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Abstract 

Contrary to the opinion about approximation nature of a simple-iteration 
method, the exact solution of a system of linear algebraic equations (SLAE) in 
a finite number of iterations with a stationary matrix is demonstrated. We 
present a theorem and its proof that confirms the possibility to obtain the fi-
nite process and imposes the requirement for the matrix of SLAE. This matrix 
must be unipotent, i.e. all its eigenvalues to be equal to 1. An example of 
transformation of SLAE given analytically to the form with a unipotent ma-
trix is presented. It is shown that splitting the unipotent matrix into identity 
and nilpotent ones results in Cramer’s analytical formulas in a finite number 
of iterations. 
 

Keywords 

System of Linear Algebraic Equations (SLAE), Nilpotent Matrix, Unipotent 
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1. Introduction 

The mathematical community considers that a simple-iteration method ex-
pressed as a linear difference equation with a stationary matrix for solving a sys-
tem of linear algebraic equations (SLAE) is approximate because it does not give 
the exact answer for a finite number of iterations. 
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Examples of direct statements are: 
“Iterative methods give a tool to obtain an approximate solution of a system of 

linear equations” (Faddeev D.K., Faddeeva V.N.) [1]. 
“… iterative methods that allow the roots of a system to be obtained with a 

given accuracy via converging infinite processes” (Demidovich B.P., Maron I.A.) 
[2]. 

“The main difference of iteration methods from direct ones consists that itera-
tion methods give an exact solution to Equation (1) only as a limit of sequence of 
iterative approximations” Samarskii A.A. [3]. 

“Application of iterative method does not allow an exact solution to be 
reached …” (Strang G.) [4]. 

“Iterative methods for solving (1) are infinite methods which find only ap-
proximate solutions” (Rice J.R.) [5]. 

“… iterative methods do not frequently give an exact solution in a finite 
number of steps” (Demmel W.J.) [6]. 

“Iterative methods do not give strictly exact solution, as it is attained as a limit 
of a sequence of vectors” (Pirumov U.G.) [7]. 

“For iterative methods, i.e. for methods in which an exact solution can be ob-
tained only as a result of an infinite repetition of uniform (as a rule, simple) op-
erations …” (Verzhbitskii V.M.) [8]. 

“… iterative methods give a sequence of approximations which (one can hope) 
converges to the genuine solutions of the problem” (Watkins D.S.) [9]. 

“Iterative methods are approximate methods which find solutions of systems 
by means of infinite converging processes” (Shevtsov G.S., Kryukova O.G., 
Myznikova B.E.) [10]. 

The above statement taken from [3] has the following continuation: “The ex-
ception is methods of ‘finite’ iterations, which include methods of conjugate di-
rections that, theoretically, enable the exact solution to be found in a finite 
number of operations for any initial guess …”. This only emphasizes the authors’ 
viewpoint that the exact solution of an SLAE cannot be obtained via iterations 
with a stationary matrix. In this way, these methods are contrasted with 
non-stationary methods that provide the exact solution in a finite number of 
steps. Similar reasoning can be found in other publications, for example, in [8] 
we read: “… the conjugate gradient method being essentially iterative should 
actually be referred to direct methods, because it is proved that with its help … 
the solution of a linear system is achieved in no more than n steps for any initial 
vector”. 

Indeed, as it can be found in numerous schoolbooks and monographs as well 
as in Internet, it is generally accepted to divide methods for solving SLAE into 
direct and iterative ones and to match them with exact and approximate me-
thods with stationary matrix. This reflects the point of view on approximation 
nature of iterative methods. 

These opinions can be briefly and clearly expressed for a wide audience as 
follows: for an analytically given second-order SLAE, the solution in the form of 
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Cramer’s formulas cannot be obtained by a simple-iteration method. 
For an arbitrary SLAE, we call this thesis the postulate about approximation 

nature. 

2. Problem Statement 

The paradox is that the postulate, which denies the possibility of obtaining a fi-
nite iterative process in a system with a stationary matrix, does not reflect the 
real situation for a very long time. 

The fact is that in control theory, where for a linear discrete system characte-
rized by the same equation, the method of achieving a given state in a finite 
number of steps has been known since the middle of the last century [10]-[19]. 
A brief history on finite processes, which have been called “deadbeat”, is pre-
sented in [19]. For a system described in the input-output relations, the finite 
processes are achieved if the coefficients of the characteristic polynomial are 
equal to zero. For a control system defined in the state space and characterized 
by a matrix of coefficients, the process of moving terminates in a finite number 
of steps if the matrix is nilpotent. Such a matrix is obtained by transformation of 
the original system matrix into Frobenius form and then the row with characte-
ristic polynomial coefficients is reduced to zero (except for sign) by adding a row 
of coefficients having the same values with opposite signs. These coefficients are 
produced in the system’s feedback loop. 

Generally, this method can be applied to iterative solution of an SLAE, but 
only in a homogeneous case, i.e. to reduce the error to zero for a finite number 
of iterations that probably was the reason of his unknown for algebraists. 

Thus, it should be assumed that from the standpoint of control theory, for a 
homogeneous SLAE, the postulate is refuted, while for a non-homogeneous one 
there is no proof. 

The aim of this work is to refute the postulate about approximation nature of 
a simple-iteration method applied to a non-homogeneous SLAE. The proof is 
given and accompanied by an example of obtaining an exact solution of a 
second-order SLAE in the form of Cramer’s formulas in two iterations. 

3. Methodology 

To achieve the goal, we have developed an alternative method for controlling the 
spectrum of a matrix without transforming the matrix to the Frobenius form for 
which the row of the characteristic polynomial coefficients needs to be obtained 
except for sign. The main advantage of the method is the possibility to produce 
the spectrum equal to a given set of eigenvalues not only by perturbation of an 
autonomous matrix, but also in the case when the matrix is multiplied by a vec-
tor and added to another vector in the composition of algebraic, difference and 
differential equations. 

Setting a zero spectrum for a difference equation gives a nilpotent matrix. The 
back conversion of an iterative system to algebraic one forms a unipotent matrix. 
The direct link between those matrix means that the condition for solving an 
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SLAE for a finite number of iterations is the transformation of system matrix to 
the form, in which all eigenvalues are equal to 1. An example is the Gauss me-
thod, where a triangular matrix with a unit diagonal (or unitriangular) is split 
into an identity matrix and strictly triangular matrix, which is nilpotent. In this 
regard, the solution process known as back substitution can be formally consi-
dered as an iterative process with a sparse matrix, which is not required to be 
multiplied by a vector. At each step, only one component of the solution vector 
is determined. In practice, this is done without any mention about the iterative 
nature of the process. 

In the proposed method, the transformation gives a nilpotent matrix but does 
not change the density of the matrix of an original SLAE. Actually, the iterative 
procedure of solution (it may also be considered as back substitution) contains 
the operation of multiplying a matrix by a vector, and all the entries of the solu-
tion vector are obtained at the final step. The maximum number of steps does 
not exceed the order of the matrix. 

4. Brief Background 

The method evolution is described in more detail in [20]. The first result in the 
form of a two-step converging process in a second-order linear discrete system 
was obtained in 2001 when we were developing an advanced deadbeat control 
algorithm for a technical device. The purpose of the algorithm was to eliminate 
the transformation of the matrix to the Frobenius form, which is necessary in 
the well-known method and requires extra time or additional hardware. This 
was accomplished through a special type of a feedback in which the first differ-
ence of the state vector was used instead of the vector itself. The equation of mo-
tion expressed in such form has been formally representing a particular case of 
the canonical form of a two-layer iterative method. 

To find eigenvalues of a matrix, a novel transformation based on the depen-
dencies between the elements of the matrix and its spectrum has been developed. 
This transformation enabled the elements of the feedback vector to be found for 
setting desired spectrum. This was how the engineering problem of synthesizing 
a deadbeat controller was solved for a wide class of technical devices such as 
semiconductor power converters that are widely used in almost all areas of hu-
man activity. 

Later it turned out that new methods allowed us to use them not only in con-
trol theory to implement control algorithms for technical systems, but also to 
obtain a qualitatively new effect in mathematics, which refutes the postulate 
about the approximation nature of a simple-iteration method for solving SLAE. 

The basics of the method for transforming a matrix spectrum were expounded 
in [21] [22]. The method for solving a linear difference equation in a finite 
number of steps was presented in several journals, for example, in [23]. In this 
way, the possibility to find the exact solution of an SLAE by using iterative pro-
cedure with a stationary matrix has been confirmed. 

In this paper, the possibility of obtaining the exact solution of an SLAE in a fi-
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nite number of iterations is demonstrated for the first time. A theorem is for-
mulated and proved. For a wide audience without a special mathematical back-
ground, the example of solving the simplest SLAE is presented for clarity and 
understanding. In addition, for the sake of clarity, two types of transformation 
are given. The first type of transformation provides a unite spectrum of the al-
gebraic equation matrix, while the second type derives the nilpotent matrix from 
the canonical form of a two-layer iterative method. The result of the iterations is 
represented in the form of Cramer’s formulas known in the school course of 
mathematics. This directly denies the above opinions about the impossibility of 
obtaining an exact solution of SLAE in a finite number of iterations. 

5. Theorem and Proof 

Theorem. To find a solution of an SLAE 

Ax b= ,                            (1) 

where х and b are the unknown and known vectors of k size, respectively, А is a 
square nonsingular matrix of k size, in a finite number of iterations, it is neces-
sary and sufficient to reduce (1) to the form 

Ex c= ,                            (2) 

where E is a unipotent matrix with unit spectrum. Then the iterative equation 

( ) ( )1x n Nx n c+ = + ,                       (3) 

where 0,1,2, ,n E I N= = − , I is the identity matrix, for an arbitrary initial 
vector х0, generates the exact solution (excluding round-off errors) 

1 1x A b E c− −= =                          (4) 

no more than for m ≤ k iterations. 
Proof. The matrix Е is split into the identity matrix I and the nilpotent matrix 

N with the intrinsic property 

0=kN .                            (5) 

A non-unipotent matrix does not form a nilpotent one, and, with с = 0, the 
solution to (3) given by 

( ) ( )0nx n N x=                          (6) 

depends on х(0). This proves the necessity. 
The sufficiency follows from the solution of (3) by using (5) for n = k: 

( ) ( ) ( ) ( ) 110k kx k N x I N N c I N c x−−= + + + + = − = .          (7) 

Remark 1. The simple-iteration method is approximate due to the extension 
of the condition det(A) ≠ 0 to the matrix of the iteration equation, as follows 
from control theory and this statement is confirmed here, but this is not neces-
sary. 

Remark 2. The transformation of the difference equation to the form with 
nilpotent matrix, used in control theory, with c = 0, results in to zero in a finite 
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number of steps, and, with c ≠ 0, it gives the shifted vector (as it was named in 
[17]) instead of the solution. 

Remark 3. The specified spectrum is formed by changing the elements of a 
row of the matrix A itself, while in control theory, a row of the elements of the 
characteristic polynomial of the Frobenius matrix is changed, which is obtained 
by the transformation of A. 

Remark 4. There exist values х0 such that the number m equals to 
( )1,2, , 1k −

, in particular, m = k – 1 for х(0) = с. 
Remark 5. There exists a variety of unipotent matrices satisfying (2) so the so-

lution (7) can be obtained by using different nilpotent matrices. 
The iterative method for exact solution of an SLAE in a finite number of steps 

has the computational procedure of iterative methods, in the conventional sense, 
like the Jacobi and Seidel methods, can be called a finite-iterative method. As in 
control theory, it is based on setting a unit spectrum for the SLAE matrix or a 
zero spectrum for the matrix of the iteration equation. The main difference is the 
possibility to solve not only a homogeneous equation, but also a 
non-homogeneous one. 

According to the control theory terminology, the transformation of an SLAE 
into the form with a unipotent matrix is provided via feedback on the first dif-
ference of the desired vector. Such a transformation is mathematically a special 
case of the canonical form of a one-step two-layer iterative method. 

It should be emphasized that the theorem specifies only the possibility of 
solving SLAE in a finite number of iterations but it does not provide an algo-
rithm for obtaining a nilpotent matrix. As noted above, the algorithm was de-
veloped in the context of solving the eigenvalue assignment problem for control 
the spectrum of the matrix of equation describing a specific technical device. 
Here, we demonstrate the application of the method that distinctly demonstrates 
a result in the form of an analytical solution of an SLAE in an iterative way, re-
futing the statements above. 

6. Examples of Solving a System of Two Linear Equations 

Consider (1) for k = 2, 

11 12

21 22

a a
A

a a
 

=  
 

, 1

2

b
b

b
 

=  
 

,                   (8) 

and write the system in standard form 

11 1 12 2 1

21 1 22 2 2

,
.

a x a x b
a x a x b

+ =
+ =

                       (9) 

6.1. Transformation of an SLAE to the form with a Unipotent Matrix 

The objective is to transform the system (9) and obtain the equivalent system (2) 
with a unipotent matrix E. We write the first Equation of (9) in the form 

11 1 12 2 2 2 1 2 2a x a x h x b h x+ + = + ,                   (10) 
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where h2 is a constant coefficient. Substituting the second unknown 

( )2 2 21 1 22x b a x a= −                        (11) 

into the right-hand side of (9) results in 

( ) ( )11 21 2 22 1 12 2 2 1 2 2 22a a h a x a h x b b h a+ + + = + .           (12) 

After dividing (12) by the constant coefficient h1, we obtain an SLAE in the 
form (2), 

21 2 2 2
11 1

22 12 2 2211 12 1 1

1 1 121 22 2 2

21 22 2

a h b ha b
a a h ae e x x

Ex
h h he e x x
a a b

   + +   +        = = =             
   
   

,    (13) 

with two (not yet known) coefficients h1 and h2, which are used to control the 
spectrum, that is, to specify two characteristic numbers λ1 and λ2. According to 
the theorem, they must be equal to 1. In this case, the matrix E = [ei,j] of (2) sa-
tisfies the following conditions 

11 22 1 2

11 22 12 21 1 2

2,
1,

e e
e e e e

λ λ
λ λ

+ = + =
− = =

                       (14) 

which leads to the following linear system 

21 2
11

22
22

1

21 2
11

22 12 2
22 21

1 1

2,

1.

a ha
a a

h
a ha
a a ha a

h h

+
+ =

+
+

− =

                   (15) 

We rewrite it in the normal form 

( )22 1 21 2 22 11

1 11 22 12 21

2 ,
,

a h a h a a
h a a a a

− + = −

= +
                   (16) 

and find the first coefficient h1 as the determinant of A. The second coefficient h2 
is 

( )2 11 22 1 22 212h a a h a a= − + −   .                   (17) 

Substituting h1 and h2 into (13) makes the matrix 

( )2
22

11 12 22
21

21 22
21 22

1
2

ae e aE ae e
a a

 − −
  − 

= =   
   

 

, 

2 2
1

221

12

2

b hb
ac

c
hc
b

 +    = =    
 
 

   (18) 

unipotent and defines the right-hand side of the first equation of (9). 
Let us summarize the above. For the original SLAE Ax = b we obtained the 

equivalent system of the form Ex = c with the unit spectrum of E. The prepara-
tory stage called a forward elimination in the Gauss method is completed. Ac-
cording to the theorem, the iterative process, with a nilpotent matrix 
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( )2
22

11 12 22
21

21 22
21 22

1
1

1

an n aN I E an n
a a

 −
  − + 

= = − =   
   − − 

,          (19) 

should provide the exact solution no more than in two iterations. We have to 
show it. 

First, we make sure the matrix (19) is nilpotent. To do this, we use (14) to 
calculate 

11 22

11 22 12 21

0,
0,

n n
n n n n

+ =
− =

                      (20) 

so the matrix (19) is really nilpotent. In the next place, using the expression (3) 
we execute two iterations 

( ) ( )1 0x Nx c= + , ( ) ( ) ( ) ( )22 1 0x Nx c N x I N c= + = + + .       (21) 

Due to the property (5), the first summand in (21) is zero. This mathematical 
statement says that the result does not depend on x(0). The matrix factor in the 
second summand, due to the equality 

( )
( )2

22
1 1 22

21

21 22

1

2

a
aI N I N E a
a a

− −

 −
 

+ = − = =  
 − − 

,             (22) 

is the inverse matrix of the equivalent system (2), which either has the unite 
spectrum. Therefore, the second iteration actually representing the product of 
E−1 by c, 

( )
( )

( )

( )

2 2
21

222 222 2
1 22 222

22 1 211 22
21

1 2 2
121 22

222
21 22 2

1

1
1

2

2
2

b hb
aab hb a ba a h aax E с a h b hba a ab a a b

h

−

 + −     +−       = = =         +− −       − − 
 

, (23) 

after simplifications gives an analytical solution of the SLAE in the form of Cra-
mer’s formulas 

( )
T

1 22x x ∆ ∆ = =  ∆ ∆ 
,                      (24) 

where 11 22 12 21a a a a∆ = − , 1 22 1 12 2a b a b∆ = − ,

 

2 11 2 21 1a b a b∆ = − . 
The expression (24) represents the solution of a system known as Cramer’s 

formulas (or Cramer’s rule) in a school course of mathematics. This confirms 
the possibility to obtain an exact solution of an SLAE in iterative way with sta-
tionary matrix and evidently proves that the postulate is false. The form of (24) 
suggests that this expression can be generalized to an SLAE of an arbitrary order 
k and the exact solution can be found at the k-th iteration, 

( ) ( ) ( )
T

11 1k kx k x I N N c I N c−− ∆∆ = = + + + = − =  ∆ ∆ 
  .    (25) 
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In accordance with Remark 4, the exact solution can be obtained for a number 
of iterations not exceeding the order of the system. In this example, the exact 
solution is found after one iteration if we choose the initial vector x(0) equal to 
the right-hand side c of the equivalent system. Then the solution (24) follows at 
the first iteration, 

( ) ( )
( )2 2 2 1

122
2222

21
1 2

21 22
2

1 1 011
0 1

1

b hba aax I N c a h
a a b

  ∆    +−      − +  ∆ = + = + ⋅ =        ∆    − −        ∆  

. (26) 

The same results can be gained by transformation of the second equation in (9) 
instead of the first one as it shown in [22]. 

6.2. Transformation of an SLAE to the Form with a Nilpotent Matrix  
Obtained from Canonical Form of Two-Layer Iterative  
Method 

The transformation is that any one row of the iterative system is changed and 
coefficients are determined in order to obtain a given spectrum of a matrix, in 
this case, to be a zero spectrum. We write (1) in canonical two-layer form [3] 
with a single iteration parameter, 

( ) ( ) ( )1Ax n H x n x n b+ + − =   ,                (27) 

and recall that the second summand in (27) plays a role of the feedback in con-
trol theory. 

Taking a rank-one matrix 

1 2

0 0
h h

H  
=  
 

                      (28) 

whose elements play the same role as in the first example, we expand the first 
equation 

( ) ( ) ( ) ( ) ( ) ( )11 1 12 2 1 1 1 2 2 2 11 1a x n a x n h x n x n h x n x n b+ + + − + + − =       . (29) 

We write the second Equation of (9) as 

( )21 1 22 2 2 21a x a x x b+ + = + ,                (30) 

and then represent it in the indexed form 

( ) ( ) ( ) ( )2 21 1 22 2 21 1x n a x n a x n b+ = + + − .          (31) 

Substituting (31) into (29) leads to an iterative equation with two coefficients 
h1 and h2, 

( )
( )

( )
( )

( )
( )

1 11 12 1 1

2 21 22 2 2

11 1 21 2 12 22 2 1 2 2
1

1 1 1
2

21 22 2

1
1

.
1

x n n n x n c
x n n n x n c

a h a h a a h b b h
x n

h h h
x n

a a b

 +      
= +      +       

− + + +   − −     = +        + −   

 (32) 
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Here, h1 and h2 are determined from the nilpotency condition (20). Substitut-
ing the elements of (32) into (20) gives a linear system 

( )

11 1 21 2
22

1

11 1 21 2 12 22 2
22 21

1 1

1 0,

1 0

a h a h a
h

a h a h a a ha a
h h

− +
− + + =

− + +
− + + =

          (33) 

expressed in normal form 

( )
( )

22 1 21 2 11

22 1 21 2 11 11 22 12 21

2 ,

1

a h a h a

a h a h a a a a a

+ − =

+ − = + −
             (34) 

whose solution is 

( )
1 11 22 12 21

2 22 1 11 21

,

2 ,

h a a a a

h a h a a

= − +

= + −  
                  (35) 

where h1 is the determinant (except for sign) like in the first type of transforma-
tion. 

Substituting (35) into (32) make the matrix nilpotent (it is easy to check), 

( )2
22

11 12 22
21

21 22
21 22

1
1

1

an n aN an n
a a

 − +
  − − 

= =   
   + 

,            (36) 

while the matrix of algebraic system becomes unipotent, 

( )2
22

11 12 22
21

21 22
21 22

1
2

ae e aE I N ae e
a a

 +
  + 

= − = =   
   − − 

.          (37) 

As a result, for х(0) = c, iterative equation with the matrix (30) gives the solu-
tion of the SLAE in the form of Cramer’s formulas 

( ) ( )
( )

( )
[ ]

2
22

122
21

2
21 22

2
T1 2 222

T 1 222
1 1 221

221 22

1 1 011
0 1

1

1

2

a cax x N I c a c
a a

b b ha
a h x xa

ba a

  − +
    − − 

= = + = + ⋅     
     +  

  + − +
∆ ∆−    = ⋅ = =     ∆ ∆    −+   

    (38) 

after the first iteration. 

7. Conclusion 

In this paper, the possibility of exact solution of an SLAE by iterations with a 
stationary matrix has been demonstrated. Two examples are given to illustrate 
different approaches for finding the exact solution of a simplest SLAE by using 
the transformation of an original system to the form with unipotent or nilpotent 
matrix. It is shown that an exact solution of an SLAE is obtained in the form of 
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Cramer’s formulas. The fallacy of the postulate about the approximation nature 
of a simple-iteration method has been proved. Therefore, there is a need to pre-
pare appropriate corrections in order to include them in educational programs 
on methods for solving linear systems. 
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Abstract 

Is it true that there is an implicit understanding that Brownian motion or 
fractional Brownian motion is the driving force behind stock price fluctua-
tions? An analysis of daily prices and volumes of a particular stock revealed 
the following findings: 1) the logarithms of the moving averages of stock 
prices and volumes have a strong positive correlation, even though price and 
volume appear to be fluctuating independently of each other, 2) price and 
volume fluctuations are messy, but these time series are not necessarily 
Brownian motion by replacing each daily value by 1 or –1 when it rises or 
falls compared to the previous day’s value, and 3) the difference between the 
volume on the previous day and that on the current day is periodic by the 
frequency analysis. Using these findings, we constructed differential equa-
tions for stock prices, the number of buy orders, and the number of sell or-
ders. These equations include terms for both randomness and periodicity. It 
is apparent that both randomness and periodicity are essential for stock price 
fluctuations to be sustainable, and that stock prices show large hill-like or 
valley-like fluctuations stochastically without any increasing or decreasing 
trend, and repeat themselves over a certain range. 
 

Keywords 

Stock Price, Volume, Brownian Motion, Randomness 

 

1. Introduction 

It is generally considered difficult to forecast the behavior of stock prices, and 
thus many methods have been proposed. For example, fundamental analysis and 
technical analysis are widely used approaches. Fundamental analysis involves 
investigating any data that can be expected to impact the price of a stock. The 
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advantage of this method is that the estimation is objective because the selected 
economic indicators such as future growth, return on equity, and profit margins 
are inputted into a particular relational expression to predict the stock price. 
However, because there is often a time lag prior to the release of economic indi-
cators, one drawback of this approach is that the economic indicators may be 
outdated. In contrast, technical analysis focuses only on the trading and price 
history of a stock. The principle underlying technical analysis is that the market 
price reflects all available information that could affect the stock market. As a 
result, there is no need to take new economic developments into account be-
cause they are already priced into a given security. Technical analysts generally 
believe that prices move in trends, and that history tends to repeat itself. How-
ever, these trends may be a product of chance, and there may actually be a 
chance that large hill-like or valley-like fluctuations are also considered to be 
trends. It seems that the market fluctuates based on psychological aspects. There 
are two major types of technical analysis: chart patterns and technical indicators. 
Chart patterns are a subjective form of analysis wherein technicians attempt to 
identify areas of support and resistance on a chart by observing specific patterns. 
These patterns, identified based on experience and behavioral economics, are 
designed to predict where prices are headed following a breakout or breakdown 
from a specific price point. Technical indicators are a statistical form wherein 
technicians apply various mathematical formulas to prices and volumes. The 
most common technical indicators are moving averages, which smooth price 
data to make it easier to spot trends. 

Difficulties arise in terms of predicting stock prices because daily changes in 
stock prices seem to be quite random. In particular, fluctuations in stock prices 
are considered to follow Brownian motion, fluctuating independently of past 
stock prices. The notion of using a Brownian motion process to explain the be-
havior of stock prices was first proposed by Black et al. [1]. A Brownian motion 
process has the property of independent increments. This means that the present 
price does not affect future prices. However, the present stock price may influ-
ence the stock price at some time in the future. Hence, a Brownian motion 
process is not suitable for explaining stock price movements. Subsequently, a 
fractional Brownian motion process, which exhibits the property of long-range 
dependence, was proposed [2]. Meanwhile, it is also considered that there is a 
relationship between stock price and volume [3] [4]. Volume is an important 
aspect of technical analysis because it is used to confirm trends and chart pat-
terns. Any price motion up or down with relatively high volume is seen as a 
stronger, more relevant move than a similar move with weak volume. Data that 
are available to general investors include time series of stock prices and volumes. 
As pointed out in the past, the trend of the stock price itself is random [5], and 
using this data alone, it is completely unpredictable how the price will change in 
the near future. However, since volume is a measure of how much interest sellers 
and buyers have in the stock, volume data provide a better understanding of 
stock price fluctuations. 
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There is already a famous stochastic differential equation that attempts to 
mathematically elucidate the transition of one bond and one or more stock pric-
es [1], but the purpose of this study is to reveal the driving force behind sustain-
able fluctuations in the price of an arbitrary stock using a mathematical model. 
The rest of this paper is organized as follows. Sections 2 and 3 clarify the rela-
tionship between stock prices and volumes, Section 4 presents a model of the 
proposed relationship, Sections 5 and 6 present an interpretation of the simula-
tion, and Section 7 discusses the effectiveness of the model by comparing the 
results of the simulation with real data. 

2. Characteristics of the Real Data 

It is possible to obtain time-series data (e.g., closing prices and volumes) in rela-
tion to stock prices for free via the Internet. Although it is acceptable to use data 
from any source, because the author lives in Japan, data for 50 stocks on the First 
Section of the Tokyo Stock Exchange were used. It is considered that the results 
will not lose generality outside Japan. 

As an example, time-series data on the stock price of the Takeda Pharmaceut-
ical Company Limited, one of the leading pharmaceutical companies in Japan, 
was examined. 

Figure 1(a) shows the fluctuations in closing prices (abbreviated to prices he-
reafter) (pi; i = 1, 2, …, 9012) from 4 January 1983 to 20 March 2019. Figure 1(b) 
shows the difference, Dpi, between pi+1 and pi (i = 1, 2, …, 9011). Figure 1(c) 
shows the fluctuations in volume (vi; i = 1, 2, …, 9012). Figure 1(d) shows that 
the difference, Dvi, between vi+1 and vi (i = 1, 2, …, 9011) appears to be fluctuat-
ing periodically. Figure 1(e) shows the fluctuations in Dpi/loge(vi) (i = 1, 2, …, 
9011). Since this is an indicator of how much the volume affects the change in 
stock prices compared with the previous day, I have introduced it anew. If Dpi is 
≥ 0, Bpi is represented as 1 (i = 1, 2, …, 9011), otherwise Bpi is represented as –1. 
Figure 1(f) shows the fluctuations in Bpi (i = 1, 2, …, 9011). Bpi indicates 
whether the price is rising or falling. The frequency of Bpi = 1 is 0.5461. If Dvi is 
≥ 0, Bvi is represented as 1 (i = 1, 2, …, 9011), otherwise Bvi is represented as –1. 
Bvi indicates whether the volume is rising or falling. The frequency of Bvi = 1 is 
0.4924. Figure 1(g) shows the fluctuations in Bvi (i = 1, 2, …, 9011). From the 
frequency analysis of Dpi and Dvi, it can be seen that the power of Dpi is almost 
0 compared with the power of Dvi, and Dpi has no characteristic period, but Dvi 
has a period of one to three days (see Figure 2). Figure 3 shows the autocorrela-
tion function of pi, Rpp(τ) (=E[pi·pi+τ]), the autocorrelation function of vi, Rvv(τ) 
(=E[vi·vi+τ]), and the cross-correlation function, Rpv(τ) (=E[pi·vi+τ]), where τ 
represents the time lag in days. Although Rpp(τ) and Rpv(τ) are very small 
compared with Rvv(τ), and are almost zero, Figure 3 indicates that there is a 
significant correlation between vi and vi+1. The moving averages are computed: 
Mpi, the mean with a window of length 101 that includes the element in the cur-
rent position, pi, and 100 elements backward, and Mvi, the mean with a window 
of length 101 that includes the element in the current position, vi, and 100 ele-
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ments backward. These are then converted to logarithms: LMpi = loge(Mpi) and 
LMvi = loge(Mvi). Figure 4 shows the relationship between LMvi and LMpi. The 
relationship is significant, with a correlation coefficient of 0.7312 (at the 0.05 
significance level). 
 

 
Figure 1. (a) Stock prices (pi; i =1, 2, …, 9012) from 4 January 4 1983 to 20 March 2019; (b) The difference, Dpi, between pi+1 and 
pi (i =1, 2, …, 9011); (c) Volumes (vi; i = 1, 2, …, 9012); (d) The difference, Dvi, between vi+1 and vi (i = 1, 2, …, 9011); (e) 
Dpi/loge(vi) (i = 1, 2, …, 9011). If Dpi is ≥ 0, Bpi is represented as 1 (i = 1, 2, …, 9011), otherwise Bpi is represented as –1; (f) Bpi (i 
= 1, 2, …, 9011). If Dvi is ≥0, Bvi is represented as 1 (i = 1, 2, …, 9011), otherwise Bvi is represented as –1; (g) Bvi (i = 1, 2, …, 
9011). The red lines in (a)-(e) represent the moving averages. 

 

 

Figure 2. Frequency analysis of Dpi and Dvi. The two arrows indicate that 
the power of Dpi is extremely small compared with the power of Dvi. 
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Figure 3. The autocorrelation function of pi, Rpp(τ) (=E[pi·pi+τ]) (yellow 
line), the autocorrelation function of vi, Rvv(τ) (=E[vi·vi+τ]) (blue line), 
and the cross-correlation function, Rpv(τ) (=E[pi·vi+τ])(yellow line); τ 
represents the time lag in days. 

 

 

Figure 4. Plots of LMvi and LMpi. LMvi is the logarithm of moving aver-
ages of vi, while LMpi is the logarithm of moving averages of pi. 

 
The following findings are based on the information presented in Figures 1-4. 
1) Comparing Figure 1(a) and Figure 1(c), it can be seen that there are days 

when the volume has increased before a rise in the stock price, but it appears 
that the price is not always linked to a change in the volume. 

2) Comparing Figure 1(b) and Figure 1(d), it can be seen that Dpi and Dvi 
appear to fluctuate independently. Close observation of the fluctuations in price 
and volume reveals that Dvi appears to change periodically. Figure 2 shows that 
Dvi has a period of one to three days. Figure 3 shows that the present price is not 
correlated with the past stock price, and the stock price is not correlated with the 
volume, although the present volume is related to the volume over several days, 
especially that of the previous day. 

3) Figure 1(f) and Figure 1(g) show that Bpi and Bvi do not return to the ori-
gin again after having done so several times near the beginning (18 times for Dpi 
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and 22 times for Dvi). It is understandable that a return to the origin is unlikely 
in the case of Brownian motion processes because of the arc sine law of last re-
turns, but even if Bpi and Bvi follow a Brownian motion process, the number of 
returns to the origin is at most 22 and the probability of this occurrence is low 
(0.1820), as shown in the theorem presented in the Appendix. Therefore, neither 
Bpi nor Bvi may be considered to follow a Brownian motion process. 

4) Figure 1(e) shows that, for example, even if Dpi rises by only a little, 
Dpi/loge(vi) will rise sharply when the volume is small. That is, Dpi/loge(vi) 
represents the degree of interest in the stock. 

5) Since Figure 4 shows that LMpi and LMvi have a significant positive corre-
lation, it follows that there is a positive correlation between the transition of 
prices and the transition of its volumes from the logarithm of moving average of 
101 days in total. 

The following points can be used to construct a mathematical model from the 
above findings. 

a) From (2), fluctuations in price and volume seem to be random and inde-
pendent, but Dvi appears to change periodically. 

b) From (5), LMpi and LMvi have a significant positive correlation. 

3. Behavioral Psychology of Investors Affecting Stock Prices 

A high volume of turnover means that there are numerous buyers and sellers 
who are interested in the stock. It has become clear that the average price over 
the long term (101 days in the above example) is significantly correlated with the 
average volume during the same period. Therefore, it is essential to know the 
investors’ mindsets because the volume reflects the interest of buyers and sellers 
in the stock. Since Bvi indicates whether the volume is rising or falling, it reflects 
rising or falling interest on the part of buyers and sellers. 

The prospect theory of behavioral finance suggests that investors who are 
overly preoccupied with the negative effects of losses in comparison to an equiv-
alent amount of gains tend to take a short-term view of an investment [6]. This 
leads those investors to pay far too much attention to the short-term volatility of 
their stock portfolios. Thus, in general, investors tend to limit their losses by 
selling their stocks, being overly preoccupied with their latest losses, even though 
the price of their stock may have subsequently risen. 

The gambler’s fallacy occurs when, during a series of coin tosses, the gambler 
thinks that a tail is due following a series of heads. This idea is often used in be-
havioral economics. In relation to investment, it is easy to become susceptible to 
the gambler’s fallacy. For example, when prices rise over several successive days, 
many investors will come to believe that, even if there is no rational reason to 
think so, they will soon fall again. They have various criteria that they use in 
their decision-making, and even if they are not actually selling, there is a signifi-
cant possibility that this feeling will affect their judgment. Investors think that 
the stock price will go up as they go down on a daily basis, and if the stock is 
bought, it will often happen that the stock price will go down further and lose. 
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In summary, investors tend to sell in the short term to secure a slight profit 
because they dislike losses in accordance with the loss avoidance aspect of pros-
pect theory. Meanwhile, they tend to think that prices that are continuing to rise 
should fall soon, based on the gambler’s fallacy. However, there is also a tenden-
cy to think that prices will continue to rise. Then, the buying and selling beha-
vior will be repeated periodically to some extent. This summary can be used to 
construct a mathematical model based on the following conditions. There are 
random fluctuations in relation to stock prices, the number of buy orders, and 
the number of sell orders. In particular, the number of buy orders and the num-
ber of sell orders fluctuate periodically. 

