅ <

+





 

  

for all 0x K∈  with ( )2 1,0 0f x± < , ( )2 1,0 0f x < .  
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Then there is one and only one periodic orbit KΩ ⊂ . Moreover, Ω  is 
exponentially asymptotic stable with the real part of the Floquet exponent less or 
equal ν−  except the trivial one and for its basin of attraction the inclusion 

( )K A⊂ Ω  holds.  
Stiefenhofer and Giesl [1] derive the conditions 1 - 2 in theorem 1. Condition 

1 states that two smooth trajectories contract if the weighted Lyapunov function 

W
L ±  is negative. This condition requires that the real part of the Floquet 
exponent be negative. While this condition does not depend on the periodic 
orbit itself, however, it requires to find a function ( )W x± . Condition 2 states a 
contraction property for the discontinuity points of the dynamical system, where 
the system switches. This condition depends on the vector field f ±  and some 
function W ± , and is hence independent of the periodic orbit itself. We now 
investigate the contraction property of the metric function between adjacent 
solutions, and calculate the ω-limit set of the periodic orbit. The details of how 
to derive these conditions are given in [8]. In principle, however, our method is 
a generalization of Borg [9], which introduces the concept of a contraction 
mapping between adjacent trajectories in the following way: 

We want to show that ( ) 0L x <  is a sufficient condition for two adjacent 
trajectories to move towards each other. For example, consider the points 

nx∈  and nx vδ+ ∈  in the phase space. Let 0δ > , ( )v f x⊥ , and 
1v = . Then in order for two adjacent trajectories through the points x and 

x vδ+  to move towards each other it must hold that 

( )0 ,f x v vδ> +                         (3) 

( ) ( ) ,f x Df x v vδ≈ +                      (4) 

( ) ( ), since .Df x v v v f xδ= ⊥                  (5) 

where  

( ) ( ), : , .L x v Df x v v=                      (6) 

Hence, if ( ) 0L x <  then locally, two adjacent trajectories move towards each 
other. See Figure 1. Borg provides the following theorem under slightly different 
assumptions: 
 

 
Figure 1. Borg’s criterion [9]. 
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Theorem 2 (Version of Borg [9]) Let nK∅ ≠ ⊂   be a compact, 
connected and positively invariant set which contains no equilibrium. Let 
( ) 0L x <  hold for all x K∈  with  

( )
( )
( )

1,
: max ,

v v f x
L x x v

= ⊥
=                      (7) 

where 

( ) ( ), : , .L x v Df x v v=                     (8) 

Then there exists one and only one periodic orbit KΩ ⊂ . Ω  is 
exponentially asymptotically stable and its basin of attraction ( )A Ω  contains 
K.  

3. Results 

We now consider the time interval ( )1,j jt t t+ +
−∈  in Figure 2 and show that the 

distance between two adjacent solutions decreases. We also show that for two 
nearby points x and x η+  in K that the ω-limit set is the same. 

We define a time-dependent distance function 0:A+ +→   between two 
adjacent points x and x η+  by  

( ) ( ) ( )( ) ( )
( ) ( )( )T 2

: e ,t
x x

x x

W S x
t tt t

A t S x S x S x S xη ηη η
+ +

+ +
+ + + + + = + − + − 

  
    (9) 

where ( )( )x
x

S t xη η+ +


, tS x+  are two adjacent (non)smooth trajectories, and 

x  is a monotone increasing map for the time structure presented in Figure 2. 
Theorem 3. Let the assumptions of theorem 1 hold. Then there are constants 

0δ >  and 1C ≥  such that for all x K∈  and for all 2η ∈  with 2η δ≤   

( ) ( )1 e for all 0.t
jA t A t tµ+ −
−≤ ≥                   (10) 

Moreover, we have 
( ) ( ).x xω ω η= +                        (11) 

Proof. 
We now show the contraction property of the distance function. 

 We show that ν  defined over a smooth time interval is strictly larger than 
µ  defined over the same time interval including the subsequent time 
interval. 

 

 
Figure 2. Time structure t∈ . 

https://doi.org/10.4236/am.2019.107035


P. Stiefenhofer, P. Giesl 
 

 

DOI: 10.4236/am.2019.107035 517 Applied Mathematics 
 

 We show that the distance function is decreasing for all positive time.  
By equations (2.17) and (2.30) in Stiefenhofer [8] we have 

( ) ( )1 1 1e for all ,t
j j jA t A t t t tµ− + − − +
− − − ≤ ∈                 (12) 

( ) ( )e for all ,t
j j jA t A t t t tµ− + − − + ≤ ∈                  (13) 

See time structure notation of the graph of ( )A t  in Figure 2. Equations (12) 
and (13) show the contraction rate µ  over each jumping interval in +/− and in 
−/+ direction. We now state similar equations for the smooth intervals with 
contraction rate ν . We have 

( ) ( ) ( )1 1e for all ,t
j j jA t A t t t tν −− + + −
− −≤ ∈               (14) 

( ) ( ) ( )1e for all , .t
j j jA t A t t t tν −− + + −

+≤ ∈               (15) 

We consider the time interval ( )1 1 1 2, ,t t t t− + + −   . Hence by equation (12) and 
equation (14) we obtain 

( ) ( ) ( ) ( )2 1 2 1
1 1e e

t t t t
A t A t

ν µ− + + +− − − −+ + + +≤  

( ) ( )2 1 2 1t t t tν µ− + + +− ≤ −  

2 1

2 1

.
t t
t t

µ ν
− +

+ +

 −
≤  

− 
                       (16) 

We define  

( )1 2: for 1,2,3,j jS t t c j− +
−= − ≥ =                 (17) 

( ) 1: for 1,2,3,j jJ t t c j+ −= − ≤ =                 (18) 

where constants 1 2, 0c c >  are defined by 

1 : 0c δ= >                         (19) 

For the constant 2c  we consider { }2: 0d K x= = . From  

( )1max x K f x s∈ =                     (20) 

and 

t s d⋅ =                          (21) 

we obtain by ( )( )10
d

t
d f x τ τ≤ ∫   

2
1

: .
max x K

dc t
f∈

= ≤                   (22) 

Equation (16) with bounds (17) and (18) and extension of time interval 

( ) ( )2 1 2 1 2 2t t t t t t+ + − + + −− = − + −  yields  

( )( )
2 1 2

12 12 1 2 2

2

1

1

t t c
cc ct t t t
c

µ ν ν ν
− +

+ + + −

 
    −   = ≤ =   +  − −   +   
 

       (23) 
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Since 1c δ=  we can choose δ  small enough so that µ  gets as close to ν  
as we wish. From 

( ) ( ) ( ){ }1 1 1 2 2 2e for all ,tA t t A t t t t t tµ+ − + + − − + + ≤ ∈ − −       (24) 

( ) ( ) ( ){ }1 1 2 3 3 3e for all ,tA t t A t t t t t tµ+ − + + − − + + ≤ ∈ − −       (25) 

we have  

( ) ( )
( ) ( ){ }

1 1

1 2 2 2 2 3 3 3

e

for all , ,

A t A t

t t t t t t t t

µττ

τ

+ − +

+ − − + + − − +

+ ≤

   ∈ − − − −     

    (26) 

which generalizes to 0τ ≥ , by  

( ) ( )
( ) ( ){ }

1 1

1 1 1 3

e

for all , ,j j j j j j j

A t A t

t t t t t t t t

µττ

τ

+ − +

+ − − + + − − +
− + +

+ ≤

   ∈ − − − −     

  (27) 

This shows (10). It remains to show (11). 
Now, we show that all points x η+  with 2η ∈ , ( )f xη ⊥ , and 2η δ≤  

have the same ω-limit set as the point x. We first show the inclusion 
( ) ( )x xω ω η⊂ + . Assume there is a ( )w xω∈ . Then we have a strictly 

increasing sequence it →∞  satisfying 0
it

w S x− →  as i →∞ . Because of 
condition (10) of proposition 3 and the properties of   in Figure 2 there is a 
sequence ( )it  that satisfies  

( ) as ,it i→∞ →∞                      (28) 

and  

( ) ( )( )e as .it
i iA t A t iµ−− +≤ → ∞                (29) 

This proves that ( ) ( )
it

S x wη+ →  and ( )w xω η∈ + . 
We now show that the inclusion ( ) ( )x xω η ω+ ⊂ . Assume there is a 

( )w xω η∈ + . Then we have a strictly increasing sequence iθ →∞  satisfying 
0

it
w S x− →  as i →∞ . Because of condition (10) of proposition 3 and 

properties of   in Figure 2 there is a sequence ( )1
iθ

−  that satisfies 
( )1

iθ
− → ∞  as i →∞ . This proves that ( ) ( )

it
S x wη+ →  and 

( )w xω η∈ + . 
This concludes the proof of proposition 3.  
Proposition 4. Let the assumptions of theorem 1 be satisfied. Then for all 

,x y K∈   

( ) ( ) :x yω ω∅ ≠ = = Ω                     (30) 

Proof. Let 0
0 \x K∈Ω . Since for all 0t ≥  we have 0tS x K⊂ , which is a 

compact set, hence  

( )0 : .x Kω∅ ≠ = Ω ⊂                     (31) 

Now, pick an arbitrary point 0
0 \x K∈Ω . By proposition 3 we have 

( ) ( )x yω ω−  for all y in a neighbourhood of x. Hence  

( ) ( ){ }1 0: :K x K x yω ω= ∈ =                 (32) 
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( ) ( ){ }2 0: :K x K x yω ω= ∈ ≠                (33) 

are open sets. Since 1 2K K= 

  and 0 1p K∈  with K connected, it must be that 

2K  is empty and 1K K= .  

4. Conclusion 

Differential equations are ubiquitous in economics. Economic regimes, where 
there is a switching between them, fit particularly well within the framework of 
differential equations with discontinuous right-hand side, where the 
discontinuity represents the switching condition. In this paper, we assume an 
exogenous switching condition. However, this can without loss of generality be 
generalized by modelling the explicit economic context. The novelty of the 
stability theory discussed in this paper is that it is independent of the explicit 
solution of the system. This is a major advantage of our theory. However, it 
requires defining a weight function W, which may not always be easy. In 
particular, the paper shows that a distance function between two adjacent 
trajectories contracts in forward time over both, smooth and nonsmooth parts 
of the periodic orbit, where the dynamical system is discontinuous. It also 
shows that for two adjacent initial points the ω-limit set of nonsmooth period 
orbits is the same. Stiefenhofer and Giesl provide an example of the theory 
discussed in this paper [10] and compare it to global stability theory [11]. 
Further research should investigate the full basin of attraction of this model. 
Such a result would allow economists to fully characterize the set of initial 
conditions of exponentially asymptotically stable periodic orbits and to hence 
perform effective policy analysis. 
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Abstract 
In this paper, a formal and systematic method for balancing chemical reac-
tion equations was presented. The results satisfy the law of conservation of 
matter, and confirm that there is no contradiction to the existing way(s) of 
balancing chemical equations. A chemical reaction which possesses atoms 
with fractional oxidation numbers that have unique coefficients was studied. 
In this paper, the chemical equations were balanced by representing the 
chemical equation into systems of linear equations. Particularly, the Gauss 
elimination method was used to solve the mathematical problem with this 
method, it was possible to handle any chemical reaction with given reactants 
and products.  
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1. Introduction 

Balancing of the chemical equation is one of the initial subjects taught in most 
preliminary chemistry courses. Balancing chemical reactions is an amazing sub-
ject of matter for mathematics and chemistry students who want to see the pow-
er of linear algebra as a scientific discipline [1]. Since the balancing of chemical 
reactions in chemistry is a basic and fundamental issue, it deserves to be consi-
dered on a satisfactory level [2]. A chemical equation is only a symbolic repre-
sentation of a chemical reaction. Actually, every chemical equation is the story of 
some chemical reaction. Chemical equations play a main role in theoretical as 
well as in industrial chemistry [3]. A chemical reaction can neither create nor 
destroy atoms. So, all of the atoms represented on the left side of the arrow must 
also be on the right side of the arrow. This is called balancing the chemical equa-
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tion [4]. The application of the law of conservation of matter is critical in chemi-
stry education and is demonstrated in practice through balanced chemical equa-
tions [5]. Every student who has general chemistry as a subject is bound to come 
across balancing chemical equations. The substances initially involved in a 
chemical reaction are called reactants, but the newly formed substances are 
called the products. The products are new substances with properties that are 
different from those of reactants [6]. A chemical equation is said to be balanced, 
the number of atoms of each type on the left is the same as the number of atoms 
of corresponding type on the right [7].  

Balancing chemical equation by inspection is often believed to be a trial and 
error process and, therefore, it can be used only for simple chemical reactions. 
But still it has limitations [8]. Balancing by inspection does not produce a syste-
matic evaluation of all of the sets of coefficients that would potentially balance 
an equation. Another common method of balancing chemical reaction equations 
is the algebraic approach. In this approach, coefficients are treated as unknown 
variables or undetermined coefficients whose values are found by solving a set of 
simultaneous equations [9]. According to [5], the author clearly indicated that 
the algebraic approach to balancing both simple and advance chemical reactions 
typically encountered in the secondary chemistry classroom is superior to that of 
the inspection method. Also, in [10], the author emphasized very clearly that 
balancing chemical reactions is not chemistry; it is just linear algebra. From a 
scientific viewpoint, a chemical reaction can be balanced if only it generates a 
vector space. That is a necessary and sufficient condition for balancing a chemi-
cal reaction.  

A chemical reaction, when it is feasible, is a natural process, the consequent 
equation is always consistent. Therefore, we must have nontrivial solution. And 
we should be able to obtain its assuming existences. Such an assumption is ab-
solutely valid and does not introduce any error. If the reaction is infeasible, then, 
there exists only a trivial solution, i.e., all coefficients are equal to zero [6]. In 
Mathematics and Chemistry, there are several mathematical methods for ba-
lancing chemical reactions. All of them are based on generalized matrix inverses 
and they have formal scientific properties that need a higher level of mathemati-
cal knowledge for their application [1]-[16]. Here, we are presenting the Gauss 
elimination method, it was possible to handle any chemical reaction with given 
reactants and products. Solved problems are provided to show that this metho-
dology lends well for both simple and complex reactions. 

2. Main Results 

Problem 1 
Balance the following chemical reaction  

2 6 2 2 2C H O CO H O+ → + -Not Balanced. 

The equation to balance is identified. This chemical reaction consists of three 
elements: Carbon(C); Hydrogen (H); Oxygen (O). The equation to balance is 
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identified our task is to assign the unknowns coefficients ( )1 2 3 4, , ,x x x x  to each 
chemical species. A balance equation can be written for each of these elements: 

1 2 6 2 2 3 2 4 2C H O CO H Ox x x x+ → +  

Three simultaneous linear equations in four unknown corresponding to each 
of these elements. Then, the algebraic representation of the balanced 

( ) 1 3 1 3Carbon C : 2 2 0x x x x= ⇒ − =  

( ) 1 4 1 4Hydrogen H : 6 2 6 2 0x x x x= ⇒ − =  

( ) 2 3 4 2 3 4Oxygen O : 2 2 2 2 0x x x x x x= + ⇒ − − =  

First, note that there are four unknowns, but only three equations. The system 
is solved by Gauss elimination method as follows: 

2 2 1

2 2 3
2 3 1 1 3

1 1

2 2

3 3

3

3 2
3

1
6
1
6
1
3

2 0 1 0 0 2 0 1 0 0
6 0 0 2 0 0 0 3 2 0
0 2 2 1 0 0 2 2 1 0

2 0 1 0 0 6 0 0 2 0
0 2 2 1 0 0 6 0 7 0
0 0 3 2 0 0 0 3 2 0

1 0 0 1 3 0
0 1

R R R

R R R
R R R R R

R R

R R

R R

↔ −

↔ +
+

↔

↔

↔

↔ ↔

− −   
   − −   
   − − − −   

− −



   
   − − → − 

→

→



 
   − −





−
→

  

0 7 6 0
0 0 1 2 3 0

 
 − 
 − 

 

The last matrix is of reduced row echelon form, so we obtain that the solution 
of the system of linear equations is: 

1 4 1 4
1 10
3 3

x x x x− = ⇒ =  

2 4 2 4
7 70
6 6

x x x x− = ⇒ =  

3 4 3 4
2 20
3 3

x x x x− = ⇒ =  

where 4x  a free variable, particular solution is can then obtain by assigning 
values to the 4x , for instance 4 6x =  we can represent the solution set as: 

1 2 32, 7, 4x x x= = =  

Thus, the balanced chemical reaction equation is: 

2 6 2 2 22C H 7O 4CO 6H O+ → +  

Problem 2 
Consider this chemical reaction which is infeasible  

( )4 2 2 3 2 2 4 26K Fe CN K S O CO K SO NO FeS+ → + + + -Not Balanced. 

A balance equation can be written for each of these elements: 

( )1 4 2 2 2 3 3 2 4 2 4 5 2 66K Fe CN K S O CO K SO NO FeSx x x x x x+ → + + +  
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From above equation, we will obtain the following set of equations: 

1 2 4K : 4 2 2x x x+ =  

1 6Fe : x x=  

1 3C : 6x x=  

1 5N : 6 2x x=  

2 4 6S : 2x x x= +  

2 3 4 5O : 3 2 4 2x x x x= + +  

From the systems of equations we obtain the contradictions 2 13x x=  and

2 1
44
3

x x= , that means that the system is inconsistent, i.e., we have only a trivial 

solution ( )0 1 6ix i= ≤ ≤ . Hence, that means the chemical reaction is infeasible. 

Problem 3 
Consider the following chemical reaction with atoms which possess fractional 

oxidation numbers 
( )

( ) ( )
( )

1 2952 4664 812 832 8 4 2 2 4 3 4 3 2

4 4 4 2 5 4 8 2 6 8 12 2 82 2

7 55 72 4 8 3.99 9 0.987 6 11 56

10 4 11 2

C H N O S Fe Na C H O SAu Fe SCN

Fe NH SO 6H O C H Cl S C H MgN O

C H MgN Na Fe CN Au SC H O

HClO H S

x x x

x x x

x x x

x x

+ +

+ + +

→ + +

+ +

 

For balancing of this kind of reaction the computer is useless. From the mass 
balance of the above chemical reaction one obtains this system of linear equations 

1 2 3 5 6 7 8 92952 4 2 4 8 55 6 6x x x x x x x x+ + + + = + +  

1 2 4 5 6 7 9 10 114664 3 20 8 12 72 11 2x x x x x x x x x+ + + + = + + +  

1 3 4 6 7 8812 2 2 2 4 6x x x x x x+ + + = +  

1 2 4 6 9 10832 4 14 8 5 4x x x x x x+ + + = +  

1 2 3 4 5 9 118 2 2x x x x x x x+ + + + = +  

1 3 4 84x x x x+ + =  

2 82 3.99x x=  

2 90.987x x=  

5 102x x=  

6 7x x=  

By using of the method of the elimination of the variables, from the chemical 
reaction and the system of linear equations immediately follows the required 
coefficients 

( ) ( ) ( )

( )

2952 4664 812 832 8 4 2 4 3 4

4 4 22 2 2

4 8 2 8 12 2 8

55 72 4 3.99 6

0.987

30448582C H N O S Fe 10833308052Na C H O SAu
3899586588Fe SCN 1408848684Fe NH SO 6H O

5568665015C H Cl S 1379870764C H MgN O
1379870764C H MgN 5430229600Na Fe CN

10975996000Au

+

+ +

+ +

→ +

+ 6 11 5 4

2

SC H O 11137330030HClO
16286436267H S

+

+
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Is it chemistry? No! It is linear algebra. 

3. Results 

Every chemical reaction can be represented by the systems of linear equations. A 
chemical reaction, when it is feasible, the consequent equation is always consis-
tent. Therefore, we must have nontrivial solution. If the reaction is infeasible, 
then, there exists only a trivial solution, i.e., all coefficients are equal to zero. A 
chemical reaction which possesses atoms with integers and fractional oxidation 
numbers was studied. And with this method, it was possible to handle any 
chemical reaction. 

4. Conclusion 

Balancing chemical reaction is not chemistry, but it is just linear algebra. This 
study investigates that every chemical reaction is represented by homogenous 
systems of linear equations only. This allows average, and even low achieving 
students, a real chance at success. It can remove what is often a source of frustra-
tion and failure and that turns students away from chemistry. Also, it allows the 
high achieving to become very fast and very accurate even with relatively diffi-
cult equations. This work presented a formal, systematic approach for balancing 
chemical equations. The method is based on the Gaussian elimination method. 
The mathematical method presented in this paper was applicable to all cases in 
chemical reactions. The results indicated that there is no any contradiction be-
tween the various methods that were applied to balance the chemical reaction 
equation and the suggested approach. Balancing chemical reactions which pos-
sess atoms with fractional oxidation numbers is possible only by using mathe-
matical methods.  
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Abstract 
The mechanism of interaction between a cell and an external mechanical field 
is still poorly understood, and the accumulated diverse experimental data are 
often scattered. Therefore, the aim of this work was to systematize the expe-
rimental data in a mathematical model of the interaction between a cell and 
an external mechanical field based on standard kinetic equations and Fick’s 
diffusion equation. Assuming that the cortical cytoskeleton proteins play a 
key role in cell mechanosensitivity, we compared the results of mathematical 
modeling and experimental data concerning the content of cytoskeletal pro-
teins at the early stages of a mechanical field change. In addition, the pro-
posed mathematical model suggests the dynamics of changes of a key tran-
scription factor, which is necessary for the expression of certain genes en-
coding cytoskeletal proteins. 
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1. Introduction 

Human exploration of outer space faces a number of unsolved problems, in-
cluding medical problems. Being in conditions of weightlessness, even during 
Earth orbit, leads to a number of negative effects, for example, on the muscu-
loskeletal and cardiovascular systems [1] [2] [3]. Existing methods of counter-
measures, for the most part, are palliative, which is associated with a lack of un-
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derstanding of the etiology of the development of hypo-gravitational changes at 
the cellular and molecular levels. To date, questions remain about the interaction 
of a cell and a gravitational field: what is the mechanosensor and how the me-
chanotransduction paths are started. 

Practically every intracellular structure can claim to be a mechanosensor. 
Thus, stretching of neurons or smooth muscle cells in a culture through the 
extracellular matrix leads to an increase in microtubule polymerization [4] [5]. 
Direct stretching of cell membranes, for example, using patch clamp technology, 
changes the cation-transport activity of mechanosensitive ion channels as a re-
sult of conformational changes of either the lipid bilayer [6] [7] or the portal 
domains of the channel itself [8] [9]. In addition, the submembrane cytoskeleton 
[10], as well as intracellular structures [11] [12], can also act as a mechanosen-
sor. 

The result of mechanotransduction is the formation of an adaptation pattern 
of proteins and gene expression. Thus, in cultured cells under conditions of al-
tered gravity, there was a change in the cell profile, disorganization of microfi-
laments and, sometimes, microtubules [13]-[18], and changes in mitochondrial 
localization [19], which is determined by the state of the intermediate filaments. 
In addition, the changes are not limited to the protein content but also occur at 
the level of the expression of genes encoding cytoskeletal proteins and associated 
components of signaling cascades [20]-[26]. 

Our previous studies have suggested the role of the actin-binding proteins of 
the submembrane cytoskeleton in the primary mechanoreception of cells of var-
ious types, in particular skeletal muscle and myocardium. We assume that any 
change in the external conditions for the cell is reflected in the deformation of its 
cortical cytoskeleton. However, these strains are fundamentally different with 
increasing and decreasing loads. The first result is the dissociation of various ac-
tin-binding proteins from the cortical cytoskeleton: alpha-actinin-4 with a load 
decrease and alpha-actinin-1 with an increase [10] [27] [28]. With further de-
velopment of this process, the deformation leads to the destruction of the struc-
ture and, at subsequent early stages of exposure, to an initial decrease in stiff-
ness, which correlates with the content of actin non-muscle isoforms in the 
membrane fraction, which form the cortical cytoskeleton [29]. Furthermore, in 
the case of a decrease in external mechanical stress, there is a decrease in the ex-
pression of genes encoding cytoskeletal proteins and a further decrease in cortic-
al cytoskeleton stiffness. In contrast, an increase in the external mechanical 
stress increases the mRNA content of the genes encoding cytoskeletal proteins 
and proteins directly and increases the stiffness [30] [31]. In general, the process 
of sensitivity to external stress by cells can be quite universal in the evolutionary 
series. Thus, Drosophila melanogaster lacks the isoform alpha-actinin-4; howev-
er, it is possible that supervillin plays a role in the process of mechanosensitivity 
[32]. 

Thus, the multiple components and variability of the mechanisms of cellular 
mechanosensitivity and mechanotransduction make it difficult to find the “hot 
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spots” of its regulation and, as a consequence, the development of effective pro-
tection methods. Therefore, we decided to build a mathematical model based on 
the classical kinetic equations of the concentrations of key proteins and mRNAs 
involved in the perception and transduction of external mechanical stress, taking 
into account their diffusion between the compartments. 

2. Formulation of the Problem 

Based on the experimental results described above, it is possible to suggest the 
following mechanism for triggering the formation of an adaptive response to 
changes in the external mechanical stress. 

Suppose that a sensitive protein SP associated with microfilaments reacts to 
any change in mechanical stress. In addition, its antagonist, aSP, is also asso-
ciated with microfilaments. Protein SP can exist both in connection with micro-
filaments and in free form. The binding to the microfilament network and dis-
sociation from microfilaments at the initial state occur to maintain the initial 
level of free protein freeSP  in both membrane 0freemSP  and cytoplasmic com-
partment 0freecSP . Free-form freeSP  can diffuse between compartments. 

