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Abstract 
Aiming at the problems of image super-resolution algorithm with many 
convolutional neural networks, such as large parameters, large computational 
complexity and blurred image texture, we propose a new algorithm model. 
The classical convolutional neural network is improved, the convolution ker-
nel size is adjusted, and the parameters are reduced; the pooling layer is add-
ed to reduce the dimension. Reduced computational complexity, increased 
learning rate, and reduced training time. The iterative back-projection algo-
rithm is combined with the convolutional neural network to create a new al-
gorithm model. The experimental results show that compared with the tradi-
tional facial illusion method, the proposed method can obtain better perfor-
mance. 
 

Keywords 
Face Hallucination Super Resolution, Convolutional Network Hybrid  
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1. Introduction 

Image super-resolution is a classical problem in the domain of computer vision. 
It aims to infer an HR image with crucial information from the given LR images. 
Face hallucination is a branch of image super-resolution, which develops do-
main specific prior knowledge with strong cohesion to face domain. It was first 
introduced by Baker and Kanada [1] and has attracted growing attention due to 
practical importance in many face based applications such as face recognition, 
face alignment and so on. As the development of machine learning, there are 
numerous learning-based methods which have been proposed to solve the face 
hallucination problem. Learning based algorithms have been seen to achieve 
higher magnification factor with better visual quality than the other super reso-
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lution techniques such as bi-cubic interpolation and reconstruction based tech-
niques.  

The algorithm based on Interpolation is the most basic method in face su-
per-resolution research, including the nearest neighbor interpolation, bilinear 
interpolation, bicubic Interpolation etc. The method based on reconstruction 
has a fast speed and made a little improvement in image quality. However, be-
cause it is limited by the original information of the image, the ambiguity caused 
by low resolution sampling cannot be removed. Feerman et al. [2], proposed a 
method of image super-resolution based on sample learning, and obtained the 
vector set in the external database through the nearest neighbor search. Timofte 
combined the sparse learning dictionary and the domain embedding method, 
and proposed the method of fixed domain regression, which improves the 
processing speed of the algorithm. Dong et al. [3], proposed a deep convolution-
al neural network (CNN) based single image super resolution method and 
showed that the traditional sparse coding-based algorithm can also be seen as a 
kind of deep convolutional network. The end-to-end mapping between LR im-
ages and HR images was optimized in Dong’s SR method, which achieves excel-
lent reconstruction performance. 

Inspired by the above literature, we apply the deep learning theory to illusory 
face hallucination reconstruction [4]. The model of deep convolution neural 
network is improved, the convolution neural network is added to the pool layer, 
the convolution kernel size is adjusted, the parameters are reduced, and the op-
eration speed is increased. Finally, the iterative back projection method is used 
to reconstruct the face image after post-processing [5]. 

2. Methodology 

Image acquisition process may be affected by motion blur, optical blur, signal 
aliasing caused by down sampling and all kinds of noise. The picture is polluted 
by all of the above. Elad proposed a matrix vector approach to describe low res-
olution image imaging models [2]. 

y HDXw n= +                           (1) 

X represents high resolution images, y means low resolution images, and N 
represents additive Gauss noise. D, H and w denote the down sampling matrix, 
the fuzzy matrix and the geometric transformation matrix respectively. Halluci-
nation face is the inverse process of face image degradation. The purpose is to 
give the low resolution image y to restore the original high resolution image X. 

Convolutional Neural Networks are a biologically inspired variant of mul-
ti-layered perceptron networks (MLP’s), specialized for image processing. First 
popularized by LeCun et al. in they are similar to other hierarchical feature ex-
traction methods such as the Neocognitron and HMAX. 

The structure of a typical CNN consists of alternating layers of convolutional 
and pooling followed by an output classification layer. Each type of layer con-
tains several feature maps, or groups of neurons, in a rectangular configuration.. 
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The receptive field itself is simply a number of weighted connections, that is, 
each connecting edge has a weight. The group of weights applied by a neuron is 
called a weight kernel. A distinguishing property of these networks is that all 
neurons in a feature map share the same weight kernel. The idea behind this 
configuration is that a spatial feature detector should be useful across an entire 
image, instead of just at a particular location; for example a vertical edge detec-
tor. The convolutional layers in the network perform the majority of processing 
in these networks, with the feature maps in the pooling layers simply 
down-sampling their corresponding feature map in the convolutional layer [6]. 

In the past few years, the method based on deep learning has been improved 
and updated. It is not only applied to the image classification in the field of 
computer vision, but also from face recognition to semantic segmentation. Re-
cently, deep learning method has also been applied to low level vision tasks, in-
cluding image denoising, image enhancement, image super-resolution and so 
on. The seminal work of image super-resolution convolutional neural network 
(SRCNN) was done by Dong et al. [7]. 

The model is mainly composed of three volumes, which generally simulate a 
sparse layer. Three coiling layers accomplish the following tasks: patch extrac-
tion and representation, nonlinear mapping and reconstruction [8]. 

1) Patch extraction and representation: A patch is extracted from a low reso-
lution image and each patch is represented as a high dimensional vector. These 
high dimensional vectors are composed of a set of feature maps, and the dimen-
sion of the vector is equal to the number of maps. 

2) Non-linear mapping: this step nonlinearly maps each high dimensional 
vector onto another high dimensional vector. Each mapped vector is concep-
tually the representation of a HR patch. These vectors comprise another set of 
feature maps. 

3) Reconstruction: this step aggregates the above HR patch-wise representa-
tions to generate the final HR image. This image is expected to be similar to the 
ground truth R.  

2.1. Iterative Back Projection Algorithm 

The iterative back projection algorithm proposed by Irani is the representative 
method of the original image restoration [4]. It is used as the post-processing in 
the processing of the image super-resolution algorithm. The result of the single 
image interpolation is usually used as the initial solution of the high resolution 
image. According to the system model, the quasi low resolution image can be 
expressed as: 

0 0y Hx n= +                         (2) 

If the x is equal to the original high resolution image and the upper analog 
imaging process conforms to the actual situation, the analog low resolution se-
quence y0 is the same as the actual low resolution image y, and if it is different, 
the difference between y and y0 is projected back to x0 for correction. 
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In IBP algorithm, HR image is obtained by utilizing the backward projection 
of the error projection matrix based on the difference between simulated LR 
images and the observed LR images with up-sampling, reverse blur filter and re-
verse motion transform [5] [9]. This process iteratively calculates the estimated 
HR image until the energy of the error comes to a minimum value, or the itera-
tion step achieves the maximum number. The simulated LR images, the error 
projection matrix for the acquisition process, and the IBP algorithm iterative 
reconstruction process can be written as: 

( )( )1
ˆ1 Nn BP

k k
n

kKE N H y y
N −=

= ∑                  (3) 

( ) ( ) ( )1ˆ ˆn n nEz z λ+ = +                        (4) 

where ẑ  and ( )1ˆ nz +  denote the super resolution image gained from the (n)th 
and (n + 1)th iteration respectively, ( )ˆ n

ky  denotes the (n)th simulated LR images 
of ( )ˆ nz  under the imaging degradation model, ( )nE  is the difference between 
the simulated LR images and the observed LR images, BP

kH  is the (k)th back 
projection operation and λ is the iteration step. 

2.2. The Hybrid Algorithm 

The reconstruction algorithm of the iterative back-projection algorithm is not 
outstanding, but it can be combined with other super resolution methods to im-
prove the performance. In this paper, the super-resolution algorithm based on 
convolution neural network is improved and combined with the iterative 
back-projection algorithm [10], a new composite algorithm is proposed. 

2.2.1. The Convolution Layer 
In the convolution layer, we mainly consider the influence of the size and num-
ber of convolution kernel on the processing effect and processing speed of the 
model, Convolution neural network proposed by Dong et al. [3] [7]. And su-
per-resolution model have three volumes of convolution kernel size of 9 × 9, 1 × 
1, 5 × 5. The improved algorithm in this paper has a three layer convolution 
kernel size of 3 × 3, 1 × 1, 3 × 3. As shown in the following Figure 1. 

The larger the convolution kernel size is in convolution, the better the su-
per-resolution effect, but it will also increase the corresponding computation 
[11]. In our improved convolutional neural network model, the first layer con-
volution kernel is changed to 3 × 3, which can effectively reduce the number of 
parameters and cover the features of the image. If the second layer convolution 
kernel increases, the parameter will increase. The convolution kernel size of 
second layers is still 1 × 1. The size of the convolution kernel of third layers is 3 
× 3. As the number of convolution cores may affect the quality of su-
per-resolution images, we train and test the number of iterations of the convolu-
tion neural network model of 3-1-3 and 3-1-5 respectively. The experimental 
results show that each iteration 100 times 3-1-5 model takes 7.1 seconds more 
than the 3-1-3 model; The average PSNR 3-1-5 model of the phase output super  

https://doi.org/10.4236/ami.2018.84004


J. F. Xia et al. 
 

 

DOI: 10.4236/ami.2018.84004 43 Advances in Molecular Imaging 
 

 
Figure 1. The flow chart of super-resolution algorithm. 
 
resolution image is 0.1dB higher than that of the 3-1-3 model. Considering the 
processing results and computing speed, we select the 3-1-3 model. 

The number of convolution kernel and convolution kernel size determines the 
super resolution effect together. In the super-resolution algorithm 9-1-5 model 
proposed by Dong and others, the first convolution kernel number and the 
second layer convolution kernel number improvement algorithm are tested in 
the 3-1-3 model for different size and the final selection 1 264, 64n n= = . 

According to the selection of the number of convolution kernel [10] we chose 
and the test image under the condition of the same iteration number and the 
same learning rate in the improved algorithm 3-1-3 model. The PSNR value of 
super resolution image test is 45 10×  and the learning rate is 310− . The com-
parison data obtained are shown in Table 1. 

At the same time, the influence of the amount of calculation and information 
on the speed of the image super-resolution is considered. The size of the patch is 
selected to be 33 × 33, and the size of the sub image is properly increased. Expe-
rimental results show that the increase of input block size improves training 
speed and shortens training time. 