4. Mathematical Model 

Stock prices, the number of buy orders, and the number of sell orders are 
represented by P, B, and S, respectively. Figure 5 shows the interactions among 
P, B, and S. The formulations of these relationships are as follows:  

( ) ( )1 1 1 4 2
d     ,
d
P a B S r RND P t sign RND t
t

⋅ ⋅ ⋅= − − + −            (1) 

( )( )2 2
d 1 sin 2π ,
d
B b r RND ft P B
t

⋅ ⋅ ⋅= − −                 (2) 

( )( )3 3
d 1 sin 2π ,
d
S c r RND ft P S
t

⋅ ⋅ ⋅= − −                 (3) 

where a, b, c, r1, r2, r3, t1, t2, and f are positive constants. sign(x) is 1 if x > 0, 0 if x 
= 0, and –1 if x < 0. RND1, RND2, RND3, and RND4 are uniformly distributed 
random numbers in the interval (0, 1), each of which changes every time step on 
solving these differential equations by using ode45 of MATLAB. In equation (1), 
B – S represents the volume. If ( )1 4 2 0t sign RND t⋅ − > , prices are increasing, if 

( )1 4 2 0t sign RND t⋅ − = , prices display no trend, and if ( )1 4 2 0t sign RND t⋅ − < , 
prices are decreasing. In Equations (1), (2), and (3), − r1·RND1·P, −B, and −S are 
necessary to prevent these variables from diverging to infinity. A preliminary 
study indicated that RND1, RND2, RND3, and RND4 are required for P, B, and S 
to fluctuate randomly in various changes, similar to real data. This finding sug-
gests that continuous up-and-down changes are the result of the randomness of 
prices. 
 

 

Figure 5. Relationships among prices, buy orders, and sell orders. Arrows 
represent promotion, while blocked arrows represent suppression. The red 
lines represent random noise. A wave in the circle between prices and buy or-
ders (or sell orders) indicates that the effect of promoting or suppressing the 
buy orders (or sell orders) on the stock price changes periodically. 

https://doi.org/10.4236/am.2019.106028


M. Osaka 
 

 

DOI: 10.4236/am.2019.106028 390 Applied Mathematics 

 

5. Results 

The parameters are set as follows: a = 0.2, b = 2, c = 1, r1 = 0.4, r2 = 2, r3 = 4, and 
f = 0.2. 

5.1. t1 = 0, t2 = 0 

Regardless of ( )1 4 2 0t sign RND t⋅ − = , there are a couple of significant rises in 
prices, as if there was a trend (see Figure 6). However, the prices do not increase 
constantly. It can be seen from Figure 6(f) and Figure 6(g) that the number of 
times Bpi and Bvi cross the origin is extremely small. Figure 7 shows the rela-
tionship between LMvi and LMpi. The relationship is significant with a correla-
tion coefficient of 0.7452 (at the 0.05 significance level). 
 

 

Figure 6. Plots of P (=pi), Dpi, V (=vi), Dvi, Dpi/loge(vi), Bpi, and Bvi, which are calculated at t1 = 0, t2 = 0. The red lines 
in (a)-(e) represent the moving averages. 

 

 

Figure 7. Plots of LMvi and LMpi, which are calculated at t1 = 0, t2 = 0. 
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5.2. t1 = 0.001, 0.005, or 0.01, t2 = 0 

As t2 = 0, ( )1 4 2 0t sign RND t⋅ − > . When 0.001 < t1 < 0.005, prices do not neces-
sarily show an upward trend. When t1 = 0.01, prices show a constant upward 
trend (see Figure 8). Thus, Bpi and Bvi are constantly increasing. Figure 9 shows 
the relationship between LMpi and LMvi. The relationship is significant with a 
correlation coefficient of 0.8778 (at the 0.05 significance level). The correlation 
between price and volume is stronger for the condition t1 = 0.01, t2 = 0 than for 
the condition t1 = 0, t2 = 0. 

5.3. t1 = 0.01; t2 = 0.25, 0.5, or 0.75 

When t2 = 0.25, ( )1 4 2 0t sign RND t⋅ − >  with probability of 0.75. When t2 = 0.5, 
( )1 4 2 0t sign RND t⋅ − >  with probability of 0.5. When t2 = 0.75, 
( )1 4 2 0t sign RND t⋅ − >  with probability of 0.25, in other words, 
( )1 4 2 0t sign RND t⋅ − <  with probability of 0.75. When t2 = 0.25, prices show an 

upward trend. When t2 = 0.5, price fluctuations show various patterns. When t2 
= 0.75, prices are constantly decreasing (see Figure 10). 

6. Mathematical Analysis 

The parameters are the same as in Section 5.1, namely, a = 0.2, b = 2, c = 1, r1 = 
0.4, r2 = 2, r3 = 4, f = 0.2, t1 = 0, and t2 = 0. Then the prices do not increase con-
stantly, and are confined within a certain range. This can be confirmed by ma-
thematical analysis as follows. The volume, B – S, is represented by V.  
 

 

Figure 8. Plots of P (=pi), Dpi, V (=vi), Dvi, Dpi/loge(vi), Bpi, and Bvi, which are calculated at t1 = 0.01, t2 = 0. The red lines in (a)-(e) 
represent the moving averages. 
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Figure 9. Plots of LMvi and LMpi, which are calculated at t1 = 0.01, t2 = 0. 
 

 

Figure 10. Plots of P and V, which are calculated at t1 = 0.01, t2 = 0.25, 0.5, or 0.75. 
 

As t1 = 0, Equation (1) is expressed as follows. 

1 1
d 0.2
d
P V r RND P
t
= −⋅ ⋅ ⋅                  (4) 

Equation (2) minus Equation (3) is expressed as follows. 

( ) ( )( )2 3
d 1 4 sin 2π
d
V RND RND ft P V
t
= − ⋅ ⋅− −⋅          (5) 

here ( ) ( )1 1 2 3 2 3, , sin 2πr RND RND RND RND RND ft⋅ − − ⋅  are denoted as α, β, 
and γ, respectively. Since these parameters include random numbers or time va-
riables, these parameters are considered below once as constants. Then Equa-
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tions (4) and (5) are considered to be ordinary differential equations. 

0.2d
1 4 1d

P P
V Vt

α
γ

−    
=    − −    

                  (6) 

The characteristic polynomial of Equation (6) is given by 

( )2 1 0.8 0.2 0λ α λ α γ+ + + + − = .                (7) 

( ) ( ) ( )21 1 4 0.8 0.2
2

α α α γ
λ

− + ± + − + −
=            (8) 

If ( )0.8 0.2 0, 1 5 4α γ γ α− − + > < − . Then, one of the two eigenvalues is pos-
itive and the other is negative. Since α is distributed uniformly in (0, 0.4), 

( )1 4 1 5 4 1 4α− < − < . 
If 1 4γ < − , one of the two eigenvalues is always positive.  

As ( ) ( )( )2 3 sin 2πRND RND ftγ = − ⋅  is ( )sin 2πftβ ⋅ , ( )sin 2π 1 4ftβ ⋅ < − . 

Now, 1 1β− < < . 
If ( )sin 2π 0ft > ,  

( )
1 1

4sin 2π 4ft
β < − ≤ −                    (9) 

If ( )sin 2π 0ft < ,  

( )
1 1

4sin π 42 ft
β > − ≥                    (10) 

As RND2 and RND3 are distributed uniformly in (0, 1), the probability density 
function, f(β), of β (=RND2 − RND3) is expressed as shown in Figure 11. The 
probability of β < −1/4 is 9/32, and the probability of β > 1/4 is 9/32. The total 
time of ( )sin 2π 0ft >  is 50% in any observation time. Similarly, the total time 
of ( )sin 2π 0ft <  is 50% in any observation time. Hence, the total time of γ < 
−1/4 is at most 9/32 in any observation time. Conversely, if γ > 1/4, the two ei-
genvalues are always negative real numbers or complex numbers with negative 
real parts. In the same way as γ < −1/4, the total time of γ > 1/4 is at most 9/32 in 
any observation time. In the remaining time, when −1/4 < γ < 1/4, there are var-
ious combinations of the two eigenvalues: one positive and the other negative  
 

 

Figure 11. Probability density function, f(β), of β 
(=RND2 − RND3). The area of each blue triangle is 9/32. 
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real numbers, two negative real numbers, and two complex numbers with nega-
tive real parts. In no cases do two positive real eigenvalues or two complex ei-
genvalues with positive real parts occur. P does not diverge to infinity or con-
verge to zero because the two eigenvalues are not always positive real numbers 
(or complex numbers whose real parts are positive numbers) and not always 
negative real numbers. Hence, P fluctuates within a certain range. 

7. Discussion 

In this study, the relationship between the price and trading volume of a stock is 
examined. Fluctuations in prices and volumes seem to be random and indepen-
dent, but LMpi and LMvi have a significant positive correlation. In particular, 
Dvi appears to change periodically, based on frequency analysis. The present vo-
lume is related to the volume over the last few days, especially the previous day. 
A preliminary study indicated that RND1, RND2, RND3, and RND4 are required 
for P, B, and S to fluctuate daily in the same manner as real data. These findings 
suggest that fluctuations in stock prices are characterized by both randomness 
and periodicity. Although there is a tacit understanding that continual fluctua-
tions in stock prices are the result of Brownian motion, Kong et al. reported the 
possibility that fractional Brownian motion is the driving force [2]. However, 
Brownian motion seems unlikely to be the only driving force based on the re-
sults for Bpi and Bvi obtained in Section 2. The prospect theory of behavioral 
finance suggests that investors who are overly preoccupied with the negative ef-
fects of losses tend to limit their losses by selling their stocks. Investors who have 
fallen into the gambler’s fallacy sell their stocks in the belief that prices are due 
to fall if they have been rising. However, when the stock price rises further, they 
then try to buy it back, thinking it will continue to rise. Thus, there is repeated 
buying and selling over a short period without sound underlying reasons. This is 
why stock prices include a periodic factor. Thus, the differential equations con-
sist of a component for randomness, as well as one for periodicity (see Figure 5). 

The prices of an arbitrary stock generally display up-and-down motions, but 
are generally confined within a certain range. Although technical analysts believe 
that prices generally move in trends and that history tends to repeat itself, the 
findings in Section 5.1 indicate that stock prices show large hill-like or val-
ley-like fluctuations stochastically without any increasing or decreasing trend, 
and repeat themselves over a certain range. This seems to be natural at first 
glance, but the question arises as to what is the driving force. 

From Section 5, it can be seen that the stock price increases almost monoton-
ically if the change in the price of a certain stock is accompanied by an increas-
ing trend without noise (as well as a decreasing trend). However, in reality, it 
seems that randomness mixes with this increasing or decreasing trend. Thus, 
stock prices can fluctuate unpredictably depending on the degree of this mixing, 
making it difficult to predict stock prices. From Section 5.2, it can be seen that if 
a noise-free increasing or decreasing trend is added to stock prices, LMpi and 
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LMvi have a stronger positive correlation. Then, since the prices increase almost 
monotonically, they become predictable. In other words, if all of the information, 
including external factors, affecting stock prices is known, stock prices can be 
predicted. Otherwise, they are generally unpredictable. 

8. Conclusion 

The analysis of daily prices and volumes of a certain stock revealed the following 
findings: 1) price and volume fluctuations are random, 2) the difference between 
the volume on the previous day and that on the current day is periodic. Based on 
these findings, the differential equations of stock prices, the number of buy or-
ders, and the number of sell orders were constructed. From simulation by these 
equations it is clear that both randomness and periodicity are essential for stock 
price fluctuations to be sustainable. In the future, I would like to clarify the con-
ditions of the parameters in the mathematical model under which stock prices 
will continue to fluctuate within a certain range. This finding will reveal which 
parameters have a strong influence in order to make the stock price fluctuate 
continuously within the certain range. 
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Appendix 

Theorem (normal approximation) 
The length of paths is 2n. Suppose that n is large and α is a fixed positive 

number. The probability, f(α), that fewer than 2nα ⋅  changes of sign occur 
tends to 

( )
2

0

2 exp d as
π 2

sf s n
α

α
 

⋅  


∞


= − →∫                (11) 

 

https://doi.org/10.4236/am.2019.106028


Applied Mathematics, 2019, 10, 397-418 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2019.106029  Jun. 17, 2019 397 Applied Mathematics 

 

 
 
 

Global Transmission Dynamics of a 
Schistosomiasis Model and Its Optimal Control 

Mouhamadou Diaby1, Mariama Sène2, Abdou Sène3 

1Laboratoire d’Analyse Numérique et d’Informatique (LANI), UFR SAT, Université Gaston Berger de Saint-Louis, Saint-Louis, 
Sénégal 
2UFR AGRO, Université Gaston Berger de Saint-Louis, Saint-Louis, Sénégal 
3LANI, Pôle STN MAI (Mathématiques Appliquées et Informatique), Université Virtuelle du SENEGAL, Dakar-Fann, Sénégal 

 
 
 

Abstract 

Drug treatment, snail control, cercariae control, improved sanitation and 
health education are the effective strategies which are used to control the 
schistosomiasis. In this paper, we consider a deterministic model for schisto-
somiasis transmission dynamics in order to explore the role of the several 
control strategies. The global stability of a schistosomiasis infection model that 
involves mating structure including male schistosomes, female schistosomes, 
paired schistosomes and snails is studied by constructing appropriate Lyapu-
nov functions. We derive the basic reproduction number 0  for the deter-
ministic model, and establish that the global dynamics are completely deter-
mined by the values of 0 . We show that the disease can be eradicated when 

0 1≤ ; otherwise, the system is persistent. In the case where 0 1> , we 
prove the existence, uniqueness and global asymptotic stability of an endemic 
steady state. Sensitivity analysis and simulations are carried out in order to de-
termine the relative importance of different control strategies for disease 
transmission and prevalence. Next, optimal control theory is applied to inves-
tigate the control strategies for eliminating schistosomiasis using time depen-
dent controls. The characterization of the optimal control is carried out via the 
Pontryagins Maximum Principle. The simulation results demonstrate that the 
insecticide is important in the control of schistosomiasis. 
 

Keywords 

Schistosomiasis Models, Nonlinear Dynamical Systems, Global Stability,  
Reproduction Number, Optimal Control, Sensitivity Analysis 

1. Introduction 

Schistosomiasis (also known as bilharzia, bilharziasis or snail fever) is a vec-
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tor-borne disease caused by infection of the intestinal or urinary venous system 
by trematode worms of the genus Schistosoma. More than 220.8 million people 
required preventive treatment worldwide in 2017, out of which more than 102.3 
million people were reported to have been treated [1]. Schistosomiasis is preva-
lent in tropical and subtropical areas, especially in poor communities without 
access to safe drinking water and adequate sanitation. Of the 207 million people 
with schistosomiasis, 85% live in Africa [1]. Of the tropical diseases, only mala-
ria accounts for a greater global burden than schistosomiasis [2]. Therefore, it is 
vital to prevent and control the schistosomiasis transmission. 

Schistosoma requires the use of two hosts to complete its life cycle: the defini-
tive hosts and the intermediate snail hosts. In definitive hosts, schistosoma has 
two distinct sexes. Mature male and female worms pair and migrate either to the 
intestines or the bladder where eggs production occurs. One female worm may 
lay an average of 200 to 2000 eggs per day for up to twenty years. Most eggs leave 
the bloodstream and body through the intestines. Some of the eggs are not ex-
creted, however, and can lodge in the tissues. It is the presence of these eggs, ra-
ther than the worms themselves, that causes the disease. These eggs pass in urine 
or feces into fresh water into miracidia which infect the intermediate snail hosts. 
In snail hosts, parasites undergo further asexual reproduction, ultimately yield-
ing large numbers of the second free-living stage, the cercaria. Free-swimming 
cercariae leave the snail host and move through the aquatic or marine environ-
ment, often using a whip-like tail, though a tremendous diversity of tail mor-
phology is seen. Cercariae are infective to the second host and turn it into single 
schistosoma, and infection may occur passively (e.g., a fish consumes a cercaria) 
or actively (the cercaria penetrates the fish) and terminates the life cycle of the 
parasite. 

Many effective strategies are used in the real world, such as: based on preven-
tive treatment, snail control, cercariae control, improved sanitation and health 
education. The WHO strategy for schistosomiasis control focuses on reducing 
disease through periodic, targeted treatment with praziquantel. This involves 
regular treatment of all people in at-risk groups [1]. Over the past few decades, 
different mathematical models [3] [4] [5] [6] have been constructed to describe 
the transmission dynamics involving two-sex problems. In [3] [4] [5], a mathe-
matical model is developed for a schistosomiasis infection that involves 
pair-formation models and studied the existence, uniqueness and the stabilities 
of exponential solutions. We note that in [4] [5] authors formulate three forms 
of pair-formation functions (also known as mating functions) that are the har-
monic mean function, the geometric mean function and the minimum function. 
In [7], Xu et al. have proposed a multi-strain schistosome model with mating 
structure. Their goal was to study the effect of drug treatment on the mainten-
ance of schistosome genetic diversity. However, in their model they only con-
sider the adult parasite populations. Castillo-Chavez et al. [3] have considered a 
time delay model but also do not include the snails dynamics. But it is important 
to take into account the snail dynamics as it is shown in the life cycle of schisto-
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soma. In fact, the parasite offspring is produced directly by infected snails but 
not by paired parasites as is related in [6]. Recently, Qi et al. [6] have formulated 
a deterministic mathematical model to study the transmission dynamics of 
schistosomiasis with a linear mating function incorporating these snail dynamics. 
This paper gave the expression of a threshold number (and not the basic repro-
duction number) with a local stability analysis of the disease free equilibrium. 
The sensitivity analysis of this threshold number is also discussed. 

However, no work has been done to investigate the global stability of the equi-
libria which is more in interest. Here, we take this deterministic schistosomiasis 
model with mating structure [6] and we propose a complete mathematical anal-
ysis. A stability analysis is provided to study the epidemiological consequences 
of control strategies. We compute the basic reproduction number and we show 
that when it is less or equal to one then the disease free equilibrium (DFE) is the 
unique equilibrium of the system and it is globally asymptotically stable, while 
when the basic reproduction number is greater than one then there is a unique 
endemic equilibrium which is globally asymptotically stable in the whole space 
minus the stable manifold of the DFE. A sensitivity analysis of the endemic equi-
librium is performed giving a more interest interpretation of the control strate-
gies. Optimal control is a branch of mathematics developed to find optimal ways 
to control a dynamic system [8] [9]. There are few papers that apply optimal 
control to schistosomiasis models. Here we propose and analyze one such op-
timal control problem, where the control function represents the fraction of 
snails individuals ( sX  and iX ) that will be submitted to treatment. The objec-
tive is to find the optimal treatment strategy through insecticide campaigns that 
minimizes the number of snails individuals as well as the cost of interventions. 
This paper is organized as follows. Model formulation is carried out and the ba-
sic properties are shown in the next section. In Section 3, we determine the basic 
reproductive number 0  of the model and also establish local and global sta-
bility of the disease-free equilibrium. In the end of this section we show that the 
disease is uniformly persistent when 0 1> . Section 4 is devoted to prove the 
global asymptotic stability of the endemic equilibrium. In Section 5, a sensitivity 
analysis of the basic reproductive number and of the endemic equilibrium are 
explored. The goal is to identify the most sensitive parameter allowing decreas-
ing the disease prevalence. In Section 6 we propose and analyze an optimal con-
trol problem. A general conclusion is given in the last section. 

2. Mathematical Model  

The model that we consider has been presented in [6]. It describes the time evo-
lution of a population divided in three parasites sub-populations and two inter-
mediate snail host sub-populations. The state variables of the model are:  
• ( )mX t  the male schistosoma population size. 
• ( )fX t  the female schistosoma population size. 
• ( )pX t  the pair schistosoma population size. 
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• ( )sX t  the susceptible (uninfected) snail host population size. 
• ( )iX t  the infected snail host population size.  

The time evolution of the different populations is governed by the following 
system of equations:  

( )

( )

( )

( )

( )

d
,

d
d

,
d

d
,

d
d

,
d

d
.

d

m
m i m m m f

f
f i f f f f

p
f p p p

s
s s s p s

i
p s s s s i

X
k X X X

t
X

k X X X
t

X
X X

t
X

X X X
t

X
X X X

t

µ ρ

µ ρ

ρ µ

µ β

β µ α

 = − + −

 = − + −

 = − +



= Λ − + −

 = − + +












                 (1) 

The different parameters are:  
• mk  and fk  are the recruitment rates of male schistosoma and female schis-

tosoma respectively. 
• mµ , fµ , pµ , and sµ  denote the natural death rate for male, female, pair 

and snail hosts respectively. sα  is the disease-induced death rate of snail 
hosts. 

• ρ  represents the effective mating rate.  
• Λ  is the recruitment rate of snail hosts. 
• β  is the transmission rate from pairs parasite to susceptible snails. 
• m , f , p  and s  are the elimination rates of male shistosoma, female 

schistosoma, paired schistosoma and snails respectively. These elimination 
rates represent the control strategies.  

As it has been done in [6], we shall denote  

m m mµ µ+ =  , f f fµ µ+ =  , 

p p pµ µ+ =  , s s sµ µ+ =  . 

2.1. Basic Properties  

In this section, we give some basic results concerning solutions of system (1) that 
will be subsequently used in the proofs of the stability results.  

Proposition 1 The set { }0, 0, 0, 0m f p s iX X X X XΓ = ≥ ≥ ≥ ≥ ≥  is a posi-
tively invariant set for system (1).  

Proof. The vector field given by the right-hand side of system (1) points in-
ward on the boundary of Γ . For example, if 0sX = , then, 0sX = Λ > . In an 
analogous manner, the same can be shown for the other system components.  

Proposition 2 All solutions of system (1) are forward bounded.  
Proof. Let us define X m f pN X X X= + +  and Y s iN X X= + . Using system 

(1), we have d
d

Y
s Y s i s Y

N N X N
t

µ α µ= Λ − − ≤ Λ −  . This implies that the set 
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Y
s

N
µ

 Λ
≤ 

 
 is positively invariant and attracts all the solutions of (1). 

We also have:  

( ) ( )

( ) { }

d
d

min , , .

X
m f i m m f f p p

m f m f p X f
s

N k k X X X X
t

k k N X
ε

µ µ ρ µ

µ µ µ ρ
µ

= + − − + −

Λ
≤ + − −

  

  

 

Hence, the set 
( )m f

X
s

k k
N

µ γ

 + Λ ≤ 
  

, where { }min , ,m f pγ µ µ µ=    , is posi-

tively invariant set and attracts all the solutions of (1).  
Therefore all feasible solutions of system (1) enter the region  

( )

( )

5, , , , : ,

,

m f p s i s i
s

m f
m f p

s

X X X X X X X

k k
X X X

µ

µ γ

+

 Λ
Ω = ∈ + ≤


+ Λ+ + ≤ 







 

and the set Ω  is a compact positively invariant set for system (1). It is then suf-
ficient to consider solutions in Ω . 

3. The Basic Reproduction Number and the Disease-Free  
Equilibrium  

The disease-free equilibrium of system (1) is  

( )0 00,0,0, ,0 0,0,0, ,0s
s

X
µ

 Λ
= =  

 

 . Using the notations of [10] for the model 

system (1), the matrices F and V for the new infection terms and the remaining 
transfer terms are, respectively, given by  

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
s

F

β
µ

 
 
 
 =
 

Λ 
 
 

 and 

0
0 0
0 0
0 0

m m

f f

p

s s

k
k

V

µ ρ
ρ µ

ρ µ
µ α

− 
 + − =
 −
 

+ 









 

The basic reproduction number 0  is equal to the spectral radius of the ma-
trix 1FV − , a simple computation gives:  

( )( ) ( )( )

0

0 .f f s

s p f s s p f s s

k k Xβρ βρ

µ µ µ ρ µ α µ µ ρ µ α

Λ
= =

+ + + +      

  

One can remark that there is a mistake in the formula for 0  provided in 
[6]. 

The basic reproductive number for system (1) measures the average number 
of new infections generated by a single infected individual in a completely sus-
ceptible population. 

As it is well known (see, for instance, [10]), the local asymptotic stability of 
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the disease-free equilibrium is completely determined by the value of 0  
compared to unity, i.e., The disease-free equilibrium 0  of the system (1) is lo-
cally asymptotically stable if 0 1<  and unstable if 0 1> . 

Hence 0  determines whether the disease will be prevalent in the given 
population or will go extinct. 

Next, we discuss the global stability of infection-free equilibrium by using 
suitable Lyapunov function and LaSalle invariance principle for system (1). In 
recent years, the method of Lyapunov functions has been a popular technique to 
study global properties of population models. However, it is often difficult to 
construct suitable Lyapunov functions.  

Theorem 3 The disease-free equilibrium 0  of system (1) is globally asymp-
totically stable (GAS) on the nonnegative orthant 5

+  whenever 0 1≤ .  
Proof. We shall use the following notations: ( ), , , ,m f p s ix X X X X X= , and 

0
s

s

X
µ
Λ

=


. To show the global stability of infection-free equilibrium of system 

(1), we use the following candidate Lyapunov function: 

( )
( )( )

0

0

ds

s

Xs s fs s s
f p iX

f f

X X
V x X X X X

k k X
τ

τ
τ

µ α µ ρµ α
ρ

+ ++ −
= + + +∫

    (2) 

This function satisfies: ( ) 0V x ≥  for all x∈Ω , and ( ) 0V x =  if and only 
if ( )0,0,0, ,0m sx X X= . 

Taking the time derivative of the function V (defined by 2), along the solu-
tions of system (1), we obtain  

( ) ( )( )

( )( ) ( )( ) ( )

0

1 s
s s s p s p s s i

s

s s fs s
f i f f f p p

f f

X
V X X X X X X

X

k X X X X
k k

µ β β µ α

µ α µ ρµ α
µ ρ ρ µ

ρ

 
= − Λ − − + − + 
 

+ ++
+ − + + −



 

 
 

 

Using 0 0s sXµΛ − = , we get  

 

( ) ( )( )

( )( )

0
0 0

0
0

0

0
0

0
0

0

1

1 1 1

11 1 1

s s fs
s s s s s p p p

s f

s s f m ps s
s s p

s s fs

s s
s s p

s ss

s
s

s

X
V X X X X X

X k

X X
X X

X kX

X X
X X

X X

X
X

µ α µ ρ
µ µ β µ

ρ

µ α µ ρ µ µβµ
µ ρ β

βµ
µ

µ

 + + 
 = − − + + − 
    
 + +   Λ  = − − + −  

Λ     
    Λ

= − − + −    
   

= − −



 
  

   











( )2

0

11s p
s

X Xβ
µ

 Λ
+ − 

  

  (3) 

Hence, 0V ≤  if 0 1≤ , and  

{ }
( ){ }
( ){ }

0
0

0
0

: , ,0, , if 1
0

: , , , , if 1

m f s i

m f p s i

x x X X X X
V

x x X X X X X

 ∈Ω = <Ω = = 
∈Ω = =








 

We will show that the largest invariant set   contained in { }0VΩ =  is 
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reduced to the disease-free equilibrium 0 . 
Let ( ), , , ,m f p s ix X X X X X= ∈  and  
( ) ( ) ( ) ( ) ( ) ( )( ), , , ,m f p s ix t X t X t X t X t X t=  the solution of (1) issued from this 

point. By invariance of  , we have ( ) 0
s sX t X≡  which implies 

( ) ( ) ( ) ( ) ( )0 00s s s p s s s p sX t X t X t X t X X t Xµ β µ β= = Λ − − = Λ − −  and hence 

( ) 0pX t =  for all t. But, ( ) 0pX t ≡  implies that ( ) 0pX t =  for all t which 
implies, using system (1), that ( ) 0fX t =  for all t. In the same way, it can be 
proved that ( ) 0iX t =  for all t. Reporting in the first equation of system (1), 
one obtains that, in  ,  

( ) ( )m m mX t X t tµ= − ∀

  

Thus the solution of (1) issued from ( ), , , ,m f p s ix X X X X X= ∈  is given 
by ( ) ( )0e ,0,0, ,0m t

m sx t X Xµ−=   which clearly leaves Ω  and hence   for 
0t <  if 0mX ≠ . Therefore { }0=   and hence 0  is a globally asymptoti-

cally stable equilibrium state for system (1) on the compact set Ω  thanks to 
LaSalle invariance principle [11], (one can also see [12], Theorem 3.7.11, page 
346). Since the set Ω  is an attractive set, the DFE is actually GAS on the non-
negative orthant 5

+ .  
Biologically speaking, Theorem 3 implies that schistosomiasis may be elimi-

nated from the community if 0 1≤ . One can remark that 0  does not de-
pend on m m mµ µ= +  . Hence it is not helpful to try to control the male schis-
tosoma population and then one can take 0m = . Therefore the only way to 
eliminate schistosomiasis is to increase the killing rates of female schistosoma 
( f ), paired schistosoma ( p ) and snails ( s ) in order to have 0 1≤ . 

In the rest of this section, we show that the disease persists when 0 1> . The 
disease is endemic if the infected fraction of the population persists above a cer-
tain positive level. The endemicity of a disease can be well captured and analyzed 
through the notion of uniform persistence. System (1) is said to be uniformly 
persistent in Ω  if there exists constant 0c > , independent of initial conditions 
in Ω



 (the interior of Ω ), such that all solutions  
( ) ( ) ( ) ( ) ( )( ), , , ,m f p s iX t X t X t X t X t  of system (1) satysfy  

( ) ( ) ( )liminf , liminf , liminf ,m f pt t t
X t c X t c X t c

→∞ →∞ →∞
≥ ≥ ≥  

( ) ( )liminf , liminf ,s it t
X t c X t c

→∞ →∞
> ≥  

provided ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0m f p s iX X X X X ∈Ω


, (see [13] [14]).  
Theorem 4 System (1) is uniformly persistent in Ω  if and only if 0 1> .  
Proof. When 0 1≤ , the infection-free equilibrium 0  is globally asymp-

totically stable which precludes any sort of persistence and hence 0 1>  is a 
necessary condition for persistence. In order to show that 0 1>  is a sufficient 
condition for uniform persistence, it suffices to verify conditions (1) and (2) of 
Theorem 4.1 in [15] (one can also see [16], Theorem 3.5). 

We use the notations of [15] with = ΩX  and = ∂ΩY . Let M be the larg-
est invariant compact set in Y . We have already seen that { }0M =  , and so M 
is isolated. To show that ( )s M  (the stable set of M) is contained in 
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= ∂ΩY , we use the following function:  

( )( )s s fs s
f p i

f f

X X X
k k

µ α µ ρµ α
ρ

+ ++
= + +   

The time derivative of   along the solutions of system (1) is given by  

( )( )

( )( )

( )( )
( )( )

( )( )
0 0

1

1

s s f
s p p p

f

s s f
s p p

f

p s s f f
s p

f p s s f

p s s f s
p

f s

X X X
k

X X
k

k
X X

k

X
X

k X

µ α µ ρ
β µ

ρ

µ α µ ρ
β µ

ρ

µ µ α µ ρ ρ
β

ρ µ µ α µ ρ

µ µ α µ ρ

ρ

+ +
= −

 + +
 = −
 
 

 + +
 = −
 + + 

+ +  
= − 

 



 


 


  

  

  





 

Since 0 1> , we have 0>  for 0pX >  and 
0

0

0

s
s s

X
X X< ≤


. Therefore 

0>  in a neighborhood N of 0  relative to \Ω ∂Ω . This implies that any 
solution starting in N must leave N at finite time and hence the stable set of M, 

( )s M  is contained in ∂Ω .  

4. Endemic Equilibrium and Its Stability  

Endemic equilibrium points are steady-state solutions where the disease persists 
in the population (all state variables are positive). 

In this case system (1) has an endemic equilibrium point given by  

( )
( )

( )( )
( )

*
0

0* *

0

* *

0 0

1 ,

111 , = ,

1, 1 .

m f m f
m p s

f m

f s
h f p

s s f

s i
s s s

k k k
X

k

k
X X

X X

ρ µ
µ µ

βρ µ

µ
βµ α ρ µ

µ µ α

 − +
 = −



Λ − = = −  
+ +  


 Λ Λ = = −  +  


 





 

 








 

 

This equilibrium has a biological sense only when 0 1> .  
Theorem 5 If 0 1> , the unique endemic equilibrium h  is globally 

asymptotically stable.  
Proof. In order to investigate the global stability of the endemic equilibrium, 

we consider the following function defined on  

{ }1 : 0, 0, 0 and 0f p s sx X X X XΩ = ∈Ω > > > > :  

( ) ( ) ( )( )* *

* *

* *

* *

d d

d d

f p

f p

s i

s i

X Xs s ff ps s
X X

f f

X Xs i
X X

u X u X
W x u u

k u k u

u X u X
u u

u u

µ α µ ρµ α
ρ

+ +− −+
= +

− −
+ +

∫ ∫

∫ ∫

 
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This function satisfies: ( ) 0W x ≥  for all 1x∈Ω , and ( ) 0W x =  if and only 
if ( ) ( )* * * *, , , , , ,f p s i f p s iX X X X X X X X= . The time derivative of W with respect 
to the solutions of system (1) is  

( )

( )( )

( ) ( )( )
( )( ) ( )

*

*

*

*

1

1

1

1

s
s s s p

s

i
s p s s i

i

fs s
f i f f

f f

s s f p
f p p

f p

X
W X X X

X

X
X X X

X

X
k X X

k X

X
X X

k X

ε

µ β

β µ α

µ α
µ ρ

µ α µ ρ
ρ µ

ρ

 
= − Λ − − 
 
 

+ − − + 
 

 +
+ − − +  

 

+ +  
+ − −  

 









 


 

( )

( ) ( ) ( )

( )( )
( )

( )( )

( )( )
( )

* *
*

*
*

*

1 s i
s s s p s p s p

s i

f
s s i s p s s i s s i

f

s s f s s f
f s s i f

f f

s s f
p p s s i

f

X X
X X X X X X X

X X

X
X X X X X

X

X X X
k k

X X
k

µ β β β

µ α β µ α µ α

µ α µ ρ µ α µ ρ
µ α

ρ

µ α µ ρ
µ µ α

ρ

 
= Λ − − + − − 

 

+ + + − + − +

+ + + +
+ − + −

+ +
− + +



  

   


 
 

 

( )( ) ( )( )

( )( ) ( )( )

( )( )

*

*

s s f s s f
f p p

f f

s s f s s fp
p p f

f p f

s s f p
f

f p

X X
k k

X
X X

k X k

X
X

k X

µ α µ ρ µ α µ ρ
µ

ρ

µ α µ ρ µ α µ ρ
µ

ρ

µ α µ ρ

ρ

+ + + +
− −

+ + + +
+ +

+ +
−

   


   


 

 

Thus,  

( ) ( )

( )
( )( )

( )( ) ( )( )

( )( )

* *
* *

*
*

*

*

1

.

s i
s s s p s p s s i

s i

s s ff
s s i f

f f

s s f s s f p
p p f

f f p

s s f p
p p

f p

X X
W X X X X X X

X X

X
X X

X k

X
X X

k k X

X
X

k X

µ β β µ α

µ α µ ρ
µ α

µ α µ ρ µ α µ ρ
µ

ρ

µ α µ ρ
µ

ρ

 
= Λ − − + − + + 

 

+ +
− + +

+ + + +
− −

+ +
+



 

 


   


 


 

Using the equilibrium relations (  )  

( )
( )

* * * * *

* * * *

, ,

, .
s s s p s s s s i

f p p f i s f

X X X X X

X X k X X

µ β β µ µ α

ρ µ µ ρ

Λ − = Λ − = += 
= = +

  

 

  
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It follows that  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

* * *
*

* *

**
* *

*

* * **
* *

* *

**
* *

*

1

1

s i i
s s s p s s s p

s is p

fi
s s i s s i s s i

fi

p p p pi
s s i s s f s s i

p p pf p

p fs
s s s p s s i

s p f

X X X
W X X X X X

X XX X

XX
X X X

XX

X X X XX
X X X

X X XX X

X XX
X X X X

X X X

µ β µ α β
β

µ α µ α µ α

µ α µ α µ α

µ β µ α

 
= Λ − − + − + 

 

+ + − + + +

− + − + + +

 
= Λ − − + + + 

 



 

  

  

 

( )

*

* **
*

* * * * 2

p

p

p f p fi s i
s s i

i f ps p i f

X
X

X X X XX X X
X

X X XX X X X
µ α

 
− 

  
 

− + + + − 
  



 

( ) ( ) ( )

( )

( ) ( )

** *
*

* * *

* ** *
*

* * * *

*
* *

1

4

2 .

p p ps i
s s s s p s s i

s pp p p

p f p ps i s i
s s i

s i f fs p i f

s
s s i s s i

s

X X XX X
X X X

X XX X X

X X X XX X X X
X

X X X XX X X X

X
X X

X

µ µ α µ α

µ α

µ α µ α

  
= Λ − − + + + + −  

    
 

− + + + + − 
  

+ + − +

  



 

 

This implies that  

( )( )

( )

( )

*
*

*
*

* * *

* ** *
*

* * * *

1

1

4

s
s s s s i

s

p p p p
s s i

p p p p

p f p ps i s i
s s i

s i f fs p i f

X
W X X

X

X X X X
X

X X X X

X X X XX X X X
X

X X X XX X X X

µ µ α

µ α

µ α

 
= Λ − − + − 

 
 

+ + − + − 
  
 

− + + + + − 
  



 





 

And since ( ) * *
s s i s sX Xµ α µ+ = Λ −  , it follows that  

( )

*
*

*

* ** *
*

* * * *

1 1

4

s s
s s

s s

p f p ps i s i
s s i

s i f fs p i f

X X
W X

X X

X X X XX X X X
X

X X X XX X X X

µ

µ α

  
= − −  

  
 

− + + + + − 
  







 

From the AM-GM inequality (which says that the algebraic mean is not 
smaller than the geometric mean), we have  

* ** *

* * * * 4 0p f p ps i s i

s i f fs p i f

X X X XX X X X
X X X XX X X X

+ + + − ≥  

*

*1 1 0.s s

s s

X X
X X

  
− − ≤  

  
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Then, 0W ≤  on 1Ω  for 0 1> . Hence, W is a Lyapunov function on 1Ω . 
Moreover, 0W =  if and only if *

f fX X= , *
p pX X= , *

s sX X= , and 
*

i iX X= . 
To obtain the largest invariant set   within the region { }1 : 0x W∈Ω = , 

note that the trajectory of ( )mX t  with an initial condition in   must be a 
solution of:  

* *d
d

m
m i m m f

X
k X X X

t
µ ρ= − −  

Consequently, we have that  

( ) ( ) ( )
* * * *

e 0m mm i f m i ft
m m

m m

k X X k X X
X t X tµρ ρ

µ µ
− +  − −

= + − ∀  
 

 

 

 

Since ( )mX t  must not leave the domain   for all t, it follows that  

( )
* *

m i f
m

m

k X X
X t t

ρ
µ
−

= ∀


 

Hence, the largest invariant set   contained in { }1 : 0x W∈Ω =  is reduced 
to { }h , and therefore by LaSalle’s principle [11], h  is globally asymptotically 
stable over 1Ω .  

