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Abstract 
The paper shows that the variational principle serves as an element of the 
mathematical structure of a quantum theory. The experimentally confirmed 
properties of the corpuscular-wave duality of a quantum particle are elements 
of the analysis. A Lagrangian density that yields the equations of motion of a 
given quantum theory of a massive particle is analyzed. It is proved that if this 

Lagrangian density is a Lorentz scalar whose dimension is 4L−    then the as-

sociated action consistently defines the required phase of the quantum par-

ticle. The 4L−    dimension of this Lagrangian density proves that also the 

quantum function ( )xµψ  has dimension. This result provides new criteria 

for the acceptability of quantum theories. An examination of the first order 
Dirac equation demonstrates that it satisfies the new criteria whereas the 
second order Klein-Gordon equation fails to do that. 
 

Keywords 
Quantum Theories, Lagrangian Density, Corpuscular-Wave Duality,  
Dimension of the Quantum Function, The Correspondence Principle 

 

1. Introduction 

A physical theory has two primary elements: it has a self-consistent mathematical 
structure and it describes adequately data which are obtained from experiments 
that are included in the theory’s domain of validity. The present work concentrates 
on the mathematical structure of quantum theories of electromagnetic interactions. 
Like any other physical theory, it takes few experimental data as elements that the 
theory must satisfy. The discussion shows that these requirements lead to a quite 
unique mathematical structure of the theory. The results provide another example 
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of Wigner’s well known statement about the unreasonable effectiveness of 
mathematics in the natural sciences [1]. 

Special relativity is a well established theory. In particular, modern 
accelerators produce particles whose velocity is very close to the speed of light. 
The design of these machines and the data which are obtained from them are 
consistent with the laws of special relativity. It means that accelerators provide 
an astronomical number of experimental tests which are consistent with 
special relativity. Therefore, it is assumed here that the required quantum 
theory must take a relativistic covariant form. 

This work aims to derive the structure of a quantum theory of an elementary 
massive particle. Historically, the first purpose of quantum theories was to 
describe experimental data of the electron. As a matter of fact, the electron is the 
most well-known elementary massive particle and it provides many kinds of 
experimental data. Hence, the ample electronic data enable to carry out many 
different tests of the validity of its quantum theory. This issue is very useful 
because a physical theory becomes unacceptable if it is inconsistent with even 
one kind of well established experiment that is included within its domain of 
validity. 

Physical principles play an important role in the search for new physical 
theories because they provide general requirements that should be satisfied by 
any new theoretical candidate. The title of this work indicates that it discusses 
the variational principle. The correspondence principle is also used in the 
following discussion and the meaning of this principle is explained before it is 
applied. 

Units where 1c= =  are used. Greek indices run from 0 to 3 and Latin 
indices run from 1 to 3. The metric is diag. (1, −1, −1, −1). Relativistic 
expressions are written in the standard notation. Square brackets [ ]  denote 
the dimension of the enclosed expression. In a system of units where 1c= =  
there is just one dimension, and the dimension of length, denoted by [ ]L , is 
used. In particular, energy and momentum take the dimension 1L−    and the 
electric charge is a dimensionless pure number. The value of the electron’s 
charge is 2 1 137e  . The second section discusses hierarchical relations 
between physical theories and the significance of the correspondence principle. 
The role of the variational principle in the structure of quantum theories is 
explained in the third section. The experimental information used in the analysis 
is shown in the fourth section. The fifth section proves the validity of a new 
reason for the need of the variational principle. The sixth section describes 
specific results which are derived from the variational principle. The last section 
contains concluding remarks. 

2. Hierarchical Relationships between Physical Theories 

An essential feature of an acceptable physical theory is the existence of a domain 
of validity where the theory describes properly experimental results. For example, 
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it is well known that Newtonian mechanics yields good predictions in cases 
where the particles’ velocity is much smaller than the speed of light and if 
quantum effects can be ignored. These restrictions define the domain of validity 
of Newtonian mechanics. 

The founders of quantum mechanics have recognized that the classical limit of 
quantum mechanics should be consistent with classical physics. And indeed, a 
proof showing that the classical limit of quantum mechanics agrees with classical 
physics was published in 1927 (see the Ehrenfest theorem in [2], pp. 25-27, 
136-138). This matter can be found in many textbooks. For example: “classical 
mechanics must therefore be a limiting case of quantum mechanics” (see [3], p. 
84). A general discussion of this topic is presented in pp. 1-6 of [4]. 

Let ,A B  denote two physical theories and ,A BD D  denote their domain of 
validity, respectively. If A BD D⊂  then these domains of validity can be used 
for a definition of hierarchical relationships between ,A B . It means that theory 
B is good in all cases where theory A is good, but not vice versa. In this case the 
rank of theory B is higher than that of theory A. For example, the rank of special 
relativity is higher than that of Newtonian mechanics. 

Generally the hierarchical relationship between two theories is obtained in 
cases where AD  is relevant to a limit of a certain variable. For example, the 
domain of validity of Newtonian mechanics is relevant to the limit 0iv → , 
where iv  is the velocity of the ith particle. In this case, formulas of special 
relativity boil down to corresponding formulas of Newtonian mechanics. The 
domain of validity of Newtonian mechanics holds not only for the case where 

0iv =  because the continuity of expressions indicates that if iv c
 then 

errors of Newtonian mechanics are smaller than measurements’ errors and this 
theory is acceptable. The limit process used for the definition of AD  means that 
the correspondence between theories ,A B  relies on a solid mathematical basis. 

The relationship A BD D⊂  means that theory B has a more profound 
meaning than that of theory A. However, the merits of theory A should not be 
underestimated because an appropriate limit of expressions of theory B must 
be consistent with the corresponding expressions of theory A. It means that 
theory A provides theoretical constraints on the acceptability of theory B. 
These constraints are useful in an examination of the acceptability of new 
theoretical ideas. They are related to a certain limit of a variable that defines 
the domains of validity of the two theories. Therefore, these constraints belong 
to the mathematical structure of the theories. 

The hierarchical relationships between the following quantum theories are 
discussed in this work: non-relativistic quantum mechanics (QM), relativistic 
quantum mechanics (RQM) and quantum field theory (QFT). Here the 
hierarchical rank of RQM is higher than that of QM because QM is restricted to 
cases where the particles’ velocity iv  (or in a quantum parlance i ip m ) is 
much smaller than the speed of light. RQM is restricted to cases where the 
number of particles can be regarded as a constant of the motion whereas QFT 
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discusses cases where additional particle-antiparticle pairs are included in the 
system. For example, experiments show that a non-negligible probability of the 
existence of quark-antiquark pairs is found in the proton (see [5], p. 282). 
Therefore, QFT should be used for a description of the proton structure. Figure 
1 illustrates the hierarchical relations between these theories. Here the domains 
of validity of the three theories are represented by the corresponding rectangles 
which satisfy the following relations QM RQM QFT⊂ ⊂ . 

The relationships between QFT and QM is recognized in the literature. For 
example: “First, some good news: quantum field theory is based on the same 
quantum mechanics that was invented by Schroedinger, Heisenberg, Pauli, Born, 
and others in 1925-26, and has been used ever since in atomic, molecular, 
nuclear and condensed matter physics” (see [6], p. 49). In this work, these 
constraints are called Weinberg correspondence principle. 

In the physical literature the relationship between QM and classical physics is 
sometimes called the Bohr correspondence principle (see [2], p. 4). The 
philosophical literature discusses general aspects of the correspondence between 
theories and this topic is called the generalized correspondence principle [7]. 

3. The Role of the Variational Principle in Quantum 
Theories 

Items of the following list mention briefly examples that point out the relevance of 
the variational principle, its Lagrangian density   and the associated action S to 
quantum theories. These items are not new and it is shown here that they can be 
found in textbooks. Furthermore, the variational principle has a mathematical 
structure and it means that one can prove the correctness of these items. 

• The variational principle is used in a demonstration of the consistence of the 
classical limit of quantum mechanics with classical physics (see e.g. [3], section 
32; [8], pp. 19-21). 

• The discussions in the previous references also show that in the classical 
limit, the wave function of a quantum particle takes the following form 

e ,iSAψ =                              (1) 

where S is the action of the given Lagrangian. In the units used herein 1=  and 
it can be removed from (1). 
 

 
Figure 1. A chain of three rectangles that represent 
domains of validity of three quantum theories, 
respectively. The figure shows that a smaller 
rectangle is included in a larger rectangle (see text). 
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• An application of the Lagrangian that is used in the variational principle 
yields a definition of canonical momenta, where each of which is related to a 
generalized coordinates (see e.g. [9], p. 16). It can be shown that the Poisson 
brackets of a classical Hamiltonian and a dynamical variable correspond to an 
appropriate commutation relations of quantum mechanics (see e.g. [3], section 
21 ; [8], pp. 26-28). 

• The Noether theorem (see [10]) proves that a conservation law of a physical 
quantity corresponds to an appropriate invariance of the Lagrangian with 
respect to a certain transformation. Analogous relations are found for the 
Lagrangian density of QFT (see [6], pp. 306-314; [11], pp. 17-22). 

• Relativistically covariant QFT equations are obtained from a Lagrangian 
density that is a Lorentz scalar (see [6], p. 300). This property emphasizes the 
significance of this kind of Lagrangian density. 

• The variational principle is also used in other fields of physics. For example, 
textbooks prove that Newtonian mechanics can be derived from this principle 
(see [9, 12]). 

The main objective of this work is to show that the foregoing items do not 
cover all aspects of the relevance of the variational principle to quantum theories. 
Consequences of the new applications of the variational principle are discussed. 

4. Experimental Elements Used in the Analysis 

The following fundamental experimental data are a combination of two features 
of a quantum particle. Some experiments show that it has corpuscular properties 
whereas other experiments show that it has wave properties (see [2], pp. 1-3; [13] 
p. 59). The combination of these properties is called corpuscular-wave duality. 
In classical physics this duality is a contradiction. Indeed, in classical physics an 
elementary particle is point-like (see [14], pp. 46-47) whereas a wave has a 
spatial distribution. Therefore, a new theory which is consistent with this duality 
is required. 

The following discussion shows how these requirements lead to the structure 
of quantum theories. In particular, the primary role of the variational principle is 
derived. 

5. Properties of Relativistic Quantum theories 

The primary experimental properties of a quantum particle which are described 
in the previous section are used here for a construction of the main elements of a 
quantum theory. This task is done stepwisely. 

• In order to be consistent with the pointlike property of an elementary 
quantum particle, the theory describes it by means of a wave function whose 
form is 

( ) ,xµψ                             (2) 

where xµ  denotes a single set of four space-time coordinates. The following 
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argument explains why the form of (2) describes an elementary pointlike 
particle. 

Take for example the ground state of the positronium, which is a bound state 
of an electron and a positron. This object, which has a non-vanishing volume, is 
described by a function of the form ( )1 2, ,tψ x x , where 1 2,x x  denote the 
three spatial coordinates of the electron and the positron, respectively. This 
example shows that in order to describe a composite non-pointlike particle one 
needs more than four space-time degrees of freedom. 

As a matter of fact, the form of (2) is used in QFT textbooks in expressions for 
the Lagrangian density of any elementary quantum particle [6] [11] [15]. This 
issue means that there is a consensus about this requirement. 

• In order to be consistent with the wave properties of a quantum particle, the 
function ( )xµψ  must have a phase factor. The de Broglie work has proven that 
the argument of the phase factor of a free quantum particle takes the form 
( )tω⋅ −k x , where 

; Eω= =k p  
                       (3) 

and , Ep  denote the particle’s linear momentum and energy, respectively. 
Historically, de Broglie published his relations (3) before they were experimentally 
confirmed (see [2], p. 3; [8], pp. 48-49). This is certainly an example of a successful 
theoretical work. 

• The wave properties of the quantum function (2) show that it must satisfy a 
wave equation. 

• A wave function of a free particle that travels in the x-direction and satisfies 
the de Broglie relations can be written as a linear combination of the following 
expressions (see [2], p. 18) 

( ) ( ) ( )( )cos , sin , expkx t kx t i kx tω ω ω− − ± −                (4) 

The first and the second expressions of (4) are real functions whereas the last 
expression is a complex function. 

The following argument proves that real functions cannot describe a massive 
quantum particle. Let us use the real functions of (4) and examine a massive 
quantum particle which is in a field free region. In a particular inertial frame this 
particle is at rest and its linear momentum 0=p . Substituting this value and (3) 
into (4), one finds that in this frame the general form of a real wave function of a 
massive quantum particle is 

( ) ( ) ( ) ( ), sin cos sin ,t x A t B t C tψ ω ω ω δ= + = −          (5) 

where , ,A B C  and δ  are appropriate real constant numbers. It follows that for 
every integer N, there is an instant when πt Nω δ− =  and the wave function of 
(5) vanishes throughout the entire 3-dimensional space. The following 
argument proves that this function is unacceptable. In the non-relativistic QM 
the particle’s density is *ψ ψ . It means that if ψ  vanished throughout the 
entire 3-dimensional space then the particle does not exist. The Weinberg 
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correspondence principle and the limiting process prove that this result also holds 
for higher quantum theories because these theories must use ψ  as a factor for 
the definition of density. 

For these reasons, the phase factor of the quantum function of a motionless 
particle must be complex and the last expression of (4) shows that this function 
takes the form 

( )e , , .i x y zψ χΦ=                        (6) 

The foregoing argument holds for a motionless particle. Such a particle is in a 
state which is the limit of states of particles that move inertially in a field-free 
region and their velocity tends to zero. Hence, a quantum function of particles 
that move inertially in a field-free region must be complex, because the limit of 
real functions is a real function. 

Furthermore, a field-free region is the limit of regions where the intensity of 
the interaction tends to zero. Therefore, using a similar argument, one finds that 
the general state of a quantum particle is described by a complex function. This 
issue is also discussed in [16]. 

• Let us examine the power series of the phase factor of the quantum function 
(6) 

e 1i iΦ = + Φ +                      (7) 

Now, a very well known law of physics states that all terms of a physically 
acceptable expression must have the same dimension, and, in a relativistic theory, 
they must also satisfy covariance. Since each of the numbers 1, i  on the right 
hand side of (7) is a dimensionless Lorentz scalar, one concludes that also the 
phase Φ  must be a dimensionless Lorentz scalar. The following argument 
explains how these constraints are satisfied. 

• Let us use the variational principle and a Lagrangian density   that yields 
the required equations of the given quantum particle. The case of a Dirac 
particle is used here as an illustration of this issue 

1 .
16πD i m F F e Aµ µν µ

µ µν µψ γ ψ ψγ ψ = ∂ − − −             (8) 

Here † 0ψ ψ γ≡ . The first term of (8) represents a free Dirac particle, the 
second term represents free electromagnetic fields and the last term represents 
the interaction between a Dirac charged particle and electromagnetic fields (see 
[11], p. 84, [15], p. 78). 

The action of (8) is obtained from its 4-dimensional integral 
4d .DS x= ∫                            (9) 

The action S  and   have the same dimension (see e.g. [8], p. 20, Equation 
(6.1)). It follows that in the unit system used herein where 1= , the action is a 
dimensionless Lorentz scalar. Evidently, 4d x  is a Lorentz scalar whose 
dimension is 4L    (see [14], p. 21). Hence, the action (9) proves that the 
Lagrangian density   of a quantum particle must be a Lorentz scalar whose 
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dimension is 4L−   . These constraints are imposed on an acceptable theory of a 
quantum particle. This kind of action can be used for the particle’s phase. This 
general result is an extension of (1) which applies to the classical limit of the 
wave function. 

The foregoing discussion proves that the action which is obtained from the 
Lagrangian density of a quantum theory can be used as the required phase of a 
quantum particle if the Lagrangian density is a Lorentz scalar whose dimension 
is 4L−   . The Weinberg correspondence principle proves that this conclusion 
holds for QM, RQM and QFT. Item 5 of section 3 indicates that the need for a 
Lorentz scalar Lagrangian density is already documented in the literature. The 
required 4L−    dimension of the Lagrangian density is the main subject of the 
following discussion. 

6. Discussion 

This section describes some results that demonstrate powerful consequences of 
the requirement of a Lagrangian density whose dimension is 4L−   . 

Let us take the Lagrangian density of a Dirac electron (8). Its dimension is 
4L−    and in the unit system used herein 1c =  and the dimension of each 

component of the partial derivatives µ∂  is 1L−   . It follows that the dimension 
of the product ψψ  is 3L−   . This is the dimension of density and indeed, the 
theory of a Dirac particle yields a consistent expression for a conserved 4-current 

,; 0.j jµ µ µ
µψγ ψ= =                     (10) 

It is well known that density is the 0-component of the 4-current 0j ψ ψ= †  
(see [17], pp. 23, 24). 

The following product of the Schroedinger wave function *ψ ψ  denotes 
density and it is used in a consistent expression for density-current (see [8], p. 54; 
[13], pp. 117-120). This result shows that the Dirac equation is consistent with the 
Weinberg correspondence principle of section 2. In particular, a construction of a 
Hilbert space is a requirement that should be satisfied by a consistent quantum 
theory (see [6], p. 49). The consistent expression for density of a Dirac particle (10) 
enables a construction of a Hilbert space for a Dirac electron, where the required 
inner product of two functions is † 3di j xψ ψ∫ . 

In the case of quantum theories, the dimension 4L−    of the Lagrangian 
density provides a simple proof of the role of the electromagnetic 4-potential in 
the interaction term of an electric charge. Indeed, the laws of Maxwellian 
electrodynamics prove that electromagnetic interaction is proportional to the 
charge. Therefore, in a quantum theory it should be proportional to the charge 
density whose dimension is 3L−   . Hence, due to the 4L−    dimension of the 
Lagrangian density, the dimension of the electromagnetic factor of the 
interaction term must be 1L−   . This is the dimension of the electromagnetic 
potentials. By contrast, this argument proves that the electromagnetic field 
tensor F µν  is unsuitable for this purpose because it is the 4-curl of the 
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4-potential and its dimension is 2L−   . 
The Dirac equation is a first order differential equation. As a matter of fact, 

one can find in the literature quantum equations of the second order. The 
Klein-Gordon (KG) equation is a quite simple example of this kind of equations. 
The KG function is a Lorentz scalar and its Lagrangian density is (see [18], p. 
198 of the English translation) 

( )( ) ( )( )
3

* * * * 2 *
,0 ,0 , ,

1
.k k k k

k
ieV ieV ieA ieA mφ φ φ φ φ φ φ φ φ φ

=

= − + − + − −∑  (11) 

The KG equation is derived from (11) (see Equation (39) therein) 
3

2

1
k kk k

k
ieV ieV ieA ieA m

t t x x
φ φ φ

=

∂ ∂ ∂ ∂     − − = + + +     ∂ ∂ ∂ ∂     
∑     (12) 

and the KG density is (see Equation (42) therein) 

( )* * *
,0 ,0 2 .i eVρ φ φ φ φ φ φ= − −                      (13) 

The product of two derivatives of the KG Lagrangian density (11) proves that 
the dimension of the KG function φ  is 1L−   . Therefore, the following 
inconsistencies arise. 

• The dimension of the product *φ φ  of the KG function is 2L−   . On the other 
hand it is shown earlier in this section that the dimension of the corresponding 
product of the Schroedinger functions is 3L−   . Hence, the KG function is 
inconsistent with the Weinberg correspondence principle because the continuity 
of a limit process does not alter the discrete value of the wave function’s 
dimension. 

• The dimension 2L−    of the product *φ φ  of the KG function explains why 
its expression for density (13) contains a derivative with respect to time. Hence, 
unlike the case of the non-relativistic QM, one cannot use density of a KG 
function and construct a Hilbert space in the Heisenberg picture where the 
quantum function is time-independent (see [3], p. 112; [11], p. 6). This is 
another violation of the Weinberg correspondence principle. 

• The KG Lagrangian density (11) contains a second order term of the 
potentials. For example, a factor 2V  of the electric potential is obtained from 
the first term on the right hand side of (11). By contrast, Maxwell equations are 
derived from a Lagrangian density that depends linearly on the 4-potential (see 
[14], pp. 78, 79). Hence, the KG Lagrangian density (11) is inconsistent with 
Maxwellian electrodynamics. 

These problematic results support Dirac lifelong objection to the KG equation 
(see [19], pp. 3,4). It can be shown that analogous problems hold in other kinds 
of second order quantum equations (see [20], Section 4). 

7. Concluding Remarks 

This work examines some aspects of the relevance of the variational principle to 
the mathematical structure of quantum theories. The experimentally confirmed 
corpuscular-wave duality is the basis of the analysis. This analysis focuses on the 
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role of a consistent expression for the phase factor of a given quantum function. 
For this end, the paper examines a Lagrangian density which depends on a 
quantum function whose form is ( )xµψ . It is proved that each term of this 
Lagrangian density must be a Lorentz scalar whose dimension is 4L−   . The 
results show that such a Lagrangian density yields an action that can be used as 
the phase of a quantum particle. Moreover, it is shown that the 4L−    dimension 
of the Lagrangian density defines a specific dimension for the quantum function 

( )xµψ . The correspondence principle proves that the dimension of the quantum 
function provides a new kind of constraint that an acceptable quantum theory 
must satisfy. It is shown that the Dirac first order quantum theory complies with 
this constraint. By contrast, problems arise in the case of second order quantum 
theories, like that of the KG equation. 
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Abstract 
Based on the analysis of the refined oil distribution plan which includes the 
various vehicles models-single oil-multiple gas stations. This paper puts for-
ward the dynamic time window of oil supplementation based on every mo-
ment, and establishes the mathematical model of the refined oil distribution 
plan, using C language, taking various circumstances of the model into ac-
count to find the optimal solution through several operations. This process 
can make the refined oil distribution plan and the distribution route is more 
reasonable. At the same time, the distribution cost is lowest. Through the 
analysis of the experimental results, the validity and algorithm of the model 
are proved. 
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Refined Oil Distribution, Vehicle Scheduling Problem, Time Window,  
Optimized Model 

 

1. Introduction 

With the rapid development of Chinese economy and society, logistics is be-
coming an indispensable part of enterprise economic activities, and its impor-
tance is increasing day by day. The petroleum and petrochemical industry is an 
important guarantee for the country economic and social development, and this 
profession is the pillar of Chinese economy [1] [2]. After years of development, 
the industry has gradually matured and formed a market competition pattern 
dominated by Petro China, Sinopec, China National Offshore Oil Corporation. 
In the face of such a diverse and competitive market environment, it is more 
important for petroleum and petrochemical enterprises to maintain their market 
share and higher profit margins. In order to improve their own management 
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model and reduce the logistics operation cost, as the terminal part of the supply 
chain of the petroleum and petrochemical enterprises, refined oil distribution is 
a good breakthrough. By improving the logistics link, it can greatly reduce the 
enterprise’s logistics and distribution costs, and fundamentally improve the en-
terprise’s core-competitiveness. 

In terms of its form, the issue of refined oil distribution is a problem of trans-
port dispatching. For this problem, a large number of studies consider more 
about how to meet the balance of transport capacity and less consider the time 
constraints in the transport process. In fact, product oil has special requirements 
for transportation time during distribution. If the schedule is not good, it is easy 
to appear the phenomenon of out of stock and waiting for unloading. On the ba-
sis of previous studies, this paper combines the characteristics of oil product dis-
tribution, and puts forward the dynamic time window of oil supplementation 
based on every moment, and uses the C language to solve the model, so as to 
make the distribution plan more reasonable, which makes the distribution prob-
lem of the refined oil more in line with the actual situation. 

2. Problem Description 

All kinds of resources in the process of refined oil distribution are form a very 
complex distribution network [3] [4], including oil depots, gas stations, trans-
port vehicles and so on. The purpose of distribution dispatching is to generate 
the resource scheduling scheme which has the best benefit or the lowest cost 
under the restrictions of transportation resources, storage capacity, transporta-
tion time and other factors. Specifically, the route of each vehicle, the delivery 
time and quantity of each distribution location are shown in table [5], so as to 
achieve the goal of minimum transportation cost. There are a stable supply and 
demand relationship between the oil depot and the gas station, so this paper 
takes a single oil depot as the object of study. The oil depot that has two types 
(single or double cabins) delivery vehicles delivers the same kind of oil to a series 
of gas stations during the business hours. In the case of ensuring every gas sta-
tion is not out of stock at any moment, according to the inventory in the tank, 
this paper makes the delivery plan of the day, reasonably arranging the distribu-
tion vehicle, distribution route and time to make the delivery cost lowest. 

3. Model Building 

Before building a model, it is necessary to define some of the constants and va-
riables necessary to build the model in advance, some of which are summarized 
by long-term tests and are generic. But some of the data can be adjusted and set 
according to the actual situation. 

3.1. Model Hypothesis 

1) Assuming that all types of distribution vehicles are adequate and are parked 
at the depot. 
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2) The delivery vehicles should be fully loaded (including all compartments), 
that is, when the vehicles leave the depot, each compartment needs to be filled 
with refined oil [6] [7]. 

3) The refined oil in the same compartment must be unloaded to the same gas 
station. The refined oil in different compartments of the same car can be un-
loaded to different gas stations. 

4) Assuming that the running time from the depot to the gas station and from 
one gas station to another gas station is t0 hours, and the loading time and the 
unloading time are ignored. 

5) Assuming that every gas station unloads refined oil at the whole point of 
time, and the sales per hour is constant during the business hours. 

6) Each gas station can use one oil truck at most to supplement refined oil at 
each moment. 

3.2. Parameter Setting 

i: the number of gas station, 1,2, ,i N= 

; 
t: the business hours of gas station, 0,1, ,t M= 

; 
fi: Sales per hour of gas station i; 
qs: the compartment capacity of the vehicle which has one cabin; 
qd: a compartment capacity of the vehicle which has two cabins; 
Vi: the capacity of the gas station i; 
Cs: the single-trip shipping cost of the delivery which has one cabin; 
Cd: the single-trip shipping cost of the delivery which has two cabins; 
Wit: the inventory of the gas station i at t; 
Qi: safe stock of gas station i; 
Tis: the time that gas station i begin to supplement refined oil; 
Tie: the time that gas station i finish supplementing refined oil; 
Xit: binary variable. Xit = 1, if gas station i use a delivery vehicle which has one 

cabin to supplementing refined oil at t. Xit = 0, otherwise; 
Yit: binary variable. Yit = 1, if gas station i use a cabin of delivery vehicle which 

has two cabins to supplementing refined oil at t. Yit = 0, otherwise; 
Zit: binary variable. Zit = 1, if gas station i use two cabins of delivery vehicle 

which has two cabins to supplementing refined oil at t. Zit = 0,otherwise. 

3.3. Building the Model 

Based on the above problem description, model assumptions and parameter set-
tings, the vehicle scheduling model is established: 

1) Objective function 
According to the above description, this paper mainly considers the transpor-

tation costs of distribution vehicles, and takes the lowest delivery cost as the op-
timization target: 

1 0

1 0 1 0
min

2

N M

itN M N M
i t

s it d d it
i t i t

Y
C C X C C Z= =

= = = =

= × + × + ×
∑∑

∑∑ ∑∑  
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2) Constraints 
Gas station i can be supplemented refined oil by a delivery vehicle at most at 

time t [8]: 

1it it itX Y Z+ + ≤  

The inventory of the gas station i must be less than the capacity at time t: 

it iW V≤  

( )1 2it s it d it d it ii tW W q X q Y q Z f−= + × + × + × × −  

The paper ensures that the gas station i is not out of stock at time t: 

0it iW f− ≥  

Because the running time from the depot to the gas station and from one gas 
station to another gas station is t0 hours. In principle, we should ensure that each 
gas station is not out of stock in the next t0 hours when the delivery task is ar-
ranged. Therefore, it is determined that the minimum inventory of refined oil at 
the gas station when the delivery task is arranged. 

0i iQ t f δ= × +  

In the formula, δ means the minimum inventory of refined oil when the gas 
station is filling up. 

When the inventory of the gas station reaches Qi, it is necessary to issue the 
task of oil distribution. According to the storage and the sales of the gas station 
at every moment, it is necessary to predict the time period that the refined oil is 
expected to be delivered, that is to say, to determine the dynamic time window 
about supplementing refined oil. 

Taking the t moment as the benchmark, the start time of the oil supplement is 
as follows: 

it i
is

i

W QT
f
−

=  

The end time of the oil supplement is as follows: 

0ie isT T t= +  

At the t moment, the vehicle scheduling can be divided into three cases by the 
oil time window [9] [10]: 

a) When the Tis of the two gas stations are the same or when the Tis of the two 
gas stations are the different and 0isT t∆ ≤ , this paper considers unloading the 
refined oil to two gas station by using a vehicle with two compartments. 

b) When 0isT t∆ >  and 2i iV W q− > × , this paper considers unloading the 
refined oil to gas station i by using a vehicle with two compartments. 

c) When 0isT t∆ >  and 2i i dV W q− < × , this paper considers unloading the 
refined oil to gas station i by using a vehicle with one compartments. 

In the formula, ∆Tis the difference between the start time of any two gas sta-
tions’ time window. 
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4. Model Solution 

C language is an important programming language of computer software, which 
is widely used in computer software programming. Computer software pro-
gramming based on the C language can greatly simplify the difficulty of pro-
gramming and improve the accuracy of program operation results, and have the 
characteristics of quick solution speed and so on [11] [12]. Therefore, this paper 
uses C language to program the model. 

1) Setting the opening time of the gas stating T = 0. 
2) Calculating the inventory and time window according to the formula. 
3) Judging whether to distribute according to the time window. When the 

start time of time window is equal to 0, it indicates that the inventory can be still 
sold for t0 hours. At this time the vehicle begins to deliver. 

4) Putting the constraint conditions into the loop control distribution. 
5) Distribution plan: 
(a) When the number of the start time of time window is equal to 0 is 1, ac-

cording to the capacity and the inventory of gas stations to decide to use the ve-
hicle with one compartment or two compartments. 

(b) When the number of the start time of time window is equal to 0 is 2, the 
priority will be given to the vehicle with two compartments, which will be deliv-
er refined oil to two gas stations. 

(c) When the number of the start time of time window is equal to 0 is more 
than 2, it’s going to be distributed by (b) and then by (a). 

6) After refueling, let T = T + 1. Go to step 2). 
7) Until T = M, end the loop. 
8) Outputting the final result and getting the delivery cost. 

5. Case Analysis 

There are five gas stations in the area. The daily business hours are from 8:00 to 
22:00, and the gas stations have the same kind of refined oil and are delivered by 
the same oil depot. The basic information of each gas station is shown in Table 
1. The oil depot has two types of delivery vehicles, and each type of distribution 
vehicle is abundant, meanwhile compartment information and single trip freight 
are shown in Table 2. The delivery vehicles are parked at the depot and start 
working at 7 o’clock in the morning. The time between the oil depot and the gas 
stations, and the gas stations was one hour. The running time from the depot to 
the gas station and from one gas station to another gas station is one hour. In 
order to ensure the each gas station is not out of stock, it is reasonable to arrange 
the delivery plan and the delivery route of each delivery vehicle to make the de-
livery cost lowest. 

Based on the model and solution process, the distribution plan of gas stations 
is shown in the following Table 3. 

According to the distribution plan, we can get the distribution route of ve-
hicles in the following Table 4. 
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Table 1. The information of gas stations and tanks unit: liter. 

Name of gas station 
Tank information 

Capacity Hourly sales Inventory at 8 o’clock 

S1 17,000 2000 8010 

S2 17,000 3000 6008 

S3 19,000 5000 15,015 

S4 40,000 8000 16,020 

S5 26,500 4000 26,009 

 
Table 2. The information of distribution vehicle. 

Types of vehicles Capacity (liter) Single-trip shipping costs (RMB) 

The single 8000  100 

The double 10,000 10,000 120 

 
Table 3. Distribution plan unit: liter. 

Delivery time Types of vehicles Name of gas station Delivery quantity 

9:00 The double S2 10,000 

10:00 The double S4 10,000 

10:00 The double S3 10,000 

11:00 The double S4 10,000 

11:00 The single S1 8000 

12:00 The double S4 20,000 

12:00 The double S2 10,000 

13:00 The double S3 10,000 

13:00 The double S5 20000 

14:00 The double S3 10,000 

15:00 The double S4 10,000 

15:00 The double S1 10,000 

16:00 The double S4 10,000 

16:00 The double S2 10,000 

17:00 The double S3 10,000 

17:00 The double S4 20,000 

18:00 The double S3 10,000 

19:00 The double S5 10,000 

19:00 The double S2 10,000 

20:00 The double S4 10,000 

20:00 The double S1 10,000 

21:00 The double S3 10,000 

21:00 The single S4 8000 
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Table 4. Distribution route of vehicles. 

Types of vehicles 
The time of the vehicle leaving the oil 

depot 
Route of vehicles 

The double 1 8:00 The oil depot→S2→S4 

The double 2 9:00 The oil depot→S3→S4 

The single 1 10:00 The oil depot→S1 

The double 3 11:00 The oil depot→S2→S3 

The double 4 11:00 The oil depot→S4 

The double 5 12:00 The oil depot→S5 

The double 6 13:00 The oil depot→S3→S4 

The double 7 14:00 The oil depot→S1→S4 

The double 8 15:00 The oil depot→S2→S3 

The double 9 16:00 The oil depot→S4 

The double 10 17:00 The oil depot→S3→S5 

The double 11 18:00 The oil depot→S2→S4 

The double 12 19:00 The oil depot→S1→S3 

The single 2 20:00 The oil depot→S4 

 
According to the distribution plan, it can be concluded that the lowest deli-

very cost is 2 * 100 + 12 * 120 = 1640 yuan. 
From the calculation result we can see that every gas station can successfully 

complete the supplementary task by using the proposed model and the method 
of solving, which is not appear the phenomenon of lacking of oil and wait for 
unloading. At the same time, making the whole freight as low as possible. 

6. Conclusion 

In this paper, based on the characteristics of refined oil distribution under the 
conditions of multiple vehicles, single oil and multiple gas stations, the paper 
establishes the distribution planning model of refined oil with the lowest 
freight rates as the objective function, the inventory of the gas station is less 
than the capacity and the gas station is not out of stock at any moment and 
other conditions as constraint conditions. The designs process of C language 
solves the model. The results prove that a feasible scheme can be obtained by 
using this model and algorithm. This paper only considers the factors such as 
vehicle transportation cost, gas tank volume, but in practical situation, the dis-
tribution problem of refined oil is also limited by the number of vehicles and 
the distance between the gas stations. In the future research, we can improve 
the model, increasing the influence factors and constraints, so as to increase its 
applicability. 
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Abstract 
In this paper, Hopfield neural networks with impulse and leakage time-vary- 
ing delay are considered. New sufficient conditions for global asymptotical 
stability of the equilibrium point are derived by using Lyapunov-Kravsovskii 
functional, model transformation and some analysis techniques. The criterion 
of stability depends on the impulse and the bounds of the leakage time-vary- 
ing delay and its derivative, and is presented in terms of a linear matrix in-
equality (LMI). 
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1. Introduction 

As we know, time delay is a common phenomenon that describes the fact that 
the future state of a system depends not only on the present state but also on the 
past state, and often encountered in many fields such as automatic control, 
biological chemistry, physical engineer, neural networks, and so on [1] [2] [3] [4] 
[5]. Moreover, the existence of time delay in a real system may lead to instability, 
oscillation, and bad dynamic performance [3] [4] [5]. So, it is significant and 
necessary to consider the delay effects on stability of dynamical systems. In 
Recent years, one typical class of neural networks, Hopfield neural networks 
(HNN) have been successfully applied to associative memory, pattern recognition, 
automatic control, optimization problems, etc, and HNN with various types of 
delay have been widely investigated by many authors, some interesting and 
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important results have been reported in the literature, see [6]-[16] and the 
references therein. 

On the other hand, impulsive phenomenon exists universally in a wide variety 
of evolutionary processes where the state is changed abruptly at certain 
moments of time, involving such fields as chemical technology, population 
dynamics, physics and economics [17] [18] [19]. Hopfield neural networks may 
experience change of the state abruptly, that is, do exhibit impulsive effects. 
Recently, some results for the stability of HNN with impulse as well as delays are 
obtained via different approaches [20]-[26]. 

In the past several years, a special type of time delay, namely, leakage delay (or 
forgetting delay), is identified and investigated due to its existence in many real 
systems such as neural networks, population dynamics and some fuzzy systems 
[1] [3]. Leakage delay is a time delay that exists in the negative feedback terms of 
the system which are known as forgetting or leakage terms. It has been shown 
that such kind of time delay has a tendency to destabilize a system [27]. In [27], 
Gopalsamy initially investigated the dynamics of bidirectional associative memory 
(BAM) network model with leakage delays by using model transformation 
technique, Lyapunov-Kravsovskii functional and inequalities together with some 
properties of M-matrices. Based on this work, several papers have considered 
stability of some kinds of neural networks [28]-[34]. More recently, Li et al. [35], 
initially studies the impulsive effects on existence-uniqueness and stability 
problems of recurrent neural networks with leakage delay via some analysis 
techniques on impulsive functional differential equations. However, it is worth 
noting that in those existing results, the leakage delay considered is usually a 
constant. Stability research on leakage time-varying delay has been hardly 
considered in the literature. In [36], Li et al. studied the effect of leakage 
time-varying delay on stability of nonlinear differential systems, but ignored 
impulsive effect. It is interesting to consider neural networks with leakage 
time-varying delay as well as impulse, which describes more realistic models 
[37]-[40]. 

With the above motivation, in this paper, we consider Hopfield neural networks 
with leakage time-varying delay and impulse. By using Lyapunov-Kravsovskii 
functional, model transformation and some analysis techniques, New sufficient 
conditions for global asymptotical stability of the equilibrium point are derived. 
The criterion depends on the impulse and the bounds or length of the leakage 
time-varying delay and its derivative, and is given in terms of a linear matrix 
inequality (LMI). The developed results generalize the corresponding results in 
reference [36]. The work is organized as follows. In Section 2, we introduce the 
model, some basic notations and lemmas. In Section 3, we present the main 
results. Finally, the paper is concluded in Section 4. 

2. Preliminaries 

Notations. Let   denote the set of real numbers, +  the set of nonnegative 
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real numbers, +  the set of positive integers, n  the n-dimensional real space 
and n m×  n m× -dimensional real space equipped with the Euclidean norm ⋅ ,  
respectively. For ( ) n n

ijs ×= ∈ , set 2 2
1 1

n n
iji j s

= =
= ∑ ∑ . 0>  or 0<   

denotes that the matrix   is a symmetric and positive definite or negative 
definite matrix. The notation T  and −  denote the transpose and the 
inverse of  , respectively. If ,   are symmetric matrices, >   means 
that −   is positive definite matrix. ( )maxλ   and ( )minλ   denote the 
maximum eigenvalue and the minimum eigenvalue of matrix  , respectively. 
E denotes the identity matrix with appropriate dimensions and { }1,2, , nΛ =  . 
For any ( ), 1kJ S k n⊆ ⊆ ≤ ≤  , set ( ) { }, : is continuousJ S J Sφ= →  and 

( ) {1 , :J S J Sφ= →  is continuously differentiable everywhere except at 
finite number of points t at which ( ) ( ) ( ) ( ), , ,t t t tφ φ φ φ+ − + −

   exist and 

( ) ( )t tφ φ+ = , ( ) ( )t tφ φ+ =   where φ  denotes the derivative of }φ . For any 
t +∈ , tx  is defined by ( )tx x t s= + , ( )t

x x t s−
−= + , [ ],0s σ∈ − . The 

notation   always denotes the symmetric block in one symmetric matrix. 
Consider the following impulsive hopfield neural networks with leakage time- 

varying delay: 

( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )( )

( ) ( ) [ ]

, 0, ,

, , ,

, ,0 ,
k

k

k k k k k t

x t Cx t t Af x t Bg x t t J t t t

x t x t x t J x t x k

x t t t

σ τ

ϕ η

−
− −

+

 = − − + + − + > ≠

∆ = − = ∈


= ∈ −





 (1) 

where ( ) ( ) ( )( )T
1 , , nx t x t x t= 

 is the neuron state vector of the neural networks; 
( )1, , nC diag c c=   is a diagonal matrix with > 0,ic i∈Λ ; A and B are the 

connection weight matrix and the delayed weight matrix, respectively; J is an 
external input; f and g represent the neuron activation functions. Through-out this 
paper, we make the following assumptions: 

(H1) ( )tσ  and ( )tτ  denote the time-varying leakage delay and time-varying 
transmission delay, respectively, and satisfies ( )0 tσ σ≤ ≤ ,  

( )0 tτ τ≤ ≤  and ( ) 1t σσ ρ≤ < , ( ) 1t ττ ρ≤ < , where , , ,σ τσ τ ρ ρ  are some 
real constants; 

(H2) ( ), : ,n n n
kJ k +⋅ ⋅ × → ∈    , are some continuous functions; 

(H3) The impulsive times kt  satisfy 0 10 kt t t= < < < →∞  and  
{ }1inf 0k k kt t

+∈ −− > . 
(H4) [ ]( )1 1 ,0 , nϕ η∈ = −   , where { }max ,η σ τ= . For 1ϕ∈ , define 

[ ] ( ),0supθ ηη
ϕ ϕ θ∈ −= . 

The following Lemmas will be used to derive our main results. 
Lemma 2.1. [41] Given any real matrices 1 2 3, ,Σ Σ Σ  of appropriate  

dimensions and a scalar 0>  such that T
3 30 < Σ = Σ . Then the following 

inequality holds: 
T T T 1 T 1
1 2 2 1 1 3 1 2 3 2.− −Σ Σ + Σ Σ ≤ Σ Σ Σ + Σ Σ Σ   

Lemma 2.2. [42] Given any real matrix T 0M M= >  of appropriate 
dimension and a vector function ( ) [ ]: , na bω ⋅ → , such that the integrations 
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concerned are well defined, then 

( ) ( ) ( ) ( ) ( )
T

Td d d .
b b b

a a a
s s M s s b a s M s sω ω ω ω    ≤ −      ∫ ∫ ∫  

Lemma 2.3. [43] Let n nX ×∈ , then 

( ) ( )T T T
min maxX a a a Xa X a aλ λ≤ ≤  

for any na∈  if X is a symmetric matrix. 