2.2.2. Pooled Layer 
Dong et al. proposed to apply convolution neural network model to image su-
per-resolution processing, there is no pool layer in the model. In addition to im-
proving the size and number of convolution kernels, we also introduce pooled 
layers [12]. After introducing the pool layer into the first, second volume layer, 
the introduction of the pool layer can reduce the output vector, reduce the di-
mension and speed up the training. The phenomenon of over fitting can be 
avoided after adding the pool layer. After introducing the pool layer, the net-
work depth reaches five layers, and the network structure with deeper layers is 
more conducive to the learning of image data. At the same time, the number of 
parameters can be reduced by pooling layer [13] [14]. 

To make the pooling unit have translation invariance, that is, after a small  

Low resolution image

Feature map of Low 
resolution image

Feature map of High
resolution image

High resolution
image

Patch extraction and

representation
Non-linear mapping Reconstruction
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Table 1. The test PSNR values of different convolution kernel numbers. 

kernel number 1 264, 32n n= =  
1 264, 64n n= =  1 2128, 64n n= =  

PSNR 33.57 33.65 30.14 

 
translation, the image still produces the same characteristics as before. We can 
choose the continuous range in the image as the pool area and only pool the 
features generated by the same hidden unit, so the number of the pool layer in-
put feature graph will not change, but the size of the feature graph will be re-
duced. This process is actually a down sampling process [15]. It can be expressed 
as a formula: 

( )1downk k k k
j j j jX f x bβ − = +                    (5) 

2.3. Architecture of Hybrid Algorithm 

The whole model of the hybrid algorithm is divided into nine layers, including 
four coiling layers, two pool layers, two subsampling layers (one for lower sam-
pling, the other for upper sampling), and the other for differential stratification 
[13] [16]. The detailed description of the specific functions of each layer is as 
follows: 

1) The first five layers are the framework of the super-resolution algorithm of 
the convolution neural network (SRCNN model), which are mainly imple-
mented in the five layers: the extraction and expression of the patch, the nonli-
near mapping and reconstruction. 

2) Down-sampling layer. This operation down-samples the image derived 
from the third layer. As a result, a LR version of reconstruction image is ob-
tained. 

3) Difference layer. This operation calculates the difference between 
down-sampling version of the original HR image and the corresponding coun-
terpart we acquired above. The difference is treated as reconstruct-ion simula-
tion error, and it also can be considered as a prior guidance that has been intro-
duced 

4) Up-sampling layer. This operation up-samples the simulation error to gen-
erate the simulation error of HR version. 

5) Update layer. This operation performs a convolution with the above simu-
lation error, and then the final HR image is updated based on the synthesis of 
the third layer’s result with the convolution version of simulation error. 

3. Experimental Results 

Considering the test and contrast, the image degradation model we adopted is to 
generate low resolution images by sampling the original high-resolution images 
after Gauss blur. The initial high resolution image is input into the convolution 
neural network model of off-line training, and the final high resolution image is 
generated by the processing of network learning and optimization after the 
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processing of the model parameters [15]. In order to ensure the objectivity and 
rationality of the comparison, the learning results of the network model with the 
same iteration number are selected for comparative test. The maximum iteration 
number of the composite algorithm is 55 10×  due to device constraints. 

We choose a Bicubic [17] method, the NE algorithm [18], the ScSR algorithm 
[19] [20] and the SRCNN algorithm [21] for comparative test. We evaluate and 
compare the performance of our proposed models in terms of peak signal to 
noise ratio (PSNR) and structure similarity (SSIM). The model is tested on 500 
images of BANVA dataset. Here are the visual qualities of the face hallucination 
results generated by our method and other competing ones in Figure 2.  

Table 2 shows the comparison results in terms of PSNR and SSIM between 
the proposed improved method and some competing methods. The best results 
are high-lighted in bold. As one can see, our proposed method improves the re-
sults both in terms of PSNR and SSIM. And they all have an up-scaling factor of 
in our experiments. We can make some observations from the results. Obvious-
ly, the proposed modified net-work has already achieved better results 
 

 
Figure 2. Results of images with different algorithms. 
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Table 2. The result of PSNR (dB) and SSIM on test images using different methods. 

Image 
BI NE ScSR SRCNN Proposed 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1 27.50 0.798 28.30 0.803 29.27 0.825 30.23 0.834 31.01 0.871 

2 28.91 0.837 28.36 0.844 29.89 0.874 30.59 0.882 31.87 0.912 

3 28.01 0.823 28.81 0.832 30.61 0.853 31.02 0.875 32.23 0.891 

4 27.04 0.812 28.36 0.829 28.69 0.843 30.22 0.862 31.35 0.886 

5 28.70 0.833 29.09 0.838 29.21 0.853 31.21 0.880 31.93 0.879 

6 32.48 0.897 32.56 0.898 33.45 0.905 34.00 0.914 34.08 0.917 

Average 28.77 0.833 29.25 0.840 30.197 0.859 31.21 0.875 32.08 0.890 

 
than the competing methods, which validates that introducing image prior for 
face hallucination works well. 

4. Conclusion 

In this paper, by analyzing the training process of convolutional neural net-
works, we have made a series of improvements to the image super-resolution 
algorithm based on convolutional neural networks. Compared with the tradi-
tional algorithm, the results show that the improved algorithm has better recon-
struction effect, higher edge sharpness and clearer picture. Improved convolu-
tional neural network algorithm can achieve better results with less iteration and 
significantly reduce training time. 
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Abstract 
In this study we implemented an axillary SLN invasion model to develop 
highly sensitive imaging strategies enabling detection of a very small amount 
of tumor cells. A highly diffusible molecular probe targeting αvβ3 and αvβ5 
integrins was investigated either via IV or locoregional injections. We addi-
tionally documented the potential interferences of this Near Infrared Fluo-
rescence Probe with Blue Patente V and ICG dyes routinely used to facilitate 
lymph node detection during surgery. The human mammary adenocarcino-
ma MDA-MB-231-luc model was injected into the forepaw of nude female 
rats to obtain a controlled invasion of the axillary LN. Thanks to its high sen-
sitivity, BLI was selected to achieve in vivo quantitation of tumor cells in 
SLNs and determine eligible animals for the study. NIRF of integrins was 
performed at 680 nm both in vivo and ex vivo using spectral unmixing to 
suppress auto-fluorescence signal and preserve sensitivity. In vivo BLI was 
quite reliable in estimating discrete invasion by cancer cells in the LN with 
thresholds of detection and quantitation of about 500 and 1500 cells respec-
tively. For fluorescence at 680 nm, in vivo imaging is not suitable to detect 
micro-invasion, but ex vivo fluorescence with spectral unmixing of SLNs 
confirmed the presence of a tumor burden as low as 1500 cells expressing 
αvβ3/αvβ5 integrins. Targeting few tumor cells inside a micro-invaded senti-
nel lymph node by molecular probes is not sensitive enough to provide direct 
in vivo or peroperative imaging. At the time NIRF is performed on the ex-
cised specimen, high sensitivity imaging associated with spectral unmixing 
allowed such detection within less than 1 minute of examination. 
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1. Introduction 

From the primary tumor, at the time tumor cells disseminate via lymph ducts, 
they accumulate in the first drainage site which is named the Sentinel Lymph 
Node (SLN). The interest in exploring the sentinel lymph node is to obtain in-
formation on the tumor invasion stage [1], because the invasion of SLNs by me-
tastatic tumor is the major prognostic factor for patients with malignant tumors 
of epithelial origin [2]. In the clinical practice, the pathological examination of 
the excised specimen remains the gold standard for cancer confirmation. Apart 
from expensive fast molecular biology tests [3] [4], routine histopathology ex-
aminations require 4 - 7 days to detect minimal invasion and so does not allow 
the immediate assessment of the surgical outcome [5]. Positive micro-invasion 
of SLN in patients is relatively rare [6] [7] and the management of positive SLN 
in breast cancer has currently been revised. Most of the other SLN examinations 
are considered for gastric [8] [9], cervical, head and neck cancers [10] and me-
lanoma [1]. Imaging strategies could provide information on the tumor invasion 
status faster than histopathology techniques. Nowadays, many different imaging 
agent sexist dedicated to the localization of LNs such as Blue Patente V (BPV) 
for visual direct observation or ICG (IndoCyanineGreen) for fluorescence pero-
perative imaging [11] [12]. For the imaging of invasion, labeled dedicated Mo-
noclonal antibodies (MAbs) and RGD mimetic agents for targeting αVβ3 and 
αVβ5 integrins have been identified as efficient probes for in vivo imaging (PET, 
SPECT, MRI, NIRF). Targeting integrins from both tumor cells and tumor-related 
angiogenesis thank to low molecular weight highly diffusible probes should 
theoretically contribute to significantly increase the detection’s sensitivity [13]. 
Among imaging modalities for such probes, Near Infrared Fluorescence Imaging 
(NIRF) is used more and more to investigate real-time peroperative visualization 
of tumors and SLNs [10] [14]. In this study, we performed preclinical investiga-
tions about assessment of tumor micro-invasion in a rat model of SLN. For such 
a purpose we considered Bioluminescence Imaging (BLI) thank to its very high 
sensitivity detecting a tiny number of tumor cells in order to select animals with 
a predefined SLN micro-invasion status. We then explored the ability of inte-
grins NIRF to determine the invasion stage both in vivo and ex vivo on excised 
specimens. Considering the routinely used dyes such as Blue Patente V (BPV) by 
surgeons to evidence the SLNs, we investigated its potential quenching effect on 
fluorescence intensities from both an integrin targeting probe and ICG. 

2. Materials and Methods 

1) Ethics Statement 
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All procedures on animals were performed in accordance with European eth-
ical guidelines (European directives 2010/63/EU) and were approved by the Re-
gional Committee for Animal Care and Ethics in Animal Experiments (CECCO 
n˚ 3). 

2) Cell Culture 
The MDA-MB-231-luc-D3H2LN human breast adenocarcinoma cancer cell 

line was obtained from Perkin Elmer (France). The cancer cell line was main-
tained according to the supplier’s instructions. 

3) Animals 
Pathogen-free 8 to 12 week-old female nude rats were purchased from Tacon-

ic (Germany). Rats were acclimated for 7 days in the laboratory before experi-
mentation and were maintained in sterilized filter-stopped cages inside a con-
trolled ventilated rack with access to food and water ad libitum. They were ex-
amined daily for clinical signs, distress, decreased physical activity and weighed 
3 times a week. 