5. Sensitivity Analysis and Numerical Simulations  

Sensitivity analysis and simulations are important to determine how best we can 
reduce the effect of schistosomiasis, by studying the relative importance of dif-
ferent factors responsible for its transmission and prevalence. Generally speak-
ing, initial disease transmission is directly related to the basic reproduction 
number, and the disease prevalence is directly related to the endemic equili-
brium state h , and more specifically to the magnitude of *

iX , *
mX , *

fX , *
pX . 

We perform the analysis by deriving the sensitivity indices of the basic repro-
duction number to the parameters using both local and global methods. 

5.1. Local Sensitivity Analysis of 0   

We calculate the sensitivity indices of the reproductive number, 0 , and the 
endemic equilibrium point, h , to the parameters in the model. we can derive 
an analytical expression for its sensitivity to each parameter using the norma-
lized forward sensitivity index as described by Chitnis et al. [17]. 

The normalized forward sensitivity index of a variable to a parameter is a ratio 
of the relative change in the variable to the relative change in the parameter. 
When a variable is a differentiable function of the parameter, the sensitivity in-
dex may be alternatively defined using partial derivatives. 

Definition 1 The normalised forward sensitivity index of a variable p that 
depends differentiable on a parameter q is defined as:  

p
q

p q
q p
∂

ϒ = ×
∂
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Sensitivity analysis is commonly used to determine the robustness of model 
predictions to parameter values (since there are usually errors in data collection 
and presumed parameter values). Here we use it to discover parameters that 
have a high impact on 0 , and h , and should be targeted by intervention 
strategies. 

The sensitivity analysis of 0  has already been done in [6]. We just correct 
here the expressions of the flexibilities of sµ  , fµ  , and pµ   on the basic re-
production number 0  (the mistakes in [6] are due to the error in the expres-
sion of 0 ). The right expressions are:  

0 0

0

2
s

s s s

s s s
µ

µ µ α
µ µ α
∂ +

ϒ = × = −
∂ +

  

 




 

0 0

0
f

f f

f f
µ

µ µ
µ µ ρ
∂

ϒ = × = −
∂ +

 

 




 

0 0

0

1
p

p

p
µ

µ
µ
∂

ϒ = × = −
∂








 

However the conclusions are not affected: the authors remarked that 
0 0 01
f p sµ µ µϒ < = ϒ < ϒ
  

   , and so the most sensitive parameter most sensitive pa-
rameter is sµ   the death rate of snails, followed by pµ   the death rate of pair 
schistosoma. The least sensitive parameter is fµ   the death rate of female single 
schistosoma. Therefore the most efficient way to reduce the value of 0  is to 
reduce the snail host population. 

Sensitivity analysis of h  
Since in general it is not easy to reduce the value of 0  to be less than one 

and hence to eradicate the disease, one of the control strategy goal could be to 
reduce the disease prevalence. To this end, we perform a sensitivity analysis of 
the endemic equilibrium state. Sensitivity analysis of the endemic equilibrium 
has usually been used to determine the relative importance of different parame-
ters responsible for equilibrium disease prevalence. Equilibrium disease preva-
lence is related to the magnitude of ( )* * * *, , ,m f p iX X X X , and specifically to the 
magnitude of *

iX . 
The sensitivity indices of *

iX , to the parameters, sµ  , fµ   and pµ   are 
given by 

( )( )( )
( ) ( )( )( )

*

2
*

*
i
s

s f s p f s sX i s

s i s s p s f s s f s

kX
X k

µ

µ βρ µ µ ρ α µµ
µ α µ µ µ µ ρ α µ βρ

Λ + + +∂
ϒ = × =

∂ + + + − Λ

   

     

 

( )( )( )
( ) ( )( )( )

*

2
*

*
i
f

s f s p f s sfX i

f i s s p s f s s f s

kX
X k

µ

µ βρ µ µ ρ α µµ
µ α µ µ µ µ ρ α µ βρ

Λ + + +∂
ϒ = × =

∂ + + + − Λ

   

       

( )( )
( )( )

*
*

*
i
p

p s f s spX i

p i p s f s s f s

X
X kµ

µ µ µ ρ α µµ
µ µ µ µ ρ α µ βρ

+ +∂
ϒ = × =

∂ + + − Λ

   

      
It follows that  
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( )

*

* 2

i
s

i
f

X
f s f

X
ff p s s

kµ

µ

βρ µ ρ
µµ µ α µ

ϒ Λ +
= +

+ϒ






  

 

*

*

i
f

i
p

X
f

X
f

µ

µ

µ
µ ρ

ϒ
=

+ϒ








 

( )( )

*

* 2 1
i
s

i
p

X
f s

X
p f s s

kµ

µ

βρ

µ µ ρ α µ

ϒ Λ
= +

+ +ϒ


   

 

This implies that  
* * *
i i i
f p s

X X X
µ µ µϒ < ϒ < ϒ
  

 

We note that the most sensitive parameter for *
iX  is sµ   the death rate of 

host snails followed by pµ   the death rate of pair parasites and fµ   the death 
rate of female parasites. 

5.2. Global Sensitivity Analysis of 0  

In this subsection we propose the global sensitivity analysis of the model para-
meter to determine how much the parameters affect the output of the model. 
Global sensitivity analysis is a collection of more robust procedures, modifying 
groups of parameters simultaneously, with a specific goal to recognize the im-
pacts of interactions between various parameters. LHS is at present the most 
productive and refined statistical techniques [18] and Blower presented it of the 
field of disease modelling in 1994. We use the technique of Latin Hypercube 
Sampling, which belong to the monte Carlo class of sampling methods [19]. LHS 
allows for an efficient analysis of parameter variations across simultaneous un-
certainty ranges in each parameter. For each parameter, a probability density 
function is defined and stratified into N equiproportional serial intervals [20]. 
Here, for each input parameter we have assumed a uniform distribution across 
the ranges listed in Table 1 due to the absence of data on the distribution func-
tion. We then calculated 0  as the model output using 1000n =  sets of sam-
pled parameters. We used the partial rank correlation coefficient (PRCC) to as-
sess the significance of each parameter with respect to 0 . Figure 1 illustrates 
the results for the range of parameters in Table 1. The sign of the correlation 
coefficient indicates the direction of the relationship and the value of the corre-
lation indicates the strength of the relationship between input parameters and 
model output. The global sensitive analysis confirm the local conclusions by 
showing the influence of the death rate to the model output 0 . The death rate 

sµ   have negative PRCC values, all above 0.5 indicating high significance to 

0  with indirect proportional relationship, that is, an increase in sµ   increas-
es 0 . This suggests that this parameter need to be estimated with precision 
ignored to accurately capture the transmission dynamics of schistosomiasis. The 
model output is also sensitive to pµ   and fµ   with PRCC negative indicating a 
decrease in 0 . 
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Figure 1. Sensitivity indexes of 0  in terms of the model parameters disposed in order 
of increasing magnitude. 
 
Table 1. Numerical values of the parameters of model system. 

Parameter Description Sample value Range 

Λ  recruitment rate of snail hosts 150 per year 100 - 200 

mk  recruitment rate of single male 145 per year - 

fk  recruitment rate of single female 100 per year - 

mµ  elimination rate of single male 0.1 per year 0.01 - 0.2 

pµ  elimination rate of single pair 0.02 per year 0.001 - 0.05 

fµ  elimination rate of single female 0.2 per year 0.1 - 0.5 

sµ  elimination rate of snail hosts 0.1 per year 0.01 - 0.2 

sα  disease-induced death rate of snail hosts 0.5 per year 0.1 - 0.9 

β  transmission rate from  
pairs to susceptible snails 

1.8 × 10−4 per year 10 × 10−4 - 25 × 10−4 

ρ  the effective mating rate 0.467 per year 0.467 per year 0.1 - 0.5 

6. Optimal Control  

In this section, we aim to place the system (1) thereof in an optimal control set-
ting, in order to be able to calculate the optimal intervention strategies. The op-
timal control represents the most effective way of controlling the disease that can 
be adopted by authorities in response to its outbreak. We now modify our model 
(1) with time-dependent treatment effort ( )u t  as control for the system. The 
variable ( )u t  represents the amounts of insecticide that is continuously applied 
during a considered period, as a measure to fight the disease:  

( )u t ≡  level of insecticide campaigns at time t 
Our model with snails treatment can be described with the following differen-

tial equations: 

( )

( )

d
,

d
d

,
d

m
m i m m m f

f
f i f f f f

X
k X X X

t
X

k X X X
t

µ ρ

µ ρ

 = − + −

 = − + −




                 (4) 
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( )

( )

( )( )

d
,

d
d

,
d

d
.

d

p
f p p p

s
s s s p s

i
p s s s s i

X
X X

t
X

X X X
t

X
X X u t X

t

ρ µ

µ β

β µ α


= − +


 = Λ − + −



= − + + +








 

The control variable ( )u t  is a bounded, Lebesgue integrable function that is 
considered in relative terms, varying from 0 to 1. The goal is to maximize the 
following objective function  

( ) ( ) ( ) ( )2

0

1min d
2

T
s s i i uu

J u c X t c X t c u t t = + + 
 ∫  

subject to the system differential Equations (4), where sc , ic  and uc  are the 
positive balancing constants. We seek to find an optimal control *u  such that  

( ) ( ){ }* min
u

J u J u=  

where the control set is defined as  
[ ] [ ]{ }: 0, 0,1 , is Lebesgue measurableu T u= → . Here, the running costs of 

susceptible snails are given by ( )s sc X t , while term ( )i ic X t  determines the 

costs of infected snails. Notice that ( )21
2 uc u t  is the cost of eliminating a frac-

tion ( ) ( )( )Y s iN X t X t= +  of the snails population. The choice of the cost 

function as linear in the number of susceptible and infected and quadratic in the 
control is as generally done [21] [22] [23]. 

6.1. The Optimality System  

This system satisfies standard conditions for the existence of an optimal control 
and thus by using Pontryagins Maximum Principle as stated in [24] [25], we de-
rive the necessary conditions for our optimal control and corresponding states. 
The Hamiltonian H for the control problem is as follows:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 2

3 4 5

dd1
2 d d

d d d
d d d

fm
s s i i u

p s i

XX
H c X t c X t c u t t t

t t
X X X

t t t
t t t

λ λ

λ λ λ

= + + + +

+ + +

 

The adjoint variables ( )1,2,3,4,5i iλ =  are the solution of the following system: 

( )

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

1
1

2
2 1 3

3
3 4 5

4
4 5

5
2 4 5

d
,

d
d

,
d

d
,

d
d

,
d

d
.

d

m

f

p s s

s p p

i f s s s s

t
t

t t t
t

t t X t t X t
t

c t X t t X t
t

c k t t u t t u t
t

λ
µ λ

λ
λ µ ρ ρλ ρλ

λ
µ λ βλ βλ

λ
βλ βλ

λ
λ λ α µ λ α µ

 =

 = − − − + −

 = − −



= − − −

 = − − − − − − − − − −

  (5) 
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with the boundary conditions ( ) 0i Tλ = . 
By using Pontryagins Maximum Principle and the existence result for the op-

timal control from Fleming and Rishel [8], we obtain 
Theorem 6 There exists an optimal strategy *u ∈  such that  

( ) ( ){ }* min ,
u

J u J u
∈

=


 

given by 

* 4 5min 1,max 0, i i

u

X X
u

c
λ λ  + =   

   
 

where ( )1,2,3,4,5i iλ =  are the solutions of (5).  
Proof. Here the control and the state variables are nonnegative values. The 

necessary convexity of the objective functional in u is satisfied for this minimis-
ing problem. The control variable set u∈  is also convex and closed by defi-
nition. In addition, the integrand of ( )J u  with respect to control variables *u  
is convex and it is easy to verify the Lipschitz property of the state system with 
respect to the state variables. Together with a priori boundedness of the state 
solutions, the existence of an optimal control has been given by in [8] (see co-
rollary 4.1). 

System (5) is obtained by differentiating the Hamiltonian function. Further-
more, by equating to zero the derivatives of the Hamiltonian with respect to the 
control, we obtain 

( ) ( ) ( ) ( )4 5 0u i i
H c t t X t X t
t

λ λ∂
= − − =

∂
 

( ) ( ) ( ) ( )4 5* i i

u

t X t X t
u t

c
λ λ+

⇒ =  

Using the property of the control space, we obtain  

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4 5

4 5 4 5*

4 5

0, if 0

, if 0,1

1, if 1.

i i

u

i i i i

u u

i i

u

l t X t l X t
c

t X t X t l t X t l X t
u t

c c
l t X t l X t

c

λ λ

+
≤


 + += ∈

 +
 ≥


 

Those can be rewritten in compact notation  

* 4 5min 1,max 0, i i

u

X X
u

c
λ λ  + =   

   
 

6.2. Numerical Examples  

The numerical simulations are completed utilizing Matlab and making use of 
parameter values in [6] to verify the effectiveness of our new model by compar-
ing the disease progression before and after introducing the optimal control va-
riables ( )u t . For that, first we solve system (4) with a guess for the controls over 
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the time interval [ ]0,T  using a forward fourth-order Runge-Kutta scheme and 
the transversality conditions ( ) 0, 1, ,5i T iλ = = 

. Then, system (5) is solved by 
a backward fourth-order Runge-Kutta scheme using the current iteration solu-
tion of (4). 

The control is updated by using a convex combination of the previous control. 
The iteration is stopped when the values of the unknowns at the previous itera-
tion are very close to the ones at the present iteration. For more details see, e.g., 
[25]. 

We represent the solution curves of the five state variables both in the pres-
ence and absence of the control. When viewing the graphs, remember that each 
of the individuals with control is marked by dashed blue lines. The individuals 
without control are marked by red lines. It is observed that the application of 
optimal control reduces a quite larger number of schistosoma (male, female, pair) 
and snails in the absence of the control. This is occurring as the application of 
pesticide control reduces the snails population significantly as seen in Figure 2 
and Figure 3. Again from the Figures 4-6 it is easy to see that the schistosoma 
population also much affected due to the use of the insecticide control. 

We have considered the schistosomiasis infection in an endemic population 
(when 0 ). In Figures 4-6, we observe that the fraction of schistosoma (male, 
female, pair) is lower when control is considered. More precisely, at the end of 
15 years, the total number of male, female and pair schistosoma is 105, 50.1 10×   

 

 

Figure 2. The evolution of susceptible snails with and without control. The state is solved 
forward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  while the 

adjoint system is solved backward in time (in years) with terminal condition 
( )0;0;0;0;0;0TC =  where 5T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 
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Figure 3. The evolution of infected snails with and without control. The state is solved for-
ward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  while the adjoint 

system is solved backward in time in (in years) with terminal condition ( )0;0;0;0;0;0TC =  

where 15T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 

 

 

Figure 4. The evolution of male schistosoma with and without control. The state is solved 
forward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  while the ad-

joint system is solved backward in time (in years) with terminal condition ( )0;0;0;0;0;0TC =  

where 25T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 
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Figure 5. The evolution of female schistosoma with and without control. The state is 
solved forward time with initial conditions ( ) ( )0 50000;30000;25000;4500;2500IC =  

while the adjoint system is solved backward in time (in years) with terminal condition 
( )0;0;0;0;0;0TC =  where 25T =  and ( ) ( ), , 1,1,0.5s i uc c c = . 

 

 
Figure 6. The evolution of pair schistosoma with and without control. The state is solved 
forward time with initial conditions IC(0) = (50000; 30000; 25000; 4500; 2500) while the 
adjoint system is solved backward in time (in years) with terminal condition TC = (0; 0; 0; 
0; 0; 0) where T = 25 and (cs, ci, cu) = (1, 1, 0.5). 
 
and 52 10×  respectively when control is considered, and 53.5 10× , 50.5 10×  
and 58 10×  respectively without control. The schistosoma can survive for very 
long periods in a dry state, often for more than a few years, that’s why in the 
stage without control evolution of the number of schistosoma (male, female, pair) 
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take higher levels, once controlled, the number of schistosoma doesn’t develop 
as shown in Figures 4-6. 

In Figure 2, we remark that the number of susceptible snails is more impor-
tant than in the case without control, this is due to the aim of our approach 
which focuses on the reduction of the number of susceptible and infected snails 
population, so in the case without control the number of susceptible snails de-
crease is less and goes to its stable state, because it also applied a control on 
schistosoma by the elimination rates ( m , f , p ). 

In Figure 3, it’s the evolution of infected snails which is presented, the major 
case of our approach, and the graph below shows the effectiveness of the study 
done in this work. As given above, the numerical simulations suggested 10 years 
as minimal duration for treatment. We see that if there are control the infected 
snails population begins to sharply decrease from the very beginning day of 
treatment and gradually decreases as time goes on.  
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Abstract 

In this paper, the standard homotopy analysis method was applied to initial 
value problems of the second order with some types of discontinuities, for 
both linear and nonlinear cases. To show the high accuracy of the solution 
results compared with the exact solution, a comparison of the numerical re-
sults was made applying the standard homotopy analysis method with the 
iteration of the integral equation and the numerical solution with the Simp-
son rule. Also, the maximum absolute error, 2⋅ , the maximum relative er-
ror, the maximum residual error and the estimated order of convergence 
were given. The research is meaningful and I recommend it to be published 
in the journal. 
 

Keywords 

Homotopy Analysis Method, Initial Value Problems, Heaviside Step  
Function, Dirac Delta Function, Simpson Rule 

 

1. Introduction 

Liao Shijun [1] [2] [3] proposed in 1992 in his Ph.D. dissertation a new and 
fruitful method (Homotopy Analysis Method (HAM)) for solving linear and 
nonlinear (ordinary differential, partial differential, integral, etc.) equations. It 
has been shown that this method yields a rapid convergence of the solutions se-
ries to linear and nonlinear deterministic. 

In recent literature, Al-Hayani and Casasùs [4] [5] applied the Adomian de-
composition method (ADM) to the initial value problems (IVPs) with disconti-
nuities. Ji-Huan [6] used the homotopy perturbation method (HPM) solving for 
nonlinear oscillators with discontinuities. 
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In the consulted bibliography we have not found any results of the application 
of the HAM to differential problems with discontinuities. For this reason, this 
paper systematically analyzes its application to IVPs of ODEs of second order 
with independent non-continuous term. We have treated functions with a dis-
continuous derivative, with some of Heaviside step function and with Dirac del-
ta function. 

In what follows, we give a brief review of the HAM. 

2. Basic Idea of HAM 

In this article, we apply the HAM to the discussed problem. To show the basic 
idea, we consider the following differential equation 

( ) ( ) ,u x k x=                        (2.1) 

where   is a nonlinear operator, x denotes independent variable, ( )u x  is an 
unknown function, and ( )k x  is a known analytic function. For simplicity, we 
ignore all boundary or initial conditions, which can be treated in the similar way. 
By means of generalizing the traditional homotopy method, Liao [1] [2] [3] con-
structs the so-called zero-order deformation equation 

( ) ( ) ( ) ( ) ( ) ( ){ }01 ; ; ,q x q u x qhH x x q k xφ φ− − = −              (2.2) 

where [ ]0,1q∈  is an embedding parameter, 0h ≠ , is a non-zero auxiliary pa-
rameter ( ) 0H x ≠  is an auxiliary function,   is an auxiliary linear operator, 

( )0u x  is an initial guess of ( )u x  and ( );x qφ  is an unknown function. It is 
important to note that one has great freedom to choose auxiliary objects such as 
h and   in the HAM. Obviously when 0q =  and 1q = , both 

( ) ( ) ( ) ( )0;0 and ;1x u x x u xφ φ= =               (2.3) 

hold. Thus as q increases from 0 to 1, the solution ( );x qφ  varies from the ini-
tial guess ( )0u x  to the solution ( )u x . Expanding ( );x qφ  in Taylor series 
with respect to q, one has 

( ) ( ) ( )0
1

; ,m
m

m
x q u x u x qφ

+∞

=

= +∑                 (2.4) 

where 

( )
0

;1 ,
!

m

m m
q

x q
u

m q
φ

=

∂
=

∂
                   (2.5) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and 
the auxiliary function are so properly chosen, then the series (2.4) converges at 

1q =  and one has 

( ) ( ) ( )0
1

;1 ,m
m

x u x u xφ
+∞

=

= +∑                 (2.6) 

which must be one of the original non-linear equation, as proved by Liao [1] [2] 
[3]. If 1h = − , Equation (2.2) becomes 
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( ) ( ) ( ) ( ) ( ){ }01 ; ; 0,q x q u x q x q k xφ φ− − + − =               (2.7) 

which is used mostly in the HPM [6] [7]. 
According to Equation (2.5), the governing equations can be deduced from 

the zeroth-order deformation Equations (2.2). We define the vectors 

( ) ( ) ( ){ }0 1, , , .i iu x u x u x=u                (2.8) 

Differentiating Equation (2.2) m times with respect to the embedding para-
meter q and then setting 0q =  and finally dividing them by !m , we have the 
so-called mth-order deformation equation 

( ) ( ) ( )1 1 ,m m m m mu x u x h− −− =   u                 (2.9) 

where 

( ) ( )
( ) ( ){ }1

1 1

0

;1 ,
1 !

m

m m m

q

q k x

m q

φ−

− −

=

∂ −  =
− ∂

u


          (2.10) 

and 

0, 1,
1, 1.m

m
m
≤

=  >
                       (2.11) 

It should be emphasized that ( )mu x  ( )1m ≥  are governed by the linear eq-
uation (2.9) with the linear boundary conditions that come from the original 
problem, which can be easily solved by symbolic computation softwares such as 
Maple and Mathematica. 

3. HAM Applied to an IVP of the Second Order 

Consider the general IVP of the second order [4]: 

( ) ( )
( ) ( )

2, , , , 0 ,

0 , 0 ,

u g u u k u f x u u x T

u u

λ

α β

′′ ′ ′+ + = ≤ ≤

′= =
              (3.1) 

where , ,k λ α  and β  are real constants, g is a (possibly) nonlinear function of 
,u u′  and f is a function with some discontinuity. 
To sole Equation (3.1) by means of the standard HAM, we choose the initial 

approximations 

( ) ( )0 , 0 ,u uα β′= =                      (3.2) 

and the linear operator 

( ) ( )2

2

;
; ,

x q
x q

x
φ

φ
∂

=   ∂
                     (3.3) 

with the property 

[ ]1 2 0,c c x+ =                           (3.4) 

where 1c  and 2c  are constants of integration. Furthermore, Equation (3.1) 
suggests that we define the nonlinear operator as 
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( ) ( ) ( ) ( ) ( )

( ) ( )

2
2

2

; ;
; ; , ;

;
, ; , ,

x q x q
x q g x q k x q

xx

x q
f x x q

x

φ φ
φ φ φ

φ
λ φ

∂ ∂ 
= + +     ∂∂  

∂ 
−  

∂ 



      (3.5) 

Using the above definition, we construct the zeroth-order deformation equa-
tion as in (2.2) and (2.3) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1 ,m m m m mu x u x hR− −− =   u                 (3.6) 

with the initial conditions 

( ) ( )0 0, 0 0,m mu u′= =                     (3.7) 

where 

( ) ( ) ( )2
1 1 1 1 1 1 1, , ,m m m m m m m mR u g u u k u f x u uλ− − − − − − −′′ ′ ′= + + −u      (3.8) 

Now, the solution of the mth-order deformation Equation (3.6) for 1m ≥  is 

( ) ( ) ( )1 10 0
d d ,

x x
m m m m mu x y x h R x x− −= + ∫ ∫ u               (3.9) 

Thus, the approximate solution in a series form is given by 

( ) ( ) ( )0
1

.m
m

u x u x u x
+∞

=

= +∑                     (3.10) 

3.1. Linear Case 

Let ( ),g u u u′ ′= , 0α =  and 1β = . 
Case 3.1.1 If we take 10, 10kλ = =  and the function ( ),f x u  is continuous, 

but not differentiable, for example 

( )
1 1,
2 2,

1 1,
2 2

x x
f x u

x x

 − ≥= 
− + <


              (3.11) 

From Equation (3.9) the first iterations are then determined in the following 
recursive way: 

( )0 ,u x x=  

( )
( )

( )

2

1
3 2

1 155 6 ,
3 2 ,
1 1180 36 30 5 ,

12 2

hx x x
u x

h x x x x

 − <= 
 + − + ≥


 

( )

( ) ( )2 5 2 4 3 2

2 5 2 4 3 2
2

275 145 1 155 53 2 1 ,
3 12 3 2

115 77 27175 15 3
4 3 12

5 35 5 17 11 1 ,
2 12 12 8 2

h x h x hx h hx h x

u x h x h x hx h hx h

hx h h h x


− + + − + <


    = + + − + +    

   
    − + + + ≥    

   

 


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and so on, in this manner the rest of the iterations can be obtained. Thus, 
the approximate solution in a series form when 1h = −  is 

( ) ( ) ( )
( )

( )

115

0
1

2

1,
2
1,
2

m
m

p x x
u x u x u x

p x x=

 <= + = 
 ≥


∑               (3.12) 

where 

( ) 2 3 4 5 6 7 8
1

9 10 11 12

13 14

143 5843 2819 592757 2529432 19
12 60 120 2520 20160

19842881 34234343 5918629957 3114021419
60480 1814400 19958400 79833600

52956448313 1516727357143
283046400 43589145600

p x x x x x x x x x

x x x x

x x

= + − − + + − −

+ − − +

+ − − 15

16 17 18

19 20

18911788595719
217945728000

41681620300291 10930256954423 18736423525
2092278988800 355687428096 2280047616

32512931860625 1790227609375 25453049921875
3801409387776 691165343232 1330493285

x

x x x

x x

+ + −

− + + 21

7216
x

 

22 23

24 25

26 27

35542462890625 2509960937500
54882848036016 7172190368343
25589599609375 33294677734375

194200846896672 631152752414184
4241943359375 193786621093750

186476949576918 27691827012172323
196

x x

x x

x x

− −

+ +

− −

+ 28 294569091796875 1907348632812500
581528367255618783 1533120240946631337

x x+

 

and 

( )2

2

28489448970108521138596665947
226349107039736370036316569600
2178307263376990695691557083
1951285405514968707209625600
1186572886359572970648017 33376213227737153324107
366782970961460283310080 18

p x

x

x

= −

+

+ − 3

4 5

6

52439247280102440960
78674566012860119002187 7041702063821037891364399
3503708621552410951680 74453808207988732723200
549895593575959030863563 33087191796820586109271
9306726025998591590400 141624

x

x x

x

− +

+ − 7

091699978567680
x

 

8 9

10 11

392978766117540050705 2456170645710279487
5149966970908311552 7376767051530240

41780926473659473181 306846492148853223323
811444375668326400 998290120065638400

17826687959696195557
1331053493420

x x

x x

− +

+ −

− 12 13

14 15

16

50400473203539207979
851200 254466109036339200

549653451307296101 104497168922928132917
80966489238835200 1113289227033984000
4425289676013881327 17404262491512559
508932218072678400 5119436

x x

x x

x

+

− −

+ + 17

51315712
x
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18 19

20 21

22

23600088137477575 20901216917575625
4991450600328192 2155399122868992
682160726359375 5546125344453125
391890749612544 2514632310013824
96575453125000 644336083984375
216101214141813 1420093

x x

x x

x

− −

+ +

− − 23

692931914
x

 

24 25

26 27

28

3135924072265625 212506103515625
22721499086910624 5680374771727656

17364501953125 209045410156250
18461218008114882 11867925862359567
1125335693359375 1907348632812500

193842789085206261 18

x x

x x

x

+ +

− −

+ + 29

73813627823660523
x

 

This series has the closed form as m →∞  

( )
( )

( )

3

4

1,
2
1,
2

Exact

p x x
u x

p x x

 <= 
 ≥


                  (3.13) 

where 

( )
1 1
2 2

3
307 399 399 51 399 51 1e sin e cos ,

57000 2 1000 2 1000 10
x x

p x x x x
− −   

= − + −      
   

 

( )

( ) ( )

1 1
2 2

4

1 1 1 1
2 4 2 4

307 399 399 51 399 51 1e sin e cos
57000 2 1000 2 1000 10

1 399 199 399 399e cos 2 1 e sin 2 1 ,
500 4 199500 4

x x

x x

p x x x x

x x

− −

− + − +

   
= − − +      

   
   

+ − − −      
   

 

which is exactly the exact solution for the case 3.1.1.  
In Table 1 show a comparison of the numerical results applying the HAM 

( 15m = ), Iteration of the Integral Equation (IIE) (3.9), and the numerical solu-
tion of (3.9) with Simpson rule (SIMP) with the exact solution (3.13). Twenty 
points have been used in the Simpson rule. In Table 2 we list the Maximum 
Absolute Error (MAE), 2⋅ , the Maximum Relative Error (MRE), the Maxi-
mum Residual Error (MRR), obtained by the HAM with the exact solution 
(3.13) on the interval [ ]0,1 . The Estimated Order of Convergence (EOC) for 
different values of the constant k are given in Table 3. 

Figure 1 represents both the exact solution ( )Exactu x  and our approximation 
by HAM ( 14m = ) within the interval 0 1t≤ ≤ . 

For 13k ≥ , the application of the HAM requires approximants of order 

15m >  if we want to arrive beyond the discontinuity (at 1
2

x = ). 

Case 3.1.2 Taking   1, 1, 1kβ λ= = =  and 

( ) ( )
0, if 1

, , 1
1, if 1,

x
f x u u H x

x
<′ = − =  ≥

              (3.14) 

The Heaviside step function at 1x = . We now successively obtain 
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Figure 1. Continuous line: ( ), : HAM, 10, 10Exactu x kλ+ = = . 

 
Table 1. Numerical results for the case 3.1.1. 

x ( )Exactu x  HAM IIE SIMP 

0.0 0.000000000 0.000000000 0.000000000 0.000000000 

0.1 0.100782334 0.100782334 0.100782334 0.100782334 

0.2 0.138716799 0.138716799 0.138716799 0.138716799 

0.3 0.077844715 0.077844715 0.077844715 0.077844715 

0.4 −0.027921565 −0.027921565 −0.027921565 −0.027921565 

0.5 −0.090520718 −0.090520718 −0.090520718 −0.090520718 

0.6 −0.064945725 −0.064945725 −0.064945723 −0.064945723 

0.7 0.023844667 0.023844566 0.023844678 0.023844678 

0.8 0.100898402 0.100896153 0.100898714 0.100898714 

0.9 0.108664846 0.108638517 0.108670237 0.108670234 

1.0 0.055691769 0.055659061 0.055736683 0.055736417 

 
Table 2. MAE, 

2
⋅ , MRE and MRR for the case 3.1.1. 

m MAE 
2

⋅  MRE MRR 

12 1.104E−01 1.474E−02 1.983E−00 89.418E−00 

13 1.541E−02 1.889E−03 2.767E−01 16.061E−00 

14 1.360E−03 1.408E−04 2.443E−02 2.222E−00 

15 6.803E−05 1.732E−05 9.487E−04 1.940E−01 

 
Table 3. EOC for the case 3.1.1. 

k 0.4x =  0.6x =  

10 1.0660 1.0778 

11 1.0628 1.0824 

12 1.0459 1.0923 
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( )0 ,u x x=  

( )
3 2

1
3

1 1  , 1
6 2  ,
1 1 , 1
6 2

hx hx x
u x

hx hx h x

 + <= 
 + − ≥


 

( )
( )2 5 2 4 3 2

2
2 5 2 4 3

1 1 1 1 1 1 , 1
120 12 3 2 2

,
1 1 1 1 2 1 31 1 , 1

120 24 3 2 3 2 4

h x h x hx h hx h x
u x

h x h x hx h hx h h h x

  + + + + + <   = 
      + + + + + − + ≥           

 


 

and so on, in this manner the rest of the iterations can be obtained. Thus, 
the approximate solution in a series form when 1h = −  is 

( ) ( ) ( )
( )
( )

9
5

0
1 6

, 1
 

, 1m
m

p x x
u x u x u x

p x x=

<= + = 
≥

∑               (3.15) 

where 

( ) 2 4 5 7 8 10
5

11 12 13 14

15 16 17

1 1 1 1 1 1
2 24 120 5040 40320 1814400

1 1 1 1
5702400 17740800 124540416 1779148800

1 1 1
48432384000 2615348736000 355687428096000

p x x x x x x x x

x x x x

x x x

= − + − + − +

+ + + +

+ + +

 

and 

( ) 2
6

3 4 5

6 7 8

4581894569957 294371651437 23051120003
6974263296000 653837184000 58118860800

355931929 215859517 251909
6227020800 11496038400 38016000

422017 80707 11293
870912000 914457600 541900800

p x x x

x x x

x x x

= − +

− − +

− − +

 

9 10 11

12 13 14

15 16 17

463 401 211
304819200 2612736000 798336000

19 113 71
348364800 18681062400 174356582400

1 1 1
62270208000 2988969984000 355687428096000

x x x

x x x

x x x

− + +

+ + +

+ + +

 

This series has the closed form as m →∞  

( ) ( )

( )

1
2

1 1 1
2 2 2

1 1
2 2

2 3 1e sin 3 , 1
3 2

2 3 3 3 3e sin e sin 1
3 2 3 2

3e cos 1 1, 1,
2

x

x x

Exact

x

x x

u x x x

x x

−

− − +

− +

   <   


   = − − +       
    
   − − + + ≥    

 (3.16) 
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which is exactly the exact solution for the case 3.1.2.  
In Table 4 show a comparison of the numerical results applying the HAM 

( 9m = ), Iteration of the Integral Equation (IIE) (3.9), and the numerical solu-
tion of (3.9) with Simpson rule (SIMP) with the exact solution (3.16). In Table 
5 we list the MAE, 2⋅ , the MRE, and the MRR, obtained by the HAM with 
the exact solution (3.16) on the interval [ ]0,1 . The EOC for different values of 
the constant k are given in Table 6. 