A change in the external mechanical stress leads to an increase in the content 
of free “sensitive” protein in the membrane fraction freemSP  with a reaction rate 
constant, which depends both on the external mechanical stress and on the 
membrane compartment characteristics ( )* ,MFm SPfreem mcv g z→ . An increase in the 
content of free freemSP  in the membrane leads to an increase in its content in 
the cytoplasm freecSP  due to diffusion. freecSP  activates some protein *

cM . 
The activated protein *

cM  in turn activates the transcription factor *
cTF  to 

diffuse into the nucleus and alter the transcription efficiency of its target genes 
and the formation of the corresponding mRNA. There is feedback, and the effi-
ciency of the formation of the “sensitive” protein mRNA, rSP, depends on the 
content of activated *

nTF  in the nucleus. 
Suppose also that the efficiency of proteolysis and degradation of mRNA does 

not depend on the content and type of substrates and the rates of cleavage are 
constant— pv  and dv  for proteins and mRNA, respectively. In general, we as-
sume that all reactions proceed at a constant rate, bearing in mind that the rate 
does not depend on the content of the substrate/reaction product. 

We introduce the following notation: 
t—time, index 0—the initial moment of time; 
the indices m and c—the membrane and cytoplasmic compartments, respec-

tively; 

mcz —the coordinate perpendicular to the cross section of the cell between the 
membrane and cytoplasmic compartments, along which the sensitive protein, its 
antagonist and the cytoskeletal proteins undergo diffusion, 

cnz —similarly, the coordinate perpendicular to the cell cross section between 
the cytoplasmic and nuclear compartments, along which the transcription factor 
is diffused; 
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SPD —the diffusion coefficient of the molecules of the “sensitive” protein be-
tween the cell compartments; 

aSPD —the diffusion coefficient of antagonist molecules of the “sensitive” pro-
tein between the cell compartments; 

freeSP —the content of the “sensitive” protein in the free state; 

freeaSP —the content of the antagonist of the “sensitive” protein in a free state; 
( )* ,MF SPfree mcv g z→ —reaction rate of the transition of the “sensitive” protein 

from the complex with microfilaments to the free state when the mechanical 
stress is changed, 

rSP —the content of the “sensitive” protein mRNA; 
raSP —the content of the antagonist of the “sensitive” protein mRNA; 

dv —the reaction rate of mRNA degradation in the cytoplasm; 
( )SPfreecv rSP —the reaction rate of the synthesis of sensitive protein molecules, 

depending on the content of the corresponding mRNA rSP ; 
( )aSPfreecv raSP —the reaction rate of the synthesis of antagonist molecules of 

the “sensitive” protein, depending on the content of the corresponding mRNA 
raSP ; 

pv —is the reaction rate of proteolysis of protein molecules in the cytoplasm; 
*
cM —the content of the activated modifying factor in the cytoplasm; 

( )*
c

freecM
v SP —the reaction rate of the activation of the modifying protein de-

pending on the content of the free “sensitive” protein in the cytoplasm freecSP ; 
*TF —activated transcription factor; 

( )*
*

c
cTF

v M —reaction rate of formation of an activated transcription factor in 
the cytoplasm, depending on the content of the activated modifying protein 

*
cM ; 

( )*
rSPs nv TF —the reaction rate of the synthesis of mRNA molecules of the 

“sensitive” protein, depending on the content of the activated transcription fac-
tor in the nucleus *

nTF . 
SP—the content of “sensitive” protein, which was evaluated experimentally; 
aSP—the content of the antagonist “sensitive” protein, which was estimated 

experimentally; 
MF—the content of major proteins that form microfilaments (actin isoforms); 
MT—the content of the main proteins forming microtubules (tubulin); 
IF—the content of basic proteins forming intermediate filaments (desmin); 

MFD —diffusion coefficient of microfilament monomer molecules between 
cell compartments; 

MTD —the diffusion coefficient of microtubule monomer molecules between 
cell compartments; 

IFD —diffusion coefficient of monomer molecules of intermediate filaments 
between the cell compartments; 

rMF —the microfilament mRNA content; 
rMT —the microtubule mRNA content; 
rIF —the intermediate filament mRNA content; 
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( )aSPfreecv raSP —the reaction rate of the synthesis of antagonist molecules of 
the “sensitive” protein, depending on the content of the corresponding mRNA
raSP ; 

( )MFcv rMF —the reaction rate of the synthesis of microfilament molecules, 
depending on the content of the corresponding mRNA rMF ; 

( )MTcv rMT —the reaction rate of synthesis of microtubule molecules, de-
pending on the content of the corresponding mRNA rMT ; 

( )IFcv rIF —the reaction rate of synthesis of molecules of intermediate fila-
ments, depending on the content of the corresponding mRNA rIF . 

Then, for the proposed mechanism, the standard kinetic dependencies taking 
into account the diffusion between the compartments, the efficiency of synthesis 
and degradation for the concentrations of the analyzed proteins and mRNA are: 

( )*
0

d d
,

d d
freec freem

freem freem SP SP MFm SPfreem mc
mc mc

SP SP
SP SP D t D t v g z t

z z →= + ⋅ − ⋅ + ⋅    (1) 

( )0

d d
d d

freec freem
freec freec SPfreec p SP SP

mc mc

SP SP
SP SP v rSP t v t D t D t

z z
= + ⋅ − ⋅ − ⋅ + ⋅    (2) 

( )*
* *

0
c

c c freec pM
M M v SP t v t= + ⋅ − ⋅                   (3) 

( )*

*
* * *

0
d
dc

c
c c c TF pTF

cn

TF
TF TF v M t D t v t

z
= + ⋅ − − ⋅              (4) 

( )*
0 rSPs n drSP rSP v TF t v t= + ⋅ − ⋅                  (5) 

*
* *

0
d
d

c
n n TF p

cn

TF
TF TF D t v t

z
= + − ⋅                   (6) 

0

d d
d d

freec freem
freem freem aSP aSP

mc mc

aSP aSP
aSP aSP D t D t

z z
= + ⋅ − ⋅          (7) 

( )0

d
d

d
d

freec
freec freec aSPfreec p aSP

mc

freem
aSP

mc

aSP
aSP aSP v raSP t v t D t

z
aSP

D t
z

= + ⋅ − ⋅ − ⋅

+ ⋅

        (8) 

Similar to the previous system, for comparison with the experimental results 
and to determine the type of dependencies, we write the expressions for those 
parameters that can be determined (divided into compartments): 

Membrane + cortical cytoskeleton 

0

d d
d d

freec freem
m m SP

mc mc

SP SP
SP SP D t

z z
 

= + − 
 

                (9) 

0

d d
d d

freec freem
m m aSP

mc mc

aSP aSP
aSP aSP D t

z z
 

= + − 
 

              (10) 

0
d d
d d

c m
m m MF

mc mc

MF MF
MF MF D t

z z
 

= + − 
 

                (11) 
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0
d d
d d

c m
m m MT

mc mc

MT MT
MT MT D t

z z
 

= + − 
 

                (12) 

0
d d
d d

c m
m m IF

mc mc

IF IF
IF IF D t

z z
 

= + − 
 

                  (13) 

Cytoplasm 

( )0

d d
d d

freec freem
c c SPfreec p SP

mc mc

SP SP
SP SP v rSP t v t D t

z z
 

= + ⋅ − ⋅ − − 
 

    (14) 

( )0

d d
d d

freec freem
c c aSPfreec p aSP

mc mc

aSP aSP
aSP aSP v raSP t v t D t

z z
 

= + ⋅ − ⋅ − − 
 

  (15) 

( )0
d d
d d

c m
c c MFc p MF

mc mc

MF MF
MF MF v rMF t v t D t

z z
 

= + ⋅ − ⋅ − − 
 

     (16) 

( )0
d d
d d

c m
c c MTc p MT

mc mc

MT MT
MT MT v rMT t v t D t

z z
 

= + ⋅ − ⋅ − − 
 

     (17) 

( )0
d d
d d

c m
c c IFc p IF

mc mc

IF IF
IF IF v rIF t v t D t

z z
 

= + ⋅ − ⋅ − − 
 

         (18) 

( )*
0 rSPs n drSP rSP v TF t v t= + ⋅ − ⋅                  (19) 

( )*
0 raSPs n draSP raSP v TF t v t= + ⋅ − ⋅                (20) 

( )*
0 rMFs n drMF rMF v TF t v t= + ⋅ − ⋅                (21) 

( )*
0 rMTs n drMT rMT v TF t v t= + ⋅ − ⋅                (22) 

( )*
0 rIFs n drIF rIF v TF t v t= + ⋅ − ⋅                  (23) 

Solving equations together, we obtain expressions for the content of various 
proteins. For the modifying protein and transcription factor: 

( )*
* *

0
c

c c freec pM
M M v SP t v t= + ⋅ − ⋅                 (24) 

( ) ( )( )* *
* * * * *

0 0 e
cn

TF

c c

z
D t

c c p c c p cTF TF
TF TF v t v M t TF v t v M t

−

= − ⋅ + ⋅ − − ⋅ + ⋅ ⋅   (25) 

( )( )*
* * * *

0 0  e
cn

TF

c

z
D t

n n p c p cTF
TF TF v t TF v t v M t

−

= − ⋅ + − ⋅ + ⋅ ⋅       (26) 

For “sensitive” protein: 

( )*
0 rSPs n drSP rSP v TF t v t= + ⋅ − ⋅  

( )

( )( )
( )

0

2
0

*2
2

0

e

d ,e e d
2 d

freec

mc

SP
freec

mc
mcSP

mc SP

freec freec p SP

z
D t

freec p SP

z
zD t

z MFm SPfreem mc D t
mc

SP mc

SP SP v t v rSP t

SP v t v rSP t

k g z
z

D z

−

−

→

= − ⋅ + ⋅

− − ⋅ + ⋅ ⋅

+ ⋅∫

        (27) 
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( )

( )( )
( )

*
0

2
0

*2
2

0

,

  e

d ,e e d
2

mc

SP
freec

mc
mcSP

mc SP

freem freem MFm SPfreem mc

z
D t

freec p SP

z
zD t

z MFm SPfreem mc D t
mc

SP mc

SP SP v g z t

SP v t v rSP t

k g z
z

D dz

→

−

−

→

= + ⋅

+ − ⋅ + ⋅ ⋅

− ⋅∫

        (28) 

( )( )
( )

2
0 0

*
2 2

0

  e

d ,d e e d
d d

mc

SP
freec

mc mc
mcSP SP

z
D t

c c freec p SP

z z
z MFm SPfreem mcD t D t

mc
mc mc

SP SP SP v t v rSP t

k g z
t z

z z

−

−
→

= + − ⋅ + ⋅ ⋅

 
 + ⋅ ⋅ ⋅
 
 

∫
     (29) 

( )

( )( )
( )

0

2
0

*
2 2

0

e

d ,d e e d
d d

freec

mc

SP
freec

mc mc
mcSP SP

m m p SP

z
D t

freec p SP

z z
z MFm SPfreem mcD t D t

mc
mc mc

SP SP v t v rSP t

SP v t v rSP t

k g z
t z

z z

−

−
→

= − ⋅ + ⋅

− − ⋅ + ⋅ ⋅

 
 − ⋅ ⋅ ⋅
 
 

∫

     (30) 

For the antagonist of “sensitive” protein: 

( )*
0 raSPs n draSP raSP v TF t v t= + ⋅ − ⋅                (31) 

( )

( )( )
0

2
0 e

freec

mc

aSP
freec

freec freec p aSP

z
D t

freec p aSP

aSP aSP v t v raSP t

aSP v t v raSP t
−

= − ⋅ + ⋅

− − ⋅ + ⋅ ⋅
        (32) 

( )( ) 2
0 0 e

mc

aSP
freec

z
D t

freem freem freec p aSPaSP aSP aSP v t v raSP t
−

= + − ⋅ + ⋅ ⋅      (33) 

( )

( )( )
0

2
0 e

freec

mc

aSP
freec

c c p aSP

z
D t

freec p aSP

aSP aSP v t v raSP t

aSP v t v raSP t
−

= − ⋅ + ⋅

− − ⋅ + ⋅ ⋅
         (34) 

( )( ) 2
0 0 e

mc

aSP
freec

z
D t

m m freec p aSPaSP aSP aSP v t v raSP t
−

= + − ⋅ + ⋅ ⋅        (35) 

For microfilaments: 

( )*
0 rMFs n drMF rMF v TF t v t= + ⋅ − ⋅                (36) 

( )

( )( )

0

2
0 e

mc

MF

c c p MFc

z
D t

c p MFc

MF MF v t v rMF t

MF v t v rMF t
−

= − ⋅ + ⋅

− − ⋅ + ⋅ ⋅
           (37) 

( )( ) 2
0 0  e

mc

MF

z
D t

m m c p MFcMF MF MF v t v rMF t
−

= + − ⋅ + ⋅ ⋅          (38) 

For microtubules: 

( )*
0 rMTs n drMT rMT v TF t v t= + ⋅ − ⋅                 (39) 

( )

( )( )

0

2
0 e

mc

MT

c c p MTc

z
D t

c p MTc

MT MT v t v rMT t

MT v t v rMT t
−

= − ⋅ + ⋅

− − ⋅ + ⋅ ⋅
           (40) 
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( )( ) 2
0 0  e

mc

MT

z
D t

m m c p MTcMT MT MT v t v rMT t
−

= + − ⋅ + ⋅ ⋅           (41) 

For intermediate filaments: 

( )*
0 rIFs n drIF rIF v TF t v t= + ⋅ − ⋅                   (42) 

( ) ( )( ) 2
0 0 e

mc

IF

z
D t

c c p IFc c p IFcIF IF v t v rIF t IF v t v rIF t
−

= − ⋅ + ⋅ − − ⋅ + ⋅ ⋅    (43) 

( )( ) 2
0 0 e

mc

IF

z
D t

m m c p IFcIF IF IF v t v rIF t
−

= + − ⋅ + ⋅ ⋅             (44) 

3. Simulation 

In previous studies, we obtained systematic data concerning the contents of var-
ious cytoskeletal proteins in the membrane and cytoplasmic fractions of rat so-
leus muscle fibers [28] [29]. Therefore, for the simulation, we consider this type 
of cell under changes in the external mechanical field. 

We consider the actin-binding proteins alpha-actinin-4 and alpha-actinin-1 as 
a “sensitive” protein and its antagonist, respectively, and beta-actin as a protein 
of microfilaments of the submembrane cytoskeleton because its content domi-
nates over the content of gamma-actin in this cell type [28] (Figure 1(a)). 

As a result of a change in the external mechanical stress, an adaptive pattern is 
formed: in the case of an increase, the cytoskeleton becomes more developed, in 
the case of a decrease, vice versa. Consider the option of decreasing external 
mechanical stress (Figure 1(b)). 

We will follow the “sensitive” protein, its antagonist, and microfilaments and 
compare the results of the simulation with the experimental data. 

Since the experiment evaluated the relative contents of proteins and mRNA as 
a whole in compartments, then mcz  is the “path length” between the cortical  
 

 
Figure 1. Schema of mechanosensitivity. (a)—an initial state; (b)—an adaptive pattern 

under decrease of the external mechanical tension.
 

—cholesterol, —SP, 

—rSP, —aSP, —raSP, —MF as filaments, —MF as 

monomers, —rMF, —MT as filaments, —MT as monomers, 
—rMT, —IF as filaments, —IF as monomers, —rIF, 

— *
cM , — *TF . 
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cytoskeleton and the cytoplasm, and cnz  is the “path length” between the cy-
toplasm and chromatin (Figure 1). 

We assume that for the fibers of the soleus muscle of rats: 
718 10 mmcz −= × , 72 10 mcnz −= × . 

Following [33], using the Stokes-Einstein equation, we assume that the diffu-
sion coefficient is: 

6π A

RTD
rNη

= ,                        (45) 

where 8.31 J mol KR = ⋅ —the universal gas constant, 298 KT = —the tem-
perature, 310 Pa sη −= ⋅ —the dynamic viscosity of the medium, 

23 16.02 10 molAN −= × , r—the hydrodynamic radius of the protein molecule. 
Beta-actin, considered the main protein of microfilaments of the cortical cy-

toskeleton in rat soleus muscle, has 375 amino acid residues. Then, we will as-
sume that its hydrodynamic radius is 5.28 × 10–9 m [33]. Assuming that SP and 
aSP are alpha-actinin-4 and alpha-actinin-1, having 911 and 892 amino acid re-
sidues, respectively, we will assume that for them, the hydrodynamic radii are 
the same and amount to 6.61 × 10–9 m, based on the extrapolation proposed by 
[33]. The transcription factor remains unknown in the proposed mechanism, 
but since many parameters are not determined accurately but are estimated, for 
simplicity of calculations, we will consider the hydrodynamic radius of the tran-
scription factor as a certain average value, and we will use 6.0 × 10–9 m. Conse-
quently, all the hydrodynamic radii necessary for calculations have close values, 
and we can assume that the diffusion coefficient has one order: 

1110MF SP aSP TFD D D D −= = = = .              (46) 

The rate of RNA polymerase II in eukaryotic cells is 10 - 70 nucleotides per 
second [34] [35]. Thus, we defined it as 40 nucleotides/s. Since the dependence 
of the efficiency of the recruitment of a transcriptional complex to DNA in this 
case is unknown, we will assume that for each of the proteins under considera-
tion, it is a linear relationship with a specific recruitment coefficient in each case. 
Then: 

for SP (alpha-actinin-4, 3885 bp)— ( )* 2 * 110rSPs n rSPs nv TF k TF s− −= ⋅ ;   (47) 

for aSP (alpha-actinin-1, 2956 bp)— ( )* 2 * 11.4 10raSPs n raSPs nv TF k TF s− −= × ⋅ ; (48) 

for MF (beta-actin, 1293 bp)— ( )* 2 * 13 10rMF n rMF nv TF k TF s− −= × ⋅ ,    (49) 

where ,rSPs raSPsk k  and rMFk  are recruitment coefficients of the transcriptional 
complex to DNA depending on the content of the activated transcription factor 
in the nucleus for alpha-actinin-4, alpha-actinin-1 and beta-actin, respectively. 

We assume that the half-life of mRNA of genes encoding cytoskeletal pro-
teins, as well as for globin, is approximately 8 hours [36]. We assume that on av-
erage, it is approximately 28,800 seconds. Therefore, the reaction rate constant 
for mRNA degradation in the cytoplasm is: 
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5 13.5 10 sdv − −= ×                      (50) 

The speed of ribosomes in eukaryotic cells is diverse, but we will assume that 
on average, including for cytoskeletal proteins, processing proceeds at a speed of 
5 amino acid residues per second [37]. Then: 

for SP (alpha-actinin-4, 911aa)— ( ) 3 15.5 10SPfreec SPfreecv rSP k rSPs− −= × ⋅ ; (51) 

for aSP (alpha-actinin-1, 892aa)— ( ) 3 15.6 10aSPfreec aSPfreecv raSP k raSPs− −= × ⋅ ; (52) 

for MF (beta-actin, 375aa)— ( ) 3 113.3 10MFc MFcv rMF k rMFs− −= × ⋅    (53) 

where the ,SPfreec aSPfreeck k  and MFck  are coefficients that reflect the efficiency of 
translation for alpha-actinin-4, alpha-actinin-1 and beta-actin, respectively. 

We assume that proteolysis is carried out using the proteasome. The rate of 
proteolysis depends on how long the protein has been synthesized but, on aver-
age, is 2.5 substrates/minute [38]. Let us assume that on average, for the ana-
lyzed proteins, the rate of proteolysis reaction of protein molecules in the cytop-
lasm is: 

2 14 10 spv − −= ×                         (54) 

Since the dependence of the activation of the modifying protein on the con-
tent of free “sensitive” protein in the cytoplasm freecSP  and the dependence of 
the formation of an activated transcription factor in the cytoplasm, which de-
pend on the content of the activated modifying protein *

cM , remain unknown, 
we approximate, as above, with the linear dependence specific activation factors: 

( )* *
1

c c
freec freecM M

v SP a SP s−= ⋅                    (55) 

( )* *
* * 1

c c
c cTF TF

v M a M s−= ⋅                     (56) 

where *
cM

a  and *
cTF

a  are the activation coefficients of the modifying protein 
by the free “sensitive” protein and the transcription factor by the activated mod-
ified protein, respectively. 

Consequently, the greatest uncertainty is ( )* ,MF SPfree mcv g z→ , the reaction rate 
of the transition of the “sensitive” protein from the complex with microfilaments 
to the free state when the mechanical stress changes. Without loss of generality, 
we will assume that the variables are independent and then: 

( ) ( ) ( ) ( ) 2* * * *,?
mc

SP

z
D t

MF SPfree mc mc SPv g z v g v z v g D t
−

→ = ⋅ = ⋅ ⋅ ⋅       (57) 

Considering gravity as a bulk force, we accept, as before [27], that: 

( )* cosv g gρ ϕ= ⋅ ⋅ ,                    (58) 

where ϕ  is the orientation angle, in this case, the soleus muscle in the field of 
gravity, g is the acceleration of gravity, and ρ is the density of the cortical cy-
toskeleton, depending on the initial number of formed filaments and their or-
ganization into the network. For the standard model used to reproduce the ef-
fects of weightlessness on Earth in rodents, antiorthostatic suspension, this angle 
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is 30˚ [39]. 
We take the initial values of the estimated parameters for 100% and substitute 

(45) - (58) into (24) - (38). We evaluated the process of perception of a mechan-
ical stimulus and its transduction at several points—6, 12, 18, 24 and 72 
hours—to compare the results of mathematical modeling and experimental data 
obtained by us earlier [28]. 

The dependences obtained for the content of the “sensitive” protein— 
alpha-actinin-4 (Figure 2), the antagonist of the “sensitive” protein— 
alpha-actinin-1 (Figure 3), and microfilaments—beta-actin (Figure 4) in com-
parison with experimental data show coincidence when varying only the con-
stants of the efficiency of transcription ( , ,rSPs raSPs rMFk k k  respectively) and 
translation ( , ,SPfreec aSPfreec MFck k k  respectively). However, there are differences at 
the 72-hour point: in the experiment, the alpha-actinin-1 content is 77% ± 7% of 
the control in the membrane fraction and 50.5% in the numerical experiment 
(Figure 3(b)); in the experiment, the beta-actin content in the cytoplasmic frac-
tion does not differ from the control; in the numerical experiment, it is reduced 
(66.4% of the control) (Figure 4(c)). In addition, at the 12 o'clock point in the 
experiment, the beta-actin content in the membrane fraction is already reduced 
and amounts to 51% ± 4% of the control; in a numerical experiment, it does not 
differ from the control (103%) (Figure 4(b)). 

The dynamics of the transcription factor change (Figure 5) indicates an in-
crease in its content in the nucleus after 6 hours by 35% and a subsequent in-
crease up to 24 hours (235% relative to the control) and then a decrease after 72 
hours compared to the maximum accumulation (up to 190%). 
 

 
Figure 2. Relative content of the “sensitive” protein and its mRNA (simulation data) and 
comparison with the relative content of alpha-actinin-4 (Actn4) and mRNA (experimen-
tal data). (a)—mRNA comparison; (b)—membrane fraction of protein comparison; 
(c)—cytoplasmic fraction of protein comparison. 
 

 
Figure 3. Relative content of the antagonist of the “sensitive” protein and its mRNA (si-
mulation data) and comparison with the relative content of alpha-actinin-1 (Actn1) and 
mRNA (experimental data). (a)—mRNA comparison; (b)—membrane fraction of protein 
comparison; (c)—cytoplasmic fraction of protein comparison. 
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Figure 4. Relative content of microfilament protein and its mRNA (simulation data) and 
comparison with the relative content of beta-actin and mRNA (experimental data). 
(a)—mRNA comparison; (b)—membrane fraction of protein comparison; (c)— 
cytoplasmic fraction of protein comparison. 
 

 
Figure 5. Relative content of the transcription factor in the nuclei (simulation data). 
 

Simulation data were fitted by curve; experimental data are marked by dots. 
The simulation was performed under parameters (45) - (58) and constants for 
6h 55.28 10rSPsk −= − × , 218 10SPfreeck −= − × , for 12 h— 54.4 10rSPsk −= − × , 

216 10SPfreeck −= − × , for 18 h— 54.39 10rSPsk −= − × , 22 10SPfreeck −= − × , for 24 h—
53.36 10rSPsk −= × , 31.53 10SPfreeck −= − × , for 72 h— 51.75 10rSPsk −= × , 

48.85 10SPfreeck −= × . The figure was built in the Excel 2007 for Windows.  
Simulation data were fitted by curve; experimental data are marked by dots. 

The simulation was performed under parameters (45) - (58) and constants for 
6h 41.62 10rSPsk −= − × , 410SPfreeck −= , for 12 h— 41.11 10rSPsk −= − × , 

32.23 10SPfreeck −= × , for 18 h— 52.84 10rSPsk −= × , 32.01 10SPfreeck −= × , for 24 
h— 55.33 10rSPsk −= − × , 32.44 10SPfreeck −= − × , for 72 h— 55.33 10rSPsk −= − × , 

32.41 10SPfreeck −= − × . The dotted ovals show differences between the simulation 
and experimental data. The figure was built in the Excel 2007 for Windows.  

The simulation was performed under parameters (45) - (58). The figure was 
built in the Excel 2007 for Windows. 

4. Discussion 

The problem of perception by living cells of a mechanical stimulus is not only of 
practical importance associated with the exploration of deep space but also fun-
damental since life has evolved under the conditions of a permanently acting 
mechanical factor—gravity. Despite the many studies, there is currently no uni-
versal idea of how a cell perceives an external mechanical field and how it 
transduces its changes to form an adaptation pattern. 

In our previous works, we obtained experimental data that suggest the key 
role of actin-binding proteins in the cells’ perception of various types of me-
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chanical stimulus. For mammals, we assume that these proteins can be two cal-
cium-dependent alpha-actinin forms: alpha-actinin-1 and alpha-actinin-4 [10] 
[27] [28]. However, for example, in Drosophila, there is only one alpha-actinin 
isoform, but our previous data suggest that another actin-binding protein, 
supervillin, may be the second participant [32]. Therefore, in this work, we des-
ignated this pair of proteins as a sensitive protein SP and an antagonist of the 
sensitive protein aSP. 

In system biology, mathematical modeling is often used to estimate the values 
of unknown parameters. The model of population dynamics of Lotka-Volterra is 
used especially widely in various kinetic models, for example, when modeling 
the development of bacterial infection [40]. In this paper, the use of kinetic re-
gularities and the second Fick’s law, the diffusion equation, assuming that in-
creasing or decreasing mechanical stress leads to dissociation of aSP or SP from 
the cortical cytoskeleton, let us numerically receive the same results as in the ex-
periments. 