4) Cell xenografts 
Human breast cancer xenografts from MDA-MB-231-luc cells were estab-

lished in NIH nude rats. We performed forepaw injection, so that 15 rats were 
anaesthetized by inhalation of 1.5% isoflurane with air (Isoflo, AXIENCE S.A.S, 
France) and inoculated by 2 × 106 tumor cells in 10 μL PBS into the forepaw. 
The rats received pre-treatment with 10 mg/kg of busulfan 2 days before cell in-
jection, so that immunodeficiency of rats was improved. 

5) Bioluminescence Imaging 
BLI was performed twice a week until the end of the study (Day 28) using an 

IVIS-Lumina II (Perkin Elmer, France). Each rat was IP injected with 20 mg lu-
ciferin potassium salt (Promega, France). Rats anesthetized by 1.5% isoflurane 
were placed on a thermostatically controlled heating pad (37˚C) during imaging. 
Acquisition binning and duration were set depending on tumor activity. Signal 
intensity was quantified as the total flux (photons/seconds) within ROIs drawn 
manually around the tumor area using Living Image 4.4 software (Perkin Elmer, 
France). 

6) Estimation of the number of tumor cells present in the SLN 
A calibration curve was determined from known amounts of cells (500, 1000, 

5000, 10,000 & 50,000 cells) either deposited on the skin or subcutaneously in-
jected. The injected volume was 100 µL of culture medium supplemented with 
luciferin potassium salt (300 µg/mL). Immediately after luciferin addition, the 
cell suspension was deposited or injected, and then BLI was performed 5 mi-
nutes later. 

7) Near Infrared Fluorescence Imaging 
NIRF was performed in vivo and ex vivo on excised specimens using an 

IVIS-Lumina II (Perkin Elmer, France) operated according to the spectral unmix-
ing mode. Rats selected from BLI were IV injected with 20 nmol of IntegriSense680 
(Perkin Elmer, France). Animals anesthetized by 1.5% isoflurane were placed on a 
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thermostatically controlled heating pad in supine or lateral position. Signal intensity 
was quantified as the total radiant efficiency ([photons/seconds]/[µW∙cm−1]) 
within ROIs drawn manually around LN area using Living Image 4.4 software 
(Perkin Elmer, France). 

8) Assessment of fluorescence quenching 
For these experiments, 50 µL of Blue Patente V (0.5 nmol, Guerbet, France), 

IntegriSense680 (0.5 nmol, Perkin Elmer, France), ICG (129 nmol, SERB 
France), or 50 µL of a mix of the two dyes (BPV + IntegriSense680 or BPV + 
ICG) were injected in the forepaw of the rat, and then axillary LNs were resected 
15 min after injection, so that NIRF was performed on excised LNs. 

9) Sacrifice and organ removal 
Rats under anesthesia were sacrificed by lethal IV injection of pentobarbital 

(Ceva Santé Animale, Libourne, France) and LNs were collected from each ani-
mal for immediate ex vivo assessments. 

10) Statistical analysis 
Statistical analysis was performed using Graph Pad Prism software 5.0 (Graph 

Pad, USA). Statistical analysis was performed with the Student’s unpaired t test. 

3. Results 

1) Assessments of the fluorescence quenching, and wash-out kinetics in lymph 
nodes from healthy rats: 

There was no statistical difference in the fluorescence intensities quantified on 
ex vivo resected LNs after forepaw injection of IntegriSense680 versus BPV + 
IntegriSense680 (Figure 1(A)). There was no statistical difference in the fluo-
rescence intensities quantified on ex vivo resected LNs after forepaw injection of 
ICG versus BPV + ICG (Figure 1(B)). Such an absence of quenching by BPV 
was also observed at the time a very low amount of IntegriSense680 was injected. 

After forepaw injection of IntegriSense680, the dye diffuses mainly through 
the lymphatic ducts, then reaches LNs where it accumulates momentarily before 
being eliminated (Figure 2(A)). The comparison between NIRF signals in axil-
lary and brachial LNs highlighted that the retention of the dye is greater in axil-
lary LNs than in brachial LNs, furthermore there were no differences in signal 
intensities between 5H30 and 19H for these two LNs (Figure 2(B)). Following 
loco regional injection, the limited clearance in healthy LNs compromises a high 
sensitivity of detection of tumor cells in SLNs since the residual activity is about 
1 log higher than predicted fluorescence from 1000 - 2000 tumor cells. So, only a 
systemic route such as IV resulting in quasi-negligible residual activity in a 
healthy LN can be considered. 

2) Validation of BLI quantitation: 
The minimal invasion status was determined thanks to in vivo calibration ex-

periments by the quantification of known amounts of cancer cells suspended in 
a biological medium in the presence of luciferin. The bioluminescence signal was 
stable during at least 9 minutes following injection and attenuation of photons  
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(A) 

 
(B) 

 
(C) 

Figure 1. (A) Assessment of the fluorescence quenching of IntegriSense680 (0.5 nmol) by 
Patente Blue V (0.5 nmol). Quantifications performed by ex vivo NIRF on axillary LNs (n 
= 6 LN per group); (B) Assessment of the fluorescence quenching of free ICG (129 nmol) 
by Patente Blue V (0.5 nmol). Quantifications performed by ex vivo NIRF on axillary LNs 
(n = 6 LN per group); (C) Assessment of the fluorescence quenching of IntegriSense680 
(injection of 2.5 pmol) by Patente Blue V. Quantifications performed by ex vivo NIRF on 
axillary LNs (n = 6 LN per group). 
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Figure 2. (A) Scheme showing the location of axial and brachial lymph nodes in the axil-
lary area; (B) Comparison of the IntegriSense680 wash-in kinetics between axillary and 
brachial Lymph Nodes from rats by ex vivo NIRF quantification (n = 6 LN per group). 
 
by skin was about 77% (Figure 3(A)). From the known number of SC injected 
cells, the calibration curve of bioluminescence activity corresponds to the fol-
lowing equation: Y = 348X – 277556 (Figure 3(B)) with a threshold of quantita-
tion of about 500 cells (more than 5 times higher than background activity) 
(Figure 3(C)). 

3) Sentinel Lymph Node invasion’s model: 
Thanks to BLI, it was possible to confirm the minimal invasion of tumor cells 

in both brachial and axillary LNs in vivo (Figure 3(A)). However, we noticed 
that tumor cells more often tended to develop in the axillary LN as compared to 
the brachial LN. From the in vivo BLI calibration curve, estimation of the tumor 
burden was approximately 18,700 cells for the rat A (Figure 4(A)) with a 
brachial invaded LN whereas rat B presented about 1500 cells (Figure 4(B)) in 
the axillary LN. 

4) αVβ3 and αVβ5 integrins targeting: 
Since locoregional injection of Integrin targeting probe IntegriSense680 re-

sults in a non-complete clearance in healthy LN, this route cannot be used to 
detect minimal invasion. So, only IV injections of the fluorescent probe were 
considered. In animals with SLNs containing almost 2000 cells, based on quan-
titative BLI, NIRF did not allow detection of any significant fluorescent signals 
in vivo. However, after excision of the SLN, ex vivo NIRF associated with spec-
tral unmixing to suppress auto-fluorescence, enables confirmation of the mi-
nimal invasion of left axillary LN by cancer cells (Figure 5, ROI 2). Overall, the 
fluorescence activity of the minimally invaded LN ranged from 3 to 20 times 
higher than the control LNs. Fluorescence images from excised LNs were all in 
good correspondence with the in vivo bioluminescence patterns. 
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(A) 

 
(B)                                                        (C) 

Figure 3. Validation of BLI quantification. (A) Comparison of in vivo BLI signals following subcutaneous injection or depo-
sition of cells supplemented with substrate on the surface of the skin. (n = 2 per condition); (B) Determination of the fitting 
curve for in vivo quantitation of the number of cells (R = 0.94); (C) Assessment of BLI signal with different cell burdens fol-
lowing subcutaneous injection of cells supplemented with substrate. (n = 4 per condition). 

4. Discussion 

In clinical practice, blue dyes injected in the vicinity of primary tumors stain 
SLNs, so that clinicians can easily identify SLNs with the naked eyes during sur-
gery [1]. When possible, radiolabeled colloids are co-injected allowing for the  
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Figure 4. BLI of rats minimally invaded LN by cancer cells. To achieve more accurate quantitation, the best incidence for BLI 
acquisitions was anterior face for axillary LN and lateral for brachial LN. (A) BLI from right lateral side of rat A; (B) BLI from 
anterior side of rat B. 

 

 
Figure 5. Ex vivo NIRF identification of tumor micro-invasion in the left axillary LN af-
ter IV injection of IntegriSense680 (20 nmol). Quantifications were performed following 
spectral unmixing. 
 
detection of SLN location through the skin. Considering the technical and regu-
latory constraints associated with the use of radioisotopes, direct imaging of the 
SLNs via a fluorescent probe (i.e. ICG) should be a convenient and powerful al-
ternative. To validate the use of infrared fluorescent probes at the same time as 
blue dyes, we assessed the potential quenching effect when either co-injected or 
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injected alone. Our results demonstrate the absence of quenching by BPV to-
wards fluorescence of ICG and integrin targeting agents. So, fluorescence imag-
ing is compatible with standard BPV-based surgery procedures. 

When considering the simultaneous use of the two fluorescence probes (IC-
Gexcitation = 800 nm; ICGemission = 843 nm and IntegriSense680excitation = 675; Inte-
griSense680emission = 693 nm), optimized settings of excitation and emission filters 
allow for in vivo imaging of the SLN without reciprocal interferences. Due to the 
very lowIntegriSense680 fluorescence intensity present in micro-invaded SLNs 
as well as significant auto-fluorescence background, it is not possible to perform 
in vivo direct detection of IntegriSense680. So, ex vivo examinations on excised 
SLNs were performed using the spectral unmixing mode to suppress au-
to-fluorescence and contribution of ICG. In these conditions, the high quantum 
yield of fluorescence from IntegriSense680 is favorable for the level of detection 
requested and allows for evidencing of micro-invasion in SLNs as low as 1500 
cells. 

Fluorescent dyes with an emission of around 800 nm are usually more suitable 
for intraoperative imaging due to decreased auto-fluorescence of tissues and 
compatibility with lighting in the operating room [15]. However, higher wave-
length targeting probes suffer from a decreased quantum yield (10 to 30 times 
lower) resulting in insufficient intrinsic sensitivity which is no longer suitable to 
detect a few tumor cells even on excised specimens. Obviously it is not possible 
to simultaneously consider the use of ICG and a specific targeting probe emit-
ting fluorescence in the same wavelength window. NIRF for surgical applications 
is a modality with great potential, helping the surgeon’s vision by providing 
real-time acquisitions with high contrasts. Molecular probes targeting tumors, 
especially fluorescent MAbs and RGD-derivatives would be promising to assess 
the tumor invasion stage [16]. 