Figure 2 represents both the exact solution ( )Exactu x  and our approximation 
by HAM ( 9m = ) within the interval 0 2t≤ ≤ . 

Case 3.1.3 Taking 1, 1, 1kβ λ= = =  and  
( ) ( ), , 1f x u u xδ′ = − , the Dirac delta function at 1x = . We now successively 

obtain 

( )0 ,u x x=  
 

 

Figure 2. Continuous line: ( ), : HAM, 1,? 1Exactu x kλ+ = = . 

 
Table 4. Numerical results for the case 3.1.2. 

x ( )Exactu x  HAM IIE SIMP 

0.0 0.000000000 0.000000000 0.000000000 0.000000000 

0.2 0.180064002 0.180064002 0.180064002 0.180064002 

0.4 0.320981642 0.320981642 0.320981642 0.320981642 

0.6 0.424757139 0.424757141 0.424757139 0.424757139 

0.8 0.494373476 0.494373527 0.494373472 0.494373472 

1.0 0.533507195 0.533507735 0.533507144 0.533507144 

1.2 0.564939072 0.564942862 0.564938646 0.564938646 

1.4 0.606393480 0.606413454 0.606390844 0.606390844 

1.6 0.654555758 0.654641161 0.654542809 0.654542808 

1.8 0.706469719 0.706780754 0.706416357 0.706416354 

2.0 0.759579476 0.760577057 0.7593881936 0.759388182 
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Table 5. MAE, 
2

⋅ , MRE and MRR for the case 3.1.2.  

m MAE 2
⋅  MRE MRR 

5 2.214E−01 8.262E−02 2.914E−01 3.091E−00 

6 7.122E−02 2.471E−02 9.377E−02 1.313E−00 

7 1.955E−02 6.370E−03 2.573E−02 4.573E−01 

8 4.684E−03 1.446E−03 6.167E−03 1.351E−01 

9 9.976E−04 2.933E−04 1.313E−03 3.471E−02 

 
Table 6. EOC for the case 3.1.2.  

k 0.9x =  1.1x =  

1 1.0871 1.1001 

2 1.1081 1.1300 

 

( ) ( ) ( )( )3 2
1

1 3 6 1 6 1
6

u x h x x H x x H x= − − − + − − −  

( ) ( ) ( )(
( ) ( ) ( ) ( )( ))

5 4 3 3
2

2

1 10 20 2 1 20 1
120
60 1 60 1 2 40 1 2 3

u x h hx hx x h hH x x

x h H x x h H x h

= − − − − + + −

− + + − + − − +
 


 

and so on, in this manner the rest of the iterations can be obtained. Thus, 
the approximate solution in a series form when 1h = −  is 

( ) ( ) ( )

( )

8

0
1

2

3 4 5 6

7 8 9 10

9030495007 858929737 27344771
6227020800 479001600 15966720

5271359 653741 14383 7477
21772800 8709120 4838400 3628800

293 71 71 23
725760 4838400 8709120 21772800

17
79

m
m

u x u x u x

H x x x

x x x x

x x x x

=

= +

= − − + −


− + − −

+ − − +

+

∑

11 12 131 1
833600 95800320 6227020800

x x x+ + 



 

2 4 5 7 8 9

10 11 12 13

14 15

1 1 1 1 1 1
2 24 120 5040 40320 362880

1 1 29 1
604800 1900800 479001600 311351040

1 1
12454041600 1307674368000

x x x x x x x

x x x x

x x

− + − + − −

− − − −

− −

+






 (3.17) 

This series has the closed form as m →∞  

( ) ( ) ( )
1 1 1
2 2 22 3 3 31 e sin 1 e sin

3 2 2
x x

Exactu x H x x x
− −    

= − − +            
 (3.18) 

https://doi.org/10.4236/am.2019.106030


W. Al-Hayani, R. Fahad 
 

 

DOI: 10.4236/am.2019.106030 429 Applied Mathematics 

 

which is exactly the exact solution for the case 3.1.3.  
In Table 7 we list the MAE, 2⋅ , the MRE, and the MRR, obtained by the 

HAM with the exact solution (3.18) on the interval [ ]0, 2 . The EOC are 1.0984 
at 0.9x =  and 1.1156 at 1.1x = . 

Figure 3 gives both the exact solution ( )Exactu x  and our approximation by 
HAM ( 8m = ) within the interval 0 2t≤ ≤ . 

3.2. Non-Linear Case 

Let 0, 1, 10α β λ= = =  and 1k = . 
Case 3.2.1 Taking ( ),g u u uu′ ′= , and 

( )
10, if
2, ,
11, if
2

x
f x u u

x

 <′ = 
 ≥


                 (3.19) 

Using the Adomian polynomials [8] [9] for calculation the nonlinear term 
uu′  is given by 

( )
0

, , , 0,1, 2,
n

i n i
i

g u u uu u u n i n−
=

′ ′ ′= = ≥ =∑            (3.20) 

We now successively obtain 

( )0 ,u x x=  
 

 

Figure 3. Continuous line: ( ), : HAM, 1, 1Exactu x kλ+ = = . 

 
Table 7. MAE, 

2
⋅ , MRE and MRR for the case 3.1.3. 

m MAE 2
⋅  MRE MRR 

5 2.105E−01 7.952E−02 2.210E−01 2.786E−00 

6 6.923E−02 2.418E−02 7.266E−02 1.231E−00 

7 1.924E−02 6.295E−03 2.019E−02 4.402E−01 

8 4.644E−03 1.436E−03 4.874E−03 1.322E−01 

9 9.928E−04 2.922E−04 1.042E−03 3.428E−02 
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( )
( )

3

1
3 2

1 1,
3 2  ,
1 14 60 60 15 ,

12 2

hx x
u x

h x x x x

 <= 
 − + − ≥


 

( )

( )

( )

2 5 3

2 5 2 4 3 2
2

1 1 11 ,
12 3 2
1 5 1 17 51 5 1 ,

12 3 3 2 4
25 5 15 1 1 ,
24 4 2

h x hx h x

u x h x h x hx h hx h

hx h h h x


+ + <


    = − + + − +    

   
  + + − + ≥  

 

 


 

and so on, in this manner the rest of the iterations can be obtained. Thus, 
the approximate solution in a series form when 1h = −  is 

( ) ( ) ( )
( )

( )

77

0
1

8

1,
2 ,
1,
2

m
m

p x x
u x u x u x

p x x=

 <= + = 
 ≥


∑             (3.21) 

where 

( ) 3 5 7 9 11 13
7

1 1 11 211 6221 260833
3 12 504 36288 3991680 622702080

p x x x x x x x x= − + − + − +  

and 

( ) 2 3
8

4 5 6 7

8 9 10

131015952083 846993899 1362271259 202153183
98099527680 181665792 185794560 37158912

44111605 37786871 156205 4167853
6193152 7741440 165888 645120

18511 431939 3502817
2016 64512 1451520

p x x x x

x x x x

x x x

= − + −

+ − − +

− + − 11

12 13

267623
725760

520067 260833
23950080 622702080

x

x x

+

− +

 

In Table 8 show a comparison of the numerical results applying the HAM 
( 7m = ), Iteration of the Integral Equation (IIE) (3.9), and the numerical solu-
tion of (3.9) with Simpson rule (SIMP) with the numeric solution (rkf45) 

( )Nu x . In Table 9 we list the MAE, the MRE, and the MRR, obtained by the 
HAM with the numeric solution (rkf45) ( )Nu x  on the interval [ ]0,1 . 

Figure 4 represents both the numeric solution (rkf45) ( )Nu x  with a very 
small error and our approximation by HAM ( 7m = ) within the interval 
0 1t≤ ≤ . 

Case 3.2.2 Taking ( ) 2,g u u u′ = , and 

( )
0, if 1

, ,
1, if 1

x
f x u u

x
<′ =  ≥

                (3.22) 

Using the Adomian polynomials [8] [9] for calculation the nonlinear term 2u  
is given by 
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Figure 4. Continuous line: ( ), : HAM, 10, 1Nu x kλ+ = = . 

 
Table 8. Numerical results for the case 3.2.1. 

x rkf45 HAM IIE SIMP 

0.0 0.000000000 0.000000000 0.000000000 0.000000000 

0.1 0.099667499 0.099667497 0.099667497 0.099667497 

0.2 0.197359727 0.197359723 0.197359723 0.197359723 

0.3 0.291197840 0.291197838 0.291197838 0.291197838 

0.4 0.379485700 0.379485702 0.379485702 0.379485702 

0.5 0.460777633 0.460777635 0.460777632 0.460777632 

0.6 0.583008128 0.583008017 0.583007978 0.583007978 

0.7 0.789366837 0.789366701 0.789366561 0.789366561 

0.8 1.068091674 1.068091572 1.068091282 1.068091282 

0.9 1.402735913 1.402734083 1.402735383 1.402735385 

1.0 1.773297313 1.773238159 1.773299771 1.773299790 

 
Table 9. MAE, MRE and MRR for the case 3.2.1. 

m MAE MRE MRR 

4 9.966E−03 5.620E−03 1.969E−00 

5 9.854E−05 6.217E−05 1.329E−01 

6 5.806E−04 3.274E−04 2.288E−01 

7 5.915E−05 3.336E−05 4.510E−02 

 

( ) 2

0
, , , 0,1, 2,

n

i n i
i

g u u u u u n i n−
=

′ = = ≥ =∑            (3.23) 
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we now successively obtain 

( )0 ,u x x=  

( ) ( ) ( )( )4 3 2
1

1 2 5 1 2 1 ,
12

u x h x x hH x x x= + − − − +  

( ) ( )(

) (
)

5 4 2
2

2 7 6

5 4 3 4 3

1 1 1260 3150 18900 31500
2520

112600 14490 25200 12600 10 35
2520

21 210 420 210 420 ,

u x hH x hx hx hx hx

x h x h hx hx

hx hx hx x x

= − − − + −

+ + − + + +

+ + + + +

 


 

and so on, in this manner the rest of the iterations can be obtained. Thus, 
the approximate solution in a series form when 1h = −  is 

( ) ( ) ( )

( )

8

0
1

2

3 4 5 6

41629462050061 2498253046769 187640314091
11263435223040 563171761152 4704860160

1761739129 502232959 1677121153 10243801115
274450176 181621440 242161920 581188608
341190523

m
m

u x u x u x

H x x x

x x x x

=

= +

= − − −


+ − + −

+

∑

7 8 9 10

11 12 13 14

150931763 11334138401 2673838147
13453440 6209280 670602240 304819200
2650717003 1572737 88586453 213052381
79833600 1905120 1089728640 8717829120

x x x x

x x x x

− + −

+ − + +

 

15 16 17

18 19 20

3 4 5 6 7 8

9 10

6247867 71250341 48109
605404800 58118860800 823350528

1322521 74645 157891
59281238016 140792940288 1126343522304

1 1 1 1 19 1
6 12 120 72 5040 960

299 43
362880 362880

x x x

x x x

x x x x x x x

x x







− + +

− + +

− − + + + −

− −

+


+ 11 123239 869
39916800 21772800

x x+

 

13 14 15

16 17 18

19 20 21

22

8201 53 2150341
6227020800 10644480 1307674368000

1660739 20675 11819
10461394944000 79041650688 209227898880

12799 743 803
750895681536 56458321920 252975550464

73
252975550464

x x x

x x x

x x x

x

+ − −

+ + +

− − −

− 



  (3.24) 

In Table 10 we list the MAE, the MRE, and the MRR, obtained by the HAM 
with the numeric solution (rkf45) ( )Nu x  on the interval [ ]0,2 . 

Figure 5 represents both the numeric solution (rkf45) ( )Nu x  with a very 
small error and our approximation by HAM ( 8m = ) within the interval 
0 2t≤ ≤ . 
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Figure 5. Continuous line: ( ), : HAM, 10, 1Nu x kλ+ = = . 

 
Table 10. MAE, MRE and MRR for the case 3.2.2. 

m MAE MRE MRR 

4 6.298E−02 1.606E−02 3.926E−00 

5 1.036E−02 2.642E−03 1.123E−00 

6 2.845E−03 7.921E−04 4.894E−01 

7 2.916E−03 7.436E−04 1.788E−01 

8 6.366E−04 1.623E−04 5.743E−02 

4. Conclusions 

In this work, the HAM has been successfully applied to solve IVPs of second or-
der with discontinuities. The size of the jump (given by λ ) does not affect the 
convergence of the method, which behaves equally well on both sides of the dis-
continuity. In this IVPs, the application by the HAM with k, does not converge 
even for small values of the parameter like λ . 

The proposed scheme of the HAM has been applied directly without any need 
for transformation formulae or restrictive assumptions. The solution process by 
the HAM is compatible with the method in the literature providing analytical 
approximation such as ADM. The approach of the HAM has been tested by em-
ploying the method to obtain approximate-exact solutions of the linear case. The 
results obtained in all cases demonstrate the reliability and the efficiency of this 
method. 
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Abstract 

In this paper, the case of the interaction of a flat compression pulse with a 
layered cylindrical body in an infinite homogeneous and isotropic elastic me-
dium is studied. The problem by the methods of integral Fourier transforms 
is solved. The inverse transform numerically by the Romberg method is cal-
culated. With a time of toast and a decrease in momentum, the accuracy is 
not less than 2%. Taking into account the diffracted waves the results are ob-
tained. 
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1. Introduction 

Various issues related to the interaction of bodies with a continuous medium 
(the creation of effective mathematical models is, theoretical and experimental 
methods for the study of non-stationary problems of dynamics) are described in 
monographs [1] [2] [3] [4] [5]. We have to deal with these questions when solv-
ing a wide variety of tasks. Their successful solution is associated with the fur-
ther harmonic interaction of various sciences: aerodynamics, the theory of elas-
ticity and plasticity, soil mechanics and underground structures, and others. The 
range of tasks for solving which is necessary to take into account the influence of 
the environment on the behavior of structures, structures and systems is conti-
nuously expanding: problems of pipe transport, defect scope, calculation of ele-
ments of nuclear reactors, seismic effects and others. Despite the great successes 
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achieved recently in this area, many problems still remain unresolved. The 
problems of unsteady interaction of deformable bodies with elastic media and 
with the ground are especially poorly studied. In the future, it is necessary to pay 
more attention to the following issues: building more accurate schemes (models) 
of the interaction of waves (of varying intensity) and bodies with deformable 
barriers; development and creation of computing systems based on modern 
computers for solving applied dynamics problems. 

The problems of the no stationary dynamics of a homogeneous isotropic li-
nearly elastic medium in cylindrical coordinates are given in the work of C. 
Chree [6]. Some problems of the dynamics of elastic cylindrical bodies are given 
in [7] [8]. In [9] [10], using the Laplace transform in time, the problem of radial 
oscillations of a thick-walled sphere immersed in an infinite elastic medium was 
investigated by specifying the uniform unsteady pressure. The stress-strain state 
of a hollow elastic cylinder surrounded and filled with acoustic or elastic media, 
under the action of non-stationary loads applied on the side surfaces, was inves-
tigated in [11] [12]. 

Some issues related to the diffraction of no stationary waves on cavities and 
absolutely rigid obstacles are considered in the works of A.N. Guzz, V.D. Ku-
benko and M.A. Cherevko [13] and Y.H. Pao and C.C. Mowa [14]. Works de-
voted to these problems are partially cited in the reviews of A.G. Gorshkov [15]. 
A general approach to solving plane diffraction problems in elastic media, based 
on the method of boundary integral equations, was developed by G.D. Manos 
and D.E. Beskos [16], D.M. Cole, D.D. Kosloff and J.B. Minster [17]. 

The influence of various factors on the behavior of a smooth infinitely long 
thin cylindrical shell during the diffraction of a plane shock wave on it (a plane 
problem) was studied by many authors [18]-[23]. The interaction of a plane mo-
bile shock wave with a thin-walled structure consisting of coaxial cylindrical 
shells was considered in [24] [25]. Recently, considerable attention has been paid 
to the problems of non-stationary dynamics associated with the calculation of 
engineering structures for the action of seismic loads. The works of K. Fujita [26] 
are devoted to determining the response of some types of structures to seismic 
effects (Harouma and G.W. Housnera [27]). The creation of universal algo-
rithms for calculating piecewise-homogeneous cylindrical bodies under the in-
fluence of non-stationary loads is an actual unsolved problem. 

2. Statement and Methods for Solving the Problem of the  
Interaction of Non-Stationary Waves with a Cylindrical  
Body with a Liquid 

The problem of the action of non-stationary waves on layered cylindrical bodies 
with radius Rk is considered. The motion vector of the medium is connected 
with the potentials Nϕ  and kψ  by means of the formulas 

( ) ( )1,2, ,k k kgrad rot k Nϕ= + =u ψ . 

Suppose that the elastic medium is in plane strain conditions in the plane. In 

https://doi.org/10.4236/am.2019.106031


S. I. Ibrohimovich et al. 
 

 

DOI: 10.4236/am.2019.106031 437 Applied Mathematics 

 

polar coordinates ,r θ , the basic ratios of the plane problem are 

1 1,k k k k
rk ku u

r r r rθ
ϕ ψ ϕ ψ

θ θ
∂ ∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

 

2 2 2

2 2 2
1

2 2 2

2 2 2

2 2 2

2 2 2

1 12

1 12

1 12

k k k k k
rrk k

k

k k k k
k k k

k k k k
r k k k

c r rt r r

r rt r r

r rt r r

θθ

θ

λ ϕ ϕ ψ ψ
σ µ

θ θ

ϕ ϕ ψ ψ
σ ρ µ

θ θ

ψ ϕ ϕ ψ
σ ρ µ

θ θ

 ∂ ∂ ∂ ∂
= + + − 

∂ ∂ ∂∂ ∂ 
 ∂ ∂ ∂ ∂

= − + − 
∂ ∂ ∂∂ ∂ 

 ∂ ∂ ∂ ∂
= + − − 

∂ ∂ ∂∂ ∂ 

 

here kλ  and kµ  the Lame elastic constants of the k-th layer; kρ —density of 
the material of the k-th layer; , ,rrk k r kθθ θσ σ σ —components of the stress tensor 
of the k-th layer. 

Non-stationary stress waves ( )i
xxσ  and ( )i

xyσ , whose front is parallel to the lon-
gitudinal axis of the cylinder, fall on a layered cylinder (Figure 1). 

The basic equations of the theory of elasticity for this problem of plane strain 
in displacement potentials are reduced to the following:  

( )
2

2
2 2

2
2

2 2

1 ; 1,2, ,

1 .

к
j

j
pj

j
j

j

j N
c t

c tρ

ϕ
ϕ

ψ
ψ

∂
∇ = =

∂

∂
∇ =

∂



                (1) 

where Uj and jψ  are the displacement potentials of the j-th layer, срj and jсβ
—are the phase velocities of the extension and shear waves of the j-th layer. 

Suppose that time t is counted from the moment when the incident pulse 
touches the surface of the external (N − 1)-th cylinder at point Nr r= , 0θ = . 
Until that moment, peace remains. In accordance with the foregoing, the task of 
finding the field of diffracted waves and the stress-strain state caused by the in-
cident pulse [17] 

( ) ( )
( ) ( ) ( )

0

0

ˆ ,

ˆ ˆ,
1

i
xx

i N
xy N PN

N

H t

H t t t x r C

σ σ

ν
σ σ

ν

=

= = − +
−

              (2) 

0σ —the amplitude of the incident waves; ( )ˆH t —the unit Heaviside func-
tion, reduces to solving differential Equations (1). Boundary conditions on the 
contact of two cylindrical surfaces should be equal to displacement and tension 

( ) ( ) ( )1 1 1

1 1 1

: ; ; ;

; ; .
к rrк r к rzкrr к r к rz к

к к к к к к

r а

u u w w
θ θσ σ σ σ σ σ

ϑ ϑ
+ + +

+ + +

= = = =

= = =  

At infinity ( r →∞ ), the perturbations must die out. If Nϕ  and Nψ —diverging 
waves, then 

0, 0N Nϕ ψ→ →  at 2 2 2x y z+ + →∞ . 

The problem is solved under the following zero initial conditions [19]: 
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Figure 1. The effect of non-stationary waves on a layered body. 

 

0 0

0

1 1 0,

1 1 0,

j j j j

t t

j j j j

t

r r t r r

r r t r r

φ ψ φ ψ
θ θ

ψ φ ψ φ
θ θ

= =

=

∂ ∂ ∂ ∂ ∂
+ = + = ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂
− = − = ∂ ∂ ∂ ∂ ∂ 

             (3) 

where 1, 2, ,j N=  ; Nt = j—is the number of cylindrical layers; j N=
—environment. 

It is required to determine the dynamic stress-strain state of the cylinder and 
its environment caused by the incident voltage pulse (2). 

3. Solution Methods 

To solve the plane problem, the integral Laplace transform (or Fourier transform) 
over time t is often used. When applying the integral Laplace transform for a 
function ( )f t  that is integral in the sense of Lebegue on any open interval 
0 t T< < , is expressed by the formula 

( ) ( ) ( )
0

e dL stf s f t t L f t
∞

−= =   ∫  

The function ( )Lf s  is usually called the image (transform ant), the function 
of the ( )f t —original. The inversion of the Laplace transform is determined by 
the formula 

( ) ( ) ( )11 e d
2π

i
st L L

i

f t f s s L f s
i

γ

γ

+ ∞
−

− ∞

 = =  ∫ , 

where the integral is taken along the path to the right of the singularities of the 
integrand. Using the Laplace transform problem, the interaction of non-stationary 
waves with a layered cylindrical body is a time-consuming task. Under the 
integral function is complex and has a complex form. Therefore, to find the ex-
act expression of the original and bring to the numerical calculation is almost 
impossible. This method is applied in the work of V.D. Kubenko [1] for the 
problem of interaction of non-stationary waves of the cavity and obtained some 
particular solutions. Therefore, to solve this problem, the Fourier integral trans-
form is used [28]. 

Integral Fourier transform. The stress field caused by the forces (2) satisfies 
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the wave Equation (1), i.e. every cylindrical layer satisfies it. To solve the above 
problem, apply the t-integral Fourier transform with respect to time 

( ) ( ) ( ) ( )1 1d ; d
2π 2π

F i F iξ ξφ ξ φ φ φ ξ ξ
+∞ +∞

− Ω Ω

−∞ −∞

= Ω Ω Ω =∫ ∫          (4) 

Using zero initial conditions, we obtain the depicted problem 
2 2

2 2 2

2 2

2 2 2

1 1 0,

1 1 0,

j

j

F F
j j F

j
P

F F
j j F

j
P

r
r r r r C

r
r r r r C

φ φ
φ

θ

ψ ψ
ψ

θ

 ∂ ∂∂ Ω
+ + =  ∂ ∂ ∂ 

 ∂ ∂∂ Ω
+ + =  ∂ ∂ ∂ 

                 (5) 

where Ω —Fourier transforms parameter; ,F F
j jϕ ψ —image of the Fourier 

transform of functions ( )j tϕ  and ( )j tψ  respectively. Then the solution of 
Equations (4) and (5) will be 

( ) ( )
( ) ( )

, , , cos ;

, , , sin

F F
j j

F F
j j

r r n

r r n

φ θ φ θ

ψ θ ψ θ

Ω = Ω

Ω = Ω
                    (6) 

here 

( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( )

1

1 2
0

0 0

,

, ,

, 2 1,2, , 1 ,

, 0 ;

F
j

n n PN N

nj n Pj nj Pj N

n n SN

r

A H r C r r

A H r C B H r C r r j N

A I r C r r

φ Ω

 Ω ≥
= Ω + Ω ≤ ≤ = −


Ω ≤ ≤



(7) 

( )

( ) ( ) ( ) ( )
( ) ( )
( )

1 2
0

1

0 0

, ,

, , ,

, .

nJ n Sj nJ n Sj N

F
j n n SN N

n n S n

C H r C L H r C r r r

r C H r C r r

C I r C r r r

ψ

 Ω + Ω ≤ ≤
Ω = Ω ≥
 Ω ≤ ≤

 (8) 

Coefficients 0 , , , , ,n nj nN nj nj nNA A A B С C —determined from the boundary con-
ditions (7)-(8), which are placed on the contact of two cylindrical surfaces. 
Boundary conditions at nr R=  taking into account the incident waves (1) take 
the form 

а) ( )
( )1 ,i FF F

rrN rrN rr Nσ σ σ −+ =  
b) ( )

( )1 ,i FF F
r N r N r Nθ θ θσ σ σ −+ =  

v) ( )
( )1 ,i FF F

rN rN r Nu u u −+ =  
g) ( )

( )1 ,i FF F
N N Nu u uθ θ θ −+ =  

where 
а) ( ) ( ) ( ) ( ) ( )01

0
1 cos ;ni F P

rrN n n PN
n

I r C nσ σ θ
∞

=

Ω = − ∈ Ω∑  
b) ( ) ( )2 2cos sin ;F F

rrN rrN Nσ σ θ θΩ = +∈  
v) ( )1 2 sin 2 ;F F

r N rr NEθσ σ θ = − −   
g) cos ;F F

rN rNu u θ=  
d) sin ;F F

N Nu uθ θ θ=  
( )
01 0e .PNP N Cσ σ − Ω=  

Substituting (5) and (6) into the boundary conditions (7) and (8), we obtain a 
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system of complex algebraic equations with ( )4 3j +  unknowns in the form 

[ ]{ } { }Z g P= ,                        (9) 

[ ]

[ ]
[ ]

( )

[ ]

1

2

1

0

0
N

N

Z
Z

Z
Z

Z
−

 
 
 

=     
 
 

 

jZ   —4 × 4 matrix, the elements of which are of the nth order first and second 
kind Bessel and Henkel functions; { }g —Vector columns of unknown coeffi-
cients; { } { }T

1 2 3 40,0, ,0, , , ,N N N NP P P P P−  —vector columns characterizing the 
falling loads, where 1 2 3 4, , ,N N N NP P P P  corresponds to ( ) ( ) ( ) ( ), , ,i F i F i F i F

rrN r N rN Nu uθ θσ σ . Let 
the stepped waves interact with a cylindrical hole when 0r r=  and a stress-free 
hole ( )0rr rr a r aθσ σ

= =
= = . The only voltage that does not vanish at 0r r= , is 

the ring voltage 0nθθσ σ . Applying the Fourier transform to the equation of 
motion and the boundary conditions [5], we obtain the expression for ring 
stresses at ( )0 cosrr H t ntσ σ= , ( )0 sinr H tθσ τ θ= : 

( ) ( )
[ ]

01 1 0*

1 2 3 4 5

, e1 d ,
2π

i t
n

n

r t rθθ
θθ

σ θ
σ

σ

Ω∞

−∞

∆ Ω
= = Ω

Ω ∆ ∆ + ∆ ∆∫           (10) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

[ ] ( ) ( ) ( )( ) ( )

1 12 2
1 01 3 0 1

1 1
0 2 4 1 1 1

1

2 2 2

2
2 1 .

n n

P P
n P S n

S S

r E H n n H

C n Cn n H C C H
C C

τ

τ

−

−

 ∆ Ω = ∆ + Ω Ω − + +Ω Ω 
  Ω

+ ∆ −∆ + Ω + Ω  
   

 

Expression ( )1,2,3,4,5k k∆ =  given in [20]. The improper integral (10) is 
solved numerically using the developed algorithms [21]. Practically, the calcula-
tion (10) on a computer can be carried out as follows. Since infinite numerical 
integration is unthinkable, the integral (10) is replaced by  

( )
[ ]

1 01 1*

1 2 3 4 5

1 e d .
2π

b

a

i t
n

rω

θθ
ω

σ − Ω∆ Ω
= Ω

Ω ∆ ∆ + ∆ ∆∫             (11) 

Values of the limits of integration ,a bω ω  are selected depending on the type 
of incident pulse. Numerical values of spectral density ( ) ( )i F

rrσ Ω  from (9) of 
the final incident pulse; only in a small frequency range is significantly different 
from zero. Limits of integration ,a bω ω  should be selected in accordance with 
this range and taking into account the required accuracy. At the same time, the 
question remains open as to what error the neglect of the contribution of inte-
grals of the type (10), within the limits of integration of −∞  to aω  and from 

bω  to ∞ . The numerical summation of the infinite sum (10) is, of course, also 
impossible. However, it was shown in [22] that for sufficiently large n (the 
n-order of the Bessel and Henkel functions), we can construct an asymptotic re-
presentation of the general term of this sum. As a result, it becomes possible to 
either estimate the error of the transition from an infinite to a finite sum, or ap-
proximate summation of an infinite sum. In view of the above, we keep in (10) 
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an infinite sum. The calculation by the considered method is reduced to the 
construction of two calculation algorithms: coefficients ( )( ), 1, 2keZ k eΩ =  (11) 
and integral (10). The first and second algorithms do not depend on the type of 
mathematical model of the object.  

4. Calculation Algorithm 

Magnitude 0nθθσ σ  from (11) is calculated on a computer as follows. All 
numeric parameters required for calculations are specified. The following no-
tation is introduced: 1x = Ω , 2 1x n= Ω , where 1 1 1P Sn C C= ; 1PCωαΩ = . 
For two values ( )1,2kx k =  Bessel function is determined ( )nI ξ  и 

( )( )1,2, ,10nN nξ = 
. These arrays are calculated by the formula 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

2 1
, ,n n n n n n

n
u u u u I Nξ ξ ξ ξ ξ ξ

ξ − −

−
= − =       (12) 

As shown in [23], the absolute value of the Bessel function decreases rapidly 
with increasing index, starting from the moment when the index exceeds the 
argument. In this case, the direct use of formula (12) does not lead to the goal. 
Nevertheless, the calculation by (12) is possible, if by the recurrence formula 

( ) ( ) ( ) ( )1 2

2 1
n n n

n
I I Iξ ξ ξ

ξ + +

−
= −                 (13) 

in the direction of decreasing index (from n = N to n = 0), an auxiliary function 
is calculated ( )nI ξ . To calculate the integral (11) of the integrand function 

( ) ( ) ( )( )1 0 1 0 1 1 2 3 4 5, , , ei tr t rχ ΩΩ = ∆ Ω Ω ∆ ∆ + ∆ ∆  

can be integrated numerically by writing it in the form 

( ) ( ) ( )1 0 1 0 2 0, , , , , , .r t x r t ix r tχ Ω = Ω − Ω  

The falling pulse ( ) ( )i
xxσ Ω  [23] is described by the expression  

( ) ( ) ( ) ( )1 2, , ,i
xx f t if tσ Ω = Ω − Ω  

where ( ) ( )1 2, , ,f t f tΩ Ω —real functions. Using Euler’s formula for ( )xp i tΩ
, 

dividing (18) into real and imaginary (19) parts, after some transformations we 
get 

( ) ( )1 2
1 , , d
2πn x t ix tθθσ

∞
∗

−∞

= Ω − Ω Ω  ∫             (14) 

Dividing the integral (14) into two terms 

( ) ( ) ( ) ( )
0

1 2 1 2
0

1 1, , d , , d
2π 2πn x t ix t x t ix tθθσ

∞

−∞

= Ω − Ω Ω+ Ω − Ω Ω      ∫ ∫ .  (15) 

And replacing the variable in the first integral Ω  on −Ω , will have 

( ) ( ) ( ) ( )1 1 2 2
0

1 , , , , d .
2πn x t x t i x t x tθθσ

∞

= Ω − −Ω − Ω − −Ω Ω      ∫    (16) 

Since (16) is the inverse Fourier transform and contains the real value in the 
left-hand side [24], the relation  
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( ) ( ) ( ) ( )1 1 2 2, , ; , , .x t x t x t x tΩ = − −Ω Ω = − −Ω             (17) 

Considering it, from (17) we finally get 

( ) ( )1 2
2 , , d .
π

b

a

n x t ix t
ω

θθ
ω

σ ∗ = Ω + Ω Ω  ∫  

The value of integral (17) can be found numerically using the Romberg me-
thod [9] [10]. The basic algorithm of this method is given in the first chapter. 
When calculating the integral using the Romberg method, one has to repeatedly 
calculate the integrand. The inverse Fourier transform for some image, the orig-
inal of which is known in advance, showed that with an integration step length 
of 0.01, the error of the procedure does not exceed 0.3% - 0.5%. 

Numerical results are presented for the ring voltage at 0r r= , caused by the 
incident flat shock wave with a stepped distribution of voltage over time. Nu-
merical results were obtained for 0.25ν = : 1 1 0.5S PС С = ; 0 и 90θ =   . To 
determine the integral (17) of the boundary of the integral aω  and bω  have 
chosen 410 , 1,2,3,4,5N N− − =  , а step 0.1,0.01,0.001h = . At 5N =  and 

6N =  the value of the ring voltage differs from the previous one by the fifth 
decimal place. Change *

θθσ  depending on the τ  at various 0,1,2,3,4,5n =  
shown in Figure 2, Figure 3 and Figure 4. The results of our numerical calcula-
tions were compared with known results [20]. The values obtained differ by ap-
proximately 30% at n = 0.1: the maximum ring stress at 0.01h =  and 90θ =  
is 2.962/3.0; and on work [11] [12]—3.28/3.0 ( 4.71τ ≈ ). 

 

 

Figure 2. The dependence of ring stresses on time, with different n. 
 

 

Figure 3. The dependence of ring stresses on time, with different n. 
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Figure 4. The dependence of the ring voltage on time τ . 

5. Diffraction of Non-Stationary Waves on a Cylindrical Body 

Let the inner boundary ( )0r r=  free from voltage, and on contact with the en-
vironment, the condition of equality of displacements and stresses (7) [25] [26]. 
After the Fourier transform, we obtain the cylindrical Bessel Equations (13) and 
(16), the solution of which has the form (7) and (8). In our problem there will be 
six arbitrary constants, which are determined from the boundary conditions (8). 
Here are some of them: 
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rr nk n nk n

k n

k k i
nk n nk n
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r nk n nk n

k n

i
rr n n n n

k n

r C D

r C D

r C D

r A B

τ

τ
θθ

τ
θ

τ

σ µ ε ε

σ µ ε ε

σ µ ε ε

σ µ δ δ

+∞∞
− Ω

= = −∞

+∞∞
− Ω

= = −∞

+∞∞
− Ω

= = −∞

+∞∞
− Ω

= −∞

 = + Ω 

 = + Ω 

 = + Ω 

 = + Ω 

∑∑ ∫

∑∑ ∫

∑∑ ∫

∑ ∫
2

1=
∑

 

where , , ,nk nk n nC D A B —arbitrary constants: ( )c
nk kn nC σ= ∆ , ( )D

nk kn nD σ= ∆ , 
( )A

n n nA δ= ∆ , ( )B
n n nB σ= ∆ ; ( )k

knσ  and n∆ —square complex matrices (6 × 6). 
The remaining elements of the stress tensor are written similarly (17)  

( ) ( ) ( ) ( ) ( ) ( )

Re Im , Re Im ,
Re Im , Re Im ,

Re Im , 1, 2, Re Im ,

e cos sin , 1, 2,3, 4,5

nk nk nk nk nk nk

n n n n n n

e e e k k k
n n n mn mn mn
i t

C C i C D D i D
A A i A B B i B

i e i

t i t m

δ δ δ ε ε ε
Ω

= + = +

= + = +

= + = = +

= Ω + Ω =

       (18) 

Substituting (18) into (17), after some transformations, we obtain the stress 
tensor 

2

1 0
Re d .

b

a

ji ij
k n

ω

ω

σ σ
∞

= =

′= Ω∑∑ ∫                      (19) 

All these procedures are stored in the memory of the machine. A universal 
algorithm for calculating integrals of type (19) has been developed. The results 
of the calculations are shown in Figure 5 with  
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Figure 5. The dependence of the ring voltage of time τ . 
 