Lemma 2.4. [44] A given matrix 11 12

21 22

0
S S

S
S S
 

= > 
 

, where T
11 11S S= ,  

T
22 22S S= , is equivalent to any one of the following conditions: 
(1) 1 T

22 11 12 22 120, 0;S S S S S−> − >  

(2) T 1
11 22 12 11 120, 0.S S S S S−> − >  

In the following, we assume that some normal conditions, such as Lipschitz 
continuity of f and g, etc, are satisfied so that the equilibrium point of system (1) 
does exist, see [13] [21] etc, in which the existence results of equilibrium point 
are established by employing contraction mapping theorem, Brouwer’s fixed 
point theorem and some functional method. Note that these results are 
independent of time delays, so it is easy to extend the results in the literatures to 
an impulsive neural network with leakage time-varying delays and other delays, 
we omit the details and investigate the global asymptotic stability of the 
equilibrium point mainly in next section. As usual, we assume that  

( )T

1 2, , , nx x x x∗ ∗ ∗ ∗=   is an equilibrium point of system (1), i.e. 

( ) ( ) ( )* * * * *0, , 0, .kCx Af x Bg x J J x x k +− + + + = = ∈  

3. Global Asymptotic Stability 

In this section, we investigate the global asymptotic stability of the unique 
equilibrium point of system (1). For this purpose, the impulsive function kJ  
which is viewed as a perturbation of the equilibrium point *x  of model (1) 
without impulses is defined by 

( )( ) ( ) ( ) ( )( ){ }* *, d , ,k

k k k

t
k k k kt t t

J x t x D x t x C x s x s k
σ−

− −
+−

= − − − − ∈∫   

where ,kD k +∈  are some n n×  real symmetric matrices. It is clear that 

( )* *, 0,kJ x x k += ∈ . Such a type of impulse describes the fact that the 
instantaneous perturbations encountered depend not only on the state of 
neurons at impulse times kt  but also the state of neurons in recent history, 
which reflects a more realistic dynamics. Similar impulsive perturbations have 
also been investigated by some researchers recently [22] [23] [25]. 

For convenience, we let ( ) ( ) *y t x t x= − , then system (1) can be rewritten as 

( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) [ ]*

, 0, ,

d , ,

, ,0 ,

k

k k

k

t
k k k k k t t

y t Cy t t A y t B y t t t t t

y t y t y t D y t C y s s k

y t t x t

σ

σ τ

ϕ η

− −
+−

 = − − + Ω + Γ − > ≠

∆ = − = − − ∈

 = − ∈ −

∫



   (2) 
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where 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )

T

1 1 2 2

* *

, , , ,

,

n n

j j j j j j j

y t y t y t y t

y t f x y t f x

 Ω = Ω Ω Ω 

Ω = + −



 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) T

1 1 2 2, , , ,n ny t t y t t y t t y t tτ τ τ τ Γ − = Γ − Γ − Γ − 
 

( )( )( ) ( )( )( ) ( )* * .j j j j j j jy t t g x y t t g xτ τΓ − = + − −  

Obviously, 0y ≡  is a solution of system (2). Therefore, to consider the 
stability of the equilibrium point of system (1), it is equal to consider the stability 
of zero solution of system (2). 

In this paper, we assume that there exist constants 0, 0M N≥ ≥  such that 
(H5) ( ) ( ) ( ) ( )T T T T, ,y y My y y y Ny yΩ Ω ≤ Γ Γ ≤  

which is a very important assumption for activation functions f and g. Using a 
model transformation, system (2) has an equivalent form as follows: 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) [ ]*

d d
d

, 0, ,

d , ,

, ,0 ,

k

k k

t

t t

k

t
k k k k k t t

y t C y s s
t

Cy t Cy t t t A y t B y t t t t t

y t y t y t D y t C y s s k

y t t x t

σ

σ

σ σ τ

ϕ η

−

− −
+−

  −   

= − − − + Ω + Γ − > ≠

∆ = − = − − ∈


= − ∈ −

∫

∫





(3) 

In the following, we shall establish a theorem which provides sufficient 
conditions for global asymptotical stability of the zero solution of system (3). It 
implies that, if system (1) has an equilibrium point, then it is unique and globally 
attractive. 

Theorem 3.1. Assume that system (1) has one equilibrium and that 
assumptions (H1)-(H5) hold. Then the equilibrium of system (1) is unique and is 
globally asymptotically stable if there exist n n×  matrices  

0, 0, 1, 2, ,7iP Q i> > =   such that the following LMI holds: 
T T T T

1

2

3

4

5

6

7

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0,
0 0 0

0 0
0

PC PA PB C PC C PC C PA C PB
Q

Q
Q

Q
Q

Q
Q

σ σρ σ ρ σ σ σ ∏
 

− 
 −
 

−  < − 
 −
 − 
 − 


 
  
   
    
     
        

(4) 

and 

( )T

0, ,kP E D P k
P +

 − > ∈ 
  



                   
(5) 

where 
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( ) ( ) [ ]

( )

max 2 max 6 4 1 5

max 3 7

2
1

1 .
1

PC Q Q ME Q Q Q

Q Q NE

σ

σ

τ

ρ
λ λ

ρ

λ
ρ

 = − + + + + +∏   −

+ +
−

 

Proof. Let ( ) ( ),0,y t y t ϕ=  be a solution of system (2) through ( )0,ϕ , 
where ϕ∈ . Construct a Lyapunov-Krasovskii functional in the form 

( ) ( ) ( ) ( ) ( )1 2 3 4, , , , , ,V t y V t y V t y V t y V t y= + + +          (6) 

where 

( ) ( ) ( ) ( ) ( ) ( )
T

1 d d ,
t t

t t t t
V y t C y s s P y t C y s s

σ σ− −
   = − −      ∫ ∫  

( ) ( )[ ] ( )T
2 1 5 d ,

1
t

t t
V y s Q Q y s sσ

σ
σ

ρ
ρ −

= +
− ∫  

( ) ( )( )[ ] ( )( )T
3 3 7

1 d ,
1

t

t t
V y s Q Q y s s

τ
τρ −

= Γ + Γ
− ∫  

( ) ( )T
4 8 d d ,

t t

t s
V y u Q y u u s

σ
σ

−
= ∫ ∫  

T 1 T T 1 T T 1 T T 1 T
8 4 5 6 7 .Q C PCQ C PC C PCQ C PC C PAQ A PC C PBQ B PCσρ

− − − −= + + +  

Calculating the upper right derivative of ( ),V t y  along the solution of 
system (2) at the continuous interval [ )1, ,k kt t k− +∈ , and considering the 
Lemma 2.1-2.3, it can be deduced that 

( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

T

1

T T T

T
T T

T T
T T

2 d

2 2 2

2 2 d

2 d 2 d

t

t t

t

t t

t t

t t t t

D V y t C y s s P Cy t Cy t t t

A y t B y t t

y t PCy t y t PCy t t t y t PA y t

y t PB y t t y s s C PCy t

y s s C PCy t t t y s s C PA y t

σ

σ

σ σ

σ σ

τ

σ σ

τ

σ σ

+

−

−

− −

  = − − − −  
+ Ω + Γ − 

= − − − + Ω

 + Γ − +   
   + − − Ω      

∫

∫

∫ ∫







 

( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )

( )( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( )

T
T

T T 1 T T
1 1

T T 1 T
2 2

T T 1 T
3 3

T
T 1 T

4

2 d

2

d d

t

t t

t t

t t t t

y s s C PB y t t

y t PCy t y t PCQ C Py t y t t Q y t t
y t Q y t y t PAQ A Py t

y t t Q y t t y t PBQ B Py t

y s s C PCQ C PC y s s

σ

σ σ

σ σ

τ

ρ ρ σ σ

τ τ

−

−

−

−

−

− −

 − Γ −  
≤ − + + − −

+Ω Ω +

+Γ − Γ − +

   +       

∫

∫ ∫

 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( )

( )( )( ) ( )( )( )

T
T T 1 T

4 5

T
T T 1 T

5 6

T T 1 T
6 7

T
7

d d

d d

d d

t t

t t t t

t t

t t t t

Tt t

t t t t

y t Q y t y s s C PCQ C PC y s s

y t t Q y t t y s s C PAQ A PC y s s

y t Q y t y s s C PBQ B PC y s s

y t t Q y t t

σ σ σ

σ σ σ

σ σ

ρ

ρ σ σ

τ τ

−

− −

−

− −

−

− −

   + +       
   + − − +       

   + Ω Ω +       
+ Γ − Γ −

∫ ∫

∫ ∫

∫ ∫
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( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T 1 T T
1 1

T T 1 T
max 2 2

T T 1 T
3 3

T
T 1 T

4

T
T T 1 T

4 5

2

d d

d d

t t

t t t t

t t

t t t t

y t PCy t y t PCQ C Py t y t t Q y t t

y t Q MEy t y t PAQ A Py t

y t t Q y t t y t PBQ B Py t

y s s C PCQ C PC y s s

y t Q y t y s s C PCQ C PC y s s

σ σ

σ σ

σ σ σ

ρ ρ σ σ

λ

τ τ

ρ

−

−

−

−

− −

−

− −

≤ − + + − −

+ +

+ Γ − Γ − +

   +       

  + +   

∫ ∫

∫ ∫ 
  

  (7)

 

( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )( ) ( )( )( )

T
T T 1 T

5 6

T
T T 1 T

max 6 7

T
7

d d

d d

,

t t

t t t t

t t

t t t t

y t t Q y t t y s s C PAQ A PC y s s

y t Q NEy t y s s C PBQ B PC y s s

y t t Q y t t

σ σ σ

σ σ

ρ σ σ

λ

τ τ

−

− −

−

− −

   + − − +       

   + +       

+Γ − Γ −

∫ ∫

∫ ∫  

( )[ ] ( )

( )( )[ ] ( )( ) ( )( )

( )[ ] ( )

( )( )[ ] ( )( )

T
2 1 5

T
1 5

T
1 5

T
1 5

1

1
1

1

,

D V y t Q Q y t

t
y t t Q Q y t t

y t Q Q y t

y t t Q Q y t t

σ

σ

σ

σ

σ

σ

σ

ρ
ρ

ρ σ
σ σ

ρ
ρ
ρ

σ σ ρ

+ = +
−

−
− − + −

−

≤ +
−

− − + −



       (8) 

( )( )[ ] ( )( )

( )( )( )[ ] ( )( )( ) ( )

( )( )[ ] ( )( )

( )( )( )[ ] ( )( )( )

T
3 3 7

T
3 7

T
3 7

T
3 7

1
1

1
1

1
1

,

D V y t Q Q y t

t
y t t Q Q y t t

y t Q Q y t

y t t Q Q y t t

τ

τ

τ

ρ
τ

τ τ
ρ

ρ

τ τ

+ = Γ + Γ
−

−
−Γ − + Γ −

−

≤ Γ + Γ
−

−Γ − + Γ −



       (9) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 T T
4 8 8

2 T T
8 8

T
2 T

8 8

d

d

d d ,

t

t
t

t t

t t

t t t t

D V y t Q y t y s Q y s s

y t Q y t t y s Q y s s

y t Q y t y s s Q y s s

σ

σ

σ σ

σ σ

σ σ

σ

+

−

−

− −

= −

≤ −

   ≤ −       

∫

∫

∫ ∫

   (10) 

where  
T 1 T T 1 T T 1 T T 1 T

8 4 5 6 7 .Q C PCQ C PC C PCQ C PC C PAQ A PC C PBQ B PCσρ
− − − −= + + +  

Combining (6)-(10), one may deduce that 

( ) ( )

( ) ( ) ( )

( )
( ) ( )

T 1 T 1 T 1 T
1 max 2 2 3

4 max 6 1 5 max 3 7

2 T 1 T 2 T 1 T
4 5

2 T 1 T 2 1 T
6 7

T

2

1
1 1

,

T

D V y t PC PCQ C P Q ME PAQ A P PBQ B P

Q Q ME Q Q Q Q NE

C PCQ C PC C PCQ C PC

C PAQ A PC C PBQ B PC y t

y t y t

σ

σ

σ τ

σ

ρ λ

ρ
λ λ

ρ ρ

σ ρ σ

σ σ

+ − − −

− −

− −

≤ − + + + +

+ + + + + +
− −

+ +

+ + 
= Σ
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where 

( )

( ) ( ) ( )

1 T 1 T 1 T
1 max 2 2 3

4 max 6 1 5 max 3 7

2 T 1 T 2 T 1 T
4 5

2 T 1 T 2 T 1 T
6 7

2
1

1 1

PC PCQ C P Q ME PAQ A P PBQ B P

Q Q ME Q Q Q Q NE

C PCQ C PC C PCQ C PC

C PAQ A PC C PBQ B PC

σ

σ

σ τ

σ

ρ λ
ρ

λ λ
ρ ρ

σ ρ σ

σ σ

− − −

− −

− −

Σ = − + + + +

+ + + + + +
− −

+ +

+ +

 

By the well known Schur complements, we know that 0Σ <  if and only if the 
LMI (4) holds. Hence, one may derive that 

( ) ( ) ( ) [ )T *
1, , , , ,k kD V t y y t y t t t t k+
− +≤ − Σ ∈ ∈            (11) 

where * 0Σ = −Σ > . 
Suppose that [ )1,n nt t t−∈ , for some n +∈ . Then integrating inequality (11) 

at each interval [ )1, ,1 1k kt t k n− ≤ ≤ − , we derive that 

( ) ( ) ( ) ( )1 T *
1 0

0 d ,
t

V t V y s y s s− ≤ − Σ∫  

( ) ( ) ( ) ( )2

1

T *
2 1 d ,

t

t
V t V t y s y s s− ≤ − Σ∫  

  

( ) ( ) ( ) ( )1

2

T *
1 2 d ,n

n

t
n n t

V t V t y s y s s−

−

−
− −≤ − Σ∫  

( ) ( ) ( ) ( )
1

T *
1 d ,

n

t
n t

V t V t y s y s s
−

−≤ − Σ∫  

which implies that 

( ) ( ) ( ) ( ) ( ) ( )T *
0

0
0 d , 0.

k

t
k k

t t
V t V y s y s s V t V t t−

< ≤

 ≤ − Σ + − ≥ ∑∫    (12) 

In order to analyze (12), we need consider the change of V at impulse times. 
Firstly, it follows from (5) that 

( ) ( )T T

1 10 0k k
E O E OP E D P P E D P
O P O PP P− −

      − −> ⇔ >      
          

 

( )T

1
0kP E D

P−

 −⇔ > 
  

 

( ) ( )T 0,k kP E D P E D⇔ − − − >                 (13) 

in which the last equivalent relation is obtained by Lemma 2.4. 
Secondly, from system (3), it can be obtained that 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d

d d

d ,

k

k k

k k

k k k k

k

k k

t
k t t

t t
k k k t t t t

t
k k t t

y t C y s s

y t D y t C y s s C y s s

E D y t C y s s

σ

σ σ

σ

−

− −

− −

−

−

−

 = − − −  

 = − −  

∫

∫ ∫

∫

 

which together with (13) yields 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

T
T

T

1

d d

d d

d d .

k k

k k k k

k k

k k k k

k k

k k k k

Tt t
k k kt t t t

t t
k k k kt t t t

t t
k k kt t t t

V t y t C y s s P y t C y s s

y t C y s s E D P E D y t C y s s

y t C y s s P y t C y s s V t

σ σ

σ σ

σ σ

− −

− −

− −

− − −

− −

   = − −      

   = − − − −      

   < − − =      

∫ ∫

∫ ∫

∫ ∫

 

Obviously, we have ( ) ( ) , 2,3, 4, .i k i kV t V t i k−
+≤ = ∈  

Thus, we can deduce that 

( ) ( ) , .k kV t V t k−
+≤ ∈  

Substituting the above inequality in (12) yields 

( ) ( ) ( ) ( )T *
0

d 0 , 0.
t

V t y s y s s V t+ Σ ≤ ≥∫               (14) 

By simple calculation, it can be deduced that 

( ) ( )( ) ( )

( ) ( )

2
max max 1 5

2max 3 7 3
max 8

2

0 1
1

1

,

V P C Q Q

Q Q N
Q

σ

σ

η
τ

η

ρ σ
λ σ λ

ρ

τλ
σ λ ϕ

ρ

ϕ


≤ + + +

−
+ + + 

− 

= ∆

 

where 
( )( ) ( )

( ) ( )

2
max max 1 5

max 3 7 3
max 8

1
1

.
1

P C Q Q

Q Q N
Q

σ

σ

τ

ρ σ
λ σ λ

ρ

τλ
σ λ

ρ

∆ = + + +
−

+
+ +

−

 

It follows that 

( ) ( ) ( ) ( ) ( )min 1d 0 ,
t

t t
P y t C y s s V V V

ησ
λ ϕ

−
− ≤ ≤ ≤ ≤ ∆∫  

which implies that 

( ) ( ) ( ) ( )min

d .
t

t t
y t C y s s

P ησ
ϕ

λ−

∆
≤ +∫  

Employing Gronwall inequality, we get 

( ) ( )
( )

( )

min

min

e

e ,

t C

C

y t
P

P

σ
η

σ
η

ϕ
λ

ϕ
λ

∆
≤

∆
≤ < ∞

 

which implies that the equilibrium point of system (2) is locally stable, and 
uniformly bounded on [ )0,∞ . 

Thus, considering the continuity of the activation function f and g, it can be 
deduced from system (2) that there exists some constant 0R >  such that 

( ) [ )1, , ,k ky t R t t t k− +≤ ∈ ∈  , where y  denotes the right-hand derivative of y 
at impulse times 1,kt k− +∈ . 

In the following, we shall prove that ( ) 0y t →  as t →∞ . 
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We first show that 

( ) 0, .k ky t t→ →∞                       (15) 

It is equivalent to prove that ( ) 0i ky t =  as ,kt i→∞ ∈Λ . Note that  

( ) [ )1, , ,i k ky t R t t t k− +≤ ∈ ∈  , then for any 0> , there exists a 0
2R

δ = >
   

such that, for any [ )1, , , ,k kt t t t k t t δ− +′ ′′ ′ ′′∈ ∈ − <  implies that 

( ) ( ) , .
2i iy t y t R t t iε′ ′′ ′ ′′− ≤ − = ∈Λ                 (16) 

By (H3), we define 1min ,
2

δ δ θ =  
 

, where { }1inf 0k k kt tθ
+∈ −= − >


. From  

(14), it can be obtained that 

( ) ( ) ( ) ( ) ( ) ( )2 T T *
*0 0 0

min

1d d d , 0,
t t t

iy s s y s y s s y s y s s t
λ

≤ ≤ Σ < ∞ >
Σ∫ ∫ ∫  

which implies that ( ) 2
d 0k

k

t
it

y s s
δ+

→∫  as kt →∞ . 

Applying Lemma 2.2, we get 

( ) ( ) 2
d d 0, .k k

k k

t t
i i kt t

y s s y s s t
δ δ

δ
+ +

≤ → →∞∫ ∫          (17) 

So for the above-given  , there exists a ( ) 0T T= >  such that kt T>  
implies that 

( ) d .
2

k

k

t
it

y s s
δ

δ
+

<∫
  

From the continuity of ( )iy t  on ,k kt t δ +  , and using the integral mean 
value theorem, there exists some constant ,k k kt tξ δ ∈ +   such that 

( ) ( ) d ,
2

k

k

t
i k it

y y s s
δ

ξ δ δ
+

= <∫
  

which leads to 

( ) .
2i ky ξ <
                             (18) 

Combining (16) and (18), one may deduce that, for any 0> , there exists a 
( ) 0T T= >  such that kt T>  implies that 

( ) ( ) ( ) ( ) .
2 2i k i k i k i ky t y t y yξ ξ≤ − + ≤ + =
 

  

This completes the proof of (15). 
Now we are in a position to prove that ( ) 0iy t →  as ,t i→∞ ∈Λ . In fact, 

it follows from (16) that, for any 0> , there exists a 0
2M

δ = >
   

such that, for any [ )1, , , ,k kt t t t k t t δ− +′ ′′ ′ ′′∈ ∈ − <  implies that 

( ) ( ) , .
2i iy t y t i′ ′′− ≤ ∈Λ
                    (19) 

Since (15) holds, there exists a constant ( )1 1 0T T= >  such that 
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( ) 1, .
2i k ky t t T< >
                        (20) 

In addition, applying the same argument as in (17), we can deduce that 

( ) d 0, ,
t

it
y s s t

δ+
→ →∞∫  

where { }1
1min , , inf 0.
2 k k kt tδ δ θ θ

+∈ −
 = = − > 
 

  

So, for the above-given  , there exists a constant ( )2 2 0T T= >  such that 

( ) 2d , .
2

t
it

y s s t T
δ

δ
−

< >∫
                   (21) 

Set { }{ }*
1 2min max , ,q qT t t T T q += ≥ ∈ . Now we claim that  

( ) *,iy t t T≤ > . In fact, for any *t T>  and without loss of generality assume 

that )1, ,p pt t t p q+∈ ≥ . We consider the following two cases. 

Case1. ,p pt t t δ ∈ +  . In this case, it is obvious from (19) and (20) that 

( ) ( ) ( ) ( )
2 2i i i p i py t y t y t y t≤ − + ≤ + =
 

  

Case2. )1,p pt t tδ +∈ + . In this case, we know that ( )iy s  is continuous on 

)1, ,p pt t t tδ +  − ⊆   . By the integral mean value theorem, there exists at least 

one point ,t t tυ δ ∈ −   such that 

( ) ( )d ,
t

i i tt
y s s y

δ
υ δ

−
=∫  

which together with (21) yields ( )
2i ty υ <
 . Then, in view of ,t t tυ δ ∈ −  , we 

obtain 

( ) ( ) ( ) ( )
2 2i i i t i ty t y t y yυ υ≤ − + ≤ + =
 

  

So we have proved that ( ) *,iy t t T≤ > . Therefore, the zero solution of 
system (2) or (3) is globally asymptotically stable, which implies that system (1) 
has a unique equilibrium point which is globally asymptotically stable. The proof 
of Theorem 3.1 is therefore complete.  

Remark 3.1. Theorem 3.1 provides some delay-dependent conditions for the 
global asymptotical stability of the unique equilibrium point of impulsive 
Hopfield neural networks with leakage time-varying delay. We would like to 
note that such a result has not been reported in other literatures. 

In particular, when the leakage delay and transmission delay are all constants, 
i.e., ( ) ( ),t tσ σ τ τ≡ ≡ , system (1) becomes 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) [ ]

, 0, ,

, , ,

, ,0 .
k

k

k k k k k t

x t Cx t Af x t Bg x t J t t t

x t x t x t J x t x k

x t t t

σ τ

ϕ η

−
− −

+

 − − + + − + > ≠

∆ = − = ∈


= ∈ −



     (22) 
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For system (22), we have the following result by Theorem 3.1. 
Corollary 3.1. Assume that system (22) has one equilibrium and that 

assumptions (H2)-(H5) hold. Then the equilibrium of system (22) is unique and 
is globally asymptotically stable if there exist n n×  matrices  

0, 0, 1,2, ,5iP Q i> > =   such that the following LMI holds: 
T T T

1

2

3

4

5

0 0 0 0
0 0 0

0,
0 0

0

PA PB C PC C PA C PB
Q

Q
Q

Q
Q

σ σ σ ∏
 

− 
 −

< 
− 

 − 
−  


 
  
   
    

 

and 

( )T

0, ,kP E D P k
P +

 − > ∈ 
  




 

where 

( ) ( ) ( )max 1 max 4 3 max 2 52 .PC Q Q ME Q Q Q NEλ λ λ= − + + + + + ∏    

Remark 3.2. The conditions in Corollary 3.1 are independent on transmission 
delay and dependent only on leakage delay as 0τρ =  in Theorem 3.1. So, based 
on our results, we would like to say that the stability of system (1) is more 
sensitive to leakage delay, leakage time-varying delay or leakage constant delay. 
In other words, we should control not only the bound of leakage delay but also 
the bound of derivative of leakage delay, to obtain the stability of system (1), 
while the bound of transmission delay τ  or ( )tτ  do not affect the stability of 
system in our results. 

Remark 3.3. So far, there are many papers to study the dynamics of time delay 
systems and impulsive systems, many effective methods and results have been 
developed [19]-[26]. But, those results cannot be applied to systems with leakage 
time-varying delay and impulse which could affect the dynamics of system 
essentially. In this paper, we investigate the stability of impulsive Hopfield neural 
networks with leakage time-varying delay by model transformation technique and 
a certain Lyapunov-Krasovskii functional combined with LMI technique and 
construct a new criterion. How to improve the dynamics of systems with leakage 
time-varying delay and impulse may be an interesting problem and requires 
further research. 

4. Conclusion 

We have studied the global asymptotic stability of the equilibrium point of 
impulsive Hopfield neural networks with leakage time-varying delay. Via an 
appropriate Lyapunov-Krasovskii functional and model transformation 
technique, a new stability criterion which depends on the impulse and the 
bounds of leakage time-varying delay and its derivative has been presented in 
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terms of a linear matrix inequality. To the best of our knowledge, so far, few 
authors have considered the dynamics of systems with leakage time-varying 
delay and impulse which could affect the dynamics of neural networks 
essentially. How to further improve the conservation of the developed results is 
still a difficult problem and need consideration in the future work. 
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Abstract 
One of the reasons for the great success of the finite element method is its 
versatility to deal with different types of geometries. This is particularly true of 
problems posed in curved domains. Nevertheless it is well-known that, for 
standard variational formulations, the optimal approximation properties 
known to hold for polytopic domains are lost, if meshes consisting of ordinary 
elements are still used in the case of curved domains. That is why method’s 
isoparametric version for meshes consisting of curved triangles or tetrahedra 
has been widely employed, especially in case Dirichlet boundary conditions 
are prescribed all over a curved boundary. However, besides geometric in-
conveniences, the isoparametric technique helplessly requires the manipula-
tion of rational functions and the use of numerical integration. In this work 
we consider a simple alternative that bypasses these drawbacks, without erod-
ing qualitative approximation properties. More specifically we work with a 
variational formulation leading to high order finite element methods based 
only on polynomial algebra, since they do not require the use of curved ele-
ments. Application of the new approach to Lagrange methods of arbitrary or-
der illustrates its potential to take the best advantage of finite-element discre-
tizations in the solution of wide classes of problems posed in curved domains. 
 

Keywords 
Curved Domain, Dirichlet, Finite Elements, Interpolated Boundary  
Condition, Polynomial Algebra 

 

1. Introduction 

This work deals with a new variational formulation designed for finite-element 
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solution methods of boundary value problems with Dirichlet boundary conditions, 
posed in a two- or three-dimensional domain having a smooth curved boundary 
of arbitrary shape. The principle it is based upon is related to the technique called 
interpolated boundary conditions studied in [1] for two-dimensional problems. 
Although the latter technique is very intuitive and has been known since the 
seventies (cf. [2] [3]), it has been of limited use so far. Among the reasons for 
this we could quote its difficult implementation, the lack of an extension to 
three-dimensional problems, and most of all, restrictions on the choice of 
boundary nodal points to reach optimal convergence rates. In contrast our method 
is simple to implement in both in two- and three-dimensional geometries. 
Moreover optimality is attained very naturally in both cases for various choices of 
boundary nodal points. 

In order to allow an easier description of our methodology, thereby avoiding 
non essential technicalities, we consider as a model the Poisson equation in an 
N-dimensional smooth domain Ω  with boundary Γ , for 2N =  or 3N = , 
with Dirichlet boundary conditions, namely, 

in
on ,

u f
u d
−∆ = Ω
 = Γ

                          (1) 

where f and d are given functions defined in Ω  and on Γ , having suitable 
regularity properties. 

Here (1) is supposed to be solved by different N-simplex based finite element 
methods, incorporating degrees of freedom other than function values at the 
mesh vertices. For instance, if standard quadratic Lagrange finite elements are 
employed, it is well-known that approximations of an order not greater than 1.5 
in the energy norm are generated (cf. [4]), in contrast to the second order ones 
that apply to the case of a polygonal or polyhedral domain, assuming that the 
solution is sufficiently smooth. If we are to recover the optimal second order 
approximation property something different has to be done. Since long the 
isoparametric version of the finite element method for meshes consisting of 
curved triangles or tetrahedra (cf. [3] [4]), has been considered as the ideal way 
to achieve this. It turns out that, besides a more elaborated description of the 
mesh, the isoparametric technique inevitably leads to the integration of rational 
functions to compute the system matrix, which raises the delicate question on 
how to choose the right numerical quadrature formula in the master element. In 
contrast, in the technique to be introduced in this paper exact numerical 
integration can always be used for this purpose, since we only have to deal with 
polynomial integrands. Moreover the element geometry remains the same as in 
the case of polygonal or polyhedral domains. It is noteworthy that both advantages 
are conjugated with the fact that no erosion of qualitative approximation 
properties results from the application of our technique, as compared to the 
equivalent isoparametric one. 

An outline of the paper is as follows. In Section 2 we present our method to 
solve the model problem with Dirichlet boundary conditions in a smooth curved 
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two-dimensional domain with conforming Lagrange finite elements based on 
meshes with straight triangles, in connection with the standard Galerkin 
formulation. Numerical examples illustrating technique’s potential are given. In 
Section 3 we extend the approach adopted in Section 2 to the three-dimensional 
case including also numerical experimentation. We conclude in Section 4 with 
some comments on possible extensions of the methodology studied in this work. 

In the remainder of this paper we will be given partitions h  of Ω  into 
(closed) ordinary triangles or tetrahedra, according to the value of N, satisfying 
the usual compatibility conditions (see e.g. [4]). Every h  is assumed to belong 
to a uniformly regular family of partitions. We denote by hΩ  the set 

hT
T

∈ 
 

and by hΓ  the boundary of hΩ . Letting Th  be the diameter of hT ∈ , we set 
: max

hT Th h∈=  , as usual. We also recall that if Ω  is convex hΩ  is a proper 
subset of Ω . 

2. The Two-Dimensional Case 

To begin with we describe our methodology in the case where 2N = . In order 
to simplify the presentation in this section we assume that 0d ≡ , leaving for the 
next one its extension to the case of an arbitrary d. 

2.1. Method Description 

Here we make the very reasonable assumption on the mesh that no element in 

h  has more than one edge on hΓ . 
We also need some definitions regarding the skin ( ) ( )\ \h hΩ Ω Ω Ω

. First of 
all, in order to avoid non essential difficulties, we assume that the mesh is 
constructed in such a way that convex and concave portions of Γ  correspond 
to convex and concave portions of hΓ . This property is guaranteed if the points 
separating such portions of Γ  are vertices of polygon hΩ . In doing so, let h  
be the subset of h  consisting of triangles having one edge on hΓ . Now for 
every hT ∈  we denote by T∆  the set delimited by Γ  and the edge Te  of T 
whose end-points belong to Γ  and set : TT T′ = ∆  if T∆  is not a subset of T 
and : \ TT T′ = ∆  otherwise (see Figure 1). 

Notice that if Te  lies on a convex portion of hΓ , T is a proper subset of T ′ , 
while the opposite occurs if Te  lies on a concave portion of hΓ . With such a 
definition we can assert that there is a partition h′  of Ω  associated with h  
consisting of non overlapping sets T ′  for hT ∈ , besides the elements in 

\h h  . 
For convenience henceforth we refer to the kn  points in a triangle T which 

are vertices of the 2k  equal triangles T can be subdivided into, where 
( )( ): 2 1 2kn k k= + +  for 1k >  as the lagrangian nodes of order k (cf. [4]). 

Next we introduce two function spaces hV  and hW  associated with h . 

hV  is the standard Lagrange finite element space consisting of continuous 
functions v defined in hΩ  that vanish on hΓ , whose restriction to every 

hT ∈  is a polynomial of degree less than or equal to k for 2k ≥ . For  
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Figure 1. Skin T∆  related to a mesh triangle T next to a convex (right) or a concave (left) 
portion of Γ . 
 
convenience we extend by zero every function hv V∈  to \ hΩ Ω . 

hW  in turn is the space of functions defined in hΩ Ω  having the pro- 
perties listed below. 

1) The restriction of hw W∈  to every hT ∈  is a polynomial of degree less 
than or equal to k; 

2) Every hw W∈  is continuous in hΩ  and vanishes at the vertices of hΓ ; 
3) A function hw W∈  is also defined in \ hΩ Ω  in such a way that its 

polynomial expression in hT ∈  also applies to points in T∆ ; 
4) hT∀ ∈ , ( ) 0w P =  for every P among the 1k −  intersections with Γ  

of the line passing through the vertex TO  of T not belonging to Γ  and the 
points M different from vertices of T subdividing the edge opposite to TO  into 
k segments of equal length (cf. Figure 2). 

Remark The construction of the nodes associated with hW  located on Γ  
advocated in item 4 is not mandatory. Notice that it differs from the intuitive 
construction of such nodes lying on normals to edges of hΓ  commonly used in 
the isoparametric technique. The main advantage of this proposal is an easy 
determination of boundary node coordinates by linearity, using a supposedly 
available analytical expression of Γ . Nonetheless the choice of boundary nodes 
ensuring our method’s optimality is really wide, in contrast to the restrictions 
inherent to the interpolated boundary condition method (cf. [1]). 

The fact that hW  is a non empty finite-dimensional space was established in 
[5]. Furthermore the following result was also proved in the same reference: 

Proposition 1 (cf. [5]). 
Let ( )k T  be the space of polynomials defined in hT ∈  of degree less than 

or equal to k. Provided h is small enough hT∀ ∈ , given a set of km  real 
values , 1, ,i kb i m=   with ( )1 2km k k= + , there exists a unique function 

( )T kw T∈  that vanishes at both vertices of T located on Γ  and at the 1k −  
points P of Γ  defined in accordance with item 4. of the above definition of hW , 
and takes value ib  respectively at the km  lagrangian nodes of T not located on 

hΓ . 
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Figure 2. Construction of nodes P∈Γ  for space hW  related to lagrangian nodes 

hM ∈Γ  for 3k = . 
 

Now let us set the problem associated with spaces hV  and hW , whose 
solution is an approximation of u, that is, the solution of (1). Denoting by f ′  a 
sufficiently smooth extension of f to \hΩ Ω  in case this set is not empty, and 
renaming f by f ′  in Ω , we wish to solve, 

( ) ( )
( ) ( )

Find such that ,

where , : and :
h h

h h h h h h

h h

u W a u v F v v V

a w v grad w grad v F v f v
Ω Ω

 ∈ = ∀ ∈
 ′= ⋅ = ∫ ∫

         (2) 

The following result is borrowed from [5]: 
Proposition 2 Provided h is sufficiently small problem (2) has a unique 

solution. 

2.2. Method Assessment 

In order to illustrate the accuracy and the optimal order of the method described 
in the previous subsection rigorously demonstrated in [5], we implemented it 
taking 2k = . Then we solved Equation (1) for several test-cases already 
reported in [5] and [6]. Here we present the results for the following one: 

Ω  is the ellipse delimited by the curve ( )2 2 1x e y+ =  with 0e >  for an 
exact solution u given by ( )( )2 2 2 2 2 2 2 2u e e x y e x e y= − − − − . Thus we take 

:f u= −∆  and 0d ≡  and owing to symmetry we consider only the quarter 
domain given by 0x >  and 0y >  by prescribing Neumann boundary 
conditions on 0x =  and 0y = . We take 0.5e =  and compute with 
quasi-uniform meshes defined by a single integer parameter J, constructed by 
the procedure described in [5]. Roughly speaking the mesh of the quarter 
domain is the polar coordinate counterpart of the standard uniform mesh of the 
unit square ( ) ( )0,1 0,1×  whose edges are parallel to the coordinate axes and to 
the line x y= . 

Hereunder, and in the remainder of this work we denote by h  the 
standard mean-square norm in hΩ  of a function or a vector field  . 

In Table 1 we display the absolute errors in the energy norm, namely 
( )h h

grad u u−  and in the mean-square norm, that is h hu u−  for increasing  
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Table 1. Absolute errors in different senses for the new approach (with ordinary 
triangles). 

J  → 8 16 32 64 

( )h h
grad u u−  → 0.143615 E−2 0.367543 E−3 0.927840 E−4 0.232998 E−4 

h h
u u−  → 0.183918 E−4 0.230310 E−5 0.289312 E−6 0.363247 E−7 

max hu u−   
at the nodes 

→ 0.172473 E−2 0.446493 E−3 0.112615 E−3 0.282163 E−4 

 
values of J; more precisely 2mJ =  for 3,4,5,6m = . We also show the 
evolution of the maximum absolute errors at the mesh nodes. 

As one infers from Table 1, the approximations obtained with our method 
perfectly conform to the theoretical estimate given in [5]. Indeed as J increases 
the errors in the energy norm decrease roughly as ( )21 J , as predicted therein. 
The error in the mean-square norm in turn tends to decrease as ( )31 J , while 
the maximum absolute error at the nodes seem to behave like an ( )2O h . 

Now in order to rule out any particularity inherent to the above test-problem, 
we also solved it using the classical approach, that is, by replacing hW  with hV  
in (2). In Table 2 we display the same kind of results as in Table 1 for this 
approach. 

Table 2 confirms the error decrease in the energy norm like an ( )1.5O h  as 
predicted in classical texts (cf. [4]). The behavior of the classical approach 
deteriorates even more, as compared to the new approach, when the errors are 
measured in the mean-square norm, whose order seem to decrease from three to 
two. The quality of the maximum nodal absolute errors in turn are not affected 
at all by the way boundary conditions are handled. Actually in both cases this 
error is roughly an ( )2O h , while in case Ω  is a polygon it is known to be an 

( )3O h  for sufficiently smooth solutions (see e.g. [7]). 

3. The Three-Dimensional Case 

In this section we consider the solution of (1) by our method in case 3N = . 
In order to avoid non essential difficulties we make the assumption that no 

element in h  has more than one face on hΓ , which is nothing but reasonable. 

3.1. Method Description 

First of all we need some definitions regarding the set ( ) ( )\ \h hΩ Ω Ω Ω
. 

Let h  be the subset of h  consisting of tetrahedra having one face on hΓ  
and h  be the subset of \h h   of tetrahedra having exactly one edge on hΓ . 
Notice that, owing to our initial assumption, no tetrahedron in [ ]\h h h    
has a non empty intersection with hΓ . 

To every edge e of hΓ  we associate a plane skin eδ  containing e, and 
delimited by Γ  and e itself. Except for the fact that each skin contains an edge 
of hΓ , its plane can be arbitrarily chosen. In Figure 3 we illustrate one out of 
three such skins corresponding to the edges of a face TF  or TF ′  contained in  
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Figure 3. Sets T∆ , T ′∆ , eδ  for tetrahedra , hT T ′∈  with a common edge e and a 
tetrahedron hT ′′∈ . 
 
Table 2. Absolute errors in different senses for the classical approach with ordinary 
triangles. 

J  → 8 16 32 64 

( )h h
grad u u−  → 0.243341 E−2 0.829697 E−3 0.285754 E−3 0.994597 E−4 

h h
u u−  → 0.179737 E−3 0.469229 E−4 0.119436 E−4 0.300920 E−5 

max hu u−   
at the nodes 

→ 0.172473 E−2 0.446493 E−3 0.112615 E−3 0.282163 E−4 

 

hΓ , of two tetrahedra T and T ′  belonging to h . More precisely in Figure 3 
we show the skin eδ , e being the edge common to TF  and TF ′ . Further, for 
every hT ∈ , we define a set T∆  delimited by Γ , the face TF  and the three 
plane skins associated with the edges of TF , as illustrated in Figure 3. In this 
manner we can assert that, if Ω  is convex, hΩ  is a proper subset of Ω  and 
moreover Ω  is the union of the disjoint sets hΩ  and 

h TT∈
∆

 
 (cf. Figure 

3). Otherwise \hΩ Ω  is a non empty set that equals the union of certain parts 
of the sets T∆  corresponding to non convex portions of Γ . 

Next we introduce two sets of functions hV  and d
hW , both associated with 

h . 

hV  is the standard Lagrange finite element space consisting of continuous 
functions v defined in hΩ  that vanish on hΓ , whose restriction to every 

hT ∈  is a polynomial of degree less than or equal to k for 2k ≥ . For 
convenience we extend by zero every function hv V∈  to \ hΩ Ω . We recall that 
a function in hV  is uniquely defined by its values at the points which are 
vertices of the partition of each mesh tetrahedron into 3k  equal tetrahedra (see 
e.g. [4]). Akin to the two-dimensional case these points will be referred to as the 
lagrangian nodes of order k of the mesh. 
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d
hW  in turn is a linear manifold consisting of functions defined in hΩ Ω  

satisfying the following conditions: 
1) The restriction of d

hw W∈  to every hT ∈  is a polynomial of degree less 
than or equal to k; 

2) Every d
hw W∈  is single-valued at all the inner lagrangian nodes of the 

mesh, that is all its lagrangian nodes of order k except those located on hΓ ; 
3) A function d

hw W∈  is also defined in \ hΩ Ω  in such a way that its 
polynomial expression in hT ∈  also applies to points in T∆ ; 

4) A function d
hw W∈  takes the value ( )d S  at any vertex S of hΓ ; 

5) hT∀ ∈  and for 2k > , ( ) ( )w P d P=  for every point P among the 

( )( )1 2 2k k− −  intersections with Γ  of the line passing through the vertex 

TO  of T not belonging to Γ  and the ( )( )1 2 2k k− −  points M not belonging 
to any edge of TF  among the ( )( )2 1 2k k+ +  points of TF  that subdivide 
this face (opposite to TO ) into 2k  equal triangles (see illustration in Figure 4 
for 3k = ); 

6) h hT∀ ∈   , ( ) ( )w Q d Q=  for every Q among the 1k −  intersections 
with Γ  of the line orthogonal to e in the skin eδ , passing through the points 
M e∈  different from vertices of T, subdividing e into k equal segments, where e 
represents a generic edge of T contained in hΓ  (see illustration in Figure 5 for 

3k = ). 
Remark The construction of the nodes associated with d

hW  located on Γ  
advocated in items 5. and 6. is not mandatory. Notice that it differs from the 
intuitive construction of such nodes lying on normals to faces of hΓ  commonly 
used in the isoparametric technique. The main advantage of this proposal is the 
determination by linearity of the coordinates of the boundary nodes P  in the 
case of item 5. Nonetheless, akin to the two-dimensional case, the choice of 
boundary nodes ensuring our method’s optimality is absolutely very wide. 