5. Conclusion 

BLI cannot be considered in humans but it is the most sensitive imaging modal-
ity to assess minimal tumor invasion (less than 1500 cells) for oncology research 
in animals. It was a valuable resource to acquire a relevant model with minimal 
invasion. NIRF of integrins targeted dyes in an invaded LN is possible in vivo or 
during surgery, but its sensitivity is not sufficient enough to demonstrate mi-
cro-invasion by a direct in vivo examination. When performed on an excised 
LN, ex vivo high sensitivity NIRF with spectral unmixing allows for detection of 
the micro-invasion.  
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Abstract 
Acute Mesenteric Ischemia (A.M.I.) is a potentially life-threatening condition 
syndrome due to inadequate or completely absent blood supply through su-
perior or inferior mesenteric artery. The etiologies are various. Early diagno-
sis is essential to improve the clinical outcome. Despite advances in know-
ledge of pathophysiology, laboratory diagnosis and imaging techniques, acute 
intestinal ischemia is still associated with mortality rates. 
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1. Introduction 

Acute Mesenteric Ischemia (A.M.I.) is a potentially life-threatening condition 
syndrome due to inadequate or completely absent blood supply through supe-
rior or inferior mesenteric artery, resulting in hypoperfusion and eventual 
ischemia/gangrene of the bowel. There are five types of A.M.I. subdivided for 
anatomic vessels or etiologies: Non occlusive Mesenteric Ischemia (N.O.M.I.) 
(20% - 30%), Acute Mesenteric Arterial Embolism (A.M.A.E.) (50%), Acute 
Mesenteric Arterial Thrombosis (A.M.A.T) (15% - 25%) and Mesenteric Venous 
Thrombosis (M.V.T.) (5%). The fifth type is only 3% and is a clinical entity that 
occurs as a consequence of mechanical scenarios such as strangulation, intus-
susception, volvulus, tumor or trauma. A.M.I. accounting for 0.1% of hospital 
admissions. In large part because of the association with atherosclerosis. AMI is 
commonly considered a disease of the older population, with the typical age of 
onset being older than 60 years. The symptoms are non-specific so the diagnosis 
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is very difficult .The radiologic image of choice is angio-TC-Scan. Treatment op-
tions include a range of options such as a few invasive management as percuta-
neous angioplasty plus stenting or thrombolytic therapy until surgical explora-
tion [1]. 

2. We Demonstrate Four Clinical Scenarios to Underline the  
Difficult Way to Join a Diagnosis and Treatment 

1) Clinical scenario 
A 85 years old Caucasian male presented to the ED with significant perium-

bilical abdominal pain, vomiting and fever. He presented a medical history of 
atrial fibrillation and anticoagulant therapy. During the physical examination, 
the patient was uncomfortable and in severe sepsis. Her vital signs were: blood 
pressure, 80/77 mm Hg; respiratory rate, 30 breaths/minute; heart rate, 129 
beats/minute; and temperature superior of 38˚C. Oxygen saturation was 85% on 
room air. The abdominal examination revealed a distended abdomen that was 
severely tender to palpation, with rigidity, guarding, and rebound tenderness. 
Laboratory evaluation revealed high leukocytosis with a white blood cell (WBC) 
count of 30 per mm3. Arterial Blood Gases (ABG) demonstrated metabolic aci-
dosis. Computed tomography angiography (CTA) reveled a superior mesenteric 
artery completely occlused after aorta origin, dilatated ileum and abdominal 
fluid (Figure 1). The patient was immediately started intravenous (IV) fluids of 
2 l in 6 hours, Foley and jugular cathether vein canulation to support main ar-
terial pressure and urine output. The patient was transferred to surgical services. 
A xifo-pubic incision laparotomy was made. A totally ischemic small and par-
tially large intestine was found. We made only a laparostomy for a second look. 
The patient died the day after. 

2) Clinical scenario 
A 74 years old woman was referred to our hospital because of sudden onset of 

continuous to severe abdominal pain. The pain was associated with nausea and 
passage of dark, loose stools. His medical history was significant for permanent  
 

 
Figure 1. Superior Mesenteric Artery completely occluded after its origin from aorta. 
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atrial fibrillation (AF), Diabetes Mellitus type II and rheumatoid arthritis and an 
history of sigma resection plus colostomy and then reversal surgery after perfo-
rated diverticulitis. On physical examination an irregular rhythm of approx-
imately 120 bpm was found. Electrocardiogram ECG revealed Atrial Fibrillation 
(AF). His arterial blood pressure was 140/85 mmHg. The abdomen was soft and 
mildly tender to deep palpation. Laboratory data revealed a raised white cell 
count (15 × 109/L, normal value 4.0 - 10.0 × 109/L), creatine kinase (300 UL, 
normal value < 130 UL) and lactate dehydrogenase (260 UL, normal value < 
240). Arterial Blood Gas (ABG) was normally. Other laboratory parameters were 
in the normal range. The plain radiograph of the abdomen showed two air fluid 
levels. Abdominal ultrasound indicated no abnormalities. The patient under-
went contrast enhanced abdominal CT. It showed superior mesenteric artery 
completely occluded after 6 cm of aorta, small intestine pneumomatosi and ab-
dominal fluid (Figure 2(a) & Figure 2(b)). Treatment with subcutaneous anal-
gesics, oxygen, intravenous broad-spectrum antibiotics and fluid resuscitation 
with crystalloids (50 - 70 mL/kg daily), according to hemodynamic monitoring, 
 

 
(a) 

 
(b) 

Figure 2. Inferior Mesenteric Artery (I.M.A.) not perfused after 6 cm at the origin of the 
aorta. 
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was commenced. A nasogastric tube was inserted to relieve distension. The pa-
tient was transferred to surgical services. After laparotomy, we found totally hy-
poperfused jejunum and ileum without necrosis. For this reason a laparostomy 
was made. 24 hours later, we performed a second-look surgery but we found a 
totally necrotic intestine. 

3) Clinical scenario 
A 63 years old man was admitted in our Emergency Room for acute abdo-

minal pain associate with fever, vomiting, diarrhea and hypotension. His medi-
cal history reveled diabetes mellitus type II, hypertension, a history of Hairy Cell 
Leukemia with splenomegaly and cytopenia and endoprosthesis for thoracic 
aneurism. Physical examination demonstrated Temperature 37.5˚C, blood pres-
sure 98/60 mmHg with mild orthostatic hypotension. Normal bowel sounds 
were noted in the abdomen, which was moderately tender in the right lower qu-
adrant with focal rebound tenderness. The rectal exam was normal, with a stool 
sample negative for occult blood. Pelvic exam was unremarkable. WBC count 
was 24,300 per mm3. Serum chemistries and arterial blood gases (ABG) were 
remarkable for a mild anion gap metabolic acidosis. Abdomen TC scan with ar-
tery phases was performed, revealing S.M.A. occluded at aorta origin, small bo-
wel dilatation, pneumomatosi, peritoneal fluid (Figure 3(a) & Figure 3(b)). Af-
ter resuscitation with crystalloid through jugular vein catheterization, we explored 
the abdomen. We found a 30 cm necrotic ileum and hypoperfusion wall in the 
other part of small intestine. We performed a 30 cm of small bowel resection and 
superior mesenteric artery longitudinal arteriotomy, Fogarty exploration with 
 

 
(a) 

 
(b) 

Figure 3. Superior Mesenteric Artery S.M.A. occluded. 
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thrombus extraction and a laparostomy. 24 hours later, we performed a second 
look finding an hypoperfusion small bowel. At third-look surgery we made re-
section of other 10 cm of small bowel and intestinal anastomosis. The patient 
was transferred in intensive care unit (ICU) where he died ten days later. 

4) Clinical scenario 
A 94 years old woman was referred to our hospital because of sudden onset of 

acute abdominal pain, dark stools and vomiting. She had a medical history of 
myocardial infarction. On physical examination, the abdomen was soft with 
moderate pain. Rectal exploration reveled mucorrea. Laboratory exams reveled 
only leukocytosis 11 per mm3. ABG and abdomen plain was unremarkable. We 
performed an CT-Scan that demonstrated a distal occluded S.M.A. (Figure 4(a) 
& Figure 4(b)) Having considered the patient’s age and in agreement with rela-
tives, we treated her only with antithrombotic therapy and fluid resuscitation. 
She died one day later. 

3. Anatomic Reasons for Intestinal Ischemia 

Anatomy is crucial for the understanding of the pathophysiology, clinical pres-
entation of intestinal ischemia. The splanchnic circulation is characterized by 
linking the 3 major vessels together [2]. The major connections are: the junction 
 

 
(a) 

 
(b) 

Figure 4. Superior Mesenteric Artery S.M.A. occluded distally. 
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of the superior and inferior pancreaticoduodenal arteries (linking the celiac axis 
and the superior mesenteric artery SMA), the marginal artery of Drummond 
and the Riolan’s arch, between the middle colic and the left colic arteries (linking 
the superior mesenteric artery with the inferior mesenteric artery, IMA) and the 
collateralization between the inferior mesenteric artery and systemic circulation 
which occurs in the rectum (superior and middle rectal vessels) (Figure 5) [3]. 

4. Etiology 

Based on its etiology, acute mesenteric ischemia can be caused by various type of 
pathology such as Atrial fibrillation/flutter, Myocardial infarction, Infective endo-
carditis, Mechanical valve prostheses, Cardiomyopathies, Valvular disease for Ar-
terial embolism (A.M.A.E.) which represents 50% of cases. Atherosclerosis, Low 
cardiac output, Congestive heart failure, Procoagulative status, Vasculitis (including 
Takayasu arteritis), Aortic/superior mesenteric artery aneurysm/dissection, Cardiac 
catheterization and angiography for acute mesenteric thrombosis (A.M.A.T.) 15% 
- 25% cases. Cardiogenic shock, Hypovolemic shock, Septic shock, Car-
diac/Major abdominal surgery, Dialysis, Vasoconstricting agents for N.O.M.I 
20% - 25% of cases. Causes of Mesenteric venous thrombosis (M.V.T.) include 
Hypercoagulability, Tumor causing venous compression or hypercoagulability 
(paraneoplastic syndrome), Infection, usually intra-abdominal (e.g., appendici-
tis, diverticulitis, or abscess), Venous congestion from cirrhosis (portal hyper-
tension), Venous trauma from accidents or surgery, Increased intra-abdominal 
pressure from pneumoperitoneum during laparoscopic surgery, Pancreatitis. 
The fifth type is only 3% and is a clinical entity that occurs as a consequence of 
mechanical scenarios such as strangling, intussusception, volvulus, tumor or 
trauma [4]. 
 

