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Abstract

This paper considers a dynamical system defined by a set of ordinary auto-
nomous differential equations with discontinuous right-hand side. Such sys-
tems typically appear in economic modelling where there are two or more re-
gimes with a switching between them. Switching between regimes may be a
consequence of market forces or deliberately forced in form of policy imple-
mentation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of
this paper is to show that a metric function defined between two adjacent tra-
jectories contracts in forward time leading to exponentially asymptotically
stability of (non)smooth periodic orbits. Hence, we define a local contraction
function and distribute it over the smooth and nonsmooth parts of the peri-
odic orbits. The paper shows exponentially asymptotical stability of a periodic
orbit using a contraction property of the distance function between two adja-
cent nonsmooth trajectories over the entire periodic orbit. Moreover it is
shown that the w-limit set of the (non)smooth periodic orbit for two adjacent
initial conditions is the same.

Keywords

Non-Smooth Periodic Orbit, Differential Equation, Contraction Mapping,
Economic Regimes, Non-Smooth Dynamical System

1. Introduction

Economic systems may not always satisfy the usual smoothness condition
everywhere. In particular, a discontinuity in an economic system may occur due
to a change in economic regime or policy implementation. In this paper, we
consider an economic system defined by a planar ordinary differential equation

with discontinuous right-hand side. Similar dynamical systems are considered in
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various economic models [2] [3] [4] [5] [6]. For such models, there exists a well
developed existence and uniqueness theory [7]. However, little is known about
stability results of non-smooth periodic orbits. Moreover, such results depend
on the explicit calculation of the periodic orbit and employ a global stability
theory based on Poincaré’s map. Since such explicit calculations may not always
be possible, we want to establish existence and exponentially asymptotical
stability of a nonsmooth periodic orbit without its calculation. The advantage of
such a local stability theory would allow economists to derive analytic results for
the purpose of economic policy analysis. The theory developed in Stiefenhofer
and Giesl [1] allows us to do so. In this paper we study the distance function
between two adjacent trajectories and show it’s contraction property in forward
time and calculate its w-limit set. Section two discusses the dynamical system
with a switching regime and recalls the theorem introduced in Stiefenhofer and
Giesl [1]. Section three states the main results and provides the proofs. Section

four is a conclusion.

2. The Model

We consider a differential equation
x=f(x), (1
where £ is a discontinuous function at X, =0 and xeR? such that for

f=f* wehave

L erson ) TT(x) ifx, >0
=1 (X)_{f(x) if x, <0 @

This dynamical system is introduced in Stiefenhofer and Giesl [8]. On the
right-hand side, we provide a condition for switching between economic regimes
f*. For simplicity, we consider only two regimes and an exogenously given
switching condition between them. A stability theory for this dynamical system
is provided by the following theorem.

Theorem 1 (Stiefenhofer and Giesl [1], Theorem 2 p. 11). Let & # K — R?
be a compact, connected and positively invariant set with f*(x)#0 for all
x € K*. Moreover, assume that W* :X* — R’ are continuous functions and
let the orbital derivatives (W . ), exist and be continuous functions in X* and
continuously extendable up to Xj . Let following conditions hold:

1) L, = max L, (xv)<-v<0
W= (x) Hvtuzefwt(x)vvij_ft(x) ( )

L,- (x,vi) — 2V {(vi )T [Dfi (x)]vi +<VWi (x), f* (x)>

forall xe K*.

) £ (0) W OO (090 e,
fzi (Xllo) \/( 7 (leo))z +( £ (Xi,o))z
0
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Then there is one and only one periodic orbit Q< K. Moreover, Q is
exponentially asymptotic stable with the real part of the Floquet exponent less or
equal —v except the trivial one and for its basin of attraction the inclusion
K < A(Q) holds.

Stiefenhofer and Giesl [1] derive the conditions 1 - 2 in theorem 1. Condition
1 states that two smooth trajectories contract if the weighted Lyapunov function
L, is negative. This condition requires that the real part of the Floquet
exponent be negative. While this condition does not depend on the periodic
orbit itself, however, it requires to find a function W*(x). Condition 2 states a
contraction property for the discontinuity points of the dynamical system, where
the system switches. This condition depends on the vector field f* and some
function W™, and is hence independent of the periodic orbit itself. We now
investigate the contraction property of the metric function between adjacent
solutions, and calculate the w-limit set of the periodic orbit. The details of how
to derive these conditions are given in [8]. In principle, however, our method is
a generalization of Borg [9], which introduces the concept of a contraction
mapping between adjacent trajectories in the following way:

We want to show that L(x)<0 is a sufficient condition for two adjacent
trajectories to move towards each other. For example, consider the points
xeR" and x+6veR" in the phase space. Let §>0, v.L f(x), and
||V|| =1. Then in order for two adjacent trajectories through the points x and

X+ 0V to move towards each other it must hold that

0>(f(x+6v),v) 3)
~(f(x)+8Df (x)v,v) (4)
= 5(Df (x)v,v) sincev L f(x). (5)
where
L(x,v) ::<Df (x)v,v). (6)

Hence, if L(x)<0 then locally, two adjacent trajectories move towards each
other. See Figure 1. Borg provides the following theorem under slightly different

assumptions:

Figure 1. Borg’s criterion [9].
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Theorem 2 (Version of Borg [9]) Let O#KcR" be a compact
connected and positively invariant set which contains no equilibrium. Let
L(x)<0 holdforall xeK with

L0 max, (V) 7
where
L(x,v) ::<Df(x)v,v>. (8)

Then there exists one and only one periodic orbit Qc K . Q is
exponentially asymptotically stable and its basin of attraction A(Q) contains
K

3. Results

We now consider the time interval te (tjtl,tj*) in Figure 2 and show that the
distance between two adjacent solutions decreases. We also show that for two
nearby points xand X+7 in Kthat the w-limit set is the same.

We define a time-dependent distance function A":R — R, between two

adjacent points xand X+7 by

At (t) — \/((S;XXW(g (X+77)_ S:x)T ezw+(S?X) (S;}*"(t) (X +77)— S:X)), (9)

where S_,, (t)(x+7), Sx are two adjacent (non)smooth trajectories, and
7, is a monotone increasing map for the time structure presented in Figure 2.

Theorem 3. Let the assumptions of theorem 1 hold. Then there are constants
6>0 and C>1 such thatforall xeK andforall neR? with ||77||S 5/2

A(t) < A(tj;)e™ forallt>0. (10)

Moreover, we have
o(x)=w(x+7n). (11)
Proof
We now show the contraction property of the distance function.
* We show that v defined over a smooth time interval is strictly larger than

4 defined over the same time interval including the subsequent time

interval.

Figure 2. Time structure teR.
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*  We show that the distance function is decreasing for all positive time.
By equations (2.17) and (2.30) in Stiefenhofer [8] we have

A(t)<se ™A (t},l) forallte [t]ll,tjﬂl] (12)

A(t)<e ™A’ (t;) forallte [tf t.*] (13)

177

See time structure notation of the graph of A(t) in Figure 2. Equations (12)
and (13) show the contraction rate g over each jumping interval in +/— and in
—/+ direction. We now state similar equations for the smooth intervals with

contraction rate v . We have

A(t)<e™A(t,) forallte(t) 1)) (14)
A(t)<e™A(t;) forallte(t),t;,) . (15)

We consider the time interval [tl",tf]U(tf 't ) . Hence by equation (12) and

equation (14) we obtain
()< (1)
1) < ut )

ySv[@]. (16)
L4
We define
S:=(t; —t7,)=c, for j=1,2,3, (17)
J:=(t -t;)<c, for j=1,2,3,- (18)

where constants ¢;,C, >0 are defined by

c,=0>0 (19)

For the constant ¢, we consider d :=K({x, =0}.From

max, . | f, (x)| = s (20)
and
t-s=d (21)
we obtainby d < I; f, (X(T))dT
d
= <t. 22
© max, . | f,| (22)

Equation (16) with bounds (17) and (18) and extension of time interval

-t =(t, -t )+(t; -t, ) yields

t, -t C 1
H=V| 2+ t1+ - Sv[ 2 ]zv (23)
(tz -4 )(tz _tz) C+G 1_,_&
C;
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Since ¢, =6 we can choose ¢ small enough so that u getsascloseto v

as we wish. From
At +t)<e At foralite {(tl 1t —)U[t, -t ]} (24)
Aty +t)<e™A(ty) forallte (.t -)U[ -t ]} (25)
we have

Aty +7)<e* A(ty)

(26)
forall 7 e {(t/,t; -)U[t; -t JU(t.t -)U[& & |}
which generalizesto 7 >0, by
Altr <e # At
(7 +c)<eAf) o

forall z {(tj*,l,tj’ —)U[t} —t}JU(t} A —)U[ it J}

This shows (10). It remains to show (11).

Now, we show that all points X+7 with 7eR?, 7L f(x),and |5|<5/2
have the same w-limit set as the point x. We first show the inclusion
o(X)c o(x+n). Assume there is a Wew(x). Then we have a strictly
increasing sequence t, — oo satisfying "W— S, X" —0 as i—oo. Because of
condition (10) of proposition 3 and the properties of 7 in Figure 2 there is a
sequence 7 (t;) that satisfies

T (t)—> o asi— oo, (28)

and
A (t)<A (T (t))e™ asi— . (29)

This proves that S, (x+7)—>w and weaw(x+7).

We now show that the inclusion @(X+7)c @(X). Assume there is a
We w(x+7). Then we have a strictly increasing sequence 6, — o satisfying
"W— S, x" —0 as i— . Because of condition (10) of proposition 3 and
properties of 7 in Figure 2 there is a sequence 7 * (6,) that satisfies
T7(6)—>» as i—o . This proves that S, (x+7)—>w and
wWea(x+17).

This concludes the proof of proposition 3.

Proposition 4. Let the assumptions of theorem 1 be satisfied. Then for all
x,yekK

Fxo(x)=0(y)=Q (30)

Proof. Let X, e Q\K°. Since for all t>0 we have S,x, c K, which is a
compact set, hence
B#w(x)=QcK. (31)
Now, pick an arbitrary point x, € Q\K°. By proposition 3 we have
w(x)—w(y) forall yin a neighbourhood of x. Hence

K, ={xeK:o(X)=o(y,)} (32)
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K, :={X€K:a)(x)¢a)(y0)} (33)

are open sets. Since K =K; UZ and p, € K, with Kconnected, it must be that

K, isemptyand K, =K.

4. Conclusion

Differential equations are ubiquitous in economics. Economic regimes, where
there is a switching between them, fit particularly well within the framework of
differential equations with discontinuous right-hand side, where the
discontinuity represents the switching condition. In this paper, we assume an
exogenous switching condition. However, this can without loss of generality be
generalized by modelling the explicit economic context. The novelty of the
stability theory discussed in this paper is that it is independent of the explicit
solution of the system. This is a major advantage of our theory. However, it
requires defining a weight function W, which may not always be easy. In
particular, the paper shows that a distance function between two adjacent
trajectories contracts in forward time over both, smooth and nonsmooth parts
of the periodic orbit, where the dynamical system is discontinuous. It also
shows that for two adjacent initial points the w-limit set of nonsmooth period
orbits is the same. Stiefenhofer and Giesl provide an example of the theory
discussed in this paper [10] and compare it to global stability theory [11].
Further research should investigate the full basin of attraction of this model.
Such a result would allow economists to fully characterize the set of initial
conditions of exponentially asymptotically stable periodic orbits and to hence

perform effective policy analysis.
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Abstract

In this paper, a formal and systematic method for balancing chemical reac-
tion equations was presented. The results satisfy the law of conservation of
matter, and confirm that there is no contradiction to the existing way(s) of
balancing chemical equations. A chemical reaction which possesses atoms
with fractional oxidation numbers that have unique coefficients was studied.
In this paper, the chemical equations were balanced by representing the
chemical equation into systems of linear equations. Particularly, the Gauss
elimination method was used to solve the mathematical problem with this
method, it was possible to handle any chemical reaction with given reactants
and products.

Keywords

Chemical Reaction, Linear Equations, Balancing Chemical Equations, Matrix,
Gauss Elimination Method

1. Introduction

Balancing of the chemical equation is one of the initial subjects taught in most
preliminary chemistry courses. Balancing chemical reactions is an amazing sub-
ject of matter for mathematics and chemistry students who want to see the pow-
er of linear algebra as a scientific discipline [1]. Since the balancing of chemical
reactions in chemistry is a basic and fundamental issue, it deserves to be consi-
dered on a satisfactory level [2]. A chemical equation is only a symbolic repre-
sentation of a chemical reaction. Actually, every chemical equation is the story of
some chemical reaction. Chemical equations play a main role in theoretical as
well as in industrial chemistry [3]. A chemical reaction can neither create nor
destroy atoms. So, all of the atoms represented on the left side of the arrow must

also be on the right side of the arrow. This is called balancing the chemical equa-
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tion [4]. The application of the law of conservation of matter is critical in chemi-
stry education and is demonstrated in practice through balanced chemical equa-
tions [5]. Every student who has general chemistry as a subject is bound to come
across balancing chemical equations. The substances initially involved in a
chemical reaction are called reactants, but the newly formed substances are
called the products. The products are new substances with properties that are
different from those of reactants [6]. A chemical equation is said to be balanced,
the number of atoms of each type on the left is the same as the number of atoms
of corresponding type on the right [7].