( )1 2 0 1 1 290 0.2; 0.25; 0.5; 0.1; 0.1r r E Eθ ν ν η= = = = = =  

The obtained data are compared with known results [25] [26]. When inte-
grating the limit 4 210 , 4, 10a b hω ω− −= = =  the results of my calculation are 
different from the data on ≈20%. Similar results were obtained for cylindrical 
shells in an elastic medium. The equation of motion of cylindrical shells has the 
form [27], and the circumferential stress *

θθσ  in the shell but here 

2 2 0n nC D= = . Change in peripheral voltage ( )*
090 , r rθθσ θ = =  depending on 

the τ  shown in Figure 6, where 1 is the results of [28], 2 are mine for given 
( )( )1 00.04; 2h r h r r= = − . Similar results were obtained in [28], but the au-

thors believe that 2 2
1 12 0h R∈ = = , those. They take into account the bending 

moment. In the case of elastic cylindrical bodies, the determination of the 
stress-strain state of an object and its environment under the action of 
non-stationary waves is based on building a sequence of incident pulses from 
stationary components, where each pulse is a change in time of unsteady voltage 
in the incident wave.  

Figure 7 shows the change in circumferential voltage *
θθσ   

( )( )0 0 1 0 190 , , 2,r r r r r r r rθ = = = + − = , depending on the τ .  
The difference between the stresses on the outer and inner surfaces reaches 

≈15% - 20%, and the difference between the stresses on the middle and inner 
surfaces ≈10% ( )0 1 0.5r r = . Calculations show that when 

1
12 PCτ α=  the 

results of this study are approaching the exact static value * 8.13θθσ = . The de-
pendence of the circumferential voltage on τ  presented in Figure 8. It is seen 
that the maximum stress and displacement significantly depend on η  and E . 

6. Diffraction of Elastic Non-Stationary Waves in a  
Two-Layer Cylindrical Body 

Let a non-stationary step load (1) fall on an elastic two-layer cylindrical body for 
t > 0. A hard contact condition is set at the borders of the contact. The stress 
tensor in each layer is written as 

( ) ( ) ( ) ( )1 1 1 1
0

1 Re d , 1, 2,3.
π

b

a

k k
ij nij

n
r t r k

ω

ω

σ θ σ θ
∞

=

′= Ω Ω =∑ ∫           (20) 
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Figure 6. The dependence of the ring voltage of the middle surface of the layer on τ . 
 

 

Figure 7. The dependence of the dimensionless ring stress on τ  at various h/R. 
 

 

Figure 8. The dependence of the annular stress of the inner surface of the cylindrical 
layer on the time: 1—granite-concrete; 2—sandstone concrete; 3—soft concrete.  

 
Stress tensor ( )k

ijσ  represents the functions of Bessel and Hankel of the first 
and second kind of the n-th order. Integral (20) is calculated according to the 
developed algorithm of the first chapter. The decision was limited to five mem-
bers of the series (20), since the retention of the next members of the series has 
almost no effect on the results. For example, holding ten members (20) changes 
the voltage value by less than 2% - 3%. The following parameters were used in 
the calculations.: 0 2 0.2r r = ; 1 2 0.6r r = ; 1 0.2ν = ; 2 0.25ν = ; 3 0.2ν = ; 

1 2 0.3E E = ; 3 2 0.1E E = ; 1 2 0.3ρ ρ = ; 3 2 0.1ρ ρ = . 
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7. Conclusions 

1) In this paper, a method and algorithm are proposed for solving the problem 
of no stationary interaction of elastic waves on multilayer cylindrical bodies. 

2) A new approach to solving dynamic problems of bodies interacting with 
the environment, based on the methods of Fourier and the Romberg method, is 
proposed. 

3) It has been established that with the same loading characteristics in the 
material of the outer layer of a two-layer body, stress waves with the same para-
meters are formed at the initial moments of time. 
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Abstract 

Fuzzy logic is an approach which deals with the incomplete information to 
handle the imperfect knowledge. In the present research paper we have pro-
posed a new approach that can handle the imperfect knowledge, in a broader 
way that we will consider the unfavourable case also as the intuitionistic fuzzy 
logic does. The mediative fuzzy logic is an extensive approach of intuitionistic 
fuzzy logic, which provides a solution, when there is a contradiction in the 
expert knowledge for favourable as well as unfavourable cases. The purpose of 
the present paper is to design a mediative fuzzy inference system based Su-
geno-TSK model for the diagnosis of heart disease. Our proposed method is 
the extension of Sugeno-TSK fuzzy logic controller in the form of Suge-
no-TSK mediative fuzzy logic controller. 
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1. Introduction 

Uncertainty affects all the decision of experts and appears in different forms. 
Uncertainty is an objective fact or just a subjective impression which is closely 
related to individual person. The choice of an appropriate uncertainty calculus 
may depend on the cause of uncertainty, quantity and quality of information 
available, type of information processing required by the respective uncertainty 
calculus and the language required by the final observer. The concept of infor-
mation is fully connected with concept of uncertainty. The most fundamental 
aspect of this connection is that uncertainty involved in any problem-solving 
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situation is a result of some information deficiency, which may be incomplete, 
imprecise, fragmentary, vague, contradictory and not reliable information. Fuzzy 
approximate reasoning [1] [2] allows handling such type of uncertainty. Fuzzy 
logic proposed by L. A. Zadeh in 1965 [3] [4] covers the uncertainty with the 
help of membership function only. Fuzzy logic provides a mathematical theory 
to handle the uncertainty associated with the human decision with the help of its 
membership function. In 1986 the concept of intuitionistic fuzzy sets was pro-
posed by K. Atanassov [5] [6], which deals with membership function, 
non-membership function and hesitation part which has the property to incor-
porate the uncertainty of the information. Intuitionistic fuzzy sets are the gene-
ralization of fuzzy sets. IFSs proffer a new criterion to represent impartial know-
ledge and therefore, to present in a more adequate manner for may real world 
problems. In 2014 Hajek [7] gave the methods for the defuzzification in the in-
ference system for the Takagi-Sugeno type so that we can observe the crisp val-
ues for the outputs. 

Many real life applications have given the evidence that intuitionistic fuzzy 
sets are better than the traditional fuzzy logic. In this list we may also mention 
some more aspects [8] [9] that may give better results than traditional fuzzy log-
ic i.e. type-I, type-II, interval valued fuzzy sets and vague sets, interval valued 
vague sets etc. but the intuitionistic fuzzy sets cover the uncertainty caused by 
membership, non-membership and the hesitation part. Castillo etc. [10] in 2003 
gave a new method for the inference for the fuzzy inference based on intuitionis-
tic fuzzy logic that is in this work he explained the importance of favorable and 
unfavorable cases. Again in 2007 [11] used this concept for plant monitoring 
system and gave a scheme for the diagnosis of the defects. In 2007 Melin [12] 
used the mediative fuzzy logic for the contradictory knowledge management and 
explained how the logic is better than previous ones. Montiel etc. [13] in 2008 
gave the concept of mediative fuzzy logic that is a new approach for handling the 
contradiction in the decision. So we can construct an intuitionistic fuzzy logic 
controller similar to the fuzzy logic controller given by Jang etc. [14] in neu-
ro-fuzzy and soft computing. 1979 Sanchez [15] used the fuzzy logic and fuzzy 
relation for medical diagnosis in 2001 Supriya [16] used the extension of fuzzy 
sets in the form of intuitionistic fuzzy sets in medical diagnosis but What hap-
pens if the knowledge base rule changes with the perception of experts give a 
contradictory, non-contradictory and the incomplete information or the com-
bination of these situations? Intuitionistic fuzzy sets are inadequate to explain 
these situations. To deal such situations, which inference system be used. Mon-
tiel [17] etc. in 2009 gave an algorithm which is able to deal with kind of infor-
mation for controlling population size, which may be inconsistent, incomplete 
and contradiction exists. This is a mediate solution. Mediative fuzzy logic can 
bring down to the intuitionistic and fuzzy logic based on the affirmations and 
denials are established. In 2018 Iancu [18] used the mediative fuzzy logic in the 
heart disease using the Mamdani fuzzy inference rule for single input and single 
output. In our work we have extended this by using Sugeno’s-TSK fuzzy infe-
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rence system with two inputs and one output. By using this inference system we 
have developed an algorithm and on the basis of this algorithm we have con-
structed eight hundred and eighty five rules, from these rules here we have given 
the fifty rules and their crisp outputs and the firing level.  

In this present research paper we have designed a meditative fuzzy inference 
system in Figure 1 for Sugeno’s-TSK fuzzy controller for the diagnosis of heart 
disease. The present research paper is divided into six sections. In the second 
section we have taken some basic definitions on mediative fuzzy logic, contra-
diction fuzzy sets and intuitionstic fuzzy numbers. In section third of the re-
search paper we have developed an algorithm which is based on Sugeno’s-TSK 
controller using mediative fuzzy logic. The algorithm contains all the steps 
which we have proposed for our method including the block diagram. In section 
four of the research paper we have categorized the outputs and make the mem-
bership and non-membership for the stages of the risk about the sickness. In 
section five we have computed the values of the outputs using the defuzzification 
methods and the firing level of the observed during that output. In the last sec-
tion conclusion of the research paper is given. 

2. Basic Definitions 

2.1. Meditative Fuzzy Logic 

Intuitionistic Fuzzy Sets: let X be an universal set then IFSs (instuitionistic fuzzy 
sets) IA  in X is defined as 

( ) ( )( ), , :I I
I

A A
A x x x x Xµ υ= ∈                  (1) 

where 

( ) [ ]: 0,1IA
x Xµ →  and ( ) [ ]: 0,1IA

x Xυ → , with, ( ) ( )0 1I IA A
x xµ υ≤ + ≤  (2) 

are called membership and non membership functions respectively. And for all 
IFSs IA  in X, 

( ) ( ) ( )1I I IA A A
x x xπ µ υ= − −                 (3) 

where,  

( )0 1IA
xπ≤ ≤                         (4) 

hesitation part of x in AI is called intuitionistic fuzzy index or we can say the he-
sitation part. 

Total IFS output of an intuitionistic fuzzy system, calculated by the linear re-
lation between FSµ  and FSυ , which are traditional output of system with us-
ing membership and non membership values respectively, as 

( )1IFS FS FSµ υπ π= − +                (5) 

We may observe if 0π =  then it will reduce as the output of a traditional fuzzy 
system, but for other values of π  different from zero we will get the different 
outputs for the intuitionistic fuzzy systems. The advantage of this method for 
finding the IFS output of an intuitionistic system, is that we can use methodolo-
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gy based on membership functions representing the fuzzy systems for compu-
ting FSµ  and FSυ .  

 

 
Figure 1. Computing framework of fuzzy inference system. 
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2.2. Contradiction Fuzzy Set 

A contradiction fuzzy set C in X is given by  

( ) ( ) ( )( )min ,c c cx x xζ µ υ= ,                 (6)  

where ( )c xµ  represents the agreement membership function, and ( )c xυ  
non-agreement membership function. We will use the agreement and 
non-agreement membership functions in place of membership and 
non-membership functions in the analysis of our study, because we think these 
names are more appropriate for handling the uncertainty with the help of intui-
tionistic fuzzy sets. On the basis of these contradiction fuzzy sets, Montiel et al. 
[8], proposed the following three expressions  

1
2 2

MFS FS FSµ υ
ζ ζπ π   = − − + +   

   
                (7) 

( )min 1 ,1
2

MFS FS FSµ υ
ζπ π = − + − 

 
               (8) 

( )( )1 1
2

MFS FS FSµ υ
ζπ π  = − + − 

 
                (9)

 

2.3. Intuitionistic Fuzzy Number 

Let an intuitionistic fuzzy set IA  in X defines as  
( ) ( )( ), , :I I

I
A A

A x x x x Xµ υ= ∈  Then IA  is called intuitionistic fuzzy num-
ber if: 

1) IA  is normal. 
2) IA  is convex 
3) Membership and non membership functions are path wise continuous. 
a) Triangular instuitionistic fuzzy number in R, is defined with their mem-

bership and non membership grade as 

 

( )

if

if

0 if and

IA

x a a x b
b a

x c x b x c
c b

x c x a

µ

− ≤ < −
= − ≤ ≤ −


> <

 and ( )

if

if

1 if and

IA

b x a x b
b a

x c x b x c
c b

x a x c

υ

∗
∗

∗
∗

∗

∗ ∗

− ≤ < −= − ≤ ≤ −
< >

 

where a a b c c∗ ∗< < < <  on real line.  
b) Trapezoidal intuitionistic fuzzy number in R, is defined with their mem-

bership and non membership grade as 

 

( )

if

1 if

if

0 if and

IA

x a a x b
b a

b x c
x

d x c x d
d c

x d x a

µ

− ≤ < −
≤ ≤=  − < ≤

 −
 > <

 and ( )

if

1 if

if

0 if and

IA

b x a x b
b a

b x c
x

d x c x d
d c

x d x a

υ

∗
∗

∗
∗

∗

∗

− ≤ < −
≤ ≤

=  − < ≤
 −


> <

 

where a a b c d d∗ ∗< < < < <  on real line. 
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2.4. Fuzzy Implication 

Czogala and Leski [19] analyzing a set of eight implications (Kleene-Dienes, 
Reichenbach, Lukasiewicz, Godel, Rescher-Gaines, Goguen, Zadeh, Fodor) con-
cluded that the Lukasiewicz implication,  

( ) ( ), min 1,1L x y xI y= − +                   (10) 

2.5. Firing Level 

Processing of the fuzzification means that we have to assign a membership as 
well as non-membership grade to each input value to make it intuitionistic fuzzy 
set. Let x U∈



 is fuzzified into x


 according to the relations: 

( )
1 if
0 elsex

x x
xµ

=
= 


 , ( )
0 if
1 elsex

x x
xυ

=
= 


  

The µ -firing level and ν -firing level of an intuitionistic fuzzy set IA  with 
x


 as crisp input are ( )IA
xµ


and ( )IA
xυ


 respectively. 

3. Proposed Algorithm for Planned Sugeno’s—TSK  
Meditative System 

In disease diagnosis, we often find illogical information that comes from differ-
ent inference system that does not concede. In case when the classical logic, 
fuzzy logic or intuitionistic fuzzy logic do not work, then we need to apply me-
ditative fuzzy logic. That will give the better results considering the favorable, 
unfavorable and the situation where neither the membership nor 
non-membership help for getting the better results but also the agreement and 
non-agreement membership function. In this present research paper we will de-
velop a methodology using Sugeno’s fuzzy inference system based on meditative 
fuzzy logic. We will develop Sugeno’s-TSK meditative fuzzy logic controller and 
make fuzzy rule base with using two parameters as input variables which varia-
tions may cause heart disease in the form of one output value for the diagnosis 
of heart disease. We have proposed the algorithm as follows:  

Step 1: Suppose we have a fuzzy inference rule for conditional and unqualified 
proposition as hypothetical syllogism which is the generalization of inference for 
hypothetical syllogism for classical logic. In the present research paper we will 
use the inference rule for fuzzy logic for conditional fuzzy proposition in the ex-
tended form of intuitionistic fuzzy logic. That is for conditional and unqualified 
proposition the inference rule R is: if 1X  is 1A  and 2X  is 2A  then Y is B. 
Because we are working with a rule with two inputs, so for the intuitionistic 
fuzzy set, in case of 1A  using µ —firing level 

1
Iµ  for the membership will be 

denoted by 1α  and ν —firing level 
1

lυ  for the non-membership for 2A  will 
be denoted by 1β  and µ —firing level for 

2
Iµ  and ν —firing level 

2
Iν cor-

responds to rule R will be denoted by 2α  and 2β  respectively. Firing level for 
membership and non-membership will be given by setting Here we have two 
input values, we give some input to both the input variable, and we get the value 
of firing level corresponds to membership and non membership function. 
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Namely α1 and β1 for first input and α2 and β2 for second input respectively. This 
rule is represented by lukasiewicz implication and conclusion is inferred using 
Sugeno’s TSK Fuzzy Model. 

Step 2: Using Sugeno’s fuzzy inference model with two input variables and 
one output variable i.e. an inference for conditional and qualified proposition we 
will get the firing level for the two antecedents that will result in one conse-
quence for the membership and non-membership. Find ( )1 2

min ,I I Iµ µ µ=  for 
membership for the functions and the non-membership ( )1 2

min ,l l lυ υ υ=
 

for 
the factors causing the stages of the disease, by setting ( )1 2min ,α α α=  and 

( )1 2min ,β β β= . 
Step 3: After the step second we need to calculate the values for the intuitio-

nistic fuzzy index in the form of hesitation part and contradiction that is in the 
form of agreement and disagreement by taking ζ = minimum of α and β, and 

( )1π α β= − + . The values of α and β will be taken from step 2. 
Step 4: For the final Membership Fuzzy System output, the values obtained in 

step 3 in the form of the conclusions Bµ  and Bν  as follows: 

( ) ( )( )
( )( )

, ,

min 1 ,1
L BB

B

y I y y Y

y

µµ α µ

α µ

= ∀ ∈

= − +
               (11) 

( ) y defuzz Bµ µ=  

( ) ( )( )
( )( )

, ,

min 1 ,1
L BB

B

y I y y Y

y

νµ β µ

β µ

= ∀ ∈

= − +
               (12) 

( ) y defuzz Bµ ν=  

Will be defuzzified into the values for membership fuzzy output and 
non-membership fuzzy output as yµ  and yυ , respectively by using the defuz-
zification method of Middle of Maxima and Middle of Minima techniques. 

Step 5: Finally for getting the output after the final step from Sugeno’s-TSK 
fuzzy inference system, we will get membership fuzzy system output by the for-
mula  

( )( ) ( ) ( )( ) ( )1 11 1 min , 1 min ,
2 2

Z y yµ να β α β α β α β   = − − + + + − + +      
 (13) 

3.1. Factors Effects Heart Disease: (Input Variables) 

There are so many factors which affect heart disease but here we have consi-
dered the following ten most affecting factors in our study (Table 1).  

3.2. Fuzzification of the Factors 

First we will fuzzify the above factors according to the given range of the data in 
the form of membership and non-membership functions as follows:  

3.2.1. Iodine 
The recommended daily allowance for iodine [150 mcg/day] for adult, this input 
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is divided into four category low, medium, high and very high. Defined by intui-
tionistic fuzzy sets, by their µ  membership values and υ  non membership 
values, as given below:  

( )low

1 if 110
135 if 110 135

25

x
x x x

µ
≤

= −
< ≤

,  

( )medium

125 if 125 135
10

1 if 135
170 if 135 170

35

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

( )high

165 if 165 195
30

1 if 195
220 if 195 220

25

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


,  

( )very high

210 if 210 240
30

1 if 240

x x
x

x
µ

− ≤ ≤= 
 >

 

Non membership values 

( )low

125 if 125 145
20

1 if 145

x x
x

x
υ

− ≤ ≤= 
 >

,  

( )medium

1 if 116
135 if 116 135

19
0 if 135

139 if 135 180
45

1 if 180

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >  

 
Table 1. Input factors which effects heart disease.  

Input 

Factors 

1) Iodine 

2) Folic acid 

3) Obesity 

4) B.P (Blood Pressure) 

5) DLC (Density Lipoprotein Cholesterol) 

6) TC (Total cholesterol) 

7) Stress 

8) Weight 

9) Diet 

10)Family history 

Rules Two input-one output 
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( )high

1 if 145
195 if 145 195

50
0 if 195

195 if 195 220
25

1 if 220

x
x x

x x
x x

x

υ

≤
 − ≤ ≤

= =
 − ≤ ≤

 >

,  

( )very high

1 if 195
225 if 195 225

30

x
x x x

υ
<

= −
≤ ≤

 

3.2.2. Folic Acid 
Folic acid normal blood reference is around [2 - 20 mg/ml], this input is also di-
vided into four category low, medium, high and very high. Defined by intuitio-
nistic fuzzy sets, by their µ  membership values and υ  non membership val-
ues, are given below:  

( )low

1 if 6
10 if 6 10

4

x
x x x

µ
≤

=  −
≤ ≤

, ( )medium

8 if 8 12
4

1 if 12
15 if 12 15

3

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

( )high

14 if 14 20
6

1 if 20
25 if 20 25

5

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


, ( )very high

18 if 18 30
12

1 if 30

x x
x

x
µ

− ≤ ≤= 
 >

 

Non membership values 

( )low

8 if 8 12
4

1 if 12

x x
x

x
υ

− ≤ ≤= 
 >

, ( )medium

1 if 7
12 if 7 12

5
0 if 12

12 if 12 18
6

1 if 18

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − < ≤

 >

 

( )high

1 if 12
20 if 12 20

8
0 if 20

20 if 20 28
8

1 if 28

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >

, ( )very high

1 if 26
32 if 26 32

6

x
x x x

υ
<

= −
≤ ≤

 

3.2.3. Obesity 

Normal range of obesity for heart disease is around [18.5 - 24.9 kg/m2], obesity 
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input variable has 4 values low, medium, high and very high as intitutionistic 
fuzzy set by their membership and non membership values, are given below as: 

( )low

1 if 11
16 if 11 16

5

x
x x x

µ
<

= −
≤ ≤

,  

( )medium

14.5 if 14.5 19.5
5

1 if 19.5
22.5 if 19.5 22.5

3

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

( )high

21 if 21 23.5
2.5

1 if 23.5
26.5 if 23.5 26.5

3

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


,  

( )very high

24.5 if 24.5 28.6
4.1

1 if 28.6

x x
x

x
µ

− ≤ ≤= 
 >

 

Non membership values 

( )low

12.5 if 12.5 18.8
6.3

1 if 18.8

x x
x

x
υ

− ≤ ≤= 
 >

,  

( )medium

1 if 13.5
19.5 if 13.5 19.5

6
0 if 19.5

19.5 if 19.5 24.6
5.12

1 if 24.6

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >

 

( )high

1 if 19
23.5 if 19 23.5

4.5
0 if 23.5

23.5 if 23.5 27.6
4.2

1 if 27.6

x
x x

x x
x x

x

υ

<
 − < <

= =
 − < ≤

 >

,  

( )very high

1 if 26.5
30.2 if 26.5 30.2

3.7

x
x x x

υ
<

= −
≤ ≤

 

3.2.4. Blood Pressure 
The range of blood pressure for heart disease for adult is [80 - 120]; this input 
has four linguistic values and their membership and non membership values are 
given below: 
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( )low

1 if 110
130 if 110 130

20

x
x x x

µ
<

= −
≤ ≤

,  

( )medium

122 if 122 135
13

1 if 135
151 if 135 151

16

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

( )high

138 if 138 145
8

1 if 148
176 if 146 176

30

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


,  

( )very high

144 if 144 174
30

1 if 174

x x
x

x
µ

− ≤ ≤= 
 >

 

Non membership values 

( )low

122 if 112 132
20

1 if 132

x x
x

x
υ

− ≤ ≤= 
 >

,  

( )medium

1 if 195
135 if 195 135

15.5
0 if 135

135 if 135 156
21

1 if 156

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >

 

( )high

1 if 132
148 if 132 148

16
0 if 148

148 if 148 178
30

1 if 178

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >

,  

( )very high

1 if 164.5
182.6 if 164.5 182.6

16.1

x
x x x

υ
<

= −
≤ ≤

 

3.2.5. 1) Cholesterol (Density Lipoprotein Cholesterol) 
The quantity of density lipoprotein cholesterol for adult for good heart is around 
[180 - 250 mg/deciliter]. The DLC input factor also categories into four parts 

( )low

1 if 149
192 if 149 192

43

x
x x x

µ
<

= −
≤ ≤

,  
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( )medium

180 if 180 210
30

1 if 210
245 if 210 245

35

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

( )high

222 if 222 260
38

1 if 260
302 if 260 302

42

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


,  

( )very high

275 if 275 340
65

1 if 340

x x
x

x
µ

− ≤ ≤= 
 >

 

Non membership values 

( )low

170 if 170 205
35

1 if 205

x x
x

x
υ

− ≤ ≤= 
 <

,  

( )medium

1 if 168
210 if 168 210

42
0 if 210

210 if 210 274
64

1 if 274

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − < ≤

 >

 

( )high

1 if 196
260 if 196 260

64
0 if 260

260 if 260 315
55

1 if 315

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − < ≤

 >

,  

( )very high

1 if 268
317 if 268 317

49

x
x x x

υ
<

= −
≤ ≤

 

3.2.5. 2) Cholesterol (Total) 
It has normal range for adult is [200 - 239 mg/deciliter]. The Total cholesterol 
also divided into four linguistic values with membership and non membership 
functions are shown below: 

( )low

1 if 160
180 if 160 180

20

x
x x x

µ
<

= −
≤ ≤

, ( )medium

170 if 170 195
25

1 if 195
220 if 195 220

25

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

https://doi.org/10.4236/am.2019.106032


N. Dhiman, M. K. Sharma 
 

 

DOI: 10.4236/am.2019.106032 460 Applied Mathematics 

 

( )very high

245 if 245 265
20

1 if 265

x x
x

x
µ

− ≤ ≤= 
 >

,  

( )high

215 if 215 236
21

1 if 236
250 if 236 250

14

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤


 

Non membership values 

( )low

172 if 172 192
20

1 if 192

x x
x

x
υ

− ≤ ≤= 
 >

,  

( )medium

1 if 168
195 if 168 195

27
0 if 195

195 if 195 230
35

1 if 230

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >

 

( )high

1 if 206
236 if 206 236

30
0 if 236

236 if 236 261
25

1 if 261

x
x x

x x
x x

x

υ

<
 − ≤ ≤

= =
 − ≤ ≤

 >

,  

( )very high

1 if 240
260 if 240 260

20

x
x x x

υ
<

= −
≤ ≤

 

3.2.6. Stress 
This parameter may be categorized into four categories. The four categories will 
be divided into low, medium, high and very high respectively with their mem-
bership and non membership values denoted as: 

( )low

1 if 10
14 if 10 14

4

x
x x x

µ
<

=  −
≤ ≤

, ( )medium

12 if 12 14
2

18 if 14 18
4

x x
x

x x
µ

− ≤ ≤=  − ≤ ≤


 

( )high

16 if 16 18
2

22 if 18 22
4

x x
x

x x
µ

− ≤ ≤=  − ≤ ≤


, ( )very high

24 if 20 24
4

1 if 24

x x
x

x
µ

− ≤ ≤= 
 >  

Non membership values 
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( )low

11 if 11 16
5

1 if 16

x x
x

x
υ

− ≤ ≤= 
 >

,  

( )medium

1 if 11
14 if 11 14

3
14 if 14 19

5
1

x
x x

x
x x

υ

<
 − ≤ ≤
=  − ≤ ≤




 

( )high

1 if 14
18 if 14 18

4
18 if 18 24

6
1 if 24

x
x x

x
x x

x

υ

<
 − ≤ ≤
=  − ≤ ≤

 >

,  

( )very high

1 if 18
22 if 18 22

4

x
x x x

υ
<

=  −
≤ ≤  

3.2.7. Weight 
This parameter may be categorized into three categories. The three categories 
are under weight, normal weight and overweight with membership and non 
membership values shown below as: 

( )under

1 if 40
60 if 40 60

20

x
x x x

µ
<

= −
≤ ≤

,  

( )normal

55 if 55 65
10

80 if 65 80
15

x x
x

x x
µ

− ≤ ≤=  − ≤ ≤


, ( )over

75 if 75 90
15

1 if 90

x x
x

x
µ

− ≤ ≤= 
 >

 

Non membership 

( )under

50 if 50 65
15

1 if 65

x x
x

x
υ

− ≤ ≤= 
 >

,  

( )normal

1 if 40
60 if 40 60

25
60 if 60 85

25

x
x xx

x x

υ

<
 − ≤ ≤= 
 − ≤ ≤


,  

( )over

1 if 70
95 if 70 95

25
0 if 95

x
xx x

x

υ

<
 −= ≤ ≤


>
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3.2.8. Diet 
This parameter may be categorized into two 2 linguistic values hygienic and un-
hygienic. 

3.2.9. Family History 
This parameter may be classified into two categories i.e. yes and No. If the pa-
tient this input also categories into two linguistic values yes (if patient have heart 
disease or stroke in his/her family) and no (if patient have no family history for 
heart disease). 

3.2.10. Smoking 
This parameter will be classified into two linguistic variable value smoker and 
non smoker.

  3.3. Fuzzy Rule Base 

From the inference developed by us for sugeno’s-TSK fuzzy controller by using 
the factors which we have used in our research paper, the total eight hundred 
eighty five rules will be formed. From the following eight hundred eighty five 
rules, we have taken fifty rules. The criterion for choosing fuzzy rules for our 
work is that the critical changes in the heart disease have been taken and the 
others not affecting more have been omitted. 

R1: IF Iodine is low and folic acid is medium THEN result is stage 2 
R2: IF iodine is medium and obesity is low THEN result is stage 2 
R3: IF iodine is medium and obesity is medium THEN result is stage 1 
R4: IF iodine is high and B.P is medium THEN result is stage 3 
R5: IF iodine is medium and cholesterol (total) is very high THEN result is 

stage 4 
R6: IF folic acid is low and obesity is high THEN result is stage 3 
R7: IF folic acid is medium and obesity is low THEN result is stage 2 
R8: IF folic acid is medium and B.P is medium THEN result is stage 1 
R9: IF folic acid is high and obesity is high THEN result is stage 3 
R10: IF folic acid is very high and obesity is low THEN result is stage 4 
R11: IF obesity is low and B.P is low THEN result is stage 2 
R12: IF obesity is medium and cholesterol (total) is medium THEN result is 

stage 1 
R13: IF obesity is high and diet is unhygienic THEN result is stage 3 
R14: IF obesity is very high and family history is yes/1 THEN result is stage 4 
R15: IF obesity is very high and cholesterol (dlc) is very high THEN result is 

stage 4  
R16: IF B.P is low and weight is under THEN result is stage 2 
R17: IF B.P is medium and diet is hygienic THEN result is stage 1 
R18: IF B.P is high and cholesterol (total) is high THEN result is stage 3 
R19: IF B.P is very high and folic acid is very high THEN result is stage 4 
R20: IF B.P is very high and iodine is high THEN result is stage 4 
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R21: IF cholesterol (dlc) is low and stress is low THEN result is stage 2 
R22: IF cholesterol (dlc) is medium and iodine is medium THEN result is stage 

1 
R23: IF cholesterol (dlc) is high and diet is unhygienic THEN result is stage 3 
R24: IF cholesterol (dlc) is high and weight is over THEN result is stage 3 
R25: IF cholesterol (dlc) is very high and family history is yes/1 THEN result is 

stage 4 
R26: IF cholesterol (total) is low and iodine is medium THEN result is stage 2 
R27: IF cholesterol (total) is medium and folic acid is medium THEN result is 

stage 1 
R28: IF cholesterol (total) is high and stress is high THEN result is stage 3 
R29: IF cholesterol (total) is very high and B.P is high THEN result is stage 4 
R30: IF cholesterol (total) is very high and diet is unhygienic THEN result is 

stage 4 
R31: IF stress is low and iodine is low THEN result is stage 2 
R32: IF stress is medium and folic acid is medium THEN result is stage 1 
R33: IF stress is high and iodine is low THEN result is stage 3 
R34: IF stress is high and weight is over THEN result is stage 3 
R35: IF stress is very high and diet is unhygienic THEN result is stage 4 
R36: IF diet is hygienic and B.P is medium THEN result is stage 1 
R37: IF diet is hygienic and weight is under THEN result is stage 2 
R38: IF diet is unhygienic and folic acid is high THEN result is stage 3 
R39: IF diet is unhygienic and cholesterol (dlc) is high THEN result is stage 3 
R40: IF diet is unhygienic and cholesterol (dlc) is very high THEN result is 

stage 4 
R41: IF weight is under and iodine is low THEN result is stage 2 
R42: IF weight is under and cholesterol (total) is normal THEN result is stage 2 
R43: IF weight is normal and B.P is medium THEN result is stage 1 
R44: IF weight is over and stress is high THEN result is stage 3 
R45: IF weight is over and folic acid is very high THEN result is stage 4 
R46: IF family history is yes/1 and cholesterol (dlc) is low THEN result is stage 

2 
R47: IF family history is yes/1 and weight is under THEN result is stage 2 
R48: IF family history is yes/1 and folic acid is high THEN result is stage 3 
R49: IF family history is yes/1 and B.P is very high THEN result is stage 4 
R50: IF family history is yes/1 and obesity is very high THEN result is stage 4 

3.4. Fuzzy Inference System 

The fuzzy inference system [10] is a popular computing framework based on the 
concept of fuzzy logic, fuzzy rule base system and fuzzy reasoning. The basic 
structure of the inference system consists of three conceptual components; a da-
tabase which defines the membership functions used in fuzzy rules, a rule base 
and a reasoning procedure. In the research paper we have constructed an Suge-
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no’s-TSK inference system based on the meditative fuzzy logic.  

4. Fuzzy Output Variables 

The last step of our proposed algorithm is to get the output in the fuzzy form. 
First we will obtain the aggregation of the factors and after getting aggregation 
of we will obtain the fuzzy form of our output. Then the output values obtained 
from the inference of the input in the form of fuzzy propositions can be classi-
fied into four categories. The four categories may be in the combination of 
qualified, unqualified, conditional and unconditional fuzzy propositions. In the 
four categories inference from input variables will be divided into four stages. 
The classification of the stages will be based on the stages to obtain the stages of 
risk to the patient which are namely classified as stage 1, stage 2, stage 3 and 
stage 4 and these will take values on the scaling from 1 to 5. Stage 1 patient con-
sidered as low risk for heart disease, Stage 2 denotes medium risk, stage 3 de-
note high risk and stage 4 denotes very high risk for heart disease to the patient. 
The functions for the output values are shown by using intuitionistic fuzzy 
numbers. 

For membership values 

( )stage1

1 if 1.35
2 if 1.35 2
0.65

x
x x x

µ
<

= −
≤ ≤

, ( )stage2

1.8 if 1.8 2.6
0.8

1 if 2.6
3.4 if 2.6 3.4

0.8

x x

x x
x x

µ

− ≤ ≤


= =
 − ≤ ≤

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0.7
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0.7

x x

x x
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0.4
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x x
x
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Non membership functions 
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5. Numerical Results and Interpretations 

Table 2. Results and interpretations.  