We estimated the values of the parameters after 6, 12, 18, 24 and 72 hours. In 
almost all cases, by varying only the constants of the efficiency of transcription 
and translation, we obtained theoretical data that coincided with the experimen-
tal data. The exception was the content of the antagonist of the sensitive protein 
in the membrane fraction (alpha-actinin-1) after 72 hours of exposure: in the 
experiment, the minimum content was at the previous point, 24 hours [28], 
while modeling was at 72 hours. However, the error values of the experimental 
data do not show a significant difference between the values at 24 and 72 hours 
[28]. In addition, a significant difference between the experimental data and 
those obtained in a numerical experiment occurred in the membrane fraction of 
microfilaments after 12 hours, as well as in the cytoplasmic fraction, after 72 
hours. However, it should be noted that in the experiment, we evaluated the 
content of actin isoforms (beta and gamma-) separately, while in a numerical 
experiment, for simplicity, we followed the total content of proteins forming 
microfilaments, comparing the data with beta-actin. However, because the con-
tent of beta-actin in muscle cells substantially dominates the content of gam-
ma-actin, this approach can be justified. In general, this model, developed for 
early acts of cellular mechanoreception, gives results that coincide with experi-
mental data up to 72 hours of exposure. 

In addition, it is known that one of the candidates for the role of the sensitive 
protein SP, alpha-actinin-4, can penetrate into the nucleus [41] and bind to the 
promoter regions of the genes. However, it is still unknown, in the case of 
changes in external mechanical stress, whether alpha-actinin-4 itself regulates 
the expression of its potential targets or indirectly regulates them through a 
transcription factor. Therefore, we introduced a transcription factor modifier 
into the model, which can be activated by SP, and, in turn, activate the corres-
ponding transcription factor. In a numerical experiment, the dynamics of 
changes in the content of the transcription factor in the nucleus were estimated, 
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and according to these results, we can assume that the maximum of its accumu-
lation occurs at 24 hours, where its content exceeds the control level by almost 
2.5 times. In addition, its content in the nuclei begins to increase after 6 hours of 
exposure. 

Alpha-actinin-4, according to experimental data, has approximately the same 
initial content in the membrane and cytoplasmic compartments. After 6 hours of 
exposure in the membrane compartment, its content decreases by 27% and in-
creases in the cytoplasm by 30% [28] [29]. In the numerical experiment, we ob-
tained the same data. However, at the same time, after 6 hours of exposure, ac-
cording to the simulation data, the content of the activated transcription factor 
in the nucleus increases by 35%. Comparing these data, we can assume that 
when the external mechanical stress changes, alpha-actinin-4 does not directly 
regulate the expression of the genes assessed but indirectly regulates them 
through the activation of an appropriate transcription factor. 

Of course, such an assumption after mathematical modeling needs experi-
mental verification, but it can be assumed that the disclosure of the detailed 
mechanism of interaction between the cell and the external mechanical field will 
help in the development of effective preventive measures that are necessary, for 
example, during deep space exploration. 

5. Conclusions 

The results obtained indicate that the model of perception of an external me-
chanical stimulus by living cells, based on a system of kinetic equations and the 
second Fick law, adequately describes the process, and the simulation results 
correlate with the experimental data. 

The time dependencies estimated in a numerical experiment suggest that 
alpha-actinin-4 triggers a signaling cascade, leading to an increase in the content 
of certain transcription factors whose targets are both alpha-actinin-4 and 
alpha-actinin-1 and beta-actin. In other words, the answer to the question of 
whether alpha-actinin-4 regulates gene expression directly when mechanical 
stress changes (given its ability to penetrate into the nucleus and bind to some 
promoters) is as follows: according to a numerical experiment, it is more likely 
that another transcription factor will appear. 
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Abstract 
This paper studies the asymptotic normality of the Nelson-Aalen and the 
Kaplan-Meier estimators in a competing risks context in presence of inde-
pendent right-censorship. To prove our results, we use Robelledo’s theorem 
which makes it possible to apply the central limit theorem to certain types of 
particular martingales. From the results obtained, confidence bounds for the 
hazard and the survival functions are provided.  
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1. Introduction and Background 

The model of competing risks has been widely studied in the literature, see e.g., 
Heckman and Honoré [1], Commenges [2], Com-nougué [3], Fine and Gray [4], 
Crowder [5], Fermanian [6], Latouche, A. [7], Geffray [8], Belot [9], Njamen and 
Ngatchou ([10], [11]), Njamen ([12], [13]). In most approaches, the competing 
risks are assumed to be either all independent or all dependent. Here, the 
independent component of the potential risks constitutes an independent 
censoring variable while the other risks are kept as possibly dependent. This 
approach is used by Geffray [8]. Namely, we consider a population in which 
each subject is exposed to m mutually exclusive competing risks which may be 
dependent. For { }1, ,j m∈  , the failure time from the jth cause is a 
non-negative random variable (r.v.) jτ . The competing risks model postulates 
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that only the smallest failure time is observable, it is given by the r.v. 
( )1min , , mT τ τ=   with distribution function (d.f.) denoted by F. The cause of 

failure associated to T is then indicated by a r.v. η  which takes value j if the 
failure is due to the jth cause for a { }1, ,j m∈   i.e. jη =  if jT τ= . The 
following modeling technique is extracted in Njamen and Ngatchou [10]: we 
assume that T is, in its turn, at risk of being independently right-censored by a 
non-negative r.v. C with d.f. G. Consequently, the observable r.v. are  

( )( )min , , ,Z T C ξ ηδ= =  

where { }11 T Cδ ≤=  and where ( ).11  denotes the indicator function. As T and C 
are independent, the r.v. Z has d.f. H given by ( )( )1 1 1H F G− = − − . Let 

( ){ }sup : 1H t H tτ = <  denote the right-endpoint of H beyond which no 
observation is possible. The subdistribution functions ( )jF  pertaining to the 
different risks or causes of failure are defined for 1, ,j m=   and 0t ≥  by  

( ) ( ) [ ], , 1, ,jF t T t j j mη= ≤ = =                  (1) 

When the independence of the different competing risks may not be assumed, 
the functions ( )jF  for 1, ,j m=   are the basic estimable quantities. 

The Kaplan-Meier estimator was developed for situations in which only one 
cause of failure and the independent right-censoring are considered. Aalen and 
Johansen [14] were the first to extend the Kaplan-Meier estimator to several 
causes of failure in the presence of independent censoring. In the present 
situation, the d.f. F may be consistently estimated by the Kaplan-Meier estimator 
denoted by b n̂F . For 1, ,j m=  , the subdistribution functions ( )jF  may be 
consistently estimated by means of the Aalen-Johansen estimators denoted 
respectively by ( )ˆ j

nF , for 1, ,j m=  . Indeed, when the process of the states 
occupied by an individual in time is a time-inhomogeneous Markov process, 
Aalen and Johansen [14] introduced an estimator of the transition probabilities 
between states in presence of independent random right-censoring. The 
competing risks set-up corresponds to the case of a time-inhomogeneous 
Markov process with only one transient state and several absorbing states (that 
can be labeled 1, , m ). Aalen and Johansen [14] obtained the joint consistency 
of ( )ˆ j

nF  to ( )jF  for 1, ,j m=   uniformly over fixed compact intervals 
[ ]0,σ  for Hσ τ< . They also obtained the joint weak convergence of the 
processes ( ) ( )( )ˆ j j

nn F F−  on fixed compact intervals [ ]0,σ  for Hσ τ< . 
The asymptotic properties of the Kaplan-Meier estimator on the distribution 

function have been studied by several authors (see Peterson [15], Andersen and 
al. [16], Shorack and Wellner [17], Breslow and Crowley [18]). 

In this paper, in a region where there is at least one observation, we are 
interested in providing asymptotic properties of the Nelson-Aalen and 
Kaplan-Meier nonparametric estimators of the functions ( )j∗Λ  and ( )jS∗ . For 

1, ,j m=   in the presence of independent right-wing censorship in the context 
of competitive risks set out in Njamen and Ngatchou ([10], [11]). 

The rest of the paper is organized as follows: Section 2 describes preliminary 
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results and rappels used in the paper. In Section 3, we obtain two laws: In 
Section 3.1, we give limit law of Nelson-Aalen’s nonparametric estimator for 
competing risks as defined in Njamen and Ngatchou [10] and Njamen [12]. In 
Sect. 3.2, we give limit law of Kaplan-Meier’s nonparametric estimator in 
competing risks as defined in Njamen and Ngatchou [10] and Njamen [13]. In 
Section 4, we give the trust Bands, including the Hall-Wellner trust Bands and 
the Nair precision equal bands. 

2. Preliminary and Rappels 

For 0t ≥ , we introduce the following subdistribution functions ( )0H  and 
( )1H  of H by:  

( ) ( ) [ ]0 , 0 ,H t Z t ξ= ≤ =  

and  

( ) ( ) [ ]1 , 0H t Z t ξ= ≤ ≠  

and for 1, ,j m=    

( ) ( ) [ ]1, , .jH t Z t jξ= ≤ =  

The relations ( ) ( ) ( )1
m j
jF t F t
=

= ∑  and ( ) ( ) ( ) ( )1 1,
1

m j
jH t H t
=

= ∑  hold for 
0t ≥  since the different risks are mutually exclusive. The relation 
( ) ( ) ( ) ( ) ( )0 1H t H t H t= +  is also valid for 0t ≥ . The relations that connect the 

observable distribution functions ( )0H , ( )1H  and ( )1, jH  to the unobservable 
distributions F, G and ( )jF  are given by:  

( ) ( ) ( )0

0
1 d ,

t
H t F G= −∫  

( ) ( ) ( )1

0
1 d ,

t
H t G F−= −∫  

and 

( ) ( ) ( ) ( )1,

0
1 d .

tj jH t G F−= −∫  

The cumulative hazard function of T and the partial cumulative hazard 
function of T related to cause j for { }1, ,j m∈   are given for 0t ≥  
respectively by the following expressions:  

( )
( )1

0 0

d d ,
1 1

t tF Ht
F H− −Λ = =

− −∫ ∫                    (2) 

( ) ( )
( ) ( )1,

1,

0 0

d d .
1 1

j j
t tj F Ht

F H− −Λ = =
− −∫ ∫                  (3) 

Let us set estimators for the different quantities. Let ( ) 1, ,
,i i i n

Z ξ
= 

 be n 
independent copies of the random vector ( ),Z ξ . We define the empirical 
counterparts of ( )0H , ( )1H , ( )1, jH  and H, for 1, ,j m∈   by: 

( ) ( ) { }
0

, 0
1

1 11 ,
i i

n

n Z t
i

H t
n ξ≤ =

=

= ∑  
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( ) ( ) { }
1

, 0
1

1 11 ,
i i

n

n Z t
i

H t
n ξ≤ ≠

=

= ∑  

( ) ( ) { }
1,

,
1

1 11 ,
i i

n
j

n Z t j
i

H t
n ξ≤ =

=

= ∑  

( ) { }
1

1 11 .
i

n

n Z t
i

H t
n ≤

=

= ∑  

The relations ( ) ( ) ( ) ( ) ( )0 1
n n nH t H t H t= +  and ( ) ( ) ( ) ( )1 1,

1
m j

n njH t H t
=

= ∑  are 
valid for 0t ≥ . As T is independently randomly right-censored by C, a 
well-known estimator for F is the Kaplan-Meier estimator defined for 0t ≥  by:  

( ) { }

( )( )
, 0

1

11ˆ 1 1 ,
1

i i
n Z t

n
i n i

F t
n H Z

ξ≤ ≠

−
=

 
 = − −
 − 

∏  

where the left-continuous modification of any d.f. L is denoted by L− . The 
Nelson-Aalen estimators of Λ  and of ( )1, jΛ  for 1, ,j m=   respectively are 
defined for 0t ≥  by:  

( )
( )1

0

d
,

1
t n

n
n

H
t

H −Λ =
−∫                         (4) 

( ) ( )
( )1,

1,

0

d
.

1

j
tj n

n
n

H
t

H −Λ =
−∫                        (5) 

The Aalen-Johansen estimator for ( )jF  is defined for 0t ≥  by:  

( ) ( ) ( )1,

0

ˆ1ˆ d .
1

tj jn
n n

n

F
F t H

H

−

−

−
=

−∫  

For all 0t ≥ , the following equalities hold:  

( ) ( )( ) ( )( )ˆˆ1 1 1n n nH t F t G t− = − −  

( )
0

ˆd
,ˆ1

t n
n

n

F
t

F −
Λ =

−∫  

where ˆ
nG , the Kaplan-Meier estimator of G, is defined for 0t ≥  by:  

( ) { }

( )( )
, 0

1

11ˆ 1 1 .
1

i i
n T t

n
i n i

G t
n H Z

ξ≤ =

−
=

 
 = − −
 − 

∏  

3. Results 

In this section, we continue the works of Njamen and Ngatchou [10], Njamen 
[12] and Njamen and Ngatchou [11]. In fact, Njamen and Ngatchou ([10], p. 9), 
studies the consistency of Nelson-Aalen’s non-parametric estimator in 
competing risks, while Njamen ([12], pp. 11-12) studies respectively the simple 
convergence and the uniform convergence in probability of Nelson-Aalen’s 
nonparametric estimator in competing risks; and Njamen and Ngatchou ([11], p. 
13) study the bias and the uniform convergence of the non-parametric estimator 
survival function in a context of competing risks. It is also shown there that this 
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estimator is asymptotically unbiased. For this purpose, we use the martingale 
approach as the authors mentioned above. 

3.1. Limit Law of Nelson-Aalen’s Nonparametric Estimator for  
Competing Risks 

In what follows, we study the asymptotic normality of Nelson-Aalen’s 
non-parametric estimator in competitive risks. For that, considering, for all 

{ }1, ,j m∈   and 0t ≥ , one has the Nelson-Aalen type cumulative hazard 
function estimator (Nelson, [19]; Aalen, [20], Njamen and Ngatchou, [10]) 
defined by  

( ) ( )
( ) ( )

0
ˆ d ,

t
n

J u
t N u

Y u
Λ = ∫                       (6) 

where ( ) ( ){ }011 Y tJ t >= . 
The cumulative risk in a region where there is at least one observation is given 

for all { }1, ,j m∈  , by (see Njamen, [12]. p. 9)  
( ) ( ) ( ) ( )

0
d ,

tj j jL s sλ∗ ∗ ∗Λ = ∫                       (7) 

with ( ) ( ) { }11
i

j
i Z tL t∗

≥=  which indicates whether the individual i is still at risk just 
before time t (the individual has not yet undergone the event). Its estimator was 
defined in Njamen and Ngatchou ([10], p. 7). 

The following theorem gives the limit law of the Neslson-Aalen estimator 
( )ˆ j

n
∗Λ  in competing risks of Njamen (2017, p. 9). This is the first fundamental 

result of this article.  
Theorem 1. 
In a region where there is at least one observation, it is assumed that 
( ) ( ) 1j

iF t∗ <  for { }1, ,i n∈   and { }1, ,j m∈  . Then, for all 0t ≥ , 
( ) ( ) ( ) ( )( ) ( ) ( )ˆ ,j j j

n in t t U t∗ ∗ ∗Λ −Λ →                 (8) 

where ( )j
iU ∗  is a centered Gaussian martingale of variance such that:  

( ) ( )

( ) ( )( )
( ) ( )
( ) ( )0

0 0

d ,

j
i

j
tj i

i j
i

U

u
U t u

y u
α

∗

∗
∗

∗

 =



=


∫
                    (9) 

where for all 0s ≥ ,  
( ) ( ) ( ) ( ) ( ) ( )1 1j j j

i i iy s F s G s∗ ∗ ∗ −   = − −                    (10) 

with ( )j
iG∗  standing for the distribution function of ( )j

iC∗  and ( )j
iα
∗  the 

instant risk function.  
To prove this theorem, we need the Robelledo theorem. In fact, the Rebolledo 

theorem below makes it possible to apply the central limit theorem for certain 
types of particular martingales.  

Theorem 2. (Rebolledo’s Theorem) 
Let 1

nn
iiM M

=
= ∑  a sequence of martingales where i i iM K A= − , iK  
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denotes a counting process and iA  its compensator. Consider the processes  

( ) ( ) ( )
0

d
t n

n nI t f s M s= ∫ , and for all 0ε > , ( ) ( ) ( ){ } ( ), 0
11 d

n

t n
n n f s

I t f s M sε ε>
= ∫ .  

Suppose that nf  and f are predictable and locally bounded 
s−
  processes such 

that  

( ) ( )0 .sup n
s

f f s n− → →∞  

Suppose also that the processes , ,i i nK A f  are bounded. Let’s for all 0t > , 

( ) ( )2
0

d
t

t f s sα = ∫ . If  

1) ( ) ( ),n tI t nα→ →∞ ;  

2) for all 0ε > , ( ), 0,n t
I nε → →∞ .  

Then, 

( )( ) ( ) ( )( ) ( )
0

, 0 d , 0 , ,
t

nI t t f s W s t n> ⇒ > →∞∫  

where ⇒  denotes the weak convergence in the space of continuous functions 
on the right, having a left-hand boundary with the topology of Skorokhod and 
where W is a Brownian motion.  

To prove Theorem 1, it is sufficient to check whether the previous conditions 
of Rebolledo’s Theorem are satisfied:  

Proof. For all { }1, ,j m∈   and 0t ≥ , ( ) ( )j
iM t∗  also decomposes into  

( ) ( ) ( ) ( ) ( ) ( )
0
d d ,

tj j j
i i iM t K t s s∗ ∗ ∗= − Λ∫  

which in turn can be written in terms of ( )j tα  by  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
d ,

tj j j j
i i i iM t K t s L s sα∗ ∗ ∗ ∗= − ∫  

which finally, can be rewritten as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d ,j j j j
i i i iK t t L t t M tα∗ ∗ ∗ ∗= +  

where ( ) ( )d j
iM t∗  can be seen as a random noise process. The martingale 

( ) ( )j
iM t∗  above represents the difference between the number of failures due to 

a specific cause j observed in the time interval [ ]0, t , i.e. ( ) ( )j
iK t∗  (see Njamen, 

[12], p.6), and the number of failures predicted by the model for the jth cause. 
This definition fulfills the Doob-Meyer decomposition. 

This martingale is used in Fleming and Harrington ([21], p. 26) and in Breuils 
([22], p. 25). 

Now, to explain the asymptotic nature of the results, we defined, for all 0t ≥ , 
{ }1, ,j m∈  , to pose:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ){ }01 1

, , 11 ,n

n n
n j n j n

i i Y ti i
N t K t Y t L t J∗ ∗

>= =

= = =∑ ∑  

In a subgroup ( )jA , where there is at least one observation, the survival 
function of ( )min ,i i iZ T C=  is defined for all 0t ≥  by:  

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 .j j j
Z i iS t F t G t∗ ∗ ∗ −= − −  
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Recall also that ( )j
iF ∗  is the distribution function of iT , ( )j

iG∗  is that of iC ’s 
and ( )( ) ( )1 1 1j j

i iF G∗ ∗   − − −    that of the iZ ’s. From the Glivenko-Cantelli 
theorem, one has:  

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )
0,

sup 1 1 0 .
n

j j
i i

s t

Y s
F s G s n

n
∗ ∗ −

∈

   − − − → →∞   
    (11) 

Otherwise,  
( ) ( ) ( ) ( ){ }>0

11 ,n
n

Y t
J t =  

one has:  
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( )
0 , 1 1 0

1 11 11 0 ,n j j
i i

n

Y t n F t G t
J t n

∗ ∗ −    = − − =         

− = = → →∞


 

from which one obtains (see Theorem 3, p. 11 of Njamen, [12]),  
( ) ( ) ( )1 .nJ t n→ →∞  

Differentiating the martingale ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

d
tj j j j

i i i iM t K L s s sα∗ ∗ ∗ ∗= − ∫ , one 
has:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d ,j j j j
i i i iM t K t L t t tα∗ ∗ ∗ ∗= −  

and from  
( ) ( ) ( )( )d d ,j j

i i tt
M ar M t −

∗ ∗=    

one obtains  
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

d d d

d d .

j j j j
i i i i tt

j j j
i i it

M ar K t L t t t

ar K t L t t t

α

α

−

−

∗ ∗ ∗ ∗

∗ ∗ ∗

= −

= =








 

Consequently, the increasing process of  
( ) ( )
( ) ( )

( ) ( )
0

d , 0,
n

t j
t in

J u
D M u t

Y u
∗= ≥∫  

is given by  
( )( ) ( )
( )( ) ( )

2

20
d , 0.

n
t

t un

J u
D M t

Y u
= ≥∫  

Next, for all 0t ≥  and { }1, ,j m=  , one has  

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )
( )( ) ( )

( ) ( ) ( )

( )( ) ( )
( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )
( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2

20 0
1 1

2

20
1

2

20

0

d ( ) d

d

d

d .

nnn nt tj j j
i i in ni i

t

n
nt j j

i i
n i

n
t n j

i
n

n
t j

in

J uJ u
n M u n L u u u

Y u Y u

J u
n L u u u

Y u

J u
n Y u u u

Y u

J u
n u u

Y u

α

α

α

α

∗ ∗ ∗

= =

∗ ∗

=

∗

∗

=

=

=

=

∑ ∑∫ ∫

∑∫

∫

∫
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Also, for all 0t ≥  and for all { }1, ,j m∈  , the process  

( ) ( ) ( ) ( )( )
( ) ( )
( ) ( )

( ) ( ) ( ) { }
0

1

ˆ d , 1, , ,
nn tj j j

n i nn
i

J u
n t t n M u R t i n

Y u
∗ ∗ ∗

=

Λ −Λ = = ∀ ∈∑∫   

is a martingale. We apply the central limit theorem for the martingales 
(Rebolledo’s Theorem). In this purpose, we show that the condition of this 
theorem is satisfied by ( )nR t .  

One has, for all { }1, ,i n∈  ,  
( ) ( )
( ) ( )

( ) ( ) { }
0

d , 1, , ,
n

t j
n it n

J u
R n u u j m

Y u
α∗= ∀ ∈∫   

and also by the proof of the Theorem 3 of Njamen ([12], p. 11), we have:  
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1 1 , 1, .
n

j j n
i i

Y u
F u G u J u n

n
∗ ∗ −→ − − → →∞   

So that, for all { }1, ,j m∈  , when n →∞ ,  
( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

0

0

d

d
, ,

1 1

n
t j

n it n

j
t i

j j
i i

J u
R u u

Y u
n

u u
t n

F u G u

α

α
β

∗

∗

∗ ∗ −

=

→ = →∞
− −

∫

∫

 

which is determinist. Thus, the first condition of Robelledo Theorem holds. 
To check the second condition, for all 0>  and 0t ≥ , define  

( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ), 0
11 d ,n

n

n
t n

n n J u
n

Y u

J u
R t n M u

Y uε   > 
  

= ∫


 

where for all 1, ,j m=  , ( ) ( ) ( ) ( )1
nn j

iiM u M u∗
=

= ∑ . 
We have to show that as n →∞ , ,n t

Z   converges to 0 in probability. 
One has, for all 0t ≥ ,  

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )

( )

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

, 20

20

0

11 d

11 d

11 d

0, ,

n

n

n

n

n

n

n
t n

n t J u un n
Y u

n
t n j

iJ un n
Y u

n
t j

in J u
n

Y u

J u
R n M

Y u

J u
n Y u u u

Y u

J u
n u u

Y u

n

ε

α

α

  > 
  

∗
  > 
  

∗
  > 
  

=

=

=

→ →∞

∫

∫

∫









 

because  
( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 , .

1 1

n

n j j
i i

J u
n n

Y u F u G u∗ ∗ −
→ →∞

− −
  
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Then  
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )1 0, .
n n

n n

J u J u
n n n

nY u Y u
= → →∞  

Thus, the second condition of Robelledo Theorem holds. 
The conditions of the Rebolledo Theorem are verified and by consequently, 

for all 0t ≥ ,  

( )( ) ( ) ( )( ) ( )
0

, 0 d , 0 , ,
t

nR t t f s W s t n> ⇒ > →∞∫  

with ( ) ( )2
0

d
t

t f s sγ = ∫ . 
Finally, for all 0t > ,  

 ( ) ( ) ( ) ( ) ( )( ) ( )
0

d 0, , .
t

nR t R t f s W s t nγ⇒ = →∞∫ 
 

This ends the proof of the Theorem 1.  
The following subsection gives the asymptotic law of nonparametric 

Kaplan-Meier’s estimator of the survival function in the competing risks of 
Njamen and Ngatchou ([10], p. 13). 