Balancing chemical equation by inspection is often believed to be a trial and
error process and, therefore, it can be used only for simple chemical reactions.
But still it has limitations [8]. Balancing by inspection does not produce a syste-
matic evaluation of all of the sets of coefficients that would potentially balance
an equation. Another common method of balancing chemical reaction equations
is the algebraic approach. In this approach, coefficients are treated as unknown
variables or undetermined coefficients whose values are found by solving a set of
simultaneous equations [9]. According to [5], the author clearly indicated that
the algebraic approach to balancing both simple and advance chemical reactions
typically encountered in the secondary chemistry classroom is superior to that of
the inspection method. Also, in [10], the author emphasized very clearly that
balancing chemical reactions is not chemistry; it is just linear algebra. From a
scientific viewpoint, a chemical reaction can be balanced if only it generates a
vector space. That is a necessary and sufficient condition for balancing a chemi-
cal reaction.

A chemical reaction, when it is feasible, is a natural process, the consequent
equation is always consistent. Therefore, we must have nontrivial solution. And
we should be able to obtain its assuming existences. Such an assumption is ab-
solutely valid and does not introduce any error. If the reaction is infeasible, then,
there exists only a trivial solution, Ze, all coefficients are equal to zero [6]. In
Mathematics and Chemistry, there are several mathematical methods for ba-
lancing chemical reactions. All of them are based on generalized matrix inverses
and they have formal scientific properties that need a higher level of mathemati-
cal knowledge for their application [1]-[16]. Here, we are presenting the Gauss
elimination method, it was possible to handle any chemical reaction with given
reactants and products. Solved problems are provided to show that this metho-

dology lends well for both simple and complex reactions.

2. Main Results

Problem 1
Balance the following chemical reaction

C,Hs; +0, - CO, + H,0 -Not Balanced.

The equation to balance is identified. This chemical reaction consists of three

elements: Carbon(C); Hydrogen (H); Oxygen (O). The equation to balance is
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identified our task is to assign the unknowns coefficients (X, X,,%;,X,) to each

chemical species. A balance equation can be written for each of these elements:

XC,H; +x,0, = x,CO, + x,H,0

Three simultaneous linear equations in four unknown corresponding to each

of these elements. Then, the algebraic representation of the balanced
Carbon(C):2x =%, = 2% —%, =0
Hydrogen (H): 6x, = 2x, = 6x,—2x, =0
Oxygen(0):2x, = 2%, + X, = 2X, —2X; — X, =0

First, note that there are four unknowns, but only three equations. The system

is solved by Gauss elimination method as follows:

2 0 -1 010 2 0 -1 010
6 0 0 —2|0|]—R=RSR 4,10 0 3 -2]0
02 -2 -1|0 02 -2 -1|0
20 -1 0|0] . o [600 —2]0
—fefk 510 2 2 -1|0|—2Rs 500 6 0 7|0
00 3 =20 00 3 2|0
Rﬁ—%Rl
1
e 10 0 -1/30

5% 01 0 ~7/6 0
0 01 -2/3|0
The last matrix is of reduced row echelon form, so we obtain that the solution
of the system of linear equations is:
X1_1X4 =0=x zl)(4
3 3

7 7
xz—gx4 =0=X, :Ex4

2 2
x3—§x4 =0=x, :§X4

where X, a free variable, particular solution is can then obtain by assigning

values to the X,, for instance X, =6 we can represent the solution set as:
X\ =2, X, =7, X;=4
Thus, the balanced chemical reaction equation is:

2C,H,+70, - 4C0O, +6H,0

Problem 2

Consider this chemical reaction which is infeasible

K,Fe(CN), +K,S,0, - CO, + K,SO, + NO, + FeS -Not Balanced.

A balance equation can be written for each of these elements:

xK,Fe(CN), +x,K,S,0, = x,CO, + x,K,SO, + x,NO, + x,FeS
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From above equation, we will obtain the following set of equations:

K:4x +2X%, =2,

Fe:x =X,
C:6x =X,
N:6x% =2X

S12X, =X, + X
0:3%, = 2%, +4X, + 2%,
From the systems of equations we obtain the contradictions X, =3X and

X, = ?)9 , that means that the system is inconsistent, Ze., we have only a trivial

solution X =0(1<i<6).Hence, that means the chemical reaction is infeasible.
Problem 3

Consider the following chemical reaction with atoms which possess fractional
oxidation numbers

X1C2952H4664 N812083288 Fe4 + X2 NaZC4HSO4SAu + X3Fe(SCN)2
+x,Fe(NH, ), (SO,), 6H,0 + x,C,H,Cl,S+ x;C;H,,MgN, O,
— X;Cs5H7,MN, + X Nag gsFe (CN), + XgAUg 65,SCH,, O
+X,HCIO, + x;H,S
For balancing of this kind of reaction the computer is useless. From the mass
balance of the above chemical reaction one obtains this system of linear equations
2952X, +4X, +2X; +4X; +8X; = 55X; +6X; +6X,
4664X, +3X, + 20X, +8X%; +12X; = 72X, +11Xy + X4 +2X,
812X, +2X; +2X, +2X; = 4%, +6X%,
832X, +4X, +14X, +8X; =5X; +4X,,
BX, + X, + 2%y + 2%, + X5 = Xg + Xy
A% + X+ X, = Xg
2%, =3.99%,
X, = 0.987%,
2% = Xy
X =X,
By using of the method of the elimination of the variables, from the chemical

reaction and the system of linear equations immediately follows the required
coefficients

30448582C 15c,H 1050 i1, g0 S5 Fe, +10833308052Na,C,H,0,SAu
+3899586588Fe (SCN), +1408848684Fe(NH, ), (SO, ), 6H,0
+5568665015C, H,Cl,S +1379870764C,H,,MgN,0,

> 1379870764C5H,,MgN,, +5430229600Na, o,Fe(CN),

+10975996000AU, 45, SC;H,,0, +11137330030HCIO,
+16286436267H,S
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Is it chemistry? No! It is linear algebra.

3. Results

Every chemical reaction can be represented by the systems of linear equations. A
chemical reaction, when it is feasible, the consequent equation is always consis-
tent. Therefore, we must have nontrivial solution. If the reaction is infeasible,
then, there exists only a trivial solution, Ze, all coefficients are equal to zero. A
chemical reaction which possesses atoms with integers and fractional oxidation
numbers was studied. And with this method, it was possible to handle any

chemical reaction.

4. Conclusion

Balancing chemical reaction is not chemistry, but it is just linear algebra. This
study investigates that every chemical reaction is represented by homogenous
systems of linear equations only. This allows average, and even low achieving
students, a real chance at success. It can remove what is often a source of frustra-
tion and failure and that turns students away from chemistry. Also, it allows the
high achieving to become very fast and very accurate even with relatively diffi-
cult equations. This work presented a formal, systematic approach for balancing
chemical equations. The method is based on the Gaussian elimination method.
The mathematical method presented in this paper was applicable to all cases in
chemical reactions. The results indicated that there is no any contradiction be-
tween the various methods that were applied to balance the chemical reaction
equation and the suggested approach. Balancing chemical reactions which pos-
sess atoms with fractional oxidation numbers is possible only by using mathe-

matical methods.
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Abstract

The mechanism of interaction between a cell and an external mechanical field
is still poorly understood, and the accumulated diverse experimental data are
often scattered. Therefore, the aim of this work was to systematize the expe-
rimental data in a mathematical model of the interaction between a cell and
an external mechanical field based on standard kinetic equations and Fick’s
diffusion equation. Assuming that the cortical cytoskeleton proteins play a
key role in cell mechanosensitivity, we compared the results of mathematical
modeling and experimental data concerning the content of cytoskeletal pro-
teins at the early stages of a mechanical field change. In addition, the pro-
posed mathematical model suggests the dynamics of changes of a key tran-
scription factor, which is necessary for the expression of certain genes en-
coding cytoskeletal proteins.

Keywords

Cell Mechanosensititvity, Kinetic Equations, Cortical Cytoskeleton

1. Introduction

Human exploration of outer space faces a number of unsolved problems, in-
cluding medical problems. Being in conditions of weightlessness, even during
Earth orbit, leads to a number of negative effects, for example, on the muscu-
loskeletal and cardiovascular systems [1] [2] [3]. Existing methods of counter-

measures, for the most part, are palliative, which is associated with a lack of un-
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derstanding of the etiology of the development of hypo-gravitational changes at
the cellular and molecular levels. To date, questions remain about the interaction
of a cell and a gravitational field: what is the mechanosensor and how the me-
chanotransduction paths are started.

Practically every intracellular structure can claim to be a mechanosensor.
Thus, stretching of neurons or smooth muscle cells in a culture through the
extracellular matrix leads to an increase in microtubule polymerization [4] [5].
Direct stretching of cell membranes, for example, using patch clamp technology,
changes the cation-transport activity of mechanosensitive ion channels as a re-
sult of conformational changes of either the lipid bilayer [6] [7] or the portal
domains of the channel itself [8] [9]. In addition, the submembrane cytoskeleton
[10], as well as intracellular structures [11] [12], can also act as a mechanosen-
sor.

The result of mechanotransduction is the formation of an adaptation pattern
of proteins and gene expression. Thus, in cultured cells under conditions of al-
tered gravity, there was a change in the cell profile, disorganization of microfi-
laments and, sometimes, microtubules [13]-[18], and changes in mitochondrial
localization [19], which is determined by the state of the intermediate filaments.
In addition, the changes are not limited to the protein content but also occur at
the level of the expression of genes encoding cytoskeletal proteins and associated
components of signaling cascades [20]-[26].

Our previous studies have suggested the role of the actin-binding proteins of
the submembrane cytoskeleton in the primary mechanoreception of cells of var-
ious types, in particular skeletal muscle and myocardium. We assume that any
change in the external conditions for the cell is reflected in the deformation of its
cortical cytoskeleton. However, these strains are fundamentally different with
increasing and decreasing loads. The first result is the dissociation of various ac-
tin-binding proteins from the cortical cytoskeleton: alpha-actinin-4 with a load
decrease and alpha-actinin-1 with an increase [10] [27] [28]. With further de-
velopment of this process, the deformation leads to the destruction of the struc-
ture and, at subsequent early stages of exposure, to an initial decrease in stiff-
ness, which correlates with the content of actin non-muscle isoforms in the
membrane fraction, which form the cortical cytoskeleton [29]. Furthermore, in
the case of a decrease in external mechanical stress, there is a decrease in the ex-
pression of genes encoding cytoskeletal proteins and a further decrease in cortic-
al cytoskeleton stiffness. In contrast, an increase in the external mechanical
stress increases the mRNA content of the genes encoding cytoskeletal proteins
and proteins directly and increases the stiffness [30] [31]. In general, the process
of sensitivity to external stress by cells can be quite universal in the evolutionary
series. Thus, Drosophila melanogaster lacks the isoform alpha-actinin-4; howev-
er, it is possible that supervillin plays a role in the process of mechanosensitivity
[32].

Thus, the multiple components and variability of the mechanisms of cellular

mechanosensitivity and mechanotransduction make it difficult to find the “hot
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spots” of its regulation and, as a consequence, the development of effective pro-
tection methods. Therefore, we decided to build a mathematical model based on
the classical kinetic equations of the concentrations of key proteins and mRNAs
involved in the perception and transduction of external mechanical stress, taking

into account their diffusion between the compartments.

2. Formulation of the Problem

Based on the experimental results described above, it is possible to suggest the
following mechanism for triggering the formation of an adaptive response to
changes in the external mechanical stress.

Suppose that a sensitive protein SP associated with microfilaments reacts to
any change in mechanical stress. In addition, its antagonist, aSP, is also asso-
ciated with microfilaments. Protein SP can exist both in connection with micro-
filaments and in free form. The binding to the microfilament network and dis-
sociation from microfilaments at the initial state occur to maintain the initial

in both membrane SP,

level of free protein SP, freem0

e and cytoplasmic com-

partment SP,_ . Free-form SP,  can diffuse between compartments.

reecO free

A change in the external mechanical stress leads to an increase in the content
of free “sensitive” protein in the membrane fraction SP, ., with a reaction rate
constant, which depends both on the external mechanical stress and on the
membrane compartment characteristics Vyey ,spireem (9,2 ). An increase in the
in the membrane leads to an increase in its content in

due to diffusion. SP

content of free SP
the cytoplasm SP

The activated protein M in turn activates the transcription factor TF, to

freem

activates some protein M, .

freec freec

diffuse into the nucleus and alter the transcription efficiency of its target genes
and the formation of the corresponding mRNA. There is feedback, and the effi-
ciency of the formation of the “sensitive” protein mRNA, rSP, depends on the
content of activated TF. in the nucleus.