Rules Firing level Output Rules Firing level Output 

R1 1 2.6 R26 0.443831 2.589 

R2 0.25 2.55 R27 0.41 1.038 

R3 0.195 3.064 R28 0.3284 3.89416 

R4 0.194 3.7073 R29 0.4274 3.08616 

R5 0.2324 4.59 R30 0.16 3.2324 

R6 1 3.9 R31 1 2.6 

R7 0.3204 1.44524 R32 0.4744 1.8 

R8 0.4159 1.8599575 R33 0.25 3.9 

R9 0.2869 3.5255 R34 0.3031 3.9 

R10 0.027884 0.7822 R35 0.0625 2.7125 

R11 1 2.6 R36 0.1659 2.838 

R12 0.41 1.689 R37 0.2244 2.6 

R13 0.028 3.316 R38 0.1256 3.9 

R14 0.1369 3.03938 R39 0.0625 3.9 

R15 0.1476 4.235 R40 0.005776 2.251 

R16 1 2.6 R41 1 2.6 

R17 0.1659 2.118 R42 0.16 2.6 

R18 0.2351 3.9 R43 0.25 2.6 

R19 0.215389 2.54 R44 0.3301 3.9 

R20 0.2782 2.97 R45 0.128089 3.97 

R21 0.28 1.020625 R46 0.0784 2.528 

R22 0.3094 0.615 R47 1 2.6 

R23 0.676 3.9 R48 0.1156 3.9 

R24 0.5284 3.9 R49 0.2913 3.29568 

R25 0.5776 4.14152 R50 0.1369 3.73162 

6. Conclusion 

Fuzzy logic provides a platform to handle the uncertainty associated with human 
cognizance. The cognizance may be due to reasoning or thinking of the human 
being. But when the information may be incomplete, vague, fragmentarily relia-
ble that is not fully reliable, there exists contradictory remark about the informa-
tion then we are not in the position to deal it with fuzzy logic. In the present re-
search paper we will use the inference rule for fuzzy logic for conditional fuzzy 
proposition in the extended form of intuitionistic fuzzy logic for the input fac-
tors which have been shown in Table 1 (effects the heart diseases). That is for 
conditional and unqualified proposition the inference rule R is: if 1X  is 1A  
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and 2X  is 2A  then Y is B. In this present paper we have evaluated the firing 
level and output which have been shown in Table 2 with a rule which included 
two inputs, so for the meditative fuzzy logic. In the present research paper we 
have also shown the superiority of meditative fuzzy logic on the previous tradi-
tional and intuitional logics. In the present paper we have extended and im-
proved the system by using Sugeno’s-TSK model with the help of meditative 
fuzzy logic. On the basis of output we can categorize the risk stages. The output 
of the reasoning system corresponds to the category of sickness.  
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Abstract 

An infinitely long circular cylinder, consisting generally of a finite number of 
coaxial viscoelastic layers, surrounded by a deformable medium is consi-
dered. The dynamic stress—the deformed state of a piecewise-homogeneous 
cylindrical layer from a harmonic wave is investigated. The numerical results 
of stress, depending on the wavelength are obtained. 
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1. Introduction 

During seismic impacts, modern underground pipelines operate under condi-
tions of not only static but also dynamic loads, which are accompanied by large 
damage and even failure of the whole system [1]-[6]. In the case of a sufficiently 
long cavity, the impact perpendicular to its longitudinal axis, the environment 
surrounding the cavity and the lining are in conditions of plane deformation, 
and the task of determining the stress state of the array and lining reduces to a 
flat problem of the dynamic theory of elasticity (and whether visco-elasticity) [7] 
[8] [9] [10]. In [11], the problem of stress concentration in an infinite linearly 
elastic cavity near a circular cavity with the propagation of longitudinal har-
monic waves was solved. The solution of the diffraction problem for a harmonic 
transverse wave was obtained in [12]. This paper investigates the interaction of 
cylindrical stress waves with a cylinder, which in the general case consists of a fi-
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nite number of coaxial viscoelastic layers. Due to the fact that long-term seismic 
waves, as a rule, exceed the characteristic dimensions of the cross section designs 
(for example, diameter D), therefore, when solving diffraction problems, 

it is necessary to consider long-wave effects ( 1D
λ
< , λ  is the wavelength). 

With longer wavelengths ( 0.04 0.16D
λ
= ÷ ) maximum coefficients of dynamic 

concentrations turned out to be 5% - 10% more than with the corresponding bi-

axial static loaded ( λ →∞ ) [13]. At 0.16D
λ
>  dynamic stress concentrations 

are significantly lower than static. In [14], it was shown that the difference in 
dynamic stress concentrations in the case of a rigid inclusion and cavity can be 
attributed to the possibility of propagation of generalized Rayleigh-type waves 
on a concave free cylindrical surface of the cavity. A significant contribution to 
the calculation of flexible pipelines was made in [15] [16], which investigated 
such important issues as accounting without a backing zone and determining the 
stability of underground pipelines. There are a large number of authors who 
have applications in other branches of technology who can be successfully ap-
plied to the calculation of underground pipelines. These works are devoted to 
the study of the stress distribution in plastic, weakened by a reinforced bore, op-
erating under plane strain conditions. The most significant research in this area 
can be attributed to the work that solved the problem in stretching a plate in 
which a ring is embedded or soldered. 

2. Problem Statement and Basic Relations 

In this paper, the interaction of a cylindrical stress wave by parallel-layered elas-
tic layers with a liquid is investigated. It is assumed that the linear source in Fig-
ure 1 is a continuous source of dilatation (or transverse) stress waves with an 
angular velocity ω and amplitude 0ϕ  (or 0ψ ), and the layered package is a 
thick-walled and thin-walled layers of the cylinder. In describing the movement 
of thin-walled elements, the equations of the theory of such shells are used, 
which are based on the Kirchhoff-Love hypotheses. For thin-walled layers, the 
original equations are the linear theory of elasticity. The numbering of the layers 
is the product in ascending order of their radii from k = 1 to k = N (Figure 1). 
The value characterizing the properties and the state of the elements correspond 
to the values 1,2, ,j N=  , where K is the elastic layer enclosed between K-1 
and K-m layers. The environmental parameters are denoted by the indices K = N 
(Figure 1). Under the assumption of a generalized plane-deformed state, the 
equation of motion in displacements has the form [1] 

( ) ( )( ) ( )( )
2

22 .j
j j j j j jgrad div rot rot

t
λ µ µ ρ

∂
+ − + =

∂

u
u u b

          (1) 

where jλ  and jµ  ( 1,2, ,j N=  , j N= —relate to the environment, 
1,2, , 1j N= − —to layer) operator moduli of elasticity [13] 
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Figure 1. The design scheme of layered cylindrical bodies in a deformable medium. 
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jb —Volume force density vector ( 0jb = ); ( )f t —some function; jρ
—density of materials, ( ) ( )iR tµ τ−  and ( ) ( )iR tλ τ− —relaxation core, ,oj ojλ µ
—instantaneous elastic moduli of viscoelastic material, ( ),j rj ju uθu —displacement 
vector which depends on , ,r tθ . At pressures up to 100 MPa, the movement of 
the fluid in is satisfactorily described by the wave velocity of the particle particles 
[14] 

2
0

0 2 2

1

оС t
ϕ

ϕ
∂

∆ =
∂

.                         (2) 

where 
2 2

2 2 2

d d d
dd dr rr r θ

∆ = + + ; Со—acoustic velocity of sound in a fluid. Poten-

tial 0ϕ  and the fluid velocity vector are dependent 0gradϕ=V . Fluid pressure 

0r R=  is determined using the linearized Cauchy-Lagrange integral 

0
0

оР С
t

ρ
ϕ∂

= −
∂

—fluid pressure on the wall of the cylindrical layer and ρо-fluid 

density Under the condition of continuous flow of fluid, the normal component 
of the velocity of the fluid and the layer on the surface of their contact r = R0 
must be equal  

00

0 1r

r Rr R

u
r t
ϕ

==

∂ ∂
=

∂ ∂
.                     (3) 

where 1ru —moving the layer along the normal. On the contact of two bodies r 
= Rj equal displacements and stresses (fixed contact condition)  

( ) ( ) ( ) ( )1 1 1 1; ; ;rj rrj j r jr j rr j j r ju u u uθ θθ θσ σ σ σ+ + + += = = =            (4) 

111 NNNE ργ 111 −−− NNNE ργ
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Note that in the case of sliding ground contact over the pipe surface, the last 
Equation in (4) takes the form [16]:  

0r jθσ = . 

where ( )j
nnσ  and ( )

1

j
nsσ —radial and tangential stresses in the j-th viscoelastic 

body; ( )j
nu  and ( )

1

j
su —radial and tangential displacement of the j-th body. The 

solution of the wave Equation (1) in the displacement potentials satisfies at in-
finity r →∞  the Summerfield radiation condition [14]: 

( )lim 0, lim 0
к

N
N N Nr r

r i
r
ϕ

ϕ α ϕ
→∞ →∞

∂ = + = ∂ 
,              (5) 

( )lim 0, lim 0
к

N
N N Nr r

r i
r
ψ

ψ β ψ
→∞ →∞

∂ = + = ∂ 
. 

As r →∞ , natural oscillations by the first and third conditions (5) are not 
fulfilled, therefore, the shortened Sommerfeld conditions at infinity are set, 
which in detail in [14] was considered.  

If in place the equation of motion (1) is used cylindrical shells, then the equa-
tion of motion of shells in a flat formulation is: 

2 2

12

4 2 2
2

24 22

u W R X
B

u W V Rb W W X
B

θθ

θ θ θ

∂ ∂
+ = −
∂∂
 ∂ ∂ ∂

+ + + + = ∂ ∂ ∂ 

                (6) 

where u and W- longitudinal and transverse displacements respectively:  

00

2 2

1 22 222
; ;

ccr c c rr c cr R hr R h
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12 1
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h E h
b B
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−
 

Shell radius 0R , cρ —shell density, cν —shells Puasson ratio, ch —shell 
thickness, cE —shell elastic modulus, rrσ  and rθσ —normal and tangent 
components of the reaction from the environment.  

The contact between the shell and the environment can be hard or sliding: 

0 0 002 2 22
,

c c cc rr R h r R h r R hr R hu u W uθ= + = + = += +
= =         (7) 

Consider a longitudinal wave generated by a longitudinal source of expansion 
waves located at О  (Figure 1). The displacement potentials of the incident 
expansion wave can be represented as [15]  

 
( ) ( )1
0π eР i t

N NO Ni H r ωαϕ ϕ −= .                (8) 

where ( )1
0H —is the divergent functions of Henkel (the first kind of zero order); 

NOϕ —expansion wave amplitude; Nα —compression wave number; 
2 2 2
N cαα ω= , ( )2 2N N Ncα λ µ ρ= + , ω—circular frequency. In the absence of an 
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incident wave (6), the natural oscillations of a reinforced bore located in a vis-
coelastic medium are considered. 

3. Solution Methods  

The problem is solved in displacement potentials, for this we present the dis-
placement vector in the form: 

( ) ( ) ( ), 1, 2, ,j j jgrad rot j Nϕ= + =u ψ  

where jϕ —longitudinal wave potential; ( ),j rj jθψ ψψ —vector potential of 
transverse waves. 

The basic equations of the theory of visco elasticity (1) for this problem of 
plane strain are reduced to the following equation 

( ) ( ) ( )

( ) ( )

2 2

2
2

2

2 d

2 d

t
j

oj oj j oj j

t
jj

oj j j

R t

R t
t

λ

µ

λ µ ϕ λ τ ϕ τ

ϕ
µ τ ϕ τ ρ

−∞

−∞

+ ∇ − − ∇

∂
− − ∇ =

∂

∫

∫
 

( ) ( )
2

2 2
2d

t
jj

oj j oj j jR t
tµµ µ τ τ ρ

−∞

∂
∇ − − ∇ =

∂∫
ψ

ψ ψ             (9) 

where 
2 2

2
2 2 2

1 1
r rr r θ

∂ ∂ ∂
∇ = + + +

∂∂ ∂
—differential operators in cylindrical coor-

dinates and jv — Poisson’s ratio. 

At infinity, r →∞  potentials of longitudinal and transverse waves with 
j N=  satisfy the Summerfield radiation condition (5). 

The solution of Equation (9) can be sought in the form: 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, , , e ; , , , e .i t i t
j kj j kj

k k
r t q r r t q rϕ ψω ωθ θ ψϕ θ θ

∞ ∞
− −

= =

= =∑ ∑  (10) 

where ( ) ( ),kjq rϕ θ  and ( ) ( ),kjq rψ θ —complex function which is solving the fol-
lowing Equations (10) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 0, , 0,kj j kj kj j kjq r q q r qϕ ϕ ψ ψθ α θ β∇ + = ∇ + =  

( ) ( ) ( )2 2
0 0 0, 0, 1, 2, ,k kq r q j Nϕ ϕθ α∇ + = =                (11) 

where 
( ) ( )

2
2

1 2 1j
oj oj oj oj

ρωα
λ λ µ µ

=
− + −

, 
( )

2
2

1j
oj oj

ρωβ
µ µ

=
−

, 
2

2
0 2

0С
ωα =  

( ) ( )oj j ja ibλ λλ ω ω= + , ( ) ( )oj ja ibλµ µµ ω ω= + , 

( ) ( ) ( )
0

sin dj ja Rλ λω τ ωτ τ
∞

= ∫ , ( ) ( ) ( )
0

cos dj jb Rλ µω τ ωτ τ
∞

= ∫ . 

The solution of Equation (9) with regard to (11) is expressed in terms of 
Henkel functions of the 1st and 2-nd kind of the nth order: 

( ) ( ) ( ) ( ) ( )1 2

0
cos e i t

j nj n j nj n j
n

A H r A H r n ωφ α α θ
∞

−

=

 ′= + ∑  
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( ) ( ) ( ) ( ) ( )1 2

0
sin e ; 1,2, , 1i t

j nj n j nj n j
n

B H r B H r n j Nωψ β β θ
∞

−

=

 ′= + = − ∑   

( ) ( ) ( ) ( ) ( )1 2

0
cos e i t

N nN n N nN n N
n

C H r D H r n ωφ α α θ
∞

−

=

 = + ∑         (12) 

( ) ( ) ( ) ( ) ( )1 2

0
sin e i t

N nN n N nN n N
n

M H r L H r n ωψ β β θ
∞

−

=

 = + ∑
 

( ) ( ) ( )0 0 0 0 0
0

cos e i t
n n n n

n
K J r K N r n ωφ α α θ

∞
−

=

′ = + ∑
 

where , , , , , , , ,nj nj nj nj nj nj nN nN nNA A B B C D L M K′ ′  and nNK ′ —decomposition coef-
ficients, which are determined by the corresponding boundary conditions; 

( ) ( )1
n jH rα  and ( ) ( )2

n jH rα —respectively, the Henkel function of the 1st and 

2nd kind of the nth order ( ) ( ) ( ) ( ) ( )1 , 2
n n nH r J r iN rα α α= ± .  

Solution (12) with j N=  satisfies at infinity r →∞  the Somerfield radia-
tion condition (5) and is represented as: 

( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

cos e ;

sin e .

i t
N nN п N

т

i t
N nN п N

т

C Н r m

M H r n

ω

ω

φ α θ

ψ β θ

∞
−

=

∞
−

=

=

=

∑

∑
 

Solving problem (2) with 0r →  satisfies the condition of limiting the force 
factors [10] and it follows that 0nK ′ =  

( ) ( )0 0 0
0

cos e i t
n n

n
K J r n ωφ α θ

∞
−

=

= ∑  

The full potential can be determined by imposing the potentials of the inci-
dent and reflected waves. Thus, the displacement potentials will be  

( )
0 0, , , ,p

N N N N N j j j jφ ψ φϕ ϕ ϕ ψ φ ϕ= + Ψ = = Ψ = =         (13) 

To determine the stress-strain state, it is first necessary to express the incident 
wave through wave functions (13). Using the geometric construction in Figure 1 
and moving from the coordinates θ,r  to coordinates θ,r  in the area of 

Nrr ≤  

( ) ( ) ( ) ( ) ( ) ( )1
0

1
π 1 cos enp i t

N n n N n N
n

i Е J r H z n ωφ φ α α θ
∞

−

=

 = − ∑ . 

where 
1, 0
2, 1n

n
E

n
=

=  ≥
, nJ —cylindrical Bessel function of the first kind. 

It follows that voltages and offsets can easily be expressed in terms of dis-
placement potentials [15] 

1 1; ,j j j j
rj ju u

r r r rθ

ϕ ψ ϕ ψ
θ θ

∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂
              (14) 

2
2

2

12 ;j j
rrj j j r rr

φ ψ
σ λ φ µ

θ

∂ ∂  ∂
= ∇ + +  ∂ ∂∂   
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2 2
2

2

2 2

2 2 2

1 1 1 12 ;

1 1 1 12

j j j j
j j j

j j j j
r j

r r r r r r

r
r r r r rr r

θθ

θ

φ φ ψ ψ
σ λ φ µ

θ θθ

φ φ ψ ψ
σ µ

θ θ θ

    ∂ ∂ ∂ ∂
= ∇ + + + −       ∂ ∂ ∂ ∂∂      

    ∂ ∂ ∂ ∂ ∂ = − + −     ∂ ∂ ∂ ∂ ∂∂         

 

Displacement and stresses for the case of a compression wave falling on a 
layer ψ  it turns out. 

Substituting (13) into (14) after considering (11), we obtain the following ex-
pression for displacement and stress: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 31
0 51 51

0

3
52 cos e

N Nn
rN n N nN N

n

N i t
nN N

u r E i E r C E r

M E r n ω

φ α α

β θ

∞
−

=

= +

+ 

∑
 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 31
0 61 61

0

3
62 cos e

N Nn
N n N nN N

n

N i t
nN N

u r E i E r C E r

M E r n

θ

ω

φ α α

β θ

∞
−

=

−

= +

+ 

∑
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 41 1
51 61

0

3 41
52 52 cos e

j j
rj nj j nj j

n

j j i t
nj j n

u r A E r A E r

B E r B E n ω

α α

β θ

∞
−

=

−

= +

+ + 

∑

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

3 4 31 1
61 61 62

0

41
62 sin e

j j j
j nj j nj j nj j

n

j i t
n j j

u r A E r A E r B E r

B E r n

θ

ω

α α β

β θ

∞
−

=

−

= + +

+ 

∑
      (15) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 32
0 0 11 11

0

3
12

2 1

cos e

N Nn
rrN N kN n N nN N

n

N i t
nN N

M r E i E r C E r

M E r n ω

σ µ φ α α

β θ

∞
−

=

−

= − +

+ 

∑

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 32
0 0 21 21

0

3
22

2 1

cos e

N Nn
N N kN n N nN N

n

N i t
nN N

M r E i E r C E r

M E r n

θθ

ω

σ µ φ α α

β θ

∞
−

=

−

= − +

+ 

∑

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 32
0 0 41 41

0

3
42

2 1

sin e

N Nn
r N N kN n N nN N

n

N i t
nN N

M r E i E r C E r

M E r n

θ

ω

σ µ φ α α

β θ

∞
−

=

−

= − +

+ 

∑
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 42 1
0 11 11

0

3 41
12 11

2 1

cos e

j j
rrj j kj nj j n j j

n

j j i t
nj j nj j

M r A E r A E r

B E r B E r n ω

σ µ α α

β β θ

∞
−

=

−

= − +

+ + 

∑
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 42 1
0 21 21

0

3 41
22 22

2 1

cos e

j j
j j kj nj j nj j

n

j j i t
nj j nj j

M r A E r A E r

B E r B E r n

θθ

ω

σ µ α α

β β θ

∞
−

=

−

= − +

+ + 

∑
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 42 1
0 51 61

0

3 41
52 52

2 1

sin e

j j
r j j kj nj j nj j

n

j j i t
nj j nj j

M r A E r A E r

B E r B E r n

θ

ω

σ µ α α

β β θ

∞
−

=

−

= − +

+ + 

∑

 
where 

( ) ( ) ( ) ( ) ( )
2 2

2
11 12

jkj kj kj
n j j n j

r
E n n Y r rY r

β
α α α−

 
= + − −  
 

 

( ) ( ) ( ) ( ) ( ) ( )12 11kj kj kj
n j j n jE n n Y r rY rβ β β−

 = + +   

( ) ( ) ( ) ( ) ( )
2 2

2 2 2
21 12

jkj kj kj
j n j j n j

r
E n n r Y r rY r

β
α α α α−

 
= − + + − +  

   
( ) ( ) ( ) ( ) ( ) ( )22 1kj kj kj

j n j n jE n rY r n Y rβ β β = − +   

( ) ( ) ( )
2 2

2 2
31 2

jkj kj
j n j

r
E r Y r

β
α α
 

= −  
   

( ) ( ) ( ) ( ) ( ) ( )41 11kj kj kj
n j j n jE n n Y r rY rα α α−

 = + −   

( ) ( ) ( ) ( ) ( )
2 2

2
42 12

jkj kj kj
n j j n j

r
E n n Y r rH r

β
β β β−

 
= − + − +  

   
( ) ( ) ( ) ( ) ( )51 1
kj kj kj

j n j n jE rY r nY rα α α−
 = −   

( ) ( ) ( )52
kj kj

n jE nY rβ= −
 

( ) ( ) ( )61
kj kj

n jE nY rα= −
 

( ) ( ) ( ) ( ) ( )62 1 , 1, 2,3, 4kj kj kj
n j j n jE nY r rY r kβ β β−

 = − =   
where ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 4 2, , ,j j j j

n n n n n n n nY J Y N Y H Y H= = = = . 

The construction of a formal solution does not meet fundamental difficulties, 
but the study of such a solution requires a huge amount of computation. The 
tasks are reduced to solving inhomogeneous algebraic equations with complex 
coefficients 

[ ]{ } { }C q p= .                          (16) 

where {q} is a vector column containing arbitrary constants; {F}—vector column 
of external loads; [C] is a square matrix, the elements of which are expressed 
through the functions of Bessel and Henkel. Equation (13) is solved by the Gauss 
method with the selection of the main element. In the work of movement and 
stress is reduced in dimensionless types  

* * *

0

* 2
0

0

; ; ;

; .

rj j rrj
rj j rrj

A A

r j
r j A

u u
u u

i i
θ

θ

θ
θ

σ
σ

αϕ αϕ σ
σ

σ σ µβ ϕ
σ

= = =

= = −
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In the case when 1 2 NE E E= = = , 1 2 Nρ ρ ρ= = =  and  

1 2 Nν ν ν= = = , we get holes (r = R0) that are in infinitely elastic medium 
( ( ) 0Naλ ω = , ( ) 0Nbλ ω = ). The boundary (r = R0) is stress free, i.e. no liquid. In 
this case, the circumferential voltage on the surface of the cavity is reduced to 
the following: 

( ) ( ) ( ) ( ) ( )12
0 2

0

4 1, , 1 1 cos e ,
π

n i t
N N N n n N nN

n
R t H Z T n

k
ω

θθσ θ β µ φ α θ
∞

−

=

−  = − − ∈ 
 

∑  (17) 

where 

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1

13 2 2 2 2 2 2 2
1

1 12 2 2 2
1

2 2 2

1 1
2 4

11
2

.

nN nN N N N n N N n N N nN N N

N N N N n N N N N N N n N N

nN N N

N N n N N N N n N N

N pN SN

Т Т R R H R H R Q R

n n R R H R n n R R H R
Q R

n R H R n n R H R

k C C

α α α β

β β β β β β
β

β β β β

−

− −

−

−

 = = − + 
   − + − + −   
   =

 − − − + 
 

=

 

Now consider some limiting cases. 
With 0r → : 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }

2
1 , 2 4

0 0

2
1 , 2 2 4

0

2 2ln 1 ln 0 ln ,
π 2 π

1 ! ! 0 .
π 2

r

т r

i zH z z i z z z

i zH z n n z z

→

→

   = ± − − +   
   

 = − + + 
 



 

And r →∞ : ( ) ( ) ( ) ( )
1 2

1 , 2 π 42 e
π

i kz
тH z

z
± − =  

 
, the asymptotic formulas of 

Hankel of the 1st and 2nd kind were used [17]. If in expression (17) Z tends to 
infinity, then we can use the asymptotic expansions of the Henkel function for 
large values of the argument [17] (α- is a finite) 

( )1
2

0

4 1lim 1 cos e
4N

n i t
n nNr RZ nN

i E T n
k

ω
θθσ θ

∞
∗ + −

=→∞ =

 
≈ − 

 
∑          (18) 

This expression completely coincides with the expressions obtained by [17] 
for a plane incident wave. If the wave number tends to zero, then the limiting 
process describes static solutions for long waves. This limiting process allows us 
to use approximating expressions for the Henkel functions for small values of 
the argument (Z is finite) 

( ) ( ) ( )

1

2

0

2
2

2

4lim 4 1 cos

1 1 cos

N
r R

m
m N

m

R
Z Z

R
m m

Z

θθα
σ θ

θ

=→

−∞
−

=

  ≈ + +  
   

 ∗ − − − 
 

∑        (19) 

This solution exactly coincides with the solution of the static problem ob-
tained in [18]. If the cylindrical cavity contains an ideal fluid, then the ring 
stresses take the form 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 2 4 4
2 2

2
0

2 3
2 2

0

3 2 2 2
0 12

3 2 2
02

4 1 1 1 1
π 2 4

11
4 2

1 11
4

1 11
2

n
n N N

n n N

N
N n n N

N N n n N
N

N n
N

i n R R
n n n n

R
n n R I R H R

n n n n R RI R H R

n n R RI

θθ
β β

σ
χ

β
η β α β

β β α β
χ

β α
χ

+∞
∗

=

−

  ∈ = − − − − − −  
∆   

 + + −  
 

  
+ − − − −  
   
  + − − +  

  

∑

( ) ( )

( ) ( ) ( ) ( )

1 0

2 2 2
0 1 0 12

1 1 1 cos e

n N

i t
N n n N

N

R H R

n R I R H R n ω

α β

α β α β θ
χ

−

−
− −

  + − −  
  

 

where 
( ) 2

2 1
2

2 1
;

1 2
N N

N
N NN

v
v

β ρ
χ η

ρα
−

= = =
−

. At 1 0Rα → , then it turns out the solu-

tion of a static problem  

( ) ( ) ( )11

1 1

2 11; 1 2 4 cos 2 .
1

N
rr N

N N N

v
v

vθθ

λλ
σ σ θ

λ µ λ µ
∗ ∗

  −
= = − − −   + − +   

 

In the limiting processes in expressions (15) and (16) is described by physical 
results, is given in Table 1. The stress concentration coefficient Nθθσ ∗  is deter-
mined by the following formulas 

( )
N

N

r R
pr R

θθ
θθ

θθ

σ
σ

σ
=∗

=
= .                      (20) 

where ( ) ( ) ( ) ( ) ( ) ( )1 12 2
0 2 01 ep i ti H r k H r ω

θθσ ϕ µα ϕµ α α − = π π + −  .  
If we take the fluid into account, then using (2), (3) and (15) we can determine 

the corresponding stresses rr Nσ ∗  and Nθθσ ∗ . In the absence of an incident wave 
(6), the natural oscillations of an unsupported (or reinforced) hole located in the 
medium are considered. 

At the boundary r = R, we set a voltage-free condition, i.e.  

0rr rr a r aθσ σ
= =
= = .                     (21) 

Substituting (12) into (21), we obtain the frequency equation  

1 2 2 1 0n n n nZ X Z X+ = .                     (22) 

where  
( ) ( ) ( ) ( ) ( )1 11 2

1 0 1 2 1 0 0 ;n n o n oX H a d H+= Ω Ω + − Ω Ω  

( ) ( ) ( ) ( ) ( )1 1
2 1 1 1 11 ;n n nX n n H H +

 = − Ω −Ω Ω   

( ) ( ) ( ) ( ) ( )1 1
1 11 ;n n o o n oZ n n H H +

 = − Ω −Ω Ω   

( ) ( ) ( ) ( ) ( )1 11 2
2 2 1 1 1 1 12 ;n n n nZ a H H += −Ω Ω +Ω Ω

 
( ) ( ) 2 1 2

1 1 1 2 2 1 11 1 2 ; ; ; ;n n od v v a n a n n L= − − = = − Ω = Ω  
( ) ( )( )1 1 1 1 11 2 2 1 ; pl v v a Cω= − − Ω =
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Table 1. Information on limiting processes. 

Case 1 Case 2 Case 3 Case 4 

{ }lim
r RZ θθσ ∗

=→∞
 

α - arbitrary 

{ }
0

lim
r Rθθα

σ ∗

=→
 

z- of course 

{ }
0

lim
r RZ θθσ
=→

 

0α →  
{ }0

lim lim
r r R

θθα
σ

→ →∞ =
 

α - of course 

Dynamic solution  
for a plane wave. 

Static solution,  
linear source of  

expansion waves. 

Static solution, pure 
shear state. 

The static problem  
of the flat deformed state. 

 
Frequency Equation (22) is solved numerically, i.e. Muller method. The com-

plex eigenfrequencies ( ), 1, 2,3nj jω =  are given 0n ≥  ( )1 0.25v =  in Table 2. 
In the table of the first column correspond the complex frequency 01ω , second 

11ω , third 21 22 23, ,ω ω ω  and fourth, columns 31 32 33, ,ω ω ω . 
The partial equation, for differential Equations (6), under the condition of a 

sliding contact, takes the form: 

( ) ( )2 1 1 2 2 2

1 2

0n o o n n o o n

n n

h Y Z X h Y Z Z
Z X

− Ω − Ω
=            (23) 

where 
( ) ( ) ( ) ( )1 1

2 1 1 1 1 1; ;o n n nh h R Y nH H += = Ω −Ω Ω  

( ) ( ) ( ) ( ) ( )1 1
11 ;jn n j j n jZ n n H H +

 = − Ω +Ω Ω   

( ) ( ) ( ) ( ) ( )1 12 1
1 1 1 2 1 1 1 1 ;n n n nX d H Hα += − Ω + Ω +Ω Ω

 

( ) ( ) ( ) ( ) ( )1 11 2
2 2 2 2 2 1 22 ;n n n nX H Hα += −Ω Ω +Ω Ω

 
( ) ( )1

2 2 , 1, 2n nY nH j= Ω =  

( )2 2
2 1 1 11 ; 1 1; ;o nv v b n aα α= − = − + Ω =

 

( )2 1 1 1 1 0; ; ;s o o o oC C R a Cρβ α α α ωΩ = = Ω Ω = =
 

( ) ( )( )2 2 2 2
1 1 0 112 ; 1 1 ;ob h R b E v E v= = − +

 

( )1 2 2
2 1; 1 ;n o o oa n E h vβ= = −

 

o o oC E ρ= —Rod wave velocity 

( ) ( ) ( )2 2 2
1 0 2 1 0 2 2o o n nZ b v a n v a Ω = Ω − − Ω −            (24) 

In this case, we obtain asymmetric vibrations of the cylindrical shell, which 
are described by the expression 

( ) ( ) ( ) ( ) ( )1 12
2 0 2 01 1 1 1 1 1 1 1 0oh v a b b d H HΩ − + − Ω Ω Ω = .       (25) 

where ( )( ) ( )1 1 1 1 1 1; 1 1 2 1oL L E v v vηΩ = Ω = + − −  (the index “0” corresponds to 
the shell, and “1” to the environment). If we use the asymptotic expression of the 
Henkel function with 1 1l  , then for the zero and first order we obtain the ex-
pression of the complex natural frequencies 
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Table 2. The dependence of the complex natural frequencies of the cylindrical hole. 

 n = 0 n = 1 n = 2 n = 3 

1ω  
0.4529D+00 

−i0.47651D+00 
0.10927D+01 

−i0.76538D+00 
0.19075D+01 

−i0.89782D+00 
0.27565D+01 

−i0.99155D+00 

2ω    
0.28621D+00 

−i0.17852D+00 
0.72325D+01 

−i0.32283D+01 

3ω    
0.404607D+00 

−i0.178552D+00 
0.12307D+00 

−i0.22283D+00 

 
2

011 1 1 1 1 1 1

2 2 2 2 2 2 22o
ab d l d d l bi

h v v h v h v

  
 Ω = − + − +     

           (26) 

To obtain complex and imaginary natural frequencies, the following condition 
must be met 

( ) ( ) ( )
( ) ( ) ( )

2
01 1 1 2 2 1 1 1 2 2

2
01 1 1 2 2 1 1 1 2 2

if

if
R I

I

i a v b h v d l b h v

a v b h v d l b h v

Ω + Ω > +Ω = 
Ω > +

           (27) 

To fulfill the first condition, the modulus of elasticity E must satisfy the in-
equality  

( )( ) ( ) ( )( ) ( )
1 112 2 2

1 2 2 1 1 01 1 1 1 2 1E v b h h v v vη
− −−> + + + − − −        (28) 

A similar condition is set for η: 

( )( ) ( )( ) ( )1 1
2 1 1 2 01 1 1 11 2 1 1 1 2 1oh v v h a v v E Eη − − < − − + − −   

The numerical values of asymmetric Ω  (n = 0) natural frequencies are given 
in Table 3 for different values of E(Е1/E0). 

4. Numeric Results  

For given incident wave, voltage and displacement are determined by the rows 
described by expressions (12) - (17) in the case of hard contact. The calculations 
were performed on the Mat lab computer program complex; the series were cal-
culated with an accuracy of 10−8. All expressions for stresses and displacements 
are:  

( ) ( ) ( )1 22 2Im e Im e i wtiwtR i R γ− −−+ = + .                (29) 

As can be seen, the solution of the problem is expressed through the special 
functions of the Bessel and Henkel of the 1st and 2nd kind. With the increase in 
their argument, the series (12) - (17) converges. Therefore, on the basis of nu-
merical experiments, it has been established that the accuracy of 5 - 6 members  
of the series has reached 10−6 - 10−8. As the relaxation core of a viscoelastic ma-

terial, let’s take a three-parameter core ( ) 1

e tAR t
t

β

α

−

−=  Rizhanitsen-Koltunova  

[19], which has a weak singularity, where , ,A α β —parameters materials [19].  
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Table 3. The dependence of the complex natural frequencies of ax symmetric vibrations 
of cylindrical shells on E.  

ω  E = 0.03 E = 0.09 E = 0.12 E = 0.15 E = 0.25 

01ω  
1.3308D-01 

−i1.9767D-02 
2.3976D-01 

−i4.5891D-02 
3.2670D-01 

−i6.1776D-02 
4.1665D-01 

−i7.9394D-02 
1.5270D-12 

−i1.3691D-01 

 
Take the following parameters: 0.048; 0.05; 0.1A β α= = = . To study the stress 
concentration on the free surface, we use the absolute values of the complex val-
ue and relations (18) and (19). The magnitude of the complex function depends 
on the wave number α, angle θ distances r , Poisson’s ratio, Young’s module, 
densities, geometrical parameters R and Z. If all the characteristics (Figure 1) of 
the mechanical system are the same ( 1 2 nЕ Е Е= = = ; 1 2 nρ ρ ρ= = = ;

1 2 3 nν ν ν ν= = = = ), then the problem of the interaction of cylindrical waves 
with cylindrical cavities is considered. Figure 2 shows the plot of the stress con-
centration factor 

Nr Rθθσ ∗

=
 depending on θ at  

0.048; 0.05; 0.1; 0.25; 3.0,30,50, 0.1ZA R
R

β α ν α= = = = = = . 

Figure 2 shows that the influence of the proximity of the source lies in mov-
ing the maximum value to the point where the line drawn from the source 
touches the boundary of the cavity. 

For the stress concentration coefficients, we will use the absolute value of the 

complex value (21). Figure 3 shows the change 
Nr Rθθσ ∗

=
 depending on the 

wave number at different values 6.0;12;20Z
R
= , which quickly aim for a solu-

tion for a plane wave when 0.16Rα  . This means that when the source is at a  
distance of five radii from the cavity, the high frequency nature of the change 

θθσ ∗  can be approximated by a solution for a plane wave. Further, all values ap-
proach the same asymptote. The largest difference between the solution for a 
plane wave ( Z →∞ ) and the solution under consideration is in the 
0 0.22Rα≤ ≤ . Легко видеть, что когда 0Rα → , dynamic solution for the 
case of a plane wave is reduced to a static value ( 0.25, π 2ν θ= = ), i.e.