3.2. Limit Law of Kaplan-Meier’s Nonparametric Estimator in  
Competing Risks 

The Kaplan-Meier estimator of the survival function (Kaplan and Meier, [23]) is 
defined by 

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )
ˆ ˆ1 1 ,

n n

n n n
s t s t

J s N s
S t s

Y s≤ ≤

 ∆
= − ∆Λ =  − 

 
 

∏ ∏  

where ( )ˆ
n tΛ  is the Nelson-Aalen estimator and where, for a process ( )X t  

continuous to the right with a left limit such that  

( ) ( ) ( ).X t X t X t−∆ = −  

For all 1, ,j m=  , an estimator of the variance of ( ) ( ) ( ) ( )ˆ j j
nS t S t∗ , where 

( )jS∗  is the survival function associated with the subgroup ( )jA  is given by  

( ) ( )
( ) ( )
( )( ) ( )

( ) ( )2
20

ˆ d .
n

tj n

n

J s
t N s

Y s
σ = ∫  

The variance of ( ) ( ) ( ) ( )ˆ j j
nS t S t  approximated by that of ( ) ( ) ( ) ( )ˆ j jS t S t∗  

is:  
( ) ( )
( )

( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) { }
2

0

ˆ ˆ
1 1

( )

ˆ
d 1, , .

j j
n n

j j

j n
t n j

ij n

S t S
t

S t S

S s J s
s s i n

S s Y s
α

∗ ∗

−
∗

∗

  
− = −  

     

  = × ∀ ∈ 
  

∫ 

 

  (12) 

The estimator of the corresponding variance of ( ) ( )ˆ j
nS t  is given by  

( ) ( )( ) ( ) ( ) ( ) ( ) { }
2 2ˆ ˆ ˆ ˆ 1, , .j j j

n n iS t S t t i nσ = ∀ ∈              (13) 
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The following result concerning the asymptotic law of nonparametric 
Kaplan-Meier estimator and constituted the second fundamental result of this 
paper:  

Theorem 3. 
In an area where there is at least one observation, if we assume that for all 
{ }1, ,j m∈   and { }1, ,i n∈  , 

1) for all [ ]0,s t∈ ,  
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )2

0
d ,

n
s j j

i in

J u
n u u u n

Y u
α σ∗ ∗→ →∞∫   

2) for all 0ε > ,  
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
0

11 d 0 ,n

n

n
t j

in J u
n

Y u

J u
n u n

Y u ε

α ∗
  > 
  

→ →∞∫   

3) for all 0t > ,  
( ) ( )( ) ( ) ( ) ( )

0
1 d 0 .

t n j
in J u u u nα∗− → →∞∫   

Then, for all 0t >  and { }1, ,j m∈  , the non-parametric estimator ( )ˆ j
nS∗  

checks  
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )ˆ , ,j j j j

n in S t S t U t S t n∗ ∗ ∗ ∗− ⇒ − × →∞  

where ( )j
iU ∗  is the center Gaussian martingale and where ⇒  denotes the 

weak convergence in the space of continuous functions on the right, having a 
left-hand boundary with the topology of Skorokhod.  

Proof. To prove this theorem, it suffices to show that it satisfies the conditions 
of the Rebolledo Theorem. 

In an area where there is at least one observation, by posing, for all 
1, ,j m=  , 1, ,i n=  ,  

( ) ( ) ( )( )expj j
n nS t∗ ∗= −Λ   

where ( ) ( ) ( ) ( ) ( )
0

d
tj n j

n iJ u u uα∗ ∗Λ = ∫ . 

For [ [0,t τ∈  and 0τ > , we have for all 1, ,j m=   and 1, ,i n=  ,  

( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

2

20

2

ˆˆ
1 d

, .

j nj
t n jn

ij nj
n nt

j
i

S u J uS
n n u u

S Y uS u

n

α

σ

−
∗

∗ ∗

∗

 
− =  

 

→ →∞

∫






 

By the proof of Theorem 3 of Njamen ([12], p.11), we deduce that  
( ) ( )
( ) ( )

( )
ˆ

1, .
j

n

j
n

S u
n

S u

∗ −

∗
→ →∞



  

Hence the 1st condition of Robolledo’s Theorem. 
For the second condition of Robolledo’s Theorem, condition B is similar to 
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the proof of Theorem 1 above, we find that for all 0ε > ,  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
2

20

ˆ
11 d 0, .n

n

j n
t n j

inj J s
nn

Y s

S u J u
n u u n

Y uS u ε

α
−

∗
 ∗  > 
  

→ →∞∫


 

So, for each 0t > ,  
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
0

ˆ
d ,

j n
t n n j

ij n
n

S u J u
n M u U t

S u Y u

−
∗

∗
⇒∫



 

where ( ) ( ) ( ) ( )1
nn j

iiM u M u∗
=

= ∑  and where  

 ( ) ( ) ( ) ( )( )20, .j j
iU t tσ∗ ∗

 
Finally,  

( ) ( )
( ) ( )

( ) ( )
ˆ

1 .
j

jn
ij

n

S t
n U t

S t
∗

∗

 
 −  ⇒ −
 
 


 

The fact that ( ) ( ) ( ) ( )j j
nS u S u∗ ∗≤ , for all [ [0,u s∈  and condition C implies:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )( )( )

( )( ) ( ) ( )
( )

0

0

1 d

1 d

0 .

j j
t j j

j j
n n

t j
i

S s S u
n n u

S u S u

n J u u u

n

α

∗ ∗
∗ ∗

∗ ∗

∗

− ≤ Λ −Λ

≤ −

→ →∞

∫

∫



 



 

As ( ) ( ) ( ) ( )j j
nS t S t∗ ∗→  when n →∞ , we deduce that:  

( ) ( ) ( )( ) 0, .j j
nn S S t n∗ ∗− → →∞

  

It follows that: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )

ˆ

ˆ

ˆ
( )

, .

j j
n

j j j j
n n n

j j
n n j j j

n nj
n

j j
i

n S t S t

n S t S t n S t S

n S t S t
S n S t S

S

U t S n

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗
∗

∗ ∗

−

= − + −

−
= + −

⇒ − →∞

 



 



 

This ends the proof of the theorem.  

4. Confidence Bands of Survival Function 
4.1. Confidence Intervals 

For ( )0,1α ∈ , we wish to find two random functions Lb  and Ub  such that 
0t∀ > ,  

( ) ( ) ( ) 1 .U Lb t S t b t α≥ ≥ = −    

Recall that from the previous sections, for all { }1, ,j m∈  , 
( ) ( ) ( ) ( )( ) ( ) ( )ˆ j j j

nn S t S t S t∗ ∗ ∗−  converges in distribution to a Gaussian 
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martingale centered (see Theorem 3 above). As a consequence, ( ) ( )ˆ j
nS t∗  is 

asymptotically Gaussian centered on ( )jS∗ . Given the above results, the 
estimated standard deviation of ( )jS∗ , noted ˆ

tSσ  is given for all 0t ≥  by:  

( )
( ) ( )( )

( ) ( )
*
2

2

ˆ ˆ
ˆ .

ˆt

j
n

S j
n

S t
t

S t
σ

∗

∗

∗
=
 
 


                     (14) 

Therefore a threshold confidence level ( )100 1 %α−  can be built for all 
0t ≥  and { }1, ,j m∈  , by:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ, .

t t

j jj j j j
n n n nS S

S t Z t S t S t Z t S tα ασ σ∗ ∗∗ ∗ ∗ ∗
− −− +    (15) 

Here 1 2z α−  is the 1 2α−  percentile of a standard normal distribution. 
A threshold confidence interval ( )100 1 %α−  can also be obtained for all 
{ }1, ,j m∈  , by:  

( ) ( ) ( )
*2

ˆ ˆ ,
t

jj
n S

S t zα σ ∗∗ ±                       (16) 

where 2zα  is the rank of fractile 100 2α×  of the standardized normal 
distribution. 

A disadvantage of the construction of the confidence interval (CI) with the 
previous formula is that the bound can be obtained external to the interval [ ]0,1 . 
A solution is to consider a ( ) ( )jS t∗  { }( )1, ,j m∈   transform via a continuous 
function g, differentiable and invertible such that ( ) ( )( )jg S t∗  belongs to a 
more wide space ideally unbounded and best approximate a Gaussian random 
var iable .  The de l ta  method then a l lows  for  the  es t imat ion of  

the standard deviation of the object created by ( )
( )

*ˆ
t

j

g S
σ ∗  defined by 

( )
( ) ( ) ( )( ) ( ) ( )**

ˆˆ ˆ
tt

j jj
n Sg S

t g S tσ σ∗ ∗∗′= . The confidence interval associated with the risk 

threshold α  is built as for all { }1, ,j m∈  ,  

( )( ) ( )( ) ( ) ( )( )*
1

2
ˆ ˆ ˆ .

t

jj j
n n S

g g S z g S tα σ ∗∗ ∗− ′±  

The most common transformation is ( ) ( )* *log logt tg S S =   , and in this case 
we have: for all { }1, ,j m∈  , 

( )
( )

( )

( ) ( )

( )

( )

( ) ( )

*
2

*

*

ˆ
exp

ˆ ˆlog

log log

ˆ
ˆˆ and .ˆ ˆlog

j

St
jj

n t
t

t

j zj
S SSj

nj jS
n n

S
S S

α

σ

σ
σ

∗

∗∗

 
 
 ∗ ±∗     ∗   

  ∗ ∗−  

=  

Remark 1. It is also possible to use log, square-root or logit-type 
transformations in most software defined respectively by for all { }1, ,j m∈  , 

( )( ) ( ) ( )( ) ( ) ( )( )
( )

( )
1log , sin , log .

1

j
j j j j j t

t t t t t j
t

S
g S S g S S g S

S

∗
∗ ∗ ∗ ∗ ∗−

∗

   = = =       −  
 

4.2. The Confidence Bands 

The challenge now is to find an area containing the survival function with 
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probability 1 α− , or a set of bounds ( )Lb t  and ( )Ub t  which, with 
probability 1 α− , contains ( ) ( )jS t∗  for all [ ],L Ut t t∈  and { }1, ,j m∈  . 
Among the proposed solutions, the two most commonly used are firstly Hall and 
Wellner ([24]) bands and secondly, strips Nair ([25]) (“equal precision bands”). 
If kt  is the maximum time event observed in the sample, then for the Nair 
bands, we have the following restrictions 0 L U kt t t< < ≤ , however, boter 
Hall-Wiener may authorize the nullity of Lt , let 0 L U kt t t≤ < ≤ . Technically 
obtaining these bands is complex, and their practical utility in relation to the 
point intervals is not obvious.  

Remark 2. The starting point uses the fact that for all { }1, ,j m∈  , 
( ) ( )
( ) ( )

ˆ
1

j
n

j

S t
n

S t

∗

∗

 
 − 
 
 

 converges to a centered Gaussian martingale. We then go 

through a transformation making appear a Brownian bridge ( ) [ ]{ }0 , 0,1W x x∈ , 

weighted by 
( )
1
1x x−

 at Nair, to retrieve the suitable critical value.  

In particular, because of the joined character, for a given t their extent is wider 
than that of the corresponding point IC. In what follows we give the expressions 
obtained in the absence of transformation.  

4.2.1. The Hall-Wellner Confidence Bands 
Under the assumption of continuity of survival functions ( ) ( )jS t∗  and 

( ) ( )jC t∗  respectively related to the event time and the time of censorship, Hall 
and Wellner show that for every [ ],L Ut t t∈ , the IC joined the risk threshold α  
is given for all 1, ,j m=   and 0t ≥  by:  

( ) ( ) ( ) ( ) ( ) ( ) ( )*

1
22ˆ ˆˆ, 1 ,

t

jj j
n L U nS

S t h x x n n t S tα σ
−

∗∗ ∗ ± +
 

         (17) 

where Lx  and Ux  are given by  
( ) ( )
( ) ( )( )

*

*

2

2

ˆ
, for ,

ˆ1

ti

ti

j
S

i
j

S

n t
x i L U

n t

σ

σ

∗

∗
= =

+
 

and ( ),L Uh x xα  is bounds checking 

( ) ( )0sup , .
L U

L U
x x x

W x h x xαα
≤ ≤

 
= > 

 
  

4.2.2. The Nair Precision Equal Bands 
Using a weighted Brownian bridge will notably modify the bounds to IC. For 

( )0,1α ∈ , [ ],L Ut t t∈  and all { }1, ,j m∈  , they are then given by: 
( ) ( ) ( ) ( )

*
ˆ ˆ, ,

t

jj
n L U S

S t e x xα σ ∗∗ ±                    (18) 

where ( ),L Ue x xα  satisfies 

( )
( )

( )
0

sup , .
1L U

L U
x x x

W x
e x x

x x
αα

≤ ≤

 
 = >
 − 

  
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If we compare (12) and (14), we see that the bounds relating to Nair ([25]) 
bands are proportional to the bounds IC and simply correspond to a risk 
adjustment threshold used in the past. 

5. Conclusions and Perspectives 

In this paper we have studied the asymptotic normality of Nelson-Aalen and 
Kaplan-Meier type estimators in the presence of independent right-censorship 
as defined in Njamen and Ngatchou ([10], [11]) and Njamen [12] using 
Robelledo’s theorem that allows applying the central limit theorem to certain 
types of particular martingales. From the results obtained, confidence bounds 
for the hazard and the survival functions are provided. 

As a perspective, obtaining actual data would allow us to perform numerical 
simulations to gauge the robustness of our obtained estimators. 
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Abstract 
In our previous paper [1], we proposed a non-standardization of the concept 
of convolution in order to construct an extended Wiener measure using non-
standard analysis by E. Nelson [2]. In this paper, we consider Ito’s integral 
with respect to the extended Wiener measure and extend Ito’s formula for 
Ito’s process. Because of doing the extension of Ito’s formula, we could treat 
stochastic differential equations in the sense of nonstandard analysis. In this 
framework, we need the nonstandardization of convolution again. It was not 
yet proved in the last paper, therefore we shall provide the proof.  
 

Keywords 
Ito’s Process, Stochastic Differential Equation, S-Continuity, Nonstandard 
Analysis 

 

1. Introduction 

As for an analysis of stochastic differential equations driven by extended Wiener 
process in the sense of nonstandard analysis, we need to extend “Ito’s formula” 
for Wiener process or Ito’s process. In the previous paper, we extended a 
concept of convolution in Fourier series to the case of nonstandard analysis. 
According to the result, we shall extend some theorems in probability theory, for 
example, the law of large numbers and the central limit theorem, and shall 
reconstruct Ito’s formula by using nonstandard analysis. We shall give the proof 
of the reconstruction of Ito’s formula in the case that the convolution of 
probability density which functions in a nonstandard extension is convergent for 
some functional ( )( ),F t X t  of Ito’s process ( )X t . The problem was not 
solved still now. 

If the convolution is not convergent, what kind of problem does it occur? In 
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Taylor expansion of ( ),F t X , the higher terms may not vanish. Then, Ito’s 
formula does not be established. As to what we shall give extended law of large 
numbers and extended central limit theorem, they will be provided precisely in 
the next paper. 

2. Ito’s Integral for Extended Wiener Process in  
Nonstandard 

In our previous paper [1], we showed that Fourier series can be described by the 
convolution in nonstandard analysis, then the series of i.i.d. random variables 
using Loeb measure [3] converges in 2L  sense under some moment condition. 
Therefore, the definition of stochastic integral in classical probability theory can 
be extended by the way of nonstandard analysis [4], [5]. 

Furthermore, we need to prove some laws of large numbers for i.i.d. random 
variables to show the convergence to a stochastic integral. 

In fact, we use an extended concept of the convolution to investigate the 
expectation or the distribution of series of i.i.d. random variables for the 
nonstandardization of the law of large numbers. 

In order to prove the convergence of sums of higher order of kW∆  such as 
( ) ( )3 5, ,k kW W∆ ∆ 

 in the proof of Ito formula, we need to extend the law of 
large numbers for kW∆  in the sense of nonstandard. 

From the above discussion, we shall define the stochastic integral in 
nonstandard analysis. 

Let t∆  be the infinitesimal and 
TN

t
=
∆

. The extended Winer process is 
defined as follows. 

Definition 2.1. Let , 0t
tN t T
t

= ≤ ≤
∆

 and TN N= . Assume that a sequence 

of i.i.d. random variables { }, 1, ,kW k N∆ =   has the distribution  

{ } { } 1
2k kP W t P W t∆ = ∆ = ∆ = − ∆ =                  (1) 

for each 1, ,k N=  . An extended Wiener process ( ){ }, 0W t t ≥  is defined by  

( )
1

, 0 .
tN

k
k

W t W t T
=

= ∆ ≤ ≤∑                       (2) 

Ito’s integral (stochastic integral) in the nonstandard sense is defined as 
follows. 

Definition 2.2. Let ( ){ },0W t t T≤ ≤  be an extended Wiener process. Assume 
that an adapted process ( ){ },0t t Tσ ≤ ≤  with respect the Wiener process 

( )W t  is defined by  

( ) 1, , 0,1, , ,k k kt Y t t t k Nσ += ≤ < =                   (3) 

where , 0,1, ,kt k t k N= ∆ =   and each kY  is measurable with respect to 

( ){ },0 kW t t t≤ ≤ . Assume that  
2 , 1.kE Y k  < ∞ ≥                           (4) 
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A stochastic integral in nonstandard analysis is defined by  

( ) ( ) 10
1

d ,
NT

k k
k

t W t Y Wσ −
=

= ∆∑∫                     (5) 

where 0Y  is independent of ( ){ }, 0W t t ≥  { }, 1, ,kW k N∆ =   is a sequence of 
i.i.d. random variables with the distribution  

{ } { } 1 .
2k kP W t P W t∆ = ∆ = ∆ = − ∆ =               (6) 

Remark 1. In classical (standard) probability theory, Ito’s integral 
( ) ( )

0
d

T
t W tσ∫  is well defined under the condition of the existence of the 

variance of ( )tσ  for each 0 t T≤ ≤ . In nonstandard analysis, the convergence 
of the series in (5) may not be ensured. On the other hand, take note that we 
have already given some sufficient conditions for the convergence of the 
convolution in Fourier series. See [1]. 

3. Proof of Ito’s Formula for Extended Wiener Process in  
Nonstandard 

From the concept of Ito’s integral for the extended Wiener process, we provide 
Ito’s formula for the extended Wiener process. 

Theorem 3.1. Let ( ),F t x  be of 3C . Assume that the condition (4) is 
satisfied, then we have the following for the extended Wiener Process ( )W t . 
For any 0T ≥ ,  

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( )
0

0 0

, 0, 0 , d

1, d , d .
2

T
t

T T
x xx

F t W T F W F t W t t

F t W t W t F t W t t

= +

+ +

∫

∫ ∫
       (7) 

Proof. 

( )( ) ( )( )
( )( ) ( )( ) ( ) ( ){ }

( )( )( ) ( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ } ( )( )( )

2

2 3

, ,

, ,

1 , ,
2
1 1, ,
2 3!

t x

tt tx

xx ttt

F t t W t t F t W t

F t W t t F t W t W t t W t

F t W t t F t W t t W t t W t

F t W t W t t W t F t W t t

+ ∆ + ∆ −

= ∆ + + ∆ −

+ ∆ + ∆ + ∆ −

+ + ∆ − + ∆

 

( )( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

2

2

3

3 ,
3!
3 ,
3!
1 ,
3!

ttx

txx

xxx

F t W t t W t t W t

F t W t t W t t W t

F t W t W t t W t

+ ∆ + ∆ −

+ ∆ + ∆ −

+ + ∆ − +

                    (8) 

Put  

, , 0,1, , 1,k
TN t k t k N

t
 = = ∆ = − ∆ 

  

( ) ( )1 , 0,1, , 1k k kW W t W t k N−∆ = − = −  
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and 

( ) ( )1N NW W T W t −∆ = −  

then, 

( )( ) ( )( )

( )( ) ( )( )

( )( )( ) ( )( )

( )( ) ( )( )( )

( )( )( ) ( )( )( )

1 1 1 1
1 1

2
1 1 1 1

1 1

3
1 1 1 1

1 1

2 2

1 1

, 0, 0

, ,

1 , ,
2

1 1, ,
2 3!

3 3, ,
3! 3!

N N

t k k x k k k
k k

N N

tt k k tx k k k
k k

N N

xx k k ttt k k
k k

N N

ttx k k k txx k k
k k

F t W T F W

F t W t t F t W t W

F t W t t F t W t t W

F t W t t F t W t t

F t W t t W F t W t t

− − − −
= =

− − − −
= =

− − − −
= =

= =

−

= ∆ + ∆

+ ∆ + ∆ ∆

+ ∆ + ∆

+ ∆ ∆ + ∆

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

( )( )

( )( ) ( )( ) ( )

( )( ){ } ( )( ) ( ){ }
( )( ) ( ) ( )( ){ }

( )( ) ( ){ } ( )( ){ }

1

0 0

0 0

2
0 0

0 0

1 ,
3!

, d , d

1 , d , d
2
1 1, d , d
2 3!
3 3, d , d
3! 3!

N

xxx k k k
k

T T
t x

T T
tt tx

T T
xx ttt

T T
ttx txx

F t W t t W

F t W t t F t W t W t

F t W t t t F t W t W t t

F t W t t t F t W t t

t F t W t W t t F t W t t

=

+ ∆ ∆ +

= +

+ ∆ + ∆

+ + ∆

+ ∆ + ∆

∑

∫ ∫

∫ ∫

∫ ∫

∫ ∫



 

( )( ) ( ){ }
( )( ) ( )( ) ( )

( )( )

0

0 0

0

1 , d
3!

, d , d

1 , d
2

T
xxx

T T
t x

T
xx

t F t W t W t

F t W t t F t W t W t

F t W t t

+ ∆ +

= +

+

∫

∫ ∫

∫



                      (9) 

4. Proof of Ito’s Formula for Ito’s Process in Nonstandard 

Let ( )X t  be Ito’s process defined by  

( ) ( ) ( ) ( )0 0 0
d d , 0

t t
X t X b s s s W s t Tσ= + + ≤ ≤∫ ∫            (10) 

where ( )b s  and ( )sσ  are adapted processes with respect to a Wiener process 
( )W t . Then, we have Ito’s formula for the Ito’s process. 
Theorem 4.1. Let ( ),F t x  be of 3C , then we have the following. For any 

0T ≥ ,  

( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( )

0

0 0

2

0

, 0, 0 , d

, d , d

1 , d .
2

T
t

T T
x x

T
xx

F t X T F X F t X t t

F t X t b t t F t X t t W t

F t X t t t

σ

σ

= +

+ +

+

∫

∫ ∫

∫

    (11) 

Proof. We provide the proof by using nonstandard analysis.  
From the Taylor expansion for the two-dimensional function ( )( ),F t X t , we 
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have the following.  

( )( ) ( )( )
( )( ) ( )( ) ( ) ( ){ }

( )( )( ) ( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ } ( )( )( )

2

2 3

, ,

, ,

1 , ,
2
1 1, ,
2 3!

t x

tt tx

xx ttt

F t t X t t F t X t

F t X t t F t X t X t t X t

F t X t t F t X t t X t t X t

F t X t X t t X t F t X t t

+ ∆ + ∆ −

= ∆ + + ∆ −

+ ∆ + ∆ + ∆ −

+ + ∆ − + ∆

 

( )( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

2

2

3

3 ,
3!
3 ,
3!
1 ,
3!

ttx

txx

xxx

F t X t t X t t X t

F t X t t X t t X t

F t X t X t t X t

+ ∆ + ∆ −

+ ∆ + ∆ −

+ + ∆ − +

                   (12) 

In nonstandard analysis, we can represent the Ito’s process ( )X t  for the 
extended Wiener process by 

( ) ( ) ( ) ( )

( ) ( )

0 0 0

0 1 1
1 1

d d

, 0 ,

t t

N N

k k k
k k

X t X b s s s W s

X b t t t W t T

σ

σ− −
= =

= + +

= + ∆ + ∆ ≤ ≤

∫ ∫

∑ ∑
        (13) 

where for infinitesimal t∆   

, , 0,1, ,k
TN t k t k N

t
 = = ∆ = ∆ 

  

and  
( ) ( )1 , 0,1, , .k k kW W t W t k N−∆ = − =   

Therefore, the difference of ( )X t  can be represented by the following,  

( ) ( ) ( ) ( )1 1 1 .k k k k k kX X t X t b t t t Wσ− − −∆ = − = ∆ + ∆         (14) 

On the other hand,  

( ) ( )2 . .n n
kW t a s∆ = ∆  

for each 1n ≥  from (1). 
Thus, we have the following. 

( )( ) ( )( )
( )( ) ( )( )

( )( )( ) ( )( )

( )( ){ } ( )( )( )

1 1 1 1
1 1

2
1 1 1 1

1 1

2 3
1 1 1 1

1 1

, 0, 0

, ,

1 , ,
2
1 1, ,
2 3!

N N

t k k x k k k
k k

N N

tt k k tx k k k
k k
N N

xx k k k ttt k k
k k

F t X T F X

F t X t t F t X t X

F t X t t F t X t tXW

F t X t X F t X t t

− − − −
= =

− − − −
= =

− − − −
= =

−

= ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆

∑ ∑

∑ ∑

∑ ∑

 

 

( )( )( ) ( )( ) ( )

( )( )( )

( )( )

22

1 1

3

1

1 1
1

3 3, ,
3! 3!
1 ,
3!

,

N N

ttx k k k txx k k k
k k
N

xxx k k k
k

N

t k k
k

F t X t t X F t X t t X

F t X t X

F t X t t

= =

=

− −
=

+ ∆ ∆ + ∆ ∆

+ ∆ +

= ∆

∑ ∑

∑

∑

  
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( )( ) ( ) ( ){ }

( )( )( )

( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

( )( )( )

1 1 1 1
1

2
1 1

1

1 1 1 1
1

2
1 1 1 1

1

3
1 1

1

,

1 ,
2

,

1 ,
2

1 ,
3!

N

x k k k k k
k

N

tt k k
k

N

tx k k k k k
k

N

xx k k k k k
k

N

ttt k k
k

F t X t b t t t W

F t X t t

F t X t t b t t t W

F t X t b t t t W

F t X t t

σ

σ

σ

− − − −
=

− −
=

− − − −
=

− − − −
=

− −
=

+ ∆ + ∆

+ ∆

+ ∆ ∆ + ∆

+ ∆ + ∆

+ ∆

∑

∑

∑

∑

∑

 

( )( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

2
1 1

1

2
1 1

1

3
1 1

1

0 0

2

0 0

3 ,
3!

3 ,
3!

1 ,
3!

, d , d

1, d , d
2

N

ttx k k k k k
k

N

txx k k k k k
k

N

xxx k k k k k
k

T T
t x

T T
x xx

F t X t t b t t t W

F t X t t b t t t W

F t X t b t t t W

F t X t t F t X t b t t

F t X t t W t F t X t t t

σ

σ

σ

σ σ

− −
=

− −
=

− −
=

+ ∆ ∆ + ∆

+ ∆ ∆ + ∆

+ ∆ + ∆ +

= +

+ +

∑

∑

∑

∫ ∫

∫ ∫

            (15) 

Thus we prove Ito’s formula for the extended Ito’s process. 
Remark 2. Let 1 2, , , nX X X  be independent random variables with density 

functions 1 2, , , nf f f , respectively. Then, the distribution of 
1

n

k
k

X
=
∑  can be 

represented by convolution 1 2 nf f f∗ ∗ ∗ . In standard analysis, for the Fourier 
transform of the convolution 

( ) ( )1 2
1

n

n k
k

f f f f
=

∗ ∗ ∗ =∏                    (16) 

is established, where ( )kf  is the Fourier transform of kf . 
From our previous paper [1], the result can be extended in the sense of 

nonstandard. See pp.976. Therefore, it is applied for the extension of limit 
theorems as like central limit theorem, law of large numbers and so on. 