Suppose also that the efficiency of proteolysis and degradation of mRNA does
not depend on the content and type of substrates and the rates of cleavage are
constant—v, and V, for proteins and mRNA, respectively. In general, we as-
sume that all reactions proceed at a constant rate, bearing in mind that the rate
does not depend on the content of the substrate/reaction product.

We introduce the following notation:

t—time, index 0—the initial moment of time;

the indices m and c—the membrane and cytoplasmic compartments, respec-
tively;

Z,,. —the coordinate perpendicular to the cross section of the cell between the
membrane and cytoplasmic compartments, along which the sensitive protein, its
antagonist and the cytoskeletal proteins undergo diffusion,

Z,, —similarly, the coordinate perpendicular to the cell cross section between

the cytoplasmic and nuclear compartments, along which the transcription factor
is diffused;
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Dy, —the diffusion coefficient of the molecules of the “sensitive” protein be-
tween the cell compartments;

D,s» —the diffusion coefficient of antagonist molecules of the “sensitive” pro-
tein between the cell compartments;

SP, .. —the content of the “sensitive” protein in the free state;

free

aSP

.. —the content of the antagonist of the “sensitive” protein in a free state;

Ve spiree (9,2, ) —reaction rate of the transition of the “sensitive” protein
from the complex with microfilaments to the free state when the mechanical
stress is changed,

rSP —the content of the “sensitive” protein mRNA;

raSP —the content of the antagonist of the “sensitive” protein mRNA;

v, —the reaction rate of mRNA degradation in the cytoplasm;

Vspirees (FSP) —the reaction rate of the synthesis of sensitive protein molecules,
depending on the content of the corresponding mRNA rSP;

Vyspireec (TSP ) —the reaction rate of the synthesis of antagonist molecules of
the “sensitive” protein, depending on the content of the corresponding mRNA
rasP;

v, —is the reaction rate of proteolysis of protein molecules in the cytoplasm;

M, —the content of the activated modifying factor in the cytoplasm;

Vs (SPfreec ) —the reaction rate of the activation of the modifying protein de-
pending on the content of the free “sensitive” protein in the cytoplasm SP, . ;
TF " —activated transcription factor;

VTFC*
the cytoplasm, depending on the content of the activated modifying protein
M

(M: ) —reaction rate of formation of an activated transcription factor in

¢
Vigps (TF;) —the reaction rate of the synthesis of mRNA molecules of the
“sensitive” protein, depending on the content of the activated transcription fac-
tor in the nucleus TF, .
SP—the content of “sensitive” protein, which was evaluated experimentally;
aSP—the content of the antagonist “sensitive” protein, which was estimated
experimentally;
MF—the content of major proteins that form microfilaments (actin isoforms);
MT—the content of the main proteins forming microtubules (tubulin);
IF—the content of basic proteins forming intermediate filaments (desmin);
D, —diffusion coefficient of microfilament monomer molecules between
cell compartments;
Dy —the diffusion coefficient of microtubule monomer molecules between
cell compartments;
D, —diffusion coefficient of monomer molecules of intermediate filaments
between the cell compartments;
rMF —the microfilament mRNA content;
rMT —the microtubule mRNA content;

rlF —the intermediate filament mRNA content;
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v (raSP) —the reaction rate of the synthesis of antagonist molecules of

aSPfreec
the “sensitive” protein, depending on the content of the corresponding mRNA
raSP ;

Vure (TMF ) —the reaction rate of the synthesis of microfilament molecules,
depending on the content of the corresponding mRNA rMF ;

Vure (TMT) —the reaction rate of synthesis of microtubule molecules, de-
pending on the content of the corresponding mRNA rMT ;

Vi (FIF ) —the reaction rate of synthesis of molecules of intermediate fila-
ments, depending on the content of the corresponding mRNA rlF .

Then, for the proposed mechanism, the standard kinetic dependencies taking
into account the diffusion between the compartments, the efficiency of synthesis

and degradation for the concentrations of the analyzed proteins and mRNA are:

dSP, dSP, .
SPfreem = SPfreemo + DSP L - DSP dzfreem -1 +VMFm—>SPfreem (g! ch ) -1 (1)
dsP dSsP
SPfreec = SPfreecO + VSPfreec (rSP) -t _Vp - Dsp d freec T+ DSP %-t (2)
ZmC ch
M::M:0+VM; (Spfreec)'t_vp’t (3)
* * x dTF;
TR, =TFy +V,,. (M()-t-Dp. vt (4)
cn
ISP = ISP, +Vygp, (TF, )=V, -t (5)
« * TF,
TF, =TFn0+DTFd “t-v, -t (6)
dz,,
daSP; daSP;
aSP .o, = 8SP; oo + Dygp —————+t = D,gp ————-t (7)
reem reem al dch al dch
daSP
aSPfreec = a'SPfreecO + VaSPfreec (rasp) - Vp t- Dasp free -t
dz,,
(8)
daSPfreem
+ DaSP dz—

mc

Similar to the previous system, for comparison with the experimental results
and to determine the type of dependencies, we write the expressions for those
parameters that can be determined (divided into compartments):

Membrane + cortical cytoskeleton

_ dSPfreec dSPfreem
SP, =SP,, + Dgpt | ——o - T 9)
dz,. dz,.
daSP daSP
aSP, =aSP_, + Daspt( freee _ "eemJ (10)
mc dsz
MF. = MF, + DMFt(O"V'—Fc— dMFmJ (1)
mc dZmC
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MT, =MT,, + DMTt{dM—T“— dMmT, J (12)
mc dZmC
IFm = IFmO + DIFt d”:c - d”:m (13)
d mc dZmC
Cytoplasm
dSP dSP
SP, = SP,y + Vipyreee (TSPt =V, -t — Dspt[ﬂ—ﬂJ (14)
dZmC dZmC
daSP daSP
aSP, = aSP, +Vyspyreee (FASP) -t =V, -t — Dyt freee _ frem 1 (15)
dz,. dz,,

dMF, dMF
MFC:MFC0+VMFC(rMF)-t—vp-t—DMFt[ : "‘J (16)

dz,, dz,,
dMT,  dMT,
MT, = MT,, +VMTc(rMT)'t_VP ’t_DMT'{ dz - dz m] (17)
mc mc
dIF, dIF
IFC=IFC0+v|Fc(rIF)-t—vp~t—D,Ft(ﬁ— dsz:J (18)
ISP = ISP, +Vygp, (TF, )=V, -t (19)
raSP = raSP, + Vi, (TF, ) t—v, -t (20)
IMF = IMF, +V,yye, (TF) ) -t =y, -t (1)
IMT = IMTy +V,yr, (TR ) t=v, -t (22)
MIF = 1R, + Ve (TR )t =, -t (23)

Solving equations together, we obtain expressions for the content of various

proteins. For the modifying protein and transcription factor:
M:=M§O+VM;(SPﬂeec)-t—vp.t (24)

Zen

TR, =TFy—v, t+V_. (|\/|;)-t—(TF§0 =V UV ('\/lc*)*)";ﬁ (25)

3 C

_%en

TR =TF, —v, -t+(TFC’; v, -t (M:)~t)-e Dret (26)

For “sensitive” protein:

ISP = ISP, +Vygp, (TF, )=V, -t

SPfreec = SPfreecO _Vp -1 +VSPf,.eec (rSP)t
_Imc

2Dgpt

= (SPiaco ~V *t+ Vep,., (1SP)-t) -6 (27)
__Zme
* 4
e 2Dset Zme dkMFmaSPfreem (g' ch) ZDn;cPt
+ ) -e?%ldz
2DSP 0 dzmc
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SI:’freem = SPfreemo + VMFmaSPfreem (g’ ch ) -1

#(SPiaco =V Vep,,, (1SP)-1) & 2" (28)
e 2Dspt Imc dk;/lFmaSPfreem (g’ ch) ZZDmSCPt
- ez,
2DSP 0 dzmc
__Zmc
SP. =SP, +(SPfreeco —V, otV (rSP)~t)‘e 2Dspt
ch * ch (29)
+t. d e_ZDSPt . J‘ch dkMFmaSPfreem (g’ ZmC) -GZDSPtdZ
dch 0 dZmC "
SR, =SPyo —V, t+Vg, (rSP)-t
~(SPraseo =Vt + Vep,,, (1SP)-t) € 2" (30)
_t. d 872&2t .J'ch dkMFmaSPfreem (g' ZmC) 'eZD";Cpt dz
dz,,. 0 dz,,. e
For the antagonist of “sensitive” protein:
raSP = raSP, +V,qp. (TF:)-t—vd t (31)
aSPee; = ASPyeeco — VU Vop, (raSP)-t
e (32)
—(aSPfreeco —V, t+V,g (raSP) 't) -g 2Pase!
asP,... =asP, ..., +(aSPfreeco —V, -t+V,g  (raSP) -t)-e 2Dygpt (33)
aSP, =aSP,, -V, -t+V,e, (rasP)-t
__Imc (34)
—(aSPfreeco —V, -t+V, (raSP) -t) . 2Daset
__Imc
aSP,, = @SRy +(8SPuep —V, L+ Vygp,,, (raSP)-t) € 207" (35)
For microfilaments:
IMF = IMF, + Ve, (TF) ) -t =y, -t (36)
MF, = MF,q —V, -t + Ve, (TMF ) -t
e (37)
—(MF, =V, -t 4V, (IMF)-t)-e 2!
__Imc
MF,, = MF, +(MF, =V, -t+ Ve, (TMF)-t)-e 20" (38)
For microtubules:
IMT = IMT, + Vi, (TR, )t =, -t (39)
MT, = MT,, =V, -t+Vyp (rMT)-t
Zme (40)

—(MTCO —V, Vg (rMT)-t)~e72DMTt
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Zme

MT,, = MT,, +(MT,, v, -t +Vyr, (TMT)-t) & 00t (41)

For intermediate filaments:
FIF = 1R, + Ve (TR )t =, -t (42)

Zme

IF, = IR, =V, -tV (IF)-t=(IF, —v, -t+Vie (rF)-t)-e > (43)

c

Zme

IF, = IF, +(1F, —V, -4V, (1IF)-t)-e 20 (44)

3. Simulation

In previous studies, we obtained systematic data concerning the contents of var-
ious cytoskeletal proteins in the membrane and cytoplasmic fractions of rat so-
leus muscle fibers [28] [29]. Therefore, for the simulation, we consider this type
of cell under changes in the external mechanical field.

We consider the actin-binding proteins alpha-actinin-4 and alpha-actinin-1 as
a “sensitive” protein and its antagonist, respectively, and beta-actin as a protein
of microfilaments of the submembrane cytoskeleton because its content domi-
nates over the content of gamma-actin in this cell type [28] (Figure 1(a)).

As a result of a change in the external mechanical stress, an adaptive pattern is
formed: in the case of an increase, the cytoskeleton becomes more developed, in
the case of a decrease, vice versa. Consider the option of decreasing external
mechanical stress (Figure 1(b)).

We will follow the “sensitive” protein, its antagonist, and microfilaments and
compare the results of the simulation with the experimental data.

Since the experiment evaluated the relative contents of proteins and mRNA as

a whole in compartments, then 2z, is the “path length” between the cortical

Figure 1. Schema of mechanosensitivity. (a)—an initial state; (b)—an adaptive pattern
under decrease of the external mechanical tension. 6 —cholesterol, ' —SP,
NV\ —rSP, .—aSP, JVV\ —raSP, ®eemesey —MF as filaments, ® —MF as

monomers, NV\—rME Qotoeooop — MT as filaments, O —MT as monomers,
—rMT, ©e®eeseee— IF as filaments, @ —IF as monomers, Y~ \—r/F,

Q—M., (D—TF".
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cytoskeleton and the cytoplasm, and z,, is the “path length” between the cy-
toplasm and chromatin (Figure 1).

We assume that for the fibers of the soleus muscle of rats:
z,. =18x107'm, z, =2x10"m.