The fact that d
hW  is a non empty set is a trivial consequence of the two 

following results proved in [8], where ( )k T  represents the space of 
polynomials defined in h hT ∈    of degree not greater than k. 
 

 
Figure 4. Construction of node P∈Γ  of d

hW  related to the 
Lagrange node M in the interior of T hF ⊂ Γ . 
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Figure 5. Construction of nodes eQ δ∈Γ∩  of d

hW  related 
to the Lagrange nodes hM e∈ ⊂ Γ . 

 
Proposition 3 (cf. [8]). 
Provided h is small enough h hT∀ ∈    given a set of km  real values ib , 
1, , ki m=   with ( )( )1 2 6km k k k= + +  for hT ∈  and  
( )( )( ) ( )1 2 3 6 1km k k k k= + + + − +  for hT ∈ , there exists a unique function 

)(Tw kT ∈  that takes the value of d at the vertices S of T located on Γ , at 
the points P of Γ  defined in accordance with item 5. for hT ∈  only, and at 
the points Q of Γ  defined in accordance with item 6. of the above definition of 

d
hW , and takes the value ib  respectively at the km  lagrangian nodes of T not 

located on hΓ . 
A well-posedness result analogous to Proposition 2.2 holds for problem (3), 

according to [8], namely, 
Proposition 4 (cf. [8]) 
As long as h is sufficiently small problem (3) has a unique solution. 
Remark It is important to stress that, in contrast to its two-dimensional 

counterpart, the set d
hW  does not necessarily consist of continuous functions. 

This is because of the interfaces between elements in h  and h . Indeed a 
function d

hw W∈  is not forcibly single-valued at all the lagrangian nodes 
located on one such an interface, owing to the enforcement of the boundary 
condition at the points Q∈Γ  instead of the corresponding lagrangian node 

hM ∈Γ , in accordance with item 6. in the definition of d
hW . On the other hand 

w  is necessarily continuous over all other faces common to two mesh 
tetrahedra. 

Next we set the problem associated with the space hV  and the manifold d
hW , 

whose solution is an approximation of u, that is, the solution of (1). Extending 
f  by a smooth f ′  in \hΩ Ω  if necessary, and renaming f  by f ′  in any 

case, we wish to solve, 

( ) ( )
( ) ( )

Find such that ,

where , : and :
h h

d
h h h h h h

h h

u W a u v F v v V

a w v grad w grad v F v f v
Ω Ω

 ∈ = ∀ ∈
 ′= ⋅ = ∫ ∫

           (3) 

3.2. Method Assessment 

In this sub-section we assess the behavior of the new method, by solving the 
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Poisson equation in a non convex domain. Now we consider a non polynomial 
exact solution. More precisely (1) is solved in the torus Ω  with minor radius 

mr  and major radius Mr . This means that the torus’ inner radius ir  equals 

M mr r−  and its outer radius er  equals M mr r+ . Hence Γ  is given by the  

equation ( )2
2 2 2 2

M mr x y z r− + + = . We consider a test-problem with symmetry  

about the z-axis, and with respect to the plane 0z = . For this reason we may 
work with a computational domain given by  
( ) ( ){ }, , 0; 0 π 4 with tanx y z z a y xθ θ∈Ω ≥ ≤ ≤ = . A family of meshes of this 

domain depending on a single even integer parameter I  containing 36I  
tetrahedra is generated by the following procedure. First we generate a 
partition of the cube ( ) ( ) ( )0,1 0,1 0,1× ×  into 3 2I  equal rectangular boxes 
by subdividing the edges parallel to the x-axis, the y-axis and the z-axis into 2I, 
I/2 and I/2 equal segments, respectively. Then each box is subdivided into six 
tetrahedra having an edge parallel to the line 4x y z= = . This mesh with 33I  
tetrahedra is transformed into the mesh of the quarter cylinder  
( ){ }2 2, , 0 1, 0, 0, 1x y z x y z y z≤ ≤ ≥ ≥ + ≤ , following the transformation of the 

mesh consisting of 2 2I  equal right triangles formed by the faces of the mesh 
elements contained in the unit cube’s section given by ( )2x j I= , for  

0,1, , 2j I= 
. The latter transformation is based on the mapping of the  

cartesian coordinates ( ),y z  into the polar coordinates ( ),r ϕ  with  
2 2r y z= + , using a procedure described in [8] (cf. Figure 6). Then the 

resulting mesh of the quarter cylinder is transformed into the mesh with 36I  
the trahedra of the half cylinder ( ){ }2 2, , 0 1, 1 1, 0, 1x y z x y z y z≤ ≤ − ≤ ≤ ≥ + ≤  
by symmetry with respect to the plane 0y = . Finally this mesh is transformed 
into the computational mesh (of an eighth of half-torus) by first mapping the 
cartesian coordinates ( ),x y  into polar coordinates ( ),ρ θ , with M mr yrρ = +  
 

 
Figure 6. Trace of the intermediate mesh of 1/4 cylinder on 
sections ( )2x j I= , 0 2j I≤ ≤ , for 4I = . 
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and π 4xθ = , and then the latter coordinates into new cartesian coordinates 
( ),x y  using the relations cosx ρ θ=  and siny ρ θ= . Notice that the faces of 
the final tetrahedral mesh on the sections of the torus given by ( )π 8j Iθ = , for 

0,1, , 2j I= 
, form a triangular mesh of a disk with radius equal to mr , having 

the pattern illustrated in Figure 6 for a quarter disk, taking 4I = , 0θ =  and 
1mr = . 

Recalling that here 2 2x yρ = + , we take 5 6Mr = , 1 6mr =  and  
( )6 5 3f ρ′ = − . For 0d ≡  the exact solution is given by  

( )221 36 5 6u z ρ= − − − . In order to enable the calculation of mean-square 
norms of the error in Ω , we extend u to u′  in a neighborhood of Γ  lying 
outside Ω , taking the same expression as above. In Table 3 we display the 
absolute errors in the energy norm, that is ( )h h

grad u u′ −  and in the 
mean-square norm h hu u′ − , for increasing values of I, namely 2mI =  for 

1,2,3,4m = . Now we take as a reference ( )π 8h I= . 
As one can observe from Table 3, here again the quality of the approxi- 

mations obtained with the new method is in very good agreement with the 
theoretical result in [8], for as I increases the errors in the energy norm decrease 
roughly as 21 I , as predicted. On the other hand here again the mean-square 
norm of the error function hu u′ −  tends to decrease as 31 I . Likewise the 
two-dimensional case, Table 4 in turn shows a qualitative erosion of the solution 
errors if d

hW  is replaced by hV  in (3). 

4. Final Comments 

1) The method addressed in this work to solve the Poisson equation with 
Dirichlet boundary conditions in curved domains with classical Lagrange finite 
elements provides a simple and reliable manner to overcome technical 
difficulties brought about by more complicated problems and interpolations. For 
example, Hermite finite element methods to solve fourth order problems in 
curved domains with normal derivative degrees of freedom can also be dealt 
with very easily by means of our new method. The author intends to show this in 
 
Table 3. Absolute errors for the new approach (with ordinary tetrahedra) in two different 
norms. 

h  → π/32 π/64 π/128 π/256 

( )h h
grad u u′ −  → 0.786085 E−3 0.205622 E−3 0.522963 E−4 0.131844 E−4 

h h
u u′ −  → 0.133794 E−4 0.171222 E−5 0.214555 E−6 0.269187 E−7 

 
Table 4. Absolute errors for the classical approach with ordinary tetrahedra in two 
different norms. 

h  → π/32 π/64 π/128 π/256 

( )h h
grad u u′ −  → 0.829181 E−2 0.327176 E−2 0.119077 E−2 0.425739 E−3 

h h
u u′ −  → 0.579150 E−3 0.143425 E−3 0.343823 E−4 0.834136 E−5 
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a paper to appear shortly. 
2) The technique studied in this paper is also particularly handy, to treat 

problems posed in curved domains in terms of vector fields, such as the linear 
elasticity system and Maxwell’s equations of electromagnetism. The same 
remark applies to multi-field systems such as the Navier-Stokes equations, and 
more generally mixed formulations of several types with curved boundaries, to 
be approximated by the finite element method. 

3) As for the Poisson equation with homogeneous Neumann boundary 
conditions 0u n∂ ∂ =  on Γ  (provided f satisfies the underlying scalar 
condition) our method coincides with the standard Lagrange finite element 
method. Notice that if inhomogeneous Neumann boundary conditions are 
prescribed, optimality can only be recovered if the linear form hF  is modified, 
in such a way that boundary integrals for elements hT ∈  are shifted to the 
curved boundary portion sufficiently close to Γ  of an extension or reduction of 
T. But this is an issue that has nothing to do with our method, which is basically 
aimed at resolving those related to the prescription of degrees of freedom in the 
case of Dirichlet boundary conditions. 

4) Finally we note that our method leads to linear systems of equations with a 
non symmetric matrix, even when the original problem is symmetric. Moreover in 
order to compute the element matrix and right side vector for an element T in h  
or in h , the inverse of an k kn n×  matrix has to be computed, where kn  is the 
dimension of ( )kP T . However this extra effort is not really a problem nowadays, 
in view of the significant progress already accomplished in Computational Linear 
Algebra. 
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Abstract 
Vehicular traffic is a hard problem in big cities. Internal combustion vehicles are 
the main fossil fuel consumers and frame the main source of urban air pollu-
tants, such as particulate matter, nitrogen oxides, and volatile organic com-
pounds. Vehicular traffic is also a promoter of climate change due to its green-
house gas emissions, such as CO and CO2. Awareness of the spatiotemporal 
distribution of urban traffic, including the velocity distribution, allows knowing 
the spatiotemporal distribution of the air pollutant vehicular emissions required 
to understand urban air pollution. Although no well-established traffic theory 
exists, some models and approaches, like cellular automata, have been proposed 
to study the main aspects of this phenomenon. In this paper, a simple approach 
for estimating the space-time distribution of the air pollutant emission rates in 
traffic cellular automata is proposed. It is discussed with the Fukui-Ishibashi 
(FI) and Nagel-Schreckenberg (NS) models for traffic flow of identical vehicles 
in a single lane. We obtained the steady-state emission rates of the FI and NS 
models, being larger those produced by the first one, with relative differences of 
up to 45% in hydrocarbons, 56% in carbon monoxide, and 77% in nitrogen 
oxides. 
 

Keywords 
Cellular Automata, Mobile Source Emissions, Traffic Emission Rates, Traffic 
Models, Fukui-Ishibashi, Nagel-Schreckenberg 

 

1. Introduction 

Big cities are suffering severe problems because of the growing number of ve-
hicles moving over their streets. In Mexico City (CDMX), for example, the reg-
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istered vehicular fleet was estimated close to 5 million in 2015. Figure 1 de-
scribes information published by the Mexico’s National Institute of Statistics and 
Geography (Instituto Nacional de Estadística y Geografía, INEGI) in relation to 
the increasing number of registered vehicles between 1980 and 2014 [1]. 

The vehicular fleet of CDMX is composed, in a great majority, by internal 
combustion vehicles that consume fossil fuels (gasoline, diesel, and gas); there-
fore, vehicular flow through the city streets is one of the main responsible for 
urban air pollution. In fact, the 2014 emissions inventory of CDMX [2] reported 
that the contributions of the mobile sources to the air pollutant emissions in the 
city were as described in Table 1. 

In Table 1, we observe that the vehicular traffic contributed with the 44% of 
the CDMX air pollution, in average. These emissions, of course, are not un-
iformly distributed in the region because there is no a uniform distribution of 
traffic in the city and winds either are not uniform either perennial. This means 
that the most polluted areas of a city are not necessarily those ones where more 
pollutants are released to the atmosphere. 

Addressing the urban air pollution problems depends on the knowledge of the 
distribution modes of the urban vehicles in space, time, and over the possible 
speeds because these modes determine how the emissions of gases and particu-
late matter by the vehicles will result in a spatiotemporal distribution of emission 
rates in the city.  

Once in the atmosphere, the air pollutants will be transported by the wind and 
dispersed by the atmospheric turbulence. Figure 2 shows the basic scheme of 
coupling of the models required for simulating the impacts of traffic emissions 
on air quality. It comprises a traffic flow model, which estimates the spati-
otemporal distribution of the vehicles and their velocity distribution; an emis-
sion model, which allows determining the spatiotemporal distribution of the 
emission rates of the pollutants produced by the traffic flow; an atmospheric  
 

 
Figure 1. Growing of the MCMA’s vehicular fleet from 1980 
to 2014. 
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Figure 2. Basic scheme of coupling of the models required for simulating the impacts of 
the emissions of mobile sources on air quality. 
 
Table 1. Mobile source air pollutant emissions [%] according to the 2014 emissions 
inventory of CDMX. 

PM10 PM2.5 SO2 CO NOX TOC VOC CO2 N2O HFC CO2-eq Black Carbon 

20.7 28.7 16.5 96.1 78.5 11.3 20.0 61.5 50.0 98.0 49.0 83.7 

 
transport and dispersion modelling system of the emissions; and an atmospheric 
chemistry model, which addresses the possible transformations of the pollutants 
in the atmosphere. 

There is no a complete theory for traffic flow phenomena. However, several 
models and approaches for analyzing traffic phenomena, such as traffic jamming 
and some other common modes of traffic flow, have been developed from the 
macroscopic, mesoscopic and microscopic standpoints. 

The scientific treatment of the traffic flow phenomena began with Robert 
Herman in 1956, and some years later, in the early 1960s, Herman and Prigogine 
started to study vehicular traffic as a collective flow phenomenon, developing a 
kinetic theory for multi-lane traffic flow using a Boltzmann like model for the 
vehicle interactions [3]. 

In the second half of the 1980s, an alternative line of research emerged for 
traffic flow simulation based on cellular automata [4], but its proper develop-
ment started in the early 1990s with the models proposed by K. Nagel and M. 
Schreckenberg [5] and by M. Fukui and Y. Ishibashi [6], hereafter referred as NS 
and FI models, respectively. They defined cellular automata models for the mi-
croscopic simulation of vehicular traffic. The initial NS and FI models were 
formulated for identical vehicles moving on a single lane highway. In these 
models, each vehicle can be at rest or be hopping from site to site in a 1D lattice 
with a positive integer speed which does not exceed a given maximum. The dy-
namic rules of these cellular automata are probabilistic and control the propaga-
tion, acceleration, and braking of the model vehicles, although conserving its 
number and preventing them from collisions and overtaking. Several variants 
and extensions of the NS and FI basic models have been developed for simulat-
ing traffic flow in double-sense and multi-lane highways [7] [8] [9], and also for 
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2D complex traffic networks similar to that of a city [10] [11] [12] [13] [14]. 
In this paper, we propose a simple approach for estimating the spatiotemporal 

distribution of the emission rates for the traffic flow phenomena described by 
the NS and FI models. This approach assumes it is possible to know the velocity 
distribution of the system, i.e. how many vehicles are moving with each one of 
the possible velocities (from zero to a maximum speed). The velocity distribu-
tion of the traffic cellular automata can be obtained always by computer simula-
tions, but also theoretically, at least for a class of models. In this paper, for ob-
taining the velocity distributions, we used computer simulations and the statis-
tical mechanics approach proposed in [15] [16] [17] for the maximum entropy 
states of 1D traffic cellular automata. The results of this work show that due to 
the transition rules of the FI model, which favor the highest speeds, the steady 
state emission rates of this model are higher than those ones of the NS model, 
with relative differences as large as 45% for hydrocarbons, 56% for carbon mo-
noxide, and 77% for nitrogen oxides. 

The rest of the paper is organized as follows. In Section 2, we described our 
methodological approach. First, we presented the basic NS and FI traffic cellular 
automata, discussing, in particular, how the velocity distributions of these mod-
els can be obtained from computer simulations and from the theoretical ap-
proach proposed by Salcido and collaborators [15] [16] [17]. We described also 
the estimation model for the pollutants emission rates from mobile sources [18], 
and the extension we proposed for traffic cellular automata. In Section 3, we 
presented and discussed the results of the application of our methodological ap-
proach to the problem of estimating the distribution of the pollutant emissions 
from the NS and FI traffic cellular automata. 

2. Methodology 

In this section, we provide first a brief introduction to cellular automata; then we 
describe and discuss the NS and FI traffic cellular automata models and the ap-
proaches to frame their velocity distributions, and, finally, we present the ap-
proach to estimate the model cars emissions. 

2.1. Cellular Automata 

Cellular automata (henceforth: CA) are a class of spatially and temporally dis-
crete, complex dynamical systems characterized by local interaction and an in-
herently parallel form of evolution. Following a suggestion of Stanislaw Ulam, 
cellular automata were first introduced by John von Neumann in the early 1950s 
to act as simple models of biological self-reproduction [19]. Cellular automata 
can be considered as prototypical models for complex systems and processes 
consisting of a large number of identical, simple, locally interacting components 
[20]. The study of CA has generated great interest over the years because of their 
ability to generate a rich spectrum of very complex patterns of behavior out of 
sets of relatively simple underlying rules [20] [21] [22] [23]. Moreover, CA ap-
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pear to capture many essential features of complex self-organizing cooperative 
behavior observed in real systems. 

There exists a wide variety of particular CA models; however, most of them 
usually possess the following common generic characteristics. The system sub-
strate consists of a one-, two- or three-dimensional lattice of cells; all cells are 
equivalent; each cell takes on one of a finite number of possible discrete states; 
each cell interacts only with cells that are in its local neighborhood; and at each 
discrete time step, each cell updates its current state according to a transition 
rule taking into account the states of cells in its neighborhood. 

If ( ),x tψ  denotes the state at cell x at time t, ( )V x  is the neighborhood of 
this cell (in a well-defined sense of proximity), and ( ) ( ){ },x t V xxψ ∈  is the set 
of the states of the cells in the neighborhood, then the state at cell x at time 1t +  
will be given by 

( ) ( ) ( ){ }( ), 1 ,x t F x t V xxψ ψ+ = ∈                    (1) 

Here F represents the transition rules of the system dynamics. Note that both 
the neighborhood and the transition rule have the same definitions for all the 
lattice cells. Usually, neighborhoods contain the first nearest neighbors (von 
Neumann), or the first and second nearest neighbors (Moore). Some widely 
known cellular automata are the Wolfram’s 1D elementary cellular automata [24] 
and the Conway’s Game of Life [25]. 

2.2. One-Dimensional Traffic Cellular Automata 

The basic one-dimensional traffic cellular automata (B1DTCA) are concerned 
with the traffic flow of identical vehicles (cars) on a single lane highway with no 
anticipation. This class of CA models shares the following properties:  
• The system can be considered as a lattice gas of N indistinguishable unit mass 

particles, which evolves in a 1D lattice with L cells (or sites). 
• The particles of the system obey an exclusion principle, which establishes that 

no more than one particle can be in one lattice cell. 
• Each particle can be at rest or be moving with a positive integer velocity that 

cannot exceed a given maximum max 0v > : kv k=  with max0,1,2,3, ,k v=  . 
This means that the particles move always in the same direction (say, from 
left to right), and never can go in the reverse direction. The velocity maxv  is 
interpreted as a speed limit that drivers have to respect inexcusably. 

• The dynamics of the system is defined by a set of local transition rules. The 
same rules are applied simultaneously to all the lattice cells. These rules allow 
no particle collisions neither overtaking. Traffic accidents never occur and 
each car follows always same another car. 

• The local transition rules preserve the number of particles, but not necessari-
ly momentum neither the energy. 

• The system evolution occurs in discrete time steps. Time increases in one 
unit only once all the cells of the system have been updated according to the 
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transition dynamical rules. 
In Figure 3, we illustrate a possible spatial distribution of the system cars in 

the lattice. Here, the different car velocities are evidenced with different back-
ground colors. It must be noted that the no anticipation condition implies that 
each car with velocity v occupies v + 1 lattice sites. 

The distance among adjacent cells is usually defined as the unit, but for the 
purpose of real traffic simulations, it is assumed to be the average front-bumper- 
to-front-bumper distance of adjacent vehicles under conditions of strongly 
jammed traffic and set equal to 7.5 m. In this case, the time step is set equal to 
one second, and the velocity increases in steps of 27 km/h. 

We can describe the state of the system indicating the number of lattice cells 
(L), the total number of particles (N), and the numbers of particles kN  which 
move with velocity kv k=  ( max0,1,2, ,k v=  ). In general, however, we will use 
the intensive properties (densities) defined as 

, k
k

NNn n
L L

= =                          (2) 

The density of particles (i.e. the number of particles per cell) is equal to the 
sum of the partial densities 

k
k

n n=∑                               (3) 

and the densities of momentum (traffic flow) and kinetic energy are given by 

,k k k k
k k

q nv v n nε ε= = =∑ ∑                     (4) 

respectively, where v  is the average speed of the traffic flow and 2 2k kvε =  is 
the kinetc energy of a particle with speed kv . 

The traffic models developed by Nagel and Schreckenberg [5] and by Fukui 
and Ishibashi [6] [26] belong to the class of B1DTCA. 

2.2.1. The Nagel and Schreckenberg Model 
The dynamics of the Nagel-Schreckenberg model [5] is defined by the following 
set of local transition rules. If one vehicle is located at the cell c ( 1,2,3, ,c L=  ) 
at time t, and it is moving with velocity ( ),v c t , then 
• Rule 1. Acceleration: ( ),v c t  is replaced by ( ) ( ){ }max, min , 1,u c t v c t v= + . 
• Rule 2. Braking: ( ),u c t  is replaced by ( ) ( ) ( ){ }, min , , ,w c t d c t u c t= , where 

( ),d c t  is the number of empty cells ahead the cell c, at time t. 
• Rule 3. Randomization: the velocity of the vehicle located at cell c is updated to 

( ) ( ){ }, 1 max , 1,0v c t w c t+ = −  with probability p, or to ( ) ( ), 1 ,v c t w c t+ =  
with probability 1 p− . 

• Rule 4. Flow: the vehicle jumps from cell c to cell ( ), 1c v c t+ + . 
 

 
Figure 3. One instantaneous spatial distribution of the system cars. Colors make evident 
the possible different car velocities. 
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These rules are applied simultaneously to all the non-empty lattice cells; time 
increases by one only when all the lattice cells have been updated. 

These rules have widely accepted simple interpretations. Rule 1 mimics the 
fact that drivers like to go as fast as allowed. Rule 2 takes into account that one 
driver has to reduce its car’s velocity to avoid the collision against the vehicle 
ahead. Rule 3 aims to take into account some effects which produce velocity 
fluctuations, even in the free flow case; for example, the road conditions (slopes, 
potholes, and speed humps, among others), the impact of climatic conditions on 
traffic flow, and psychological effects. Consequently, this rule can produce brak-
ing overreaction, which may give rise to spontaneous jamming [27]. Finally, 
Rule 4 displaces the vehicles in the lattice. It is worthy of comment that Brilon 
and Wu [28] have questioned Rule 3; they argue that it has no theoretical basis. 
Nevertheless, Rule 3 is essential in simulating realistic traffic flow since other-
wise the model dynamics would be completely deterministic [5]. 

Collectively, these four rules enable the NS model to reproduce the basic 
phenomena of real traffic, such as the occurrence of the phantom traffic jams. 
These rules define a minimal model in the sense that any further simplification 
of them no longer produces nontrivial and realistic behavior. For proper model-
ling of the fine structure of traffic, however, it is necessary the introduction of 
additional rules and/or the modification of the transition rules above-presented. 

2.2.2. The Fukui and Ishibashi Model 
In the Fukui-Ishibashi model [6] [26] [29] the cars can move by at most maxv  
lattice sites in one time step if vehicles in front do not block them. Specifically, if 
at time t the number of empty sites h in front of a car is larger than maxv  then, 
in the next time-step, it can move forward maxv  sites with probability 1 p− , or 

max 1v −  sites with probability p. Here, the randomization probability p 
represents the degree of stochastic delay. Within the framework of this model, 
drivers do not like to use brakes if they are far away from the vehicle ahead. For 
a large density of cars, the stochastic delay in the FI model represents the assur-
ance of the avoidance of crashes. When the stochastic delay is null ( 0p = ), this 
cellular automaton is referred to as the deterministic FI model with the maxi-
mum velocity maxv . On the other hand, the case 1p =  defines the determinis-
tic FI model with the maximum velocity max 1v − . If maxh v<  at time t, then the 
car can only move by h sites in the next time-step. Important differences of the 
FI model with respect the NS model are that the acceleration of cars may occur 
abruptly and that stochastic delay only affects the high-speed cars. 

2.2.3. The Maximum Entropy States 
Many of the cellular automata models proposed for traffic flow are based on the 
NS and FI models that we described in the previous sections. These models, in 
general, have been developed as computational systems for simulating traffic 
phenomena, and there are no analytical theoretical formulations to describe 
them. In fact, up today, very few efforts have been made to establish a unified 
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theoretical formalism for the traffic cellular automata. In this section, we provide 
a brief description of a statistical mechanics’ analysis carried out by Salcido et al. 
[15] [16] [17] for obtaining the equilibrium states of the B1DTCA (such as the 
NS and FI models) from a maximum entropy principle. 

It is important to stress that the dynamical rules of the models like NS and FI 
are not microscopically reversible (they do not satisfy the principle of detailed 
balance [30] [31]), and, consequently, the system is always far from equilibrium. 
In fact, the Nagel-Schreckenberg and Fukui-Ishibashi models have been consi-
dered as variants of the well-known asymmetric exclusion process (ASEP), a pa-
radigm of non-equilibrium systems [32]. In spite of this fact, an entropy func-
tion can be defined for the class of B1DTCA, and the velocity distribution that 
corresponds to the maximum-entropy states may be determined [15] [16] [17]. 

Such as detailed in [17], we assume that our system belongs to the class of 
B1DTCA (defined in Section 2.2). In addition, we assume that it has periodic 
boundary conditions, so that when one particle leaves the lattice by one end, it 
appears immediately in the other end. Moreover, it is observed that each particle 
of the system, which is moving with the velocity iv  can be considered as a 
block that occupy 1iv +  cells in the 1D lattice. This observation allows showing 
that the entropy per cell of the system of blocks is 

( ) ( ) ( ) ( )ln ln lni i
i

s n n n nλ λ λ λ= + + − −∑             (5) 

where λ  is the vacancy (the number of cells per cell that remain empty after 
accommodating all the blocks of the system in the lattice) and in  is the partial 
density of the particles with velocity iv  (the number of blocks each one occu-
pying 1iv +  cells, per cell of the system). We observe that 

( )1 1 0i i
i

v nλ = − + ≥∑                        (6) 

Equations (3) and (4) give the densities of particles, momentum, and kinetic 
energy of the system. 

Under this context, the maximum entropy states of the system are given by 

0e e
i i

i i

v v

in n
n n

α βε βελ λλ
λ λ

− − −   = =   + +   
                (8) 

Here α  and β  are Lagrange multipliers, and it has been defined 0 en αλ −≡  
[17]. Equation (8), for each velocity 1 2 max, , ,iv v v v=  , gives the number of par-
ticles (cars) per cell which are moving with that velocity; i.e., this equation gives 
the velocity distribution of the system. This maximum entropy approach describes, 
as a particular case, the low-density behavior of the FI model with a very good 
agreement [17], and also reproduce, approximately, at least, the steady states of the 
NS model [15] [16] [17]. 

2.3. Pollutant Emission Rates of Traffic Cellular Automata 

Let us assume that ( ), ie vα  is the emission rate of the pollutant α  of one 
particle (a model car of a traffic cellular automaton) which is moving with veloc-
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ity iv . Let us assume also that at the cell x, the average number of particles per 
cell which are moving with the velocity iv  at time t, is ( ),in x t . Then, the par-
tial emission rate of the pollutant α  due to the vehicles with velocity iv  is 
given by 

( ) ( ) ( ), , , , ,i i iv x t e v n x tµ α α=                  (9) 

And the total emission rate of the pollutant α  at time t, due to all the par-
ticles of the system is 

( ) ( ) ( ) ( ), , , , , ,i i i
x i x i

Q t v x t e v n x tα µ α α= =∑∑ ∑∑            (10) 

where the sums extend over all the lattice cells and over all the possible veloci-
ties. 

For traffic cellular automata, the velocity distributions that we need to esti-
mate their pollutant emissions can be obtained in general from computer simu-
lations, but also from a theoretical standpoint such as the maximum entropy 
approach that we described in the previous section. 

The emission rate ( ), ie vα , on the other hand, must be determined experi-
mentally, using emission factors, or with a proper emission model. This function 
represents a subset of a mobile source emission inventory disaggregated by pol-
lutant, type of vehicle, and speed of movement of the vehicle. This emission rate, 
of course, will depend also on the characteristics and conditions of the vehicle, 
on driving habits, and on the weather conditions. In general, the reference data 
for estimating the emissions of road vehicles is obtained by measuring the emis-
sions of a representative vehicle in a controlled ambient and simulating specific 
driving condition. The results of the observations are usually aggregated either 
by estimating a functional relationship (e.g., the German recommendations for 
economic assessment of road infrastructure investments (EWS) [33]) or by clus-
tering the data into typical driving situations (e.g., the Workbook on Emission 
Factors for Germany and Switzerland [18]). 

The EWS has the advantage that the full functional relationship on the ve-
hicle’s velocity v is given for a specific pollutant α  and vehicle type [34]: 

( )

2 2
0 1

2 2
0 1

for 20 km h
,

min , for 20 km h
f

SG

cc c v v
v

e v
cc c c v v
v

α

 + + >=     + + ≤     

     (11) 

with parameters 0 1,c c  and 2c  for free flow, and parameter SGc  for stop-and- 
go traffic conditions. These parameters are differentiated by vehicle type and 
pollutant. A reduction factor is applied for each pollutant in order to take ac-
count of advanced pollution reduction technologies. From the emission factor, 

( ),fe vα , the emission rate ( ),e vα  is calculated as follows: 

( ) ( ),
,

3600
fe v v

e v
α

α =                         (12) 

Here, the emission rate is expressed in [g/s] if the velocity and the emission 
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factor are expressed in [km/h] and [g/km], respectively. 
Extending EWS [33] [34], we assume that the emission factor and the emis-

sion rate of the pollutant α  for a particle with velocity iv  in traffic cellular 
automata, can be estimated as 

( ) ( ) ( ) ( ) ( )2 32
0 1 5

,f i i
i i

A A
e v A A v

v v
α α

α α α= + + +           (13) 

( ) ( ) ( ) ( ) ( )3 45
0 1 2 3, i i i ie v B B v B v B vα α α α α= + + +          (14) 

for 0 1 max, , ,iv v v v=  . The parameters rA  and rB  depend on the pollutant 
α  and on the characteristics of the vehicle. The parameter 0B  represents the 
emission rate of one vehicle at rest (stopped, but with its motor running). Note 
the additional term in Equation (13) in comparison with Equation (11). In Sec-
tion 2.5, we will see that this term allows a very good fitting to the available data 
reported in [34]. 

3. Results and Discussion 

The main goal of this work is to estimate and compare the emissions rates of the 
Nagel-Schreckenberg and Fukui-Ishibashi traffic cellular automata. For simplic-
ity, we considered only simulations of the steady states for models with max 5v =  
and randomization probability 0.25p = . They were carried out with an 
800-cells lattice with periodic boundary conditions. Particle densities from 0 to 1 
in steps of 0.01 were considered. In each simulation, the system was allowed to 
evolve during 600 time steps, starting from an initially random spatial distribu-
tion of the particles. The simulation was repeated 1000 times for each particle 
density value. In this case, the ensemble average of the local velocity distribution 
at each lattice cell is the same as the ensemble average of the global one. 

3.1. The Velocity Distributions 

In Figure 4 and Figure 5, we present some results of the space-time evolution of 
the NS and FI models, which we obtained from computer simulations. In Figure 4, 
it is shown the evolution of the NS model for particle densities 0.10,0.12,0.17n =  
and 0.30. Each row (horizontal line) contains an instantaneous spatial distribution 
of the particles. Time increases vertically from top to bottom. It is observed that 

0.12n =  defines a transition between two different flow regimes: from free to 
congested flow. 

Figure 5 shows the spatiotemporal evolution of the FI model for densities 
0.18,0.20,0.22n =  and 0.30. In this case, 1 5n =  defines a transition between 

the free flow and congested flow regimes. 
The graphs of Figure 6 show, for the NS and FI models ( max 5v = , 0.25p = ), 

the steady state partial densities 0 1 5, , ,n n n  of the particles with velocities 

0 1 5, , ,v v v , respectively; and the densities of kinetic energy, ε , and momentum, 
q, and the velocity v, of the traffic flow, expressed as functions of the vehicular 
density n. The partial densities ( )in n  were obtained as ensemble averages  
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(a)                                    (b) 

  
(c)                                    (d) 

Figure 4. Computer simulations with the NS model with max 5v =  and 0.25p = , for 

several values of the particle density. In particular, for 0.12n = , a transition between two 
different flow regimes is observed. (a) 0.10n = ; (b) 0.12n = ; (c) 0.17n = ; (d) 0.30n = . 
 

  
(a)                                    (b) 

  
(c)                                    (d) 

Figure 5. Computer simulations of the FI model with max 5v =  and 0.25p = , for 
several values of the particle density. A transition from the free to the congested flow is 
observed around 1 5n = . (a) 0.18n = ; (b) 0.20n = ; (c) 0.22n = ; (d) 0.30n = . 
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Figure 6. Steady state properties of the NS and FI models with max 5v =  and 0.25p = . 
The partial densities 0 1 5, , ,n n n

 and the densities of kinetic energy ε , and 
momentum q, and the velocity v of the traffic flow, are shown in the first and second 
rows. The last row shows the differences of these properties between the FI and NS 
models. 
 
over the 1000 repetitions of the simulations. The properties ,qε , and v were 
calculated from Equations (4). In the traffic science jargon, the plot of q is 
known as the fundamental diagram. In the bottom row, we presented graphs 
which show the differences of these properties between the FI and NS models. 

Here, it is observed that all the partial densities, 0 1 5, , ,n n n  of the NS model 
are different from zero in the interval 0 1n< < , although only the partial densi-
ties 4n  and 5n  have non-negligible values in the interval 0 0.12n< < . For 
the FI model, otherwise, only the partial densities 4n  and 5n  are greater than 
zero in the low-density regime 0 1 5n< < , and for 1 5 1n< < , all partial densi-
ties, except 5n , are different from zero. Then, for max 5v =  and 0.25p = , the 
free flow regime in the FI model extends up to densities close to 1 5n = , while 
in the NS model this regime extends only up to 0.12n = . This is clear in the 
plots of the average velocity of the traffic flow and in the densities of momentum 
and kinetic energy, which are shown in the right column of Figure 6. 
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The left column of the last row of Figure 6 shows the plots of the differences 
between the partial densities of the FI and NS models: 

( ) ( ) ( ), , , 0,1, ,5k k kdn n n NI n n NS n k= − = 
          (15) 

These plots show that these differences are negligible in the interval 
0 0.12n< < , that the partial densities 4n  and 5n  in the FI model are larger 
than in the NS model in the density interval 0.12 0.18n< < , but in the same 
interval the partial densities of the smaller velocities are larger in the NS model 
than in the FI model. For particle densities 0.18 0.26n< < , only the partial 
density 4n  of the FI model is larger than in the NS model, and for 0.3 1n< < , 
the numbers of particles with velocities 2 3,v v , and 4v  are larger in the FI mod-
el. In the high density region 0.79 1n< < , also the number of particles with ve-
locity 1v  is larger in the FI model than in the NS model. These observations 
underline that, in general, the average velocity of traffic flow is larger in the FI 
model, such as it is shown in the plots we presented in the right column of the 
last row of Figure 6. These results are consequences of the dynamical rules of 
the FI traffic cellular automaton, where the particles can increase their velocities 
faster than in the NS model, and where the stochastic delay only applies to the 
high-speed cars. As we will show in Section 3.2, this behavior has an important 
consequence in relation with the air pollutant emissions of the traffic flows de-
scribed by these models. 

For concluding this section, in the graphs of the Figure 7 we showed the maxi-
mum entropy states of the NS and FI models for the same set of couples of particle 
density and kinetic energy per cell, ( ),n ε , of the simulations we described pre-
viously for these traffic models. Again, the partial densities 0 1 5, , ,n n n , and the 
densities of kinetic energy ε  and momentum q, and the velocity v, of the traffic 
flow, are shown. The partial densities presented in this figure (left column) were 
obtained by numerical solution of Equation (8) using the points ( ),n ε  of the 
curves ( )nε  presented in the first and second rows of the right column of Fig-
ure 6, as input data. An exception was the case of the low density behavior of the 
FI model, 0 1 5n< < , because the following exact analytical solution of Equa-
tion (8) exists for this case [17]: 

( ) ( )( ){ }2
5

1 1 4 1 4 4 1 5 1
2

n n n n n p= − − − − − −           (16a) 

4 5n n n= −                             (16b) 

( ) ( )( ){ }214 1 4 1 4 4 1 5 1
2

v n n n n p
n

= + − − − − − −          (16c) 

For each model, important differences can be observed between the plots of 
the partial densities obtained from computer simulations (first and second rows 
of Figure 6) and from the maximum entropy approach (Figure 7), mainly for 
the high-density regimes. The main reason for these behavior differences is due 
to the dynamical transition rules of the NS and FI traffic cellular automata, 
which do not satisfy the principle of detailed balance [30] [31], and, therefore, 
both systems are always driven out of equilibrium. 
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Figure 7. Maximum entropy states of the NS and FI models with max 5v =  and 

0.25p = . The partial densities 0 1 5, , ,n n n
, the velocity v, and the densities of kinetic 

energy ε , and momentum q, of the traffic flow, are shown. 

3.2. The Emission Rates 

With reference to Section 2.2, we underline that the distance among adjacent 
cells is usually assumed as the average front-bumper-to-front-bumper distance 
of adjacent vehicles under conditions of strongly jammed traffic, and it is set 
equal to 7.5 m. Then, if the time step is set equal to one second, the velocity of a 
vehicle will change in steps of 27 kph. Therefore, when comparing with real traf-
fic data, the interpretations of the model velocities will be as follows, 

0 1 2 3 4 50, 27, 54, 81, 108 and 135 kphv v v v v v= = = = = =     (17) 

The emission factors we used in this work are based on [18]. In the data base, 
the emission factors are given for traffic situations which are characterized by a 
mean speed (beside other dependencies). In order to obtain an effortless map-
ping between the velocity and the amount of emission, the different traffic situa-
tions were aggregated into bins of size 10 km/h [34] [35].  

Figure 8 shows the emission factors and the emission rates for three different 
pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides 
(NOx). 

In this figure, we observed that the emission behavior is rather different for 
the distinct pollutants, and that their amount strongly depends on velocity. For 
estimating the pollutant emissions in the NS and FI traffic cellular automata, we 
used the emission rates of CO, HC, and NOx shown in Figure 8. The associated 
best fitting functions and their determination coefficients ( 2R ) are presented in 
Table 2. 
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Figure 8. Vehicular emission factors and emission rates for the pollutants CO, HC, and 
NOx as functions of velocity. We observe that the amount of emission is strongly 
dependent on the vehicle’s velocity and on the kind of pollutant. The best fitting curves 
(blue solid lines) of the model functions (13) and (14) to the data available in [34] [35] are 
also shown. 

 
Figure 9 shows the partial emission rates produced by the simulations with 

the NS and FI models for vehicle emissions of carbon monoxide (CO), hydro-
carbons (HC), and nitrogen oxides (NOx). The differences between these models 
are also shown. These results were obtained with the Equation (9), using the NS 
and FI velocity distributions shown in Figure 6, and the CO, HC and NOx emis-
sion rates given in Table 2 with the allowed particle velocities given by the Equ-
ation (17). 

The differences between the emission rates produced by the FI and NS models 
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(Figure 9) are shown in Figure 10. Here we note that the FI traffic model pro-
duces the larger emission rates, particularly those associated with the velocity 

max 1v − . However, when the system is in the high-density regime, the NS model 
produces an emission rate larger than the FI model does associated with the 
largest velocity maxv . 

In Figure 11, we show the partial emission rates obtained with the maximum 
entropy velocity distributions (see Figure 7). In Figure 12, the differences be-
tween the FI and NS emission rates are shown. 

The graphs of Figure 9 and Figure 11 show important qualitative similarities 
between the partial emission rates estimated with the velocity distributions ob-
tained by computer simulation and by means of the maximum entropy approach. 
However, there exist non-negligible numerical differences which are reflected 
also in the total emission rates, particularly for the CO and HC pollutants, as it is 
shown in the Figure 13. 

In Figure 13, we present the total emission rates for the models NS and FI. It 
includes the results obtained with computer simulations and with the maximum 
 

 
Figure 9. Partial emission rates of the NS and FI traffic models for the pollutants CO, HC 
and NOx. 
 
Table 2. Best fitting functions for the traffic emission rates of CO, HC, and NOx as 
dependent on the vehicle velocity. Estimated from data available in [34] [35]. 
Determination coefficients ( 2R ) are also shown. 

Pollutant Emission Rate [g/s] R2 

CO ( ) 7 3 45
CO 0.0467 0.020966 7.551701 10 0.044694i i i ie v v v v−= − + × +  0.991621 

HC ( ) 8 3 45
HC 0.0054 0.000810 1.931618 10 0.002321i i i ie v v v v−= − + × +  0.988483 

NOx ( )
x

8 3 45
NO 0.0012 0.000703 5.577680 10 0.000653i i i ie v v v v−= + + × −  0.996947 
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Figure 10. Differences between the FI and NS partial emission rates of Figure 9. 
 