 
Figure 5. S.M.A. anatomy from Int. J. Morphol. 
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1) Clinical presentation 
Symptoms and signs of mesenteric ischemia vary according to the etiology 

and the time of onset. They can be non diagnostic or non specific in almost 80% 
of cases. An abdominal pain was present in 95% (median of 24 hours duration). 
Other symptoms are nausea in 44%, vomiting in 35%, diarrhea in 35%, heart 
rate > 100 in 33%, “blood per rectum” and mucorrea in 16%, constipation in 7% 
[5]. 

2) Diagnosis 
Laboratory studies are nonspecific. The most common laboratory abnormali-

ties are hemoconcentration, leukocytosis, and metabolic acidosis, with high 
anion gap and lactate concentrations [6]. High levels of serum amylase, aspartate 
aminotransferase, lactate dehydrogenase, and creatine phosphokinase are fre-
quently observed at presentation, but none is sufficiently sensitive or specific to 
be diagnostic In these four cases we found an altered Blood Test Count with 
WBC ranging from 10 to major 20 mmc in 90% of cases associated of increased 
lactic acidosis with arterial blood gases evidences metabolic acidosis but only in 
the advanced disease. In one cases a part of altered WBC the laboratory studies 
were normal. Normal laboratory values do not exclude this diagnosis and do not 
justify delaying angiography when clinical suspicion exists. MDCT (multidetec-
tor CT) scan angiography is first line diagnostic images to discover acute intes-
tinal ischemia with sensitivity 83%, specificity 93%, positive predictive value (at 
prevalence of 62%) 93%, negative predictive value (at prevalence of 62%) 61%. 
Findings on CT scan include: Mesenteric edema, Bowel dilatation, Bowel wall 
thickening, Intramural gas, Mesenteric stranding, portal vein gas, abdominal 
fluid [7]. Angiography is a diagnostic and therapeutic method and it is consi-
dered the gold standard for the diagnosis of acute mesenteric ischemia asso-
ciated with MDCT scan [8]. Its sensitivities in five of six studies have ranged 
between 90% and 100%; specificity was reported in two of these studies to be 
100%. Although it has serious risks, angiography provides the possibility of di-
rect infusion of vasodilators in the setting of non-occlusive ischemia [9]. 

4) Treatment 
In the setting of suspected acute mesenteric ischemia, aggressive hemody-

namic monitoring along with active resuscitation represents the first therapy. It 
should also include parenteral broad spectrum antibiotics to prevent bacterial 
translocation generated by ischemia associated with analgesia therapy. If there 
are no contraindications to anticoagulation, therapeutic intravenous heparin so-
dium should be administrated. The treatment of mesenteric ischemia depends 
on the causes and can be medical or surgical. In non-occlusive mesenteric 
ischemia, where there is no blockage of the arteries supplying the bowel, the 
treatment is medical. Thrombolytic medical treatment and vascular interven-
tional radiological techniques have a growing role. When angiography is used to 
establish the diagnosis, the angiographic catheter should be left in the SMA for 
infusions of papaverine or other vasodilators. If the ischemia has progressed to 
the point that the affected intestinal segments are gangrenous, a bowel resection 
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Algorithm 1. Managment for the diagnosis and treatment of patients at risk of acute mesenteric ische-
mia (by “Acute Mesenteric Ischemia A Clinical Review” W. Andrew Oldenburg). 

 
of those segments is called for [10]. Surgical revascularisation remains the treat-
ment of choice for mesenteric ischaemia using longitudinal arteriotomy to per-
form embolectomy using a Fogarty catheter or distal bypass graft anastomosis. 
In most of cases multiple re-laparotomies are needed to obtain that news dead 
segments are removed after first operation and a second-look or even a 
third-look operation allows assessing segments that are borderline and that may 
be savable after revascularization [11]. 

5) Prognosis 
Acute Mesenteric Ischemia (A.M.I.) is a potentially life-threatening condition 

syndrome. Prognosis is very poor and account for a mortality range from 50% to 
90% for A.M.A.E, A.M.A.T and N.O.M.I and account of 30% for M.V.T. [12]. 

5. Discussion 

Despite advances in knowledge of pathophysiology, laboratory diagnosis and 
imaging techniques, acute intestinal ischemia is still associated with mortality 
rates of more than 80%. Atrial fibrillation, myocardial disease or vascular disease 
and advanced age are the most common etiology. Differentiation between viable 
and nonviable, necrotic bowel tissue is done by exploratory laparotomy. A 
second-look laparotomy (after 24 - 48 hours) is recommended, even after suc-
cessful primary intervention, because the intraoperative assessment of bowel 
viability [13]. Early diagnosis is the only best change but acute intestinal ische-
mia still remains a challenging diagnostic disease [14]. An algorithm manage-
ment for the diagnosis and treatment of patients at risk of acute mesenteric 
ischemia is necessary to following the right steps (Algorithm 1) [15]. 
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Abstract 
With the rapid development of the Internet of things and e-commerce, fea-
ture-based image retrieval and classification have become a serious challenge 
for shoppers searching websites for relevant product information. The last 
decade has witnessed great interest in research on content-based feature ex-
traction techniques. Moreover, semantic attributes cannot fully express the 
rich image information. This paper designs and trains a deep convolutional 
neural network that the convolution kernel size and the order of network 
connection are based on the high efficiency of the filter capacity and cover-
age. To solve the problem of long training time and high resource share of 
deep convolutional neural network, this paper designed a shallow convolu-
tional neural network to achieve the similar classification accuracy. The deep 
and shallow convolutional neural networks have data pre-processing, feature 
extraction and softmax classification. To evaluate the classification perfor-
mance of the network, experiments were conducted using a public database 
Caltech256 and a homemade product image database containing 15 species 
of garment and 5 species of shoes on a total of 20,000 color images from 
shopping websites. Compared with the classification accuracy of combin-
ing content-based feature extraction techniques with traditional support 
vector machine techniques from 76.3% to 86.2%, the deep convolutional 
neural network obtains an impressive state-of-the-art classification accu-
racy of 92.1%, and the shallow convolutional neural network reached a 
classification accuracy of 90.6%. Moreover, the proposed convolutional 
neural networks can be integrated and implemented in other colour image 
database. 
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1. Introduction 

With the popularity of the Internet and varieties of terminal equipment, online 
shopping has become a regular part of people’s lives with the onset of websites 
such as Amazon, Dangdang, Taobao, and Jingdong. Customers view a large 
number of product images, and there is an urgent need for efficient product im-
age classification methods. At present, most studies have mainly focused on 
keyword-based, label-based, and content-based image retrieval. Zhou [1] used a 
querying and relevance feedback scheme based on keywords and low-level visual 
content, incorporating keyword similarities. He [2] proposed a method based on 
the Multi-Modal Semantic Association Rule (MMSAR) to automatically com-
bine keywords with visual features automatically for image retrieval. Xu [3] used 
Bayes with expectation maximization to learn an initial query concept based on 
the labeled and formerly unlabeled images, and the active learning algorithm se-
lects the most useful images in the database to query the user for labeling. How-
ever, the keywords and labeled information can only explain the basic informa-
tion of the goods, such as the name of the product name, the origin, the size, and 
price and so on, which are difficult to reflect the complete characteristics of the 
products. At last, images have more information and intuitive expression. If we 
set an image classification filter on a shopping website, it will be convenient for 
users to browse and quickly find their favorite products. 

The last decade has also witnessed great interest in research on content-based 
image classification. Image classification based on the content is based on the 
image features, including image shape, color, and texture. 

Jia [4] adopted a gist descriptor and three complementary features, including 
Pyramid Histogram of Orientated Gradients (PHOG), Pyramid Histogram of 
Words (PHOW), and Local Binary Pattern (LBP) to extract and describe the 
features of product images. Valuable product information (such as long skirts 
versus skirts, and turtleneck versus round collars) can be labeled based on the 
image features and classification algorithms. Furthermore, they combine discri-
minative features for the SVM classifier. Experimental results showed that the 
performance of the product image database (PI 100) improved significantly us-
ing features fusion. 

Nilsback and Zisserman [5] used the features of the Histogram of Gradient 
Orientations (HOG), HSV value, and Scale Invariant Feature Transform (SIFT) 
combining an SVM classifier and multiple-kernel learning framework to classify 
flower images. The classification accuracy ranged from 76.3% to 95.2%. 

Yao and Khosla [6] proposed a random forest, in which every tree node is a 
discriminative classifier that can combine node information and all upstream 
nodes. This method identified meaningful visual information of both subordi-
nate categorization and the activity recognition database. 

For fine-grained classification, Yao [7] presented a codebook-free and annota-
tion-free approach for fine-grained image categorization of birds. Experimental 
results showed that the method was better than state-of-the-art classification 
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approaches on the Caltech-UCSD Birds database. Krause and Stark completed 
the fine-grained classification of 3D cars [8]. 

Dyrmann and Karstoft [9] presented a method that recognized a large number 
of plant species in color images, by designing and training a deep convolution 
neural network. The network achieved a classification accuracy of 86.2% for a 
total of 10,413 images containing 22 species. 

However, it was difficult to contain features like the above-mentioned shape, 
color, and texture that could be applied to all product image classifications. 
Compared to these classification methods, Convolutional neural networks (CNNs) 
are one of the deep learning algorithms with strong ability to acquire features, 
simple structure, and few parameters [10]. Nevertheless the fine-grained classi-
fication of a category in product images is rarely observed.  