Following [33], using the Stokes-Einstein equation, we assume that the diffu-
sion coefficient is:

RT

=, 45
6mrN, (45)

where R =8.31]/mol-K —the universal gas constant, T =298 K —the tem-
perature, 7 =10"°Pa-s —the dynamic viscosity of the medium,
N, =6.02x10”°mol™, r—the hydrodynamic radius of the protein molecule.
Beta-actin, considered the main protein of microfilaments of the cortical cy-
toskeleton in rat soleus muscle, has 375 amino acid residues. Then, we will as-
sume that its hydrodynamic radius is 5.28 x 10 m [33]. Assuming that SP and
aSP are alpha-actinin-4 and alpha-actinin-1, having 911 and 892 amino acid re-
sidues, respectively, we will assume that for them, the hydrodynamic radii are
the same and amount to 6.61 x 10~ m, based on the extrapolation proposed by
[33]. The transcription factor remains unknown in the proposed mechanism,
but since many parameters are not determined accurately but are estimated, for
simplicity of calculations, we will consider the hydrodynamic radius of the tran-
scription factor as a certain average value, and we will use 6.0 x 10~ m. Conse-
quently, all the hydrodynamic radii necessary for calculations have close values,

and we can assume that the diffusion coefficient has one order:
Dur = Dgp = Dygp = Di¢ =107, (46)

The rate of RNA polymerase II in eukaryotic cells is 10 - 70 nucleotides per
second [34] [35]. Thus, we defined it as 40 nucleotides/s. Since the dependence
of the efficiency of the recruitment of a transcriptional complex to DNA in this
case is unknown, we will assume that for each of the proteins under considera-
tion, it is a linear relationship with a specific recruitment coefficient in each case.
Then:

for SP (alpha-actinin-4, 3885 bp)— Vi, (TF, ) =10k gp, - TFs™;  (47)
for aSP (alpha-actinin-1, 2956 bp)— V,,sp. (TFn*) =1.4x107K p, - TF.s7"; (48)
for MF (beta-actin, 1293 bp)— Ve (TF, ) =3x10 ke -TRS™,  (49)

where K, Ko, and K, are recruitment coefficients of the transcriptional
complex to DNA depending on the content of the activated transcription factor
in the nucleus for alpha-actinin-4, alpha-actinin-1 and beta-actin, respectively.
We assume that the half-life of mRNA of genes encoding cytoskeletal pro-
teins, as well as for globin, is approximately 8 hours [36]. We assume that on av-
erage, it is approximately 28,800 seconds. Therefore, the reaction rate constant

for mRNA degradation in the cytoplasm is:
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for aSP (alpha-actinin-1, 892aa)— Vg (raSP) =5.6x 107k

Vv, =3.5x107°s" (50)

The speed of ribosomes in eukaryotic cells is diverse, but we will assume that
on average, including for cytoskeletal proteins, processing proceeds at a speed of

5 amino acid residues per second [37]. Then:

for SP (alpha-actinin-4, 911aa)— Vgpyue (ISP)=5.5%10"Kepypeee - FSPS™3 (51)

-raSPs™; (52)

aSPfreec

for MF (beta-actin, 375aa)— Vye, (FMF) = 13.3x10°Kye, -TMFs™  (53)

where the Kgpq oo s Kospreee @A Kype are coefficients that reflect the efficiency of
translation for alpha-actinin-4, alpha-actinin-1 and beta-actin, respectively.

We assume that proteolysis is carried out using the proteasome. The rate of
proteolysis depends on how long the protein has been synthesized but, on aver-
age, is 2.5 substrates/minute [38]. Let us assume that on average, for the ana-
lyzed proteins, the rate of proteolysis reaction of protein molecules in the cytop-

lasm is:
vV, =4x107%s" (54)

Since the dependence of the activation of the modifying protein on the con-

tent of free “sensitive” protein in the cytoplasm SP, .. and the dependence of

reec
the formation of an activated transcription factor in the cytoplasm, which de-
pend on the content of the activated modifying protein M_, remain unknown,

we approximate, as above, with the linear dependence specific activation factors:

VM: (Spfreec) = aM; ’ SPfreecs_1 (55)
Ve (M) = Ml 0

where & . and a_. are the activation coefficients of the modifying protein

[4
»

by the freec “sensitive” protein and the transcription factor by the activated mod-
ified protein, respectively.

Consequently, the greatest uncertainty is Vy-_ pee (9,2, ) > the reaction rate
of the transition of the “sensitive” protein from the complex with microfilaments
to the free state when the mechanical stress changes. Without loss of generality,
we will assume that the variables are independent and then:

Zme

VI\:IF—>SPfree (g 1?mc ): V* (g )'V* (ch ): V* (g ) DSP -t Dyt (57)

Considering gravity as a bulk force, we accept, as before [27], that:
V' (9)=p-g-cose, (58)

where ¢ is the orientation angle, in this case, the soleus muscle in the field of
gravity, g is the acceleration of gravity, and p is the density of the cortical cy-
toskeleton, depending on the initial number of formed filaments and their or-
ganization into the network. For the standard model used to reproduce the ef-

fects of weightlessness on Earth in rodents, antiorthostatic suspension, this angle
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is 30° [39].

We take the initial values of the estimated parameters for 100% and substitute
(45) - (58) into (24) - (38). We evaluated the process of perception of a mechan-
ical stimulus and its transduction at several points—6, 12, 18, 24 and 72
hours—to compare the results of mathematical modeling and experimental data
obtained by us earlier [28].

The dependences obtained for the content of the “sensitive” protein—
alpha-actinin-4 (Figure 2), the antagonist of the “sensitive” protein—
alpha-actinin-1 (Figure 3), and microfilaments—beta-actin (Figure 4) in com-
parison with experimental data show coincidence when varying only the con-
stants of the efficiency of transcription (K,gp, K. sps:Kiue respectively) and
translation (k k k

spirecc » Kaspireec » respectively). However, there are differences at

MFc
the 72-hour point: in the experiment, the alpha-actinin-1 content is 77% + 7% of
the control in the membrane fraction and 50.5% in the numerical experiment
(Figure 3(b)); in the experiment, the beta-actin content in the cytoplasmic frac-
tion does not differ from the control; in the numerical experiment, it is reduced
(66.4% of the control) (Figure 4(c)). In addition, at the 12 o'clock point in the
experiment, the beta-actin content in the membrane fraction is already reduced
and amounts to 51% + 4% of the control; in a numerical experiment, it does not
differ from the control (103%) (Figure 4(b)).

The dynamics of the transcription factor change (Figure 5) indicates an in-
crease in its content in the nucleus after 6 hours by 35% and a subsequent in-
crease up to 24 hours (235% relative to the control) and then a decrease after 72

hours compared to the maximum accumulation (up to 190%).

Figure 2. Relative content of the “sensitive” protein and its mRNA (simulation data) and
comparison with the relative content of alpha-actinin-4 (Actn4) and mRNA (experimen-
tal data). (a)—mRNA comparison; (b)—membrane fraction of protein comparison;
(c)—cytoplasmic fraction of protein comparison.

Figure 3. Relative content of the antagonist of the “sensitive” protein and its mRNA (si-
mulation data) and comparison with the relative content of alpha-actinin-1 (Actnl) and
mRNA (experimental data). (a)—mRNA comparison; (b)—membrane fraction of protein
comparison; (c)—cytoplasmic fraction of protein comparison.
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Figure 4. Relative content of microfilament protein and its mRNA (simulation data) and
comparison with the relative content of beta-actin and mRNA (experimental data).
(a)>—mRNA comparison; (b)—membrane fraction of protein comparison; (c)—
cytoplasmic fraction of protein comparison.

Figure 5. Relative content of the transcription factor in the nuclei (simulation data).

Simulation data were fitted by curve; experimental data are marked by dots.
The simulation was performed under parameters (45) - (58) and constants for
6h  Kgp =—5.28x107° , Keppree = —18x107 , for 12 h— K, =—4.4x107° ,
Kepreee = —16x107%, for 18 h— K,gp, = —4.39x10°°, Kgppreee = —2x107%, for 24 h—
Kigps =3.36%107° |, Kepyreee =—1.53x107° , for 72 h— Kk, =1.75x107° ,
Kgprreee = 8-85x107*. The figure was built in the Excel 2007 for Windows.

Simulation data were fitted by curve; experimental data are marked by dots.
The simulation was performed under parameters (45) - (58) and constants for
6h K =—1.62x107" |, Kgppeee =107* , for 12 h— K =-1.11x107" ,
Keprreee = 2-23x107°, for 18 h— Ko, = 2.84%107°, Kepeee = 2.01x107°, for 24
h— K, ==5.33x107 , Kgpyrpee = —2.44x107°, for 72 h— K, =-5.33x107,
Kprreee = —2-41x107 . The dotted ovals show differences between the simulation
and experimental data. The figure was built in the Excel 2007 for Windows.

The simulation was performed under parameters (45) - (58). The figure was
built in the Excel 2007 for Windows.

4. Discussion

The problem of perception by living cells of a mechanical stimulus is not only of
practical importance associated with the exploration of deep space but also fun-
damental since life has evolved under the conditions of a permanently acting
mechanical factor—gravity. Despite the many studies, there is currently no uni-
versal idea of how a cell perceives an external mechanical field and how it
transduces its changes to form an adaptation pattern.

In our previous works, we obtained experimental data that suggest the key

role of actin-binding proteins in the cells’ perception of various types of me-
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chanical stimulus. For mammals, we assume that these proteins can be two cal-
cium-dependent alpha-actinin forms: alpha-actinin-1 and alpha-actinin-4 [10]
[27] [28]. However, for example, in Drosophila, there is only one alpha-actinin
isoform, but our previous data suggest that another actin-binding protein,
supervillin, may be the second participant [32]. Therefore, in this work, we des-
ignated this pair of proteins as a sensitive protein SP and an antagonist of the
sensitive protein aSP.

In system biology, mathematical modeling is often used to estimate the values
of unknown parameters. The model of population dynamics of Lotka-Volterra is
used especially widely in various kinetic models, for example, when modeling
the development of bacterial infection [40]. In this paper, the use of kinetic re-
gularities and the second Fick’s law, the diffusion equation, assuming that in-
creasing or decreasing mechanical stress leads to dissociation of aSP or SP from
the cortical cytoskeleton, let us numerically receive the same results as in the ex-
periments.

We estimated the values of the parameters after 6, 12, 18, 24 and 72 hours. In
almost all cases, by varying only the constants of the efficiency of transcription
and translation, we obtained theoretical data that coincided with the experimen-
tal data. The exception was the content of the antagonist of the sensitive protein
in the membrane fraction (alpha-actinin-1) after 72 hours of exposure: in the
experiment, the minimum content was at the previous point, 24 hours [28],
while modeling was at 72 hours. However, the error values of the experimental
data do not show a significant difference between the values at 24 and 72 hours
[28]. In addition, a significant difference between the experimental data and
those obtained in a numerical experiment occurred in the membrane fraction of
microfilaments after 12 hours, as well as in the cytoplasmic fraction, after 72
hours. However, it should be noted that in the experiment, we evaluated the
content of actin isoforms (beta and gamma-) separately, while in a numerical
experiment, for simplicity, we followed the total content of proteins forming
microfilaments, comparing the data with beta-actin. However, because the con-
tent of beta-actin in muscle cells substantially dominates the content of gam-
ma-actin, this approach can be justified. In general, this model, developed for
early acts of cellular mechanoreception, gives results that coincide with experi-
mental data up to 72 hours of exposure.

In addition, it is known that one of the candidates for the role of the sensitive
protein SP, alpha-actinin-4, can penetrate into the nucleus [41] and bind to the
promoter regions of the genes. However, it is still unknown, in the case of
changes in external mechanical stress, whether alpha-actinin-4 itself regulates
the expression of its potential targets or indirectly regulates them through a
transcription factor. Therefore, we introduced a transcription factor modifier
into the model, which can be activated by SP, and, in turn, activate the corres-
ponding transcription factor. In a numerical experiment, the dynamics of

changes in the content of the transcription factor in the nucleus were estimated,
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and according to these results, we can assume that the maximum of its accumu-
lation occurs at 24 hours, where its content exceeds the control level by almost
2.5 times. In addition, its content in the nuclei begins to increase after 6 hours of
exposure.

Alpha-actinin-4, according to experimental data, has approximately the same
initial content in the membrane and cytoplasmic compartments. After 6 hours of
exposure in the membrane compartment, its content decreases by 27% and in-
creases in the cytoplasm by 30% [28] [29]. In the numerical experiment, we ob-
tained the same data. However, at the same time, after 6 hours of exposure, ac-
cording to the simulation data, the content of the activated transcription factor
in the nucleus increases by 35%. Comparing these data, we can assume that
when the external mechanical stress changes, alpha-actinin-4 does not directly
regulate the expression of the genes assessed but indirectly regulates them
through the activation of an appropriate transcription factor.

Of course, such an assumption after mathematical modeling needs experi-
mental verification, but it can be assumed that the disclosure of the detailed
mechanism of interaction between the cell and the external mechanical field will
help in the development of effective preventive measures that are necessary, for

example, during deep space exploration.

5. Conclusions

The results obtained indicate that the model of perception of an external me-
chanical stimulus by living cells, based on a system of kinetic equations and the
second Fick law, adequately describes the process, and the simulation results
correlate with the experimental data.