 
Figure 11. Partial emission rates of the NS and FI traffic cellular automata estimated with 
the maximum entropy velocity distribution. 
 

 
Figure 12. Differences between the FI and NS emission rates of Figure 11. 
 
entropy approach. The plots presented in Figure 13 were obtained by summing, 
respectively, the partial emission rates of Figure 9 and Figure 11, such as it is 
indicated by the Equation (10). 

In Figure 13, we observe: for densities 0 0.11n< < , both traffic cellular au-
tomata produced the same total emission rates for each pollutant; for densities 

0.11n > , the FI traffic model produced total emission rates of CO, HC and NOx 
larger than the NS model did, respectively. In the limit 1n → , the emission 
rates of both models become the same because all the particles become at rest, 
remaining only the emissions in the idle conditions. 
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Figure 13. Total Emission rates of the NS and FI traffic cellular automata ( max 5v =  and 

0.25p = ) as functions of the particle density. The solid line curves correspond to the 
computer simulations of steady state conditions. The dotted line curves correspond to the 
maximum entropy states. 

 
Figure 13 shows also the plots of the emission rates estimated with the max-

imum entropy state velocity distributions. We observe that the deviations with 
respect the estimations with velocity distributions obtained from computer si-
mulations only result important in the case of the hydrocarbons, because in this 
case the differences and the emission rates themselves are of the same order. The 
larger emission rates of the FI model are a consequence of its dynamic rules be-
cause the stochastic delay is applied only to the highest speed vehicles, extending 
its free flow regime up to particle densities higher than in the NS model.  

In Figure 14, the relative differences  

( ) ( ) ( )
( )

, ,
, 100 ,

,
FI NS

NS

Q n Q n
n

Q n
α α

δ α
α

 −
≡   

 
             (18) 

between the total emission rates of the FI and NS models for steady state condi-
tions and the selected pollutants (Figure 13), are shown. Here we can underline 
three interesting density intervals:  

1) 0 0.11n< < : This is the interval of the low density behavior of the FI and 
NS traffic models with max 5v =  and 0.25p = . Here, almost all the particles are 
moving with one of the two highest velocities, 5v =  (i.e. maxv ) or 4v =  (i.e. 

max 1v − ). It is a free flow regime. In this density region, the relative differences 
between the estimations of the emission rates of the NS and FI models are neg-
ligible for all the pollutants we considered:  

( ) ( ) ( )xCO, HC, NO , 0n n nδ δ δ≅ ≅ ≅ . 
2) 0.11 1 5v< < : In this interval, while the numbers of particles at rest and 

with the lower velocities in the system start to be non-negligible in the NS model, 
all the particles persist in the free flow regime, with the highest velocities in the 
FI model; however, the number of particles con velocity 5v =  decreases to zero 
at 1 5n = . Because of the velocity distribution (Figure 6, left column) and of 
the dependence of emission rate on velocity (Figure 8, right column), the emis-
sion rates, in this interval, also reach their highest values for each pollutant  
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Figure 14. Relative difference (%) between the FI and NS 
estimations of the emission rates. 

 
(Figure 11), with larger values for the FI model than for the NS model. Here, all 
the relative differences ( )HC, nδ , ( )CO,nδ  and ( )xNO ,nδ  show sharp 
peaks (45.36%, 56.27% and 64.10%, respectively) around 0.175n = , just where 
the highest values of the FI emission rates occur. 

3) 1 5 1n< < : In this interval, both models exhibit a congested flow regime. 
As the particle density increases, the numbers 4n  and 5n  of the particles that 
move with the highest velocities, decrease monotonically; the number of par-
ticles at rest ( 0n ) increases monotonically; and the numbers of particles with 
velocities 1v , 2v  and 3v  grow up to a maximum and then drop to zero. Be-
cause of this, the total emission rates diminish monotonically up to their idle 
condition values, when all the particles become at rest. On the other hand, the 
relative difference between the emission rates of the FI and NS models (Figure 
14) seems to decrease monotonically for hydrocarbons, but for carbon monox-
ide and nitrogen oxides grows up and then drops to zero, reaching their maxi-
mum values, 40.41% and 76.87%, at 0.43n =  and 0.55n = , respectively. 

4. Concluding Remarks 

There exists a growing interest in using cellular automata to model traffic flow 
phenomena from a microscopic standpoint. The possibility of using these mod-
els to simulate traffic in the cities brings out the attention to the problem of as-
sessing the contributions of this phenomenon to the urban air pollution. To do it, 
the velocity distribution of the traffic network has to be known, spatially and 
temporally disaggregated. It is also required the engine’s emission factors or 
emission rates as functions of the vehicle velocity. In this work, we used com-
puter simulations and a maximum entropy approach for obtaining the velocity 
distributions of the traffic cellular automata of Nagel-Schreckenberg and Fukui- 
Ishibashi under steady state conditions. The engine emissions were obtained 
from data available in [18] [33] [34] [35], which allowed us to estimate and 
compare the emission rates of CO, HC, and NOx produced by the NS and FI 
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traffic models.  
Although the dynamical rules of the NS and FI models are not microscopically 

reversible and, therefore, these systems are always far from equilibrium, our es-
timations of the total traffic emission rates with the maximum entropy velocity 
distributions resulted very similar to those we obtained using the velocity distri-
butions from computer simulations with these traffic cellular automata. 

In general, the emission rates in the FI traffic flow resulted larger than in the 
NS model. The relative differences ( ),nδ α  reached values of up to 45% in HC, 
56% in CO, and 77% in NOx. These results are consequences of the differences 
between the FI and NS dynamic rules: In the NS model, the acceleration of the 
particles is gradual, while in the FI model, a particle can accelerate from rest up 
to the maximum velocity in a single time step. Moreover, the stochastic delay is 
applied only to the particles with the highest velocities in the FI model. 

The ideas of this study can be extended easily to other 1D or 2D traffic cellular 
automata for estimating the traffic flow contributions to air pollution. 
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Abstract 
The CODATA procedure for calculating the recommended relative uncer-
tainty of the measured fundamental physical constants is complex and is 
based on the use of powerful computers and modern mathematical statistical 
methods. In addition, the expert’s opinion caused by accumulated knowledge, 
life experience and intuition of researchers is applied at each stage of the cal-
culations. In this article, the author continues to advocate a theoretically 
grounded information method as the most effective tool for testing and 
achieving the minimum possible relative uncertainty for any measurements of 
experimental physics and engineering. The introduced fundamental limit 
characterizing discrepancy between a model and the observed object cannot 
be overcome by any improvement of instruments, methods of measurement 
and the model’s computerization. Examples are given. 
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1. Introduction 

In the past century, an increased attention to the accuracy of fundamental phys-
ical constants has led to the development of new physical theories and many 
technological improvements [1]. We are, however, possibly gradually reaching 
the limits of accuracy, in spite of the fact of usage of powerful computers and 
unique newest mathematical methods. Is there a reasonable limit to our exact 
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understanding surrounding the world? This limit is unquestionably manifested 
in the restructuring of the International System of Units (SI) and in the identifi-
cation of the difficulties that now appear in electrical measurements [2]. 

Why is it important to know the limits of our ability to measure fundamental 
physical constants? First, a precise definition of the fundamental constants al-
lows us to verify the consistency and correctness of the basic physical theories. 
Second, the quantitative predictions of the basic physical theories depend on the 
numerical values of the constants involved in these theories: each new sign can 
lead to the discovery of a previously unknown inconsistency or, conversely, can 
eliminate the existing inconsistency in our description of the physical world. 
However, by formulating the model of the experiment, scientists, on the one 
hand, somehow break off the connections with possible, potentially influencing 
variables, which are hidden from our eyes at the moment. On the other hand, it 
is very difficult to measure all the variables that are taken into account in the 
measurement model with high accuracy and not ‘miss’ the significant effect. In 
addition to these problems, it often turns out that a new series of measurements 
using more advanced methods shows that the former value was erroneous and 
that its new value differs from the old ‘conventional’ by an amount many times 
greater than the uncertainty attributed to the previous value. 

These ‘flowers’ do not end the field of activity of scientists to clarify the true 
meaning of fundamental physical constants. A difficult task in negotiating the 
values of constants is the estimation of uncertainties. In most experiments, phy-
sicists try to collect as much data as possible in order to reduce the random 
measurement uncertainty to a negligible value. In this case, the final uncertainty 
attributed to the result of the measurement is determined only based on an as-
sessment of systematic uncertainties. These uncertainties are associated with ef-
fects, for which little is known. Therefore, the corresponding estimates are 
somewhat subjective and are usually obtained essentially intuitively [1]. The 
problem is aggravated by the fact that different experimenters approach the 
evaluation of systematic uncertainties from completely different positions. Some 
of them cautiously attribute their data to an overestimated uncertainty in the 
hope that subsequent measurements will not reject their results as incorrect. 
Others, on the contrary, underestimate the sources of systematic uncertainties in 
their experiments, apparently proceeding from an unconscious (and perhaps 
even intentional) desire to conduct ‘the best experiment’. Such factors, so far 
from scientific objectivity, are inevitable, since in the end, people who have dif-
ferent life experiences and are endowed with greater or lesser abilities make 
science. That is why the measurement uncertainties presented by different re-
searchers are not at all easy to compare with each other. 

Undoubtedly, the coordinated set of physical constants of 2015 [3] is closer to 
the truth than the previous ones. However, being realists, we cannot reject the 
possibility that a new, theoretically grounded approach to the calculation of the 
recommended value of the relative uncertainty is required or can exist, by reali-
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zation of which measuring of the true-target values of fundamental physical 
constants is possible. 

That is why, from the point of view of the author, the recently developed in-
formation approach may to some extent facilitate the process of calculating the 
amount of relative uncertainty to be measured by physicists. It is based on the 
proposition that a multi-physics model contains a certain quantity of informa-
tion about the object under study, depending on the quantitative and qualitative 
set of physical variables to be taken into account. By this way the optimal num-
ber of selected parameters can be calculated. It allows reaching the lowest dis-
crepancy between a model and the observed object. This approach defines a lim-
it of accuracy that cannot be overcome by any improvement of instruments, 
methods of measurement and the model’s computerization. It has physical 
meaning and its value is much higher than the Heisenberg uncertainty relation 
provides. It is important to mention that applying information theory allows 
giving a theoretical explanation and grounding of experimental results, which 
determine precision of fundamental constants. 

The information approach plays a decisive role in a new view of the achieve-
ment of the least uncertainty in the model of a physical phenomenon. Unfortu-
nately, it is still little known to most scientists and engineers. In this paper, we 
continue to apply it for measurements of fundamental physical constants. 

2. Suggested Applied Tools 

In [4], it was shown that a certain uncertainty exists before starting an experi-
ment or computer simulations. It is caused due only to the known number of 
recorded variables. The value of this uncertainty can be calculated by the fol-
lowing formula 

( ) ( ) ( )pmm SI– – – ,S z z zβ µ β β′ ′ ′′ ′′ ′ ′∆ = ⋅ −             (1) 

where u is the dimensionless researched variable; Δu is the dimensionless uncer-
tainty of the physical-mathematical model describing the experiment with the 
apriority chosen number of variables; S is the predetermined dimensionless in-
terval of u variations; z′′  is the given number of selected physical dimensional 
variables; β ′′  is the number of primary physical variables recorded in a model; 
ε = Δpmm/S is the comparative uncertainty. Equation (1), surprisingly, is very 
simple. Absolute and relative uncertainties are familiar to physicists. As for the 
comparative uncertainty, it is rarely mentioned. Nevertheless, the importance of 
comparative uncertainty is of great importance for the application of informa-
tion theory in physics and engineering; z′  is the number of physical dimen-
sional variables in the selected class of phenomena (CoP-see below), β ′  is the 
number of primary physical dimensional variables in the selected CoP; SIµ  is 
the total number of possible dimensionless criteria with ξ = 7 main dimensional 
variables for SI-see below. 

The relation (1), which follows from the general provisions of information 
theory, is accurate and does not depend on the conditions of experience, the 
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concrete implementation of the test stand, the expert opinion of scientists and 
the selected statistical mathematical methods. 

An overall uncertainty of the model including inaccurate input data, physical 
assumptions, the approximate solution of the integral-differential equations, etc., 
will be larger than Δpmm. Thus, Δpmm is the first-born and least component of a 
possible mismatch of a real object and its modeling results. 

Equation (1) has physical meaning. It testifies that in nature there is a funda-
mental limit to the accuracy of measuring any process, which cannot be sur-
passed by any improvement of instruments, methods of measurement and the 
model’s computerization. The value of this limit is much higher and stronger 
than the Heisenberg uncertainty relation provides. In addition, this fundamental 
limit places severe restrictions on the micro-physics. 

SPV and SI are a fantasy generated by collective imagination. However, with-
out SPV, the simulation of the phenomenon is impossible. You can interpret 
SPV as the basis of all the available knowledge that people have about the sur-
rounding nature at the moment. 

SI includes the primary and secondary variables used for descriptions of dif-
ferent classes of phenomena (CoP). For example, in mechanics of SI there is 
used a basis {L-length, M-mass, Т-time}, i.e. CoPSI ≡ LMT. 

It is known [5] [6] that the dimension of any secondary variable can be ex-
pressed as a unique function of the product of primary variables L, M, Т, I, Θ, J, 
and F with certain exponents l, m, t, i, θ, j, f, which can take only integer values 
and vary in specific ranges 

, l m t i j fq L M T I J Fθ⋅ ⋅ ⋅ ⋅Θ ⋅ ⋅                  (2) 

3 3,  1 1,  4 4,  2 2,
4 4,  1 1,  1 1,

l m t i
j fθ

− ≤ ≤ + − ≤ ≤ + − ≤ ≤ + − ≤ ≤ +
− ≤ ≤ + − ≤ ≤ + − ≤ ≤ +

        (3) 

7; 3; 9; 5; 9; 3; 3l m t i j fе е е е е е еθ= = = = = = =            (4) 

where , ,l fe e  are the numbers of variants of the dimension for each variable. 
For example, l−3 is used in the density formula; θ4 is used in the Stefan-Boltzmann 
law. 

We can calculate the total number of possible dimensionless criteria SIµ  
with ξ = 7 main dimensional variables for SI [4] 

SI 38272 7 38265ξµ = Ψ − = − =                 (5) 

where Ψ = 38,272 is the total number of dimensional options of physical va-
riables in SI; SIµ  corresponds to the maximum amount of information con-
tained in the SPV; each variable allows the researcher to obtain a certain amount 
of information about the studied object; the main definitions and estimates of 
the amount of information used in the experiment were clearly formulated by L. 
Brillouin [7] and generalized by M. Burgin [8]. 

Equating the derivative of Δpmm/S from Equation (1) with respect to –z β′ ′  
to zero, we obtain the condition for achieving the minimum comparative uncer-
tainty for a particular COP: 
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( ) ( ) ( )2– – .z zβ ξ β′ ′ ′′ ′′Ψ = −                  (6) 

For the analysis of experimental data, we need to know the recommended 
number of selectable variables, with which we can achieve a minimum compara-
tive uncertainty for a specific CoP: 

1) For CoPSI ≡ LMTF, taking into account the aforementioned explanations 
and (6), the lowest comparative uncertainty εLMTF can be reached at the following 
conditions: 

( ) ( ) ( )2– 1 4 7 3 9 3 1 4 272 9l m t fz e e e eβ′ ′ = × × × − − = × × × − − =      (7) 

( ) ( )2 2
SI– 279 38265 2z zβ β µ′′ ′′ ′ ′− = = ≈           (8) 

where ‘−1’ corresponds to the case when all the primary variable exponents are 
zero in Formula (2); dividing by 2 indicates that there are direct and inverse va-
riables, e.g., L1 is length, L−1 is run length. Because the object can be judged 
knowing only one of its symmetrical parts, while others structurally duplicating 
this part may be regarded as information empty [4]. Therefore, the number of 
options of dimensions may be reduced by ω = 2 times; 4 corresponds to the four 
primary variables L, M, T, F. 

( ) ( ) ( ) ( )min pmm SI– – –

279 38265 2 279 0.0073 0.0073 0.0146
LMTF S z z zε β µ β β  ′ ′ ′′ ′′ ′ ′= ∆ = −

= + =


= +
      (9) 

2) For CoPSI ≡ LMTθI, taking into account (6), the lowest comparative uncer-
tainty εLMTFI can be reached at the following conditions: 

( ) ( ) ( )– 1 5 7 3 9 9 5 1 52 2 4247l m t iLMT Iz е е е е еθθ
β′ ′ = − − = − − =× × × × × × × × (10) 

( ) ( )2 2
SI– 4247 38265 471LMT Iz z

θ
β β µ′′ ′′ ′ ′− = = ≈          (11) 

where ‘−1’ corresponds to the case when all the primary variable exponents are 
zero in Formula (2); dividing by 2 indicates that there are direct and inverse va-
riables, e.g., L1-length, L−1-run length, and 5 corresponds to the five primary va-
riables L, M, T, Θ, I. 

Then, one can calculate the minimum achievable comparative uncertainty 
εLMTΘI 

( ) 4247 38265 471 4247 0.222LMT I LMT Iu Sε Θ Θ
= ∆ = + =   (12) 

Let’s speculate about applying the information approach for the measurement 
of several fundamental physical constants. 

3. Applications 
3.1. Proton Mass mp 

We analyzed several research publications and CODATA (Committee on Data 
for Science and Technology) recommendations over the past 19 years (Table 1, 
[9]-[15]) from the position of the reached relative uncertainty values. All studies 
belong to the CoPSI ≡ LMTθI. In none of the current experiments of the calcula-
tion of the mp value has the prospective interval been declared, in which its true  
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Table 1. Proton mass and achieved relative uncertainty. 

No Year Proton mass × 1027, kg Achieved relative uncertainty References 

1 1999 1.6726217161 74.6 10−×  [9] 

2 2005 1.6726217129 71.7 10−×  [10] 

3 2008 1.6726216378 85 10−×  [11] 

4 2008 1.6726217162 101.8 10−×  [12] 

5 2012 1.6726217777 84.4 10−×  [13] 

6 2014 1.6726218982 81.2 10−×  [14] 

7 2017 1.6726217154 113.2 10−×  [15] 

 
value can be placed. In other words, the exact trace of the placement of mp is lost 
somewhere. Therefore, in order to apply our stated approach, as a possible mea-
surement interval of mp, we choose the difference of its value reached by the ex-
perimental results of two projects: 27

min 1.67262163783 10 kgpm −= ×  [11] and 
27

max 1.672621 189821 0 kgpm −= ×  [14]. Then, the possible observed range Sp of 
mp variations equals 

( )

27
max min

27 34

1.67262189821 10

1.67262163783 10 2.6 10 kg
p p pS m m −

− −

= − = ×

− × = ×
          (13) 

It is seen from the data given in Table 1 that there was not dramatic im-
provement of the measurement accuracy of mp during the last 18 years by view 
of the relative uncertainty, except [15]. It differs sharply from other calculated 
values of relative uncertainty. The question of reliability is key, since the refine-
ment of the values of fundamental constants by innovative methods is extremely 
vulnerable [2]. Although specialists are highly qualified and use the latest tech-
nologies, the lack of accumulated experience in pioneering research affects and 
we need to wait new experiments. 

It is obvious that the spread in the magnitude of the measured mp is signifi-
cant. In addition, the truthful and precise value of mp is not known at the mo-
ment. Therefore, scientists of CODATA calculate and declare each 2 years the 
recommended value of the relative uncertainty, by which, in the future, it will be 
possible to achieve the true-target value of mp. 

We can argue about the order of the desired value of the relative uncertainty 
of CoPSI ≡ LMТΘI that is usually used for measurements of the proton mass. For 
this purpose, we take into account (εmin)LMTθI = 0.222, 342.6 10 kgpS −= × . Then, 
the lowest possible absolute uncertainty for CoPSI ≡ LMТΘI equals 

( ) ( ) ( )34 34
min min 0.222 2.6 10 0.5772 1 k0 gpLMT I LMT I S

θ θ
ε − −∆ = × = × × = ×  (14) 

In this case, the lowest possible relative uncertainty (rmin)LMTθI for CoPSI ≡ 
LMТΘI is as follows: 

( ) ( ) ( )( )
( )

min min max min   

34 27 80.5772 10 1.672621768 10 3.4 10

2p pLMT I LMT Ir m m
θ θ

− − −

= ∆ +

= × × = ×
    (15) 
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This value is in excellent agreement with the recommendations mentioned in 
[13] ( 84.4 10−× ), and can be used for the new definition of the Kelvin and a sig-
nificant revision of the International System of Units. 

3.2. Avogadro Number Na 

We performed an analogous procedure for analyzing the results of measure-
ments of the Avogadro number over the past 15 years ([11] [13] [14] [16]-[20]). 
The data are summarized in Table 2. 

All studies belong to the CoPSI ≡ LMTF. In order to verify the desired value of 
the relative uncertainty (rmin)LMTF of CoPSI ≡ LMТF and taking into account (1) 
(4) (5) (7) (8), we get the following: 

( ) ( ) ( )– 1 4 7 3 9 3 1 4 272 92l m t fLMTFz е е е еβ′ ′ = − − = − −× × × =× × ×    (16) 

( ) ( ) 2
SI

2– 279 38265 2LMTFz zβ β µ′′ ′′ ′ ′− = = ≈          (17) 

( ) ( ) ( ) ( )min pmm SI– – –

279 38265 2 279 0.0073 0.0073 0.0146
LMTF S z z zε β µ β β  ′ ′ ′′ ′′ ′ ′= ∆ = −

= + =


= +
      (18) 

( )23 1
max 6.022141793 10 molaN −= ×  [14], 

( )23 1
min 6.022133900 10 molaN −= ×  [11], 

( ) ( )17 1
max min 7.9 10 molNa a aS N N −= − = ×              (19) 

( ) ( ) ( )
( )

min min max min

17 17 10.0146 7.9 10 0.1153 10 mol
a aLMTF LMTF N Nε

−

×

× × ×

∆ = −

= =
        (20) 

( ) ( ) ( )( )
( )

min min max min

17 23 80.1153 10 6.0221378465 10 1 1

2

.9 0

a aLMTF LMTFr N N
−

= ∆ +

= × × = ×
     (21) 

The value 81.9 10−×  is in excellent agreement with the recommendations 
mentioned in [20] ( 82 10−× ), and can be used for a significant revision of the 
International System of Units. 

It is necessary to note the fundamental difference between the described me-
thod and the CODATA method for determining the recommended value of the 
 
Table 2. Avogadro number and achieved relative uncertainty. 

N Year Value of Na × 10−23, mol−1 Achieved relative uncertainty × 108 References 

1 2001 6.022133900 46 [16] 

2 2003 6.022135300 34 [17] 

3 2008 6.0221417930 5 [11] 

4 2011 6.02214082(18) 3 [18] 

5 2011 6.02214078(18) 3 [19] 

6 2012 6.02214129(27) 4.4 [13] 

7 2014 6.022140857(74) 1.2 [14] 

8 2015 6.02214076(12) 2 [20] 
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relative uncertainty of a fundamental physical constant. Within the framework 
of the CODATA concept, a detailed discussion of the input data and the justifi-
cation and construction of tables of values sufficient for the direct use of relative 
uncertainty are conducted using modern advanced statistical methods and po-
werful computers. This, in turn, allows you to check the self-consistency of input 
data and output sets of values. However, at each stage of data processing, an ex-
pert conclusion based on intuition, accumulated knowledge and the life expe-
rience of scientists is also used. Within the framework of the presented ap-
proach, a theoretical and informational justification is carried out to calculate 
the relative uncertainty. A detailed description of the data and the processing 
procedures used do not require considerable time. This is a reason for the wide 
implementation of the μSI-hypothesis, the concept of a system of primary va-
riables for analyzing existing experimental data on the measurement of funda-
mental physical constants. 

4. Conclusions 

The information approach for calculating the uncertainty of the model of a 
physical phenomenon or technological process is very promising in those areas 
of science and technology where it is required to predict the result of an experi-
ment or to calculate a given basic parameter with very high accuracy, for exam-
ple, reliability of an atomic power station, seismic stability of buildings, strength 
of a submarine’s hull, thermal resistance of spacecraft’s casing, measurement of 
fundamental physical constants and so on. 

The ‘new angle’ is to apply an information approach to the problems asso-
ciated with the origin of the choice of the most applicable value of the recom-
mended relative uncertainty. We think that this is perhaps the only tool that 
does this strictly theoretically. 

This is in a sense a little bit more basic as Heisenberg tenet declares. The fun-
damental limit places severe restrictions on the micro-physics. 

We hope that the implementation of the information approach will be re-
created in real experiments, possibly using appropriate test benches and various 
groups of variables. But even if finely tuned fixed points can be provided in the 
laboratory, we view the presented method as ‘necessary but not sufficient’, be-
cause, at this moment, it cannot accurately indicate the true set of specific va-
riables to achieve a minimum comparative uncertainty. 

In our view, the ability of our approach to respond to information quantity 
embedded in a model is key that can get up and walk away from the subjective 
environment consisting from accumulated knowledge, life experience and intui-
tion of scientists. 

Even if the information approach is on the right track about experimental 
physics and technology, we want and will develop more detailed information, 
such as a theory about which primitive ‘proto-bricks’ are at the core of the sys-
tem of primary variables, and how this system can be extended and modified, 
close to the surrounding natural perfection or chaos. 
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Abstract 
The purpose of this research is to present a straightforward and relatively effi-
cient method for solving scheduling problems. A new heuristic algorithm, 
with the objective of minimizing the makespan, is developed and presented in 
this paper for job shop scheduling problems (JSP). This method determines 
jobs’ orders for each machine. The assessment is based on the combination of 
dispatching rules e.g. the “Shortest Processing Time” of each operation, the 
“Earliest Due Date” of each job, the “Least Tardiness” of the operations in 
each sequence and the “First come First Serve” idea. Also, unlike most of the 
heuristic algorithms, due date for each job, prescribed by the user, is consi-
dered in finding the optimum schedule. A multitude of JSP problems with 
different features are scheduled based on this proposed algorithm. The models 
are also solved with Shifting Bottleneck algorithm, known as one of the most 
common and reliable heuristic methods. The result of comparison between 
the outcomes shows that when the number of jobs are less than or equal to the 
number of machines, the proposed algorithm concludes smaller, and better, 
makespan in a significantly lower computational time, which shows the supe-
riority of the suggested algorithm. In addition, for a category when the num-
ber of jobs are greater than the number of machines, the suggested algorithm 
generates more efficient results when the ratio of the number of jobs to the 
number of machines is less than 2.1. However, in this category for the men-
tioned ratio to be higher than 2.1, the smaller makespan could be generated by 
either of the methods, and the results do not follow any particular trend, 
hence, no general conclusions can be made for this case. 
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1. Introduction 

Job shop scheduling (JSP) has been one of the most critical subjects in optimiza-
tion and applied mathematics in the past few decades. Its vast applicability in the 
industry and all economic domains, and on the other hand its complexity, spe-
cifically for large-scale problems, make this topic very critical [1] [2]. JSP is an 
NP-hard problem due to its computational complicacy [3] [4]. Based on the 
scheduling literature, a relatively small problem consists of 10 jobs and 10 ma-
chines, proposed by Muth and Thompson [5], remained unsolved for more than 
a quarter of a century. Also, the fact that a scheduling problem included 15 jobs 
and 15 machines is considered unsolvable with the exact method nowadays, 
clearly shows the sophistication of this kind of problems [6] [7]. 

In job shop scheduling problems “n” jobs are needed to be processed in “m” 
machines. Each job includes some operations, each of which are required to be 
done by a particular machine. Each machine only can process one job at a time 
and cannot be interrupted [8]. The order of jobs in each machine is calculated by 
minimizing a specific character. In this paper, the completion time of all jobs, 
which is called makespan, is the objective [9]. 

Lots of algorithms and procedures have been proposed for efficiently sche-
duling JSP, which are divided into three major groups: 1) the exact algorithms; 
such as the one proposed by Giffler and Thompson (1960), and branch and 
bound by Lageweg, Lenstra and Rinnooy Kan (1977) [7]. This group results are 
surely optimum, but they are too time-consuming to reach, 2) heuristic proce-
dures; such as Palmer, Johnson and Shifting Bottleneck algorithms. They are not 
always derived optimum answer; some gives answers close to optimum. Com-
paring to two other groups, the computational time of algorithms in this catego-
ry is relatively small, 3) meta-heuristic Algorithms; such as genetic algorithm, 
and SA and TS algorithms by Fattahi, Mehrabad and Jolai [10]. This group does 
not guaranty the optimal answer, but present better results comparing to the 
second group. 

A new heuristic algorithm is presented in this paper for optimally scheduling 
JSP. This method is the result of combining different dispatching rules, so, its 
implementation is justly straightforward. It is also worth to mention that tardi-
ness is the difference between the completion time of each job (or operation) 
and the job’s related due date (or relative due date); in other words, the time that 
a job takes to be completed after its due date arrives is called tardiness. 

Due to the complexity of developing a reliable and efficient algorithm, some 
heuristic algorithms just consider operations’ processing times, ignoring the 
jobs’ due dates and others are designed based on the due dates and ignored the 
processing time. However, the new algorithm presented in this paper takes both 
factors into account. 

Furthermore, the new method can schedule both job shop and flow shop 
problems. In flow shop problems, all jobs should be operated in all machines in 
the same order. However, job shop scheduling is more general, and the sequence 
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of machines in each job may not follow a specific order [11]. So, unlike algo-
rithms like Johnson and NEH, which are only applicable and useful in flow shop 
problems, the proposed algorithm is capable of handling the job shop schedule 
as well. The new algorithm detail is described in the following section. 

Among all existing heuristic algorithms, Shifting Bottleneck algorithm is one 
of the most well-known and reliable ones. Therefore, to evaluate the reliability of 
the new algorithm, its results have been compared to the Shifting Bottleneck 
outcomes. Scheduling models for comparison of two algorithms are JSP prob-
lems. The comparison of outcomes is reported in the Results section. Finally, 
based on the observed results, conclusions will be made. 

2. Materials and Methods 
2.1. Proposed Algorithm Description 

The proposed algorithm has been developed based on some primary dispatching 
rules including “earliest due date” of each job, “shortest processing time” of each 
operation, “least tardiness” of operations in each sequence and “first come first 
serve” idea. The theory behind using these simple rules is to create a heuristic 
method with a straightforward procedure to apply to JSP problems, concluding 
to acceptable results. The efficiency of the results comparing to other heuristic 
algorithms, is also contemplated. Besides, the proposed method is designed in 
such a way that the due dates’ values required to be specified by the user. This 
advantage can equip users to affect their tendency in using specific due dates in 
the scheduling problems. 

Moreover, the sequence of operations and their related processing times for 
each job are needed to be imported. Besides, the user is required to clarify the 
machine used for each operation. The procedures’ details of the new algorithm 
are being described on a small example to explain the steps thoroughly. 

Table 1 shows a JSP example, consisting of 3 jobs and 3 machines. The 
processing times and due dates are also specified. Each job is defined in each row 
of the table. Each job consists of some operations, required to be done by a par-
ticular machine, which each of the operations has a deterministic processing 
time specified in the table. For instance, Job 1 has three operations; first opera-
tion processing time is 7 minutes (instead of minutes any unit of time can be 
used), and it needs to be done by machine 1 (M1). 

1) Step 1: The minimum value of all the provided due dates is selected and 
subtracted from the rest of the due dates; the result values are called relative due 
 
Table 1. Job shop scheduling example. 

 1st Operation 2nd Operation 3rd Operation Due Date 

Job 1 7 (M1) 8 (M3) 10 (M2) 26 

Job 2 6 (M3) 4 (M1) 12 (M2) 26 

Job 3 8 (M2) 8 (M1) 7 (M3) 27 
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dates. There are two reasons for doing so: 1st reason is that this way it is not ne-
cessary to deal with values of due dates, which might be significantly large. And 
the second reason is that urgency of the jobs can be compared more clearly. The 
results of the subtraction for the mentioned example in Table 1, is elaborated in 
Table 2. 

2) Step 2: The new algorithm is task wise, which means the priority is the first 
to be operated task in each job, which is derived from the primary rule “first 
come first serve”. In the mentioned example the priority is the column by the 
title of “1st Operation” (second column of the table). These are tasks, which are 
needed to be completed in their related jobs, for jobs to be able to go to the next 
stage. Based on the explained idea, the first tasks are considered first. If there is 
no ready time for an operation (best situation), its completion time will be equal 
to their related processing time. Therefore, for each operation, the tardiness will 
be equivalent to the operation’s relative due date, subtracted by the related com-
pletion time or the operation processing time. The procedure is presented in 
Table 3. The order of implementation will be based on the least tardiness such 
that, the operation with the lowest tardiness takes place first, and the operation 
with the most massive tardiness will take place at last. If there is a tie-breaker, 
the algorithm chooses the operation based on the job orders; for example in the 
mentioned case, between the 1st operation of job 1 and 1st operation of job 3, 
the priority for the algorithm is job 1. 

For clarification of the proposed method, execution of each step is demon-
strated in a diagram, similar to Gantt chart. Gantt chart is a bar chart used to 
demonstrate a project schedule, which in job shop scheduling problems it usual-
ly illustrates the order of jobs in each machine. However, in the diagrams used in 
this paper, called modified Gantt chart, the charts show the sequence of ma-
chines in each job (with consideration of their order and waiting time). Figure 1 
 
Table 2. New algorithm execution: step 1 (subtraction the value of the minimum due date 
from other ones). 

 Job 1 Job 2 Job 3 

Related Due Dates 26 26 27 

Minimum Due Date Value 26 26 26 

Result of Subtraction (Relative Due Dates) 0 0 1 

 
Table 3. New algorithm execution: step 2 (subtraction of the relative due dates from the 
completion time of each job till the end of the 1st Operations). 

 (Job 1, M1) (Job 2, M3) (Job 3, M2) 

The Least Completion Time of Each Job till 
the End of the 1st Operation 

7 6 8 

Related Relative Due Dates 0 0 1 

Result (Tardiness) 7 6 7 

Order of Implementation 2  1  3  
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Figure 1. Implementation of the 1st operations on modified Gantt chart. 

 
shows the implementation of step 2. 

3) Step 3: The procedure in this step is the same as step two, just the consi-
dered completion times are different. They are equal to the processing time of 
each job from the start of the job until the end of the current operation. For in-
stance, the completion time of job 1 after the end of task 2 is equal to the sum-
mation of 7 and 8 (7 + 8 = 15). Table 4 displays the detail of this step on the 
mentioned example. Also, the implementation of this step on modified Gantt 
chart is shown in Figure 2. 

4) Step 4: This step is also similar to the two previous ones, by considering the 
completion time of each job up to the end of the current operation. The proce-
dure detail and implementation on modified Gantt chart for this stage are de-
scribed in Table 5 and Figure 3 consequently. Based on the modified Gantt 
chart it is clear that the makespan is 33. 

It is also worth to mention that the completion time of all jobs (makespan) is 
equal to the completion time of all machines. As it is mentioned earlier the im-
plementation of the operations should be in a way to avoid confliction between 
the machines; in other words, the ready time for each operation and the 
processing time of the machine before starting the current operation are needed 
to be considered. So, for the mentioned instance, the sequence of jobs in each 
machine is derived as follow: 

a) M1: Job 1 − Job 2 − Job 3 
b) M2: Job 3 − Job 2 − Job 1 
c) M3: Job 2 − Job 1 − Job 3 
With the same procedure implemented to the mentioned example, any num-

ber of jobs and machines can be scheduled by the proposed algorithm. The algo-
rithm is also presented in the form of the flowchart in Figure 4. 

For a new algorithm to be evaluated, it is necessary to be compared with a 
well-known and reliable existing algorithm in various models. One of the most 
popular and acceptable heuristic algorithms, which is known to be superior 
among heuristic algorithms for JSP, is Shifting Bottleneck algorithm proposed 
by Adams, Egon and Zawack [8]. 

2.2. Shifting Bottleneck Algorithm 

This algorithm does not guaranty the optimum answer, but its results are so  
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Figure 2. Implementation of the 2nd operations on modified Gantt chart. 

 

 
Figure 3. Implementation of the 3rd operations on modified Gantt chart. 

 
Table 4. New algorithm execution: step 3 (subtraction of the relative due dates from the 
completion time of each job till the end of the 2nd Operations). 

 (Job 1, M3) (Job 2, M1) (Job 3, M1) 

The Least Completion Time of Each Job till 
the End of the 2nd Operations 

7 + 8 = 15 6 + 4 = 10 8 + 8 = 16 

Related Relative Due Dates 0 0 1 

Result (Tardiness) 15 10 15 

Order of Implementation 2  1  3  

 
promising, especially on benchmark problem sets from the literature, such that 
lots of researchers like, Dauzere-Peres and Lasserre (1993) and Schutten (1995), 
consider it as a fundamental algorithm for their work. However, the efficiency of 
this algorithm may be reduced by increament of the ratio of number of ma-
chines per number of jobs [12]. 

Shifting bottleneck algorithm approach is machine wise. It is solved a one- 
machine scheduling problem at a time for all not sequenced machines. Then 
based on the rank of scheduled machines, it sets the job sequence for the highest 
rank machine and reorders the job sequence for others. This method is chosen 
for comparison with the new proposed algorithm in this paper. 

3. Results 

The proposed and Shifting Bottleneck algorithms have been coded in MATLAB  
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Table 5. New algorithm execution: step 4 (subtraction of the relative due dates from the 
completion time of each job till the end of the 3rd operations). 

 (Job 1, M3) (Job 2, M1) (Job 3, M1) 

The Least Completion Time of Each Job till 
the End of the 3rd Operations 

7 + 8 + 10 = 25 6 + 4 +12 = 22 8 + 8 + 7 = 23 

Related Relative Due Dates 0 0 1 

Result (Tardiness) 25 22 22 

Order of Implementation 3  1  2  

 

 
Figure 4. Flow chart of the proposed algorithm. 

 
software and their results for different problems have been compared. The mod-
els considered for comparison could be divided to three major groups; those 
with equal number of jobs and machines, the ones with greater number of jobs 
than machines and visa versa. For each category, problems with different sizes, 
small, medium and large, have been examined. Each problem is solved 27 times 
with 27 different sets of randomly generated due dates. The results for all the 27 
sets, derived by the proposed method and Shifting Bottleneck algorithm, are 
compared. The comparison results are presented in three different tables. Table 
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6 is allocated to the models with the same number of jobs and machines. Table 7 
is associated with the models with the higher number of machines. Finally, the 
models with the higher number of jobs are presented in Table 8. 

Since the proposed algorithm gets advantage of the assigned due dates in the 
calculation of the makespan, changing them may result in varying the outcomes 
consequently. However, the Shifting Bottleneck algorithm does not consider the 
due dates provided by users, so its results will remain unchanged. In each model 
27 different cases, with a set of randomly generated due dates, have been scruti-
nized. For each model, the results derived by the new algorithm in all the cases 
have been compared to the ones derived from the Shifting Bottleneck algorithm, 

 
Table 6. Comparison of the models with equal number of jobs and machines. 

# Jobs* #Machines 
(Models) 

Percentage of the Times 
that the New Algorithm 
Gives a Lower Makespan 

in 27 Iterations (%) 

Makespan derived by 
Shifting Bottleneck 

Algorithm 

Makespan derived by the 
New Algorithm 

(Average of 27 Iteration 
Results) 

Average 
Computational Time 

for Shifting Bottleneck 
Algorithm 
(Second) 

Average Computational 
Time for New Algorithm 

(Second) 

3 * 3 88% 37 36.37037 0.061752 0.034239 

10 * 10 100% 182 123.4615 0.246965 0.040610 

18 * 18 100% 1489 1134.778 1.401769 0.728196 

26 * 26 100% 2659 1837.185 2.556270 0.762216 

35 * 35 100% 1753 1194.111 5.444633 0.842263 

60 * 60 100% 3465 2605.37 37.439974 0.926187 

73 * 73 100% 4143 3254.704 79.510854 1.146496 

80 * 80 100% 8982 7040.077 100.277707 1.230148 

100 * 100 100% 4143 3378.296 282.844018 1.662978 

140 * 140 100% 6063 4822 1129.604031 4.566296 

 
Table 7. Comparison of the models with higher number of machines. 

# Jobs 
*#Machines 

(Models) 

Percentage of the Times 
that the New Algorithm 
Gives a Lower Makespan 

in 27 Iterations (%) 

Makespan derived by 
Shifting Bottleneck 

Algorithm 

Makespan derived by the New 
Algorithm 

(Average of 27 Iteration Results) 

Average Computational 
Time for Shifting  

Bottleneck Algorithm 
(Second) 

Average Computational 
Time for New Algorithm 

(Second) 

3 * 5 100% 383 231 0.754168 0.700745 

4 * 10 100% 806 426.5926 0.984952 0.722524 

12 * 17 100% 1423 896.5926 1.362245 0.723708 

15 * 35 100% 4522 2318.704 2.888122 0.994421 

12 * 60 100% 4492 2260.741 8.422953 0.706465 

40 * 100 100% 12,593 7095.148 95.288633 0.994421 

50 * 70 100% 11,040 7723.593 42.723094 0.922766 

60 * 73 100% 7036 5024.593 66.844959 1.028324 

55 * 110 100% 8741 5331.481 207.232346 1.237143 

200 * 222 100% 17,837 13994.15 6768.341210 22.180659 
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Table 8. Comparison of the models with higher number of jobs. 