2.67θθσ ∗ = .  
A similar but more pronounced change is noted for θθσ ∗  at ( πθ = ) (Figure 

4). When 1.0Rα ≥ , solution for dynamic source with values 5.0;10;20Z
R
=

  
again reduced to a solution for a plane wave. When Z/R = 2 (Figure 3) the dy-
namic concentration curve differs from static to 15%. When 2.0Rα =  Static 
and dynamic stress state results are radically different at close source distances 
(Z/R = 2). With R/Z > 50 the impact of the cylindrical source unfolds as a plane 
wave, i.e. you can ignore the radius of curvature of the wave. Similar results were 
obtained for a cylindrical cavity with an ideal fluid [20]. The results of the calcu-
lations are shown in Figure 5. It can be seen from the figure that the voltage  
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values strongly depend on the parameter 1

2

р

р

С
С

γ = . And also there is a resonant  

phenomenon. Calculation results 0n ≥  ( 1 0.25v = ) natural oscillations are 
shown in Table 2. As the table shows, with the increase in the number of waves 
around the circumference, the corresponding complex frequencies increase. 

The complex frequencies consist of two parts, the real ( ReΩ ) and imaginary 
parts ( ImΩ ) which means natural frequencies and damping factors. Frequency 
equations (23) depends only on the parameter ν  (Poisson’s ratio). With in-
creasing Poisson’s ratio within 0 0.4ν≤ ≤  real and imaginary parts of the 
complex frequency changes to 27%. With 1 0.5ν =  the environment becomes 
incompressible, the attenuation is naturally absent. The existence of an imagi-
nary value of the natural frequency means that the oscillatory processes in the 
system are only damped. The imaginary natural frequencies turn out to depend 
on the longitudinal and transverse speeds, as well as the whole radius. 

 

 

Figure 2. Effect of source proximity on voltages θθσ ∗  depending on the ( )0.1Rθ α =  

at different values of 3;30;50.Z
R
=   

 

 

Figure 3. θθσ ∗  depending on the Rα  (wave number) when 90 ; 0.048;Aθ = =

0.1; 0.5.α β= =  
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Figure 4. Value θθσ ∗  depending on the Rα  ( πθ = ).  

 

 

Figure 5. Dependency θθσ ∗  from N Rα  (wave number).  

 
The existence of a discrete frequency plays an important role for the calculation 

of underground pipelines located in the ground environment. 
The obtained numerical results are presented in the form of tables and figures. 

The appearance of an additional free surface mainly thickens and reduces the Ei-
genvalue frequency by 10% - 16%. The existence of a natural frequency means 
that Rayleigh waves can occur in the vicinity of the free surface of a cylindrical 
hole. Thus, according to (28) with ( )1 0 1Е Е E →  the real part of the complex 
frequency does not exist. 

As we see, ( )1 0.21oE E ≥  the real parts of the natural frequency vanish, and 
the behavior of the imaginary parts remains unchanged. The obtained numerical 
results are confirmed by the condition (25). 
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5. Conclusions 

1) The task of diffraction of harmonic waves in a cylindrical body is solved in 
displacement potentials. Displacement potentials are determined from solutions 
of the Helmholtz equation. Arbitrary constants are determined from the boun-
dary conditions that are put between the bodies. As a result, the task is reduced 
to a system of inhomogeneous algebraic equations with complex coefficients, 
which are solved by the Gauss method with the selection of the main element. 

2) Contour stresses σθθ on the free surface of cylindrical bodies reach their 

maximum value in π
2

—when exposed to longitudinal waves, and π
4

—shear 

waves. Contour stresses σθθ when subjected to transverse harmonic waves, are 15% 
- 20% more than those when subjected to longitudinal waves.  

3) When the source of harmonic waves is at a distance of five radii ( 5Z R> ) 
from a cylindrical body, the high-frequency nature of changes in loop stresses σθθ 

(on the inner free surface), is well approximated by the solution for a flat 
( Z →∞ ) waves. Further, all values approach the same asymptote. 

4) Numerical results show that the dynamic stress concentration factors near 
cylindrical bodies depend on the distance between the source and the body, the 
wave number for the cylinder and the medium; physico-mechanical parameters 
of the environment and the body. 

5) Consideration of the viscous properties of the material of the environment 
when calculating the effect of seismic waves reduces stress and displacement by 
10% - 15%. Calculations show that for fixed values of the amplitudes and the 
duration of the incident wave with increasing acoustic parameters of the fluid, 
the deflections and efforts also moderately increase. In the region of the long 
waves, the stress distribution of a pipe with and without liquid differs by up to 
15%, and in the region of short waves, in some values of frequency, they differ by 
up to 40%. With a hole with a lining, the stress in the soil will be less than for the 
case of a hole without reinforcement. On the other hand, the amplification will 
be subjected to stresses from seismic loads and must withstand them. 

6) The statement of the problem is proposed: natural oscillations of cylindrical 
bodies being in a deformable medium. The task is to find those R iiΩ = Ω + Ω  
( RΩ —real and iΩ —imaginary parts of complex eigenfrequencies), in which 
the system of equations of motion and shortened radiation conditions have a 
nonzero solution in the class of infinitely differentiable functions. It is shown 
that the task has a discrete spectrum.  
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Abstract 

We develop two new pricing formulae for European options. The purpose of 
these formulae is to better understand the impact of each term of the model, 
as well as improve the speed of the calculations. We consider the SABR model 
(with 1β = ) of stochastic volatility, which we analyze by tools from Mallia-
vin Calculus. We follow the approach of Alòs et al. (2006) who showed that 
under stochastic volatility framework, the option prices can be written as the 
sum of the classic Hull-White (1987) term and a correction due to correla-
tion. We derive the Hull-White term, by using the conditional density of the 
average volatility, and write it as a two-dimensional integral. For the correc-
tion part, we use two different approaches. Both approaches rely on the pair-
ing of the exponential formula developed by Jin, Peng, and Schellhorn (2016) 
with analytical calculations. The first approach, which we call “Dyson series 
on the return’s idiosyncratic noise” yields a complete series expansion but 
necessitates the calculation of a 7-dimensional integral. Two of these dimen-
sions come from the use of Yor’s (1992) formula for the joint density of a 
Brownian motion and the time-integral of geometric Brownian motion. The 
second approach, which we call “Dyson series on the common noise” neces-
sitates the calculation of only a one-dimensional integral, but the formula is 
more complex. This research consisted of both analytical derivations and 
numerical calculations. The latter show that our formulae are in general more 
exact, yet more time-consuming to calculate, than the first order expansion of 
Hagan et al. (2002). 
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1. Introduction 

European options are traditionally priced and hedged by Black-Scholes [1] (1973) 
model, one of the natural extensions of the Black-Scholes model to make volatil-
ity stochastic. The simplest stochastic volatility models assume that the volatility 
and the noise driving stock prices are uncorrelated. Moreover, the Hull-White 
formula [2] (1987) establishes that the European option price is the expectation 
of the Black-Scholes option pricing formula with a time-dependent volatility. An 
important success of this model is that it calculates European prices which im-
plied volatilities smile. The development of local volatility models by Dupire and 
Derman (1994) was a major development in handling smiles and skews. Howev-
er its predictions contradict empirical findings. Thus the SABR (stochastic alpha 
beta rho) model, a stochastic volatility model in which the asset price is corre-
lated with its volatility was derived by Hagan et al. [3] (2002) to resolve this 
problem. Alòs [4] (2006) extended the classical Hull-White formula to the cor-
related case by means of Malliavin calculus. The new generalization decomposes 
option prices as the sum of the same derivative price if there was no correlation 
and a correction due by correlation. Another popular model is the Heston (1993) 
model. In that model, the volatility is mean-reverting. The general asymptotic 
method presented by Fouque, Papanicolau and Sircar (2000) [5] can be used to 
analyze Heston’s model. For more information on stochastic volatility models, 
we refer the reader to Gatheral [6] (2006). 

Nevertheless, there are still terms of conditional expectation of functions of 
non-adapted processes in the new generalization of Hull-White formula. Jin, 
Peng and Schellhorn [7] (2016) showed that under certain smoothness condi-
tions, a Brownian martingale can be represented via an exponential formula 
when evaluated at a fixed time. It is a powerful tool similar to Clark-Ocone for-
mula that allows us to work with the conditional expectation of a random varia-
ble instead of the random variable itself. 

The main goal of this research was to obtain an option pricing formula for the 
special case of the SABR model with 1β = . We used two different approaches. 
Both approaches rely on the pairing of the exponential formula developed by Jin, 
Peng, and Schellhorn (2016) with analytical calculations, and start by condition-
ing on the path of the common noise term W. In the first approach, which we 
call “Dyson series in the return’s idiosyncratic noise’’, we first apply a Dyson se-
ries in the idiosyncratic noise term Z and then apply Yor’s [8] formula (1992) for 
the joint density of a Brownian motion and the time-integral of geometric 
Brownian motion to integrate with respect to the common noise term W. We 
note that Yor’s formula is used for pricing Asian options, but it is ideally suited 
to analyze realized volatility in the SABR model with 1β = , since volatility is a 
geometric Brownian motion. Faà di Bruno’s formula is used for analytical diffe-
rentiation. The first approach yields a complete series expansion but necessitates 
the calculation of a 7-dimensional integral. Two of these dimensions come from 
the analytical expression of the joint density of a Brownian motion and the 
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time-integral of geometric Brownian motion. In the second approach, which we 
call “Dyson series in the common noise’’, we first integrate away the idiosyn-
cratic noise term Z and then apply a Dyson series in the common noise term W. 
This results in a formula which necessitates the calculation of only a 
one-dimensional integral, but the formula is more complex, and we carried the 
calculation only of the first term of the series. 

The organization of this paper is as follows. In Section 2 we present a brief in-
troduction to Malliavin Calculus as well as a representation theorem for smooth 
Brownian Martingales. Section 3 is a review of basic option pricing theory and 
an extension to stochastic volatility models. In Section 4, we present several 
Hull-White formulas for European call option prices with different model as-
sumptions. In Section 5, we derive the Dyson series in the return’s idiosyncratic 
noise for the call price. In Section 6, we derive the Dyson series in the common 
noise for the call price, and compare numerically all approaches. 

2. Preliminaries on Malliavin Calculus 

The following section briefly reviews some basic facts of Malliavin Calculus re-
quired along the paper. For a complete exposition we refer to Nualart [9] (1995) 
and Øksendal [10] (2008). Let { }( )0

, , ,t t≥
Ω    be a complete filtered proba-

bility space where { }t  is generated by a standard Brownian motion { } 0t t
W

≥
. 

In Section 2.4, we will enlarge our probability space to consider two standard 
Brownian motions.  

2.1. Malliavin Derivative 

Let [ ]( )2 0, nL T  be the standard space of square integrable Borel real functions 
on [ ]0, nT  and let [ ]( ) [ ]( )2 20, 0,n nL T L T∈  be the space of symmetric square 
integrable Borel real functions on [ ]0, nT , consider the set  

( ) [ ]{ }1 1, , 0, : 0n
n n nS t t T t t T= ∈ ≤ ≤ ≤ ≤  .  

Definition 2.1 If f is a deterministic function defined on ( )1nS n ≥  such that 

( ) ( )2
2 2

1 1: , , d d
n n

n nL S S
f f t t t t= < ∞∫   , then the n-fold iterated It integral is 

defined as  

( ) ( )3 2

1 110 0 0 0
: , , d d d ,n

n n

T t t t
n n t t tJ f f t t W W W

−
= ∫ ∫ ∫ ∫  

          (1) 

and if [ ]( )2 0, ng L T∈   we define  

( ) [ ] ( ) ( )
110,

, , d d : ! .n nn n t t nT
I g g t t W W n J g= =∫              (2) 

Theorem 2.2 The Wiener-It Chaos Expansion. Let F be an T -measurable 
random variable in ( )2L P . Then there exists a unique sequence { }0nf

∞  of 
functions [ ]( )2 0, n

nf L T∈   such that ( )0 n nF I f∞= ∑ .  
Definition 2.3 Let ( )u t , [ ]0,t T∈ , be a measurable stochastic process such 

that for all [ ]0,t T∈  the random variable ( )u t  is T -measurable and 

( )2
0

d
T

E u t t  < ∞  ∫ . Let its Wiener-It chaos expansion be  

https://doi.org/10.4236/am.2019.106034


Z. Guo, H. Schellhorn 
 

 

DOI: 10.4236/am.2019.106034 488 Applied Mathematics 

 

( ) ( ) ( )( ),
0 0

, .n n t n nu t I f I f t
∞ ∞

= = ⋅∑ ∑                  (3) 

Then we define the Skorohod integral of u by  

( ) ( ) ( )10
0

: : ,
T

t n nu u t W I fδ δ
∞

+= = ∑∫                    (4) 

when converge in ( )2L P , we say that u is Skorohod integrable and we write 
( )u Dom δ∈  if the series in (4) converges in ( )2L P .  

The operator δ  is an extension of the It integral, in the sense that the set 
( )2L P  of square integrable and adapted processes is included in ( )Dom δ  

and the operator δ  restricted to ( )2L P  coincides with the It stochastic 
integral.  

Theorem 2.4 Let ( ) [ ], 0,u u t t T= ∈ , be a measurable  -adapted stochastic 
process such that ( )2

0
d

T
E u t t  < ∞  ∫ . Then ( )u Dom δ∈  and its Skorohod 

integral coincides with the It integral  

( ) ( )
0 0

d .
T T

t tu t W u t Wδ =∫ ∫                     (5) 

Definition 2.5 Let ( )2F L P∈  be T -measurable with chaos expansion 
( )0 n nF I f∞= ∑ , where [ ]( )2

. 0, nf L T∈  , for 1, 2,n = 
, we say that 1,2F ∈  if 

[ ]( )2
1,2

22
0 0,

: ! nn L TF nn f∞= < ∞∑ . If 1,2F ∈  we define the Malliavin derivative 

tD F  of F at time t as the expansion  

( )( ) [ ]1
1

, , 0, .t n n
n

D F nI f t t T
∞

−
=

= ⋅ ∈∑                 (6) 

We will need the following results on the Malliavin derivative.  
Theorem 2.6 Product rule for Malliavin derivative. Suppose 0

1 2 1,2,F F ∈ . 
Then 1 2 1,2,F F ∈  and also 1 2 1,2F F ∈  with  

( )1 2 1 2 2 1.t t tD F F F D F F D F= +                   (7) 

Theorem 2.7 Chain rule. Let 1,2G∈  and ( )1g∈   with bounded de-
rivative. Then ( ) 1,2g G ∈  and  

( ) ( ) .t tD g G g G D G′=                      (8) 

Example 2.1  

( )( ) ( )( ) ( )( ) ( )( ) ( )
1 1

0 0 0 0
d d d d

n n nT T T T
t s s t s sD f s W n f s W D f s W n f s W f t

− −

= =∫ ∫ ∫ ∫ . 

Theorem 2.8 The fundamental theorem of calculus. Let ( ) [ ], 0,u u s s T= ∈ , 

be a stochastic process such that ( )2
0

d
T

E u s s  < ∞  ∫  and assume that, for all 

[ ] ( ) 1,20, ,s T u s∈ ∈  and that, for all [ ] ( )0, , tt T D u Dom δ∈ ∈ . Assume also 

that ( )( )2

0
d

T
tE D u tδ  < ∞  ∫ . Then ( )

0

T
su s Wδ∫  is well-defined and belongs to 

1,2  and  

( )( ) ( ) ( )
0 0

.
T T

t s t sD u s W D u s W u tδ δ= +∫ ∫                 (9) 

2.2. Exponential Formula 

A Brownian motion martingale can be represented via an exponential formula 

https://doi.org/10.4236/am.2019.106034


Z. Guo, H. Schellhorn 
 

 

DOI: 10.4236/am.2019.106034 489 Applied Mathematics 

 

when evaluated at a fixed time under certain smoothness conditions.  
Definition 2.9 Given ω∈Ω , a freezing operator tω  is defined as:  

( )( ) ( )
( )

, , if ;
,

, , if .
t W s s t

W s
W t t s T

ω
ω ω

ω
 ≤=  < ≤

                (10) 

The freezing operator tω  is a mapping from Ω  to Ω . The following equa-
tions show some properties of the freezing operator: 

Proposition 2.10  
1) For p∈ , space of polynomials, suppose ( )1

, ,
ns sF p W W=  , then 

( ) ( )1
, ,

n

t
s t s tF p W Wω ∧ ∧=  ;  

2) ( )( )( ) ( )
0 0

d d
T tt

s sf s W f s Wω =∫ ∫ ;  

3) ( )( ) ( )
0 0

d d
T tt

s s tW s W s W T tω = + −∫ ∫ ;  

4) ( )( ) ( )
22

0
d

2 2
T t t tT

s s
W TW TW W ω ω

  −−
= = 
 

∫ .  

We denote the Malliavin derivative of order l of F at time t by l
tD F , as a 

shorthand notation for t tD D F . We call [ ]( )0,T∞  the set of random va-
riables which are t -measurable and infinitely Malliavin differentiable.  

Definition 2.11 A random variable F is said to be infinitely Malliavin diffe-
rentiable if for any integer n:  

( )
( )1

1

2
2 2

, , ,
sup .

n
n

s s
s s t T

E D D F
∈

  
  < +∞ 
   

                 (11) 

In particular, we denote by [ ]( )0,N T  the space of all random variables F 
which satisfy (14) for all n N≤ . 

The next theorem, or exponential formula, was obtained by Jin et al. (2016). 
The resulting series (12) is called a Dyson series.  

Theorem 2.12 Suppose [ ]( )0,F T∞∈  satisfies the following condition:  

( )
( ) ( )

( )( )1
1

22
2 2

2
,, ,
sup 0,

2 !
n

n

n
t

u u nn u u t T

T t
E D D F

n
ω →∞

∈

 −  
  → 
   

  

for fixed [ ]0,t T∈ , then  

[ ] [ ] ( )( )1

2 2
1,

0

1| d d .
2 ! i i

t
t s s ii t T

i
E F D D F s s

i
ω

∞

=

= ∑ ∫             (12) 

Example 2.2 An example of applying the Exponential formula: Let 2
TF W= , 

then for t s T≤ ≤ : ( ) 2t
tF Wω =  and ( )( )2 2t

sD F ω = , then by Theorem 2.2 we 
have  

[ ] ( ) ( )( )2 21| d .
2

Tt t
t s tt

E F F D F s W T tω ω= + = + −∫          (13) 

2.3. Faà di Bruno’s Formula 

Lemma 2.13 Faà di Bruno’s formula. If f and g are functions with a sufficient 
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number of derivatives, then  

( )( ) ( ) ( )( )
( ) ( )1

1
1

d ! ,
!d !

j
n

kk

mjn
m n

n n j
ii

g xnf g x f g x
jx m

=

=

=

∑  
= ⋅  

 
 

∑ ∏
∏

    (14) 

where the sum is over all n-tuples of non-negative integers ( )1, , nm m  satis-
fying the constraint 

1
n

kk km n
=

=∑ . Combining the terms with the same value of 

1
n

ii m k
=

=∑  leads to a simpler formula expressed in terms of Bell polynomials 
( ), 1 1, ,n k n kB x x − + :  

( )( ) ( ) ( )( ) ( ) ( ) ( )( )1
,

1

d , , , .
d

n n
k n k

n kn
k

f g x f g x B g x g x g x
x

− +

=

′ ′′= ⋅∑       (15) 

Definition 2.14 Exponential Bell polynomials. The partial or incomplete 
exponential Bell polynomials are a triangular array of polynomials given by  

( ) 1
, 1 2 1 1 1

1

!, , , ,
!!

ij
n k i

n k n k n k i
ii

xnB x x x
ij

− +
− + − + =

=

 =  
 

∑ ∏
∏

            (16) 

where the sum is taken over all sequences 1 2 1, , , n kj j j − +  non-negative integers 
such that these two conditions are satisfied: 1

1
n k

ii j k− +

=
=∑  and 1

1
n k

ii i j n− +

=
⋅ =∑ . 

The sum  

( ) ( )1 , 1 2 1
1

, , , , , ,
n

n n n k n k
k

B x x B x x x − +
=

= ∑                  (17) 

is called the n th complete exponential Bell polynomials.   
The Faà di Bruno’s formula can be generalized to Malliavin derivative in the 

following way:  
Lemma 2.15 Faà di Bruno’s formula for Malliavin derivative. If f and g are 

functions with a sufficient number of derivatives, then for a random variable 
[ ]( )0,NF T∈  and n N∀ ≤ , by theorem 2.7 and lemma 15 we have 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )1
,

1
, , , ,

n
kn n k n

t n k t
k

D f g F f g F B g F g F g F D F− +

=

′ ′′= ⋅∑    (18) 

where ( ), 1 1, ,n k n kB x x − +  are the incomplete exponential Bell polynomials.  

2.4. Extension to Two Brownian Motions 

In what follows, we work with two independent Brownian motions { } 0t t
W

≥
 and 

{ } 0t t
Z

≥
 defined in a probability space { }( )0

, , ,t t≥
Ω   , let { }W

t  and 

{ }Z
t  be the filtrations generated by the Brownian motion tW  and tZ  re-

spectively. Let { }1 2 1 2 1 1 2 2: , , ,W Z
t t s sW Z s t s tσ∨ = ≤ ≤   be the filtration generated 

by two Brownian motions tW  and tZ . When 1 2t t t= = , we keep the symbol 
: W Z

t t t= ∨    for the sigma-algebra generated by both Brownian motions. 
Let WD  and ZD  be the Malliavin derivation operator w.r.t the Brownian 

motion tW  and tZ , this implies that for a T  measurable random variable 
( )F ω , the 2-dimensional directional derivative of F at the point ω∈Ω  in the 

direction ( )1 2,γ γ γ ∈Ω  by:  
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( ) ( ) ( )

( ) ( )

0

1 2
0 0

: lim

d d
d d .

d d
T TW Z

s s

F F w
D F

D F s D F s
s s

γ

ω γ
ω

γ γ
ω ω

→

+ −
=

= +∫ ∫




           (19) 

The freezing operators t
Wω  and t

Zω  follow the same definition 2.9 as the 
one dimension case. However, each random variable are depend on the the path 
of single Brownian motion indicated by its subscript.  

3. Preliminaries on Option Pricing 

Throughout this paper we shall operate in the context of a complete financial 
market. Options are an example of a broader class of assets called contingent 
claims. We will study European call option pricing under stochastic framework. 
The aim of this section is to review the basic objects, ideas and results of the 
classical Black-Scholes theory, stochastic volatility models of derivative pricing 
[11].  

Definition 3.1  
1) A contingent claim is any asset whose future payoff is contingent on the 

outcome of some uncertain event.  
2) A European call option is a contract that gives its holder the right, but not 

the obligation, to buy one unit of an underlying asset for predetermined strike 
price K on the maturity date T.  

3.1. The Black-Scholes Theory 

The Black-Scholes model is widely used for the dynamics of a financial market 
containing derivative investment instruments. From the Black-Scholes equation, 
one can deduce the Black-Scholes formula, which gives a theoretical estimate of 
the price of European-style options. The Black-Scholes model with constant vo-
latility under risk-neutral probability measure is that the stock price tS  satisfies 
the following stochastic differential equation:  

d d d ,t t t tS rS t S Wσ= +                      (20) 

where r and σ  are constants. For reasons of convenience, we make the change 
of variable in the following sections, let lnt tX S=  denote the logarithm of 
stock price, then  

21d d d ,
2t tX r t Wσ σ= − +                     (21) 

the price tV  of an European call option with payoff ( )TX K
+

−  at time t for 
this model with constant volatility σ , current stock price ex , maturity time T 
and interest rate r, satisfy the risk-neutral pricing formula [12]:  

( ) ( )e | .r T t
t T tV E S K +− −  = −                    (22) 

And the closed-form solution of Black-Scholes PDE is the Black-Scholes-Merton 
formula:  
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( ) ( ) ( ) ( ), , : e e ,r T tx
tV BS t x N d K N dσ − −

+ −= = −              (23) 

where  

( )
( )

2

ln
2

, ,
tX K r T t

d t
T t

σ

σ
σ±

 
− + ± − 

 =
−

                (24) 

and  

( )
2 2

2 21 1e d e d .
2π 2π

y y
x

x
N x y y

− −
∞

−∞ −
= =∫ ∫                 (25) 

is the standard normal cumulative distribution function. The derivation consists 
of finding a self-financing investment strategy, that replicates the call option 
payoff structure and assume that one continuously adjusts the replicating port-
folio over time. 

3.2. Stochastic Volatility Models 

That it might make sense to model volatility as a random variable should be 
clear to the most casual observer of equity markets. Nevertheless, given the suc-
cess of the Black-Scholes model in parsimoniously describing market option 
prices, it’s not immediately obvious what the benefit of making such a modeling 
choice might be. 

3.2.1. SABR (Stochastic Alpha Beta Rho) Model with 1β =  

Stochastic volatility models are useful because they explain in a self-consistent 
way why options with different strike and expiration have different 
Black-Scholes implied volatility. And moreover, stochastic volatility models as-
sume realistic dynamics for the underlying. Specifically, the SABR model is an 
extension of the Black Scholes model in which the volatility parameter follows a 
stochastic process:  

( )2d d d 1 d ,t t t t t tS rS t S W Zβσ ρ ρ= + + −              (26) 

d d .t t tWσ ασ=                          (27) 

The two Brownian motions, tW  and tZ  are independent. It can be shown 
by Lévy’s Theorem that 2: d 1 dt t tM W Zρ ρ= + −  is a Brownian motion, thus 
d d dt tM W tρ= . Volatility does note mean revert in the SABR model, so it is only 
good for short expirations. Nevertheless the model has the virtue of having an 
exact expression for the implied volatility smile in the short-expiration limit 

: 0T tτ = − → . The resulting functional form can be used to fit observed 
short-dated implied volatilities and the model parameters ,α β  and ρ  there-
by extracted. 

Hagan et al. derived, with perturbation techniques, an approximating direct 
formula for this implied volatility under the SABR model in [3]:  
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( )

( )( ) ( ) ( ) ( )

( )
( ) ( )( ) ( )

0

0
2 4

1 2 0 02 4
0

2 2 2
2 20 0

1 1 2
0 0

,

1 1
1 ln ln24 1920

1 1 2 31 ,
24 4 24

BS S K
z

x zS SS K
K K

O
S K S K

β

β β

σ

σ

β β

β σ ρβασ ρ α τ τ

−

− −

=
 − −
+ + + 

  
  − −  ⋅ + + + +

    



  (28) 

where ( )( )1 2 0
0

0

: log
S

z S K
K

βα
σ

−  = −  
 

 and ( )
21 2

ln
1
z z z

x z
ρ ρ

ρ

 − + + −
 =
 − 

. 

For the case of at-the money options, i.e. when 0S K= , this formula reduces 
to  

( ) ( ) ( )
2 2 2

0 2 20 0
0 0 1 2 2 1

0 0 0

1 2 3, 1 .
2424 4BS S S O

S S Sβ β β

β σσ ρβασ ρσ α τ τ− − −

  − −  = ⋅ + + + +
    

 (29) 

In the special case 1β = , the SABR implied volatility formula reduces to  

( ) ( ) ( )
2

2 2
0 0 0

1 2 3, 1 ,
4 24BS

yS K O
f y

ρσ σ ρασ α τ τ
  −

= + + +  
   

    (30) 

where 0

0

: log
S

y
K

α
σ

 = −  
 

 and ( )
21 2

ln
1
y y y

f y
ρ ρ

ρ

 − + + −
 =
 − 

. 

3.2.2. Exponential Functions of Brownian Motion 
Marc Yor’s discovery (1992) of an integral formula for joint density of the dis-
tribution of a Brownian motion and the integral of exponential Brownian mo-
tion taken over a finite time interval has been computed in the case 2σ = .  

Proposition 3.2 Marc Yor’s formula. Applying Brownian motion rescaling 

[13], this joint density of ( )0
e d ,s

t W
ts Wσ∫ , 0σ >  can be written for an arbitrary 

volatility parameter σ  as  

( ) ( )
( )2

, 0

2 2 21 e

2

1, : e d d , d
d d

4ee , ,
2 4

s

y

t W
t t

y
x

x y s x W y
x y

t
x x

σ

σ
σ

σ
σ

φ

σ σθ
σ

− +

= ∈ ∈

 
= ⋅  

 

∫
             (31) 

for 0, , 0x y R t> ∈ > , where 

( )
2 2π

cosh2 2
03

π, e e e sinh sin d , , 0.
2π

rt trr t r t
tt

ξ
ξ ξθ ξ ξ

−∞ −= ⋅ >∫      (32) 

By Lyasoff [14], (32) is equivalent to the following:  

( )
2 2π

2 2
03

π, e e cosh cos sinh d , , 0.
22π

t trr t r r t
tt

ξ ξθ ξ ξ ξ
−∞  = ⋅ − > 

 ∫   (33) 

From computational point of view, the π
2

-formula: (31) with ( )θ ⋅  defined 
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as (33), may be preferable to the π -formula: (31) with ( )θ ⋅  defined as (32).  

Proposition 3.3 A straightforward application of the Cameron-Martin-Girsanov 
theorem implies that the joint density of ( )0

e d ,s
t W s

ts Wσ µ−∫ , 0,σ µ> ∈ , which 
we denote by ( ), , ,t x yσ µφ , 0,x y> ∈ , can be connected with the density 

( ) ( ), , ,0, ,t tx y x yσ σφ φ=  through the formula  

( )
2

22
, , , ,0, e , .

ty

t tx y x y t
µ µ
σ σ

σ µ σ
µφ φ
σ

− +  = − 
 

                (34) 

4. Hull and White Formula and Extension 

The no-arbitrage price at time t using the risk-neutral theory for any derivatives 
with terminal time T and payoff function ( )h x  is given by the risk-neutral 
formula below:  

( ) ( )e | .r T t
t T tV E h X− − =                      (35) 

Thus tV  is a no-arbitrage price for the contingent claim. In what follows, we 
consider the pricing of a call option, i.e.:  

( ) ( )e .TX
Th X K

+
= −                       (36) 

4.1. Hull-White Formula: Uncorrelated Volatility 

Under the assumption that the volatility tσ  is uncorrelated with the asset price 
driven by another Brownian motion tZ , i.e. when 0ρ = , the pricing formula 
(35) can be further simplified. By conditioning on the path of the volatility 
process and using the iterated conditioning property, the European call option 
price is given by  

( ) ( ) ( ), , e e | .Tr T t X W
t t t TV t X E E Kσ

+− −   = − ∨    
            (37) 

The inner expectation is the Black-Scholes computation with a 
time-dependent volatility. Since tσ  is a Markov process, we can apply the 
Black-Scholes formula, and obtain:  

( ) ( ), , , ; , ; | ,t tV t x y E BS t x K T v Y y = =              (38) 

where  

2 21 d ,
T

t st
v s

T t
σ=

− ∫                        (39) 

is the root-mean-square time future average volatility. 

4.2. Hull-White Formula: Correlated Volatility 

In general, the situation is more complicated when volatility is correlated with 
the Brownian motion tW  driving the stock price. Again we can use iterated ex-
pectation to price a European call option.  

( ) ( )1, , , ; , ; | ,t t tV t x y E BS t x K T Y yρξ ξ σ− = =             (40) 
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where  

2 21ˆexp d d ,
2

T T
t s s st t

Z sξ ρ σ ρ σ = − 
 ∫ ∫                 (41) 

( )2 2 21 1 d .
T

st
s

T tρσ ρ σ= −
− ∫                    (42) 

The Hull-White formula is of practical use for Monte Carlo simulation of 
prices in a correlated stochastic volatility model since only one Brownian motion 
path has to be generated. However, it does not directly reveal any information 
about the implied volatility curve like the uncorrelated case. 

4.3. A Generalization of Hull-White Formula 

The classical Hull-White formula for option pricing can be extended, by means 
of Malliavin Calculus, to the correlated case. The main problem is that average 
future volatility is not adapted, however, this issue can be resolved by anticipat-
ing stochastic calculus. And this method decomposes option prices as the sum of 
the same derivative price if there is no correlation and a correction due by cor-
relation. The following theorem is due to Alòs et al. (2006).  

Theorem 4.1 Consider model (26)-(27) with 1β = , and assume the follow-
ing hypotheses hold:  

1) The payoff function :h +→   is continuous and piecewise 1 ;  
2) There exists a positive real constant a such that 2

ta σ≤  for all [ ]0,t T∈ ;  
3) [ ]( )2 1,2 0,W Tσ ∈ ;  
4) For all [ ]0,t T∈  there exists a positive constant C such that for all 
[ ]0,s T∈ ,  

( )2d | .
T W

s r s ts
E D r Cσ σ  ≤  ∫                     (43) 

Then, for all [ ]0,t T∈ ,  

( ) ( ) ( ), , | e , , d | ,
2

T r s t
t t t t s s s tt

V E BS t X v E H s X v sρ − −  = + Λ    ∫      (44) 

where 2
tv  is the future average volatility defined (39) in Subsection 4.1 and  

( ) ( )
3 2

3 2, , : , , ,s s s sH s X v BS s X v
x x

 ∂ ∂
= − ∂ ∂ 

            (45) 

( )2: d .
T W

s s r ss
D rσ σΛ = ∫                      (46) 

Notice that formula (44) does not reduce the dimensionality of the problem 
but identifies the impact of correlation. When 0ρ = , it is the same as (38). 

5. Dyson Series in the Return’s Idiosyncratic Noise 

5.1. Application of Marc Yor’s Formula 

Throughout this and next section we denote by 2

1 2 1

2
, : d

t
t t ut

V uσ= ∫  a cumulative 
time integral, from 1t  to 2t , of future volatility, i.e. ( )2

,s T sV v T s= − . The aim 
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of this paper is to extend Theorem 4.1 to a deterministic form by specifically as-
suming the underlying asset and volatility process follow (26), then tσ  is a 
square integrable process adapted to { }W

t .  
Lemma 5.1 The conditional probability density function of ,s TV  is 

,2 2

1
s TV

s s

vψ
σ σ

 
 
 

. 

where 

 ( ) ( )2, ,2 ,
, d .

s TV T s
y v v z z

α α
φ

∞

−−∞
= ∫                 (47) 

One straightforward application of (47) is using the conditional density of 

,t TV  to obtain the first conditional expectation in (44):  
Theorem 5.2 The conditional expectation of ( ), ,t tBS t X v  is  

( )
,2 20

1, , | , , d .
t Tt t t t V

t t

v vE BS t X v BS t X v
T t

ψ
σ σ

∞    
  =       −   

∫      (48) 

5.2. Application of Exponential Formula 

Theorem 5.3 For t s≤ , define ( ) ( )0

1, , , ,
2 !s s n t tnnG s X v g s X v

n
∞

=
= ∑ , where 

( ) [ ] ( )2 ,
,

, , , , dn
t n Z n

n t t Z n s st T
g s X v D H s X vτω τ ⊗

⊗= ∫ . Let ,s sG H  be the short nota-

tion for ( ), ,s sG s X v  and ( ), ,s sH s X v , then the option price (44) can be fur-
ther simplified as the following:  

( ) ( ) [ ], , | e | d .
2

T r s t
t t t t s s tt

V E BS t X v E G sρ − − = + Λ  ∫          (49) 

here ⊗  denotes the tensor power. In general, the tensor product f g⊗  of 
two functions ,f g  is defined by ( ) ( ) ( )1 2 1 2,f g x x f x g x⊗ = . See [15] for 
more detail. 