The time dependencies estimated in a numerical experiment suggest that
alpha-actinin-4 triggers a signaling cascade, leading to an increase in the content
of certain transcription factors whose targets are both alpha-actinin-4 and
alpha-actinin-1 and beta-actin. In other words, the answer to the question of
whether alpha-actinin-4 regulates gene expression directly when mechanical
stress changes (given its ability to penetrate into the nucleus and bind to some
promoters) is as follows: according to a numerical experiment, it is more likely

that another transcription factor will appear.
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1. Introduction and Background

The model of competing risks has been widely studied in the literature, see e.g.,
Heckman and Honoré [1], Commenges [2], Com-nougué [3], Fine and Gray [4],
Crowder [5], Fermanian [6], Latouche, A. [7], Geffray [8], Belot [9], Njamen and
Ngatchou ([10], [11]), Njamen ([12], [13]). In most approaches, the competing
risks are assumed to be either all independent or all dependent. Here, the
independent component of the potential risks constitutes an independent
censoring variable while the other risks are kept as possibly dependent. This
approach is used by Geffray [8]. Namely, we consider a population in which
each subject is exposed to m mutually exclusive competing risks which may be
dependent. For je {1,--~,m} , the failure time from the ;# cause is a

non-negative random variable (r.v.) z;. The competing risks model postulates
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that only the smallest failure time is observable, it is given by the r.v.
T =min(z,---,7,) with distribution function (d.f.) denoted by F. The cause of
failure associated to 7is then indicated by a r.v. 7 which takes value ; if the
failure is due to the / cause for a je{l,--,m} ie n=j if T =7;. The
following modeling technique is extracted in Njamen and Ngatchou [10]: we
assume that 7'is, in its turn, at risk of being independently right-censored by a

non-negative r.v. Cwith d.f. G. Consequently, the observable r.v. are
(Z =min(T,C),&=75),

where & =1, ., and where 1l , denotes the indicator function. As T"and C
are independent, the r.v. Z has d.f. H given by 1-H =(1-F)(1-G). Let
Ty :SUp{t:H(t)<1} denote the right-endpoint of A beyond which no
()

observation is possible. The subdistribution functions F'’ pertaining to the

different risks or causes of failure are defined for j=1,---,m and t>0 by
FOM)=P[T<t,p=j],j=L-m (1)

When the independence of the different competing risks may not be assumed,
the functions FY for j=1---,m are the basic estimable quantities.

The Kaplan-Meier estimator was developed for situations in which only one
cause of failure and the independent right-censoring are considered. Aalen and
Johansen [14] were the first to extend the Kaplan-Meier estimator to several
causes of failure in the presence of independent censoring. In the present
situation, the d.f. F may be consistently estimated by the Kaplan-Meier estimator
denoted by b IEn .For j=1---,m, the subdistribution functions F!) may be
consistently estimated by means of the Aalen-Johansen estimators denoted
respectively by FW

n

, for j=1---,m. Indeed, when the process of the states
occupied by an individual in time is a time-inhomogeneous Markov process,
Aalen and Johansen [14] introduced an estimator of the transition probabilities
between states in presence of independent random right-censoring. The
competing risks set-up corresponds to the case of a time-inhomogeneous
Markov process with only one transient state and several absorbing states (that
can be labeled 1,---,m). Aalen and Johansen [14] obtained the joint consistency
of Ifn(j) to FY for j=1---,m uniformly over fixed compact intervals
[0,0] for o<ty . They also obtained the joint weak convergence of the
processes Jn ( Ifn(j) - F(j)) on fixed compact intervals [0, 0'] for o<z,.

The asymptotic properties of the Kaplan-Meier estimator on the distribution
function have been studied by several authors (see Peterson [15], Andersen and
al. [16], Shorack and Wellner [17], Breslow and Crowley [18]).

In this paper, in a region where there is at least one observation, we are
interested in providing asymptotic properties of the Nelson-Aalen and
Kaplan-Meier nonparametric estimators of the functions AW and s, For
j=1---,m in the presence of independent right-wing censorship in the context
of competitive risks set out in Njamen and Ngatchou ([10], [11]).

The rest of the paper is organized as follows: Section 2 describes preliminary
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results and rappels used in the paper. In Section 3, we obtain two laws: In
Section 3.1, we give limit law of Nelson-Aalen’s nonparametric estimator for
competing risks as defined in Njamen and Ngatchou [10] and Njamen [12]. In
Sect. 3.2, we give limit law of Kaplan-Meier’s nonparametric estimator in
competing risks as defined in Njamen and Ngatchou [10] and Njamen [13]. In
Section 4, we give the trust Bands, including the Hall-Wellner trust Bands and

the Nair precision equal bands.

2. Preliminary and Rappels

For t>0, we introduce the following subdistribution functions H© and
HY of Hby:

HO(t)=P[Z <t,£=0],
and
HO (t)=P[Z <t,& % 0]
and for j=1,---,m
HO () =P[Z <t &= ]
The relations F (t) = ZLF“) (t) and H" (t) = ZLH(“) (t) hold for
t>0 since the different risks are mutually exclusive. The relation
H(t)= HO (t)+ HY (t) is also valid for t>0. The relations that connect the

observable distribution functions H(O), HY and H®) to the unobservable

distributions £ Gand F") are given by:
H (t)= [ (1-F)dG,
HY (1) = [/(1-G")dF,
and
HOD (t) = [ (1-G7)dF!),

The cumulative hazard function of 7" and the partial cumulative hazard
function of 7 related to cause j for je{l,-‘-,m} are given for t>0

respectively by the following expressions:

« dF dH?
A(t)= = , 2
(1) '[Ol—F’ '[Ol—H’ @)
_ de) L gH @D
A(lvl) t) = ! = . 3
(t) J.Ol—F’ 01-H~ G)
Let us set estimators for the different quantities. Let (Zi’é)i:l---n be n

independent copies of the random vector (Z,£). We define the empirical
counterparts of H®, H®, H®) and H for jel,--,m by:

l n
H (0) = 2 a0y
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l n

)

( ):Hgl:]lzq,gi#o}’

: 10

( ):Hznz<t§, ’

i=1

Hn(t):lzn:]l{z-q}'
ni=z

The relations Hn(t)=Hr(]0)(t)+Hr(]l)(t) and H () Z] 1H1J (t) are
valid for t>0. As T is independently randomly right-censored by C, a

well-known estimator for Fis the Kaplan-Meier estimator defined for t>0 by:

F.(t)= 111{ —aiﬁﬁgﬂ}

where the left-continuous modification of any d.f. Z is denoted by L . The
Nelson-Aalen estimators of A and of A“Y for j=1,--,m respectively are
defined for t>0 by:

t dHr(]l)
An(t):f()l_Hf, 4)
) dH(l’j)
AL ()= [, 5
0=k (5)

The Aalen-Johansen estimator for F! is defined for t>0 by:

~() (1-F;
FO(t)= j01 Hde“

Forall t>0, the following equalities hold:

1-H, (1) =(1-F, (1))(1-G, (1))
A, (t):,[

01-F

where én , the Kaplan-Meier estimator of G, is defined for t>0 by:

én(t)=1—ﬁ[1——(n{“ﬂ’fi0} ]

1 n(1-H, (z)

3. Results

In this section, we continue the works of Njamen and Ngatchou [10], Njamen
[12] and Njamen and Ngatchou [11]. In fact, Njamen and Ngatchou ([10], p. 9),
studies the consistency of Nelson-Aalen’s non-parametric estimator in
competing risks, while Njamen ([12], pp. 11-12) studies respectively the simple
convergence and the uniform convergence in probability of Nelson-Aalen’s
nonparametric estimator in competing risks; and Njamen and Ngatchou ([11], p
13) study the bias and the uniform convergence of the non-parametric estimator

survival function in a context of competing risks. It is also shown there that this
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estimator is asymptotically unbiased. For this purpose, we use the martingale

approach as the authors mentioned above.

3.1. Limit Law of Nelson-Aalen’s Nonparametric Estimator for
Competing Risks

In what follows, we study the asymptotic normality of Nelson-Aalen’s

non-parametric estimator in competitive risks. For that, considering, for all

je{l,---,m} and t>0, one has the Nelson-Aalen type cumulative hazard

function estimator (Nelson, [19]; Aalen, [20], Njamen and Ngatchou, [10])
defined by

~ tJ(u
A, (t) :L%m\n (u), (6)
where J (t) = ﬂ{v(1)>o} .
The cumulative risk in a region where there is at least one observation is given

forall je {1,--~,m} , by (see Njamen, [12]. p. 9)
(1) _ by (i) g=(i)
A = [ LW (s)ds, 7)

with LO(t)=1,,
before time ¢ (the individual has not yet undergone the event). Its estimator was
defined in Njamen and Ngatchou ([10], p. 7).

The following theorem gives the limit law of the Neslson-Aalen estimator

which indicates whether the individual 7is still at risk just

/A\:(j) in competing risks of Njamen (2017, p. 9). This is the first fundamental
result of this article.

Theorem 1.

In a region where there is at least one observation, it is assumed that
Fi*(j) (t)<1 for ie {1,---,n} and je {l,~--,m} . Then, forall t>0,

\/ﬁ(;\:(i)(t)_[\*(i)(t)) L Ui*(i)(t), (8)
where Ui*(j) is a centered Gaussian martingale of variance such that:
Ui*(i) (0) -0
) *(1) 9)
V(U0 @)= A (1),

where forall s>0,

yi"(j)(s)z[l— Fi*“)(s)][l—Gi*“)(s‘)} (10)
with Gi*(j) standing for the distribution function of Ci*(j) and ai*(j) the
instant risk function.

To prove this theorem, we need the Robelledo theorem. In fact, the Rebolledo
theorem below makes it possible to apply the central limit theorem for certain
types of particular martingales.

Theorem 2. (Rebolledo’s Theorem)

Let M" =Z?:1Mi a sequence of martingales where M, =K, -A, K,
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denotes a counting process and A its compensator Consider the processes

If s), and for all £>0, I ( If ‘f dM (s).

Suppose that f  and fare predictable and locally bounded .7:s _ processes such
that

sup|fn ~f (s)| -0 (n>w).

Suppose also that the processes K;, A, f, are bounded. Let’s for all t>0,
:f;fz(s)ds.lf

) (I,),——a(t).(n>x);

2)forall >0, (I,,) ——0,(n—>x).

Then,

(1,(t),t>0)= (ff t>0) (n—> o),

where = denotes the weak convergence in the space of continuous functions
on the right, having a left-hand boundary with the topology of Skorokhod and
where Wis a Brownian motion.

To prove Theorem 1, it is sufficient to check whether the previous conditions
of Rebolledo’s Theorem are satisfied:

Proof. Forall je {1, e m} and t>0, M -*(j) (t) also decomposes into

M (1) = KO (1) - [ dA; D) (s) ds,
which in turn can be written in terms of «; (t) by
VAU (t)= K0 (t)- J; o) (s) L) (s)ds,
which finally, can be rewritten as

dK; O (1) = & () LY (t)dt +dM, D (1),

where dM i*(j) (t) can be seen as a random noise process. The martingale
M; ) (t) above represents the difference between the number of failures due to
a specific cause j observed in the time interval [0,t], ie. Ki*(j) (t) (see Njamen,
[12], p.6), and the number of failures predicted by the model for the j* cause.
This definition fulfills the Doob-Meyer decomposition.

This martingale is used in Fleming and Harrington ([21], p. 26) and in Breuils
([22], p. 25).

Now, to explain the asymptotic nature of the results, we defined, for all t>0,

je{l,---,m},topose:

N ()= 2K O 0= 200,97 =1
il i {Y (t)>0}
In a subgroup A(j), where there is at least one observation, the survival
function of Z; =min(T;,C;) is defined forall t>0 by:

;0 (t)= (1_ F0) (t))(l—Gi*“) (t’)).
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Recall also that Fi*(j) is the distribution function of T, Gi*(j) is thatof C,’s
and [1—(1— Fi*(”)}[l—Gi*(J) J that of the Z;’s. From the Glivenko-Cantelli

theorem, one has:

(n)
ap [ [1 RO (g[1-60(s)] 50 (o)
Otherwise,
30 ()= o
one has:

l—J(")(t)=Jl{ | —0(n > ),
-0

Y(n)(:):o} :]1{8(“,[1*5*“)(‘)][176:(j)(r)D J’
from which one obtains (see Theorem 3, p. 11 of Njamen, [12]),
Jm (t)——>1 (n—> o).
Differentiating the martingale M, (t) =K —L: LW (s)aW (s)ds , one

has:

dMi*(j) (t) — dKi*(i) (t)— L’i*(j) (t)ai*(j) (t)dt,
and from

d(M;0) =var(am; 0 ()7 ),

one obtains

D\ _ (1) (+) _ 1 *(J) ()

d(M; 1) = var (dk O (1) -5 (1) (t)dt /7 )

= Var (dk;0 (1) /7 ) = 59 (t) o (1)t

Consequently, the increasing process of

(0
D =j‘J (u)dM.*“)(u) t>0
t OY(n)(U) i L=

is given by

<J(n) )2 ()

(D), = [A—2~—d(M)_,t>0.
e
Next, forall t>0 and j:{l,---,m},onehas

n L J™W(y
<\/ﬁ§'[0‘] ()

YO (u)
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Also, forall t>0 andforall je{l, } the process
(”)

V(AL ()40 () =3 n) W0 ()= R (1), Vie L)

is a martingale. We apply the central limit theorem for the martingales
(Rebolledo’s Theorem). In this purpose, we show that the condition of this
theorem is satisfied by R, ( ).