#Jobs*  
#Machines 
(Models) 

#Jobs/#  
Machines 

Percentage of the Times 
that the New Algorithm 

Gives a Lower Makespan in 
27 Iterations (%) 

Makespan derived by 
Shifting Bottleneck 

Algorithm 

Makespan derived by the New 
Algorithm 

(Average of 27 Iteration Results) 

Average 
Computational Time 

for Shifting Bottleneck 
Algorithm 
(Second) 

Average 
Computational 
Time for New 

Algorithm 
(Second) 

7 * 5 1.4 100% 196 176.3333 0.790561 0.721444 

40 * 30 1.33 100% 4153 3461.074 5.721949 0.734871 

200 * 100 2.0 93% 28710 28070.37 540.440321 3.694662 

20 * 10 2.0 77% 274 267.7778 0.441940 0.040610 

300 * 142 2.11 81% 42,551 41999.89 2450.178286 17.044220 

11 * 5 2.2 0% 1104 1276.111 0.813793 0.717175 

40 * 17 2.35 0% 4405 4785.222 1.725297 0.775433 

50 * 20 2.5 3% 2965 3101.222 2.459510 0.711970 

30 * 10 3.0 0% 1975 2316.667 0.441940 0.040610 

35 * 7 5 0% 1152 1344.481 0.954360 0.717637 

13 * 2 6.5 100% 211 211 0.765863 0.712924 

18 * 3 6 100% 378 378 0.837103 0.770999 

26 * 4 6.5 63% 388 392.2963 0.901294 0.743331 

 
but to save the space, for each model, just the average of the results of 27 states is 
presented here. The percentage of the number of the times that the new algo-
rithm produces lower makespan is also reported here. Therefore, for each group 
of problems two algorithms have been compared 270 times or more. The obser-
vation from the compared models is noted in this section. It is worth to mention 
that all the considered processing times are chosen randomly. 

As it is shown in Table 6, the new algorithm produces lower makespan in al-
most all iterations. Moreover, it is observed that by increasing the size of the 
problem in this category (number of jobs and machines) the difference, between 
the computational time generated by the two algorithms becomes significant. 
Growing the problem size is also concluded to the variation of makespans, pro-
duced by two methods for an identical problem, to be increased considerably. 

When the number of machines is higher than the number of jobs in all cases 
the derived makesspan by the proposed method is lower than the identical ones 
derived from the Shifting Bottleneck algorithm. The difference between the 
computational time is also increased by the increment of the size of the problem. 
The details are presented in Table 7. 

Eventually, for the category, in which the number of jobs is higher than the 
number of machines, there is no consistency observed in the results. Extensive 
testing problems have been scheduled in this case, which for the sake of saving 
the space only, 350 selected models have been presented in this paper. It is noted 
that when the ratio of the number of jobs to the number of machines, is less than 
or equal to 2.1, in almost all circumstances, the proposed algorithm produces 
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lower makespan, in a smaller computational time. However, when the men-
tioned ratio is higher than 2.2, the observed results do not have solidarity, which 
means in some situations the proposed algorithm, and in some other cases 
Shifting Bottleneck algorithm, generates lower makespan. 

4. Conclusions 

A new algorithm for scheduling job shop problems has been proposed in this ar-
ticle. This algorithm is based on the combination of some primary dispatching 
rules like the “Shortest Processing Time” of each operation, the “Earliest Due 
Date” of each job, the “Least Tardiness” of the operations in each sequence and 
the “First come First Serve” idea. Straightforward procedures and ease of im-
plementation are two of the most significant advantages of the proposed me-
thod. The flowchart and the execution steps have been described in previous 
sections in detail. 

For numerical evaluation and verification of the suggested method, its pro-
duced results have been compared to the outcomes derived by the Shifting Bot-
tleneck algorithm for enormous problems. Results comparison is presented in 
this paper for more than 30 models with almost 900 different iterations (using 
random due dates). 

Based on the compared models, it is observed that when the number of jobs is 
less than or equal to the number of machines, the proposed algorithm produces 
lower makespan in a significantly smaller computational time, which shows the 
superiority of the proposed method. Also, the larger the size of the problem, the 
more the difference between the identical makespans generated by two methods. 
Besides, in the mentioned categories, in the models with a larger size for an 
identical problem, the computational time by the new method is remarkably less 
than the computational time by the Shifting Bottleneck algorithm. 

It is also observed that when the ratio of the number of jobs to the number of 
machines, is less than 2.1, the proposed algorithm produces lower makespan in a 
smaller computational time. But, when the mentioned ratio becomes greater 
than 2.1, the smaller makespan could be generated by either of the methods, and 
the results do not follow any particular trend, hence, no general conclusions can 
be made for this case. 

It is also perceived that for all the tested cases, the computational period of the 
proposed method is lower than the computational time of the Shifting Bottle-
neck algorithm. 
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Abstract 
Some results in growth theory based on the Cobb-Douglas production func-
tion model are generalized when the production function is chosen to be the 
Constant Elasticity of Substitution (CES) function. Such a generalization is of 
considerable interest because it is known that the Cobb-Douglas function 
cannot be used as a suitable model for some production technologies (like the 
US economy and climate changes). It is shown that in the steady state the 
growth rate of the output is equal to the Solow residual and that the capital 
deepening term becomes zero. The CES function is a homogeneous function 
of degree two and a result is obtained on the wage of a worker using the Eu-
ler’s theorem. 
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1. Introduction 

In growth theory, a “production function” is taken to be a mathematical 
expression that is used to model a production technology with distinct inputs 
and outputs. Several types of production functions have been proposed in the 
past based on either empirical or theoretical considerations (for general surveys, 
see e.g., [1] [2]). For example, the Cobb-Douglas production function ([3]) is 
widely used as a simple model to study economic growth in spite of some of its 
limitations (that we shall discuss later). 

The CES (“Constant Elasticity of Substitution”) function was introduced by 
Solow ([4]), and later expounded by Arrow et al. ([5]) to synthesize several types 
of production functions. The CES function has been applied extensively to study 
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economic growth (e.g., [6]-[17]). It has also applications in high energy physics 
[18]. Many generalizations of the format of the CES function (including the 
multi-input case) have been proposed, for details see e.g. [6] [7]. The shape of 
the frontier of the CES function is also of significant interest in economic 
analysis and its connection with the differential geometry of hyperspaces has 
been studied. (e.g., [19] [20] [21]). 

The elasticity of substitution between any two input variables in a production 
function measures how easily one variable can be substituted for the other 
variable and it measures the curvature of the isoquant (the concept was first 
introduced by Hicks [22]). So, an elasticity of substitution equal to 0 indicates no 
substitution between the input variables can be possible and an elasticity of 
substitution equal to infinity indicates the perfect substitution. More formally, 
the elasticity of substitution between two factors of production is an index that 
measures the percentage of response of the relative marginal products of the two 
factors to a percentage of change in the ratio of the two quantities. In order to 
make the paper self-contained, we shall briefly review in Appendix I the formal 
definition of the elasticity of substitution for the case of a production function 
with n input variables. 

For the Cobb-Douglas function the elasticity of substitution between the input 
variables is always equal to 1 (for a proof see, e.g., [7]) and this fact restricts its 
use as a suitable production model in several applications, as claimed by many 
authors. For example, Antrás [23] has shown that the US economy is not 
amenable to the elasticity of substitution being taken as 1. Also Werf [24] has 
shown that it is not suitable to take the Cobb-Douglas function as a production 
function for modeling climate change policies. Furthermore, Young [25] has 
shown that the elasticity of substitution for U.S. aggregate and of most industries 
cannot be equal to 1 and it is estimated to be less than 0.620; thus it follows that 
the Cobb-Douglas production model (whose elasticity of substitution is fixed to 
be 1) is not suitable for such applications. 

The CES function has a constant elasticity of substitution (as the name suggests) 
and it can have any pre-determined value as its elasticity of sub-stitution (as we 
shall show later). Thus, it offers a wider flexibility than the Cobb-Douglas function 
and is still computationally tractable, as remarked in ([6], p. 54). These reasons 
have partially motivated us to extend some results of the neoclassical growth 
theory based on the Cobb-Douglas function by using the more general setting of 
the CES production function. 

We now briefly review some definitions and results. 
Definition 1 ([5]) The Constant Elasticity of Substitution (CES) production 

function for the three factors-capital K, labor L and the total factor of 
productivity F, is given by 

( )
1

   with 1Y F K Lγ γ γα β α β= + + =                    (1) 

where Y is the output and , ,K L F  are smooth functions of time t; α  is a 
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certain constant, called the share parameter between the capital and labor; and 
γ  is another constant, called the substitution parameter. 

The following result indicates that the CES production function is a 
generalization of the Cobb-Douglas function: 

Proposition 1 ([5]) When 0γ → , the CES production function (1) 
approaches the Cobb-Douglas production function 

Y FK Lα β=                         (2) 

where ,α β  are constants such that 1α β+ = . 
It is known that the elasticity of substitution of the CES production function 

as defined by (1), is equal to ( )1 1 γ−  ([5], p. 230) when 1γ ≠ , and using this 
result we can easily construct (as indicated in Example 1) an infinite family of 
CES production functions each of whose members has the same elasticity of 
substitution equal to any given nonzero number. 

Example 1 Suppose we want to construct a CES production function whose 
elasticity of substitution,  , is equal to, say, 2. Solving the equation 

( )1 1 2γ− =                            (3) 

gives 0.5γ = . Substituting 0.5γ =  into (1) and taking F to be any smooth 
function of t, and by varying α , we get an infinite family of CES production 
functions given by 

( ){ }2
1Y F K Lα α= + −                      (4) 

where 0 1α< <  and each member of the family has the same elasticity of 
substitution equal to 2. Similarly, if 1= , then by solving the equation  
( )1 1 1γ− =  we get 0γ =  and this corresponds to the Cobb-Douglas  

production function (compare with Proposition 1). 
In defining the CES production function, in the form given by (1), many 

authors take F to be a parameter (e.g., [5], p. 230; [7], p. 397; [26], p. 397). 
However, we shall consider here a more general model where F is assumed to be 
a function of time. Such a model would be able to handle some situations that 
cannot be accommodated by a CES function where F is a parameter. For 
example, the output of a factory may increase at a time when the production 
manager is replaced by a more efficient one (i.e. when F increases) even when 
there are no increases in investments in capital and labor. We note that ([6], p. 
54) takes F to be a function of time, like us. Furthermore we shall exclude the 
cases when the output is either identically zero, or a negative number as these 
cases are not of interest. Thus we make the following assumption: 

Assumption 1 We assume in (1) that F is a function of time and that 0F > . 
As remarked in ([27], p. 107), the wages and salaries in USA and many other 

countries form about 70 percent of the national income. Consequently, the value 
of 0.3α =  has been used in ([27], p. 107-109) as the share of the capital for the 
Cobb-Douglas production function model (2) to estimate the growth rate for a 
number of countries. However, such an estimate for the growth rate of countries 
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based solely on a Cobb-Douglas production function model may not be realistic 
because the Cobb-Douglas production function (2) has the unitary elasticity of 
substitution and as [23] has shown, it is not suitable to model the US economy 
with the elasticity of substitution equal to 1 (also, it is not known whether we can 
realistically assume that the elasticity of substitution is 1 for all the other 
countries involved in that study). So, it would be of significant interest to 
estimate the economic growth for various countries using the same data but for 
a more general setting involving the CES production function model for a range 
of values of the parameter γ  in (1) with 0.3α = , and then to estimate an 
optimal value of γ  to fit the data set. 

The structure of the rest of the paper is as follows. In Section 2 we obtain a 
growth equation for the CES production function and define the (generalized) 
Solow residual and the corresponding capital deepening term. In Section 3 we 
obtain some bounds for the (generalized) Solow residual and the capital 
deepening term. In Section 4 we investigate the growth rates corresponding to 
the CES production function. In Section 5 we investigate the homogeneous 
property of the CES production function. Section 6 gives our conclusions. 
Appendix I reviews the definition of the elasticity of substitution, The proofs of 
all the results are given in the Appendix II. 

2. Growth Equation for CES Production Model 

In this section, we generalize some results obtained earlier in the setting of the 
Cobb-Douglas production model (e.g., as in [27], Chap. 5) to the case of the CES 
production function. First, we shall derive a growth equation corresponding to 
the CES production function. Continuing with the notation introduced in 
Definition 1, we now define the variables y and k given by 

,  y Y L k K L= =                     (5) 

where we assume that L is nonzero (for, if 0L = , the CES production function 
takes the simple form Y FK=  and that is a special case of the Cobb-Douglas 
function with 1α =  and 0β = ; and so we omit this case). Thus, y and k are 
well-defined and y represents the output per worker (i.e., per capita output) and 
k is the capital stock per worker. Also, L cannot be negative because we have not 
given any interpretation to negative labor. So, we shall make the following 
assumption: 

Assumption 2 
We assume that 0L > . 
We note that ([6], p. 36) also makes a similar assumption. 
From (1), dividing both sides of the equation by L, and using (5), we get 

( )
1

y F k γ γα β= +                        (6) 

Log differentiating both sides of (6) with respect to t and denoting y y  by G, 
we get the following growth equation when the CES production function is 
taken as the production model: 

https://doi.org/10.4236/jamp.2017.511178


P. Bhattacharya 
 

 

DOI: 10.4236/jamp.2017.511178 2187 Journal of Applied Mathematics and Physics 
 

1F k kG
F k

γ

γ

α
α β

−

= +
+




                 (7) 

where ⋅  denotes differentiation with respect t. Both the terms on the right hand 
side of (7) are well-defined because their denominators are nonzero (F is 
nonzero by the Assumption 1, and ( )k γα β+  is nonzero since otherwise it will 
follow from (6) that 0y =  and we shall exclude this trivial case when the 
output is identically equal to zero); also G is well-defined (since otherwise from 
the expression G y y=  , it will follow that 0y = ). 

Taking the limit as 0γ →  in (7) and using Proposition 1, we can easily 
obtain the growth equation corresponding to the Cobb-Douglas production 
function (2) and the resulting equation matches with the corresponding 
Equation (5.3) derived in ([27], p. 106). 

Definition 2 For the CES production function, the expression 

G y y=                                (8) 

is called the growth rate of the output per worker, and the growth rate of the total 
factor of productivity, F F , will be called the Solow residual corresponding to 
the CES production function. 

Using (7), the Solow residual can be expressed as: 

F G D
F
= −


                            (9) 

where 
1k kD

k

γ

γ

α
α β

−

=
+



                           (10) 

is called the capital deepening term corresponding to the CES production 
function. From (9), we observe that G, the growth rate of the output per worker, 
is the sum of two components: (i) the Solow residual, and (ii) the capital 
deepening component D (we note that a similar observation is made for the 
Cobb-Douglas production function (2), in ([27], p. 106)). 

Next, we consider the form of the growth equation (7) in the steady state. 
Proposition 2 (i) When a steady state of production is reached, the growth 

rate of the output per worker is equal to the Solow residual, and the capital 
deepening term is zero. As a partial converse, if the production is not entirely 
labor intensive, a steady state of production is reached when the growth rate of 
the output per worker is equal to the Solow residual (or equivalently when the 
capital deepening term is zero). 

(ii) The total factor of productivity is in a steady state if and only if the growth 
rate of the output per worker is equal to the capital deepening term. 

3. Estimates for Solow Residual 

We now obtain some bounds for the capital deepening term D and the Solow 
residual. 
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Proposition 3 For the CES production function given by (6), if the ratio of the 
share parameters is less than k γ , i.e. if 

( )1k γβ α>                       (11) 

then (i) the capital deepening term is less than the growth rate of capital per 
worker, and 

(ii) the Solow residual is greater than the difference between the growth rates 
per worker, of the output and the capital. 

Corollary 1 (i) When γ →∞ , the estimates given in Proposition 3 hold for 
any 1k > . 

(ii) When 0γ → , (i.e., when the production function is approaching the 
Cobb-Douglas function (2), see Proposition 1), the estimates given in 
Proposition 3 hold for any 1 2α > . 

We now give some examples to illustrate what happens to the inequality (11) 
as we progressively increase the value of γ . 

Example 2 (i) Suppose, as an illustration, we choose 0.3α =  and so 0.7β = . 
In Figure 1, we plot the values of ( )1:u γβ α=  where the horizontal axis 
corresponds to γ  and the vertical axis corresponds to u. We know from 
Corollary 1 (i) that as γ  becomes larger and larger, the value of u would tend 
to 1 and this property is being exhibited in Figure 1. We mention that similar 
illustrations can also be given by taking other values of α . 

(ii) If 0.5α =  (that is, when the capital and labor are shared equally in the 
CES production model), the condition (11) reduces to 1k >  and so the 
estimates described in Proposition 3 hold for any 1k >  and for any value of γ . 
In other words, when the distributions of resources between the capital and 
labor in the production are equal and the capital stock per worker is greater than 
one, the results of Proposition 3 hold for any value of γ . 

Now we obtain further interpretations of the estimates that were given in 
Proposition 3. 

Proposition 4 For any set of values of , ,α β γ  and k satisfying the condition 
 

 
Figure 1. Plot of ( )1u γβ α=  against γ . 
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(11), the estimates given in Proposition 3 would continue to hold when we keep 
increasing the value of either, α  or, k. 

4. Marginal Rate of Substitution 

For any arbitrary production function with output Y and the factors of 
production, K, L and F, the marginal products with respect to the capital, labor 
and the factor of productively are defined as Y K∂ ∂ , Y L∂ ∂  and Y F∂ ∂  
respectively. Also, the marginal rate of substitution (MRS) is defined as the ratio 
of the marginal product with respect to the capital by the marginal product with 
respect to labor, i.e., 

( ) ( )MRS Y K Y L= ∂ ∂ ∂ ∂                     (12) 

We now consider the growth of the marginal products with respect to the 
three factors appearing in the CES production function. 

Proposition 5 
For the CES production function, the marginal products with respect to all the 

three factors of production are increasing functions of time. Further, the 
marginal rate of substitution (MRS) is given by 

( ) 1MRS k γα β −=                             (13) 

We note that (13) is well defined since by Assumption 2 we have 0L ≠  and 
so 0β ≠ . It follows from (13) that the MRS is independent of both the total 
factor of productivity and the output per worker. Also, for 1γ > , (13) implies 
that MRS→+∞  as k →+∞ . For 1γ < , (13) implies that MRS 0→  as 
k →+∞ . 

For the Cobb-Douglas function (2), the marginal rate of substitution can be 
easily obtained by taking the limit as 0γ →  in (13) and using Proposition 1; 
and the result thus obtained matches with the corresponding expression in ([27], 
p. 107). 

5. Homogeneity of CES Function and Wages 

We recall the standard definition that a function ( )1 2, , , nY f x x x=   of n in-
dependent variables 1, , nx x  is a homogenous function of degree k if 

( ) ( )1 2 1 2, , , , , ,k
n nf tx tx tx t f x x x=   

for any positive scalar t. A classical theorem due to L. Euler (1703-1783) on 
homogeneous functions (see, e.g., [28] for a proof) states that if  

( )1 2, , , nY f x x x=   is a homogeneous function of degree k with continuous 
partial derivatives then 

( )1 2
1

, , ,
n

i n
i i

fx kf x x x
x=

∂
=

∂∑                     (14) 

Now, it is easy to see that the CES production function, given by (1), is a 
homogeneous function of degree 2 in the variables K, L and F. So, from (14) 
with 2, 3k n= =  and 1 2 3, ,x K x L x F= = =  and writing Y for f, we have 
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2Y Y YK L F Y
K L F
∂ ∂ ∂

+ + =
∂ ∂ ∂

                 (15) 

Using (15) we now obtain a result for the wage of a worker in the context of 
the CES production function model (the result is closely along the lines of ([29], 
p. 7), Equation (15)): 

Proposition 6 Assume that in the short run the relative price of the factors 
adjust so that capital and labor are fully employed. Then, for the CES production 
function, the wage of a worker is equal to the balance remaining from the output 
per worker when we spend the rental price of capital times the capital per 
worker (assuming that there is no wage differentiation, i.e. all the workers 
receive the same wages). 

We remark that if F is a constant (in temporary contravention of Assumption 
1), then the degree of homogeneity of the CES function is unity, and the Euler’s 
theorem on homogeneous function (14) now gives (compare with (15)) 

Y YK L Y
K L
∂ ∂

+ =
∂ ∂

                   (16) 

and it is easy to verify that the statement of Proposition 6 still holds for this case 
by rearranging slightly the proof of Proposition 6. 

6. Conclusion 

We have extended some results of the neoclassical growth theory when the 
production function is taken to be the CES function instead of the Cobb- 
Douglas function. Such generalizations are of considerable interest because the 
Cobb-Douglas function is not suitable for some application areas because its 
elasticity of substation has always the fixed value 1 whereas a CES function can 
be designed to have any pre-determined value as its elasticity of substitution. We 
assume that the total factor of productivity is a variable instead of being a 
parameter and under this assumption the CES production function becomes a 
homogenous function of degree two, and so it gives increasing returns to scale. 
When the total factor of productivity is steady, we show that the growth rate is 
equal to the Solow residual. We obtain some estimates of the Solow residual and 
the capital deepening term. We show that when the production is not entirely 
capital-intensive, an increase in capital implies an increase in the ratio of the 
production rate. We have considered here a CES production function where the 
input variables are the capital, labor and the total factor of productivity; and it 
would be of interest to extend our results to the more general cases of several 
input variables and also several output variables. 
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APPENDIX I: Elasticity of Substitution-Review 

We briefly review here the definition of the elasticity of substitution (for further 
details see, e.g., [6] [7]). Consider a general production function with output Y 
given by 

( )1 2, , , nY f x x x=                         (17) 

where ix  (1 i n≤ ≤ ) are some independent variables and f is an arbitrary 
function that is differentiable partially with respect to each of the variables ix . 
The elasticity of substitution ijσ  between any two distinct variables ix  and 

jx  measures the percentage of response of the relative marginal products of the 
two factors to a percentage of change in the ratio of the two quantities. It is 
defined as (e.g., [29], p. 509): 

( )
( ) ( )( )
log

log
e i j

ij
e i j

x x

f x f x
σ

∂
=
∂ ∂ ∂ ∂ ∂

                 (18) 

along the curve ( )1 2, , , nf x x x λ=  where λ  is a constant; the logarithm 
being taken to the base e (i.e., the natural logarithm). For the CES production 
function, (17) takes the form given by (1) with 3n =  and 1 2 3, ,x x x  to be the 
variables , ,K L F  respectively. For the CES function, it can be shown ([5]) that 

( )1 1ijσ γ= −                          (19) 

when we take ,i j  to be any two of the variables , ,K L F . 

APPENDIX II: Proofs 

1) Proof of Proposition 2: 
(i) In the steady state, 0k = , and we get from (7) that G F F=  . Also, when 

0k = , we get from (10) that 0D = . 
For the partial converse, we note that if the growth rate is equal to the rate of 

the total factor of productivity, i.e. if G F F=  , then we get from (7) and (10) 
that 

1

    0k kD
k

γ

γ

α
α β

−

= =
+



                       (20) 

and (20) implies that 0k =  because both α  and k are nonzero by our 
assumptions; also ( )k γα β+  is nonzero since otherwise from (6) we would get 

0y =  and this would imply from (5) that 0Y = , a trivial case. 
(ii) It follows from (9) that the total factor of productivity is in a steady state 

(i.e., 0F = ) if and only if G D= . 
2) Proof of Proposition 3: 
From (10) on expanding by Taylor’s theorem and stopping after one term, we 

have as a linear approximation 
1

1   1k kD
k kk kγ γ

β β
α α

−
   = + ≈ −   
   

 

                (21) 

provided ( ) 1k γβ α < ; or, equivalently, provided (11) holds (here ≈  denotes 
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approximately). Now, the condition ( ) 1k γβ α <  can be expressed as: 

0 1 1
k γ

β
α

 < − < 
 

                     (22) 

Thus, from (21) and (22) we get 

D k k≤                             (23) 

provided (11) holds. This proves (i). 
(We remark that if instead of a linear approximation, we had taken a second 

degree approximation from (10), i.e. had stopped after the second term in the 
Taylor’s expansion (21), then it is easy to verify that we would obtain the same 
result (23) provided (11) holds; we omit the details.) 

Using (9) and (23) we get 

    F kG
F k

 
≥ − 
 




                        (24) 

provided (11) holds. This proves (ii). 
3) Proof of Corollary 1: 
(i) When γ →∞ , we have ( )1 1γβ α →  for a fixed value of α , and the 

inequality (11) reduces to 1k > . (ii) When 0γ → , we have that 1k γ →  and 
(11) gives α β> , i.e., 1 2α >  since 1α β+ = . 

4) Proof of Proposition 4: 
If 1 2,α α  are any two non-zero values, then it is easy to see that for a given 

non-zero value of γ , we have 2 1α α>  implies that 
1 1

1 2

1 2

1 1
γ γ

α α
α α

   − −
>   

   
                      (25) 

It follows from (25) that for any 2 1α α> , 
1 1

1 2

1 2

1 1k k
γ γ

α α
α α

   − −
> ⇒ >   
   

                  (26) 

So, once the inequality (11) holds for a certain set of values of α , k, and γ , 
the estimates (23)-(24) in the statement of Proposition 3 would continue to hold 
if we keep on increasing the value of α  while keeping γ  fixed. Further, if we 
increase the value of k, the estimates (23)-(24) would still hold. 

5) Proof of Proposition 5: 
From (1) we get after some simplifications 

( )( ) ( )1 1:KR Y K F K Y F k yγ γγ γα α− −= ∂ ∂ = =             (27) 

If the production is not entirely labor intensive, then α  and K are not 
identically zero (also 0F >  by the Assumption 1); so it follows from (27) that 

0KR > ; thus the production rate with respect to capital is increasing. Similarly, 

( )( )1 1:LR Y L F L Y F yγγ γ γβ β− −= ∂ ∂ = =              (28) 

By the Assumption 2, the production is not entirely capital-intensive, and so 
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0β ≠  and 0L ≠ . We thus have from (28) that : 0LR Y L= ∂ ∂ > ; thus the 
production rate with respect to labor is increasing (note that by the Assumption 
2, 0L ≠ ). 

Again, we get that 

: 0FR Y F Y F= ∂ ∂ = >                         (29) 

since otherwise 0Y = , a trivial case that we exclude (recall that 0F >  by the 
Assumption 1). Thus the production rate with respect to the total factor of 
productivity is also increasing. From (27) and (28) we now obtain 

( ) 1
K LR R k γα β −=                      (30) 

and this proves (13). 
6) Proof of Proposition 6: 
Assuming that the capital and labor are fully employed, in the short run the 

wage is given by LR Y L= ∂ ∂ . Also, we have 

  and  KR Y K Y F Y F= ∂ ∂ ∂ ∂ =                  (31) 

So, (15) can be written as 

L KLR KR Y+ =                      (32) 

and rewriting (32) by using (5), we get 

( ) ( )wage   K KY KR L y kR= − = −                 (33) 

and this implies that in the short run, the wage of a worker is equal to the 
balance remaining from the output per worker when we spend the rental price of 
capital times the capital per worker since y is the output per worker and KR  is 
the rental price and k is the capital stock per worker. This proves the result. 
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Abstract 
In this paper, we used an interpolation function to derive a Numerical Inte-
grator that can be used for solving first order Initial Value Problems in Or-
dinary Differential Equation. The numerical quality of the Integrator has 
been analyzed to authenticate the reliability of the new method. The numer-
ical test showed that the finite difference methods developed possess the 
same monotonic properties with the analytic solution of the sampled Initial 
Value Problems. 
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1. Introduction 

Many Scholars have derived various Numerical Integrators using various tech-
niques including interpolating functions that include the work of [1] [2] [3] [4] 
among others. All these authors have employed some analytically continuous 
functions to create numerically stable Integrators that can be used for ordinary 
differential equations. In this work we use an analytically differentiable interpo-
lating function to create a one-step Finite Difference scheme for solving Initial 
Value Problems of first order Ordinary Differential Equations, and we are con-
sidering the concept of Nature, of Solutions of first order Ordinary Differential 
Equations to assume a theoretical solution and use that assumption to derive a 
discrete model that can be applied to some Ordinary differential equations. 

Definition 1 [5] 
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Consider the nth-order ordinary differential equation 

( )1, , , , 0nF x y y y =                    (1) 

where F is a real function of its (n + 2) arguments 1, , , ., nx y y y  
1) Let f be a real function defined for all x in a real interval I and having an 

nth derivative (and hence also all lower ordered derivatives) for all Ix∈ . The 
function f is called an explicit solution of the differential Equation (1) on interval 
I if it fulfills the following two requirements. 

( ) ( ) ( )( )1, , , , nF x f x f x f x                  (2) 

is defined for all Ix∈ , and 

( ) ( ) ( )( )1, , , , 0nF x f x f x f x =                 (3) 

for all Ix∈ . 
That is, the substitution of ( )f x  and its various derivatives for y and its 

corresponding derivatives. 
2) A relation ( ), 0g x y =  is called an implicit solution of (1) if this relation 

defines at least one real function f of the variable x on an internal I such that this 
function is an explicit solution of (1) on this interval. 

3) Both explicit solutions and implicit solutions will usually be called simply 
Solutions. 

We now consider the geometric significance of differential equations and their 
solutions. We first recall that a real function F(x) may be represented geometri-
cally by a Curve ( )y F x=  in the xy plane and that the value of the derivative 
of F at x, ( )F x′ , may be interpreted as the slope of the curve ( )y F x=  at x. 

2. Formulation of the Interpolating Function 

Consider the initial value problem of the IVP 

( ) ( ) ( )0, , ,y x f x y y x η′ = =                   (4) 

where η  is a discrete variables in the interval [ ]1,n nx x + . In this we consider the 
method based on local representation of the theoretical solution ( )y x . 

Let us assume that the theoretical solution ( )y x  to the initial value problem 4) 
can be locally represented in the interval [ ]1 1, ,n nx x n+ ≥  by the non-polynomial 
interpolating function given by: 

( ) 2 2
1 2 3 4e xF x x xα α α α−= + + +                 (5) 

where 1 2,α α  and 3α  are real undetermined coefficients, and 4α  is a con-
stant. 

3. Derivation of the Integrator 

We assumed that the theoretical solution ( )y x  to the initial value problem (5) 
can be locally represented in the interval [ ]1 0, ,n nx x n+ ≥  by the non-polynomial 
interpolating function; 
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( ) 2 2
1 2 3 4e xF x x xα α α α−= + + +              (6) 

where 1 2,α α  and 3α  are real undetermined coefficients, and 4α  is a con-
stant. 

We shall assume ny  is a numerical estimate to the theoretical solution 
( )y x  and ( ),n n nf f x y= . 
We define mesh points as follows: 

, 0,1, 2,nx a nh n= + =                    (7) 

We impose the following constraints on the interpolating function (6) in or-
der to get the undetermined coefficients: 

1) The interpolating function must coincide with the theoretical solution at 

nx x=  and 1nx x += . Hence we required that 

( ) 2 2
1 2 3 4e nx

n n nF x x xα α α α−= + + +                 (8) 

( ) 12 2
1 1 2 1 3 1 4e nx

n n nF x x xα α α α+−
+ + += + + +               (9) 

2) The derivatives of the interpolating function are required to coincide with 
the differential equation as well as its first, second, and third derivatives with re-
spect to x at nx x= . 

We denote the i-th derivatives of ( ),f x y  with respect to x with ( )if  such 
that 

( ) ( ) ( )1 2 1 3 2, , ,n n n n n nF x f F x f F x f= = =                (10) 

This implies that, 
2

1 2 32 e 2nx
n nf xα α α−= − + +                  (11) 

2
1

1
24 e 2nx

nf α α−= +                       (12) 

2
1

2 8 e nx
nf α −= −                         (13) 

Solving for 1 2,α α  and 3α  from Equations (11) (12) and (13), we have 

2
1

21 e
8

nx
nfα = −                         (14) 

1 2
2

1 1
2 2n nf fα  = + 
 

                      (15) 

and 

2 1 2
3

1 1
4 2n n n n nf f f f xα = − −   

   
   

+               (16) 

Since ( ) ( )1 1n nF x y x+ +=  and ( ) ( )n nF x y x=  
Implies that ( )1 1n ny x y+ +=  and ( )n ny x y=  

( ) ( )1 1n n n nF x F x y y+ +− = −                   (17) 

Then we shall have from (8) and (9) into (17) 

[ ]12 2 2 2
1 1 2 1 3 1e en nx x

n n n n n ny y x x x xα α α+− −
+ + +   − = − + − + −      (18) 

Recall that nx a nh= + , ( )1 1nx a n h+ = + +  with 0,1,2,n =   
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Substitute (14) (15) (16), into (18), and simplify we have the integrator 

( )2 2 1 2 2 2
1

1 1 1 1e 1
8 2 2 4

h
n n n n n n ny y f f f h f f h−
+

   = − − + + + −   
   

    (19) 

for solution of the first order differential equation. 

4. Properties of the Integration Method 
4.1. Qualitative Properties of the Scheme 
4.1.1. Definition 2 [6] 
Define any algorithm for solving differential equations in which the approxima-
tion 1ny +  to the solution at the point 1nx +  can be calculated if only ,n nx y  
and h are known as one-step method. It is a common practice to write the func-
tional dependence, 1ny + , on the quantities ,n nx y  and h in the form: 

( )1 , ;n n n ny y h x y h+ = + ∅                    (20) 

where ( ), ;n nx y h∅  is the increment function. 
The numerical integrator can be expressed as a one-step method in the form 

(20) above thus: 

From (19) i.e. ( )2 2 1 2 2 2
1

1 1 1 1e 1
8 2 2 4

h
n n n n n n ny y f f f h f f h−
+

   = − − + + + −   
   

 

Expanding 2e h−  into the fourth term, we have 

( ) ( ) ( )2 3
2

0

2 2 2
e 1 2

! 2! 3!

r
h

r

h h h
h

r
∞−
=

−
= = − + − +∑ 

          (21) 

Put (21) into (19), then expand 

1 1 2 2 2 3
1

1 1 1
2 2 6n n n n n n n n ny y f h f x h f h f x h f h+ = + + + + +            (22) 

1 2 21 1
2 6n n n n n ny h f f x h f x h    = + + + + +    

    
           (23) 

Let 1
2nA x h= +  and 21

6nB x h= +                (24) 

Thus our integrator (19) can be written compactly as 

{ }1 2
1n n n n ny y h f Af Bf+ = + + +                     (25) 

Which is in the form 

( )1 , ;n n n ny y h x y h+ = + ∅                     (26) 

where ( ) { }1 2, ;n n n n nx y h f Af Bf∅ = + +               (27) 

4.1.2. Theorem 1. [7] 
Let the increment function of the method defined by (25) be continuous as a 
function of its arguments in the region defined by 

[ ] ( ), , , ; 0 ,ox a b y h h∈ ∈ −∞ ∞ ≤ ≤  

where 0oh > , and let there exists a constant L  such that 
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( ) ( )* *, ; , ;n n n n n nx y h x y h L y y∅ −∅ ≤ −          (28) 

for all ( ), ;n nx y h  and ( )*, ;n nx y h  in the region just defined. Then the relation 
(28) is the Lipscitz condition and it is the necessary and sufficient condition for 
the convergence of our method (19). 

We shall proof that (19) satisfies (28) in line with the established Fatunla’s 
theorem. 

4.1.3. Proof of Convegence of the Integrator 
The increment function ( ), ;n nx y h∅  can be written in the form 

( ) ( ) ( ) ( ) ( ) ( ){ }1 2, ; , , ,n n n n n n n nx y h f x y Af x y Bf x y∅ = + +      (29) 

where A and B are constants defined below. 

1
2nA x h= +  

and 

21
6nB x h= +  

Consider Equation (29), we can also write 

( ) ( ) ( ) ( ) ( ) ( ){ }1 2* * * *, ; , , ,n n n n n n n nx y h f x y Af x y Bf x y∅ = + +  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*

1 1* *

2 2* *

, ; , ;

, , , ,

, ,

n n n n

n n n n n n n n

n n n n

x y h x y h

f x y f x y A f x y f x y

B f x y f x y

∅ −∅

 = − + − 

 + − 

      (30) 

Let y  be defined as a point in the interior of the interval whose points are 
y  and *y , applying mean value theorem, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

* *

1
1 1* *

2
2 2* *

,
, ,

,
, ,

,
and , ,

n
n n n n n n

n

n
n n n n n n

n

n
n n n n n n

n

f x
f x y f x y y y

y

f x
f x y f x y y y

y

y

y

yf x
f x y f x y y y

y

∂
− = − ∂ 

∂ − = − 
∂ 

∂ − = −
∂ 

      (31) 

We define 

( )
( )

( )

( ) ( )

( )

( ) ( )

,

1

1 ,

2

2 ,

,
sup

,
sup

,
and sup

n n

n n

n n

n n
x y D

n

n n
x y D

n

n n
x y D

n

f x y
L

y

f x y
L

y

f x y
L

y

∈

∈

∈

∂
= ∂ 

∂ = 
∂ 

∂ =
∂ 

 

Therefore 
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( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

*

1
* *

2
*

* * *
1 2

, ; , ;

, ,
, ,

,
,

n n n n

n n
n n n n

n n

n
n n

n

n n n n n n

x y h x y h

f x y f x y
y y A y y

y y

f x y
B y y

y

L y y AL y y BL y y

∅ −∅

 ∂ ∂ = +  
∂ ∂  

 ∂ +  
∂  

= − + − + −

          (32) 

Taking the absolute value of both sides 

( ) ( )

( ) ( ) ( )

*

* * *
1 2

*
1 2

, ; , ;n n n n

n n n n n n

x y h x y h

L y y AL y y BL y y

L AL BL y y

∅ −∅

≤ − + − + −

≤ + + −

           (33) 

If we let 1 2M L AL BL= + +  
then our Equation (33) turns to 

( ) ( )* *, ; , ;n n n nx y h x y h M y y∅ −∅ ≤ −              (34) 

which is the condition for convergence. 

4.2. Consistence of the Integrator 
Definition 3 [8] 
The integration scheme: ( )1 , ;n n n ny y h x y h+ = +  is said to be consistent with the 
initial-value problem ( ) ( )( ),y x f x y x′ = , ( ) oy a y= , [ ],x a b∈ , y R∈  pro-
vided the increment function ( ), ;x y h∅  satisfies the following relationship 

( ) ( ), ; ,x y h f x y∅ =                       (35) 

The significance of the consistency of a formula is that it ensures that the me-
thod approximates the ordinary differential equation in its place. 

Therefore from 

1 2 2
1

1 1
2 6n n n n n n ny y h f f x h f x h+

    = + + + + +    
    

        (36) 

where ( )1 , ;n n n ny y x y hθ+ = +  then 

( ) ( ) ( ) ( ) ( ) ( ){ }1 2, ; , , ,n n n n n n n nx y h h f x y Af x y Bf x yθ = + +  

and 

21 1,
2 6n nA x h B x h= + = +  

If 0h = , then (36) reduced to 1n ny y+ =  

( ) ( ), ;0 ,n nx y f x yθ⇒ =                     (37) 

It is a known fact that a consistent method has order of at least one [9]. 
Therefore, the new numerical integrator is consistent since Equation (36) can be 
reduced to (37) when 0h = . 
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4.3. Stability Analysis of the Integration Method 

We shall establish the stability analysis of the integrator by considering the 
theorem established by Lambert 1972. 

Let ( )n ny y x=  and ( )n nP P x=  denote two different numerical solutions 
of initial value problem of ordinary differential Equation (35) with the initial 
conditions specified as ( )oy x η=  and ( ) *

op x η=  respectively, such that 
*η η ε− < , 0ε > . If the two numerical estimates are generated by the integra-

tor (19). From the increment function (26), we have 

( )1 , ;n n n ny y h x y h+ = + ∅                     (38) 

( )1 , ;n n n nP P h x p h+ = + ∅                     (39) 

The condition that 
*

1 1n ny P K η η+ +− ≤ −                      (40) 

is the necessary and sufficient condition that our new method (19) be stable and 
convergent. 

Proof 
From (27) we have 

{ }1 2
1n n n n ny y h f Af Bf+ = + + +                  (41) 

Then let 

( ) ( ) ( ){ }1 2
1 , , ,n n n n n n n ny y h f x y Af x y Bf x y+ = + + +         (42) 

and 

( ) ( ) ( ){ }1 2
1 , , ,n n n n n n n np p h f x p Af x p Bf x p+ = + + +         (43) 

Therefore, 

( ) ( ) ( ) ( ){
( ) ( ) }

1 1
1 1

2 2

, , , ,

, ,

n n n n n n n n n n n n

n n n n

y p y p h f x y f x p A f x y f x p

B f x y f x p

+ +  − = − + − + − 

 + − 

(44) 

Applying the mean value theorem as before, we have 

( ) ( ) ( ) ( )

( ) ( )

1

1 1

2

, ,

,

n n n n
n n n n n n n n

n n

n n
n n

n

f x p f x p
y p y p h x p A x p

p P

f x y
B x p

p

δ δ
δ δ

δ
δ

+ +

  − = − + − + − 
   

 
− 

  

+ 


(45) 

( )
( ) ( )

( )

( ) ( )

( )

( ) ( )

1 1 ,

1

,

2

,

,
sup

,
sup

,
sup

n n

n n

n n

n n
n n n n n nx p D

n

n n
n n

x p D n

n n
n n

x p D n

f x p
y p y p h x p

p

f x p
A x p

p

f x p
B x p

p

δ
δ

δ
δ

δ
δ

+ + ∈

∈

∈

− = − + −


+ −

+ − 


      (46) 
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( ) ( ) ( ){ }1 1 1 2, , ,n n n n n n n n n ny p y p h L x p AL x p BL x p+ +− = − + + +   (47) 

Taking absolute value of both sides of (47) gives 

1 1 1 2n n n n n ny p y p h L AL BL x p+ +− ≤ − + + + −         (48) 

Let 1 2N h L AL BL= + +  and ( )oy x η= , ( ) *
oP x η= , given 0ε > , then 

1 1n n n ny p N y p+ +− ≤ −                       (49) 

and 
*

1 1n ny p N η η ε+ +− ≤ − < , for every 0ε >              (50) 

Then we conclude that our method (19) is stable and hence convergent. 