5. Conclusions 

In classical (standard) probability theory, the stochastic integral  

( ) ( )
0

d
T

t W tσ∫                         (17) 

is defined under the condition of the existence of the variance of ( )tσ  for each 
0 t T≤ ≤ . In nonstandard analysis, the convergence of the series in (5) is proved 
from the above arguments. On the proof of Ito’s formula, it can be applied for 
other estimations as the same way. 

Furthermore, the proof of Ito’s formula in nonstandard analysis becomes 
simple rather than the proof in standard one. 
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Abstract 
The purpose of this work is to identify the universality class of the nonequili-
brium phase transition in the two-dimensional kinetic Ising ferromagnet dri-
ven by propagating magnetic field wave. To address this issue, the finite size 
analysis of the nonequilibrium phase transition, in two-dimensional Ising 
ferromagnet driven by plane propagating magnetic wave, is studied by Monte 
Carlo simulation. It is observed that the system undergoes a nonequilibrium 
dynamic phase transition from a high temperature dynamically symmetric 
(propagating) phase to a low temperature dynamically symmetry-broken 
(pinned) phase as the system is cooled below the transition temperature. This 
transition temperature is determined precisely by studying the fourth-order 
Binder Cumulant of the dynamic order parameter as a function of tempera-
ture for different system sizes (L). From the finite size analysis of dynamic 

order parameter ( ~LQ L
β
ν

−
) and the dynamic susceptibility ( ~Q

L L
γ
νχ ), we 

have estimated the critical exponents 0.146 0.025β ν = ±  and 
1.869 0.135γ ν = ±  (measured from the data read at the critical temperature 

obtained from Binder cumulant), and 1.746 0.017γ ν = ±  (measured from 
the peak positions of dynamic susceptibility). Our results indicate that such 
driven Ising ferromagnet belongs to the same universality class of the 
two-dimensional equilibrium Ising ferromagnet (where 1 8β ν =  and 

7 4γ ν = ), within the limits of statistical errors.  
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1. Introduction 

The driven Ising ferromagnet shows interesting nonequilibrium phase 
transitions [1] [2]. This time dependent drive may be of two kinds: 1) an applied 
magnetic field which is oscillating in time and uniform over the space at any 
particular instant, 2) the applied magnetic field has a spatio-temporal variation 
which may be the type of propagating or standing magnetic field wave. The first 
kind of driving magnetic field has drawn much attention to the researchers and a 
considerable volume of studies is done in this direction, in last two decades. 
Here, a few of those may be mentioned as follows: 1) the critical slowing down 
and the divergence of the specific heat near the dynamic transition temperature 
[3], 2) the divergence of the fluctuations of the dynamic order parameter [4], 3) 
the growth of critical correlation near the dynamic transition temperature [5]. 
These studies are an integrated effort to establish that the nonequilibrium 
transition in kinetic Ising ferromagnet driven by oscillating magnetic field is 
indeed a thermodynamic phase transition. 

The nonequilibrium phase transitions in other magnetic models (e.g., Blume- 
Capel, Blume-Emery-Griffiths models etc.) driven by oscillating (in time but 
uniform over the space) magnetic field have been studied [6] [7] [8] also in last 
few years to present some interesting nonequilibrium behaviors. The nonequili- 
brium phase transitions were studied in [9] [10] [11] [12] [13] mixed spin 
systems driven by oscillating magnetic field, recently. 

The another kind of external drive may be the magnetic field with spatio- 
temporal variation. The prototypes of these spatio-temporal drives are propagating 
or standing magnetic field waves. In the last few years, a number of investigations, 
on the nonequilibrium phase transitions in Ising ferromagnet driven by 
propagating and standing magnetic field wave, are done [14] [15] [16] [17] [18] 
through Monte Carlo methods. Here, the essential findings are the nonequilibrium 
phase transitions between two phases, namely, the low temperature ordered 
pinned phase (where the spins do not flip) and a high temperature disordered 
phase where a coherent propagation (in the case of propagating magnetic field 
wave) or coherent oscillation (in the case of standing magnetic field wave) of 
spin bands are observed. The transitions are marked by the divergences of 
dynamic susceptibility near the transition point. 

However, the detailed finite size analyses were not yet performed to know the 
universality class of this nonequilibrium phase transition observed in Ising 
ferromagnet driven by propagating magnetic field wave. This is the key issue of 
the present study. 

In this paper, we have investigated the nonequilibrium behaviour and the 

finite size effect of spin-
1
2

 Ising ferromagnet under the influence of propagating 

magnetic wave by Monte Carlo methods. The paper is organized as follows: The 
model and the MC simulation technique are discussed in Section II, the 
numerical results are reported in Section III and the paper ends with a summary 
in Section IV. 
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2. Model and Simulation 

The time dependent Hamiltonian of a two dimensional driven Ising ferromagnet 
is represented by,  

( ) ( ) ( ) ( ) ( ), , , , , , , , .z z z zH t J s x y t s x y t h x y t s x y t′ ′ ′= − ΣΣ −Σ        (1) 

Here ( ), , 1zs x y t = ± , is the Ising spin variable at lattice site ( ),x y  at time t. 
The summation ′Σ  extends over the nearest neighbour sites ( ),x y′ ′  of a given 
site ( ),x y . ( )0J >  is the ferromagnetic spin-spin interaction strength between 
the nearest neighbour pairs of Ising spins. For simplicity, we have considered the 
value of J to be uniform over the whole lattice. The externally applied driving 
magnetic field, is denoted by ( ), ,zh x y t , at site ( ),x y  at time t. ( ), ,zh x y t  
has the following form for propagating magnetic wave,  

( ) 0, , cos 2z xh x y t h ft
λ

  = π −  
  

                   (2) 

Here 0h  and f represent the field amplitude and the frequency respectively of 
the propagating magnetic wave, whereas λ  represents the wavelength of the 
wave. The wave propagates along the X-direction through the lattice. 

An L L×  square lattice of Ising spins is taken here as a model system. The 
boundary conditions applied at both directions are periodic which preserve the 
translational invariances in the system. Using Monte Carlo Metropolis single 
spin flip algorithm with parallel updating rule [19], the dynamics of the system 
are simulated. The initial state of the system is chosen as the high temperature 
random disordered phase, in which, at any lattice site, both the two states (±1) of 
the Ising spins have equal probabilities. The system is then slowly cooled down 
to any lower temperature T and the dynamical quantities are calculated. The 
Metropolis probability [19] of single spin flip at temperature T is given by,  

( ) ( )( ) min exp ,1z z

i f
B

EW s s
k T

  −∆
→ =   

   
              (3) 

where E∆  is the energy change due to spin flip from i-th state to f-th state and 

Bk  is the Boltzman constant. In a chosen configuration, the probability of 
flipping of each spin is calculated from the above rule. Then prepared a list of 

2L  such values of probability of flipping. On the other hand, a list of 2L  
random fraction (collected from a uniformly distributed random numbers) is 
prepared, keeping in mind that each random fraction is associated to the 
probability of flipping of each spin. The spins are flipped simultaneously where 
the probability of flipping exceeds (or equal to) the random fraction. This is so 
called parallel updating of spins. Such parallel updating of 2L  spin states in an 
L L×  square lattice constitute the unit time step and is called Monte Carlo Step 
per Spin (MCSS). The applied magnetic field and the temperature are measured 
in the units of J and BJ k  respectively. The choices of such units of applied 
magnetic field and the temperatures are very common in the literatures [19] of 
the simulation of the Statistical Mechanics of Ising ferromagnet in the presence 
of magnetic field. 
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3. Results 

The nonequilibrium behaviour of the two dimensional Ising ferromagnet is 
studied here in L L×  square lattices of different sizes (L) where a propagating 
magnetic wave is passing through the system. The frequency (f) of magnetic field 
oscillation, wavelength ( λ ) of the magnetic wave and the amplitude ( 0h ) of field 
strength are kept constant throughout the present study. These constant values 
are respectively ( ) 10.01 MCSSf −= , 16λ =  lattice units and 0 0.3h J= . For 

0.01f = , 100 MCSS is required for a complete time cycle. 
Since we have chosen the values of L in the multiple of 16, the wavelength 

16λ =  is a reasonable choice. In this case, the smallest system will contain a full 
wave. The frequency, 0.01f = , is chosen to have the adequate number of cycles, 
of the propagating magnetic field, to get a reasonable average value. The choice 
of the amplitude 0 0.3h J=  is just to keep the nonequilibrium phase transition 
in the higher temperature range. 

The finite size effect is studied by taking into account four different system 
sizes (within the limited computational facilities available) such as L = 16, 32, 
48 and 128. The system (for any fixed value of L) has been cooled down in 
small steps ( 0.005 BT J k∆ = ) from high temperature phase, i.e. the dynamical 
disordered phase, to reach any dynamical steady state at temperature T. The 
dynamical quantities are calculated when the system has achieved the 
nonequilibrium steady state. For this we have kept the system in constant 
temperature for a sufficiently long time; 12,000 (for 128L = ) to 32,000 (for 

16L = ) cycles of magnetic oscillations and discarding the initial (or transient) 
1000 cycles and taking average over the remaining cycles. We have detected a 
dynamical phase transition from high temperature symmetric propagating (spin 
bands) phase to low temperature symmetry-broken pinned phase. The dynamic 
Order parameter for the phase transition is defined as the average magnetisation 
per spin over a full cycle of external magnetic field, i.e.  

( )d ,Q f M t t= × ∫                        (4) 

where ( )M t  is the value of instantaneous magnetisation per spin at time t 
which can be obtained as  

( ) ( )
2

2
1

1 , ,
L

z

i
M t s x y t

L =

= ∑                     (5) 

At very high temperature, the flipping probability of the spin, is quite high 
alongwith the oscillation of the magnetic field. As a result the value of the 
instantaneous magnetisation is almost close to zero. Consequently, by definition, 
the value of the dynamic order parameter is very small, thus identifying the 
dynamically disordered propagating phase ( 0Q = ) (see Figure 1(b)). It may be 
noted here, that the instantaneous magnetisation fluctuates symmetrically about 
zero (see Figure 1(d)). Hence, this may be characterised as a dynamically 
symmetric phase. As the system is cooled down below the critical temperature, 
which depends on the value of magnetic field strength, the flipping probability of  
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Figure 1. The lattice morphologies of the (a) pinned phase and (b) propagating phase respectively at time 39937 MCSSt =  for 

64L = . The dynamical symmetry breaking (change in the value of average magnetisation per spin from non-zero to nearly zero 
value); (c) at temperature 1.8T =  and (d) at temperature 2.5T = . The value of the amplitude of the field is 0 0.3h =  in all 
cases. 

 
the spin gets reduced; also the magnetic field strength may not be adequate to 
flip the spins and the spins are locked or pinned in a particular orientation 
giving rise to a large and nearly steady value of average magnetisation. This 
phase is identified as the dynamically ordered or pinned phase ( 0Q ≠ ) (see 
Figure 1(a)). Unlike, the dynamically symmetric phase (mentioned above), 
here the instantaneous magnetisation varies asymmetrically about zero (see 
Figure 1(c)). So, this may be called a dynamically symmetry broken phase. The 
variation of the order parameter for the dynamic phase transition (DPT) for four 
different system sizes are shown in Figure 2(a). 

The dynamical critical point is determined with high precision by studying 

the thermal variation of fourth order Binder cumulant ( ( )
4

22
1

3
L

L

L

Q
U T

Q
= − ) of 

dynamic order parameter Q for different system sizes (L). Figure 2(b) shows the 
variation of the Binder Cumulant ( ( )LU T ) with temperature (T) for different 
values of L. From this figure we have determined the value of critical 
temperature as 2.011d BT J k= , which is the value of temperature where the  

https://doi.org/10.4236/am.2019.107040


A. Halder, M. Acharyya 
 

 

DOI: 10.4236/am.2019.107040 573 Applied Mathematics 
 

 
Figure 2. Temperature variation of different quantities for different values of linear 
system size L: (a) Order parameter Q; (b) Binder cumulant LU ; (c) scaled variance of 

order parameter varQ  or susceptibility Q
Lχ . 

 
Binder cumulants for different lattice sizes have a common intersection. Now it 
is known from the behaviour of the kinetic Ising model that the scaled variance 
of the dynamical order parameter may be regarded as the susceptibility of the 
system, which can be defined as follows:  

( )22 2 .Q
L L Q Qχ = −                        (6) 

Figure 2(c) shows the variation of the scaled variance with the temperature. 
As we see from the figure that the susceptibility gets peaked near the dynamical 
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transition temperature showing the tendency of divergence near dT , as the 
system size increases. Now we adopt the finite-size scaling analysis to determine 
the critical exponents for the two dimensional kinetic Ising ferromagnet driven 
by magnetic wave. For this reason we use the usual technique of expressing the 
measured quantities as a function of the system size. We assume the following 
scaling forms for the order parameter Q and susceptibility Qχ  at the critical 
temperature:  

LQ L β ν−∝                           (7) 

.Q
L Lγ νχ ∝                            (8) 

It has to be noted here that though we do not have any value measured at the 
critical temperature which has been determined (as common intersection) from 
the Binder cumulant versus temperature curves for different L, the values of Q & 

Qχ  have been read out from the respective graphs which represent the average 
values at any temperature. Moreover, the detailed investigations done previously 
[8], show that the above scaling forms are also applicable to classify the 
universality classes of the driven magnetic systems. Figure 3(a) shows the 
log-log plot of the dynamic order parameter LQ  as a function of the linear 
system size L at the dynamic transition temperature. The value of the critical 
exponent, as estimated from this simulational study, is 0.146 0.025β ν = ±  
for the dynamic order parameter. From the log-log plot Figure 3(b). of the 
susceptibility Q

Lχ  or the scaled variance of the order parameter Q
Lχ  as a 

function of linear system size L we obtained the estimate of the value of the 
critical exponent γ ν . The values are 1.869 0.135γ ν = ±  (using the data 
obtained at 2.011d BT J k=  from the respective graphs) and 1.746 0.017γ ν = ±  
(using the data obtained at the peak position of susceptibility). It is interesting to 
note that these estimated values of the critical exponents, for the two 
dimensional driven Ising ferromagnet, are very close to those of the two 
dimensional equilibrium Ising ferromagnet, which are 1 8 0.125β ν = =  and 

7 4 1.75γ ν = =  [20]. 

4. Summary 

In this study, we have mainly focused our attention on the finite size analysis 
and the critical aspects of the dynamic phase transition near the dynamic 
transition temperature of an L L×  square type Ising ferromagnet driven by 
propagating magnetic wave. We have taken four different sizes of square lattice 
(L = 16, 32, 64 and 128). We have simulated the results using Monte Carlo 
methods using the Metropolis single spin flip algorithm with parallel updating 
rules. Our findings suggest that, within the limits of statistical errors obtained in 
this study, the estimated values of the critical exponents near the dynamic 
transition temperature are very close to those for the two-dimensional equilibrium 
Ising ferromagnet. As concluding remarks, we state that the nonequilibrium  
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Figure 3. Log-log plot of (a) order parameter Q and (b) scaled variance varQ  or 
susceptibility Q

Lχ  as a function of linear system size L. In (b) red dots represent the value 
of susceptibility at dT  whereas blue triangles represent the same at peak positions. 

 
phase transition, observed in the two-dimensional Ising ferromagnet driven by 
magnetic field wave, belongs to the same universality class of equilibrium 
two-dimensional Ising equilibrium ferro-para phase transition. Recently, the 
nonequilibrium phase transition in the kinetic Ising model via the violation of 
principle of detailed balance was studied (Manoj Kumar and ChandanDasgupta, 
IISc, Bangalore) and estimated the exponents in close agreement with the 
present observations. 
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Abstract 
With the development of economy, more and more attention is paid to the 
relationship between money supply and inflation in the economic field. This 
paper chooses consumer price index (CPI) as an important index to measure 
the level of inflation, by choosing between January 2008 and March 2019 
money in circulation M0, narrow measure M1, broad measure M2, consumer 
price index CPI monthly data as sample, building a vector autoregressive 
(VAR) model and using econometric methods of impulse response function 
and variance decomposition, and finally characterizes money in circulation 
M0, narrow measure M1, broad measure M2 and the relationship between 
consumer price index CPI and different sizes of the impact of inflation in the 
money supply relationship. 
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1. Introduction 

With the continuous development of China’s economy, indicators such as gross 
national product, consumer price index and money supply have been important 
indicators to judge the state of macroeconomic development. Consumer price 
index (cpi) [1] is an indicator to measure and judge deflation and inflation. And 
the control of money circulation has become particularly important, through the 
control of money circulation will directly affect inflation, affect the development 
of the whole economy. The influence of money supply on inflation is higher 
than that of fiscal deficit on inflation. The relationship between fiscal stimulus 
plan, money supply, public expectation and inflation, and finally the money 
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supply is the most important factor affecting inflation mainly in [2] [3]. There is 
a close relationship between money supply and inflation. There is no inflation in 
their short term, but we should also guard against the pressure brought by stag-
flation. Yang Zihui et al. [4] studied the directed acyclic graph and found that 
the fiscal deficit had a certain impact on inflation but was not the most impor-
tant one. Somethings can be inspected in [4] [5]. And the money supply has a 
strong asymmetric influence on CPI and does not depend on the state of the 
economy. Inflation is closely related to China’s monetary policy [6] and asset in-
flation. This paper is based on the VAR model to show that the impact of differ-
ent money supply on inflation is different. 

2. Materials and Methods 
2.1. The VAR Model 

Vector autoregression (VAR) [7] is to establish a model based on the statistical 
properties of data. The VAR model constructs the model by taking each endo-
genous variable in the system as the lagged value function of all endogenous va-
riables in the system, thus extending the univariate autoregressive model to the 
“vector” autoregressive model composed of multivariate time series variables. 

In 1980, C. A. Sims introduced VAR model into economics, promoting the 
wide application of dynamic analysis of economic system. The mathematical ex-
pression of VAR (P) model is:  

1 1 , 1, 2, ,t t p t p t ty y y Hx t Tε− −= Φ + +Φ + + =             (1) 

ty  is the column vector of endogenous variables in k dimension, tx  is the 
column vector of exogenous variables in d dimension, p is the lag order, and T is 
the number of samples. k k×  dimensional matrix 1, , pΦ Φ  and k d×  di-
mensional matrix H are coefficient matrices to be estimated. tε  is a k dimen-
sional disturbance column vector, which can be correlated with each other syn-
chronously, but not with its own lag value and not with the variables on the 
right-hand side of the equation.  

2.2. Granger Causality Test 

Proposed by Granger (1969) [7], another important application of VAR model is 
to analyze the causal relationship between economic time series variables. Gran-
ger solved the problem of whether x caused y, mainly looking at the extent to 
which the present y could be explained by the past x, and whether the addition 
of the lag value of x improved the explanation degree. If x is helpful in y predic-
tion, or if the correlation coefficient between x and y is statistically significant, it 
can be said that “y is caused by x Granger”. 

Consider the mean square error (MSE) of the march period prediction: 

( )2

1

1 ˆMSE
s

t i t i
i

y y
s + +

=

= −∑                     (2) 

This can be expressed as follows: if the mean square error obtained by pre-
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dicting t sy +  based on ( )1, ,t ty y −   for all 0s >  is the same as the mean 
square error obtained by t sy +  based on both ( )1, ,t ty y −   and ( )1, ,t tx x −  , 
then y is not caused by x Granger. 

2.3. Impulse Response Function 

Vector autoregression model (VAR) [8] is a non-theoretical model, so it is not 
necessary to analyze the mutual influence between its variables when it is ana-
lyzed, but the impact on the explained variable when it is impacted by an error 
term. Therefore, for the VAR model, it is difficult to explain the economic value 
of a single parameter estimate. In addition to prediction, an important aspect of 
its application is the dynamic characteristics of the system, that is, the response 
of an endogenous variable to residual shock (response). The impulse response 
function can be used to describe the impact of the random error on the current 
and future values of endogenous variables. 

First i endogenous variable of an impact not only directly affect the first i va-
riable, and pass through the dynamic structure of the VAR model to other en-
dogenous variables, impulse response function attempts to depict the influence 
of trajectory, shows how an arbitrary variable disturbance affect all other va-
riables through model, finally and feedback to the process itself. 

2.4. Variance Decomposition 

In 1980 [8], Sims proposed the variance decomposition method according to the 
expression of VAR (∞ ), and provided the influencing relationship between va-
riables in the VAR model:  

( ) ( ) ( ) ( )( )0 1 2 3
1 2 3

1
, 1, 2, , ; 1, 2, ,

k

it ij jt ij jt ij jt ij jt
j

y i k t Tθ ε θ ε θ ε θ ε− − −
=

= + + + + = =∑     (3) 

( ) ( )( )2

1 0
, 1, 2, ,

k
q

i ij jj
j q

Var y i kθ σ
∞

= =

 
= = 

 
∑ ∑              (4) 

We know that the contents of the brackets are the sum of the influences of the 
j disturbance term jε  from the infinite past to the present time point on iy . 

In this paper, the consumer price index (CPI) cover 8 types of goods and ser-
vices consumed nationwide, and the calculation formula of CPI is 

n

1
i i

i
CPI CPI Weight

=

= ×∑  

3. Empirical Analysis 
3.1. Data Preprocessing 

Data are derived from Wind database. Figures 1-4 are the sequential trend 
charts of CPI, M0, M1 and M2 from January 2008 to March 2019. As the ob-
served trend charts are not stable, the stationarity of unit root test series is fur-
ther adopted. 
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Figure 1. CPI trend chart. 

 

 
Figure 2. M0 trend chart. 

 

 
Figure 3. M1 trend chart. 

 

 
Figure 4. M2 trend chart. 
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3.2. Stationarity Test 

In this paper, ADF unit root test was adopted to test the stationarity of the orig-
inal sequence. The test results are shown in Table 1. By observing Table 1, CPI, 
M0, M1 and M2 sequences failed the stationarity test. 

Therefore, the first-order difference is carried out for the above sequences, 
and then the unit root test is carried out for the new sequences. The obtained 
results are shown in Table 2, and the new sequences after the first-order differ-
ence have been stabilized. 

3.3. Order Determination and Stability Test of the Model 

As can be seen from Table 3, the likelihood ratio (LR) is an indicator reflecting 
authenticity, which is a compound indicator reflecting both sensitivity and spe-
cificity. The final prediction error statistic (FPE) is a tool that provides predic-
tion accuracy and high imitation, as well as a more general prediction checking 
capability. DCPI, DM0, DM1 and DM2 are first-order integral sequences, so 
they can be judged according to the results of LR test statistics, final prediction 
error (FPE), AIC information criterion, SC information criterion and HQ in-
formation criterion, and there are enough lag terms and enough degrees of 
freedom at the same time. According to the results in Table 3, the optimal order 
of the VAR model is finally selected as order 2. By using EViews7.2 to establish 
the VAR (2) model, the vector autoregression expression about CPI can be ob-
tained as follows:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

6.4339 05 0 1 3.4488 05 0 2

0.1177 1 0.080 2

4.9877 05 1 1 1.9733 05 1 2

3.8129 07 2 1 3.6004 06 2 2 0.0062

DCPI e DM e DM

DCPI DCPI

e DM e DM

e DM e DM

= − ∗ − + − ∗ −

+ ∗ − + ∗ −

+ − ∗ − + − ∗ −

− − ∗ − − − ∗ − −

 

 
Table 1. ADF test results of CPI, M0, M1 and M2 sequences. 

Variable 
ADF 
test 

value 

The critical 
value at 

the 1% level 

The critical 
value at 

the 5% level 

The critical 
value at the 
10% level 

P values Conclusion 

CPI −320194 −3.479656 −2.883073 −2.578331 0.9177 Non-stationary 

M0 −2.488793 −3.484653 −2.885249 −2.579491 0.1207 Non-stationary 

M1 0.225702 −3,480038 −2.883239 −2.578402 0.9733 Non-stationary 

M2 2.070928 −3.484653 −2.885249 −2.579491 0.9999 Non-stationary 

 
Table 2. ADF test results of DCPI, DM0, DM1 and DM2 sequences. 

Variable 
ADF 
test 

value 

The critical 
value at 

the 1% level 

The critical 
value at 

the 5% level 

The critical 
value at 

the 10% level 
P values Conclusion 

CPI −11.21752 −3.480038 −2.883239 −2.578420 0.0000 Non-stationary 

M0 −9.797663 −3.484653 −2.885249 −2.579491 0.0000 Non-stationary 

M1 −13.92312 −3.480038 −2.578420 −2.578420 0.0000 Non-stationary 

M2 −3.258272 −3.484653 −2.885249 −2.579491 0.0191 Non-stationary 
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Table 3. Delay order judgment results. 

 LogL LR FPE AIC SC HQ 

0 −4152.109 NA 2.62e+22 62.97134 63.05870 63.00684 

1 −4076.024 146.4052 1.05e+22 62.06097 62.49776* 62.23846 

2 −4048.308 51.65193* 8.83e+21* 61.88346* 62.66968 62.20294* 

Note: *represents the optimal lag order of the corresponding criterion; LR represents likelihood ratio statis-
tic; FPE represents the final prediction error statistic; AIC represents the chi information criterion statistics; 
SC represents Schwartz statistic; HQ represents the hannan-quinn information statistic. 

 
After the estimation of the model, the inverse roots of the AR characteristic 

polynomial of the model should be tested, and the AR root diagram and tables 
can be obtained, as shown in Figure 4 and Figure 5.  

According to Figure 5 and Table 4, the inverse roots of AR characteristic 
roots are all within the unit circle, and the overall stability of the model indicates 
that the VAR model composed of these indicators is effective, that is, there is a 
stable relationship between the money supply index and the inflation index. 

3.4. Granger Causality Test 

Granger causality test can further determine the causal relationship between 
each variable. The Granger causality test is conducted below, and the test results 
are shown in Table 5.  