One has, for all i e{ }

R, = L2 )0 ), v 1)

Y(”)(u) !

and also by the proof of the Theorem 3 of Njamen ([12], p. 11), we have:
Y(”) . )
—n(“) — (1R )(1-6(u)), IV (W)L (1),

So that, for all Je{ yoo } when n— w0,

(u

SN—
A
\_/
o
[«

. J~t o' (u)du
(1= R0 (u))(1-6" (u)
which is determinist. Thus, the first condition of Robelledo Theorem holds.
To check the second condition, forall ¢ >0 and t>0, define

):j;\/ﬁwn }dM(”)(u),

=ﬂ(t), (n—>oo),
)

(n) Iy
el
where forall j=1--m, M (u)=3" MU (u).

We have to show thatas n— o, <Z > converges to 0 in probability.

One has, forall t>0,

(n) :
_J'tn ) (u)zll Y (u)aV (u)du
0 n) J(")(u)
(Y (w) { Y(ﬂ)(u)x}
t J(n) u o i
=[n ( )Jl o oV (u)du

because
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Then
—I0() 1 I() o
[Y(”)(u)_«/ﬁ Y™ (u) O (=)

Thus, the second condition of Robelledo Theorem holds.

The conditions of the Rebolledo Theorem are verified and by consequently,
forall t>0,

( t>0 (.[f t>0) (n—> o),

with y(t)=[ F%(s)ds
Finally, forall t>0,

)=[ f(s)dW (s) = N (0,7(1)), (n—>w0).

This ends the proof of the Theorem 1.

The following subsection gives the asymptotic law of nonparametric
Kaplan-Meier’s estimator of the survival function in the competing risks of
Njamen and Ngatchou ([10], p. 13).

3.2. Limit Law of Kaplan-Meier’'s Nonparametric Estimator in
Competing Risks

The Kaplan-Meier estimator of the survival function (Kaplan and Meier, [23]) is
defined by

s<t s<t Y (" (S)

S, (1) =TT(1-24,(s)) =H[1—M}

where /A\n (t) is the Nelson-Aalen estimator and where, for a process X (t)
continuous to the right with a left limit such that
AX ()= X (t)-X (t").
For all j=1---,m, an estimator of the variance of S’ (t)/S*U) (t), where
(i)

s s the survival function associated with the subgroup A" is given by

o)
07 (1) = ;J—(zs)dN(n)(S)_
I (Y) (s)

The variance of SA,Ej)(t)/S(j)(t) approximated by that of st /S

SO ] /8w
VL*“’(t)_l}EKS*“) >(t)}

The estimator of the corresponding variance of SAr(]J) (t) isgiven by

T(SV ) =[SV ] 67 (t) Vieft n}. (13)

(12)
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The following result concerning the asymptotic law of nonparametric
Kaplan-Meier estimator and constituted the second fundamental result of this
paper:

Theorem 3.

In an area where there is at least one observation, if we assume that for all
j e{l,---,m} and i e{1,~~,n} R

1) forall se [O,t] s

J_SJ(n)(u)a‘*(j)(u)dUJP_)Gi*(J)z(u) (n—>oo),

n 0 (n)(u) i
2) forall £>0,
J‘t‘](n)(u) *(i)]l

Lo,

3) forall t>0,
Vi (1-37 (u)) e (u)du—E50 (0> o).

Then, for all t>0 and je{l,-‘-,m}, the non-parametric estimator é:(j)

checks
(80 (1)-5 (1)) = -0V (t)xs" (1), (n—>w),

where Ui*(j) is the center Gaussian martingale and where = denotes the
weak convergence in the space of continuous functions on the right, having a
left-hand boundary with the topology of Skorokhod.

Proof. To prove this theorem, it suffices to show that it satisfies the conditions
of the Rebolledo Theorem.

In an area where there is at least one observation, by posing, for all
j =1---,m, i :]_,...,n ,
§:(i) (t)= exp(—f\;(j))

“u(j) [t o(j

where A7V =JOJ(”)(u)ai(’)(u)du .

For te[O,r[ and 7>0,wehaveforall j=1---,m and i=1---,n,

ﬁ<(§<?> 1J> ST I o

) S () Y (u)
25607 (n>w).

By the proof of Theorem 3 of Njamen ([12], p.11), we deduce that
—1, (n>w).

Hence the 1st condition of Robolledo’s Theorem.

For the second condition of Robolledo’s Theorem, condition B is similar to
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the proof of Theorem 1 above, we find that forall ¢ >0,

S () 90 )

*(1)
n| —- o (u)du—>0, (n— o).
...0 S:(J)(U)z Y(n)(u) | - ( ) ( )

J(”)(S)
y(")(s)

So, foreach t>0,

(u)
where M(n)(u)=zir11M-*(j)(u) and where

Finally,

The fact that SV (u) < S:(j) (u) yforall ue [0, S[ and condition C implies:
(

REDE)

S )
s:(l)(u)_l‘sﬁjo d(A —A )(u)

g:(i)(u)

<IN (1-3 ()™ (u)du

——0 (n—>x).
As S$(t) > S (t) when n— o0, we deduce that:
x/H(SNS(j)—S*“)(t))L)O, n— o,

It follows that:

=-UY (1), (n— o).
This ends the proof of the theorem.

4. Confidence Bands of Survival Function

4.1. Confidence Intervals

For a e (0,1) , we wish to find two random functions b, and b, such that
vt>0,

P[by, (t)=S(t)=b_(t)]=1-a.

Recall that from the previous sections, for all je{l---,m} ,
\/E(SA:(j)(t)—S*(j)(t))/S*(j)(t) converges in distribution to a Gaussian
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martingale centered (see Theorem 3 above). As a consequence, §:(j)(t) is
asymptotically Gaussian centered on S°) . Given the above results, the

estimated standard deviation of S, noted o5, isgivenforall t>0 by:
o V(ST )
GS: (t :?.
57 0]
Therefore a threshold confidence level 100(1-@)% can be built for all
t>0 and je{l,---,m},by:
SV (1)-2, .60 (1)$,0(1), §;0(t)+2,,,6 (1)S,0(1). (15

't

(14)

Here z, ,, isthe 1-a/2 percentile of a standard normal distribution.

A threshold confidence interval 100(1-c)% can also be obtained for all
je{l,---,m},by:
SO (t)+ za/z&;ﬁ”, (16)
where z,, is the rank of fractile 100x /2 of the standardized normal
distribution.

A disadvantage of the construction of the confidence interval (CI) with the
previous formula is that the bound can be obtained external to the interval [0,1].
A solution is to consider a $* (t) (J IS {l,---, m}) transform via a continuous
function g, differentiable and invertible such that g(S*(j)(t)) belongs to a
more wide space ideally unbounded and best approximate a Gaussian random

variable. The delta method then allows for the estimation of
(i)
(s) defined by

6_;((152*) (t)= g'(SA:(j))OA';Ej)(t). The confidence interval associated with the risk

the standard deviation of the object created by 5';

threshold ¢ isbuiltasforall je{l,---,m},
g’l(g(SA:(j))iZa/zg’(é:(j))c};?)(t)).

The most common transformation is ¢ (S: ) = IOQ[Iog (S: )J , and in this case
we have: forall je {1,-‘-, m} ,

50
) o N S
» O".;EJ) i (J)exp{za/zés(j)loé(éf(j))]
6'*(]) o = ,\*—tA* and Sn .
tog| ~log s ) Sn(l) log Sn(l)

Remark 1. [t is also possible to use log, square-root or logit-type

transformations in most software defined respectively by forall je{l,---,m},

+(1)

PO Y
Y%

4.2. The Confidence Bands

The challenge now is to find an area containing the survival function with
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probability 1-c , or a set of bounds b (t) and b, (t) which, with
probability 1—« , contains S*(j)(t) for all te[tL,tU] and je{l,---,m}.
Among the proposed solutions, the two most commonly used are firstly Hall and
Wellner ([24]) bands and secondly, strips Nair ([25]) (“equal precision bands”).
If t, is the maximum time event observed in the sample, then for the Nair
bands, we have the following restrictions 0<t <t, <t , however, boter
Hall-Wiener may authorize the nullity of t_, let 0<t <t, <t . Technically
obtaining these bands is complex, and their practical utility in relation to the
point intervals is not obvious.

Remark 2. The starting point uses the fact that for all je{l,--',m} )

g*()
n{SZ(j)E ;—1] converges to a centered Gaussian martingale. We then go
t

through a transformation making appear a Brownian bridge {W 0 (x),xe [0,1]} ,

. 1 . ) . L
weighted by ————=at Nair, to retrieve the suitable critical value.
Jx(1-x)
In particular, because of the joined character, for a given ¢their extent is wider
than that of the corresponding point IC. In what follows we give the expressions

obtained in the absence of transformation.

4.2.1. The Hall-Wellner Confidence Bands

Under the assumption of continuity of survival functions $"/(t) and
c' (t) respectively related to the event time and the time of censorship, Hall
and Wellner show that for every te[t,,t, ], the IC joined the risk threshold «
isgivenforall j=1---,m and t>0 by:

-1 : n
S0 (O£, (x. %) 140607 (1) |0 (1), (17)
where X, and X, are given by
ne 2 (t

= o fori=LU
~%(])2
(1+no-s; (t))
and h, (X ,%,) isbounds checking

=8| W(f>h,(x%) |

X <X<Xy

4.2.2. The Nair Precision Equal Bands
Using a weighted Brownian bridge will notably modify the bounds to IC. For
ae(0,1), te[t,t,] andall je{l,---,m}, theyare then given by:

S(J (t)xe, (x xu)a*), (18)

where €, (X_,X,) satisfies

o s 0L
xL<x<xU1/x1 x
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If we compare (12) and (14), we see that the bounds relating to Nair ([25])
bands are proportional to the bounds IC and simply correspond to a risk

adjustment threshold used in the past.

5. Conclusions and Perspectives

In this paper we have studied the asymptotic normality of Nelson-Aalen and
Kaplan-Meier type estimators in the presence of independent right-censorship
as defined in Njamen and Ngatchou ([10], [11]) and Njamen [12] using
Robelledo’s theorem that allows applying the central limit theorem to certain
types of particular martingales. From the results obtained, confidence bounds
for the hazard and the survival functions are provided.

As a perspective, obtaining actual data would allow us to perform numerical

simulations to gauge the robustness of our obtained estimators.
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Abstract

In our previous paper [1], we proposed a non-standardization of the concept
of convolution in order to construct an extended Wiener measure using non-
standard analysis by E. Nelson [2]. In this paper, we consider Ito’s integral
with respect to the extended Wiener measure and extend Ito’s formula for
Ito’s process. Because of doing the extension of Ito’s formula, we could treat
stochastic differential equations in the sense of nonstandard analysis. In this
framework, we need the nonstandardization of convolution again. It was not
yet proved in the last paper, therefore we shall provide the proof.

Keywords

Ito’s Process, Stochastic Differential Equation, S-Continuity, Nonstandard
Analysis

1. Introduction

As for an analysis of stochastic differential equations driven by extended Wiener
process in the sense of nonstandard analysis, we need to extend “Ito’s formula”
for Wiener process or Ito’s process. In the previous paper, we extended a
concept of convolution in Fourier series to the case of nonstandard analysis.
According to the result, we shall extend some theorems in probability theory, for
example, the law of large numbers and the central limit theorem, and shall
reconstruct Ito’s formula by using nonstandard analysis. We shall give the proof
of the reconstruction of Ito’s formula in the case that the convolution of
probability density which functions in a nonstandard extension is convergent for
some functional F(t,X(t)) of Ito’s process X(t). The problem was not
solved still now.

If the convolution is not convergent, what kind of problem does it occur? In
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Taylor expansion of F(t,X), the higher terms may not vanish. Then, Ito’s
formula does not be established. As to what we shall give extended law of large
numbers and extended central limit theorem, they will be provided precisely in

the next paper.

2. Ito’s Integral for Extended Wiener Process in
Nonstandard

In our previous paper [1], we showed that Fourier series can be described by the
convolution in nonstandard analysis, then the series of i.i.d. random variables
using Loeb measure [3] converges in L? sense under some moment condition.
Therefore, the definition of stochastic integral in classical probability theory can
be extended by the way of nonstandard analysis [4], [5].

Furthermore, we need to prove some laws of large numbers for i.i.d. random
variables to show the convergence to a stochastic integral.

In fact, we use an extended concept of the convolution to investigate the
expectation or the distribution of series of i.i.d. random variables for the
nonstandardization of the law of large numbers.

In order to prove the convergence of sums of higher order of AW, such as
(AW, )3 (AW, )5 ,--- in the proof of Ito formula, we need to extend the law of
large numbers for AW, in the sense of nonstandard.