5. The Implementation of the Integrator 

Example 1 
Using the Integrator (19) to solve the initial value problem 

( )22 , 0 1, in the interval 0 1y x y y x′ = − = − ≤ ≤  

The analytical solution ( ) 25e 2 4 4, 0.1xy x x x h−= − + − + =  
 

Xn Numerical Analytical Error 

Solution Solution   

[0.00] [−1.000000000000000] [−1.000000000000000] [0.00000000000000] 

[0.10] [−0.904206720673739] [−0.904187090179798] [1.963049394060334e−005] 

[0.20] [−0.813671527795362] [−0.813653765389909] [1.776240545248164e−005] 

[0.30] [−0.724107175497677] [−0.724091103408589] [1.607208908771529e−005] 

[0.40] [−0.631614772805788] [−0.631600230178197] [1.454262759126301e−005] 

[0.50] [−0.532666457276770] [−0.532653298563167] [1.315871360274556e−005] 

[0.60] [−0.424070086966572] [−0.424058180470132] [1.190649644056130e−005] 

[0.70] [−0.302937292400544] [−0.302926518957047] [1.077344349675879e−005] 

[0.80] [−0.166654568800905] [−0.166644820586107] [9.748214797572485e−006] 

[0.90] [−0.012857119252502] [−0.012848298702996] [8.820549506724507e−006] 

[1.00] [0.1605948129795460] [0.160602794142788] [7.981163242049005e−006] 

 
Example 2 
Consider the initial value problem 

( )2 , 0 1, in the interval 0 1y x y y x′ = − = ≤ ≤  

The analytical solution ( ) ( )3e 2 1 , 0.1xy x x h−= − + =  
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Xn Numerical Analytical Error 

Solution  Solution  

[0.00] [1.000000000000000] [1.000000000000000] [0.00000000000000] 

[0.10] [1.115475967595757] [1.115512754226943] [3.678663118633629e−005] 

[0.20] [1.264167618965549] [1.264208274480510] [4.065551496124087e−005] 

[0.30] [1.449531491435216] [1.449576422728009] [4.493129279348196e−005] 

[0.40] [1.675424436165703] [1.675474092923811] [4.965675810808534e−005] 

[0.50] [1.946108932895438] [1.946163812100385] [5.487920494617882e−005] 

[0.60] [2.266295750270214] [2.266356401171527] [6.065090131368578e−005] 

[0.70] [2.641191092799143] [2.641258122411429] [6.702961228644000e−005] 

[0.80] [3.076548706299253] [3.076622785477404] [7.407917815127618e−005] 

[0.90] [3.578727463317524] [3.578809333470850] [8.187015332561387e−005] 

[1.00] [4.154755004864622] [4.154845485377138] [9.048051251525635e−005] 

6. Summary and Conclusion 

In this paper, we have proposed a new integration for the solution of standard 
initial value problem of first order ordinary differential equations. The new 
method was found to be convergence, consistence, and stable. 
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Abstract 
In this paper, we investigate the solvability of a class of semilinear elliptic eq-
uations which are perturbation of the problems involving critical Hardy-So- 
bolev exponent and Hardy singular terms. The existence of at least a positive 
radial solution is established for a class of semilinear elliptic problems involv-
ing critical Hardy-Sobolev exponent and Hardy terms. The main tools are 
variational method, critical point theory and some analysis techniques. 
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1. Introduction and Main Results 

In this paper, we are concerned with the existence of positive radial solutions for 
the following semilinear elliptic problem with Hardy-Sobolev exponent and 
Hardy singular terms: 

( )
( )

( ) ( ){ }

2 2

2

1,2 1,2

1 ,

0,

: is radial ,

s
N

s

N

N N
r

uuu h x u x
x x

u x

u D u D u

µ δ
∗ −

  −∆ − = + ∈ 


> ∈
 ∈ = ∈





 

       (1.1) 

where ( ) ( )* 2
0 2,2

2
N s

s s
N

−
< < =

−
 is the Hardy-Sobolev critical exponent and 

( )* * 22 2 0
2

N
N

= =
−

 is the Sobolev critical exponent, 
( )22

4
N

µ µ
−

<  . 
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( )( )1,2 3ND N ≥  denotes the space of the functions ( )2 Nu L
∗

∈   such that 

( )2 Nu L∇ ∈  , endowed with scalar product and norm, respectively, given by 

2

2
2 2

2

, d ,

d ,

N

N

uvu v u v x
x

uu u x
x

µ

µ

 
 = ∇ ⋅∇ −
 
 
 
 = ∇ −
 
 

∫

∫





 

that coincides with the completion of ( )0
NC∞   with respect to the L2-norm of 

the gradient. By Hardy inequality [1], we easily derive that the norm is 
equivalent to the usual norm: 

2 2

0 dNu u x= ∇∫  

in ( )1,2 ND  . 
Clearly, ( )1,2 N

rD   is a closed subset of ( )1,2 ND  , so ( )1,2 N
rD   is a 

Hilbert space. By the symmetric criticality principle, in view of [2], we know that 
the positive radial solutions of problem (1.1) correspond to the nonzero critical 
points of the functional ( )1,2: N

rI Dδ →   defined by 

( )
( )

( )

( ) ( )
( )

*

*

2
2

2
2 *

2

*

1 1d d
2 2

d ,
2

N N

N

s

s

s

s

uuI u u x x
sx x

u
h x x

s x

δ µ

δ

+

+

 
 = ∇ − −
 
 

−

∫ ∫

∫

 



 

where { }max ,0u u+ = . 
The reason why we investigate (1.1) is the presence of the Hardy-Sobolev 

exponent, the unbounded domain N  and the so-called inverse square 
potential in the linear part, which cause the loss of compactness of embedding 

( ) ( )*1,2 2N ND L→  , ( ) ( )1 N p NH L→   and ( ) ( )21,2 2 dND L x x−→ . 
Hence, we face a type of triple loss of compactness whose interacting with each 
other will result in some new difficulties. In last two decades, loss of 
compactness leads to many interesting existence and nonexistence phenomena 
for elliptic equations. There are abundant results about this class of problems. 
For example, by using the concentration compactness principle, the strong 
maximum principle and the Mountain Pass lemma, Li et al. [3] had obtained the 
existence of positive solutions for singular elliptic equations with mixed 
Dirichlet-Neumann boundary conditions involving Sobolev-Hardy critical 
exponents and Hardy terms. Bouchekif and Messirdi [4] obtained the existence 
of positive solution to the elliptic problem involving two different critical 
Hardy-Sobolev exponents at the same pole by variational methods and 
concentration compactness principle. Lan and Tang [5] have obtained some 
existence results of (1.1) with 0µ =  via an abstract perturbation method in 
critical point theory. There are some other sufficient conditions, we refer the 
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interested readers to ([6]-[18]) and the references therein. 
In the present paper, we investigate the existence of positive radial solutions 

of problem (1.1). There are several difficulties in facing this problem by means 
of variational methods. In addition to the lack of compactness, there are more 
intrinsic obstructions involving the nature of its critical points. Based on a 
suitable use of an abstract perturbation method in critical point theory 
discussed in [5] [13] [14], we show that the semilinear elliptic problem with 
Hardy-Sobolev exponent and Hardy singular terms has at least a positive 
radial solution. 

In this paper, we assume that h satisfies one of the following conditions: 
(H) ( ) ( ) ( ) ( ) ( )1 , ,N Nh L C h x h x h r r x∞∈ = = =  , and 

( )1
1

dN sr h r rα∞ − + − − < ∞∫  

for some N sα < − . 
(H’) ( ) ( ) ( ) ( )2 , ,Nh C h x h x h r r x∈ = = = , ( )h r  is T-periodic and 

( )
0

d 0.
T
h r r =∫  

The main results read as follows. 
Theorem 1 Let (H) hold, and assume that ( )0 0h =  and 0h ≡/ . Then for 

δ  small, problem (1.1) has a positive radial solution uδ . 
Remark 1 It is easy to check that the following function ( )h r  satisfies the 

conditions of Theorem 1, 

( ) 2 .
er

rh r =  

Theorem 2 If assumption (H) holds, and suppose that ( )2 Nh C∈   and 
( ) ( )0 0 0h h′′ > . Then for δ  small, problem (1.1) has a positive radial solution 

uδ . 
Remark 2 It is easy to check that the following function ( )h r  satisfies the 

conditions of Theorem 2, 

( ) 1 2 .
er

rh r −
=  

Theorem 3 Assume that (H) holds, and suppose 

( )( )
( )2

2 12
0

1 d 0
N s

s N ssh r r r r
−

−∞ − − −−+ ≠∫  

and ( ) ( )( )
( )2

2 12
0

0 1 d 0.
N s

s N ssh h r r r r
−

−∞ − − −−+ ≤∫  

Then for δ  small, problem (1.1) has a positive radial solution uδ . 
Remark 3 It is easy to check that the following function ( )h r  satisfies the 

conditions of Theorem 3 for all 3N ≥  and 0 2s< < , 

( ) ,
er

rh r =  

in fact, 
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( )( )
( )2

2 12
0

1 d 0
N s

s N ssh r r r r
−

−∞ − − −−+ ≠∫  

and ( ) ( )( )
( )2

2 12
0

0 1 d 0;
N s

s N ssh h r r r r
−

−∞ − − −−+ =∫  

We can also give the following example for 3N =  and 1s = , 

( ) 1 100 ,
er

rh r −
=  

in fact, with the help of computers, we can get 

( )
( )2 3 1

2 1 3 1 12 1
0

1 100 1 d 4.06 0
er

r r r r
−

−∞ − − −−
−

+ ≈ − ≠∫  

and ( ) ( )
( )2 3 1

2 1 3 1 12 1
0

1 1000 1 d 4.06 0.
er

rh r r r
−

−∞ − − −−
−

+ ≈ − <∫  

Theorem 4 Suppose that assumption (H’) holds, and satisfies the condition 
that ( ) ( )0 0 0h h′′ > . Then problem (1.1) has a positive radial solution uδ , 
provided 1δ  . 

Remark 4 It is easy to check that the following function ( )h r  satisfies the 
conditions of Theorem 4, 

( )
7πsin
4 7πe cos ,

4

r
h r r

 + 
   = + 

 
 

in fact, 

( )
7π 2sin 0
4 27π 20 e cos 0 e 0,

4 2
h

 + − 
   = + = > 

 
 

and by a direct computation, we have 

( )
2

20 2e 0.h
−

′′ = >  

Theorem 5 Let h satisfy (H’), and suppose that ( )0 0h =  and 0h ≡/ . Then 
problem (1.1) has a positive radial solution uδ , provided 1δ  . 

Remark 5 It is easy to check that the following function ( )h r  satisfies the 
conditions of Theorem 5, 

( ) sin 2 .h r r=  

This paper is organized as follows. After a first section we devoted to studying  

the unperturbed problem 
( )2 2

2

s

s

uuu u
x x

µ
∗ −

−∆ − = . The main results are proved  

in Section 3. In the following discussion, we denote various positive constants as  

C or ( )0,1,2,3,iC i =   for convenience. ( )o t  denote 
( ) 0

o t
t

→  as 0t +→ .  

This idea is essentially introduced in [5] [13]. 

2. The Case 0δ =  

In this section, we will study the unperturbed problem 
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( )

( )

*2 2

2

1,2

, ;

, 0, .

s
N

s

N N
r

uuu u x
x x

u D u x

µ
−

−∆ − = ∈



∈ > ∈ 





            (2.1) 

It is well-known that the nontrivial solutions of problem (2.1) are equivalent 
to the nonzero critical points of the energy functional 

( ) ( )

( )

( )
*2

2
2 1,2

0 2 *

1 1d d , .
2 2N N

s

N
rs

uuI u u x x u D
sx x

µ
+ 

 = ∇ − − ∈
 
 

∫ ∫ 
  

Obviously, the energy functional ( )0I u  is well-defined and is of 2C  with 
derivatives given by 

( )
( )

( )
*2 1

1,2
0 2, d d , , ;N N

s

N
rs

uuvI u v u v x v x u v D
x x

µ

−+ 
′  = ∇ ⋅∇ − − ∈

 
 

∫ ∫ 
  

( )
( )( ) ( )

( )

*2 2*

0 2

1,2

2 1
, d d

, , .

N N

s

s

N
r

s uvwI u v w v w x vw x
x x

u v w D

µ

−+  −
′′  = ∇ ⋅∇ − −

 
 

∈

∫ ∫ 



 

For all 0ε > , it is well known that the function 

( )

( )

( ) ( ) ( ) ( )
22 2

2 2 22
Ns s

s s sN s
z r r r

µ
µ µ

µ µ µ µµ
µ µ µ µ µ

ε
ε µ µ

ε
µ

−− − −
− − − − −

− −

   
    − −  = +   
          

 

solves the equation (2.1) and satisfies 
( )*22

2
2 d d .N N

s

s

zzz x x
x x

εε
ε µ

 
 ∇ − =
 
 

∫ ∫ 
 

Let 

( ) ( )( ) ( )
2

2 222
1 ,

N
s ssN s

U r r r

µ
µ µ

µ µ µ µµ µ
µ

−
− − −−

− −

 
   − −  = +          

 

 

then 

( )
2

2 .
N rz r Uε ε

ε

−
−  =  

 
 

0I  has a (non-compact) 1-dimensional critical manifold given by 

( ){ }: 0 .Z z z rε ε= = >  

The unperturbed problem is invariant under the transformation that  

transforms the function ( )u r  in the function 
2

2
N ruε

ε

−
−  

 
 

. The purpose of this  
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section is to show the following lemmas. 
Lemma 2.1. For all 0ε > , ( )0KerzT Z I z

ε ε′′ =   . 
Proof. We will prove the lemma by taking 1ε = , hence z Uε = . The case of a 

general 0ε >  will follow immediately. It is always true that  
( )0KerUT Z I U′′⊆    . We will show the converse, i.e., that if ( )0Ker I Uν ′′∈    , 

namely ν  is a solution of 

( )( )
( ) ( )

( )

2 2

2

1,2

2 1 ,

, 0,

s
N

s

N N
r

U xuu s u x
x x

u D u x

µ
∗ −

∗

−∆ − = − ∈



∈ > ∈



 

          (2.2) 

then UT Zν ∈ , namely a∃ ∈  such that 1
aD zε ε ε

ν
=

= , where Dε  denotes the  

derivatives with respect to the parameter ε . We look for solutions  

( )1,2 N
ru D∈   of problem (2.2). One has 

( )( )
( )2 2

2

1 2 1 ,
s

s

n Us
r r r

µ
∗ −

∗− Ψ′′ ′−Ψ − Ψ − = − Ψ  

and then a first solution is given by 

( ) ( )2 2 2

1
1 1

N s
s s s

w D z C r r r
µ µ µ µ
µ µ µ µ µ

ε ε ε

−
− − − − −

− −
=

 
    
   = = − + 
        

 

 

which belongs to ( )1,2 N
rD  , where 

( )( ) ( )
2

2 24
2

N
sN s

C
N

µ µ
µ µ

−
−− − 

= −  
− 

. If we  

look for a second independent solution of the form ( ) ( ) ( )u r c r w r= , we will 
check that u is not in ( )1,2 N

rD  . A direct computation gives 

( ) ( ) ( )( )
( ) ( )2 2

2

12 2 1 ,
s

s

U rN cwc w c w cw c w cw s cw
r r r

µ
∗ −

∗−′′ ′ ′ ′′ ′ ′− + + − + − = −  

and because w  is a solution, we have 

12 0.Nc w c w w
r
− ′′ ′ ′− − + = 

 
 

Setting 'cv = , we obtain 

12 ,v w N
v w r
′ ′ −

− = +  

namely 

( ) ( ) ( )1 2 2
1 2

1 0 ,N
Nv r Cr r

r w r
µ µ µ− + − − +

−= ≈ →  

where C is a constant. This implies ( ) 2 2 2Nc r Cr µ µ µ− + − −≈  as well as 

( )
2

2 ,
N

u r Cr
µ µ−

− −
≈  

as 0r +→ . Since 2 0
2

N
µ µ

−
− − < , we have ( )1,2 N

ru D∉  . This implies a 
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contradiction to assumption which had been made. So ( )0KerUT Z I U′′=    .  

This completes the proof of Lemma.  
Lemma 2.2. For all 0ε > , ( )0I zε′′  is a Fredholm operator with index zero. 
Proof. Indeed, ( )1,2 N

rD   is a Hilbert space, this implies  

( ) ( )1,2 1,2N N
r rD D

∗
 ≅     and ( )0KerUT Z I U′′=    , we have 

( ) ( ) ( ) ( )1,2 1,2 1,2
0 : ;N N N

r r rI U D D D
∗

 ′′ → =     

( )( ) ( )( ) [ ]0 0 , where , ;U UI U v w I U w v T Z w T Z ⊥′′ ′′+ = ∈ ∈  

( )( ) ( )( )
( ) ( )2 2

0 2 2 1 .
s

s

U xwI U w w s w
x x

µ
∗ −

∗′′ = −∆ − − −  

It is obviously that ( )0I U′′  is a self-adjoint operator on ( )1,2 N
rD  , we have  

( )( )( )0Im UI U T Z
⊥

′′ = , hence 

( )( )( ) ( ) [ ]( )1,2
0codim Im dim dim 1.N

r U UI U D R T Z T Z⊥′′ = = =  

Moreover, fox fixed ( )1,2 N
ru D∈  , the map 

( ) dNv a x uv x∫


 

is a bounded linear functional in ( )1,2 N
rD  , where  

( ) ( )( )
( ) ( )2 2

2 1
s

s

U x
a x s

x

∗ −
∗= − . So by the Riesz representation theorem, there is  

an element in ( )1,2 N
rD  , denote it by Tu , such that 

( ), d .NTu v a x uv x= ∫                   (2.3) 

Clearly ( ) ( )1,2 1,2: N N
r rT D D→   is linear symmetric and bounded. 

Moreover T is compact; indeed, let { }nu  be a bounded sequence in ( )1,2 N
rD  . 

Passing to a subsequence we may assume that nu u  in ( )1,2 N
rD  , nu u→  

in ( ) ( )2 s NL
∗

 . Use u replaced by nu u−  and v by nTu Tu−  in (2.3), and 

apply Hölder’s inequality with 
( ) ( )
1 1 1 1

22 2
N sp

p ss s∗ ∗

− + + = = − 
 to get 

( ) ( )2 2
2

s spn n nL L LTu Tu a u u Tu Tu∗ ∗− ≤ − −  

( )2 ,sn n LTu Tu c u u ∗⇒ − ≤ −  

which implies that nTu Tu→  in ( )1,2 N
rD  . This shows that T is compact. We 

have 

( ) ( )0 , , , , , .I U u v u v Tu v u Tu v I T u v′′ = − = − = −  

So ( )0I U I T′′ = − , where I is an identical operator. By the fact that I Tλ −  is 
a Fredholm operator with index zero, where 0λ ≠  and T is compact, we obtain 
that ( )0I U I T′′ = −  is a Fredholm operator with index zero. This completes the 
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proof of Lemma.  
Now, we give the abstract perturbation method, which is crucial in our proof 

of the main results of this paper. 
Lemma 2.3. [13] (Abstract Perturbation Method) Let E be a Hilbert space 

and let ( )2
0 , ,f G C E∈   be given. Consider the perturbed functional 

( ) ( ) ( )0f u f u G uε ε= − . 
Suppose that 0f  satisfies: 
1) 0f  has a finite dimensional manifold of critical points Z, let ( )0b f z= , 

for all z Z∈ ; 
2) for all z Z∈ , ( )2

0D f z  is a Fredholm operator with index zero; 
3) for all z Z∈ , ( )2

0KerzT Z D f z= . 
Hereafter we denote by Γ  the functional 

ZG . 
Let 0f  satisfy (1)-(3) above and suppose that there exists a critical point 

z Z∈  of Γ  such that one of the following conditions hold: 
1) z  is nondegenerated; 
2) z  is a proper local minimum or maximum; 
3) z  is isolated and the local topological degree of ′Γ  at z , ( )deg ,0loc ′Γ  

is different from zero. Then for ε  small enough, the functional fε  has a 
critical point uε  such that u zε → , as 0ε → . 

Remark 2.4. [13] If ( ){ }0 : : minZZ z Z z= ∈ Γ = Γ  is compact, then one can 
still prove that fε  has a critical point near 0Z . The set 0Z  could also consist 
of local minima and the same for maxima. 

3. Proof of the Theorems 

We will now solve the bifurcation equation. In order to do this, let us define the 
reduced functional, see [14], 

: ZδΦ →  

( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )

2

0 0 0* d , ,
2 N

s

s

z I z z

z x
c h x x o c I U

s x

δ ε δ ε δ ε

ε

ω

δ
δ

∗

Φ = +

= − + =∫
 

where ( ) zz T Z
εδ εω ⊥  and verifies ( ) 1z Cδ εω δ − ≤  as 0δ → . Hence we are 

led to study the finite-dimensional functional 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
* *2 2

: d d , 0 .N N

s s

s s

z x U x
h x x h x x

x x
εε ε εΓ = = >∫ ∫

 
 

The functional ( )εΓ  can be extended by continuity to 0ε =  by setting 

( ) ( )
( ) ( )

*2

0 0 d .N

s

s

U x
h x

x
Γ = ∫



 

Here we will prove the existence result by showing that problem (1.1) has a 
positive radial solution provided that h satisfies some integrability conditions. 
Before giving the proof of the main results, we need the following lemma. 
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Lemma 3.1. If (H) holds, then ( ) 0r εΓ →  as ε → +∞ . 
Proof. From the definition of ( )εΓ  and U, we have 

( ) ( ) ( ) ( )

( )
( )( )( )

( )
( )

( )
( )( )( )

( )

( )( )( ) ( )
( )

( )

( ) ( )

2 1
0

2
1

20
2 2

12

20
2 2

1
2

20
2 2 2

1 1 ( )
10 1

d

2
d

1

2
d

1

2 d

d

s N s
r

N s
s

N s
N s

s s

N s
N ss

N sN s
s s

N s N sN s
s

N s
s s s

N s N s N s

h r U r r r

N s N
h r r r

r

N s N rh r r

r

rN s N h r r
r

C h r r r C α

ε ε

ε

ε

ε

ε

ε

ε ε

∗+∞ − −

−
−+∞ − −

−
− −

−
− −−+∞

−−
− −

− − −− +∞
−

−
− − −

+− − − − − −

Γ =

− −
=

+

− −
=

 
+  

 
⋅

= − −

+

≤ ⋅ +

∫

∫

∫

∫

∫
( ) 1 d ,N sh r

r r
rα

∞ − −⋅∫

 

where N sα < − . It is easy to get the first integral in the right hand side; next 
we show the second integral: In fact, 

( )

( )

2
2 2

1 1 ,

N s
s sr N s

r

α

α

ε
α

ε

−
− −  + ⋅ ≥ < −     

 

so we have 

( )
( )

( )
( ) ( ) ( )

1
1

21 1
2 2 2

d d .
N s N s

N s N s
N s

s s s

h rrh r r r r N s
r

r

α
α

ε
ε α

ε

− − −
+∞ +∞− − − −

−
− − −

⋅
≤ ⋅ < −

+
∫ ∫  

we deduce that ( ) 0r εΓ →  as ε → +∞ . 
Proof of Theorem 1. Firstly, we claim that ( )r εΓ  is not identically equal to 

0. To prove this claim we will use Fourier analysis. We introduce some notation  

that will be used in the following discussion. If [ )1 d0, , rg L
r

 ∈ ∞ 
 

, we define 

[ ]( ) ( )
0

d ,is rM g s r g r
r

∞ −= ∫  

M is nothing but the Mellin transform. The associated convolution is defined 
by 

( )( ) ( )
0

d .s rg k s g r k
r r

∞  × =  
 ∫  

From the definition, it follows that [ ] [ ] [ ]M g k M g M k× = ⋅ . Indeed, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
0

dd d

d d

x x

x
x x ixs ixs t

t x t ixs

M g x k x s F g e k e s

e zg e k e e x g z k e x z e
z z

g e k e t e x

+∞ +∞ +∞− −

−∞ −∞

+∞ +∞ − −

−∞ −∞

 × = ×    
   = × = =       

 =   

∫ ∫ ∫

∫ ∫
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

d d

d d

.

i x t st its x t

i x t st its x t

g e e k e e t x

g e e t k e e x

M g x s M k x s

+∞ ∞ − −− −

−∞ −∞

+∞ ∞ − −− −

−∞ −∞

=

=

= ⋅      

∫ ∫

∫ ∫  

With this notation we can write our rΓ  in the form 

( ) ( ) ( )2

0

d .
N s

s
r

r r rh r U
r

ε
ε ε

∗
−

∞   Γ =   
  ∫  

We set m N s α= − −  and 

( ) ( ) ( ) ( )2 1 1, .
N s m

smg r h r r k r U
r r

∗
− −

  = =   
  

 

Note that [ )1 d, 0, , rg k L
r

 ∈ ∞ 
 

. We have ( ) ( )( )m
r g kε ε ε−Γ = ×  and hence  

if, by contradiction, 0Γ ≡  then 0g k× ≡  and one has 

[ ] [ ] [ ] 0.M g k M g M k× = ⋅ ≡  

On the other hand, [ ]M k  is real analytic and so has a discrete number of 
zeros. By continuity it follows that [ ] 0M g ≡ . Then g and hence h are identically 
equal to 0. We arrive at a contradiction. This proves the claim. Since ( )0 0rΓ = , 

( ) 0r εΓ →  as ε → +∞ , and 0rΓ ≡/ , it follows that rΓ  has a maximum or a 
minimum at some 0ε > . By a straight application of Lemma 2.3 jointly with 
Remark 2.4, the result follows.  

Proof of Theorem 2. Using Lemma 3.1, we have ( ) 0r εΓ →  as ε → +∞ . 
and rΓ  can be extended to 0ε =  by continuity setting ( ) ( )00 0r a hΓ = , 
where ( ) ( )2 1

0 0
d 0.s N sa U r r r

∗+∞ − −= >∫  From the assumption, we have 

( ) ( ) ( ) ( ) ( )2 1
1 1 0

0 0, 0 0 , d 0s N s
r r a h a U r r r

∗+∞ + −′ ′′ ′′Γ = Γ = = >∫  

and the condition ( ) ( )0 0 0h h′′ >  implies that rΓ  has a (global) maximum (if 
( )0 0h > ) or a (global) minimum (if ( )0 0h < ), at some 0ε > . This allows us 

to use the abstract results, yielding a radial solution of problem (1.1), for δ  
small.  

Proof of Theorem 3. It suffices to remark that 

( ) ( )( ) ( )( )
( )2

2 122
0

1 2 1 d 0.
N sN s

s N sss
r N s N h r r r r

−− −∞ − − −−−Γ = − − + ≠   ∫  

If 

( )( )
( )2

2 12
0

1 d 0
N s

s N ssh r r r r
−

−∞ − − −−+ >∫  

( )( )
( )2

2 12
0

resp. 1 d 0
N s

s N ssh r r r r
−

−∞ − − −−
 

+ <  
 

∫  

then ( )0 0h ≤  (resp. ( )0 0h ≥ ) and, once more rΓ  has a (global) maximum 
(resp. a (global) minimum ) at some 0ε > .  

In the rest of the section we will give the proof of Theorem 4 and Theorem 5. 
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First we give the following Lemma. Hypothesis (H’) allows us to use the 
following Riemann-Lebesgue convergence result. 

Lemma 3.2 [13] Let [ ]0, NQ T=  be a cube in N , and ( )qf L Q∈  be a 
T-periodic function. Consider ( ) ( )f x f xε ε= , then 

( )1 d , weakly in , as .q N
locQ

f f f x L
Qε ε= →∞∫   

Lemma 3.3 If (H’) holds, then 

( ) 0, .r ε εΓ → → +∞  

Proof. Given 0ε > , there exists 0R >  large enough such that 

( ) ( ) ( )

( ) ( ) ( )

2 1

2 1

d

d .

s N s
R

s N s
R

h r z r r r

h r z r r r

ε

ε ε

∗

∗

∞ − −

∞ − −

∞
≤ <

∫

∫
 

On the other hand, the remainder integral over the interval 0 r R≤ <  tends 
to 0 as ε →∞  because of hypothesis (H’) and the Riemann-Lebesgue lemma.  

Proof of Theorem 4. Using Lemma 3.3, we have ( ) 0r εΓ →  as ε → +∞ . 
and rΓ  can be extended to 0ε =  by continuity setting ( ) ( )00 0r a hΓ = , 
where ( ) ( )2 1

0 0
d 0s N sa U r r r

∗+∞ − −= >∫ . From the assumption, we have 

( ) ( ) ( ) ( ) ( )2 1
1 1 0

0 0, 0 0 , d 0.s N s
r r a h a U r r r

∗+∞ + −′ ′′ ′′Γ = Γ = = >∫  

and the condition ( ) ( )0 0 0h h′′ >  implies that rΓ  has a (global) maximum (if 
( )0 0h > ) or a (global) minimum (if ( )0 0h < ), at some 0ε > . This allows us 

to use the abstract results, yielding a radial solution of problem (1.1), for δ  
small.  

Proof of Theorem 5. It suffices to repeat the arguments used to prove 
Theorem 1 using Lemma 3.1 instead of Lemma 3.3. 

4. Conclusion 

We study a class of semilinear elliptic problems involving critical Hardy-Sobolev 
exponent and Hardy terms, and obtain positive radial solutions for these 
problems via an abstract perturbation method in critical point theory. 
Extensions of nonradial solutions for these problems are being investigated by 
the author. Results will be submitted for publication in the near future. 
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Abstract 
Quadratic Programming (QP) is a mathematical modeling technique de-
signed to optimize the usage of limited resources and has been widely applied 
to solve real world problems. In conventional quadratic programming model 
the parameters are known constants. However in many practical situations, it 
is not reasonable to require that the constraints or the objective function in 
quadratic programming problems be specified in precise, crisp terms. In such 
situations, it is desirable to use some type of Fuzzy Quadratic Programming 
(FQP) problem. In this paper a new approach is proposed to derive the fuzzy 
objective value of fuzzy quadratic programming problem, where the con-
straints coefficients and the right-hand sides are all triangular fuzzy numbers. 
The proposed method is solved using MATLABTM toolbox and the numerical 
results are presented. 
 

Keywords 
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1. Introduction 

Quadratic programming is a particular kind of nonlinear programming. There 
are several classes of problems that are naturally expressed as quadratic prob-
lems. Examples of such problems can be found in game theory, engineering 
modeling, design and control, problems involving economies of scale, facility 
allocation and location problems, etc. Several applications and test problems for 
quadratic programming can be found in [1] [2] [3] [4] [5]. Some traditional 
methods are available in the literature [6] [7] for solving such problems. Among 
the several applications, the portfolio selection problem is an important research 
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field in modern finance. This problem was first introduced by Markowitz [8] [9], 
and provided a risk investment analysis. Some works about portfolio selection 
problem by using fuzzy approaches can be found in [10] [11] [12] [13] [14]. 

The classical quadratic programming problem is to find the minimum or 
maximum values of a quadratic function under constraints represented by linear 
inequality or equations. The most typical quadratic programming problem is: 

( )
1 1 1

1

1maximaize or minimize
2

,
subject to 

0,

n n n

j j ij i j
j i j

n

ij j i m
j

j m

c x q x x

a x b i N

x i N

= = =

=

+


≤ ∈


 ≥ ∈

∑ ∑∑

∑          (1.1) 

The function to be minimized (or maximized) is called an objective function; 
let us denote it by z . The numbers ,j nc j N∈  are called cost coefficients and 
the vector ( )1 2, , , nc c c c=   is called a cost vector. The vector  

( )T
1 2, , , mb b b b=   is called a right-hand side vector and the matrix  

ij m n
A a

×
 =   , where mi N∈  and nj N∈ , is called a constraint matrix. The ma-

trix ij m n
Q q

×
 =   , is called the matrix of quadratic form where ni N∈  and 

nj N∈ . Using this notation, the formulation of the problem can be simplified as: 

T1max
2

s.t.
0

z cx x Qx

Ax b
x

= +

≤
 ≥

                      (1.2) 

where ( )T
1 2, , , nx x x x= 

 is a vector of variables and s.t. stands for “subject to”. 
In the following example, a quadratic programming problem is addressed: 

Example 1.1: Consider a problem which is formulated as follows: 
2 2

1 2 1 1 2 2

1 2

1 2

1 2

max 2 2 2
2

s.t. 2 3 1
, 0

z x x x x x x
x x

x x
x x

= + + + +

+ ≤
 + ≤
 ≥

              (1.3) 

in which 
4 1
1 4

Q  
=  
 

, ( )2,1c = , 
1 1
2 3

A  
=  
 

 and ( )T 2,1b = . Hence it can be  

rewritten as 
follows: 

( ) [ ]1 1
1 2

2 2

1

2

1 2

4 1
max 2,1

1 4

1 1 2
s.t. 2 3 1

, 0

x x
z x x

x x

x
x

x x

    
= +    

    
     

≤     
    
 ≥

             (1.4) 

The paper is organized in 5 sections. In the next section some necessary nota-
tions and definitions of fuzzy set theory and fuzzy arithmetic are given. In Sec-
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tion 3, we first define a quadratic programming problem and then give a new 
approach to solve these problems. In Section 4, a numerical example is presented 
to illustrate how to apply the concept of this paper for solving such quadratic 
programming problems. Finally we conclude in Section 5. 

2. Arithmetic on Fuzzy Numbers 

Here, we first give some necessary definitions of fuzzy set theory which is taken 
from [15] [16] [17]. 

Definition 2.1: Let R  be the real line, then a fuzzy set A in R  is defined to 
be a set of ordered pairs ( )( ){ }, AA x x xµ= ∈R , where ( )A xµ  is called the 
membership function for the fuzzy set. The membership function maps each 
element of R  to a membership value between 0 and 1. 

Definition 2.2: The support of a fuzzy set A is defined as fallow: 

( ) ( ){ }0Asupp A x xµ= ∈ >R  

Definition 2.3: The core of a fuzzy set is the set of all points x in R  with 
( ) 1A xµ = . 

Definition 2.4: A fuzzy set A is called normal if its core is nonempty. In other 
words, there is at least one point x∈R  with ( ) 1A xµ = . 

Definition 2.5: The α–cut or α–level set of a fuzzy set is a crisp set defined by 

( ){ }AA x xα µ α= ∈ >R . 

Definition 2.6: A fuzzy set A on R  is convex, if for any ,x y∈R  and 
[ ]0,1λ∈ , we have 

( )( ) ( ) ( ){ }1 min ,A A Ax y x yµ λ λ µ µ+ − ≥  

Definition 2.7: A fuzzy number a  is a fuzzy set on the real line that satisfies 
the condition of normality and convexity. 

Definition 2.8: A fuzzy number a  on R  is said to be triangular fuzzy num-
ber, if there exist real numbers and , 0l r ≥  such that 

( )

[ ]

[ ]

, ,

, ,

0, o.w.

x l s x s l s
l l

a x x s r x s s r
r r

− + ∈ −


= − + + ∈ +



  

We denote a triangular fuzzy number a  by three real numbers ,s l  and r  
as , ,a s l r= , whose meaning are defined in Figure 1. We also denote the set 
of all triangular fuzzy numbers with F(R). 

Definition 2.9: Let , ,a a aa s l r=  and , ,b b bs lb r=  be two triangular num-
bers and x∈R . Summation and multiplication of fuzzy numbers defined as 
[18]: 

, , , 0

, , , 0
a a a

a a a

xs xl xr x
x

xs
a

xr xl x

 ≥= 
− − <

  
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Figure 1. Fuzzy Triangular Number. 

 

, ,a b a b a bs s la b l r r+ = + + +

  

, ,a b a b a bs s la b r r l− = − − −

  

a b≤   if and only if , ,a b a a b b a a b bs s s l s l s r s r≤ − ≤ − + ≤ +  
Definition 2.10: We let ( )0 0,0,0=  as a zero triangular fuzzy number. 
Remark 2.1: 0a ≥   if and only if 0, 0, 0a a a a as s l s r≥ − ≥ + ≥ . 
Remark 2.2: a b≤   if and only if a b− ≥ −  . 

3. Fuzzy Numbers Quadratic Programming 

Here we first define the model and then propose a novel method for solving the 
mentioned problem. 

3.1. Definition of Model 

Several studies have developed efficient and effective algorithms for solving qu-
adratic programming when the value assigned to each parameter is a known 
constant. However, quadratic programming models usually are formulated to 
find some future course of action so the parameter values used would be based 
on a prediction of future conditions which inevitably involves some degree of 
uncertainty [19] [20]. The most general type of this programming is formulated 
as follows: 

1 1 1

1

1max
2

, ,
s.t.

0

n n n

j j ij i j
j i j

n

ij j i m
j

C X X X

B

z Q

A X i

X

N

= = =

=

= +


≤ ∈


 ≥

∑ ∑∑

∑

   







 

                (3.1) 

where ijA , iB , jC  and ijQ  are fuzzy numbers, and jX  are variables whose 
states are fuzzy numbers ( ),m ni N j N∈ ∈ ; the operations of addition and mul-
tiplication are operations of fuzzy arithmetic, and denotes the ordering of fuzzy 
numbers. Here instead of discussing this general type, we consider a special case 
of fuzzy quadratic programming problem in which only the right-hand side pa-
rameters and constraint coefficient are triangular fuzzy numbers. 
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1 1 1

1

1max
2

, ,
s.t.

0

n n n

j j ij i j
j i j

n

ij j i m
j

B

x

z c x q x x

A x i N

= = =

=

= +


≤ ∈


 ≥

∑ ∑∑

∑  

                (3.2) 

3.2. The New Approach 

In this case we assume that all fuzzy numbers are triangular. According to Defi-
nition 2.8, the fuzzy quadratic programming (3.2) is rewritten as follows: 

1 1 1

1

1max
2

, , , , ,
s.t.

0,

n n n

j j ij i j
j i j

n

ij ij ij j i i i m
j

j n

z c x q x x

a l r x b u v i N

x j N

= = =

=

= +


≤ ∈


 ≥ ∈

∑ ∑∑

∑
              (3.3) 

where , ,ij ij ij ijA a l r=  and , ,i i i iB b u v=  are fuzzy numbers. According to 

Definition 2.9, the constraint 1
, , , , ,n

ij ij ij j i i i mj
a l r x b u v i N

=
≤ ∈∑  yields that: 

( ) ( )
1 1 1

, and ,
n n n

ij j i ij ij j i i ij ij j i i m
j j j

a x b a l x b u a r x b v i N
= = =

≤ − ≤ − + ≤ + ∈∑ ∑ ∑  

Substituting these relations in to (3.3) the conventional quadratic program is 
derived as follows: 

( )

( )

1 1 1

1

1

1

1max
2

,

,

,

0,

n n n

j j ij i j
j i j

n

ij j i m
j
n

ij ij j i i m
j
n

ij ij j i i m
j

j n

z c x q x x

a x b i N

a l x b u i N

a r x b v i N

x j N

= = =

=

=

=

= +

≤ ∈

− ≤ − ∈

+ ≤ + ∈

≥ ∈

∑ ∑∑

∑

∑

∑

                  (3.4) 

However, since all numbers involved are real numbers, this is classical qua-
dratic programming problem which can be solved using MATLABTM toolbox. 
The SQP algorithm is used as an optimization method to minimize the nonli-
near constrained optimization problem. This method is described as follow: 

3.3. The SQP Algorithm 

SQP is an iterative analytical nonlinear programming method. This technique be-
gins from an initial point to find a solution using the gradient based information. 
This optimization method is found [21] faster than other population based search 
algorithms. Although the SQP method is highly dependent on the initial estimate 
of the solution [22] [23], this has successfully been applied in some [24] [25] op-
timal control problems. The SQP method is based on an iterative formulation to-
gether with the solution of some other quadratic programming sub-problems. An 
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optimization problem in the SQP method is considered as follows: 

( )
( )

minimize
subjected to : 0, 1, ,i

J x
x i mψ ≤ = 

               (3.5) 

where ( )J x  is the cost function and ( )i xψ  stands for the constraint. In this 
regard a Lagrangian function ( ),L x λ  is constructed in terms of the Lagrangian 
multiplier iλ . The cost function together with the above constraint is defined as 
follows: 

( ) ( ) ( )
1

,
m

i i
i

L x J x xλ λψ
=

= +∑                    (3.6) 

In fact the SQP consists of three main parts: 
1- Update the Hessian of the Lagrangian function according to: 

( ) ( ) ( ) ( )

T T

1 T T

0

1

1 1
1 1

k k k k
k k

k k k k k

k k k
n n

k k i i k k i i k
i i

q q H H
H H

q S S H S
H I
S X X

q f X g X f X g Xλ λ

+

+

+ +
= =

= + −

=
= −

 
= ∇ + ∇ − ∇ + ∇ 

 
∑ ∑

   (3.7) 

2- Solve the quadratic programming sub-problem: 

( )

( ) ( )
( ) ( )

TT

T

T

1min
2

0, 1, ,

0, 1, ,

k k k k k

i k k i k

i k k i k

q H d f x d

x d x i m

x d x i m

ψ ψ

ψ ψ

+∇

∇ + = =

∇ + ≥ =





               (3.8) 

3- A linear search to find a solution for the next iteration: 

1k k kX X dα+ = +                          (3.9) 

The algorithm is repeated until a stopping criterion (either maximum itera-
tion or convergence criterion) is met. It must be mentioned that the SQP algo-
rithm is a gradient based algorithm. Generally gradient based methods have the 
possibility of getting trapped at local optimum depending on the initial guess of 
the solution. In order to achieve a good final result, these methods require very 
good initial guesses of the solution. Since the matrix Q  is supposed symmetric 
( )ij jiq q=  and semidefinite, the objective function is convex and thus the SQP 
algorithm yields the global optimum solution. The corresponding theorem is 
presented as follows: 

Theorem 3.1: In mathematical terminology, ( )1 2, , , nf x x x  is convex if and 
only if its n n×  Hessian matrix is positive semi definite for all possible values of
( )1 2, , , nx x x . That is for any 0x ≥  the following relation is satisfied: 

( ) ( )

2 2

12
11

2
1 2 1 2

2 2

2
1

, , , 0, , , ,
n

n
n n

n
n n

f f
x

x xx
x

x x x x x x
f f x

x x x

 ∂ ∂
  ∂∂   
   ≥ ∀ ∈
  
 ∂ ∂ 
  ∂ ∂ 



    





  
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in which ( )

2 2

2
11 2

2 2

2
1

n

j i n n

n n

f f
x xx

fH x
x x

f f
x x x

×

 ∂ ∂
 ∂ ∂∂   ∂ = =  
  ∂ ∂  ∂ ∂ 
 ∂ ∂ ∂ 



  



 is the Hessian matrix of  

function f . Hence the above relation can be rewritten as follow: 

( )T 0, nx H x x x≥ ∀ ∈  

Proof: See in [26]. 