According to the data in Table 5, at the significant level of 10%, there is a 
causal relationship between CPI and M0, M1 and M2, but it is not mutual. In-
stead, there is a one-way granger causal relationship, and the change of money 
supply is the cause of inflation. 

3.5. Impulse Response Function 

According to the impulse response diagram in Figure 6 and Figure 7, when M0 
increases, the CPI changes very little, indicating that M0 has a lag effect on CPI. 
In the 6th, 7th and 8th phases, CPI has a negative effect on M0, and reaches its 
maximum in the 9th phase. 

By observing the impulse response diagram in Figure 8, it can be concluded 
that the maximum value reached in the second phase produced a positive boost, 
and the negative effect was generated in the fifth phase, and the amplitude fluc-
tuation decreased and tended to be near the 0 value in the end. 

By observing the impulse response diagram in Figure 9, it can be concluded 
that in the first period, M2 had no effect on CPI, and the impulse response value 
was 0. After that, there was a negative impact in the fourth period, and then the 
fluctuation was gradually reduced until the response value approached 0. 

Variance Decomposition  
Figure 10 is the variance decomposition graph of CPI, which is used in the 

VAR model to analyze the contribution to the change of endogenous variables. 
In this paper, the contribution of M0, M1 and M2 to CPI is adopted in anova. In  
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Figure 5. AR root diagram of VAR (2) model. 

 

 
Figure 6. Impulse response of DCPI to DCPI. 

 

 
Figure 7. Pulse response of DCPI to DM0. 

 

 
Figure 8. DCPI impulse response to DM1. 
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Figure 9. Impulse response of DCPI to DM2. 

 

 
Figure 10. Variance decomposition. 

 
Table 4. AR root table of VAR model. 

Root Modulus 

0.343647 − 0.543592i 0.643106 

0.343647 + 0.543592i 0.643106 

−0.564894 0.564894 

−0.290970 − 0.442758i 0.529809 

−0.290970 + 0.442758i 0.529809 

0.505074 0.505074 

−0.272000 − 0.017187i 0.272543 

−0.272000 + 0.017187i 0.272543 

 
Table 5. Results of Granger causality test. 

The null hypothesis The F value Probability (P value) Conclusion 

DCPI is not the granger cause of DM0 0.810061 0.6670 Accept 

DCPI is not the granger cause of DM0 17.99314 0.0001 Refuse 

DCPI is not the granger cause of DM0 0.029371 0.9854 Accept 

DCPI is not the granger cause of DM0 40.54574 0.0000 Refuse 

DCPI is not the granger cause of DM0 3.940281 0.1394 Accept 

DCPI is not the granger cause of DM0 0.394868 0.0008 Refuse 
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the first period, CPI was only affected by itself. With the passage of time, the 
contribution rate of CPI itself is gradually decreasing and the contribution rate 
of money supply variance is steadily rising. 

4. Conclusions and Recommendations 

Through correlation analysis such as impulse response function and variance as 
impulse response function and variance decomposition, the following conclu-
sions can be drawn. 

It is observed that the cumulative effect values of the corresponding impulse 
response functions M0, M1 and M2 are greater than 0, and it can be concluded 
that the increase of M0, M1 and M2 will increase CPI. From the variance de-
composition, it can be concluded that contribution rate of different money 
supply to CPI is different. 

The impact of CPI is a certain lag, and the lag index M1 is the leading indica-
tor. Therefore, from the perspective of money supply, we should pay more 
attention to the change of M1 indicator, and then pay attention to the change of 
M2 indicator.  

However, there is a significant short-term relationship between China’s infla-
tion and money supply, and money supply has a significant impact on inflation. 
This relationship is very obvious in the short run. In the long run, the influence 
of money supply on inflation will gradually weaken and stabilize at a relative 
level, and the volatility will gradually stabilize. 

Therefore, it can be concluded that there is no inflation in China’s economy in 
a short time, but it does not mean that the economy will develop steadily in the 
future, and stagflation may occur. At the same time, the monetary policy also 
has some lag and limitations. Therefore, we should establish a preventive me-
chanism in advance, and constantly improve some fiscal policies, formulate re-
levant systems, laws and regulations, so as to avoid some adverse impacts 
brought by inflation. 
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Abstract 

Measles is a reemerging disease that has a devastating impact, especially 
among children under 5. In this paper, an SEIRS model is developed to inves-
tigate a possible outbreak among the population of children under 5 in the 
Sunyani Municipality. We consider waning immunity or loss of immunity 
among those who were vaccinated, which leads to secondary attacks among 
some in the population. Using Routh-Hurwitz criterion, Matrix Theoretic 
and Goh-Volterra Lyapunov functions, the stability of the model was investi-
gated around the equilibria. We have computed the threshold parameter, 0R , 
using the Next Generation Matrix method. The disease-free equilibrium is 
globally stable whenever 0 1R ≤  and unstable otherwise. The endemic equi-

librium is globally stable when 0 1R > . 
 

Keywords 

Global Stability, Lyapunov Function, Matrix Theoretic Method, Next  
Generation Matrix, SEIRS 

 

1. Introduction 

Measles, a recurrent virus infection has a short term outbreak but its impact is 
devastating especially among children under five. Severe measles results in 
pneumonia, which is the disease with high mortality rate in Ghana. Found in [1], 
the graphs show the mortality during an outbreak of measles. In this research 
paper, the authors looked at a case study of the dynamics of measles disease in 
the case of interrupted vaccination in Sunyani, a thriving metropolis in Ghana, a 
country where only 57% deliveries are handled by qualified health personnel [2]. 
In the Sunyani city and its immediate environs, new deliveries are commonly 
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done in the hospital, clinics and maternity homes but significantly some cases of 
new births are successfully done without the presence of qualified trained health 
practitioner, usually in their homes. The health program in Ghana makes it 
necessary for regular attendant mothers with newborns to vaccinate their 
children against the six childhood killer diseases including measles in any health 
facility. The first dose of MMR (mumps, measles, rubella) vaccine is given at 12 - 
13 months of age. The second dose is usually taken when the child is 3 years and 4 
months old. This can be taken in later years in the management of a disease 
outbreak. The irregular attendants do not successfully vaccinate their children 
against measles. New deliveries done outside a health facility make it difficult to 
track these children for vaccination. There are some children who missed the 
first and second doses, and there are some still who also missed the second dose 
because of irregularity in attending a health facility and for immigration, too [3]. 
There is also among the population a strong believe that MMR vaccines are 
leaving children with autism. Thereby, there are many who do not have a strong 
immunity against measles and many have their immunity wane in time. Their 
development of a strong immunity is interrupted so several children are 
susceptible to the disease and several still may have secondary infection. We seek 
to investigate the nature of a possible outbreak of measles in a population with 
dynamics such as this. Many researchers have studied the global dynamics of 
infectious diseases in general (see [4] [5]) while others also studied the dynamics 
of specific infectious diseases such as measles, chickenpox, mumps and rubella 
(see [6] [7]). In this paper, we also study the dynamics of measles with a relapse 
in a varying population where birth, death and immigration dynamics are 
considered. [8] [9] [10] studied the global stability of disease models and 
inculcated immigration and/or births and death dynamics into the population 
system. Again much work has already been done (see [11] [12]) defining what 
measles is and the symptoms and the effect of chronic infection of measles. It is 
mentioned that measles is severe among children under five (5) years.  

Mathematical models are strong instruments used extensively to study the 
spread and control of infectious diseases. One important measure that 
determines the dynamics of disease models is the threshold parameter known as 
basic reproductive number 0R . This parameter measures the number of infectives 
generated by a single infectious individual introduced into the susceptible 
population. In measuring the foregoing, researchers in recent literature use the 
NGM approach. When 0 1R ≤  (usually when the disease-free equilibrium exists) 
the introduction of infectious individual can not generate a large outbreak. On 
the other hand, when 0 1R > , (where the endemic equilibrium exists), the 
disease will persist in the population. [4] [13] have mentioned in their works that 
establishing global properties of dynamical systems using Lyapunov functions is 
not a trivial problem because there is no systematic procedure in constructing 
Lyapunov functions for infectious diseases. But one of the most successful 
procedures used to construct Lyapunov functions by many researchers is the  
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quadratic function of the form ( )2*
1

n
i ii c x x

=
= −∑  (see [14]) or the nonlinear 

Goh-Volterra function * *
*1 lnn

i ii

xc x x x
x=

 = − − 
 

∑  (see [15] [16]).  

In this paper, the matrix theoretic method, a type of Lyapunov function, is 
used to establish the stability in the disease free system. Later in this study, the 
Goh-Volterra method is used to establish the stability of the endemic 
equilibrium. [4] [17] used this matrix theoretic method to study the global 
dynamics of several specific disease models. 

2. The Model  

We consider a susceptible-exposed-infectious-recovered-susceptible (SEIRS) 
model with relapse since there is a vaccination parameter that provides a 
near-permanent immunity against the disease with non-negative initial conditions. 
E represents the number of latent(exposed) individuals, 0σ >  represents the 
rate at which the exposed individuals become infectious (i.e.) 1 σ  represents 
the average latent period. 0λ >  represents the rate at which the susceptible 
individual become immune and gain near-permanent immunity and 0γ >  also 
represents the rate at which the infectious individuals go through the successful 
treatment process of the disease. Near-permanent immunity because there exist 
a rate 0>  of the recovered individuals falling back into the susceptible 
compartment. It is considered that this R  individual have a waning immunity 
over time so they fall back susceptible to the infectious disease. Already, [18] 
studied the “Global Stability Results in an SVIR Epidemic Model with Immunity 
Loss Rate Depending on the Vaccine-Age” where it is assumed that the waning 
rate of vaccine-induced immunity is depending on the vaccine-age. α  
represents a vital dynamics-birth and immigration rates. The total number of 
new infections at a time t is given by SI Nβ . It is also considered that the 
natural immunity of some exposed individuals Eδ  moves them into the 
recovered population. While µ  is the natural death rate for the susceptible and 
recovered compartments, E Ekµ µ= +  and Ikτ µ= +  represent the death 
rates for the exposed and infected classes respectively.  

( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + +  is a growing population since births and 
immigration rates are added at any time t. The schematic diagram as shown in 
Figure 1 is drawn or developed to depict the interactions in the thriving 
metropolis, Sunyani of Ghana. The schematic diagram above in Figure 1 has the 
following as its system of equations;  

( )
( )

( )
( )

E E

E

S N R I N S

E SI N E

I E I

R I R S E

α µ β λ

β µ σ δ

σ τ γ

γ µ λ δ

′ = + − + +

′ = − + +

′ = − +

′ = − + + +





                   (1) 

3. Model Transformation & Analysis 

The total population size tN  can be determined by ( ) ( ) ( ) ( )N S t E t I t R t= + + +   
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Figure 1. Schematic diagram of the SEIRS model. 
 
or from the differential equation ( ) E IN N k E k Iα µ′ = − − − , which is derived 
by adding the equations in (1). Let s S N= , e E N= , i I N=  and 
r R N=  denote the fractions of the classes S, E, I and R in the population, 
respectively. Then for ( ) 2s N S S N N′ ′ ′= ⋅ − ⋅ , ( ) 2e N E E N N′ ′ ′= ⋅ − ⋅ , 

( ) 2i N I I N N′ ′ ′= ⋅ − ⋅  and ( ) 2r N R R N N′ ′ ′= ⋅ − ⋅  respectively, the 
following assignments are appropriate;  

( )( ) ( )( )

( ) ( )
( )( ) ( )( )

( )

2

2

2

E I

I E

E E E I

E E E I

N N R I N S S N k E k I
s

N
r s k si k se

N SI N E E N k E k I
e

N
si k e k e k ie

α µ β λ α µ

α α λ β

β µ σ δ α µ

β α σ δ

⋅ + − + + − ⋅ − − −
′ =

= + − + − − +

⋅ − + + − ⋅ − − −
′ =

= − + + + + +




 

( )( ) ( )( )

( )
( )( ) ( )( )

( )

2

2

2

E I

I E I

E E I

E E I

N E I I N k E k I
i

N
e k i k ei k i

N I R S E R N k E k I
r

N
i r s e k er k ir

σ τ γ α µ

σ α

γ µ λ δ α µ

γ α λ δ

⋅ − + − ⋅ − − −
′ =

= − + + +

⋅ − + + + − ⋅ − − −
′ =

= − + + + + +





     (2) 

From the transformation above, the following equations are derived 

( ) ( )
( )
( )
( )

2

2

I E

E E E I

I E I

E E I

s r s k si k se

e si k e k e k ie

i e k i k ei k i

r i r s e k er k ir

α α λ β

β α σ δ

σ α

γ α λ δ

′ = + − + − − +

′ = − + + + + +

′ = − + + +

′ = − + + + + +





               (3) 

subject to the restriction that 1s e i r+ + + = . Let us hereon refer to (3) as the 
full model. It is also worthy to note that the total population ( )N t  does not 
appear in Equation (2). We can attribute that to the homogeneity in the system 
(1). Also, since r appears in the first equation of the Equation (3), we substitute 

1r s e i= − − −  into the first equation to get:  
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( ) ( )
( )
( )

2

2

I E

E E E I

I E I

s s k si k se e i

e si k e k e k ie

i e k i k ei k i

α α λ β

β α σ δ

σ α

′ = + − + + − − + − −

′ = − + + + + +

′ = − + + +

   

            (4) 

so that we can focus our attention on the subsystem (4).  

( ) ( ) ( )
( )
( )

2

2

I E

E E E I

I E I

s s k si k se e i

e si k e k e k ie

i e k i k ei k i

α α λ β

β α σ δ

σ α

′ = + − + + − − + − −

′ = − + + + + +

′ = − + + +

   

           (5) 

The transformation has revealed some dynamics and interactions embedded 
in our model which is not intended to be measured in this study. Let us rewrite 
system (5) by making these substitutions; 1h α= +  ; 2h α λ= + +  , 

3 E Eh kα σ δ= + + + ; and 4 Ih kα= +  to obtain the system of equations:  

( )1 2

3

4

Is h h s k si
e si h e
i e h i

β
β
σ

′ = − − −

′ = −
′ = −

                      (6) 

For biological considerations we study the system (6) in the region  

( ){ }3, , | 0 1s e i s e i+Ω = ∈ℜ ≤ + + ≤  

It can be shown that Ω  is positively invariant. In the latter part of this study, 
we show that the transformed model (3) is similar to the new model (6) by 
numerical simulation. [19] also did this transformation in their study and used 
the full model, but for the purpose of this study, with the established equality of 
the models (3) and model (6) by numerical computation we turn our attention 
to the latter model. 

4. Equilibria & Stability 
It can be seen that Equation (6) has a disease-free equilibrium is  

1

2

,0,0
hDFE
h

 
=  
 

. The Jacobian matrix evaluated at the DFE is given thus,  

( )1
2

2

1
3

2

4

0

0

0

Ih k
h

h
hDFE h

h
h

β

β

σ

− 
− 
 
 

= − 
 
 −
 
 

 

The characteristic polynomial of the DFE system ( )F λ  is given as,  

( ) ( )3 2 1
2 3 4 2 3 2 4 3 4

2

2 3 4 1

hF h h h h h h h h h
h

h h h h

βσ
λ λ λ λ

βσ

 
= + + + + + + − 

 
+ −

     (7) 

From the characteristic polynomial above,  

1 2 3 4b h h h= + +                          (8) 
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1
2 2 3 2 4 3 4

2

hb h h h h h h
h

βσ
= + + −                   (9) 

3 2 3 4 1b h h h hβσ= −                       (10) 

By the Routh-Hurwitz’s criterion, for the characteristic equation to have 
negative eigenvalues, then 1 0b > , 3 0b >  and 1 2 3b b b> . The Routh-Hurwitz’s 
criterion is a tool used to establish the negativity or otherwise of the roots of a 
characteristic equation. Let us first introduce our threshold parameter 0R . 

4.1. Basic Reproductive Number, R0 

Following the theory made explicit in [4] on 0R  above, we use the features of 
the model under study to carve out an appropriate measure for the 0R . Let  , 
  F, V and ( ),f x y  be defined as in [4]. From the system (6),  

( ) 3

4

and
0

I h ek si
e h i

β
σ

−   
= =   − +  

                (11) 

From (11), we proceed to find F and V as defined in [4] above.  

( ) 3

4

00
and

0 0
I hk s

F V
h

β
σ

−   
= =   −  

             (12) 

It can be easily shown that  

41

33 4

01 h
V

hh h σ
−  
=  

 
                      (13) 

Consequently,  

( ) ( )

( )

( )

31
0

43 4

1

3 4 2

1
0

2 3 4

001
0 0

, but

I

I DFE
DFE

I

hk s
R FV

hh h

k s hs
h h h

k h
R

h h h

β
ρ

σ

β σ

β σ

− −   
= = ×   −  

−
= =

−
=

         (14) 

Another construction of the measure 0R  mostly considered by researchers 
long before the introduction of the new generation matrix (NGM) method was 
introduced is 

0
DFER
EE

=  

where EE  is the endemic equilibrium.  

1
0

2 3 4

DFE hR
EE h h h

βσ
= =                      (15) 

We remark that, the NGM’s measure of 0R  (as shown in 14) is equivalent to 
this measure (15) if and only if 0Ik = . But for the purpose of this study, we 
choose (14) as our measure for 0R .  

Theorem 1. Denote ( ) 1
0

2 3 4

Ik h
R

h h h
β σ−

= . When 0 1R ≤ , then the system (6) 
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has only a 1

2

,0,0
hDFE
h

 
=  
 

 on the set Ω . When 0 1R >  then besides the  

DFE, there exist a unique endemic equilibrium EE where the disease is 
persistent.  

4.2. Routh-Hurwitz’s Criterion 

Theorem 2 (Routh-Hurwitz’s Criterion) Consider the characteristic equation  
( )

( )
1

1 1 0nn
nnI A b b bλ λ λ λ−

−− = + + + + =

            (16) 

determining the n eigenvalues λ  of a real n n×  square matrix A, where I is 
the identity matrix. Then the eigenvalues λ  all have negative real parts if 

1 0∆ > , 2 0∆ > ,  , 0n∆ > , where  

1

3 2 1

5 4 3 2 1

2 1 2 2 2 3 2 4 2 5 2 6

1 0 0 0 0 0
1 0 0 0

1 0k

k k k k k k k

b
b b b
b b b b b

b b b b b b b− − − − − −

∆ =







       



 

The above theorem (2) is reproduced from [20] and used in the article [21].  
Theorem 3. The disease-free equilibrium DFE is locally stable as 0 1R ≤  and 

unstable as 0 1R > .  
Proof. It is easy to show from (7) that 1 0b >  and 2 0b >  whenever 0 1R ≤ . 

Now for 1 2 3b b b> ,  

( )

1 2 3

1
2 3 4 2 3 3 4 2 3 4 1

2

2 2 2 21 3 1 4
2 3 2 3 4 1 2 3 3 4 2 3 4 3 4

2 2

2 3 4 1

b b b

hh h h h h h h h h h h
h

h h h hh h h h h h h h h h h h h h h
h h

h h h h

βσ
βσ

βσ βσ
βσ

βσ

⇒ >

 
⇒ + + + − > − 

 

⇒ + − + + − + + −

> −

 

And since 0 1R ≤ ,  

( )2 2 2 2 1
2 3 2 3 3 4 3 4 2 3 4 3 4

2

hh h h h h h h h h h h h h
h

βσ
+ + + + > +  

therefore 1 2 3b b b> . The DF system has negative eigenvalues, hence the DF 
system is locally stable when 0 1R ≤ . Again, when 0 1R > , then the condition 2 
of the Routh-Hurwitz’s criterion is violated; thus 2b  may become less than 0 
and therefore the system becomes unstable.  

4.3. Global Stability of the DFE 

The matrix theoretic method is used to prove the global stability of the DFE.  

A Matrix-Theoretic Method 
The matrix-theoretic method is used to prove the sharp threshold statement 
in theorem (5). It is a systematic method, and it is presented to guide the 
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construction of a Lyapunov function. Taking the same path as [4] [22] [23], let 
us set  

( ) ( ) ( ) ( ), : , ,f x y F V x x y x y= − − +              (17) 

Then the equation for the disease compartment can be written as  

( ) ( ),x F V x f x y′ = − −                    (18) 

Let T 0ψ ≤  be the left eigenvector of the non-negative matrix 1V F−  
corresponding to the eigenvalue ( ) ( )1 1

0V F FV Rρ ρ− −= = . The following 
result provides a general method to construct a Lyapunov function for [1.1]. [17] 
[24] used this Lyapunov function involving the Perron eigenvectors to study the 
global dynamics of several specific disease models while [4] used it to consider a 
general case for infectious diseases. In this paper, this method reproduces to 
establish the global stability of our system.  

Theorem 4 Let F, V and ( ),f x y  be defined as in (1.2) and (2.1) in [4] 
respectively. If ( ), 0f x y ≥ , in the n m+

+Ω ⊂ ℜ , 0F ≥ , 1 0V − ≥  and 0 1R ≤ , 
then the function T 1V xψ −=  is a Lyapunov function for the system (1.1) 
(again in [4]) on Ω .  

Proof. The proof as followed in [4] gives  

( ) ( )
( ) ( )

1 1 1

T T 1
0

| ,

1 ,

V x V F V x V f x y

R x V x y

ψ ψ ψ

ψ ψ

− − −

−

′ ′ ′= = = − −

= − −

 
          (19) 

Since T 0ψ ≥ , 1 0V − ≥ , and ( ), 0f x y ≥  in the region Ω , the last term is 
non-positive. If 0 1R ≤ , then 1 0≤  in Ω  and thus   is a Lyapunov 
function for the system [1.1] as defined in [4]. 

[4] has proven that the Lyapunov function used to prove the global stability of 
the DFE in Ω  can also be extended to establish a uniform persistence and thus 
establish the existence of an EE in n m+

+ℜ . Find the theorem 2.2 in [4] and the 
proof thereof.  

Theorem 5. The DFE is globally stable. 
Proof. Taking the left side expansion of (19), the Lyapunov function   as 

defined in theorem (4) therefore is  

T 1
2

3 4 34

1V x e i
h h hh

σ σψ −  
= = + + 

 
                (20) 

( ) ( )0
4 3 4 4

2 1= 1 ,R e i f x y
h h h h
σ σ  

′ − + − +  
   

  

it is easy to prove that  

( ), 0f x y =                         (21) 

( )0
4

1R e i
h
σ 

′ = − + 
 

                    (22) 

It is obvious from this equation that when 0 1R ≤  then 0′ <  and 
therefore the DFE is globally asymptotically stable and unstable when 0 1R > .  
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4.4. Existence and Stability of the Endemic Equilibrium 

Referring to theorem (1), there exists a unique EE. In this section, we establish 
the stability of the EE using Routh-Hurwitz’s criterion for the proof of local 
stability and Lyapunov functions for the global stability. 

4.4.1. Local Stability of Endemic Equilibrium 
Theorem 6. The EE is locally stable.  
Proof. The Jacobian of the EE is given thus  

( )( )
( )

( )

( )
( )

1 2 3 4 3 4
2

3 4

1 2 3 4 3 4
2 3

3 4

4

0

0

I I

I

EE
I

k h h h h h h k
h

k h h
h h h h h h

J h h
k h h

h

β β σ β
β βσ

β β σ
β σ

σ

 − − −
− − − 

− 
 −

= − − 
− 

− 
 
 

 

Then the characteristic polynomial of the EE would be  

( )
2

1 3 4 1 31 4 1

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
2 22 2 2

1 3 4 1 31 4 1

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
2 2

2 3 4

3 4 3 4

I II I

I I I I

I I I I

I

I

h h h k h h kh h k h kF
h h k h h h h k h h h h k h h h h k h h

h h h h hh h h
h h k h h h h k h h h h k h h h h k h h

h h h k
h h k h h

β σ λβ σλβ σ λ β σ
λ

β β β β
β σ λβ σλβ σ λ β σ

β β β β
λ

β

= − − − −
− − − −

+ + + +
− − − −

+ +
−

2 2 2
2 3 4 2 3 4 2 3 4

3 4 3 4 3 4 3 4 3 4 3 4
2 2 2 2 2

2 3 4 2 3 4 2 3 4 2 3 4

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
2 2 2 3

2 4 4 2 3 3 2

I I I

I I I

I I I I

h h h k h h h k h h h k
h h k h h h h k h h h h k h h

h h h h h h h h h h h h
h h k h h h h k h h h h k h h h h k h h

h h h h h h h

λ λ
β β β

β λβ λβ λ β
β β β β

λ λ λ λ λ λ

+ +
− − −

− − − −
− − − −

− − − − − −

 (23) 

which is of the form ( ) 3 2
1 2 3F b b bλ λ λ λ= + + +  where 1b , 2b  and 3b  are 

simplified from Equation (23) as  

1
1 3 4

3 4

hb h h
h h
βσ

= + +  

1
2 1

3

hb h
h

βσ σ= +  

3 1 2 3 4b h h h hβσ= −  

when ( ) 0F λ = . It can be seen that 1b , 2b  and 3b  are all positive. For 

1 2 3b b b> ,  

( ) ( )

( ) ( ) ( )

1 1
1 2 3 4 1 1 2 3 4 3

3 4 3
2 2

1 11 4
1 3 1 1 2

3 3 4 3 4

1 2 3 4 3
2 2

1 11 4
3 4 1 1 2

3 3 4 3 4

1 2 3 4 3

4

h hb b h h h h h h h b
h h h

h hh hh h h h h
h h h h h

h h h h b
h hh hh h h h

h h h h h
h h h h b

βσ
βσ σ βσ

βσ β σ
βσ σ βσ σ

βσ
βσ β σ

βσ σ σ

βσ

  
= + + + > − =  
  

= + + + + +

> − =

= + + + + +

> − =

      (24) 

Now 1 3 4h h h< +  and by extension ( )3 4 1 1h h h hβσ βσ+ > . The rest of the 

https://doi.org/10.4236/am.2019.107042


D. Otoo et al. 
 

 

DOI: 10.4236/am.2019.107042 597 Applied Mathematics 
 

terms in the left hand side of this inequality are non-negative and therefore 
obviously greater than 2 3 4h h h− . Therefore the EE is locally stable.  