From the above discussion, we shall define the stochastic integral in
nonstandard analysis.

Let At be the infinitesimal and N =i. The extended Winer process is

defined as follows.
t
Definition 2.1. Let N, = e 0<t<T and N =N,. Assume that a sequence

of L.i.d. random variables {AW, k =1,---,N} has the distribution
P{Awk=JE}=P{AWk=—\/E}=% (1)

foreach kK =1--,N . An extended Wiener process {W (t),t> 0} is defined by

N
W (t)=> AW,, 0<t<T. (2)

k=1

Ito’s integral (stochastic integral) in the nonstandard sense is defined as
follows.

Definition 2.2. Zet {W (t),0<t<T} be an extended Wiener process. Assume
that an adapted process {o-(t),OSt ST} with respect the Wiener process
W (t) is defined by

o(t)=Y,t <t<t,, k=01--N, (3)

where t, =kAt,k=0,1,---,N and each Y, is measurable with respect to
{W (t),OStstk}.Assume that

E[Y2]<w, k1. (4)
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A stochastic integral in nonstandard analysis is defined by
T N
[ o(®)dw (t) =YY, AW, (5)
k=1

where Y, is independent of {W (t),t> 0} {AWk k=1---, N} is a sequence of
i.i.d. random variables with the distribution

P{AWk:\/E}:P{AWk:—x/E}:%. (6)

Remark 1. In classical (standard) probability theory, Ito’s integral
IOTG(t)dW (t) is well defined under the condition of the existence of the
variance of o (t) for each 0<t<T .In nonstandard analysis, the convergence
of the series in (5) may not be ensured. On the other hand, take note that we
have already given some sufficient conditions for the convergence of the

convolution in Fourier series. See [1].

3. Proof of Ito’s Formula for Extended Wiener Process in
Nonstandard

From the concept of Ito’s integral for the extended Wiener process, we provide
Ito’s formula for the extended Wiener process.

Theorem 3.1. Let F(t,x) be of C3. Assume that the condition (4) is
satisfied, then we have the following for the extended Wiener Process W (t).
Forany T 20,

F(LW(T))=F(0.W (0))+ [ F (tW (t))dt
+jOT F (LW (t))dw (t)+%joT Fo (LW (t))clt. 7
Proof.
F(t+AtLW (t+At))-F(t,W(t))

= F (LW (1)) At+F, (LW (t)){W (t+At)-W ()}
Fy (LW

=
—~
—
—~
—
SN—"
~—
—_
>
—
~—
N
+
<
—~
—~
—~
—
~—
~—
>
=3
=
—~
—
+
>
=3
P
|
—~
—
~—
——

+% Fo (LW (8)) W (t+At)-W (1)} +% Fe (LW (1))(AL)

PR (LW (1) AW (t+ A0 -W (1)) ®)
Put

AWk :W(tk)_w(tk—l)’ k :0,1,“',N _1
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and
AW =W (T)_W (tN—l)
then,
F(tw(T))-F(ow(0))
=i F(t W (tH))AHiFX (tsW (1)) AW,
+%g|= (t W (t,_ ))(At) +Z (LW () AtAW,
+%gﬁx (taW (8 )AL +§; Fae (t2.W (84)) (AL)’

o3P (8,) (A AW, 3 R (4 (1)) ()

1 N
+akZ:‘IFW (t W (1, )) AtAW, +---

:I;Fl( dt+j W (t))dw (t)

+%{j§|=n (tw (t))dt}At +{j0TFtX (tw (t))dw (t)} At

+= j ))dt+= (Atz){j » }

+3§At{j R (LWt }+%At{j o ())dt}
WD)

+— At{_[ FXxx +-
= [ (tw(t) dt+j|: (LW (t))dw (t) ©)
+%jOTFXX(t,W(t))dt

4. Proof of Ito’s Formula for Ito’s Process in Nonstandard
Let X (t) beIto’s process defined by
X (t)= X, +[;b(s)ds+ [ o(s)aW (s), 0<t<T (10)

where b(s) and o(s) areadapted processes with respect to a Wiener process
W (t) . Then, we have Ito’s formula for the Ito’s process.

Theorem 4.1. Let F(t,x) be of C°, then we have the following. For any
T2>0,

F(t.X(T))= )+ [ (tX
j (t )b(t) dt+j X(t))o(t)dw (t) (1)
2 LF ( (t)o(t)
Proof. We provide the proof by using nonstandard analysis.

From the Taylor expansion for the two-dimensional function F(t, X (t)), we
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have the following.
F(t+At X (t+At))—F (t, X (t))
=F (6, X (t))At+F (8, X (t)){ X (t+At)- X (1)}

)
S (6, X (1))(At)" + Fy (£, X (1)) A{X (t+At) - X (1)}

2
F R (EX )X (680 - X (O] + 3 Fy (6 X () (a0
2 (X ) (X (20X (1)
+%|:m (t, X (1)) At{X (t+at)- X (1)} (12)
+% Fra (1 X (0){X (t+A8) =X (1)} +

In nonstandard analysis, we can represent the Ito’s process X (t) for the
extended Wiener process by

X (t) =X +ftb S ds+jta (s)dw (s)

=X +Zb( ’ 1)At+ZG( 1) AW, 0<t<T,

k=1

(13)

where for infinitesimal At

N {l}, t, =KAt, k=0,1---,N
At

and
AW, =W (t,)-W (t,_,), k=0,1,---,N.
(

Therefore, the difference of X (t) can be represented by the following,
AX, = X (1)~ X (1,2 =b(t, ) At+ (1, ,) AW, 19

On the other hand,
(AW, )" =(At)" as.

foreach n>1 from (1).
Thus, we have the following.

F(LX(T))-F(0.X(0))

= iFt (tey X (t,))At+ ZN:FX (tes X (t1))AX,
+%§;Fn(tkl,x( ))(At +gﬁx(tk1, 1)) AXW,
£33 R (s X ()X 5 R (b X (1)) (A1)
+%gpm(tk,x(tk))( 0 AX, + 2 iFtXX(tk,X( t))At(AX, )
3 2Fan (t X () (06,

:iﬁ tep X (t_y))At

DOI: 10.4236/am.2019.107039 565 Applied Mathematics


https://doi.org/10.4236/am.2019.107039

S. Kanagawa, K. Tchizawa

+
M= £
oy
<
—_
—
=~
x
—_
)
S~
~—
—_
>
=
~
[N
—~—
o
—_
—
=
L
~
>
=
+
q
—_
o)
iR
~
>
=
——

FLE (X () ()dW (0)+ 2[Ry (6X (1) (1) e

Thus we prove Ito’s formula for the extended Ito’s process.
Remark 2. Let X,,X,,---, X, be independent random variables with density

n
functions f,, f,,---, f,, respectively. Then, the distribution of ZXk can be
kL
represented by convolution f, * f, *...* f . In standard analysis, for the Fourier

transform of the convolution

F(fxfynf)=T[F(f) (16)
k=1
is established, where F ( fk) is the Fourier transform of f, .
From our previous paper [1], the result can be extended in the sense of
nonstandard. See pp.976. Therefore, it is applied for the extension of limit

theorems as like central limit theorem, law of large numbers and so on.

5. Conclusions

In classical (standard) probability theory, the stochastic integral
[ o (t)aw (1) (17)

is defined under the condition of the existence of the variance of o (t) for each
0<t<T.In nonstandard analysis, the convergence of the series in (5) is proved
from the above arguments. On the proof of Ito’s formula, it can be applied for
other estimations as the same way.

Furthermore, the proof of Ito’s formula in nonstandard analysis becomes

simple rather than the proof in standard one.
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Abstract

The purpose of this work is to identify the universality class of the nonequili-
brium phase transition in the two-dimensional kinetic Ising ferromagnet dri-
ven by propagating magnetic field wave. To address this issue, the finite size
analysis of the nonequilibrium phase transition, in two-dimensional Ising
ferromagnet driven by plane propagating magnetic wave, is studied by Monte
Carlo simulation. It is observed that the system undergoes a nonequilibrium
dynamic phase transition from a high temperature dynamically symmetric
(propagating) phase to a low temperature dynamically symmetry-broken
(pinned) phase as the system is cooled below the transition temperature. This
transition temperature is determined precisely by studying the fourth-order
Binder Cumulant of the dynamic order parameter as a function of tempera-
ture for different system sizes (Z). From the finite size analysis of dynamic
B 7
order parameter (Q, ~ L *) and the dynamic susceptibility ( 72 ~ L"), we
/v =0.146+0.025

7/v=1.869+0.135 (measured from the data read at the critical temperature

have estimated the critical exponents and

obtained from Binder cumulant), and y/v =1.746+0.017 (measured from
the peak positions of dynamic susceptibility). Our results indicate that such
driven Ising ferromagnet belongs to the same universality class of the
two-dimensional equilibrium Ising ferromagnet (where A/v=1/8 and

y/v =17/4), within the limits of statistical errors.

Keywords

Ising Model, Dynamic Phase Transition, Monte-Carlo Simulation,
Propagating Wave, Finite Size Analysis, Critical Exponents, Universality
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1. Introduction

The driven Ising ferromagnet shows interesting nonequilibrium phase
transitions [1] [2]. This time dependent drive may be of two kinds: 1) an applied
magnetic field which is oscillating in time and uniform over the space at any
particular instant, 2) the applied magnetic field has a spatio-temporal variation
which may be the type of propagating or standing magnetic field wave. The first
kind of driving magnetic field has drawn much attention to the researchers and a
considerable volume of studies is done in this direction, in last two decades.
Here, a few of those may be mentioned as follows: 1) the critical slowing down
and the divergence of the specific heat near the dynamic transition temperature
[3], 2) the divergence of the fluctuations of the dynamic order parameter [4], 3)
the growth of critical correlation near the dynamic transition temperature [5].
These studies are an integrated effort to establish that the nonequilibrium
transition in kinetic Ising ferromagnet driven by oscillating magnetic field is
indeed a thermodynamic phase transition.

The nonequilibrium phase transitions in other magnetic models (e.g., Blume-
Capel, Blume-Emery-Griffiths models etc.) driven by oscillating (in time but
uniform over the space) magnetic field have been studied [6] [7] [8] also in last
few years to present some interesting nonequilibrium behaviors. The nonequili-
brium phase transitions were studied in [9] [10] [11] [12] [13] mixed spin
systems driven by oscillating magnetic field, recently.

The another kind of external drive may be the magnetic field with spatio-
temporal variation. The prototypes of these spatio-temporal drives are propagating
or standing magnetic field waves. In the last few years, a number of investigations,
on the nonequilibrium phase transitions in Ising ferromagnet driven by
propagating and standing magnetic field wave, are done [14] [15] [16] [17] [18]
through Monte Carlo methods. Here, the essential findings are the nonequilibrium
phase transitions between two phases, namely, the low temperature ordered
pinned phase (where the spins do not flip) and a high temperature disordered
phase where a coherent propagation (in the case of propagating magnetic field
wave) or coherent oscillation (in the case of standing magnetic field wave) of
spin bands are observed. The transitions are marked by the divergences of
dynamic susceptibility near the transition point.

However, the detailed finite size analyses were not yet performed to know the
universality class of this nonequilibrium phase transition observed in Ising
ferromagnet driven by propagating magnetic field wave. This is the key issue of

the present study.
In this paper, we have investigated the nonequilibrium behaviour and the

1
finite size effect of spin- 3 Ising ferromagnet under the influence of propagating

magnetic wave by Monte Carlo methods. The paper is organized as follows: The
model and the MC simulation technique are discussed in Section II, the
numerical results are reported in Section III and the paper ends with a summary
in Section IV.
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2. Model and Simulation

The time dependent Hamiltonian of a two dimensional driven Ising ferromagnet

is represented by,
H(t)=-JZZ's* (x, y,t)s* (X, y' t)=Zh*(x,y,t)s* (X, y,t). (1)

Here §° (X, y,t) =11, is the Ising spin variable at lattice site (X, y) at time ¢
The summation ' extends over the nearest neighbour sites (X',y’) of a given
site (X,y). J(>0) is the ferromagnetic spin-spin interaction strength between
the nearest neighbour pairs of Ising spins. For simplicity, we have considered the
value of Jto be uniform over the whole lattice. The externally applied driving
magnetic field, is denoted by h*(X,y,t), at site (x,y) at time £ h*(X,y,t)

has the following form for propagating magnetic wave,
h*(x,y,t)=h, cos{Zn(ft—%)} ()

Here h, and frepresent the field amplitude and the frequency respectively of
the propagating magnetic wave, whereas 1 represents the wavelength of the
wave. The wave propagates along the X-direction through the lattice.