In recent years, CNNs received much attention on the computer vision re-
search community, mainly because they have proven to be capable of effectively 
classifying images and outperforming previous records in image recognition 
challenges. Most noticeably is the task by Krizhevsky, Sutskever, and Hinton 
[11], who in 2012 had a margin of 10.9% compared to the second-best entry in 
the ImageNet Large Scale Visual Recognition Challenge [12]. The ImageNet 
challenge distinguishes objects such as cat, car, tree, and house from 1000 dif-
ferent categories. CNNs are a deep learning application to images, and they sti-
mulate the neuron’s activity in the neocortex, where most thinking happens, as 
Lecun describes [13]. The main benefit of using CNNs is that they are tradition-
al, fully connected neural networks and can reduce the amount of parameters to 
be learned. Convolution layers effectively extract high-level features with 
small-sized kernels and feed the features to fully connected layers. According to 
Rumelhart, Hinton, and Williams [14], the training of CNNs is performed 
through back-propagation and stochastic gradient descent.  

This study proposed a novel deep CNN that has data augmentation 
pre-processing, feature extraction, and softmax classification. To solve the prob-
lem of long training time and high resource share of deep convolutional neural 
network, this paper designed a shallow convolutional neural network to achieve 
the similar classification accuracy. To evaluate the classification performance of 
the networks, experiments were conducted using a public database Caltech256 
and a homemade product image database from shopping websites.  

2. Data Material 
2.1. Caltech256 Database 

The Caltech256 database containing 256 object categories on a total of 30607 
images. This paper selected 20 object categories which were similar to product 
images to input the deep convolutional neural network for training. Each cate-
gory of images was randomly selected 100 images for training and 50 images for 
testing. The size of the input image was normalized to 256 × 256 during the ex-
periment. 
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2.2. Homemade Database 

The data used in the numerical analysis are mainly obtained from Internet-based 
e-commerce databases, including T-mall, Jingdong, and Amazon. As shown in 
Figure 1, 20 products were selected, including garments and shoes. The gar-
ments consist of trousers, sweaters, jackets, outdoor jackets, dresses, short T-shirts, 
down jackets, fleeces, vests, Chinese dresses, shirts, short pants, short skirts, 
scarves, and socks. The shoes include skateboard shoes, basketball shoes, leather 
shoes, climbing shoes, and running shoes. Each product has 200 images and af-
ter using data augmentation, there were 20,000 product images in which 16,000 
images were used for training purposes and 4000 images for testing purposes. 
The image sizes are not the same. To facilitate the experiment, all images are 
normalized into 256 × 256 = 65,536 pixels.  
 

 
Figure 1. Garments and shoes database. 
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3. Methods 

This section describes the pre-processing of the product images and the archi-
tecture of the deep convolutional neural network is used for classification of the 
garments and shoes.  

3.1. Data Augmentation  

A CNN is translation invariant but not rotation invariant. The number of prod-
uct images, however, on the website is limited and therefore, we can generate the 
training and testing data by rotating the original data using affine transforma-
tion. The data was thereby increased five-fold by mirroring the images horizon-
tally and vertically and rotating them in 90˚ and 180˚ increments. After using 
data augmentation, there were 20,000 product images in which 16,000 images 
were used for training and 4000 images for testing.  

3.2. Model Architecture 

Several pre-trained networks for image classification exist such as AlexNet [11], 
VGGNet [15] and GoogleNet [16], which won the championship in the Image-
Net Image Recognition Competition in different years. In 2012, the Hinton Task 
Force participated in the ImageNet Image Recognition Competition for the first 
time to demonstrate the potential of deep learning. It won the championship by 
building the CNN network AlexNet, which consisted of 8 layers and reached a 
16.4% error rate. The basic composition of VGGNet is similar to AlexNet, and is 
also characterized by continuous convolution and large amounts of computa-
tion. VGGNet consists of 19 layers and reached a 7.3% error rate. GoogleNet, the 
champion model of the ImageNet competition in 2014, proved that more con-
volution and deeper levels can obtain a better structure. Table 1 presents the 
performance results of AlexNet, VGGNet, and Google Net in the ImageNet im-
age Recognition Competition. 

However, the pre-trained network was created by the ImageNet, which is the 
largest database of image recognition in the world, which is different from the 
images in this study. Therefore, a new architecture was built to create a better 
classification of product images. Our CNN is sketched in Figure 2.  

The images in the database are 256 × 256 RGB images. Matlab is used to aug-
ment data and transform the data into 227 × 227 RGB images. The network ac-
cepted 227 × 227 RGB images as input and output a vector for each block, as il-
lustrated in Figure 2. The network had one 7 × 7 convolution layer with a stride  
 
Table 1. Performance of Alex NET, VGG Net and Google Net. 

 Alex Net VGG Net Google Net 

Number of layers (layer) 8 19 22 

Filter size 11,5,3 3 7,1,3,5 

Top-5 
Error rate (%) 

16.4 7.3 6.7 
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Figure 2. Deep convolutional neural network architecture.  

 
of 5, followed by a 3 × 3 max-pooling layer with a stride of 2. This was mapped 
into a 5 × 5 convolution layer, which increased the number of filters from 96 to 
256. Next, a 2 × 2 max-pooling layer was mapped with a stride of 2, and the 
number of filters was increased from 256 to 384. Following this, there were three 
3 × 3 convolution layer with strides of 2. Finally, the network contained three 
fully connected layers, consisting of 3200 neurons and 20 softmax classifiers. In 
total, the network contained 628,324 learnable parameters, which is small com-
pared to the 60 M parameters of AlexNet.  

During the training, a 50% dropout was used before the three fully connected 
layers. The hidden layer was randomly discarded with 50% for training every 
epoch. This prevents all feature selectors from amplifying or reducing features 
all of the time, which are over fitted in the case of small samples and made poor 
generalizations. The dropout was used to avoid these problems in the training 
process. The network was trained using mini-batches with 128 images per batch, 
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to speed up the gradient update with a learning rate set to 0.001.  

3.3. Input Layer 

Data is fed to the network and the input layer produces an output vector as input 
to the convolution layer. Input data can be either raw image pixels or their 
transformations, which emphasize specific aspects of the image. This study in-
puts three-channel product images through a data augmentation method. 

3.4. Convolution Layers 

The convolution layer is the feature extraction layer. The input of each neuron is 
connected to the local receptive field of the previous layer, and the local feature 
is extracted. One of the important features of the convolution operation is that it 
enhances the original signal characteristics and reduces the noise. Filter kernels 
are slid over the original image and for each position, the dot product between 
the filter kernel and the part of the image covered by the kernel is determined. 
The calculation of the convolution layer is  

( ) ( ) ( )

1

1

i

ll l l
j ij j

i M i

x f x k b
−

−

∈

 
= ∗ +  

 
∑                     (1) 

where l is the number of layers, kij represents a convolution kernel with the con-
nection of map j in the l layer and map i in the l −1 layer, 1lx −  is the input fea-
ture maps of the l −1 layer, * represents convolution, b is the bias, and ( )f ⋅  is 
the nonlinear activation function.  

3.5. Max-Pooling Layers 

The max-pooling layer is a method of aggregate statistics that uses the maximum 
or mean value of the region to reduce spatial size of a feature map and provide 
invariance to the network. Max-pooling layers can reduce the image size of the 
next layer, thereby reducing the parameters and calculations of the network. 
This is done by only keeping the maximum value within a k × k neighborhood 
in the feature map.  

3.6. Batch Normalization 

The role of batch normalization [17] is to normalize input data in the same 
range, even though the earlier layers were updated. According to Dieleman S, 
during each stochastic gradient descent (SGD), the corresponding activation was 
normalized by the mini-batch, so that the mean value of the result (output signal 
in each dimension) was 0 and the variance was 1 [18]. The calculation of the 
batch normalization is  

2 2

.y xγ γ µβ
σ ε σ ε

 
= + − 

+ + 
                  (2) 

where μ and σ are the mean value and variance of the image batch х, and γ and β 
are trainable parameters that are updated after each batch. ε is a small constant 
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value that is added to the variance to avoid division by zero. 

3.7. Activation Functions 

The activation functions in deep learning are responsible for applying a 
non-linear function to the output of the previous layer. Sigmoid, tanhyperbolic 
(tanh), rectified linear unit (ReLU) and softplus are commonly used in deep 
learning.  

The non-linear Sigmoid function has a large signal gain in the central region, 
and relatively small signal gain on both sides [19]. The output of the sigmoid 
function is mapped into the internal of 0 and 1, so it has a good effect on the 
feature space map of the signal. However, this kind of activation function cannot 
solve the vanishing gradient problem and is slow in network training. The cal-
culation of the sigmoid function is  

( ) 1
1 xf x

e−
=

+
                        (3) 

The non-linear tanh function converges faster than the sigmoid function. It is 
mapped into the internal of −1 and 1, and the output is centered at 0. Still, the 
tanh function (like the sigmoid function) cannot solve the vanishing gradient 
problem. The calculation of the tanh function is  

( )
2

2
1tanh
1

x

x
ex
e

−

−

−
=

+
                      (4) 

This study used ReLU as the activation function. In 2011, the ReLU activation 
function was proposed by Glorot [20]. According to Krizhevsky [11], the ReLU 
function effectively suppressed the vanishing gradient problem with a faster 
convergence rate in training gradient descent than traditional saturated nonli-
near functions. They can speed up training and keep the gradient relatively con-
stant in all network layers. The ReLU is defined as   

( ) ( )max 0,f x x=                        (5) 

The rectifier function is one-sided and therefore does not enforce a sign sym-
metry or antisymmetry. However, the response to the opposite of an excitatory 
input pattern is 0 (no response). Therefore, it is more biologically plausible and 
provides good results.  

A smooth approximation to the rectifier is the softplus function. The softplus 
is not completely one-sided, so it is less biologically plausible and is not used as 
widely as ReLU. The calculation of the softplus function is  

( ) ( )softplus log 1 xx e= +                     (6) 

where x is the value of input signal. 
Figure 3 shows the corresponding curves of the activation functions. 

3.8. Fully Connected Layers  

According to traditional neutral networks, all inputs in fully connected layers are  
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Figure 3. Activation function curves. 

 
connected to all outputs of the previous layer. The fully connected layers are 
used as a way of mapping spatial features to image labels. After being trained, 
the network can extract features in these layers to train another classifier.  