4.4.2. Global Stability Analysis of the Endemic Equilibrium 
A general form of Lyapunov functions coined from the first integral form of the 
Goh-Volterra system which is often used in the literature of mathematical 
biology is used to prove the global stability of the EE. This function takes the 
form  

* *
*1 lnn i

i i i i ii
i

x
c x x x

x=

 
= − − 

 
∑                    (25) 

where x is the variables and ic  are carefully selected constants. This criterion 
has been used many times in establishing the stability or otherwise of many 
disease models and also present in [4, 13, 15].  

Theorem 7. The EE is globally stable.  
Proof. Let *s s>  and *i i> ,  

* *
1 *ln ss s s

s
= − −                            (26) 

*

1
s s s

s
 −′ ′= − 
 

                              (27) 

( )( )
*

1 2 ,I
s s h h s k si

s
β

 −
= − − − − 

 
                  (28) 

and the equilibrium relation for ( )* * *
1 2 Ih h s b k s i= + −  

( ) ( )( )( )
*

* * *
2 I

s s h s s k s i si
s

β
 −

≤ − − + − − 
 

             (29) 

1 0′ ≤ , whenever *s s>  and *i i>  in the region +ℜ       (30) 

In line (26), we define the Goh-Volterra function for the first variable s and 
differentiate it in the second line (27). In the following line, s′  is substituted 
for its relation in (6) and evaluated at the equilibrium relation for 1h  in line 
(29). Consider that *s s>  and *i i> , (which is a necessary condition for (26) 
to hold). Then the inequality in line (29) is justified. Therefore, 1  defined 
above is a Lyapunov function.  

Again, let *e e>  and * *
2 *ln ee e e

e
= − −   

* *
2 *ln ee e e

e
= − −                        (31) 

*

2
e e e

e
 −′ ′= − 
 

                          (32) 

( )
*

2 3
e e si h e

e
β

 −′ = − − 
 

                      (33) 

( )*
3

sie e h
e
β = − − − 

 
                      (34) 
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( )
* *

*
3* ,s ie e h

e
β 

≤ − − − 
 

                     (35) 

then from the system under study, (6), 
*

*
4

i s
he

=  and * 3 4h h
s

bs
=  

( ) ( )* *3 4
3

4

0 0
h h

e e h e e
h

β σ
β σ

 
≤ − − − = − − × = 

 
              (36) 

2 0′ ≤                              (37) 

The next Lyapunov function for the e variable is given in line (31), 
differentiated and evaluated in lines (32) and (33) respectively. The equilibrium  

relation for 
* *

*

s i
e

β
 is introduced in lines (35) and (36). Again, the inequality is 

obviously justified whenever *e e> . The function defined as * *
2 *ln ee e e

e
= − −  

is successful Lyapunov function.  

Lastly, let us set *i i>  and * *
3 *ln ii i i

i
= − − ,  

* *
3 *ln ii i i

i
= − −                          (38) 

*

3
i i i

i
 −′ ′= − 
 

                             (39) 

( )
*

3 4
i i e h i

i
σ

 −′ = − − 
 

                       (40) 

( )*
4

ei i h
i

σ = − − − 
 

                      (41) 

( )
* *

* 4
4* *,

he ei i h
si i

σ
 

≤ − − − = 
 

                     (42) 

( )* 4
4 0

hi i hσ
σ

 ≤ − − − = 
 

                         (43) 

3 0′ ≤                              (44) 

The Lyapunov function for the last variable understudy is introduced in line 
(38) and differentiated in the following line (39). The equilibrium relation for 

* *e i  is substituted in lines (42) and (43) thereby justifying the inequality.  
Therefore   defined as  

* *
1 2 3*

1
ln

n
i

i i i
i i

x
x x x

x=

 
= − − = + + 

 
∑     

is a Lyapunov function for the system (6). Arbitrary constants ic  can be chosen 
from +ℜ  and any linear combination of   would be a Lyapunov function 
for the system. Hence the proof.  
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5. Numerical Simulations 

In this section, we simulate our model to demonstrate the theoretic results found 
by this study. We only talk about susceptibility and recovery over time since they 
explain the rest of the compartments. Note that from the schematic diagram 
(figure [1]), individuals in the exposed compartments are recruited from the 
susceptible and the infectious individuals are also recruited from the exposed 
compartment. We wish you to see that we have shown by this numerical 
simulation that the first system (1) which was transformed to give the full system 
(3) is mathematically the same as the reduced model (6). Parameters used for 
this simulation are shown in Table 1. With all other parameters held constant, 
we vary vaccination from 0.2 to 0.8 with a step size of 0.2 to see when the disease 
would die out of the system. 

From Figure 2, we can see that the higher the vaccination cover in the 
population, the lesser the susceptibility to the measles disease in the population. 
Some significant fraction of the population remains susceptible to measles at a 
20% yearly vaccination cover after ten-year span. This means then that in the 
wake of an outbreak there would still be some that would be impacted by the 
disease. At a 40% vaccination cover yearly, the susceptible individuals reduce 
sharply. The same can be said of a vaccination cover of 60% and 80% 
vaccination cover. It can be drawn from here that when vaccination cover is 
aimed at 80%, the number of susceptible individuals approaches zero. 

In Figure 3, it can be seen that awareness of the disease is already in the 
population and control steps for treatment and vaccination do not allow for an 
outbreak to get worse before it becomes better. It can be seen that no matter the  
 
Table 1. Parameter and variable definition & values. 

Parameters Value Sources 

α  0.045 GHS & GIS 

µ  0.00875 GHS 

Eµ  0.0111 GHS 

β  0.005 Estimated 

σ  0.9913 Estimated 

γ  0.9912 Estimated 

Eδ  0.015 Assumed 

τ  0.0025 Assumed 

  0.0003 Assumed 

( ) ( )0 1_0S y∗∗ = ∗  10000 Assumed 

( ) ( )0 2_0E y∗∗ = ∗  3000 Assumed 

( ) ( )0 3_0I y∗∗ = ∗  326 Assumed 

( ) ( )0 4_0R y∗∗ = ∗  2965 Assumed 
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Figure 2. Plot of the susceptible individuals with time. 

 

 
Figure 3. Plot of the exposed individuals with time. 

 
vaccination cover in the population, the disease will persist in the population for 
a while and die out. When the time is extended, it would be seen that the disease 
will completely die out of the system as the exposed individuals approaches zero. 
It makes sense because, from the schematic diagram (4.1) of the model, the 
exposed individuals are assumed to go through the infectious stage or attained a 
natural cure against the disease and move into the recovery stage. Again, we see 
that the full model and the reduced model are the same. 

In Figure 4 also, with time, measles would no longer be seen in the 
population. At any level of vaccination cover, the disease will die out of the 
population. Only that, at a higher vaccination rate, more susceptible individuals 
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do not have to get the disease but will gain a strong immunity against the 
disease. 

In Figure 5, the higher the vaccination rate, the more susceptible individuals 
gain immunity against the disease so that more people fall into the safe haven of 
being recovered. But it can be seen at 60% vaccination cover is comparable to an 
80% vaccination cover. It would therefore be a good practice if vaccination in a 
population whose system can be compared to that which is studied in this paper 
vaccinate 80% of its people, newborns and new immigrants so that in any case of 
an outbreak of measles, the disease will be eradicated in the shortest possible 
time. 
 

 
Figure 4. Plot of the infectious individuals with time. 

 

 
Figure 5. Plot of the recovered individuals with time. 
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6. Conclusion 

In this paper, the global dynamics of measles has been studied in a varying 
population system such as could be compared to the thriving metropolis of 
Sunyani in Ghana. A matrix theoretic method and Goh-Volterra types of 
Lyapunov function were used to establish the stability of the disease-free and 
endemic equilibria respectively. The basic reproductive number 0R  is defined 
using the New Generation Matrix method and proved as the threshold 
parameter. The DFE is globally stable whenever 0 1R ≤  and unstable otherwise. 
The EE is globally stable when 0 1R > . Also, the transformation of the original 
system (1) uncovered some unnecessary measures embedded in the model which 
was removed to give the approximate system (6). The latter system was used to 
replace the former and towards the end of this paper, we showed by numerical 
simulation that approximate system (3) is the same as (6). The numerical 
simulation also showed the theoretic dynamics discussed in this paper. It showed 
that more people will gain immunity against the measles and by extension, an 
outbreak of measles would not impact the community if vaccination cover is 
80% annually. 
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Abstract 
In a linear world, averages make perfect sense. Something too big is compen-
sated by something too small. We show, however that the underlying diffe-
rential equations (e.g. unlimited growth) rather than the equations them-
selves (e.g. exponential growth) need to be linear. Especially in finance and 
economics non-linear differential equations are used although the input pa-
rameters are average quantities (e.g. average spending). It leads to the sad 
conclusion that almost all results are at least doubtful. Within one model 
(diffusion model of marketing) we show that the error is tremendous. We al-
so compare chaotic results to random ones. Though these data are hardly dis-
tinguishable, certain limits prove to be very different. Implications for finance 
can be important because e.g. stock prices vary generally, chaotically, though 
the evaluation assumes quite often randomness. 
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1. Introduction 

Almost everybody knows how to calculate an average or (arithmetic) mean, and 
its use is widespread. Its interpretation is quite often questionable and some-
times ludicrous, see e.g. [1]. Though such remarks are important, this paper fo-
cuses on a different, more mathematical point. 

Sometimes an average makes perfect sense. The average weight of an airline 
passenger times the number of passengers gives a perfect measure for the weight 
of all passengers. The average size of a screw in a warehouse does not make 
sense. Probably nobody will be fooled by this extreme example. However, there 
are more sophisticated examples in [1] like designing the cockpit of a fighter jet 
in accordance to the height of an average pilot, which turned out to be hardly 
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existent. 
Sometimes the problem is solved by using the median instead of the mean or 

average. But this is not the point here. The median size of a screw in a warehouse 
is as useless as its average size. From Chapter 2 one can see that the arithmetic 
mean is a number that minimizes the sum of the quadratic deviations from all 
data points. So the actual data points may be bigger or smaller than the average, 
but the (linear) deviations to the bigger and smaller side are the same. If being 
bigger than the average can be canceled out by being smaller, an average does 
make sense. It is the case in the example of the average weight of a passenger. A 
heavier passenger can be compensated by a lighter one. This is in contrast to 
screws in a warehouse. One that is too small is as bad as one that is too big. 

So the pivotal point is the use of the arithmetic mean. In the example of the 
average weight of an airline passenger, the use was to calculate the total passen-
ger load. The total passenger load is a positive real number. The use of the screw 
was to fit. Such function has only two values: does fit and does not fit. For “does 
not fit”, it is irrelevant whether the screw is too small or too big. Mathematically 
speaking such a use-function must be strictly linear. 

So far for a complicated explanation of a maybe trivial issue. However, most 
long-term considerations take into account non-linear equations. As an arche-
type consider exponential population growth. Obviously, it is not a linear func-
tion. Its exponent is essentially the birthrate. A larger birthrate implies higher 
population growth and vice versa, but it is highly non-linear. A ten percent 
higher birthrate in one part of the population cannot be compensated by a ten 
percent lower one in another one. However, almost everywhere an average 
birthrate is used to forecast the future population. Chapter 3 scrutinizes this 
example. Surprisingly, one may use average birthrates in the normal (unlimited) 
population growth formula. In Chapter 3 we prove generally that average para-
meters such as average birthrates can be used in linear differential equations on-
ly. 

A further application are financial markets. Mankind is far away from having 
proper differential equations determining the future profit of a company and 
with it the future stock price. However, people try to build estimates. In these 
calculations, one uses averages from mean inflation over mean spending on R & 
D to mean productivity of the employees. Everything else would make the con-
siderations impossible for practical reasons as it is not possible to consider and 
determine millions of variables. However, nobody doubts that the financial word 
is governed by non-linear differential equations. If it was not, the solutions 
would have to be plane waves in contrast to all observations. We will discuss this 
in more detail in Chapter 4. It leads to the sad conclusion that almost all quan-
titative analyses in financial markets are at least doubtful. 

In Chapter 5 we will consider the diffusion model in marketing, a mathemati-
cal tool to forecast the future market share. There, also average quantities are 
used. And due to that, one (sometimes) gets completely wrong results. Even 
chaos effects have been predicted [2] though they do not exist [3]. In Chapter 5 
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we also show how one can use a continuum limit to overcome the problem of 
knowing average parameters only. It is quite important to notice that in almost 
all financial models a continuum limit is not possible. This has been stated for 
the first time in [4]. It is due to the fact that typical financial data such as e.g. 
stock prices are, unlike the market share, not conserved. This led to the sugges-
tion of a conserved value [5] in finance. Eventually it has been proven mathe-
matically in [6]. 

We close with a look to further research in Chapter 6. Here we consider chaos 
in contrast to randomness. Though chaos appears random, it is not. However, it 
seems so random that chaotic functions are sometimes used to create “random” 
numbers. Building arithmetic means in chaotically varying quantities sometimes 
(but not always) gives identical results to random variations as one might expect. 
But sometimes it does not. This is an open question. It is of special relevance 
whenever something varies chaotically such as prices in financial markets. Is a 
statistical analysis allowed at all? Can one modify ordinary statistics in order to 
cope with it? 

2. Definition of Mean and Median 

It is assumed that arithmetic mean (here also called average) and median are 
well-known to any potential reader of this publication. Else it can be found in 
any mathematical handbook such as [7]. Here we take a route different from 
most textbooks. It is important to understand what mean and median means. 

Given is a set of real number ix  with i running from 1 to N. We define the 
average x  as a number so that 

( )2

1
minimal

N

i
i

x x
=

→−∑                     (1) 

To find this minimum, Equation (1) can be differentiated with respect to x  
and set to zero. It leads to the well-known formula for the average 

1

1 N

i
i

x x
N =

= ∑                          (2) 

The average is therefore a special least square fit. The data points are fitted by 
a constant. As with the least square fit, taking the squares in Equation (1) is by 
no means justified. It is practical for getting positive numbers and keeping an 
analytic function. However, it is arbitrary. Why not take the fourth power? Tak-
ing squares makes small numbers smaller and larger ones larger. The error of a 
least square fit is given by Equation (1). This does not make sense if the ix  
have a dimension such as €. The error thus has the dimension €2 which has no 
meaning. Taking the square root of Equation (1) does not help either. Squares 
and roots are non-linear functions which must not be interchanged with the 
sum. Therefore, the least square fit is an approximation only. A least absolute 
value fit is the correct procedure. However, dealing with it becomes horribly 
complicated, and the result can be obtained numerically only in most cases. This 
is the reason why a least square fit is so popular though strictly speaking it is 
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wrong. The difference between a (wrong) least square fit and the (correct) abso-
lute value fit is small in many cases. However, if the data points are varying over 
orders of magnitude (e.g. in exponential growth) the error becomes significant. 
This logic brings us to the definition of the median: 

Given is a set of real number ix  with i running from 1 to N. We define the 
median { }x  as a number so that 

{ }
1

minimal
N

i
i

x x
=

− →∑                     (3) 

Equation (3) is a non-analytic function of { }x . Of course, the minimum can 
be determined. One way is to use differentiation carefully: differentiating from 
the right and left, respectively, at non-analytic points. Either way the minimiza-
tion problem of Equation (3) has the solution 

{ }( )
1
sgn 0

N

i
i

x x
=

− =∑                      (4) 

where sgn denotes the signum function defined as −1 for negative arguments, +1 
for positive ones and zero else. As one sees, { }x  must be in “the middle” of the 
numbers ix  in order to fulfill Equation (4). { }x  is therefore exactly what one 
calls median. 

Mean and median are least square fits or least absolute value fit, respectively, 
where the fit function is a constant. In order to find means or medians for a con-
tinuous distribution one has to change the sum signs into integrals. 

From this definition of mean and median it becomes clear that the use of 
mean and median is not optional depending on the situation. Median is the cor-
rect way and mean is the approximation. If median and mean are similar, mean 
is a good approximation. However, sometimes mean gives something exact. 
Knowing the mean weight and the number of passengers, one knows the exact 
weight of all passengers combined. This may be practical, but it has nothing to 
do with a statistical interpretation, what mean and median are meant for. 

3. Why the Underlying Differential Equation Must Be  
Considered 

In this chapter we want to show that averages can be used even in non-linear 
functions as long as the underlying differential equation is linear. As a starting 
example consider the formula for unlimited population growth: 

( )
( )

0 e
tb

N t N
β

τ
− ⋅

= ⋅                        (5) 

( )N t  denotes the population at a time t and 0N  is the population at 0t = . 
b is the birth rate (number of children per woman) and β  is the birthrate 
when the population stays constant (typically 2.1β ≈ ). τ  is a constant de-
pending essentially on the lifespan of the population. Because ( )N t  depends 
exponentially on the birthrate b, it appears doubtful to use an average birthrate. 
Some years ago we used Equation (5) as an exercise for graduate students: Half 
of the population has a birthrate 0b =  and half of it 2b β= . On average it 
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yields b β= . Of course, the population does not stay constant, because only 
in the beginning b β=  holds. Half of the population becomes extinct and the 
other half is reproducing rapidly. In a properly weighted average we have a time 
dependent average birthrate of 

( ) ( ) e e1 tanh with tanh
e e

x x

x x

tb t xβ β
τ

−

−

  − = ⋅ + ⋅ ≡   +  
          (6) 

Of course, one must not insert ( )b t  of Equation (6) directly into Equation 
(5). Equation (5) is the solution of the differential equation 

( ) ( )
d

d
N t b N t

t
β

τ
−

= ⋅                         (7) 

So one has to insert the ( )b t  of Equation (6) for b into Equation (7). The 
solution is: 

( ) ( ) ( )0
1cosh and cosh e e
2

x xtN t N xβ
τ

− = ⋅ ≡ ⋅ + 
 

⋅          (8) 

If one took a realistic growth model with e.g. limited growth, the correspond-
ing differential equation would be non-linear. A weighted average like in Equa-
tion (6) will not be possible in that case. This is an important information for 
any person dealing with population growth or decrease. Such people use much 
more sophisticated models compared to Equation (7). Their differential equa-
tions are non-linear in almost all cases. Nevertheless they use average birth rates 
only. So their results are generally wrong—yet it is hard to tell by how much. In 
order to check, one must have the distribution of birthrates. Such distributions 
cannot be found in statistical data banks. It is left to the reader to try some ex-
amples or it would be an exercise for advanced graduate students. In what fol-
lows we will prove that the linearity of the underlying differential equation is es-
sential for using averages. 

Instead of Equation (7) we use a very general model for a function ( )f x : 

( ) ( )( )f x g f x′ =                          (9) 

In a linear model, ( )g f a f= ⋅  holds. The function g corresponds to the pa-
rameters of the differential equation. Without limitation we are just considering 
two functions 1g  and 2g . If we are able to prove that the averaging is wrong 
for all non-linear functions, we have for sure shown that it will not work out for 
more than two functions. Furthermore, our proof can be extended easily to an 
arbitrary number of functions. Therefore we consider only two functions: 

( ) ( )( ) ( ) ( )( )1 21 221 andf x g f x f x g f x′ ′= =              (10) 

Needless to say that the functions g are analytic functions. Therefore a Taylor 
expansion is possible: 

( ) 22

0

0 1 i

i

ig f a a f a f a f
∞

=

= + + + = ∑
              (11) 

Please note that the a’s in Equation (11) have upper indices rather than expo-
nents in contrast to the f’s in Equation (11). For the average f one can write by 
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using Equations (10) and (11). 

 

( ) ( )

( )
( )

1 2
1 2

0 0

1 2
1

0
1 2

1 2

1 2

1 
2 2

1
2

i ii i

i i

i i
i

i
i i

i i

f x f x
f a f a f

a f a f f
f f

∞ ∞

= =

∞

−
=

′ ′+  ′ = = + 
 

+
=

  + 
 

∑ ∑

∑
          (12) 

On the other hand, the average coefficient ia  is given by 

1 1 2 2

1 2

i i
i a f a fa

f f
+⋅ ⋅

=
+

                     (13) 

Comparing with the average coefficient from Equation (12) we have the fol-
lowing equation to hold: 

( )

1 1 2 2 1 1 2 2
1

1 2
1 2

1
2

i i i i i i

i
i

a f a f a f a f
f f

f f
−

⋅ ⋅+ +
=

+  + 
 

               (14) 

Equation (14) is equivalent to 

( ) ( ) 11
1 1 2 2 1 1 2 2 1 22 ii i i i i i ia f a f a f a f f f −−+ = + +⋅ ⋅ ⋅ ⋅            (15) 

Because the different powers of f in Equation (15) are linearly independent, all 
corresponding powers must fulfill Equation (15) separately. This is generally 
impossible except we have only one exponent 1i = . In other words, the Taylor 
expansion of g contains only the linear term. This concludes the proof that only 
in linear differential equations averages can be used. 

In this chapter we have shown that averages can be used even in non-linear 
equations as long as the underlying differential equation is linear. It is a plausible 
result, because the differential equation governs the situation. If it is linear, av-
erages are fine to use. The solution of the differential equation is just the sum 
(integral) of the underlying microscopic interactions. If each interaction may use 
averages, so does its sum. 

4. Financial Markets 

Finance is far away from having models like population growth. At most one has 
heuristic models. The goal is to predict prices or at least probabilities for it. 
These models have grown more and more complex. The ultimate model has not 
been established, and the authors are convinced that it will never be (For more 
details see below and also [3] or [6]). However, there is no doubt that these 
models will consist of non-linear differential equations. If the governing diffe-
rential equations were linear, their solutions would be plane waves. This is in 
contrast to any observation of financial data. Furthermore, the used “tools” are 
based on non-linear differential equations in most cases. Just as an example con-
sider the Black-Scholes model [8]. It is a model for pricing options. The details 
are not important here, but it is a non-linear (partial) differential equation. 
(There are many more such models, also or especially in quantitative economics, 
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see e.g. [9]). 
In order to use these models one needs parameters such as inflation rates, in-

terest rates, investments for e.g. R & D, and so forth. For all these parameters 
one uses averages. Some are even defined as averages such as the inflation of a 
basket of goods over a year. Everything else would be virtually impossible. One 
would have to consider a huge number of variables changing every day or maybe 
every second. At first glance averaging appears reasonable because there is an 
interest in e.g. average prices. However, we have shown in Chapter 3 that one 
must not use average quantities in non-linear differential equations. 

We come to the sad conclusion that almost all work in finance and quantita-
tive economics suffers from these shortcomings. That such (wrong) calculations 
lead to at least sometimes correct results is of course far from being a justifica-
tion: Ex falso quodlibet!1 Especially in finance there maybe also some herd effect 
if sufficiently many people believe in a certain model. Then it is nothing but a 
self-fulfilling prophecy, e.g. cf. [10]. 

However, there are many more shortcomings besides using averages in 
non-linear differential equations. There exist plenty of additional variables than 
usually considered and these variables appear to be important. It leads to the 
almost ludicrous result that the weather on Wall Street is an essential influencer 
on stock prices [11]. This comes as no surprise as it has been proven that prices 
of most financial products vary chaotically [12]. Within chaos tiny changes in 
seemingly unimportant parameters have big effects in the end. Therefore, finan-
cial markets work similarly to gambling. However, it is not considered gambling. 
Else there would be regulations to give the same odds to anybody. 

To overcome these difficulties one has to: 
 Use individual data instead of averages. 
 Use many more presently unknown variables. 
 Know any parameter/variable up to an extremely high accuracy due to chaos. 

That is the reason why the authors are convinced that there will never be a 
proper model for financial markets. Please be aware that “extremely high accu-
racy” is quite often much more than 101000 digits. From this, another problem 
arises. A computer has to perform these highly accurate calculations. In a very 
simple chaotic situation as mentioned in Chapter 6, we estimate calculation 
times of 10276 times the age of the universe on a 3.5 GHz processor. Even quan-
tum computing would not help because it is currently only 100 million times 
faster than an ordinary computer. Our very simple chaotic calculation would 
still take 10268 times the age of the universe. 

Calculating next week’s lottery numbers is comparably simple to the above. 
That is the main reason why considering conserved values has been suggested in 
[5] and proven in [6]. By using it, all problems disappear. However, gaining 

 

 

1It is not possible to show the exact margin of error due to averaging without considering a particular 
model. Even then we do not know the correct result in order to calculate an error. As the mathemat-
ical expression ex falso quodlibet indicates, making a wrong assumption can “prove” anything. 1 = 2 
implies not only 2 = 3 but also 1030 = 0. 
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money due to trading financial products will also disappear. This comes as no 
surprise as such trading is nothing but a special form of gambling [12]. 

Furthermore, it is important to note that prices of financial products vary 
chaotically. As we will explain in Chapter 6, it will make use of statistics (e.g. av-
erages) not without flaws. 

5. Diffusion Model in Market Forecast 

In this chapter we will comment on the use of the diffusion model of marketing. 
It is a tool for forecasting the future market share. Using averages in this model 
may lead to completely wrong results under certain circumstances [2]. However, 
here we can present a way out by using a continuum limit, which is the reason 
why we comment on this particular model. Unfortunately, the continuum limit 
cannot be applied to the world of finance because stock prices and the like are 
not conserved quantities. 

The use of the diffusion model in marketing started in the 1960 and it is used 
ever since. There are several versions. We will consider the so-called logistic dif-
fusion model. It is an iterating formula calculating the market share tN  at time 
t from the market share 1tN −  at time 1t − . The main idea behind it is that the 
product diffuses into the market, like the smell of sold waffles in a shopping mall 
attracts more customers. The formula of the logistic diffusion model takes the 
form 

( )1 1t t tN b N M N− −= −⋅ ⋅  

b is a diffusion constant. A large b means that one will gain market share ra-
pidly, and a small b implies slow growth or even shrinking. The constant M in 
the term 1tM N −−  is the natural limitation. Else the market share will grow to 
infinity, which is unrealistic. It is similar to a growth limitation in a realistic 
growth model. From a mathematical point of view, one may always set 1M = . 
In doing so, one will get the following formula for the logistic diffusion model, 
which has also been used in [2]:  

( )1 11t t tN b N N− −= −⋅ ⋅                     (16) 

If b approaches a certain value (≈3.5699) something strange happens. N is 
changing very rapidly and seemingly randomly between 0 and 1. This comes as 
no surprise since Equation (16) is nothing but the logistic map, cf. Equation (19) 
of Chapter 6. This has been described as the end of the diffusion model in [2]. 
But how can it be? Why is the market share “jumping” if it is growing sufficient-
ly fast? How can a market share change chaotically though it is a conserved 
quantity?2 Why is the market share varying between −∞ and +∞ for 4b > ? 