An LxL square lattice of Ising spins is taken here as a model system. The
boundary conditions applied at both directions are periodic which preserve the
translational invariances in the system. Using Monte Carlo Metropolis single
spin flip algorithm with parallel updating rule [19], the dynamics of the system
are simulated. The initial state of the system is chosen as the high temperature
random disordered phase, in which, at any lattice site, both the two states (+1) of
the Ising spins have equal probabilities. The system is then slowly cooled down
to any lower temperature 7" and the dynamical quantities are calculated. The

Metropolis probability [19] of single spin flip at temperature 7'is given by,

, . . —AE

W ((s )i - (s )f ): mmliexp(l%—_r],l} 3)
where AE is the energy change due to spin flip from ith state to £th state and
kg is the Boltzman constant. In a chosen configuration, the probability of
flipping of each spin is calculated from the above rule. Then prepared a list of
L? such values of probability of flipping. On the other hand, a list of L’
random fraction (collected from a uniformly distributed random numbers) is
prepared, keeping in mind that each random fraction is associated to the
probability of flipping of each spin. The spins are flipped simultaneously where
the probability of flipping exceeds (or equal to) the random fraction. This is so
called parallel updating of spins. Such parallel updating of L> spin states in an
LxL square lattice constitute the unit time step and is called Monte Carlo Step
per Spin (MCSS). The applied magnetic field and the temperature are measured
in the units of Jand J/kg respectively. The choices of such units of applied
magnetic field and the temperatures are very common in the literatures [19] of
the simulation of the Statistical Mechanics of Ising ferromagnet in the presence

of magnetic field.
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3. Results

The nonequilibrium behaviour of the two dimensional Ising ferromagnet is
studied here in Lx L square lattices of different sizes (L) where a propagating
magnetic wave is passing through the system. The frequency (£) of magnetic field
oscillation, wavelength ( 1) of the magnetic wave and the amplitude ( h;) of field
strength are kept constant throughout the present study. These constant values
are respectively f = 0.01(MCSS)71, A =16 lattice units and h; =0.3J. For
f =0.01, 100 MCSS is required for a complete time cycle.

Since we have chosen the values of L in the multiple of 16, the wavelength
A =16 is a reasonable choice. In this case, the smallest system will contain a full
wave. The frequency, f =0.01, is chosen to have the adequate number of cycles,
of the propagating magnetic field, to get a reasonable average value. The choice
of the amplitude h, =0.3J] is just to keep the nonequilibrium phase transition
in the higher temperature range.

The finite size effect is studied by taking into account four different system
sizes (within the limited computational facilities available) such as L = 16, 32,
48 and 128. The system (for any fixed value of Z) has been cooled down in
small steps (AT =0.005J/k, ) from high temperature phase, i.e. the dynamical
disordered phase, to reach any dynamical steady state at temperature 7. The
dynamical quantities are calculated when the system has achieved the
nonequilibrium steady state. For this we have kept the system in constant
temperature for a sufficiently long time; 12,000 (for L =128) to 32,000 (for
L =16) cycles of magnetic oscillations and discarding the initial (or transient)
1000 cycles and taking average over the remaining cycles. We have detected a
dynamical phase transition from high temperature symmetric propagating (spin
bands) phase to low temperature symmetry-broken pinned phase. The dynamic
Order parameter for the phase transition is defined as the average magnetisation

per spin over a full cycle of external magnetic field, Ze.
Q=f xcﬁm(t)dt, (4)

where M (t) is the value of instantaneous magnetisation per spin at time ¢
which can be obtained as
L2

M(t):%ZSZ(x, y.t) 5)

i=1

At very high temperature, the flipping probability of the spin, is quite high
alongwith the oscillation of the magnetic field. As a result the value of the
instantaneous magnetisation is almost close to zero. Consequently, by definition,
the value of the dynamic order parameter is very small, thus identifying the
dynamically disordered propagating phase (Q =0) (see Figure 1(b)). It may be
noted here, that the instantaneous magnetisation fluctuates symmetrically about
zero (see Figure 1(d)). Hence, this may be characterised as a dynamically
symmetric phase. As the system is cooled down below the critical temperature,

which depends on the value of magnetic field strength, the flipping probability of
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Figure 1. The lattice morphologies of the (a) pinned phase and (b) propagating phase respectively at time t=39937 MCSS for
L =64 . The dynamical symmetry breaking (change in the value of average magnetisation per spin from non-zero to nearly zero

value); (c) at temperature T =1.8 and (d) at temperature T =2.5. The value of the amplitude of the field is h;=0.3 in all

cases.

the spin gets reduced; also the magnetic field strength may not be adequate to
flip the spins and the spins are locked or pinned in a particular orientation
giving rise to a large and nearly steady value of average magnetisation. This
phase is identified as the dynamically ordered or pinned phase (Q=0) (see
Figure 1(a)). Unlike, the dynamically symmetric phase (mentioned above),
here the instantaneous magnetisation varies asymmetrically about zero (see
Figure 1(c)). So, this may be called a dynamically symmetry broken phase. The
variation of the order parameter for the dynamic phase transition (DPT) for four

different system sizes are shown in Figure 2(a).
The dynamical critical point is determined with high precision by studying

4
the thermal variation of fourth order Binder cumulant (U (T ) = 1—<Q—>"2) of
3(Q7),
dynamic order parameter Q for different system sizes (Z). Figure 2(b) shows the
variation of the Binder Cumulant (U, (T)) with temperature (7) for different
values of L. From this figure we have determined the value of critical
temperature as T, =2.011J/kg , which is the value of temperature where the
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Figure 2. Temperature variation of different quantities for different values of linear
system size L: (a) Order parameter  (b) Binder cumulant U, ; (c) scaled variance of

order parameter varQ or susceptibility yg.

Binder cumulants for different lattice sizes have a common intersection. Now it
is known from the behaviour of the kinetic Ising model that the scaled variance
of the dynamical order parameter may be regarded as the susceptibility of the

system, which can be defined as follows:
22 =1((Q*)-(Q)°). ()

Figure 2(c) shows the variation of the scaled variance with the temperature.

As we see from the figure that the susceptibility gets peaked near the dynamical
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transition temperature showing the tendency of divergence near T, as the
system size increases. Now we adopt the finite-size scaling analysis to determine
the critical exponents for the two dimensional kinetic Ising ferromagnet driven
by magnetic wave. For this reason we use the usual technique of expressing the
measured quantities as a function of the system size. We assume the following
scaling forms for the order parameter Q and susceptibility y° at the critical

temperature:

(Q) oc L 7)
;(S o U7, (8)

It has to be noted here that though we do not have any value measured at the
critical temperature which has been determined (as common intersection) from
the Binder cumulant versus temperature curves for different Z, the values of Q &
7° have been read out from the respective graphs which represent the average
values at any temperature. Moreover, the detailed investigations done previously
[8], show that the above scaling forms are also applicable to classify the
universality classes of the driven magnetic systems. Figure 3(a) shows the
log-log plot of the dynamic order parameter (Q)L as a function of the linear
system size L at the dynamic transition temperature. The value of the critical
exponent, as estimated from this simulational study, is ,B/V =0.146 £0.025
for the dynamic order parameter. From the log-log plot Figure 3(b). of the
susceptibility y° or the scaled variance of the order parameter y2 as a
function of linear system size L we obtained the estimate of the value of the
critical exponent y/v. The values are y/v=1.869+0.135 (using the data
obtained at Ty =2.011J/k, from the respective graphs) and /v =1.746+0.017
(using the data obtained at the peak position of susceptibility). It is interesting to
note that these estimated values of the critical exponents, for the two
dimensional driven Ising ferromagnet, are very close to those of the two
dimensional equilibrium Ising ferromagnet, which are S/v=1/8=0.125 and
y/v=T/4=175 [20].

4. Summary

In this study, we have mainly focused our attention on the finite size analysis
and the critical aspects of the dynamic phase transition near the dynamic
transition temperature of an LxL square type Ising ferromagnet driven by
propagating magnetic wave. We have taken four different sizes of square lattice
(L = 16, 32, 64 and 128). We have simulated the results using Monte Carlo
methods using the Metropolis single spin flip algorithm with parallel updating
rules. Our findings suggest that, within the limits of statistical errors obtained in
this study, the estimated values of the critical exponents near the dynamic
transition temperature are very close to those for the two-dimensional equilibrium

Ising ferromagnet. As concluding remarks, we state that the nonequilibrium
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Figure 3. Log-log plot of (a) order parameter Q and (b) scaled variance varQ or
susceptibility » as a function of linear system size Z. In (b) red dots represent the value

of susceptibility at T, whereas blue triangles represent the same at peak positions.

phase transition, observed in the two-dimensional Ising ferromagnet driven by
magnetic field wave, belongs to the same universality class of equilibrium
two-dimensional Ising equilibrium ferro-para phase transition. Recently, the
nonequilibrium phase transition in the kinetic Ising model via the violation of
principle of detailed balance was studied (Manoj Kumar and ChandanDasgupta,
IISc, Bangalore) and estimated the exponents in close agreement with the

present observations.

Acknowledgements

MA thanks Chandan Dasgupta for helpful discussion and acknowledges financial

DOI: 10.4236/am.2019.107040

575 Applied Mathematics


https://doi.org/10.4236/am.2019.107040

A. Halder, M. Acharyya

support through FRPDF grant provided by Presidency University.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this

paper.

References

(1]

(2]

(6]

[11]

Chakrabarti, B.K. and Acharyya, M. (1999) Dynamic Transitions and Hysteresis.
Reviews of Modern Physics, 71, 847-859.

https://doi.org/10.1103/RevModPhys.71.847
https://link.aps.org/doi/10.1103/RevModPhys.71.847

Acharyya, M. (2005) Nonequilibrium Phase Transitions in Model Ferromagnets: A
Review. International Journal of Modern Physics C, 16, 1631-1670.
https://doi.org/10.1142/S0129183105008266

https://www.worldscientific.com/doi/abs/10.1142/S0129183105008266
Acharyya, M. (1997) Nonequilibrium Phase Transition in the Kinetic Ising Model:

Critical Slowing Down and the Specific-Heat Singularity. Physical Review E, 56,
2407. https://link.aps.org/doi/10.1103/PhysRevE.56.2407
https://doi.org/10.1103/PhysRevE.56.2407

Acharyya, M. (1997) Nonequilibrium Phase Transition in the Kinetic Ising Model:
Divergences of Fluctuations and Responses near the Transition Point. Physical Re-
view E, 56, 1234. https://doi.org/10.1103/PhysRevE.56.1234

Sides, S.W., Rikvold, P.A. and Novotny, M.A. (1998) Kinetic Ising Model in an Os-
cillating Field: Finite-Size Scaling at the Dynamic Phase Transition. Physical Review

Letters, 81, 834-837. https://link.aps.org/doi/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevl.ett.81.834

Keskin, M., Canko, O. and Deviren, B. (2006) Dynamic Phase Transition in the Ki-
netic Spin-3/2 Blume-Capel Model under a Time-Dependent Oscillating External
Field. Physical Review E, 74, Article ID: 011110.

https://doi.org/10.1103/PhysRevE.74.011110

Temizer, U., Kantar, E., Keskin, M. and Canko, O. (2008) Multicritical Dynamical
Phase Diagrams of the Kinetic Blume-Emery-Griffiths Model with Repulsive Biqu-
adratic Coupling in an Oscillating Field. Journal of Magnetism and Magnetic Mate-

rials, 320, 1787-1801. https://doi.org/10.1016/j.jmmm.2008.02.107
Vatansever, E. and Fytas, N. (2018) Dynamic Phase Transition of the Blume-Capel
Model in an Oscillating Magnetic Field. Physical Review E, 97, Article ID: 012122.

https://link.aps.org/doi/10.1103/PhysRevE.97.012122
https://doi.org/10.1103/PhysRevE.97.012122

Ertas, M., Deviren, B. and Keskin, M. (2012) Nonequilibrium Magnetic Properties
in a Two-Dimensional Kinetic Mixed Ising System within the Effective-Field
Theory and Glauber-Type Stochastic Dynamics Approach. Physical Review E, 86,
Article ID: 051110. https://doi.org/10.1103/PhysRevE.86.051110

Temizer, U. (2014) Dynamic Magnetic Properties of the Mixed Spin-1 and Spin-3/2
Ising System on a Two-Layer Square Lattice. Journal of Magnetism and Magnetic
Materials, 372, 47-58. https://doi.org/10.1016/j.jmmm.2014.07.015

Vatansever, E., Akinci, A. and Polat, H. (2015) Non-Equilibrium Phase Transition
Properties of Disordered Binary Ferromagnetic Alloy. Journal of Magnetism and
Magnetic Materials, 389, 40-47. https://doi.org/10.1016/j.jmmm.2015.04.042

DOI: 10.4236/am.2019.107040

576 Applied Mathematics


https://doi.org/10.4236/am.2019.107040
https://doi.org/10.1103/RevModPhys.71.847
https://link.aps.org/doi/10.1103/RevModPhys.71.847
https://doi.org/10.1142/S0129183105008266
https://www.worldscientific.com/doi/abs/10.1142/S0129183105008266
https://link.aps.org/doi/10.1103/PhysRevE.56.2407
https://doi.org/10.1103/PhysRevE.56.