3.9. Softmax 

This study used the softmax classifier, which is the generalization of the logistic 
model on multiple classification. The softmax classifier is an algorithm that di-
vides the target variable into several classes. Supposing there are N input images 
{ } 1

, N
i i i

x y
=

, each image is marked with k classes { }1,2,3, , , 2iy k k∈ ⋅⋅⋅ ≥ ; in this 
study, k = 2. For the given test image ix , the approximate value ( )i ip y j x=  
of each class j is estimated by the hypothetical function. The calculation of the 
hypothetical function ( )ih xθ  is  
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=
∑

 represents the normalization of the probability distribution,  

that is, the sum of all probabilities is 1. θ is a parameter of the softmax function. 
The calculation of the loss function is  

( ) { }
1 1
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1, , 1 log
T
j i

T
j i

xN k

i k
xi j

j

eJ x y y j
N e

θ

θ
θ

= =

=

 
 
 = − =
 
 
 

∑∑
∑

          (8) 

where { }1 iy j=  is an indicative function. The rule of value is as follows: 
{ }1 the value of expression is true 1= , { }1 the value of expression is false 0= . Fi-

nally, the error function is minimized by stochastic gradient descent.  
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3.10. Filter Capacity 

In this study, the efficiency of the network was determined by evaluating the fil-
ter capacity and coverage of the network [21]. The filter capacity is a measure of 
the filter’s ability to detect complex structures in an image. If the capacity is 
small, only local features in the image will be mapped to the next layer. On the 
contrary, if the capacity is large, the filter will find complex structures of ele-
ments that are not neighbors in the input image. The filter capacity is calculated 
as the ratio between the real filter size and the receptive field [22]. The calcula-
tion of the capacity is  

real filter  sizeCapacity
receptive field

=                      (9) 

where the real filter size is the size of the kernel, which consists of downsampling 
(striding or pooling) of previous layers. If no downsampling is applied, the real 
filter size is the same as the kernel size. For example, if the input to a layer with 
kernel size n × n is downsampled by a factor k, the real filter size would then be 
kn × kn. In this network, there are two 3 × 3 max-pooling layers and a 2 × 2 
max-pooling layer. After the first 3 × 3 max-pooling layer, the real filter size 
would be 3 n × 3 n. After the second 2 × 2 max-pooling layer, it would be 6 n × 
6n and after the third 3 × 3 max-pooling layer, it would be 18 n × 18 n. The re-
ceptive field is defined as the region in the original image that a particular 
CNN’s feature is focused on [22]. Increasing the size of filters in the convolution 
layers or using pooling can increase the receptive field and thus the filter capaci-
ty. According to Cao [21], the network is meaningless if the capacity is smaller 
than 1/6. For this network, the filter capacity is between 20.4% and 100%, and 
thereby well above the lower 1/6 limit.  

3.11. Coverage 

Coverage is a measure to “see” a part of the input image of the layer in a CNN. 
Adding convolution or pooling layers can increase coverage. The coverage of the 
network in the end should not exceed 100%. If coverage exceeds 100%, it will be 
a waste of network calculations, because the network can operate images larger 
than the input image. For this network, the convolution filters covered 55.9% of 
the input image and never exceeded the size of the image. Table 2 shows the 
coverage and capacity of the network. 

4. Results and Discussion  

The operating system used in the experiments is Centos 7, and four Navida 
TITIAN X graphics cards are used. The framework used is caffe, and the analysis 
of the experimental results is all based on caffe. 

The classification accuracy of deep convolutional neural network on Cal-
tech256 database reached 94.8%. It shows the effectiveness of the proposed deep 
network and its suitability for feature extraction of color images.  
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Table 2. Coverage and Capacity of the Network. 

 Coverage (%) Capacity (%) 

Conv1 3.08 100 

Conv2 25.1 26.3 

Conv3 42.7 27.8 

Conv4 51.5 23.1 

Conv5 60.4 19.7 

 
Figure 4 shows the classification accuracy and cross entropy loss of the expe-

riment on homemade database. To achieve the highest accuracy possible without 
overfitting the network, the training was set to 100 epochs. The average classifi-
cation accuracy of the test was 92.1%. Setting appropriate learning rates in the 
experiment can improve the learning efficiency of network and therefore im-
prove the classification accuracy. The learning rate was reduced three times be-
fore the experiment was stopped. At the beginning, we set the learning rate at 
0.001. The test accuracy rapidly increased and the test loss rapidly declined. Ac-
cording to the decline of train loss curve, the learning rate of the network is rela-
tively high. After 10 epochs, the test accuracy slowly increased, even decreasing, 
and the test loss was an upward trend. We therefore set the learning rate at 
0.0005. It was observed that the test accuracy of the network increased again and 
the test loss slowly decreased. After 20 epochs, the test accuracy and test loss was 
not stable. We set the learning rate at 0.0001. It was observed that the test accu-
racy was high and the train loss continued to decline, then stabilized after 30 
epochs.  

Figure 5 shows the confusion matrix of the misclassification fraction for each 
of the 20 species. Here, it is seen that jackets (#2), shirts (#10), short pants (#11), 
short skirts (#12), and socks (#14) were often correctly classified with an accu-
racy of 96%, 96%, 97%, and 95%, respectively. However, there was no clear spe-
cies that trousers (#0), sweaters (#1), outdoor jackets (#3), dresses (#4), short 
T-shirts (#5), down jackets (#6), fleeces (#7), vests (#8), and scarves (#13) was 
confused with. The classification for these species ranged from 90% to 95%. 
Chinese dresses (#9), skateboard shoes (#15), basketball shoes (#16), and leather 
shoes (#17) were often misclassified. Of these three species, only 89%, 85%, 
82.5%, and 88.5% were classified correctly. Skateboard shoes (#15) were often 
classified with leather shoes (#17), and basketball shoes (#16) were often classi-
fied with skateboard shoes (#15), because they are similar in shape and texture. 
Leather shoes (#17) were often misclassified with climbing shoes (#18) and run-
ning shoes (#19), because they are similar in color and shape. The classification 
accuracies for these three species were, however, still well above random assign-
ment.  

Overall, most species had the highest classification accuracies. This is because 
the aim of the training was to obtain the most correctly classified product im-
ages, without taking into account how these product are distributed among the  
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Figure 4. Classification accuracy and cross entropy loss of experiment. Red line represents 
the test accuracy, blue line represents test loss, green line represents train loss. 
 

 
Figure 5. Confusion matrix. 
 
20 classes. Few image samples contributed less to the overall loss. The average 
classification accuracy of product images was 92.1%. The classification accuracy 
of garments was 93.4%, and the accuracy of shoes was lower at 88.2%. This was 
because the shoes sample that we chose was similar and the features could not be 
better extracted.  

As shown in Figure 6, we chose an image from each of the three categories, 
including short skirt, trouser, and basketball shoes, to show the visualization 
feature images of each convolution layer. It can be seen from the horizontal 
comparison of the feature images of each category that the first convolution 
layer (conv1) shows the edges, shapes, and colors of the product. Conv2 shows 
the texture of the product. After conv3, the feature images of product are more 
ambiguous and have no specific meaning. The classification accuracy of short 
skirts, trousers, and basketball shoes was 97%, 90%, and 82.5%. It can be seen 
from the vertical comparison of the feature images of each category that the edge 
sharpness of skirt is higher than trouser, and the trouser is higher than basket-
ball shoes after conv3. It can be also proven from Table 3, which shows the 
mean and standard deviation value of each convolution layer feature extraction.  
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Figure 6. Visualization feature images of each convolution layer. (a) Short skirt; (b) Trouser; (c) Basketball shoes. 

 
Table 3. The mean and standard deviation value of each convolution layer feature extraction. 

  Conv1 Conv2 Conv3 Conv4 Conv5 

Short skirt 

Mean 15.13 14.12 13.40 9.51 2.60 

Standard 
deviation 

22.26 16.86 17.39 10.53 4.49 

Trouser Mean 19.90 6.44 8.90 4.81 0.98 
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Continued 

 
Standard 
deviation 

81.37 20.95 19.47 11.82 5.59 

Basketball 
shoes 

Mean 18.70 6.15 9.58 6.29 1.55 

Standard 
deviation 

57.17 20.44 21.77 14.54 7.09 

 
From conv1 to conv5, the mean and standard deviation value of each category 
are gradually decreasing. This means that the feature information of images are 
extracted in a stable fashion. From conv3 to conv5, the standard deviation value 
of short skirt is less than trouser, and trouser is less than basketball shoes. The 
smaller the standard deviation value, the better the effect of feature extraction 
and the more stable the image feature. 

5. Comparative Experiment Based on Shallow Convolutional  
Neural Network  

In the application of modern technology, saving time cost and resource share 
rate are very important aspects that cannot be ignored. In a relatively simple 
task, such as collecting fewer images in the object, the shallow convolutional 
neural network can accomplish the task better, why should we design a complex 
network with higher time cost? 

5.1. Image Preprocessing 

There were 4000 images in our database and each product has 200 images in 
which 150 images were used for training purposes and 50 images for testing 
purposes. The image sizes are not the same. To facilitate the experiment, all im-
ages are normalized into 256 × 256 = 65,536 pixels.  

Because of the small number of samples and the shallow network layers, this 
paper focuses on image preprocessing. In order to eliminate the influence of 
complex background on the network, a more intuitive method is to extract the 
recognition object from the image and then use the extracted region for training. 
It is necessary to detect the target object in the image, and the RCNN algorithm 
is the classical algorithm in deep learning for detecting target object. The RCNN 
algorithm was proposed by Girshick [23] in 2014 and achieved great success. 
The detection rate on PASCALVOC database was greatly increased from 35.1% 
to 53.7%.  

Although RCNN has achieved good results, there are some obvious short-
comings, such as the number of bounding boxes is too large, the training time is 
long, and many bounding boxes overlap each other, resulting in repeated calcu-
lation. To solve these problems, an improved Fast-RCNN [24] has been pro-
posed. The biggest difference between Fast-RCNN and RCNN is that the 
Fast-RCNN maps all bounding regions to the last convolution layer of the net-
work, and then uses a ROI pooling layer to unify the sizes of different bounding 
regions. Only one feature extraction is needed for an image, and feature extrac-
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tion is not performed for each bounding region, thereby greatly improving the 
efficiency of calculation.  

Although the speed of Fast-RCNN is greatly improved compared to RCNN, 
there is still a need to optimize the large number of bounding regions. In view of 
this, the Faster-RCNN [25] algorithm is proposed. Faster-RCNN is characterized 
by extracting bounding regions from feature maps after the convolution layer 
rather than from the original image, so a Region Proposal Networks (RPN) is 
added to generate bounding regions based on Faster-RCNN. 