4. An Example 

In this section, we utilize an example to illustrate the solution method proposed 
in this paper. Consider a river from which diversions are made to three water- 
consuming firms that belong to the same corporation, as illustrated in Figure 1 
Each firm makes a product, and is the critical resource. Water is needed in the 
process of making that product, and it is critical resource. The three firms can be 
denoted by the index 1,2,3j =  and their water allocations by jx . Assume the 
problem is to determine the allocations jx  of water to each of three firms 
( )1, 2,3j =  that maximize the total net benefits, ( )j jj NB x∑ , obtained from 
all three firms. The total amount of water available is constrained or limited to a 
quantity of Q. Assume the net benefits ( )j jNB x , derived from water jx  allo-
cated to each firm j , are defined by: 

( ) 2
1 1 1 10.5NB x x x= +                     (4.1) 

( ) 2
2 2 2 22NB x x x= +                     (4.2) 

( ) 2
3 3 3 31.5NB x x x= +                     (4.3) 

The problem is to find the allocations of water to each firm that maximize the 
total benefits ( )TB X : 

( ) ( ) ( ) ( )1 1 2 2 3 3TB X NB x NB x NB x= + +             (4.4) 

These allocations cannot exceed the amount of water available, Q, less any 
that must remain in the river, R. Assuming the available flow for allocations, 
Q R− , is 4. The crisp optimization problem is to maximize Equation (4.4) sub-
ject to the resource constraint: 

1 2 3 4x x x+ + ≤                         (4.5) 

Thus the problem is: 

( ) ( ) ( ) ( )2 2 2
1 1 2 2 3 3

1 2 3

1 2 3

max 0.5 2 1.5

4
s.t.

, , 0

TB X x x x x x x

x x x
x x x

= + + + + +

+ + ≤
 ≥

      (4.6) 

The precise quantification of many system performance criteria and parame-
ter and decision variables is not always possible, nor is it always necessary. When 
the values of variable cannot be precisely specified, they are said to be uncertain 
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or fuzzy. If the values are uncertain, probability distributions may be used to 
quantify them. Alternatively, if they are best described by qualitative adjectives, 
such as dry or wet, hot or cold, clean or dirty, and high or low, fuzzy member-
ship function can be used to quantify them. Both probability distribution and 
fuzzy membership functions of these uncertain or qualitative variables can be 
included in quantitative optimization models. Now we illustrate how fuzzy de-
scriptors can be incorporated into optimization models of water resources sys-
tems. Assuming the available flow for allocations, Q R− , is not certainly known 
and is represented by an interval 4,2,1.5 . Thus the problem turns to the fuzzy 
quadratic programming problem as follows: 

( ) ( ) ( ) ( )2 2 2
1 1 2 2 3 3

1 2 3

1 2 3

max 3 2 1.5

4, 2,1.5
s.t.

, , 0

TB X x x x x x x

x x x
x x x

= + + + + +

 + + ≤


≥

       (4.7) 

This problem is in the form of model (3.2). Hence it can be solved using the 
proposed method. Since the parameter 1b , is triangular fuzzy number, thus the 
objective value of the problem should be fuzzy number as well. According to the 
proposed method the fuzzy solution obtained by solving the following program: 

( ) ( ) ( ) ( )2 2 2
1 1 2 2 3 3

1 2 3

1 2 3

1 2 3

1 2 3

max 3 2 1.5

4
2

s.t.
5.5

, , 0

TB X x x x x x x

x x x
x x x
x x x
x x x

= + + + + +

+ + ≤
 + + ≤
 + + ≤
 ≥

 

where parameter values are all known constant. Thus this model is conventional 
quadratic programming problems. By solving this problem using SQP algorithm 
the global optimum solution is obtained as: 

( )2,0,0X =  

The value of objective function is also achieved * 10z = . 

5. Conclusion 

This paper generalized the conventional quadratic programming of constant pa-
rameters to fuzzy parameters and the range of optimal objective values produced 
from the fuzzy parameters, including constraint coefficient and right-hand sides. 
The idea is to transform the defined fuzzy quadratic programming problem in to 
a conventional quadratic problem. Then the classical programming problem is 
solved using SQP algorithm and as a result, the optimal solution and the optimal 
value of the objective function are obtained. We emphasize that this work can be 
extended to the other practical situations as well as water resource management 
and etc. Also, as we mentioned in our study, in the mentioned model we as-
sumed the type of fuzzy number is triangular while in the many real situations it 
is a limitation for our study and hence we suggest the interested readers focus on 
the other kinds of fuzzy numbers and then they may achieve some new results. 
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Our other suggestion is establishing a new rule for fuzzy ordering. 
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Abstract 
Using invariant sets of descending flow and variational methods, we establish 
some sufficient conditions on the existence of sign-changing solutions, posi-
tive solutions and negative solutions for second-order nonlinear difference 
equations with Dirichlet boundary value problem. Some results in the litera-
ture are improved. 
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1. Introduction 

Let N, Z and R denote sets of all natural numbers, integers and real numbers, 
respectively. We consider the existence of sign-changing solutions, positive solu-
tions and negative solutions for the following second-order nonlinear difference 
equation with Dirichlet boundary value problem (BVP for short) 

( ) ( )( ) [ ]
( ) ( )

2 1 , , 1,

0 1 0

x k f k x k k T

x x T

−∆ − = ∈


= + =
            (1.1) 

where 2T ≥  is a given integer and [ ] { }1, : 1, 2, ,T T=  , [ ]: 1,f T R R× →  is 
continuous in the second variable, ∆  denotes the forward difference operator 
defined by ( ) ( ) ( )1x k x k x k∆ = + − , ( ) ( )( )2x k x k∆ = ∆ ∆ . 

In recent years, many authors devoted to the study of (1.1) by employing var-
ious methods and obtained some interesting results. Here we mention a few. 
Employing critical point theory, Agarwal [1] established the existence results of 
multiple positive solutions. While the nonlinearity is discontinuous, Zhang [2] 
gained another new multiple solutions. Zhang and Sun [3] obtained two exis-
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tence results of multiple solutions. By aid of algebra and Krasnoselskii fixed 
point theorem, Luo [4] investigated the existence of positive solutions. 

Study on the sign-changing solutions is a very important research field both in 
differential equations and difference equations. As to the sign-changing solu-
tions for differential equations, many scholars achieved excellent results [5]-[14] 
by making using of a variety of methods and techniques, such as Leray-Schauder 
degree theory, fixed point index theory, topological degree theory, invariant sets 
of descending flow, critical point theory and etc.. Among them, invariant sets of 
descending flow play an important role, which was first used by Sun [10]. How-
ever, to the authors’ knowledge, there are few literatures that considered 
sign-changing solutions for difference equations. Making use of invariant sets of 
descending flow, [15] studied periodic boundary value problem 

( ) ( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )

1 1 , , 1,

0 , 0 .

p k x k q k x k f k x k k T

x x T x x T

−∆ − ∆ − + = ∈   


= ∆ = ∆
 

In this paper, our purpose is to establish some sufficient conditions for the ex-
istence of solutions for (1.1). First, we will construct a functional I such that so-
lutions of (1.1) correspond to critical points of I. Then, by using invariant sets of 
descending flow and Mountain pass lemma, we obtain sign-changing solutions, 
negative solutions and positive solutions for (1.1). 

2. Preliminaries and Main Results 

Given 0m ≥ , let [ ] ( ) ( ){ }: 0, 1 0 1 0G x T R x x T= + → = + =  be a T-dimen- 
sional Hilbert space which is equipped with the inner product 

( ) ( ) ( ) ( )
1

1 1
, 1 1 ,

T T

m
k k

x y x k y k mx k y k
+

= =

= ∆ − ∆ − +∑ ∑  

then the norm m⋅  can be induced by 

( ) ( )
1

1 22 2

1 1
1 .

T T

m
k k

x x k m x k
+

= =

 = ∆ − + 
 
∑ ∑

 
Let H be the T-dimensional Hilbert space equipped with the usual inner 

product ( ),⋅ ⋅  and the usual norm ⋅ . It is not difficult to see that G is iso-
morphic to H, m⋅  and ⋅  are equivalent. Denote { }max ,0x x+ = ，

{ }min ,0x x− = . Then for any x H∈ , we find , 0m⋅ ⋅ ≥ . 
Define functional :I H R→  as 

( ) ( ) ( )( )
1 2

1 1

1 1 , .
2

T T

k k
I x x k F k x k

+

= =

= ∆ − −∑ ∑               (2.1) 

For any ( ) ( ) ( )( )1 , 2 , ,x x x x T H
τ

= ∈ , ( )I x  can be rewritten as 

( ) ( ) ( )( )
1

1 , , ,
2

T

k
I x Ax x F k x k

=

= −∑                  (2.2) 

Here τα  is the transpose of the vector α  on H  and 
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2 1 0 0 0
1 2 1 0 0

0 1 2 0 0
.

0 0 0 2 1
0 0 0 1 2 T T

A

×

− 
 − − 
 −

=  
 
 −
  − 







     





 

In the following, we first consider the linear eigenvalue problem correspond-
ing to (1.1) 

( ) ( ) [ ]
( ) ( )

2 1 , 1,

0 1 0

x k x k k T

x x T

λ−∆ − = ∈


= + =
              (2.3) 

By direct computation, we get eigenvalues of (2.3) as 

( )
2 π4sin , 1,2, , .

2 1k
k k T
T

λ = =
+

                (2.4) 

Denote { } 1

T
k k

z
=

 be the corresponding eigenvectors of { } 1

T
k k
λ

=
, where 

( ) 2 πsin , , 1, 2, , .
1 1k

kjz j k j T
T T

= =
+ +

  

It is obvious that 0 4kλ< < , 
( )

2
1

π4sin 0
2 1T

λ = >
+

 and  

( )1
2 πsin 0

1 1
jz j

T T
= >

+ +
 for all [ ], 1,k j T∈ . Note that 1 2, , , Tλ λ λ  are also  

eigenvalues of matrix A . 
Next, for 0m ≥ , we consider BVP 

( ) ( ) ( ) [ ]
( ) ( )

2 1 , 1,

0 1 0

x k mx k h k k T

x x T

−∆ − + = ∈


= + =
             (2.5) 

where [ ]: 1,h T R→ . It is not hard to know that (2.5) and the system of linear 
algebra equations ( )A mI x h+ =  are equivalent, then the unique solution of 
(2.5) can be expressed by 

( ) 1x A mI h−= +                          (2.6) 

On the other side, we have 
Lemma 2.1 The unique solution of (2.5) is 

( ) ( ) ( ) [ ]
1

, , 0, 1 ,
T

m
s

x k G k s h s k T
=

= ∈ +∑  

here ( ),mG k s  can be written as 

( )

( )( )

( )( )

1 1

1 1

, 0 1,
,

, 0 1,

s T T s k k

m k T T k s s

P P P P
k s T

WG k s
P P P P

s k T
W

− − + − −

− − + − −

 − −
 ≤ ≤ ≤ +
= 

− −
≤ ≤ ≤ +



 

( )( )1 1 1T TW P P P P+ − − −= − − . 
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Proof. First consider the homogeneous equation of (2.5) 

( ) ( ) [ ]
( ) ( )

2 1 0, 1,

0 1 0

x k mx k k T

x x T

−∆ − + = ∈


= + =
              (2.7) 

then the corresponding characteristic equation of (2.7) is 

( )2 2 1 0p m p− + + =  

Since ( )22 4 0m+ − > , which means we have 
2 2

1 2
2 4 2 4, .

2 2
m m m m m mp p+ + + + − +

= =  

Two independent solutions of (2.7) can be expressed by ( )1 1
kx k p=  and 

( )2 2
kx k p= . Therefore, the general solution of (2.5) is  

( ) ( ) ( )1 1 2 2
k kx k a k p a k p= + . 

The next step is to determine coefficients ( ) ( )1 2,a k a k . Now using the me-
thod of variation of constant, it follows 

( ) ( )
( ) ( ) ( )

1 1 2 2

1 1
1 1 2 2

1 1 0,

1 1 .

k k

k k

a k p a k p

a k p a k p h k+ +

∆ − + ∆ − =

∆ − + ∆ − = −

 

Then 

( ) ( )

( ) ( )

2
1

2 1

1
2

2 1

1 ,

1 .

k

k

p h k
a k

p p

p h k
a k

p p

∆ − =
−

∆ − = −
−

 

Moreover 

( ) ( ) ( )

( ) ( ) ( )

2
1 1

1 2 1

1
2 2

1 2 1

0 ,

0 .

sk

s

sk

s

p h s
a k a

p p

p h s
a k a

p p

=

=

= +
−

= −
−

∑

∑
 

Thus, the general solution of (2.5) is 

( ) ( ) ( ) ( ) ( )2 1
1 1 2 2

1 12 1 2 1

0 0 .
s sk k

k k

s s

p h s p h s
x k a p a p

p p p p= =

   
= + + −   

− −      
∑ ∑  

Using initial conditions, we find ( ) ( )1 20 0a a= −  and 

( )
( )

( )( )
( )

1 1
1 2 2 1

1 1 1
1 1 2 2 1

0
s T s TT

T T
s

p p p p
a h s

p p p p

+ +

+ +
=

−
=

− −
∑  

Write ( )( )1 1
1 2 2 1
T TW p P p p+ += − − , 1

1 2p p P−= = , then 

( ) ( )( ) ( )( ) ( )1 1 1 1

1 1

1 .
T k

s T T s k k k s s k T T

s s
x k P P P P P P P P h s

W
− − + − − − − + − −

= =

 = − − + − −  
∑ ∑  

Hence, we achieve the unique solution of (2.5) 

( ) ( ) ( ) [ ]
1

, , 0, 1 ,
T

m
s

x k G k s h s k T
=

= ∈ +∑  
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here ( ),mG k s  can be written as 

( )

( )( )

( )( )

1 1

1 1

,0 1,
,

,0 1.

s T T s k k

m k T T k s s

P P P P
k s T

WG k s
P P P P

s k T
W

− − + − −

− − + − −

 − −
 ≤ ≤ ≤ +
= 

− −
≤ ≤ ≤ +



 

Remark 2.1 From Lemma 2.1, we have 

( ) ( ) [ ], , 0, , 1, .m mG k s G s k k s T= > ∈  

Define , , :m m mK f A H H→  as follows 

( )( ) ( ) ( ) [ ]

( )( ) ( )( ) ( ) [ ]
1

, , , 1, ;

, , , 1, ;

,

T

m m
s

m

m m m

K x k G k s x s x H k T

f x k f k x k mx k x H k T

A K f

=

= ∈ ∈

= + ∈ ∈

=

∑

 

where :mA H H→  is a completely continuous operator. Combining (2.6) with 
Lemma 2.1, we achieve that ( ) 1

mK A mI −= + . 
Remark 2.2 According to Lemma 2.1, it is not difficult to know that 
( ){ } 1

0

T

k
x k

+

=
 is a solution of (1.1) if and only if ( ){ } 1

T

k
x k

=
 is a fixed point of mA . 

Lemma 2.2 The functional I defined by (2.1) is Frechet differentiable on H 
and ( )I x′  has the expression ( ) m mI x x K f x′ = −  for x H∈ . 

Proof. For any ,x y H∈ , using the mean value theorem, it follows 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
12

1 1 1

1 1 1 1 , ,
2

T T T

k k k

I x y I x

y k x k y k f k x k k y k y kθ
+

= = =

+ −

= ∆ − + ∆ − ∆ − − +∑ ∑ ∑
 

Here ( ) ( ) [ ]0,1 , 1,k k Tθ ∈ ∈ . As f is continuous in x, we find 

( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( )

1

2 2

1

, ,

1 1, ,
2 2

1

T

m
k

T

m
k

m

I x y I x x y f k x k mx k y k

f k x k f k x k k y k y k y m y

y

θ

ο

=

=

+ − − + +

 = − + + − 

=

∑

∑  

which leads to 

( )( ) ( ) ( ) ( )( ) ( ) 2 2

0 1

1 1 1lim , , 0
2 2m

T

my km

f k x k f k x k k y k y k y m y
y

θ
→ =

  − + + − =   
∑  

thus we can immediately conclude that I is Frechet differentiable on H and 

( ) ( )( ) ( )( ) ( )
1

, , ,
T

mm
k

I x y x y f k x k mx k y k
=

′ = − +∑           (2.8) 

On the other side, for all ( ){ }x x k H= ∈  and ( ){ }z z k H= ∈ , there holds 

( ) ( ) ( ) ( )
1

2

1 1
1 1 1 .

T T

k k
x k z k x k z k

+

= =

∆ − = − ∆ − ∆ −∑ ∑  

Making use of the definition of inner product and Lemma 2.1, it follows 
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( )( ) ( ) ( )( ) ( )

( )( ) ( )( ){ } ( )

( )( ) ( )( ) ( )

1

1 1

2

1

1

,

, 1 1

, 1

, ,

m m m
T T

m m m mm
k k
T

m m m mm
k
T

m
k

x K f x y

x y K f x k y k m K f x k y k

x y K f x k m K f x k y k

x y f k x k mx k y k

+

= =

=

=

−

= − ∆ − ∆ − −

= − −∆ − +

= − +

∑ ∑

∑

∑

 

Then ( ) , ,m m mm
I x y x K f x y′ = −  for all ,x y H∈ , that is to say,  

( ) m mI x x K f x′ = − . 

Remark 2.3 According to Lemma 2.2 and Remark 2.2, we find that critical 
points of I defined on H are precisely solutions of (1.1). 

Now, we give some necessary lemmas and definitions. 
Definition 2.1 ([16]) Let ( )1 ,I C H R∈ , I is said to be satisfied Palais-Smale 

condition((PS)condition for short) if every sequence { }nx H⊂  such that 
( )nI x  is bounded and ( ) ( )0nI x n′ → →∞  has a convergent subsequence in 

H. 
Definition 2.2 ([17]) Assume ( )1 ,I C H R∈ . If any sequence { }nx  for which 
( )nI x  is bounded and ( ) ( ) ( )1 0n nm m

x I x n′+ → →∞  possesses a conver-
gent subsequence in H, then we say that I satisfies the Cerami condition ((C) 
condition for short). 

Lemma 2.3 (Mountain pass lemma [16]) Let H be a real Hilbert space, assume 
that ( )1 ,I C H R∈  satisfies the (PS) condition and the following conditions: 

(H1) There exist constants 0ρ >  and 0α >  such that ( )I x a≥  for all 
x Bρ∈∂ . 

(H2) There exists 0x Bρ∉  such that ( )0 0I x ≤ . 
Then I has a critical value c a≥ , moreover, c can be characterized as 

[ ]
( )( )

0,1
inf max ,
h s

c I h s
∈Γ ∈

=  

here 

[ ]( ) ( ) ( ){ }00,1 , 0 0, 1 ,h C H h h xΓ = ∈ = =  

Bρ  be the open ball in H with radius ρ  and centered at 0, Bρ∂  denote 
boundary of Bρ . 

Lemma 2.4 ([11]) Let H be a Hilbert space, there are two open convex subsets 

1B  and 2B  on H with ( )1 1mA B B∂ ⊂ , ( )2 2mA B B∂ ⊂  and 1 2B B φ∩ ≠ . If 
( )1 ,I C H R∈  satisfies the (PS) condition and ( ) mI x x A x′ = −  for all x H∈ . 

Assume there is a path [ ]: 1,g T H→  such that 
( ) 1 20 \g B B∈ , ( ) 2 11 \g B B∈  

and 

( )
[ ]

( )( )
1 2 0,1

inf sup
x B B

I x I g
τ

τ
∈ ∩ ∈

>  

then I has at least four critical points, one in ( )1 2\H B B∪ , one in 1 2\B B , one 
in 2 1\B B , and one in 1 2B B∩ . 
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Remark 2.4 By Theorem 5.1 [17], we can replace (PS) condition by weaker (C) 
condition in Lemma 2.4. 

Throughout this paper, we assume that 

(J1) [ ]

( )
0 11, 0

,
max limsup
k T u

f k u
f

u
λ

∈ →
= <  

(J2) 
( ),

lim
u

f k u
r

u→∞
=  for [ ]1,k T∈  where ( )0,r∈ +∞  is a constant, or 

r = +∞ , 2υ >  and 0C >  satisfy 

( ) ( )1, 1f k u C u υ−≤ + . 

(J3) (i) ( ) ( ) [ ]lim , 2 , , 1,
u

uf k u F k u k T
→∞

− = −∞ ∀ ∈    

or 
(ii) ( ) ( ) [ ]lim , 2 , , 1,

u
uf k u F k u k T

→∞
− = +∞ ∀ ∈   . 

where ( ) ( )
0

, , d
u

F k u f k s s= ∫ . 

At last, we state our main results as following. 
Theorem 2.1 Suppose (J1) and (J2) and 2r λ> . Then one has the following. 
(i) If ( )2 ,r λ∈ +∞  is not an eigenvalue of (2.3), then (1.1) has at least three 

nontrivial solutions, one sign-changing, one positive and one negative. 
(ii) If r is an eigenvalue of (2.3) and (J3) holds, then the conclusion of (i) is 

true. 

Theorem 2.2  I f  ( )
1

,
liminf

u

f k u
u

λ
→∞

>  and  ( )
10

,
liminf

u

f k u
u

λ
→

<  for  a l l  

[ ]1,k T∈ . Then (1.1) has at least two nontrivial solutions, one negative and one 
positive. 

From Theorem 2.2, we can get 
Corollary 2.3 Suppose ( ),0 0f k =  for any [ ]1,k T∈ , we have: 

(i) If ( )
1

,
liminf

u

f k u
u

λ
→−∞

>  and ( )
1

0

,
liminf

u

f k u
u

λ
−→

<  for any [ ]1,k T∈ , then  

(1.1) has at least a negative solution. 

(ii) If ( )
1

,
liminf

u

f k u
u

λ
→+∞

>  and ( )
1

0

,
liminf

u

f k u
u

λ
+→

<  for any [ ]1,k T∈ , then  

(1.1) has at least a positive solution. 
Our results improve previous work in the following way: 
(1) [1] [2] [3] [4] considered Dirichlet boundary value problem, but it is un-

known whether the solutions are sign-changing. While in this paper, the nonli-
near term f can change sign. 

(2) The nonlinearity f satisfies classical Ambrosett-Rabinowitz superlinear 
condition in [11] [12] [13] or locally Lipschitz continuity in [7] [8] [14], which 
are not used in our results. 

3. Existence of Sign-Changing Solutions of (1.1) 

In this section, we shall make use of Lemma 2.4 to complete the proof of Theo-
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rem 2.2. Let convex cones { }: 0x H xΛ = ∈ ≥  and { }: 0x H x−Λ = ∈ ≤ . The 
distance respecting to m⋅  in H is written by mdist . For arbitrary 0ε > , we 
denote 

( ){ } ( ){ }: , , : ,m mB x H dist x B x H dist xε εε ε+ −= ∈ Λ < = ∈ −Λ <  

then ,B Bε ε
+ −  are open convex subsets on H with B Bε ε φ+ −∩ ≠ . In addition, 

( )\H B Bε ε
+ −∪  contains only sign-changing functions. 

Lemma 3.1 Suppose one of the following conditions holds. 
(i) r = +∞ . 
(ii) r < +∞  is not an eigenvalue of (2.3), here r is defined by (J2). 
Then the functional I defined by (2.1) satisfies (PS) condition. 
Proof . (i) Assume r = +∞ . Let { }nx H⊂  be a (PS) sequence, i.e., ( )nI x  is 

bounded and ( ) 0nI x′ →  as n →∞ . Since H is a finite dimensional Hilbert 
space, we only need to show that { }nx  is bounded. If r = +∞ , choosing a con-
stant 0γ > , we have ( ) 2, TF k u uλ γ≥ −  for all ( ) [ ], 1,k u T R∈ × . Then 

( ) ( ) ( )( ) 2 2

1

2

1 1, ,
2 2

1
2

T

n n n n T n T n
k

T n

I x Ax x F k x k x x T

x T

λ λ γ

λ γ

=

= − ≤ − +

= − +

∑
  (3.1) 

furthermore, 

( )2 2 2 n
n

T

T I x
x

γ
λ
−

≤ . 

Since ( )nI x  is bounded, we conclude that { }nx  is a bounded sequence and 
(PS) condition is satisfied. 

(ii) suppose r < +∞  is not an eigenvalue of (2.3). We are now ready to prove 
that { }nx  is bounded. Arguing by contradiction, we suppose there is a subse-
quence of { }nx  with ( )n nx nρ = → +∞ → +∞  and for each [ ]1,k T∈ , either  

( ){ }nx k  is bounded or ( )nx k →+∞ . Put n
n

n

xy
ρ

= . Clearly, 1ny = . Then  

there have a subsequence of { }ny  and y H∈  satisfying that ny y→  as 
n →∞ . Write 

( )( )
( ) ( )

( )( )
( ) ( )

( )( )
( ) ( )

1, 1 2, 2 ,
1 , 2 , ,

1 2
n n n

n n n n
n n n

f x f x f T x T
d y y y T

x x x T

 
=   
 

 . 

Since ( ),
lim
u

f k u
r

u→∞
=  for all [ ]1,k T∈  and ( )n n m m nI x x K f x′ = − , we get 

( )
0 0 0 0

1n
n n n n

n n

I x
y K f x y K d y K ry

ρ ρ
′

= − = − → − . 

Because of 
( )

0n

n

I x
ρ
′

→  as n →∞ , we have 0 0y K ry− → . In view of Lem- 

ma 2.2, we find that r is an eigenvalue of matrix A, which contradicts to the as-
sumption. So { }nx  is bounded and the proof is finished. 
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Lemma 3.2 I satisfies (C) condition under (J3). 
Proof . First assume (J3) (i) be satisfied. There exists 1 0M > , if { }nx H⊂  be 

a sequence such that ( ) 1nI x M≤  and ( ) ( ) 11 n nm m
x I x M′+ ≤ , there holds 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

1

1

3 2 1 2 ,

, 2 ,

n n n n n nm m m
T

n n n
k

M I x x I x I x I x x

x k f k x k F k x k
=

′ ′− ≤ − + ≤ −

 = − ∑
 (3.2) 

Then we claim { }nx  is bounded. Actually, if { }nx  is unbounded, there 
possesses a subsequence of { }nx  and some [ ]0 1,k T∈  satisfying  

( ) ( )0nx k n→+∞ →∞ . According to (J3) (i), we get 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )
1

0 0 0

, 2 ,

, 2 , 1

T

n n n
k

n n n

x k f k x k F k x k

x k f k x k F k x k T R
=

 − 

 ≤ − + − → −∞ 

∑
 

and there has a positive constant 2 0M >  such that ( ) ( ) 2, 2 ,uf k u F k u M− ≤  
for any [ ]1,k T∈  and u R∈ . Therefore, 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )
1

0 0 0

, 2 ,

, 2 , 1

T

n n n
k

n n n

x k f k x k F k x k

x k f k x k F k x k T R
=

 − 

 ≤ − + − → −∞ 

∑
 

which contradicts to (3.2). Then I satisfies (C) condition. 
When (J3) (ii) holds, we can prove I satisfies (C) condition in a similar way. 

Then Lemma 3.2 is verified. 
Lemma 3.3 If (J1) and (J2) hold, there exist 0m ≥  and 0 0ε >  such that for 

00 ε ε< < , we have 
(i) if x Bε

−∈  is a nontrivial critical point of I and ( )mA B Bε ε
− −∂ ⊂ , then x is a 

negative solution of (1.1); 
(ii) if x Bε

+∈  is a nontrivial critical point of I and ( )mA B Bε ε
+ +∂ ⊂ , then x is a 

positive solution of (1.1). 
Proof. (i) According to (J1) and (J2). For all 0u ≠  and [ ]1,k T∈ , there exists 

0m ≥  such that 

( )( ), 0u f k u mu+ > .                        (3.3) 

Let ( )my A x= , { }max ,0x x+ = , { }max ,0x x− = −  for all x H∈ . Since 

( )2 2

mx m xλ= + , 

it follows 1 Tmm x mλ λ+ ≤ ≤ +  and 

( )
1 1

1 1inf inf ,mmz z
x x z x z dist x

m mλ λ
+

∈−Λ ∈−Λ
= − ≤ − = −Λ

+ +
. (3.4) 

By (J1) and (J2), there exist constants 0τ > , 0C >  and 2υ >  such that 

( ) ( ) ( ) [ ]1
1, , , 1, .f k u mu m u C u k u T Rυλ τ −+ ≤ + − + ∀ ∈ ×  (3.5) 

Choosing a positive constant D, since x H∈  is finite-dimensional, we have 
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( ) { }
1

1
: min , , .

T

m
k

x x k D x x x H
υυ

υ
=

 = ≤ ∀ ∈ 
 
∑        (3.6) 

It is obviously that 2x x= . Moreover, y y y+ −= −  and y− ∈−Λ  imply 

( ),m m
dist y y y y− +−Λ ≤ − = . 

Making use of (3.4)-(3.6), we get 

( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( )

( ) ( )( )

2

1

1
1

1

11

1

11
1

1

, , , ,

,

,

, , ,

m m m mm m m m m
T

k
T

k

m

m m m

dist y y y y y A x y K f x y

f k x k mx k y k

f k x k mx k y k

m x y C x y

m x CD x y
m

m dist x C dist x y
m

υ

υ υ

υυ

υ

λ τ

λ τ
λ

λ τ
λ

+ + + + +

+

=

+ + +

=

−+ + + +

−+ + +

− +

−Λ ≤ ≤ = =

 = + 

 ≤ + 

≤ + − +

 + −
≤ +  + 
 + −

≤ −Λ + −Λ + 

∑

∑
 

here 
( )

1 1
1

CDC
m

υ

υλ −
=

+
. Hence 

( ) ( ) ( )( ) 11
1

1

, , , .m m m
mdist y dist x C dist x

m
υλ τ

λ
−+ −

−Λ ≤ −Λ + −Λ
+

 

When ( )( ) ( )
2

1
1

,
2mC dist x

m
υ τ

λ
−

−Λ =
+

, there holds 

Since 
( )
( )

1

1

2
1

2
m

m
λ τ
λ

+ −
<

+
, we obtain 

( ) , .mA B B u Bε ε ε
− − −∂ ⊂ ∀ ∈  

If x Bε
−∈  is a nontrivial critical point of I, it is clear that ( ) 0mI x x A x′ = − = . 

It follows from (3.7) that { }\ 0x∈−Λ . Combining (3.3) and remark 2.1, we 
have ( ) 0x k < . Consequently, x is a negative solution of (1.1). 

(ii) can be discussed similarly, we only need to change y+  to y−  to prove 
(ii). For simplicity, we omit its proof. 

Lemma 3.4 Suppose 1 2,z z  be eigenvectors corresponding to eigenvalues 

1 2,λ λ  of (2.3) and { }2 1 2,x H span z z∈ = . If 2r λ> , then ( )I x →−∞  as  

mx →+∞ . 
Proof. (1) If r = +∞ . From (3.1), we can see that ( )I x →−∞  as 

mx →+∞  for any x H∈ . 
(2) Assume ( )2 ,r λ∈ +∞ . For 2x H∈ , we have 1 1 2 2x z zε ε= + . In general, we 

can suppose ( )1 2, 0z z = . Thus 2 2 22 2
1 1 2 2,x x x z zε ε= = +  and there exists  

ε  satisfying { }1 20 min ,r rε λ λ< < − − . From ( ),
lim
x

f k x
r

x→∞
=  for any [ ]1,k T∈  
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and x R∈ , there exists 0ς >  such that 

( ) 2, .
2

rF k x xε
ς

−
≥ −  

Then for 2x H∈ , it follows 

( ) ( ) ( )( )

( )
( ) ( )

1

2 2 22 2
1 1 1 2 2 2

2 22 2
1 1 1 2 2 2

1 , ,
2
1
2 2
1 1 .
2 2

T

k
I x Ax x F k x k

rz z x T

r z r z T

ε
λ ε λ ε ς

λ ε ε λ ε ε ς

=

= −

−
≤ + − +

= − + + − + +

∑

 

Since 1 0rλ ε− + <  and 2 0rλ ε− + < , we find ( )I x →−∞  as mx →+∞ . 
This completes the proof. 

Now we are in the position to prove Theorem 2.1 by using Lemma 2.4. 
Proof of Theorem 2.1 From (3.5), we get 

( ) ( )2 2
1

1, ,
2 2
m CF k x x m x x υλ τ

υ
+ ≤ + − +  

which combine with (3.6) gives that 

( ) ( )( ) ( )

( )

2

1

2 21

2

1

1 , ,
2 2
1
2 2

.
2

T

m
k

m

m m

mI x x x F k x k x k

m Cx x x

CDx x
m

υ

υ

υ
υ

λ τ
υ

τ
λ υ

=

 = − +  
+ −

≥ − −

= −
+

∑

 

It follows from (3.4) that ( ) 0
1 1

1 1,mx dist x
m m

ε
λ λ

± ≤ Λ ≤
+ +

  for any 

x B Bε ε
+ −∈ ∩ . Then there has 0c > −∞  such that ( ) 0inf

u B B
I x c

ε ε
+ −∈ ∩

= . Moreover, 

i n  
view of Lemma 3.4, we can choose 02R ε>  such that ( ) 0 1I x c< −  for all 

2x H∈  and mx R= . To apply Lemma 2.4, we define a path [ ] 2: 0,1g H→  as 

( ) ( ) ( )
( ) ( )

1 2

1 2

cos π sin π
cos π sin π

m

z s z s
g s R

z s z s
+

=
+

. 

By direct computation, we get 

( ) ( )1 1

1 1

0 \ , 1 \
m m

z zg R B B g R B B
z zε ε ε ε

+ − − += ∈ = − ∈  

and 

( )
[ ]

( )( )
0,1

inf sup
x B B

I x I g
ε ε τ

τ
+ −∈ ∩ ∈

> . 

Combining Lemmas 3.1, 3.3 and 2.4, we find there has a critical point in  

( )\H B Bε ε
+ −∪  corresponding to a sign-changing solution of (1.1). Moreover, 
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we also have a critical point in ( )\ \B B B Bε ε ε ε
+ − − +  corresponding to a positive  

solution (a negative solution) of (1.1). The proof of (i) is completed. 
Notice Lemma 3.2 and Remark 2.4, the proof of (ii) is analogous to (i) and we 

omit it. 

4. Existence of Positive Solutions of (1.1) 

In this section, we are now ready to prove existence of positive solutions of (1.1) 
using Lemma 2.3. Denote }{max ,0x x+ =  and }{min ,0x x− = . Assume 
( ),0 0f k =  for all [ ]1,k T∈ . To prove Theorem 1.2, we consider functionals 

( ) ( )0
1

1 , , , .
2

T

k
I x x x F k x x H±
±

=

= − ∀ ∈∑  

It is easy to find that critical points of the function ( )I I+ −  correspond to 
positive solutions (negative solutions) of (1.1). 

Lemma 4.1 If ( )
1

,
lim inf
u

f k u
u

λ
→∞

>  for all [ ]1,k T∈ , then I+  and I−   

satisfy (PS) condition. 
Proof. Suppose { }nx H⊂  be a sequence with ( )nI x+  is bounded and 
( ) 0nI x+′ →  as n →+∞ . Denote ( )( ) ( )( ),f x k f k x k+

+ =  for [ ]1,k T∈  and 
x H∈ . In view of (2.6) and }{min ,0 0x x− = ≤ , there holds 

( ) ( )
2

0 0 0 0 0
, , , 1n n n n n n n n nx x x x Kf x x I x x xο− − − − −

+ +′≤ ≤ − = = , 

thus 0nx− →  as n →∞ . So we claim { }nx+  is bounded. We assume, by con-

tradiction, that there has a subsequence of { }nx  with 
0n nxρ += → +∞  as 

n →∞ . For each [ ]1,k T∈ , either { }nx+  is bounded or ( )nx k+ → +∞ . Put 

n
n

n

xy
ρ

+

= . then 0
1ny = . Moreover, there has a subsequence of { }ny  and 

y E∈  satisfying ny y→  as n →∞ . 

Denoting 1 0z > , the eigenvector associated with 1λ , we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( )

( )( ) ( )

1
2

1 1 1 1
1 1 1

, 1 1 100

1 1
1

1 1 1

,

, , 0.

T T T

n n n
k k k

n n n

T

n n
k

x k z k x k z k x k z k

x z Kf x z I x z

f k x k z I x z

λ
+

= = =

+ +

+
+

=

= − ∆ − = ∆ − −

′= = +

′= + >

∑ ∑ ∑

∑

 

Dividing by nρ , it follows immediately that 

( ) ( )
( )( )

( ) ( ) ( ) ( )1 1 1
1 1

,
1 .

T T n
n n

k k n

f k x k
y k z k y k z k

x k
λ ο

+

+
= =

= +∑ ∑      (4.1) 

Since 
[ ]

( )
11,

,
min lim inf
k T u

f k u
u

λ
∈ →∞

>  and 0
1ny = , then passing to the limit in  

(4.1), we get a contradiction. Hence, our claim is true. Since H is finite dimen-
sional, the above argument means that { }nx  has a convergent subsequence. 
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Consequently, I+  satisfies (PS) condition. 
Similarly, it is not difficult to know that I−  satisfies (PS) condition. Lemma 

4.1 is proved. 

Proof of Theorem 2.2 From 
[ ]

( )
101,

,
max lim

uk T

f k u
u

λ
→∈

< , there exist 0η >  and 

0δ >  such that 

( ) ( ) ( ) [ ]2
10

1, , d , 1, , .
2

u
F k u f k s s u k T uλ η δ= ≤ − ∈ ≤∫  

Now if we denote }{ 0:B x H xδ δ= ∈ < , then for x Bδ∈∂ , there holds 

( ) ( )( ) ( )2 2
10 0

1

2 2 21
0 0

1 1

1 1 1, ,
2 2 2
1 1 .
2 2 2

T

k
I x x x F k x k x x

x x

λ η

λ η
ηδ

λ λ

+
+

=

= − ≥ − −

−
≥ − =

∑
 

Because of 
[ ]

( )
11,

,
min lim inf
k T u

f k u
u

λ
∈ →∞

> , there exists a constant 0ξ >  such that 

[ ]

( )
11,

,
min lim inf
k T u

f k u
u

λ ξ
∈ →∞

> + .
 

Then we can choose a positive constant 2C  such that  

( ) ( ) 2
1 2

1,
2

F k u u Cλ ξ= + −  for all ( ) [ ], 1,k u T R∈ × . If υ  is sufficiently large,  

we obtain 

( ) ( )
2 2 2

2 2 2
1 1 1 1 2 1 20 0 0

1 1

0
2 2 2
v v vI vz z z C z Cξ

λ ξ
λ λ+ ≤ − + + = − + < . 

In view of Lemma 2.3 and 4.1, we yield that there exists Hµ∈  such that  

( ) 0I µ+′ =  and ( ) 2

1

1 0
2

I µ ηδ
λ+ ≥ > . Hence 

( )
2

0 0 0 0
, , ,Kf Iµ µ µ µ µ µ µ µ− − − −

+ +′≤ ≤ − = . 

Consequently, 0µ− = . Thus 0µ µ+= ≥ . 
If ( ) 0kµ =  for some [ ]1,k T∈ , we find 

( ) ( ) ( ) ( )( )21 1 1 , 0k k k f k u kµ µ µ− + − − = −∆ − = = , 

then ( )1 0kµ ± = . If ( ) 0kµ =  somewhere in [ ]1,k T∈ , it vanishes identically. 
By ( ) 0I µ ρ+′ ≥ > , we obtain ( ) 0kµ >  for [ ]1,k T∈ . Therefore, µ  is a posi-
tive solution of (1.1). 

In a similar way as above, if we consider the case of I− , a negative solution 
can be obtained. Then the proof of Theorem 2.2 is finished. 

5. Applications 

To illustrate Theorem 2.1 and Theorem 2.2, we will give two examples. 
Example 5.1 Consider BVP 
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( )
( )
( )

( ) [ ]

( ) ( )

2 1 , 1,
1

0 1 0

x k n
x k mx k k T

x k

x x T

 −
−∆ − = ∈

+
 = + =

                    (5.1) 

where ( )
2

2

π4sin
2 1π4sin , 0

1
T

m n
T m

+
> < <

+
. 

By direct calculation, we get 

( )
( ) ( )( )

( ) ( )( )

2

2

1 ln 1 , 0,
2,

1 ln 1 , 0.
2

mx m n x x x
F k x

mx m n x x x


− + − + ≥= 

 + + + − <

 

and ( ) ( )lim , 2 ,
x

xf k x F k x
→∞

− = +∞    for all [ ]1,k T∈ . According to (2.4), we 
obtain 

( )
2 2

1 2
π π4sin , 4sin .

2 1 1T T
λ λ= =

+ +
 

In addition, 
[ ]

( )
0 11, 0

,
max limsup
k T x

f k x
f mn

x
λ

∈ →
= = <  and  

( )
2

,
lim
x

f k x
r m

x
λ

→∞
= = > . From above argument, we find all conditions of  

Theorem 2.1 are satisfied, thus (5.1) has at least a sign-changing solution, a posi-
tive solution and a negative solution. 

For a certain case, fix 2T = , here 2 π4sin 3
3

m > = , 
10 n
m

< < , then we can 

choose 4m = ，
1
5

n = . After not very complicated calculation, we find 

3 3 3 3 19 19 19 190, , ,0 , 0, , ,0 , 0, , ,0 , 0, , ,0
5 5 5 5 5 5 5 5

       − − − −       
       

 

are positive solution, sign-changing solution, sign-changing solution and nega-
tive solution of (5.1), respectively. 