Now we use Malliavin calculus to deduce a full asymptotic series for 
( ), ,s sG s X v  and use it to obtain [ ]|s s tE GΛ   in (49), which gives us a deter-

ministic formula for European option price. By (21) and (23), 

( )
( ) ( )

2 2

2
,

1 d d 1 d
2

1 1 d .
2

s s
s t u u u ut t

s
t t s s t u ut

X X r u W Z

X r s t V Z

σ σ ρ ρ

ρ σ σ ρ σ
α

= + − + + −

= + − − + − + −

∫ ∫

∫
       (50) 

Note that the volatility process in (26) is the differential notation for 

0 0
d

t
t u uWσ σ ασ− = ∫ , and obviously for 0 t s< < , d

s
s t u ut

Wσ σ ασ− = ∫ . And 

accordingly by (50) and (24), ( )
( )

2

,

ln
2

, ,

s
s

s s
s T

vX K r T s
d s X v

V±

 
− + ± − 

 = . 

Therefore by Theorem 2.7, 

{ }
2 21 d 1 1l ,

sZ Z
s u u st

D X D Zτ τ τ τσ ρ σ ρ ≤= − = −∫             (51) 
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{ }
21 1l

.
Z

sZ Z s

s s

D X
D d D d

v T s v T s
τ ττ

τ τ

σ ρ ≤
+ −

−
= = =

− −
          (52) 

Lemma 5.4 Let two real-valued functions ( ), ,p t x σ  and ( ), ,q t x σ  be de-
fined as following:  

( ) ( ) ( )( )
2 ,

, , ln , ,
2

d x t
p t x x d x tσ +

−= − + −             (53) 

( )
( )2

1, , e .
2π

xq t x
T t

σ
σ

=
−

                (54) 

Then the 2nth order Malliavin derivative of sH  can be expressed as:  

( ) ( ) ( ) ( ) ( )( ) { }
22 , 2 2

2 11 , , , 1l ,
i i

n nnn Z
n s s n siD H H B p p pτ τ τρ σ⊗ ≤=

′ ′′= − ⋅ ⋅ ⋅ ∏
  (55) 

where  

( ) ( )

( )

( )
( ) ( )

( )

1 2

,

1

,

1
when 1,2;

, ,
1 1 !

for 3.

j

j

s Tj
s s j

j

s T

d
j

V d
p s X v

j
j

V d

+
−

−

+

−

 − −
=


= 
− −

≥


          (56) 

for d−  evaluated at ( ), ,s ss X v .  
The second step to calculate ( ), ,s sG s X v  is to apply freezing operator t

Zω  
to 2 ,n Z

n sD Hτ ⊗  for 0,1,2,n = 
. Let   be any random variable depend on 

Brownian motion { } 0t t
Z

≥
, denote : t

Z Z
ω ω=    be the random variable   

applied by the freezing operator t
Zω , by Proposition 2.10,  

( ) ( )

( ) ( )

2 2

,

1: d 1 d
2

1 ,
2

s st
s t u s t Z u ut t

t t s s t

X X r s t u Z

X r s t V

ω ρσ σ σ ω σ ρ
α

ρ σ σ
α

= + − − + − + −

= + − − + −

∫ ∫
    (57) 

and accordingly we have  

( ) ( )
( )

2

,

ln
2

, , , , ,

s
s

s s s s
s T

vX K r T s
d s X v d s X v

V

ω

ω ω
± ±

 
− + ± − 

 = =       (58) 

2 2

, 2 2

, ,

e e .
2π 2π

s s
d d

X Xs T
s

s T s T

V d dH
V V

ω ω
ω ωω ω

ω
+ +− −+ −

− −
= =             (59) 

Therefore in general, for 0,1,2,n = 
, 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) { }

2 ,

22 2
2 1

22 2
2 1

1 , , , , , ,

1 , , , , , , 1l ,

i

i i

n Z
n s

n nnt
Z s n s s s s i

n nn
s n s s s s si

D H

H B p s X v p s X v

H B p s X v p s X v

ω
τ

τ

ω ω ω
τ τ

ω ρ σ

ρ σ

⊗

=

≤=

 ′= −  

′= −

∏

∏

 



   (60) 

where ( ) ( ) ( ) ( ), , : , ,j jt
s s Z s sp s X v p s X vω ω=   is given by (56) except that d−  is 
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now evaluated at ( ), ,s ss X vω . Thus, by (60), we are able to compute sG  in the 
following: 

[ ] ( )

( )
( ) ( ) ( )( )

[ ] { }

( ) ( ) ( ) ( ) ( )( )

2 ,
,

0

2
2

2
0

2
1,

2
2

, 2
0

1 , , d
2 !

1
, , , , , ,

2 !

1l d

1
, , , , , , .

2 !

n

n i i

t n Z n
s Z n s sn t T

n
n

n
s n s s s sn

n
n n

sit T

n
n n

s t s n s s s sn
n

G D H s X v
n

H B p s X v p s X v
n

H V B p s X v p s X v
n

τ

ω

τ τ

ω ω ω

ω τ

ρ

σ τ

ρ

∞
⊗

⊗
=

∞

=

⊗
≤=

∞

=

=

−
′=

⋅

−
′=

∑ ∫

∑

∏∫

∑







  (61) 

5.3. Option Pricing Formula for SABR Model 

Lemma 5.5 Let 
2

2
, e

2π
s

d
X

s s T s
dL V H

ω
ωω

ω ω
+−

−−
= =  and  

( ) ( ),, , , ,s s s T s sf s X v V G s X v= , given that sG  is a function in terms of sX  and 

,s TV  in (61), then conditional expectation of the product of sΛ  and sG  can be 
calculated as the following:  

[ ] ( )( ) ( )2
2

,2 ,0
| 2 , , d d ,s s t t s s t

E G h x y x y y x
α α

α σ σ φ
∞ ∞

−−∞
Λ = ∫ ∫      (62) 

where ( )( ) ( ) ,, , 20

1, , , , d
s Tt s s s t s t s s V

s s

v vh V W W f s X V v
T s

σ σ ψ
σ σ

∞    
− =     −   

∫ .  

Remark Equation (57) shows that sX ω  is a function depends only on two 
random variables: ,t sV  and sσ , i.e.  

( ) ( ) ( )2
,

1, d
2

s
s t s s t u s tt

X V X r s t uω ρσ σ σ σ
α

= + − − + −∫ . While sσ  itself is a func-

tion of s tW W− . The joint density for ( ), ,t s s tV W −  is given by Marc Yor’s for-
mula, Proposition (3.2) in Section 3, with properly parameters.  

Remark ,x y
sX  represent a real-valued function of (s, x, y) which mimic the 

definition of sX ω  but replace ,t sV  and s tW W−  with x and y.  
Theorem 5.6 Full Dyson Series Expansion. For SABR model (26)-(27) with 

1β = , let ( ) 21
2

T t
c

ρ− −
=  and assume that  

( )
( ) ( ) ( )( ) { }

22
2 2

22 1
,

sup | , , , , , , 1l
!

0.

i i
i

n
nn

s n s s s s si
t T

n

c E H B p s X v p s X v
n τ τ

τ
σ ≤=

∈

→∞

  
′  

   
→

∏

 

Let ( )p ⋅  and ( )f ⋅  be defined in Lemma 5.4 and Lemma 5.5, respectively, 
then for all [ ]0,t T∈ ,  

( )

22 2,2 ,0

0 0

1 , , , d d

, , , , d d d d d ,

t t T t
t t

T

t

v vV BS t X z z v
T t

l s v z x y z v y x s

α α
φ

σ σ

ρα

∞ ∞

−−∞

∞ ∞ ∞ ∞

−∞ −∞

   
=     −   

+

∫ ∫

∫ ∫ ∫ ∫ ∫
          (63) 
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where  

( )
( )

( )
( )

2

2

,
2,2 ,

,2 ,

e, , , , , , ,

, .

r s t
x y
s T s

s s

s t

v vl s v z x y f s X z
y T s

x y

α α

α α

φ
σ σ

φ

− −

−

−

   
= ⋅ ⋅    −   
⋅

     (64) 

Example 5.1 First Order Approximation. Let 0m > , define  

( )
( )( ) ( ) ( ) ( )( )

2
, 2

2
0

1
, , : , , , ,

2 !

n
m t s n

m s s s n s s sn
n

V
f s X v L B p X p X p X

n
ω ω ω ω

ρ

=

−
′ ′′= ∑  (65) 

then the first order approximation ( )1 , ,s sf s v X  is calculated as following:  

( )
( ) ( ) ( )( ) ( ) ( )

( )
( )

( )2

2
2, 1 2

1

22 2 2
,

2
, ,

2 2
,2

,

1
, , 1

2

1 1 1
1

2

1 3
e 1 .

22π
s

t s
s s s s s

t s
s

s T s T

d
X t s

s T

V
f s X v L p X p X

V d dL
V d V d

Vd d
V

ω
ω

ω ω ω

ω

ω ω

ρ

ρ

ρ+

− −

− −

−
− −

 −   = + +    
   − − − −   = + +        

 −− − = +
 
 

    (66) 

6. Dyson Series in the Common Noise 

6.1. First Order Approximation Pricing Formula for SABR Model 

One obvious drawback of formula (66) is that the option price is a 
7-dimensional integral when the volatility is correlated with underlying asset, 
which could be computationally expensive, even for the first order approxima-
tion. In this section, we reverse the order of the two major steps that have been 
used in previous section by first using the conditional probability density to 
solve one Brownian motion, then apply Exponential formula to the remaining.  

For simplicity, we denote ( )e d |
2

T r s t
s s tt

J E H sρ − − = Λ  ∫   as the correlation 

correction term of option price (44) in Theorem 4.1. Therefore the option price 
is the sum of conditional expectation of Black-Scholes and the correction term: 

( ), , |t t t tV E BS t X v J = +  . 

Theorem 6.1 Let ( )
1

1 e
2π

r T tC Kρα − −= , 
2

2e |
d

W Z
s T tQ E d

−−

−

 
 = −
  

  , then 

the correction term can be written as [ ]1 | d
T

s s tt
J C E Q sσ= ∫  .  

Lemma 6.2 Let 
( )2 3 22

1

2
C

ρ
= −

−
, 

( )3 2

1
2 2

C
ρ

= −
−

, 

( )lntX K r T tκ = − + −  and define  

( )
( ) ( ), ,

, ,
,

1
2, , :

s t t s s T

t s s T s
s T

V V
V V

V

ρκ σ σ
αγ σ

+ − − +
= , for simplicity, we write γ  in-
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stead of ( ), ,, ,t s s T sV Vγ σ  hereafter, then sQ  defined in the above theorem is 

calculated as 
2

3
2 eC

sQ C γγ= .  

Theorem 6.3 For t s∀ ≤ , define ( )
2

, , s s
s s

Q
R s X v

C
σ

= , let sR  be the short 

notation for ( ), ,s sR s X v , define ( ) [ ]
2 ,

,
, , dn

t n W n
n t t W n st T

r s X v D Rτω τ ⊗
⊗= ∫ . Let 

2
T tc −

= , assume that 
( )

22
2 ,

2
,

sup | 0
! i

n
n W

n s n
t T

c E D R
n τ

τ
⊗ →∞

∈

  
  → 
   

, then the correc-

tion term of the option price in (44) can be further simplified as the following:  

[ ] ( )T
1 1 2

0

1| d , , d .
2 !

T
s s t n t tnt t

n
J C E Q s C C r s X v s

n
σ

∞

=

= = ∑∫ ∫        (67) 

Corollary 1 By Theorem 6.3, let 0m > , then the mth order approximation for 
the correction term can be obtained by  

( )1 2
0

1 , , d .
2 !

mT
m n t tnt

n
J J C C r s X v s

n=

≈ = ∑∫              (68) 

Corollary 2 First order approximation by time integral. For [ ],s t T∀ ∈ , 
there exists two analytical functions ( )p s  and ( )q s , (71) and (70), such that 
the first order approximation for the correction term of the option price is a 
time integral of the sum of those two functions:  

( ) ( ) ( )1 1 2
1 d 2 .
2

T

t
J C C p s q s s T t = + + −    ∫              (69) 

( ) ( ) ( ),2 2 3 2 2 2
3 , , 32 2 1 4 ,s T

s s T s T

V
q s R C V V T s

ω
ω ω ω ω ω ω

ωα γ γ α
γ

  
  = − + + + + −
  

  

 (70) 

( )
( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( )

( ) ( )( )
( )( ) ( ) ( )

( ) ( )

( ) ( )

2 2
2

2 22 2

2 2

2 2

2 2

2 2

1
2 2 2

2 2
2

2

1
2 2

12 1 e ee

e ee e

1 1 e e
2 e e

e e

e e
2

s t s ts t
t

s s t T ts t T t

s t T t

s t T tt
s t T t

s t s t
t

s ts t
p s R

s t

α αα

ω

α αα α

α α

α α ω

α α

α α

ασρα α

σ αα γ
α

ρα ασ

− − − −− −

− − − −− − − −

− − − −

− − − −

− − − −

− − − −

  − − −   −  = −
 −−

− − − 
 − − + ⋅
  − 


+

+
( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )

2

2 2

2 2 22 2 2

2 2

2

3

21 1 3 2
22 2 2

2

1
2 2, 3 2

3 3 2

1 e
1 2

e e

e e 2 e e 3e 4e 1
2

e e
16 4 2 e 1

s tt

s t T t

s t s t s ts t s t s tt
t t

s t T t

s t

t

s t
C

s t

C C

α

ω
ω

α α

α α αα α α

α α

αω

σ
α

γ
γ

σρρα σ σ
α α

ργ σ
α α

− −

− − − −

− − − − − −− − − − − −

− − − −

− −


− − −    ⋅ +   − 



   
+ − − − + − +      

   +
−

⋅ + − ( )( ) ( ) ( )2 2

1e es t T ts tα α ω− − − − − − − 
 


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( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )

2 2 2 2 2 2

2 2 2 2

4
2 2 2 2

24

2 22 2
3

4 1 1 e e e e e e
2
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where  
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1 3
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    (74) 

( ) ( )( )2 2
2

, 2 e e ,s t T tt
s TV α αω σ

α
− − − −= −                (75) 

( )

( ) ( )( )
( ) ( )

2 2

2 2

1 2
2

, ,

e 1 1 e
2

, , .
e e

s t T tt
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t s s T s
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V V

α α

ω

α α
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ακ ρσ

α
γ σ

σ

− − − −

− − − −

 
+ − − −  

 =
−

    (76) 

6.2. Numerical Approximation 

In Tables 1-3 we compare the values of the approximate European call option 
prices approximated by different approaches with the corresponding estima-
tion prices obtained by generalized Hull-White formula in Alòs (2006). The 
Monte Carlo Simulation (MCS) used number of simulation times by 610N =  
in order to achieve accuracy up to second decimal point. We have chosen 

1, ln 100, 0.1, 0.3, 1, 0, 0.5t tT t X r σ α ρ− = = = = = = ±  and varying values for 
the strike price K listed in the first column. Column 2-column 5 are corres-
ponding option prices through MCS, Hagan’s implied volatility formula (30), 
first order approximation by Full Dyson Series Expansion (63) and the 
one-dimensional time integral approximation formula (69), respectively. 

The average calculation speed for each methods are listed in Table 4.   
Although providing high accuracy, both Monte Carlo and Quasi Monte Carlo 

used in Dyson (63) is time-consuming. While Hagan (30) has a great advantage 
in calculation speed because the formula is analytic. Notice that it cost almost 
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same amount of time when comparing 1-Dim integral (69) and Uncorrelated 
pricing formula (48), which implies that not only (69) provides accuracy but also 
can be viewed as time efficiency. 

 
Table 1. 0ρ = .  

K Monte Carlo Hagan (30) 
Uncorrelated pricing 

formula (48) 

90 23.573138 23.415000 23.626726 

95 20.440334 20.337570 20.457574 

100 17.562962 17.624483 17.594033 

105 15.066565 15.291032 15.063452 

110 12.885739 13.322697 12.875527 

  
Table 2. 0.5ρ = − . 

K Monte Carlo Hagan (30) Formula I (63) Formula II (69) 

90 23.972526 22.025500 23.762565 23.704533 

95 20.640584 19.229952 20.539753 20.772327 

100 17.500136 16.889528 17.505670 17.792294 

105 14.688296 14.952772 14.836533 14.581574 

110 12.121686 13.353472 12.884976 11.002132 

 
Table 3. 0.5ρ = . 

K Monte Carlo Hagan (30) Formula I (63) Formula II (69) 

90 22.352943 24.228522 22.979063 21.234073 

95 20.035690 20.836574 20.304502 18.059835 

100 17.186214 17.691469 17.555458 17.124973 

105 15.172375 14.842598 14.965057 16.082605 

110 13.080356 12.333288 12.802697 14.488551 

 
Table 4. Methods comparison. 

Methods Time in seconds 

Monte Carlo  
Simulation 

29.117930 

Hagan (30) 0.008773 

Formula I (63) 27.315683 

Formula II (69) 4.220214 

Uncorrelated  
pricing formula (48) 

4.172000 
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7. Conclusion 

We derived that the European call option price for SABR model with 1β =  in 
two different approaches by means of Malliavin Calculus. The full Dyson series 
expansion is a high dimension integration with its integrand to be an infinite 
sum of asymptotic series. The second approach uses similar method as previous 
one but with different order; it yields to a first order approximation by time 
integral for the correction part of option price. A big advantage of the latter is 
that the integrand is analytic function. Besides, some partial results can be fur-
ther extended to fractional Brownian motion case, which will be our future 
work. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 

[1] Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. 
Journal of Political Economy, 3, 637-654. https://doi.org/10.1086/260062 

[2] Hull, J. and White, A. (1987) The Pricing of Options on Assets with Stochastic Vo-
latilities. The Journal of Finance, 42, 281-300.  
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x 

[3] Hagan, P.S., Kumar, D., Lesniewski, A.S. and Woodward, D.E. (2002) Managing 
Smile Risk. Wilmott, 1, 84-108. 

[4] Als, E. (2006) A Generalization of Hull and White Formula with Applications to 
Option Pricing Approximation. Finance and Stochastics, 10, 353-365.  
https://doi.org/10.1007/s00780-006-0013-5 

[5] Fouque, J.-P., Papanicolaou, G. and Sircar, K.R. (2000) Derivatives in Financial 
Markets with Stochastic Volatility. Cambridge University Press, Cambridge. 

[6] Gatheral, J. (2006) The Volatility Surface: A Practitioner’s Guide. John Wiley & 
Sons, Hoboken. 

[7] Jin, S., Peng, Q. and Schellhorn, H. ((2016)) A Representation Theorem for Expec-
tations of Functionals of Brownian Motion. Stochastics, 88, 651-679.  
https://doi.org/10.1080/17442508.2015.1116537 

[8] Yor, M. (1992) On Some Exponential Functionals of Brownian Motion. Advances 
in Applied Probability, 24, 509-531. https://doi.org/10.1017/S0001867800024381 

[9] Nualart, D. (2008) The Malliavin Calculus and Related Topics. Springer, Berlin. 

[10] Di Nunno, G., et al. (2008) Malliavin Calculus for Levy Process with Applications to 
Finance. Springer, Berlin. https://doi.org/10.1007/978-3-540-78572-9 

[11] Bodie, Z., Cleeton, D. and Merton, R.C. (2008) Financial Economics. Pearson Pren-
tice Hall, Upper Saddle River. 

[12] Shreve, S.E. (2004) Stochastic Calculus for Finance II Continuous-Time Models. 
Springer, Berlin. https://doi.org/10.1007/978-1-4757-4296-1 

[13] Pintoux, C. and Privault, N. (2011) The Dothan Pricing Model Revisited. Mathe-
matical Finance, 21, 355-363. https://doi.org/10.1111/j.1467-9965.2010.00434.x 

[14] Lyasoff, A. (2016) Another Look at the Integral of Exponential Brownian Motion 

https://doi.org/10.4236/am.2019.106034
https://doi.org/10.1086/260062
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
https://doi.org/10.1007/s00780-006-0013-5
https://doi.org/10.1080/17442508.2015.1116537
https://doi.org/10.1017/S0001867800024381
https://doi.org/10.1007/978-3-540-78572-9
https://doi.org/10.1007/978-1-4757-4296-1
https://doi.org/10.1111/j.1467-9965.2010.00434.x


Z. Guo, H. Schellhorn 
 

 

DOI: 10.4236/am.2019.106034 504 Applied Mathematics 

 

and the Pricing of Asian Options. Finance and Stochastics, 20, 1061-1096.  
https://doi.org/10.1007/s00780-016-0307-1 

[15] Ito, K. (1951) Multiple Wiener Integral. Journal of the Mathematical Society of Ja-
pan, 3, 157-169. https://doi.org/10.2969/jmsj/00310157 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.4236/am.2019.106034
https://doi.org/10.1007/s00780-016-0307-1
https://doi.org/10.2969/jmsj/00310157


Z. Guo, H. Schellhorn 
 

 

DOI: 10.4236/am.2019.106034 505 Applied Mathematics 

 

Appendix 

Proof of Lemma 5.1  

The conditional density of 2d
T

us
uσ∫  can be obtained by integrating the joint 

probability density of ( )0
e d , , 0s

t W s
ts W tσ µ− >∫ . By Markov property of the volatil-

ity process tσ  and proposition 3.2 we have  

( ) ( )

( )

2

2

2

22
20

,2 ,0

d | e d ,

, d d .

u

s

T T s W u
u s T ss

s

v

T s

vu v u W

x y y x

α α

σ
α α

σ σ
σ

φ

− −
−

∞

−−∞

 
≤ = ≤ < ∞ 

 

=

∫ ∫

∫ ∫

 
        (77) 

Proof of Theorem 5.3 

Let ( ), ,s s sF H s X v= Λ , recall that { }: ,W Z
T t T tW Zσ∨ =   is the filtration 

generated by TW  and tZ , using iterated conditioning we have, for s t≥ ,  

[ ] [ ]| | | | ,W Z
t s s T t t s s tE F E E H E G  = Λ ∨ = Λ             (78) 

where | W Z
s s T tG E H = ∨    is a random variable depending only on Brow-

nian motion { } 0t t
Z

≥
, and we can apply exponential formula (12) to sH .   

Proof of Lemma 5.4  

From the framework Black-Scholes Theory we know that  
( ) ( )

, ,
exBS t x

N d
x

σ
+

∂
=

∂
, and accordingly  
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23 2

, 2
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V d
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, for d+  evaluated at ( ), ,s ss X v . 

It is obvious that d
d

n

n

q q
x

=  for n∀ ∈  and  
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             (79) 

Then ( )( )
2

2

,

, , , , e
2π

s
d

X

s s s s
s T

dq s p s X v v H
V

+−
−−

= = , and by Lemma 2.15,  
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Proof of Lemma 5.5  

Note that the volatility in model (26) is an exponential martingale, thus sΛ  can 

be further simplified as ( ) ( )2 2
,: d 2 d 2

T TW
s s r s r s s T ss s

D r r Vσ σ ασ σ α σΛ = = =∫ ∫ . Then, 

for t s T≤ ≤ , by Iterated conditioning property, we have  

[ ]
( )
,| 2 | |
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where  
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ω ω ω
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−
′= ∑  . 

Recall that the conditional probability density of ,s TV  is given by (47), there-

fore the conditional expectation ( ), , |s s sE f s X v   , through probabilistic ap-

proach, is ( )
,2 20
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using proposition 3.2 we have  
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Proof of Theorem 5.6 

This theorem is an extension result of Theorem 5.3, the proof is easily combine 
of Theorem 5.1 and Lemma 5.5, then Equation (49) becomes  
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where  
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Proof of Theorem 6.1 

From Theorem 5.3 we see the expression of sX  and d± , a straightforward al-

gebra calculation shows that ( )( )
2 2

ln
2 2s

d dX K r T s+ −− = − + − − . Therefore we 

have the correction term as the following:  
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Proof of Lemma 6.2 

Recall that sX  by (50) is a linear function in d
s

u ut
Z Zσ= ∫ , where Z is condi-

tional normal with zero mean and variance of ,t sV  i.e. ( ),0, t sZ V . Denote 
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=  and for simplicity we will write λ  for ( ),s TVλ  in all deri-

vation following, thus  
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is also a linear function of Z. Substitute (87) into sQ  and use the normal proba-

bility density of Z we can solve for sQ . For simplicity, we write 2
, 1t sa Vλ= + , 
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Notice that we used the fact that 2 2
, 1t sVλ ρ= −  and 22a ρ= −  for the 

substitution in the second last equality. 

Proof of Theorem 6.3 

Since 
2

3eC
s sR γσ γ=  is a random variable depends only on Brownian motion 

{ } 0t t
W

≥
, we may apply exponential formula (12) to sR  such that:  
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n
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∞

=

= ∑                 (89) 

Sketch of Proof of Corollary 6.2 

The formal proof use no more techniques than calculating the first and second 
order Malliavin derivative of sR  based on the stochastic process of the volatility, 
and then apply freezing operator t

Wω  to Malliavin derivative of sR  for 
t s T≤ ≤ , the integration result will be the correction term of the option price. 

Step 1: Calculation of ( )2,
, ,, ,W

t s s T sD V Vτ γ σ  

Denote γ  as a short notation for ( ), ,, ,t s s T sV Vγ σ  defined in lemma 6.2, and 

by chain rule (Theorem 2.7), 

( )
2

,
, 1

, 22

d

2
2 d

T
us TW s

s T
Ts T

us

D uD V
D V

V
u

ττ
τ

σ

σ

= = ∫

∫
, then we have  

( ), , , ,

,

1 1
2 2 ,

W W W
s T s t s s T s T

W

s T

V D D V V D V
D

V

τ τ τ

τ

ρ σ γ
αγ

 − − + 
 =       (90) 

( ) ( ) ( )

( )

2
2

,2 2,
,2

, ,

, ,

,3
,

1
2

4

1
2 .

W W
s t s s TW W

s T
s T s T

W W
s t s s T

W
s T

s T

D D V V
D D V

V V

D D V V
D V

V

τ τ

τ τ

τ τ

τ

ρ σ γαγ

ρ σ γ
α

 −  + = +

 − + 
 −

      (91) 

( ), , ,2,

,,

1
12
2

1 ,
2

W W W
s t s s T s TW W W

s Ts T

D D V V D V
D D D

VV

M N

τ τ τ

τ τ τ

ρ σ γαγ

   − +   = −        

= −

   (92) 

where  
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2, 2,
, ,

,3
, ,

1 1
2 2 ,

2

W W W W
s t s s t s

s T
s T s T

D D V D D V
M D V

V V

τ τ τ τ

τ

ρ ρσ σ
α α

− −
= −       (93) 

( )2, , 2,
, , ,23

, ,,,

1 .
2

W
s T s TW W W

s T s T s T
s T s Ts Ts T

V VD
N D V D V D V

V VVV
τ

τ τ τ

γ γγ + +
 = − + +
 
 

(94) 

Therefore, substitute M and N in (92) and combining like terms, we have 

( )

,2, 2, 2, 2,
, ,

,, ,

, , ,3
,,

2,
,2

,

1
22

1
2

2 3
.

4

s TW W W W
s t s s T

s Ts T s T

W W W W
s s T t s s T

s Ts T

s T W
s T

s T

V
D D D V D V

VV V

D D V D V D V
VV

V
D V

V

τ τ τ τ

τ τ τ τ

τ

γρ αγ σ

ρ α σ

γ

+
= − −

− +

+
+

      (95) 

Step 2: Calculation of ( )2, , ,W
s sD R s X vτ  

Let ( )
2

3, eC xf x y yx= , then ( ) ( ), , ,s s sR s X v f γ σ=  and 0yyf = , by Product 
rule and Chain rule as well as Theorem 2.6 and 2.7,  

( ) ( )( )
( ) ( )

( )( )

22, 2,

2,

22, 2 2
3 3 3

2, 3

, ,

, 2 ,

1 2 6 4

21 12

W W W
s x s xx s

W W W
y s s xy s s

W W
s

W W W
s s

s s s

D R f D f D

f D f D D

R C D C C D

C
D D D

τ τ τ

τ τ τ

τ τ

τ τ τ

γ σ γ γ σ γ

γ σ σ γ σ γ σ

γ γ γ γ
γ

γ
σ γ σ

σ γσ σ

= +

+ +

 
= + + + 

 
 

+ + +  
  

 

( )

( )

2, 2,
3

,

,2, 2,
, ,

,,

2

,
3

,

2

,
2 2

3 3
,

1

1 1 2

1
22

1
21 22

1
26 4

W W
s s s

s s T

s TW W
t s s T

s Ts T

W W W
s s t s

s s s T

W W
s t s

s T

W W
s

R D C D
V

V
D V D V

VV

D D D VC
V

D D V
C C

V

D D V

τ τ

τ τ

τ τ τ

τ τ

τ τ

ρ ασ γ σ
σ γ

γ

ρ σ σγ α
γσ σ

ρ σ
αγ

ρ σ
α

   = + +   
+
− −



 −  
+ +   

   
 

 − 
 + +

−  ( )2

, 2 , , 3 , ,W W W
s T t s s T s TD V D V D Vτ τ τ


+ + 


 

 (96) 

where  
2 3 2 2
3 3 , 3 3 ,

1 3
,

4 4 8 6s T s T

s T

C C V C C V

V

γ γ γ+ + +
=            (97) 
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2
3 3 ,

3
, ,,

2 2 11 1 ,s T

s s T s s Ts T

C C V
V VV

γ γα
ρ σ σ γγ

 + +
 + + +
 
 

 

( )2 3 2 2
3 3 , 3 , 3 ,

2 3
,,

2 2 3 3 1 ,
2

s T s T s T

s Ts T

C C V C V C V

VV

γ γ γ

γ

+ + + +
= +       (98) 

( )( )2 4 2 3 2 2
3 3 , 3 , 3 3 , 3 ,

3 2
,

3
,

4 2 3 4 6 3

4
1 .

2

s T s T s T s T

s T

s T

C C V C V C C V C V

V

V

γ γ γ γ

γ

+ + + + + +
=

+


(99) 

Step 3: Apply freezing operator t
Wω  to ( )2, , ,W

s sD R s X vτ  to obtain an 
analytical expression 

Recall that the volatility process tσ  for [ ]0,t T∈  is defined by (27), which 

implies that for 0 t s T< < < , 
( ) ( )21

2e s ts t W W

s t

α α
σ σ

− − + −
= . By the structure of tσ  

for [ ]0,t T∈ , we have the following results:  

{ } { }
2, 21l , 1l ,W W

s s s ss sD Dτ ττ τσ ασ σ α σ≤ ≤= =           (100) 

2, 2
, , , ,2 , 4 ,W W

s T s T s T s TD V V D V Vτ τ τ τα α∧ ∧= =           (101) 

{ } { }
2, 2

, , , ,2 1l , 4 1l .W W
t s s t s ss sD V V D V Vτ τ τ ττ τα α≤ ≤= =         (102) 

The following results can be obtained by applying freezing operator t
Wω  to 

each integral of square of volatility for t s T≤ ≤ , 

( )21
2: e ,

s tt
s W s t

αωσ ω σ σ
− −

= =             (103) 

( )( )2
2

, , 2: 1 e ,s tt t
t s W t sV V αω σ

ω
α

− −= = −                (104) 

( ) ( )( )2 2
2

, , 2: e e ,s t T tt t
s T W s TV V α αω σ

ω
α

− − − −= = −            (105) 

( )( )2
2

, , 2: 1 e .T tt t
t T W t TV V αω σ

ω
α

− −= = −               (106) 

Thus, it is straightforward to calculate  

( ) ( ), , , ,, , : , ,t
t s s T s W t s s T sV V V Vωγ σ ω γ σ=   which we write ωγ  and : t

k W k
ω ω=   , 

for 1,2,3k = .  

( )
( ) ( )

( ) ( )( )
( ) ( )

2 2

2 2

, ,

, ,
,

1 2
2

1
2, ,

e 1 1 e
2

.
e e

s t t s s T
t

t s s T s W
s T

s t T tt
t

s t T t
t

V V
V V

V
ω

α α

α α

ρκ σ σ
αγ σ ω

σ
ακ ρσ

α

σ

− − − −

− − − −

+ − − +
=

 
+ − − −  

 =
−



    (107) 

Combine these results with (96), we have for sτ > ,  
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( )( ) ( )

2, 2,

22 2 2
3 , 3 ,

:

1 2 2 2 .

W t W
s W s

s s T s T

D R D R

R C V V

ω
τ τ

ω ω ω ω ω ω
ω

ω

γ α γ α
γ

=

  
= + − + +  

  




 (108) 

Notice that when sτ > , , 0W W
s t sD D Vτ τσ = = . When sτ ≤ ,  

( )

( )

2,

2 2 2
3 ,

, ,

2

,, 2
,

, ,

2

,
2 2,

3 3
,

1 , 2

1 12 4
2

1 2
24 2

2

1 2
26 4

2

W
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s s s

s T s T

s s ss T
T

s T s s T

s s

s T

s T

D R

R C V
V V

VV
V

V V

V
C C

V

V

ω
τ

ω ω ω ω
τω ω ω

ω ω ωω ω τ
ω
τω ω

ω ω
τ

ω
ω

ω ω ω
τ

ρ αα γ α σ α
γ

ρ ασ ασ αγ αα
σ

ρ ασ α
αγ

ρ ασ α
α

 
  = + + −    

 − +  
− +  

   

 − 
 + +

− +  ( )2

, , 3 ,2 2 2s T TV V Vω ω ω ω ω
τ τ τα α α


+ 




 

( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )

( ) ( ) ( )( )
( )

2 22

2 2 2 2

2 2
2 2

2 2

2 2 2

2

1
2 2

2
3

2
2

2

1
2 2

2 e e1 e2
e e e e

e e2 e e
e e

e e e
2

e
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s
s t T t s t T t

t T t
s t T tt

s t T t

s t t s t
t

s t

R C
α τ αα

ω ω
ω

α α α α

α τ α
α α ω

α α

α α τ α

α

ασραα γ
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α γ

α

ρα ασ

− − − −− −
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− − − −
− − − −

− − − −

− − − − − −

− −
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  − − − + ⋅
  − 

− −
+

( )

( )
( ) ( ) ( )( )

( ) ( )

2

2 2 2

2 2

21
2

2 2,
3 3

e

e e e
6 4

e e

T t

s t t s t
t

s t T t
C C

α

α α τ α

ω

α α

ρα σ
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− − − − − −

− − − −




− 


 
− −  
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( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

2 2 2

2 2 2 2

2 2

1
3 2

1

4

22

2

3

2 e e e

4
e e e e

e e

s t t T t
t

t s t t T tt

t T t

α α τ α ω

α τ α α τ α ω

α τ α ω

ρσ
α

σ
α

− − − − − −

− − − − − − − −

− − − −
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+ − −

+ − 







                 (109) 

Step 4: A time integral formula for the correction term of option price 

Let ( ) 2,: d
s W

st
p s D Rω

τ τ= ∫  and ( ) 2,: d
T W

ss
q s D Rω

τ τ= ∫  be the integration of 

( )2, , ,W
s sD R s X vτ  for both sτ ≤  and sτ >  case, respectively. By Corollary 1, 

the first order approximation for the correction term is  
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( ) ( ) ( )2,
1 1 2 1 2

1 11 d d d 2 .
2 2

T T TW
st t t

J C C D R s C C p s q s s T tω
τ τ  = + = + + −  ∫ ∫ ∫  (110) 

The detail integration calculation for ( )p s  and ( )q s  is omitted here, a re-
mark for ( )q s  is that when sτ > , 2,W

sD Rω
τ  does not depend on τ , which 

yields an simpler expression of ( )q s  than ( )p s .   
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