This paper used Faster-RCNN to detect the location of clothing in the image, 
and then the image is normalized to 64 × 64 as input image.  

5.2. Fine Tune and Training 

Convolution neural network as a deep learning network structure requires a lot 
of data for training and a deep network structure in order to achieve better clas-
sification impacts. The training result based on the small samples and shallow 
convolutional neural network is often unsatisfactory. In view of this situation, 
this paper uses ImageNet database, which consists of 1.2 million images and 
1000 categories for the shallow network pre-training. Network training is a 
process to update the initialization parameters to the optimal parameters. When 
the ImageNet training is completed, the trained parameters are stored in the 
shallow convolutional neural network. Then, input preprocessed product data-
base for network training to obtain optimal parameters. The network storing the 
optimal parameters serves as a new shallow network model for feature extract. 
Finally, the Softmax is used to classify these features.  

5.3. Shallow Convolutional Neural Network Model Architecture 

Figure 7 shows the shallow convolutional neural network architecture and the 
trained parameters. The database was normalized to 64 × 64 RGB images after 
the preprocessing. The shallow network accepted 64 × 64 RGB images as input 
and output a vector for each block. It had one 8 × 8 convolution layer with a 
stride of 1, followed by a 3 × 3 max-pooling layer with a stride of 2. This was 
mapped into a 6 × 6 convolution layer, which increased the number of filters 
from 16 to 28. Next, a 3 × 3 max-pooling layer was mapped with a stride of 2, 
and the number of filters was 28. Following this, there were three 4 × 4 convolu-
tion layer with strides of 1. Finally, the feature maps were mapped into a 3 × 3 
max-pooling layer with a stride of 2. Then, using softmax classifiers to classify 20 
category product images. The network was trained using mini-batches with 25 
images per batch and the training was set to 50 epochs, to speed up the gradient 
update with a learning rate set to 0.001.  

5.4. Results and Discussion 

Figure 8 shows the classification accuracy and cross entropy loss of the experi-
ment on homemade database. To achieve the highest accuracy possible without  
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Figure 7. Shallow convolutional neural network architecture. 

 

 
Figure 8. Classification accuracy and cross entropy loss of experiment. Red line represents 
the test accuracy, blue line represents test loss, green line represents train loss. 
 
overfitting the network, the training was set to 50 epochs. The average classifica-
tion accuracy of the test was 90.6%. Setting appropriate learning rates in the ex-
periment can improve the learning efficiency of network and therefore improve 
the classification accuracy. The learning rate was reduced three times before the 
experiment was stopped. At the beginning, we set the learning rate at 0.001. The 
test accuracy rapidly increased and the test loss rapidly declined. According to 
the decline of train loss curve, the learning rate of the network is relatively high. 
After 10 epochs, the test accuracy slowly increased, even decreasing, and the test 
loss was an upward trend. We therefore set the learning rate at 0.0005. It was 
observed that the test accuracy of the network increased again and the test loss 
slowly decreased. After 30 epochs, the test accuracy and test loss was not stable. 
We set the learning rate at 0.0001. It was observed that the test accuracy was 
high and the train loss continued to decline, then stabilized after 35 epochs.  

Overall, the shallow convolutional neural network can save time cost and re-
source share rate by reducing network layers and training epochs. However, it is 
impossible to achieve high classification accuracy by simply reducing the num-
ber of network layers and iterations, which requires processing in image prepro-
cessing and network initial parameter modulation. 

6. Conclusions 

In this study, we designed and trained a feature-based deep CNN for color image 
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classification in e-commerce domains, which are comprised of data augmenta-
tion pre-processing, feature extraction, and softmax classification. The proposed 
network is feasible and effective by evaluating the filter capacity and coverage of 
the network. To evaluate the classification performance of this technique, expe-
riments were conducted using a homemade product image database taken from 
shopping websites on a total of 20,000 color images, with an average accuracy of 
92.1%. Empirical results for the image database have shown that the proposed 
feature-based deep CNN is very competitive when compared with traditional 
content-based image classification for all performed experiments. 

To solve the problem of long training time and high resource share of deep 
convolutional neural network, this paper designed a shallow convolutional 
neural network to achieve the classification accuracy of 90.6%. 

The proposed network fine-tunes the parameters and architecture based on 
CNNs (as reported in this study) can be readily integrated and implemented in 
other image recognition and classification domains. 

The potential future work involves improving new and deeper network archi-
tectures for product image classification; applying the CNN on other image da-
tabases and improving the classification accuracy by transfer learning.  

Data Availability 

The data used in the numerical analysis are mainly obtained from Internet-based 
e-commerce databases, including T-mall, Jingdong, and Amazon.  

Funding Statement 

This work is supported by the Key Research and Development Plan in Shandong 
Province under grant no.2017GGX10102. 

Conflicts of Interest 

The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper. 

References 
[1] Zhou, X.S. and Huang, T.S. (2002) Unifying Keywords and Visual Contents in Im-

age Retrieval. Multimedia IEEE, 9, 23-33. 

[2] He, R., Xiong, N., Yang, L.T., et al. (2011) Using Multi-Modal Semantic Association 
Rules to Fuse Keywords and Visual Features Automatically for Web Image Retriev-
al. Information Fusion, 12, 223-230. 

[3] Xu, J. and Shi, P.F. (2004) Active Learning with Labeled and Unlabeled Samples for 
Content-Based Image Retrieval. Journal of Shanghai Jiaotong University, 38, 
2068-2072. 

[4] Jia, S.J., Kong, X.W., Fu, H., et al. (2010) Product Images Classification with Mul-
tiple Feature Combination. Proceedings of the 1st International Conference on 
E-Business Intelligence (ICEBI2010), Atlantis Press, 446-469. 

[5] Nilsback, M.E. (2009) An Automatic Visual Flora-Segmentation and Classification 

https://doi.org/10.4236/ami.2018.84007


T. T. Liu et al. 
 

 

DOI: 10.4236/ami.2018.84007 86 Advances in Molecular Imaging 
 

of Flower Images. Oxford University, Oxford. 

[6] Yao, B., Khosla, A., Li, F.F., et al. (2011) Combining Randomization and Discrimi-
nation for Fine-Grained Image Categorization. Computer Vision and Pattern Rec-
ognition IEEE, Colorado Springs, 20-25 June 2011, 1577-1584. 

[7] Yao, B. and Khosla, A. (2012) Codebook-Free and Annotation-Free Approach for 
Fine-Grained Image Categorization. Computer Vision and Pattern Recognition 
IEEE, Providence, 16-21 June 2012, 3466-3473. 

[8] Krause, J., Stark, M., Jia, D., et al. (2014) 3D Object Representations for 
Fine-Grained Categorization. International Conference on Computer Vision 
Workshops IEEE, Sydney, 2-8 December 2013, 554-561. 

[9] Dyrmann, M., Karstoft, H., Midtiby, H.S., et al. (2016) Plant Species Classification 
Using Deep Convolutional Neural Network. Biosystems Engineering, 151, 72-80. 

[10] Sun, Y., Liu, Y., Wang, G., et al. (2017) Deep Learning for Plant Identification in 
Natural Environment. Computational Intelligence and Neuroscience, 2017, Article 
ID: 7361042. 

[11] Krizhevsky, A., Sutskever, I., Hinton, G.E., et al. (2012) ImageNet Classification 
with Deep Convolutional Neural Networks. International Conference on Neural 
Information Processing Systems, Lake Tahoe, 3-6 December 2012, 1097-1105. 

[12] Russakovsky, O., Deng, J., Su, H., et al. (2015) ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision, 115, 211-252. 

[13] Lecun, Y., Bengio, Y., Hinton, G., et al. (2015) Deep Learning. Nature, 521, 436. 

[14] Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al. (1986) Learning Representa-
tions by Back-Propagating Errors. Nature, 323, 533-536. 

[15] Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for 
Large-Scale Image Recognition. 

[16] He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recogni-
tion. Computer Vision and Pattern Recognition, Las Vegas, 770-778. 

[17] Ioffe, S. and Szegedy, C. (2015) Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift. Computer Science, 448-456. 

[18] Dieleman, S., De Fauw, J., Kavukcuoglu, K., et al. (2016) Exploiting Cyclic Symme-
try in Convolutional Neural Networks. 1889-1898. 

[19] Mount, J. (2011) The Equivalence of Logistic Regression and Maximum Entropy-
models. http://www.win-vector.com/dfiles/LogisticRegressionMaxEnt.pdf  

[20] Glorot, X., Bordes, A., Bengio, Y., et al. (2011) Deep Sparse Rectifier Neural Net-
works. International Conference on Artificial Intelligence and Statistics, Fort Lau-
derdale, 315-323. 

[21] Cao, X. (2015) A Practical Theory for Designing Very Deep Convolutional Neural 
Networks Classifier Level. Technical Report. 

[22] Luo, W., Li, Y., Urtasun, R., et al. (2016) Understanding the Effective Receptive 
Field in Deep Convolutional Neural Networks. Advances in Neural Information 
Processing Systems, Barcelona, 5-10 December 2016, 4898-4906. 

[23] Girshick, R., Donahue, J., Darrel, T., et al. (2014) Rich Feature Hierarchies for Ac-
curate Object Detection and Semantic Segmentation. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 
580-587. 

[24] Girshick, R. (2015) Fast-RCNN. Proceedings of the IEEE Conference on Computer 
Vision, Santiago, 7-13 December 2015, 1440-1448. 

https://doi.org/10.4236/ami.2018.84007


T. T. Liu et al. 
 

 

DOI: 10.4236/ami.2018.84007 87 Advances in Molecular Imaging 
 

[25] Ren, S., He, K., Girshick, R., et al. (2015) Faster-RCNN: Towards Real-Time Object 
Detection with Region Proposal Networks. Advances in Neural Information 
Processing Systems, Montreal, 7-12 December 2015, 91-99. 

 
 
 

Nomenclature 

Β: trainable scale for network layer 
γ: trainable bias for network layer 
μ: mean of image batch 
σ: standard deviation of image batch 
×: image batch 
ReLU: the rectified linear unit 
GIST: Global descriptor 
PHOG: Pyramid Histogram of Orientated Gradients 
PHOW: Pyramid Histogram of Words 
LBP: Local Binary Pattern 
HOG: Histogram of Gradient Orientations 
SIFT: Scale Invariant Feature Transform 
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