As already mentioned in [2], the constant b of Equation (16) is generally 
speaking a different one for each customer buying or not buying something. So 
one would probably have millions of different constants b. With such a huge 
number of fit parameters reality is described perfectly. On the sad side, it would 

 

 

2Admittedly conserved quantities in this sense were first mentioned in 2011 in [5], many years after 
1993 when [2] has been published.  
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make forecasts impossible by using Equation (16). Nobody can estimate so many 
parameters. Therefore, one uses an average b in Equation (16). However, with 
the same proof as in Chapter 2 (but much simpler) one can show that one must 
not use averages in Equation (16). Using numbers one will find, however, that 
for small values of b there is only a minor error. If b is approaching 4, the error 
becomes huge. As a conclusion, using an average b in Equation (16) produced 
the in reality not existing chaos effects. This is a good example to show that us-
ing averages may produce tremendous errors. The huge error has to do with the 
fact that Equation (16) shows chaos in a mathematical sense. Though we cannot 
calculate the corresponding error in the financial world (as argued in Footnote 
1), it is assumed to be very large due to the fact that chaos is also present in e.g. 
stock prices [12]. 

Unlike the models of finance of the last chapter, in this example one can easily 
overcome the problem of using averages. The approach is the same as in diffu-
sion in the physical world. The analog to Equation (16) is called the ballistic re-
gime. There single molecules are considered. They scatter on each other or with 
other molecules. Depending on the details of each scattering the exchange of 
energy and momentum within each scattering is different. It makes thorough 
considerations next to impossible in the same way one cannot use Equation (16) 
with many different b. Because the number of molecules, the exchanged energy 
and momentum are conserved quantities, one may take averages over long time 
spans and long distances. The time spans and distances have to be so large, that 
within them many scatterings will take place, so that one can consider the aver-
age exchange of momentum and energy. Taking also into account symmetry 
considerations, this will lead to what is called hydrodynamics in physics. 

Unfortunately, a similar approach is not possible in finance if one considers 
stock prices and the like. These are non-conserved quantities. The problem was 
first addressed in [4] and let to further research and eventually to the definition 
of a conserved value in finance and economics ([5], [6]). 

The market share is a perfectly conserved quantity. If the market share of one 
person or company goes up, it must go down somewhere else accordingly. 
Building upon this, it is now easy to perform a continuum limit in Equation 
(16). Details can be found in [3], though it can be considered common sense. 
Equation (16) transforms into a differential equation: 

( ) ( ) ( ) ( )2d
1

d
N t

b N t b N t
t

= − ⋅ − ⋅                    (17) 

Unlike Equation (16) one can easily solve Equation (17) in a closed form: 

( ) ( ) ( )
( )( )( ) ( )

0 1 e

1 0 1 e 0 e

bt

t bt

N b
N t

b N b N
⋅ −

=
⋅ − − + ⋅ ⋅

               (18) 

For small values of b the iterative solution of Equation (16) gives almost an 
identical result compared to Equation (18). Of course, Equation (18) is reasona-
ble for any (positive) value of b. Similar formulas for other diffusion models and 
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also for 1M ≠  are easily obtained in the same way or can be found in [3]. 
Though there is no chaos within a properly used diffusion model, chaos effects 
may be present in market forecast. As it is impossible that the market share itself 
varies chaotically, the time to reach that market share can vary chaotically, be-
cause time is no conserved quantity.3 The diffusion model of marketing has an 
artificial time variable because each time step has the length one. However, there 
are other market forecast procedures such the one suggested in [13]. There one 
explicitly determines the market share and the time to reach it. Depending on 
the detailed numbers, one may or may not find chaos effects. In the example in 
[3] they are explicitly proven. 

So we can conclude that the never is chaos within the diffusion model. The 
wrong usage of averages seemingly produced chaos effects. Though one cannot 
show that the wrong use of averages produces a similar tremendous effect in 
finance, it is at least highly plausible. 

6. Further Research 

The purpose of this last chapter is to give some general remarks about the often 
mentioned word chaos. It is especially puzzling that chaotic variations appear so 
randomly that one can use them to produce random numbers. However, there 
are differences which we will point out. Hausdorff dimension or the Lyapunov 
exponent (see e.g. [7] or [14]) are the correct tools to evaluate chaos besides its 
random look. They clarify and quantify the difference between chaos and ran-
domness. Unfortunately, they can only be used if the chaotically varying variable 
is given by a mathematical formulation (equation). It is impossible to use them 
by considering a finite number of data points. Though we know at least from 
[12] that stock prices are varying chaotically in many cases, we cannot see chaos 
in the stock prices quoted at the stock exchange. Evaluating them statistically is 
therefore far from being flawless with no solution at hand. Therefore we leave it 
to further research. Here we are just explaining the problem. 

Chaos effects are known to mathematicians for more than a century. In the 
1960 Edward Lorenz found that long term weather forecast is impossible due to 
chaos (butterfly effect). In the 1980 it has become common in physics. Starting 
from the 1990 it has been scrutinized in business and economics. Just as an ex-
ample consider [15] or [16]. Furthermore, chaos has also be used to explain less 
quantitative but nevertheless important things like the origin of war. In this 
context the phrase “drop of honey effect” has been framed in [17].  

In this chapter we will introduce the maybe simplest mathematical model 
which shows chaos. It is the logistic map: 

( ) ( ) ( )( ), , 1 1 , 1a a af x n a f x n f x n= ⋅ − ⋅ − −                (19) 

Equation (19) is mathematically identical to the logistic diffusion model of 

 

 

3The chaos effects in the weather forecast show the same behavior. As the amount of rain is a con-
served quantity, it is well predictable. The exact time when (and where) the rain starts is by no means 
conserved. And indeed this time is practically unpredictable over a sufficiently long time period. 
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Equation (16). We have [ ]0,1x∈  and n∈  as an iteration index. Starting 
with ( )4 0.6,0 0.6f =  we will have ( )4 0.6,1 0.96f = , ( )4 0.6, 2 0.1536f = ,  , 

( )4 0.6,999 0.81141f ≈ , and ( )4 0.6,1000 0.61209f ≈ . The first iterations are 
obtained easily. The last ones are already much more complicated. Typically one 
has to take into account 10300 digits in order to get the correct results. These 
1,000 numbers look like random numbers between 0 and 1. Indeed one finds 

( )
1000

4
1

1 0.6, 0.5055
1000 n

f n
=

⋅ ≈∑
 

and also a nearly perfect equal distribution. One can also plot e.g. ( )4 ,1000f x  
as a function of x. It looks identical to plotting a random number. 

The strange (chaotic) behavior will start at 3.5699a ≈  and is fully developed 
at 4a = . 4a >  leads to a divergence. For 4a =  one can show by e.g. com-
plete induction that 

( ) ( )( )( )4
1, 1 cos 2 arccos 1 2
2

nf x n x= ⋅ − −⋅ ⋅             (20) 

Equation (20) makes it possible to calculate the 1,000 values of ( )4 0.6,f n  
within a quite short computing time. Using Equation (19) directly, which is ne-
cessary if e.g. 3.9a =  is chosen, one needs 10276 times the age of the universe as 
mentioned in Chapter 4. Please note that for any finite n Equations (19, 20) are 
strictly speaking non-chaotic, though they look very chaotic for e.g. 1000n = . 
Only for n →∞  real chaos is present in a mathematical sense. One can also 
calculate the average of ( )4 ,f x n  in the limit n →∞ . As expected one will get 

( )4
0

1 1lim d ,
2

y

n
x f x n

y →∞
⋅ =∫                     (21) 

It proves that there really is an equal distribution of the functional values be-
tween 0 and 1. 

In order to see the difference between randomness and chaos we will intro-
duce two common methods to detect chaos mathematically. The first is the 
Lyapunov exponent, which one will find in most textbooks about chaos such as 
[14]. The Lyapunov exponent ( )xλ  is defined as 

( ) ( )d ,1lim ln
dn

f x n
x

n x
λ

→∞
=                    (22) 

Equation (22) holds for every function f not just the logistic map. However, f 
must be an iterative function. 0λ >  means chaos. By inserting 4f  from Equa-
tion (20) into Equation (22) the Lyapunov exponent for the logistic map ( 4a = ) 
is easily calculated to ( )ln 2 0.693λ = ≈ . It is (almost) independent of x. For 
certain values of x the logistic map will give 0 after a finite number of iterations. 
The values are: 

1 π1 cos
2 2mx m λ  = − ∈ ⇒ → −∞  

  
              (23) 

As 4f  becomes a constant function after a finite number of operations, the 
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differentiation in Equation (22) gives zero and the logarithm minus infinity. 
Because an iterative function is a function of a function of a function …, and 

so forth, one may apply the chain rule for the differentiation in Equation (22) 
yielding a product. The logarithm transforms the product into a sum. After 
some rearrangement one finally gets 

( )
( )( )
( )1

d , ,11lim ln
d ,

n

n i

f f x n i
x

n f x n i
λ

→∞ =

−
=

−∑               (24) 

Inserting for f the logistic map of Equation (19) yields 

( ) ( )log map
1

1ln lim ln 1 2 ,
n

n i
x a f x n i

n
λ

→∞ =

= + − ⋅ −∑           (25) 

Equation (25) is the only reasonable way to calculate the Lyapunov exponent 
of the logistic map for 4a ≠ . Please note that a numerical calculation of the 
Lyapunov exponent for 4a ≠  via Equation (25) is numerically still very chal-
lenging. For 4a =  we know from above that Equation (25) will yield ( )ln 2 . 

The ( ),f x n i−  in Equation (25) look like random numbers between zero and 
one as stated above. So one might come up with the idea to calculate the Lyapu-
nov exponent of random numbers via Equation (25). Naively trying it, one will 
get a result around 0.4. More careful considerations show that the limit in Equa-
tion (25) does not exist for random numbers. This has to do with the fact that 
random numbers come arbitrarily close to 0.5. Avoiding the values for x given in 
Equation (23), the values of the logistic map may come close to 0.5 but not arbi-
trarily close. 

So we have shown that the limit of Equation (25) does exist for a chaotically 
varying f. It is ( )ln 2  for 4a = . Using the seemingly identical varying random 
numbers yields a non-existing limit in Equation (25). Here the explanation for it 
is easy as stated in the last paragraph. However, having numerical data like e.g. 
stock prices one has to decide: Is it a random variation or a chaotic one? For sure 
any limits one will build may be completely different.4 If one decides for a chao-
tic variation, one has to know how this chaos works. As stated, Lyapunov expo-
nents are positive when chaos is present, but they may take any value. 

Scrutinizing some measured data not being created by a known (or assumed) 
mathematical procedure is therefore highly risky. Ordinary statistics is at least 
doubtful. Therefore we called this last chapter further research, though it ap-
pears to be far from straight forward. 

As mentioned above there is a second method to quantify chaos. The results 
there do not have the same dire consequences for finance as we got from consi-
dering the Lyapunov exponent. It may be however important for engineering 
and related sciences. The next method is the Hausdorff dimension. Its detailed 
definition can be found in any advanced textbook such as [7] or [14]. Though 
the Hausdorff dimension is defined in any spatial dimension, we here just con-
sider two dimensions. In a two-dimensional plane one may have objects of di-
mension 0 (dots), dimension 1 (lines or curves), or dimension 2 (e.g. a filled tri-
angle). The Hausdorff dimension is a generalization of this approach which al-

 

 

4Please note that a differentiation, integration, or Fourier transformation also implies building limits. 
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lows non-integer dimensions. Its definition goes as follows. One has to cover the 
objects in a plane with N circles of diameter l. When l goes to zero, N will go to 
infinity—at least in most cases. In that limit one may write 

( ) 10
D

N l A
l

 → = ⋅ 
 

                    (26) 

The exponent D determines how fast the number of circles goes to infinity. It 
is called the Hausdorff dimension. If one has M dots in a plane, one needs M 
circles to cover the dots. So with A M=  and 0D =  Equation (26) is fulfilled. 
The Hausdorff Dimension is in this case identical to the ordinary dimension. 
Considering a square with side length c, Equation (26) is fulfilled for 2A c=  
and 2D =  as it should because a square is a two-dimensional object. 

In order to get non-integer Hausdorff dimensions, consider ( )4 ,f x n  from 
Equation (20). For any finite n it is a curve oscillating 2n  times up and down 
between 0 and 1. This line has a Hausdorff dimension of 1. Taking the limit 
n →∞  is slightly tricky but a rigorous calculation yields 4 3D =  [18]. So in 
the limit n →∞  ( )4 ,f x n  from Equation (20) becomes truly chaotic showing 
a fractal dimension. A fractal dimension is a rigorous proof of chaos like a posi-
tive Lyapunov exponent. Please note that a positive Lyapunov exponent and a 
fractal Hausdorff dimension both prove chaos, but there is no algebraic connec-
tion between them, because the Hausdorff dimension is a global measure while 
the Lyapunov exponent depends on the variable (here x). 

Instead of considering ( )4 ,f x n →∞  from Equation (20) one may consider a 
function mapping the interval ( )0,1  to a random number between 0 and 1 (and 
1 and 0 to 0). As stated, this function looks identical to ( )4 ,f x n →∞ . However, 
it is a filled square having a Hausdorff dimension of 2. So we have a second dif-
ference between randomness and chaos. In this case we have 2D =  or 

4 3D = , respectively. 
As a result, chaotically varying quantities look random. Some limits and aver-

ages are identical whether random numbers or chaotically varying ones are con-
sidered. Others are completely different such as e.g. Lyapunov exponent or 
Hausdorff dimension. A statistical analysis of experimental data such as stock 
prices is therefore generally impossible, because one does not know whether they 
are random or chaotic. Even if one has proven or at least has assumed chaos, it is 
impossible to decide the mathematical form of this chaos such as its Lyapunov 
exponent or Hausdorff dimension. 
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Abstract 
In this paper, generalized KdV equations are investigated by using a mathe-
matical technique based on the reduction of order for solving differential eq-
uations. The compactons, solitons, solitary patterns and periodic solutions for 
the equations presented in this paper are obtained. For these generalized KdV 
equations, it is found that the change of the exponents of the wave function u 
and the coefficient a, positive or negative, leads to the different physical 
structures of the solutions. 
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1. Introduction 

Late in the 19th century, Korteweg and de Vries developed a theory to describe 
weakly nonlinear wave propagation in shallow water. The classical Korteweg-de 
Vries (KdV) equation is usually written as  

6 0.t x xxxu uu u+ + =                      (1) 

After a long time, the KdV equation has been found to be involved in a wide 
range of physics phenomena, especially those exhibiting shock waves, travelling 
waves, and solitons. Certain theoretical physics phenomena in the quantum 
mechanics domain can be explained by means of KdV model. 

As is well known, the classical KdV equation has been played a central role in 
the study of nonlinear phenomena, especially solitons phenomena which exist 
due to a balance between weak nonlinearity and dispersion. As one of the most 
fundamental equations of solitons phenomena, Equation (1) has caused great 
attention from many researchers, all forms of modified KdV equations have 
been studied extensively (see [1]-[10]). 
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Tzirtzilakis, et al. [1] discussed second and third order approximations of water 
wave equations of KdV type. Analytical expression for solitary wave solutions for 
some special equations was derived. By using a Fourier pseudospectral method 
combined with a finite-difference scheme, a detailed numerical study of these 
solutions obtained in [1] was carried out. The stability of these solitary wave 
solutions was also established. 

Rosenau and Hyman [2] introduced and studied a class of KdV equations—
( ),K m n  equation. They discovered that the solitary solutions of these equations, 

for certain m and n, have compact support, namely they vanish outside a finite 
core region. Solitons with finite wavelength are called compactons. 

In [3], Rosenau subsequently studied the model  

( ) ( )1 0, 1,n n
t x xx x

u a u u u n+  + + = ≥                (2) 

where 0a > . This model emerged in nonlinear lattices and was used to describe 
the dispersion of dilute suspensions for 1n = . But Rosenau [3] only got general 
formulas in terms of the cosine for model (2). With the use of new ansatze 
methods, Wazwaz [4] examined model (2) for two cases, 0a >  and 0a < . 
And the exact travelling solutions in terms of sine, cosine function, the 
hyperbolic function sinh and cosh were derived. 

Wazwaz investigated variants of the KdV equations respectively in [5] and [6] 
as follows:  

( ) ( ) 0, 1,n n
t x xx x

u au u u u n + + = >              (3) 

( ) ( ) 0, 3,n n
t x xx x

u au u u u n + + = ≥              (4) 

where a is a nonzero constant. The compactons and solitary pattern solutions 
were presented. 

The present work aims to extend the work made by Wazwaz [5] [6]. We 
desire to seek another method to solve nonlinear equations. For this purpose, the 
wave variable x ctξ µ= −  is introduced to carry the PDEs into ODEs. By using 
this variable replacement method, some new exact solutions including solitons 
can be obtained. In fact, the method in this paper is efficient to solve many 
nonlinear equations. It avoids tedious algebra and guesswork and also can be 
used in higher dimensional space. 

In this paper, we will discuss generalized KdV equations, Equaiton (3) and 
Equaiton (4) and the following equations with negative exponents: 

( ) ( ) 0, 1,n n
t x xx x

u au u u u n− − + + = >             (5) 

( ) ( ) 0, 3,n n
t x xx x

u au u u u n− − + + = ≥             (6) 

where a is a nonzero constant. In the sense of ignoring the constants of 
integration resulted from solving Equations (3)-(6), the exact travelling solutions 
have been obtained which contain the main results made in [5] [6] as special 
cases. 
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2. The Generalized KdV Equations with Positive Exponents 
2.1. Exact Travelling Wave Solutions for Equation (3) 

Firstly, we assume that the travelling wave solutions of Equation (3) take the 
form  

( ) ( ), , ,u x t u x ctξ ξ µ= = −                   (7) 

in which 0µ ≠ , 0c ≠ . 
Notice that  

3 3
3

3 3

d d d, , .
d d d

c
t x x

µ µ
ξ ξ ξ

∂ ∂ ∂
= − = =

∂ ∂ ∂
            (8) 

Substituting (7) and (8) into Equation (3) gives the following nonlinear ODE  

( ) ( )3 0.n ncu a u u u uξ ξ ξξ ξ
µ µ  − + + =  

              (9) 

Integrating Equation (9) once and setting the constant of integration to be 
zero, we find  

( )3 1 0.
1

n nanu u u cu
nξξ

µµ ++ − =
+

                (10) 

Considering 0u ≠ , we get  

( )3 0.
1

n nanu u c
nξξ

µµ + − =
+

                  (11) 

Set nV u= , then  

3 0.
1

anV V c
nξξ
µµ + − =
+

                     (12) 

Letting 
d
d
V Z
ξ
= , we get 

2

2

d d
dd

V ZZ
Vξ

= . So Equation (12) becomes  

3 d 0.
d 1

Z anZ V c
V n

µµ + − =
+

                   (13) 

By using the separating variants method, we have  

( )
3

2 2 .
2 2 1

anZ cV V
n

µ µ
= −

+
                    (14) 

That is  
2

3

d 2 .
d 1
V V anc V

n
µ

ξ µ
   = −   +  

                   (15) 

Case 1. 0a > : Solving Equation (15) gives  

( ) 22 1 1sin ,
2 1

c n anV
an n

ξ
µ µ

 +
=   + 

                 (16) 

and 

( ) 22 1 1cos .
2 1

c n anV
an n

ξ
µ µ

 +
=   + 

                 (17) 
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Hence, we limit the domain of ξ , obtain the following compacton solutions:  

( )
( ) ( )

1

22 1 1sin , 2 ,, 12 1

0, otherwise,

nc n an anx ctu x t nan n
µ ξ µ

µ µ


  +  − ≤ π  =  ++   


 (18) 

and 

( )
( ) ( )

1

22 1 1cos , ,, 12 1

0, otherwise.

nc n an anx ctu x t nan n
µ ξ µ

µ µ


  +  − ≤ π  =  ++   


  (19) 

Case 2. 0a < : Solving Equation (15), we get the solitary pattern solutions as 
follows:  

( ) ( ) ( )
1

22 1 1, sinh ,
2 1

nc n anu x t x ct
an n

µ
µ µ

  + = − − −  
+   

        (20) 

and 

( ) ( ) ( )
1

22 1 1, cosh .
2 1

nc n anu x t x ct
an n

µ
µ µ

  + = − −  
+   

         (21) 

Remark 1. Letting 1µ =  in (18) and (19), we have  

( )
( ) ( )

1

22 1 1sin , 2 ,, 12 1

0, otherwise,

nc n an anx ct ctu x t nan n


  +  − − ≤  =  ++   

π




   (22) 

and 

( )
( ) ( )

1

22 1 1cos , ,, 12 1

0, otherwise.

nc n an anx ct ctu x t nan n


  +  − − ≤  =  ++   

π




    (23) 

which just are the main results for Equation (3) obtained by Wazwaz [5]. In 
other words, solutions (22), (23) made in [5] are special cases of formulas (18), 
(19). 

2.2. Exact Travelling Wave Solutions for Equation (4) 

Following the analysis presented above, we use the wave variable x ctξ µ= −  
into Equation (4) to get the following ODE:  

3 1 0.
1

nau u cu
nξξ
µµ −+ − =
+

                   (24) 

Letting d
d

uY
ξ

= , we get 
2

2

d d
dd

u YY
uξ

= . Then  

3 1d 0.
d 1

nY aY u cu
u n

µµ −+ − =
+

                  (25) 
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Solving Equation (25) yields  
2

2
3

d 1 2 .
d 2 1

nu c au u
n n

µ
ξ µ

−   = −   − +  
                (26) 

Setting nW u−= , we have  
1

,nu W
−

=                            (27) 
1 11d d .nu W W

n
− −

= −                        (28) 

Substituting (27) and (28) into Equation (26) gives  
2 2

2
3

d 2 .
d 2 1
W n c aW W

n n
µ

ξ µ
   = −   − +  

                (29) 

Case 1. 0a > : For this case, solving Equation (29), we get  

( )
( )

22
sec ,

2 1 2 1
a n n aW

c n n
µ

ξ
µ

 −
=   + + 

                (30) 

and 

( )
( )

22
csc .

2 1 2 1
a n n aW

c n n
µ

ξ
µ

 −
=   + + 

                (31) 

Therefore, we obtain the following compacton solutions:  

( )
( )
( ) ( )

1

22 1
sin , 2 ,, 12 2 1

0, otherwise,

nc n n a ax ct nu x t na n n
µ ξ µ

µ µ


  +  − ≤  =  +− +  

π




 (32) 

and 

( )
( )
( ) ( )

1

22 1
cos , ,, 12 2 1

0, otherwise.

nc n n a ax ct nu x t na n n
µ ξ µ

µ µ


  +  − ≤  =  +− + 

π
 



 (33) 

Case 2. 0a < : Solving Equation (29), we have the solitary pattern solutions 
given by  

( ) ( )
( ) ( )

1

22 1
, sinh ,

2 2 1

nc n n au x t x ct
a n n

µ
µ µ

  + = − − −  
− +   

        (34) 

and 

( ) ( )
( ) ( )

1

22 1
, cosh .

2 2 1

nc n n au x t x ct
a n n

µ
µ µ

  + = − −  
− +   

         (35) 

3. The Generalized KdV Equations with Negative Exponents 

In fact, Equation (3) and Equation (4) and Equation (5) and Equation (6) have 
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the symmetric property about n respectively. We replace n by −n in Equation (3) 
and Equation (4) and the corresponding travelling wave solutions in Section 2. 
So we have the following results: 

3.1. Exact Travelling Wave Solutions for Equation (5) 

Case 1. 0a > : The periodic solutions are given by  

( ) ( ) ( )
1

2 1, sec ,
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = −  
− −   

          (36) 

and 

( ) ( ) ( )
1

2 1, csc .
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = −  
− −   

          (37) 

Case 2. 0a < : The soliton solutions have the forms of 

( ) ( ) ( )
1

2 1, sech ,
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = − −  
− −   

         (38) 

and 

( ) ( ) ( )
1

2 1, csch .
2 1 2 1

nan anu x t x ct
c n n

µ µ
µ

   = − − −  
− −   

        (39) 

3.2. Exact Travelling Wave Solutions for Equation (6) 

Case 1. 0a > : In this case, we get the following soliton solutions:  

( ) ( )
( ) ( )

1

22
, sech ,

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = − −  
− −   

         (40) 

and 

( ) ( )
( ) ( )

1

22
, csch .

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = − − −  
− −   

        (41) 

Case 2. 0a < : We have the following periodic solutions:  

( ) ( )
( ) ( )

1

22
, sec ,

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = −  
− −   

          (42) 

and 

( ) ( )
( ) ( )

1

22
, csc .

2 1 2 1

na n n au x t x ct
c n n
µ

µ
µ

  + = −  
− −   

          (43) 

4. Conclusions 

The method based on the reduction of order is a powerful tool for acquiring 
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some special solutions of nonlinear PDEs. In this paper, we study three types of 
generalized KdV equations with positive and negative exponents by using this 
mathematical technique. Different from others, this technique carries some 
partial differential equations into ordinary equations which are easier to be 
solved. And the analytical expression of travelling wave solutions, containing 
compactons, solitons, solitary patterns and periodic solutions, are derived. 

The obtained results in Section 2 and Section 3 each represent two completely 
different sets of models, which has been shown that the variation of exponents 
and coefficient, positive or negative, could cause the quantitative change in the 
physical structure of the solutions. The physical structures of the compactons 
solutions and the solitary patterns solutions deepen our understanding of many 
scientific processes, such as the super deformed nuclei, preformation of cluster 
in hydrodynamic models, the fission of liquid drops, and the inertial fusion. 
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