Remark 5.1 From above example, we can get at least three nontrivial solutions 
of (1.1), one sign-changing, one positive and one negative if the nonlinearity f 
satisfy all the conditions of Theorem 2.1. 

Example 5.2 Consider BVP 

( ) ( ) ( ) [ ]
( ) ( )

2 31 , 1,

0 1 0

x k x k ax k k T

x x T

−∆ − = + ∈


= + =
            (5.2) 

here 
( )

2 π4sin
2 1

a
T

<
+

. 

From (2.4), it is easy to see that 
( )

2
1

π4sin
2 1T

λ =
+

. Moreover, ( ),0 0f k = , 

( )
1

0

,
limsup

x

f k x
a

x
λ

→
= <  and 

( )
1

,
limsup

x

f k x
x

λ
→∞

≥  for all [ ]1,k T∈ . Therefore,  
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it follows from Theorem 2.2 that (5.2) has at least a positive solution and a nega-
tive solution. 

In the case of 2T = , because of 2 π4sin 1
6

a < = , we can choose 1
2

a = . After 

direct computation, we get that 
2 20, , ,0

2 2
 
  
 

 and 
2 20, , ,0

2 2
 

− −  
 

 are  

positive solution and negative solution of (5.2), respectively. 
Remark 5.2 From example 5.2, it is not difficult to know that if the nonlinear-

ity f satisfy all the conditions of Theorem 2.2, we can obtain at least a positive 
solution and a negative solution of (1.1). 

6. Conclusion 

In this manuscript, some sufficient conditions on the existence of sign-changing 
solutions, positive solutions and negative solutions for a class of second-order 
nonlinear difference equations were established with Dirichlet boundary value 
problem by using invariant sets of descending flow and variational methods. Our 
results improve some existed ones in some literatures, because we not only estab-
lish some sufficient conditions on the existence of sign-changing solutions, but 
also we allow the nonlinearity f to dissatisfy Ambrosett-Rabinowitz type condi-
tion or locally Lipschitz continuity and to change sign. 
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Abstract 
Aims: Steadily the clinicians of our team in inflammatory bowel disease en-
counter ulcerative colitis patients that develop deep ulcers during their treat-
ment. Currently, these practitioners are only equipped with their grade of ex-
pertise in inflammatory domains to decide what new therapy maybe use in 
such cases. Encouraged by the limited knowledge of this frequent pathology, 
we seek to determine the molecular conditions underlying the recurrent for-
mation of deep ulcerations in certain group of patients. Method: The goal of 
this strategy is to expose differences between groups of patients based on si-
milarities computed by random walk graph kernels and performing functional 
inference on those differences. Results: We apply the methodology to a co-
hort of eleven miRNA microarrays of ulcerative colitis patients. Our results 
showed how the group of ulcerative colitis patients with presence of deep ulc-
ers is topologically more similar (0.35) than ulcerative colitis patients (0.18) to 
control. Such topological constraint drove functional inference to complete 
the information that clinicians need. Conclusions: Our analyses reveal highly 
interpretable in the guidance of practitioners to eventually correct initial 
therapies of ulcerative colitis patients that develop deep ulcers. The metho-
dology can provide them with useful molecular hypotheses necessaries prior 
to make any decision on the newest course of the treatment. 
 
Keywords 
Ulcerative Colitis, Deep Ulcers, Fast Random Walk Graph Kernels, Conjugate 
Gradient Methods, Spectral Graph Theory 

 

1. Introduction 

Acute severe ulcerative colitis (ASC) is a multifaceted complication affecting 

How to cite this paper: Morilla, I., Uzzan, 
M., Cazals-Hatem, D., Zaag, H., Ogi-
er-Denis, E., Wainrib, G. and Tréton, X. 
(2017) Topological Modelling of Deep Ul-
cerations in Patients with Ulcerative Colitis. 
Journal of Applied Mathematics and Phys-
ics, 5, 2244-2261. 
https://doi.org/10.4236/jamp.2017.511183 
 
Received: September 7, 2017 
Accepted: November 21, 2017 
Published: November 24, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2017.511183
http://www.scirp.org
https://doi.org/10.4236/jamp.2017.511183
http://creativecommons.org/licenses/by/4.0/


I. Morilla et al. 
 

 

DOI: 10.4236/jamp.2017.511183 2245 Journal of Applied Mathematics and Physics 
 

about 25% of ulcerative colitis (UC) patients nowadays. Such a complication is a 
chronic threatening state often requiring emergent colectomy in case of 
intensive medical treatment failure. Additionally, the presence of deep ulcers 
expose patients to serious episodes such as sepsis, toxic mega-colon, perforation 
or death [1] [2] [3]. Despite many efforts, the molecular conditions leading to 
ulcers formation are still not clear. As showed in following sections, our graph 
kernel analysis provides practitioners with an excellent medical tool to approach 
this serious episode of inflammatory disorder. In this sense, we infer plausible 
hypothesis that sheds light into such a pressing medical problem and fits 
previous experiments reported in the literature. 

Graphs naturally model many types of structured data by means of nodes and 
edges. While nodes are representing general entities edges describe type of 
relations between such entities. On the other hand, machine learning methods 
applied to biomedical contexts [4] [5] concern about capturing relationships 
between structured entities. This tight coupling is of major interest in domains 
like medicine, where the seek of similarity between structures, here patients, is 
essential in preventing and fighting diseases. Kernel algorithms [6] provide an 
excellent framework to measure similarity ( )( ),o oκ ′  between objects o  and 
o′ . Notwithstanding, some few mathematical properties must be ensured first, 
i.e., symmetry ( ) ( )( ), ,o o o oκ κ′ ′=  and positive semi-definite (p.s.d.). Kernel 
methods may be used both to compare nodes within the same graph [7] and in 
inter-graph [8] [9] comparisons. The only constraint is its interpretability since 
we need to capture the pith of data encapsulated by the construction of a graph 
while we find ways suitable for the kernel evaluation. In this paper we evaluate in 
a novel scenario, inflammatory bowel disease, an extension of kernel methods 
[10] looking for topological similarity and combine functional context with the 
idea of performing medical inference in ulcerative colitis (UC). The paper maybe 
dissected in sections, namely: Section 2 portrays the inflammatory medical issue 
underlying this work; Section 3 gives us a reasonable landscape of the methods: 
spectral graph analysis, Conjugate Gradient Methods (CGs) to calibrate random 
walk graph kernel, and functional inference on our topological model; section 4 
confirms our approach is valid when it is used in a real cohort of 11 patients 
having been diagnosed with acute severe ulcerative colitis; we provide our 
concluding remarks in Section 5.  

2. Motivation: The Deep Ulcer Problem in ASC 

Practitioners and scientists based at the “Centre de Recherche sur l’Inflammation” 
(INSERM, UMRS1149); Université Paris-Diderot Sorbonne have recently, 
conducted a primary pilot study targeted to determine why some patients having 
been diagnosed with ulcerative colitis, an idiotypic inflammatory bowel disease, 
develop a haemorrhagic mucosa with deep ulceration. Indeed, ulcerative colitis is 
characterised by superficial inflammatory damages in the colonic mucosa. 
Currently, there are no pathogenic factors identified to explain the occurrence of 
deep ulcers in severe form of UC, such as ASC. This newest complication of the 
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disease is an indicator of a poor response to medical therapy. Upon multiple 
medical assays as well as statistical approaches (i.e., supervised hierarchical 
clustering, etc.) aiming at establishing predictive signatures to be used as dia- 
gnostic and prognostic; such phenomenon, apparently, seems to be “stochastic” 
within the treatment of ASC patients. 

3. Material and Methods 

This section provides the reader with a summary description of the three 
constituent methods, i.e., spectral graph theory, CGs in the efficiently computation 
of the graph kernel, and functional inference on topological models needed to 
understand the results showed in section 4.  

3.1. Human Samples 

All the biopsies analysed in the study were extracted from non-inflamed mucosa 
of the sigmoid colon. Paraffinised samples of colectomy were selected among 
three groups of patients: a first group consisting of four patients operated on UC 
in presence of deep ulcerations (ASC), what is a constituent marker of severity; a 
second sample made of three healthy subject with normal colonic mucosa and a 
last sample of four patients with refractory UC, i.e., superficial inflammation 
without deep ulcers (Figure 1(a)). The extracted RNA derives from low 
inflammatory areas of the colon. MicroRNA (small non-coding RNA containing 
between 22 - 25 nucleotides) expression was measured by specific chip of 
microarray Affymetrix. 

3.2. Differential miRNA Expression 

Differential miRNA expression was performed using limma [11] by fitting a 
log-normal (LN) generalized linear model (GLM) that accounts for expression 
(mucosal) as well as group (UC/ASC). 
 

 
Figure 1. Human samples’ scheme (a) and differential analysis of miRNA expression 
profiles per group of patients (b); UC, ASC and Control patients are highlighted in red, 
green and blue respectively. 
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3.3. Multi-Omic Graphs Integration 

In this stage a cohort of eleven miRNA microarrays was used with the aim of 
co-integrating the differential miRNA expression profiles not present in the 
intersection in pairwise of UC patients (i.e., UC, ASC and Control) and known 
human Protein-Protein Interaction (PPI, defined as miRNA-gene target 
product) from Genemania database [12]. Our approach is based on the 
assumption that genes with similar gene expression levels are translated into 
proteins that are more likely to interact. Recent works on gene expression and 
protein interaction data at genome-wide level expose such a conjecture: 
“Protein pairs encoded by co-expressed genes are much more likely to interact 
mutually than with any other type of proteins [13] [14]. Specifically, the 
rationale to transform the miRNA expression of a patient into a network is like 
this: We may want to represent a node in the graph for every protein encoded 
by a miRNA target gene provided its expression level was measured on this 
patient’s microarray. We create an edge between two given proteins of this 
type if these proteins are reported as interacting by Genemania, and genes are 
up or down-regulated at the same time with respect to a provided measure tag 
(see previous subsection). Herein, no distinction is made between coding gene 
and protein. 

3.4. Spectral Graph Properties 

Briefly, we initially explore the geometric and algebraic behaviour of each 
co-integrated omic graph (UC, ASC and Control) by means of some few key 
spectral properties, namely: their spectra; i.e., the eigenvalue for a given factor 
measures the variance in all the variables which is accounted for by that factor. 
Their algebraic connectivity calculated in the Laplacian matrix as its second 
smallest eigenvalue. Eigencentrality; i.e., to weight the relative importance of a 
given ith node in linking motifs within the graphs and defined as the ith com- 
ponent of the eigenvector corresponding to the greatest eigenvalue; and their 
modularity by calculating the Fiedler’s vector; i.e., the vector corresponding to 
its algebraic connectivity [15] [16]. All the calculations were performed using 
MATLAB R2011a (maci64 architecture on a machine with a single 2.8 GHz 
processor and 8GB RAM distributed in two cores). 

3.5. Fixing the Context: Reproducing Kernel Hilbert Space 

Definition 1 Lets r cM ×∈  and p qM ×′∈  be two real matrices, the  
Kronecker product rp cqM M ×′⊗ ∈  and column-stacking operator  

( ) rcvec M ∈  are defined as 

11 12 1

21 22 2

1 2

: ,

c

c

r r rc

M M M M M M
M M M M M M

M M

M B M M M M

′ ′ ′ 
 ′ ′ ′ ′⊗ =
 
 ′ ′ 





  


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( )
*1

*

: ,

c

M
vec M

M

 
 =  
  

  

where *kM  amounts the kth column of M . 
The Kronecker product and vec  operator meet the following relationship 

(e.g., [17], Proposition 7.1.9): 

( ) ( ) ( )T .vec MNP P M vec N= ⊗           (1) 

Another standard condition of the Kronecker product exploited in this work 
is ([17], Proposition 7.1.6): 

( )( ) .M M N N MN M N′ ′ ′ ′⊗ ⊗ = ⊗           (2) 

All these ideas are extendable to Reproducing Kernel Hilbert Spaces (RKHS). 
Let   be such a space, hence it is defined by a p.s.d. kernel :κ × →  , 
where   is a set of labels including the singular label ξ .   generates a 
feature map :Φ →   satisfying ( ) ( ) ( ), ,y y y yκ ′ ′= Φ Φ


 and mapping 

in   ξ  to its zero element. We finally denote by ( )YΦ  the matrix of a 
graph G associated to the feature map that enables lifting tensor algebra from   
to   [18]. 

3.6. General Setup of UC Graphs 

Graphs sG  were constructed for each group of UC patients individually. These 
networks consisted of a set of n vertices { }1 2, , , nV v v v=   endowed with order 
and edges E V V⊂ × . The nature of the measured microRNA expression leads 
us to work on undirected graphs, i.e., if ( ) ( ), ,p q q pv v E v v E∈ ⇔ ∈ . Aditionally, 
( ),p pv v E∉  for any p. Now, we define paths on those UC graphs as a sequence 
of indices 0 , , lp p  ( l  amounts path length) such that 

1
~

s sp pv v
−

, for all 
1 s l≤ ≤ . Our graphs are robustly connected since a path can be traced in each 
direction between each pair of vertices of the graph. We also associate a weight 

0pqw >  to each edge ( ),p qv v  to capture the “strength” of an edge ( ),p qv v . 
Then ( )p qv v  implies 0pqw =  whereas for undirected weighted graphs we 
have pq qpw w= . Now, let 1: qpA w D−=  be the adjacency matrix1 of our weighted 
graphs with D a diagonal matrix measuring the node degrees, that is,  

pp qpqD w=∑ . Thus it may be used as transition matrix in a stochastic process  

since the sum of each of its columns is one. We transform a path on sG  into 
random by applying ( ) 11 1 ,, ,

s ss s p pP p p p A
++ =  what generates sequences of 

vertices 
1 2 3
, , ,p p pv v v   proportionally linked to their weights in pairwise 

following the above probability. Hence, the probability of transition between 
any pair of vertex qv  and pv  through a path of length p can be induced by 
the expression ( )p

pq
A . Finally, we say that two graphs ( ),G V E=  and 

( ),G V E′ ′ ′=  are isomorphic ( G G′≅ ) if ( ),p qv v E∈  iff ( ) ( )( ),p qg v g v E′∈ , 
where :g V V ′→  is a bijection. 

 

 

1In some others context this matrix might be differently defined, e.g., spectral graph theory. 
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3.7. Random Walk Graph Kernel 

Henceforth, we note that all the definitions are generalised to the normalised case, 
whereas the edges are taken on a set with finite number of labels { }1,2, ,d . In 
particular, we can take the induced RKHS d=   endowed with the usual inner 
product. 

Intuitive definition: Random walk graph kernel has been extensively 
reported in literature to classify and measure similarities of graphs [18] [19]. The 
rationale of this algorithm is as follows: The random walk kernel on graph 
counts the number of walks shared by a couple of graphs. Two walks are said to 
be shared if their lengths and label sequences are the same. Subsequently, the 
calculated number of shared walks enables to measure the similarity of the two 
graphs. To infer a formal definition of random walk graph kernel, we might 
want to present some basic concepts in direct product of graphs. The direct 
product of two graphs { },G V E=  and { },G V E′ ′ ′=  is  
other graph, denoted by { },G V E× × ×= , where the node set  

( ){ }, ,p s p sV v v v V v V× ′ ′ ′= ∈ ∈ , and the edge set  

( ) ( )( ) ( ) ( ){ }, , , , , ,p s q t p q s tE v v v v v v E v v E× ′ ′ ′ ′ ′= ∈ ∈ . In particular, G×  can be  

associated to a weight matrix W A A× ′= ⊗  (Definition 1) with non-zero entries 
provided the analogous edge is defined in the graph produced by the direct 
product. A random walk on the direct product graph G×  amounts the trace of 
random walks on G and G′  at once. Let ( )c d  and ( )c d′ ′  be the starting 
(stopping) probabilities of the random walks on G and G′ , respectively. Then, 
the number of shared walks of length l  on the direct product graph G×  is 
calculated by ( )( ) ( )

lT Td d A A c c′ ′ ′⊗ ⊗ ⊗ , where A and A′  are the normalised 
adjacency matrices of G and G′ , respectively [20]. This definition enables the 
review of all the shared walks per each unique lengths. However, this sum might 
not be convergent. Thus, we introduce a non-negative coefficient of decay ( )lµ  
to get rid of the longer walks. 

Kernel definition Formally, the expression for the random walk kernel on 
graph is as follows: 

( ) ( )
0

, : .T l

l
k G G l d W cµ

∞

× × ×
=

′ = ∑                     (3) 

Hence, :c c c× ′= ⊗  ( :d d d× ′= ⊗ ) is the starting (stopping) probability 
distribution associated to the graph produced by the direct product. Therefore, if 
the coefficients ( )lµ  assure the convergence of (3), then (3) is a valid p.s.d. 
kernel ([18], Theorem 3). 

3.8. Conjugate Gradient Methods 

We selected the conjugate gradient method for calculating the random walk 
kernel on our graphs since other methods such as the Sylvester or the spectral 
decomposition are not applicable for kernels on graphs in general [20]. 
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The computation of a random walk kernel on graph with ( ) llµ λ=  stands 
for inverting ( )Wλ ×− , an 2 2n n×  matrix if each graph G and G′  have n 
vertices. Lets M and v be a matrix and a vector respectively, conjugate gradient 
(CG) method is used to solve systems as Mx v=  efficiently [20]. More general, 
since these methods are thought of symmetric p.s.d. matrices, CGs solve as well 
other linear systems efficiently. CG solvers improve their performances as the 
matrix has a small number of different eigenvalues, or is rank deficient. 
Remarkably, in cases where the matrix M is sparse the computation speed of 
matrix-vector products can be increased significantly [21]. 

The computation of the graph kernel (3) using CG maybe firstly described as 
the solution of the following linear system: 

( ) ,W x cλ × ×− =                        (4) 

for x, then we compute Td x× . Next, it ought to contemplate proficient ways to 
solve (4) with the CG solver. We already know that W is a square matrix of size 

2 2n n× . The application of the CG method to a direct approach needs ( )4O n  
iterations to multiply W by a vector y. However, if we exploit the above extended 
vec-MNP formula (1) into RKHS ([18], Lemma 12) with some new matrix 

n nY ×∈  with ( )y vec Y=  and taking into account that in particular 
W A A× ′= ⊗  (A and A′  the normalised adjacency matrix for the graphs G and 
G′  respectively), by ([18], Lemma 12) we can write 

( ) ( ) ( ).TW y A A vec Y vec A YA× ′ ′= ⊗ =                (5) 

If ( )~ dA Φ ⋅ ∈  then we can compute the above multiplication of a matrix 
by a vector in time order of ( )3O dn . Furthermore, even more efficient 
computation of TA YA′  is feasible provided that the matrices A and A′  are 
sparse: Assuming that A and A′  have ( )O n  non-ξ entries, then computing (5) 
takes only ( )2O n  time. 

Finally, note that the nearest Kronecker product [22] is not appropriate to 
approximate W×  since the number d of distinct labels in our labeled graph is 
not large enough. 

3.9. Weisfeiler-Lehman Graph Kernels Cross-Validation 

As validation of our results, we also propose to compare the random walk kernel 
on graph and the family of Weisfeiler-Lehman kernels. The later consists of 
proficient kernels to be used on graphs presenting discrete node labels. Such 
family is built on the Weisfeiler-Lehman test of isomorphism between graphs 
[23] and its valid 1-dimensional variant [24]. It captures topological and label 
information iteratively mapping the graph of reference onto a sequence of 
graphs with nodes displaying characteristic attributes. This catenation of graphs 
originating from the Weisfeiler-Lehman test can establish a family of kernels, 
including an adequate kernel to compare patterns taking subtree shape. Notice 
how the edges and length of such a sequence produce a final complexity in linear 
terms. 
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Definition 2 Given the Weisfeiler-Lehman (WL) graph ( ), ,a aG V E l=  of 
height a , its sequence is denoted by: 

{ } ( ) ( ) ( ){ }0 1 0 1, , , , , , , , , , , , ,h hV G G G V E l V E l V E l= =            (6) 

where h counts iterations, and { }0 , , hG G  and { }0 , , hG G′ ′
  are respectively 

the sequences of G and G′  associated to WL graphs. 
Definition 3 Provided the so-called base kernel κ  is fixed, then the 

definition of Weisfeiler-Lehman kernel for κ  is 
( ) ( ) ( ) ( ) ( )0 0 1 1, , , , ,h
WL h hG G G G G G G Gκ κ κ κ′ ′ ′ ′= + + +           (7) 

where 0G G=  and 0l l= , the WL sequence up to height a of G. 
Finally, ( )hκ  is positive semidefinite if the base kernel κ  is positive 

semidefinite [25], Theorem 3. 
Definition 4 Let kΓ ⊆ Γ  be the set of node labels matching at least once in 

graphs G  or G′  at the end of the k-th iteration of the WL algorithm. We also 
fix 0Γ  as the set of original node labels of G  and G′  while kΓ  are pairwise 
disjoint. Then, we presume every { }1, ,

kk k kσ σ ΓΓ =   is ordered. Define a map 
{ }: ,k kp G G′ ×Γ →  such that ( ),k klp G σ  amounts the count of the letter 

klσ  in a graph G . The Weisfeiler-Lehman subtree kernel on two graphs G  
and G′  is as follows: 

( ) ( ) ( ) ( ) ( ) ( ), , ,h h h
WLsubtree WLsubtree WLsubtreeG G G Gκ φ φ′ ′=           (8) 

where for G (resp. G′ ) 
( ) ( ) ( ) ( ) ( ) ( )( )00 01 0 10, , , , , , , , , , .

h

h
WLsubtree h h h hG p G p G p G p Gφ σ σ σ σΓ Γ=     

This algorithm basically seeks matching of vertex identifiers assuming that the 
corresponding subgraphs match. 

Definition 5 Provided a function w weighting the edges exits, we can 
described the corresponding base kernel Eκ  by  

( ) ( ) ( ) ( )( ), , ,we E e E w e w eδ α α δ β β κ′ ′∈ ∈
′ ′ ′∑ ∑ , where δ  amounts Dirac kernel 

and wκ  is the similarity captured by a kernel between weights. Hence by 6, the 
Weisfeiler-Lehman edge kernel turns into 

( ) ( ) ( ) ( )0 0 1 1, , , ,h
WLedge E E E h hG G G G G Gκ κ κ κ′ ′ ′= + + +  

where ( ) ( ),E E EG Gκ φ φ ′=  and ( )E Gφ  is a vector of matching pairs 
( ),α β , ,α β ∈∑ , which amounts sorted final vertices of an edge in G . 

Definition 6 We also calculate the shortest path version of the Weisfeiler- 
Lehman kernel. Similarly, it is defined as 

( ) ( ) ( ) ( )0 0 1 1, , , ,h
WLshortestpath SP SP SP h hG G G G G Gκ κ κ κ′ ′ ′= + + +  

where ( ) ( ) ( ), ,SP SP SPG G G Gκ φ φ′ ′=  and ( )SP Gφ  denotes a vector composed 
by the counts of matches for triplets ( ), , lspα β  in /G G′ , where ,α β ∈∑  
are sorted final vertices of a shortest path and 0lsp ∈  is the shortest path 
length. 

https://doi.org/10.4236/jamp.2017.511183


I. Morilla et al. 
 

 

DOI: 10.4236/jamp.2017.511183 2252 Journal of Applied Mathematics and Physics 
 

3.10. Inference on Random Walk Graph Kernels by Enrichment of 
Functional Annotations 

So far, we described how to compare UC/ASC graphs, enabling the trace of the 
underlying similarity between them and their corresponding control samples by 
gene targets expression profiles from data. Now, we are interesting in performing 
inference on our topological model to characterise the genetic mechanisms of 
miRNA perturbations of gene graph in detail. In section 4, we discuss how 
inference schemes can be used on our estimated model to learn about 
downstream effects of miRNAs perturbations. We note that all of these inference 
schemes are based on enrichment analysis in functional annotations (calculation 
of Fisher’s test [26] is performed to quantitatively capture the functional 
enrichment of genes according to their annotation terms) using the gene 
ontology database (GO) [27]. 

4. Results and discussion 
4.1. Data Integration and Spectral Behaviour between the UC 

Graphs 

We analyse our sequence of graphs individually by comparing some algebraic 
characteristics. 

As describe in section 3.3, we found that 2390 proteins (Figure S1) from 
Genemania [12] were reported by the gene expression levels of our miRNA 
microarrays (Figure 1(b)). The largest amount of those proteins (1071 for 330 
miRNAs differentially expressed (see section 3.2) was identified in the ASC 
sample, whereas the UC patients sample matched in 804 (in 237 miRNAs 
differentially expressed); the remaining 515 (in 92 miRNAs differentially expressed) 
corresponded to the sample of control. These amounts seem to be consistent with 
the medical expectation of discovering, at a larger-scale, perturbed expression 
profiles involved in the pathways leading to deep ulcerations (ASC). Strikingly, 
the comparison of their spectra showed dissimilar conclusions; while the 
eigenvectors of ASC and Control patients exhibit similar patterns regarding UC 
patients (Figure 2(a)), the eigenvalue distributions of the three group of patients 
display the same Gaussian mixture models (Figure 2(b)). However, the algebraic 
connectivity in ASC and UC resembled each other with associated values of 21 
and 18 what means almost twofold greater than the control group with a value of 
10. No significant difference was detected among the remaining spectral 
parameters, i.e., eigencentrality or simple modularity Figure S1. Although we 
enhance important algebraic and geometric characteristics of our graphs, it 
seems that no conclusions might be made regarding their similarities per group. 

4.2. Topological Similarity between Pairs of UC Graphs by 
Random Walk Kernel 

To measure topological similarity among our three groups of graphs, i.e., UC, 
ASC and Control with a biological significant, we established a comparison  
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Figure 2. Distribution of spectra per group of patients. Plots of the 2D and 3D eigenvector distributions of the laplacian matrix 
show how ASC (green) and Control (blue) patients exhibit similar behaviours as compared to UC (red) patients (a); However, the 
three groups of patients display the same type of Gaussian mixture models for their eigenvalue distributions (b). 

 
between interacting and co-regulated groups of target genes per sample of 
patient. To this task a random walk kernel on graph is the appropriate selection, 
as for this graph a random walk amounts a set of target genes in which 
continuous genes by the walk side are co-expressed and interact. To efficiently 
compute the random walk, we made use of the CG methods using the parameter 

0.001λ =  with convergence threshold set to 10−6. In Figure 3(a) we contrast 
the scores of similarity measured by graph kernel computation of the conjugate 
gradient algorithm referred to UC patients modelled as labeled graphs with that 
of the direct sparse method. Our approach demonstrates how the group of ASC  
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(a) 

 
(b) 

Figure 3. Scores of topological similarity between graphs of patients yielded by our random walk graph kernel ( 0.01λ =  and 
tolerance set to 10−6 in its computation with conjugate gradient method). The UC and ASC groups are mutually similar the most; 
however the group of ASC patients resembles topologically better than UC to control (0.35/0.18) (a); Cross-validation of our 
results computed by the three instances of the general Weisfeiler-Lehman graph kernels, the Weisfeiler-Lehman subtree kernel, 
the Weisfeiler-Lehman edge kernel, and the Weisfeiler-Lehman shortest path kernel (b). 

 
patients is topologically more similar to control patients (0.35 as normalised 
score [ ]0,1∈ ) than UC are (0.18). Here, closer to 1 means more similar 
graphs. We recall that the random walk kernel on graph measures the amount 
of walks shared by the couple of graphs involved in G×  (section 3.7). This 
topological relationship between ASC patients and their group of control is, 
although relatively unexpected, entirely plausible from a biological and thus 
medical point of view. Validation of similarities using the Weisfeiler-Lehman 
Graph Kernels The reliability of our results is also validated by comparing the 
performances of the random walk and Weisfeiler-Lehman graph kernels. The 
latter consists of a triplet of robust methods (see methods) in capturing 
topological and label information on graphs. These algorithms confirmed the 
same scheme described in our results, i.e., ASC group is closer than UC 
patients to control group. Whereas a graphical visualisation of these data may 
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be displayed in Figure 3(b), the specific normalised (by all the possible paths 
on the graph) values of the pairwise comparison between patients’ graphs are 
shown in the following Table 1. 

4.3. Inference on the Topological Model: Malfunction of Lymphoid 
Structures Induces Deep Ulcers in UC Patients 

We can perform inference on our topological model combining the similarity 
scores and functional enrichment analysis. Since ASC patients are topologically 
more similar than UC to Control (Figure 3 and Figure 5(a)), one natural idea is 
to explore the lack of or alternatively the low expression levels of miRNA-gene 
targets involved in enriched pathways from both ASC and control data with 
respect to UC patients. In the view of the enrichment analysis using GO (Table 
SI, Table SII and Table SIII) and the above inference constraint, the only 
enriched functional module fitting our topological model in the colon was that 
linked to lymphoid nodules (GO:0048541 with p-value 42.45e−=  and q-value 

25.45e−=  associated to the Fisher Exact test). Such structures are the equivalent  
 
Table 1. Weisfeiler-Lehman graph kernels’ Validation. 

Method/Graph Comparison UC⊗ASC UC⊗Control ASC⊗Control 

WL subtree 0.17 0.10 0.14 

WL edge 0.05 0.01 0.02 

WL shortest path 0.004 0.002 0.003 

 

 
Figure 4. Inference derived from our topological model based on GO analysis of functional enrichment per group of patients. 
Enrichment in lymphoid nodules development is the only major difference between ASC group of patients. While the 
miRNA-target genes involved in lymphoid nodules pathways are over-expressed in the group of UC patients, these target genes 
are poorly under-expressed in ASC. This scenario resembles the molecular behaviour of Control patients (a); UC and ASC 
biological processes shared in GO database (b); GO biological process in common of the three group of patients after prospective 
drug-mediated treatment (c). 
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Figure 5. Description of the medical hypothesis-driven by our graph kernel analysis. Scales of similarity between group of patients, 
i.e., ASC and Control becoming a topological constraint to be considered (a)-(c). Upon functional inference using GO, we deduce 
how the lack of production in sIgA/E for ASC patients (highlighted in green) prevent immune system’s activation face bacteria’s 
threat (d). This behaviour resembles the group of control maybe by a malfunction of lymphoid structures in the first line of 
activation in immune response. Edge colours in panels (a)-(c): purple, rose, blue and green amount to co-expression, physical 
interactions, co-localisation and genetic interactions respectively. 

 
to the Peyer’s patches (PPs) in the Ileum. This fact derives from the no detection 
of such enrichment in the production of immunoglobulins, i.e., sIgA and slgE, in 
ASC patients as compared to UC patients (Figure 4). Such a lack of production 
in sIgA is a consequence of the relative poorly enriched scores associated to the 
coding genes ID2 and STAT5, which control the intestinal immune network for 
sIgA production via negative regulation of class IgA/E class switching [28] 
and“on-off” recombination of immunoglobulin gene in developing pro-B cells 
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[29] (Figure 5(d)—starts highlighted in red). Now, we are equipped with 
enough information to infer the following hypothesis: There exists a very low 
production of immune globulin A (sIgA) within ASC patients occasioned by 
malfunction of lymphoid nodules. Indeed, there is no immune system’s 
activation, whereas in UC patients we have over-expression of lymphoid nodules 
related pathways (Figure 5(d)). 

The sIgA is an antibody—Y-shaped protein—that plays a critical role in 
immune function in the mucous membranes. This scenario matches the 
topological constraint yielded by our model between control and ASC patients. 
Furthermore, it is been already described how sIgA likely contains other 
propitious outcomes in overall immunity by means of a diminished inflammation 
in the digestive tract [30]. There is also evidence that sIgA (low/coding genes 
under-expression) secretion into body cavities in combination with malfunction 
of immune cells in PPs [31] [32] [33] is involved in allergic diseases (type 1 
diabetes, Ulcerative Colitis/Crohn disease, hay fever or asthma). Thus, the 
formation of deep ulcers in some UC patients may be caused by the low 
production of sIgA as a consequence of lymphoid structures malfunction. 

5. Conclusion 

This paper first presented the urgent medical problem derived from the 
occurrence of deep ulcers during the therapy of patients with a severe chronic 
inflammation in the colon mucosa and how the efficiently computation of a 
Random walk graph kernel captures similarity between groups of these patients, 
namely: UC, ASC and Control. We adopt the extended linear algebra in an RKHS 
to overcome some issues of efficiency in kernels computations taking advantage of 
the shared structure intrinsic to these questions. The groups of patients were 
modelled as undirected labeled graphs based on the co-integration of target gene 
expression profiles and interaction. Thus, the nature of our data and the flexibility 
of conjugate gradient algorithm made of this method the most appropriate to 
compute geometrical random walks among other options such as spectral 
decomposition. We made use of models of sparsity, low effective rank, and 
Kronecker product to reduce the computational cost in the calculations and 
exploited specific forms of W× . While other methods of direct comparison to 
measure similarity like spectral properties are not conclusive; this approach reveals 
as much more interpretable. Indeed, our results demonstrate how the group of 
ASC patients topologically resembles Control better than UC patients do. In 
addition, we stress the reliability of our results by means of a robust triple 
validation. Albeit, an important caveat of our kernel approach concerns the 
possible values taken by the parameter λ  in (3) which entirely relies on the range 
of W×  as weight matrix. We also show how the topological constraint imposed by 
the ASC and Control groups drives the analysis of enrichment in functional 
annotations enabling inference on our topological model. As a consequence, we 
are able to guide clinicians with a likely hypothesis regarding the low production 
of slgA and slgE in the ASC group to be conducted during patient’s treatment. 
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Moreover, these results are being further validated by the clinicians and 
scientists of our team in the “Centre de Recherche sur l’Inflammation” as part of 
the future work based on this study. Specifically, we plan to performance 
immunofluorescence experiments, which would experimentally validate our 
results. we will also extend our analysis to a new cohort of patients applying 
improved versions of neighbour matching using deep learning models to capture 
similarities between graph of individual patients. Overall, this work provides 
practitioners with a useful and biologically meaningful tool to find similarities 
among patients profiles in a timely manner. Our approach allows them to avoid 
spending a large amount of time and effort on sweeping lots of experimental 
results to test eventual therapeutic hypotheses done by hand; therefore, the 
diagnosis efficiency and accuracy can be enhanced. 
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Nomenclature 

miRNA: micro-RNAs ASC: Acute Severe Ulcertative Colitis UC: Ulcerative 
Colitis κ : kernel application on graphs PSD: Positive Semi-definite Kernel 
CGs: Conjugate Gradient Methos LN: Log-Normal GLM: Generalized Linear 
Model PPI: Protein-Protein Interaction ⊗ : Kronecker product of two matrices 
vec : column-stacking operator of a matrix RKHS: Reproducing Kernel Hilbert 
Spaces G: a set of ordered points generating a graph V: an ordered set of vertices 
E: set of edges of a graph G ( )YΦ : matrix of a graph G xxw : weight of an edge 
( ),x x  W× : weight matrix associated to the Kronceker product of two matrices 
D: node degrees matrix A: adjacency matrix of a graph G ( )lµ : non-negative 
coefficient of decay for walks of length l WL : Weisfeiler-Lehman kernels WLκ : 
Weisfeiler-Lehman kernel for κ  κΣ : set of node labels matching at least once 
in a graph at the end of the k-ith Weisfeiler-Lehman iteration kp : a map 
counting a specific node label in a graph WLsubtreeκ : Weisfeiler-Lehman subtree 
kernel on two graphs δ : Dirac kernel WLedgeκ : Weisfeiler-Lehman edge kernel 
for κ  WLshortestpathκ : Weisfeiler-Lehman shortest path kernel for κ  GO: Gene 
Ontology database PPs: Peyer’s Patches sIgA/E: immunoglobulins A/E ID2: 
Inhibitor Of DNA Binding 2 STAT5: Signal Transducer And Activator Of 
Transcription 5. 
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Abstract 
Hemorrhagic disease (HD) is a fatal vector-borne disease that affects white- 
tailed deer and many other ruminants. A vector-borne disease model is pro-
posed in the present work, which takes into account migrating effects of deer 
population using distributed delay terms. The model is employed to analyze 
the effects of deer migration on the HD spread. This is carried out in three 
steps. First, the conditions for existence and stability of the endemic and the 
disease free equilibria are established. Second, using the method of the Next 
Generation Matrix, the basic reproduction expression 0R  is derived from the 
model. Third, using the 0R  expression and its numerical simulations, it is il-
lustrated that the severity of an HD outbreak is directly influenced by the mi-
gration rates of infected and susceptible deer (i.e., Id  and Sd , respectively). 
For small values of Sd , the value of 0R  is increased with Id , whereas 0R  
decreases with Id  when Sd  is large. Using the method of chain trick, the 
proposed model with distributed delay is reduced to a system of ordinary dif-
ferential equations where the convergence of the system to endemic and dis-
eases free equilibrium is numerically explored. 
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1. Introduction 

Hemorrhagic disease (HD) is a fatal disease of white-tailed deer (Odocoileus 
virginianus). It is the collective term used for epizootic hemorrhagic disease and 
bluetongue disease (genus Orbivirus). These diseases have similar symptoms and 
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are frequently grouped together and referred to as HD. Symptoms include 
hemorrhaging, swelling due to fluid accumulation, sores, ulcers, sloughing of 
hooves, high fever, and loss of fear of humans [1] [2]. There are three different 
forms of HD (peracute, acute, and chronic) which dictate how long a deer will 
survive. Death can occur in as little as one to two weeks [3]. It is possible for a 
deer to survive, but it is rare. In addition to white-tailed deer, HD can be 
transmitted to other wild ruminants and domestic animals, most commonly hoof 
stock, but it rarely causes disease. The infection does not affect humans or 
non-ruminant animals [1]. The vector that spreads HD is small biting midge 
(Culicoides Ceratopogondiae). These midges are tiny, blood-sucking flies that are 
merely pests to humans, but they are the vectors in the spread of the disease in 
deer and livestock. 

In the present work, we build a mathematical model to investigate the 
dynamics of HD. The amount of literature dedicated to the mathematical 
modeling of vector-borne diseases is extensive (See for example [4] [5] [6] [7]). 
The model by Nobel Prize winner Ronald Ross [4] is at the cornerstone of such 
models, and he used his model to investigate the spread of malaria. Over four 
decades later, George Macdonald developed it further [5]. In fact, there have 
been several extensions to the Ross-Macdonald model. For instance, Lou and 
Zhou [6] included advection and diffusion terms to take the spatial movements 
of individuals into account. Reaction-diffusion models have also been used for 
investigating dynamics of vector-borne diseases such as dengue fever [7] and 
Zika [8]. Using a deterministic modeling approach, the main objective of the 
present study is to have a better understanding of the possible effects of 
deer-midge interactions and deer migrations on HD dynamics in a deer 
population. 

In recent years, more realistic models have been constructed which take into 
account dispersion time and host movements. A key article is the work by 
Neubert et al. [9], which argues that dispersion in Lotka-Volterra predator-prey 
models is unrealistic as individuals leaving an area (i.e., a patch) immediately 
appear in another. In nature, an individual requires a finite amount of time to 
complete a trip from one patch to another or to complete a round trip leaving 
and returning to the same patch. During this time, the migrating individuals are 
not interacting with other predators or prey in this patch. Thus, Neubert and his 
co-authors [9] [10] demonstrate that models that incorporate explicit travel-time 
are often more stable. 

Few models have been constructed to analyze the dynamics of HD in 
white-tailed deer populations and dairy farms. Park et al. [11] studied these 
dynamics by first fitting a statistical model to predict HD incidents as a function 
of seroprevalence (i.e., the number of individuals in a population who tested 
positive for HD). Then, using ordinary differential equations (ODE), they 
formulated a mechanistic model to support the theory that there is a correlation 
between the number of HD cases and the number of deer in a population with 
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the virus. Their study suggests that the maximum number of cases occurs at 
intermediate levels of this seroprevalence. By constructing a realistic model, we 
will be able to analyze and simulate the dynamics of HD. A better understanding 
of HD dynamics gives epidemiologists and biologists the capacity to control and 
predict future epidemics in white-tailed deer populations. The present work is 
the first step toward realistic modeling of HD dynamics with a focus on 
migrating effects of white-tailed deer population. 

The rest of this paper is organized as follows. In Section 2 we propose the 
vector-borne model of HD spread. This model takes into account the migration 
and immigration of deer from and into a single patch. In Section 3, we study the 
model through linearization, chain-trick method, and equilibrium analysis. We 
also calculate the 0R  expression and use it in Section 4 to numerically 
investigate the effects of the model parameters on outbreaks. Finally, in Section 5, 
we provide a discussion of results and outline the limitations of this study. 

2. The Single-Patch Model 

In the attempt to create a mathematical model of HD outbreak in a population of 
white-tailed deer, we make certain assumptions based on the ecology of deer and 
midge populations and the characteristics of HD. The deer (host) and midge 
(vector) populations are divided into susceptible and infected classes. At time t, 
there are ( )SD t  susceptible deer, ( )ID t  infected deer, ( )SM t  susceptible 
midges, and ( )IM t  infected midges. The total deer population at time t is 

( ) ( ) ( )N S ID t D t D t= + , and the total midge population is  
( ) ( ) ( )N S IM t M t M t= + . Susceptible deer become infected through bites of 

infected midges; susceptible midges become infected when they feed on the blood 
of an infected deer. As observed in the wild, deer will migrate (disperse) out of and 
back into a region (i.e., a patch) due to seasonal variations, availability of food, or 
predators; midges, however, will not. They are weak fliers and typically disperse no 
more than about a mile from the site of larval development, with females flying 
farther than males [12]. Moreover, their flying activity is greatly reduced in windy 
conditions. They may fly as far as six miles or more, but this is very rare [13]. We 
therefore consider the following assumptions in the model construction: 

1) All newborns are susceptible in both populations of deer and midges (i.e., 
no inherited infection or vertical transmission is considered). 

2) Susceptible deer become infected only by adequate contact with infected 
midges and cannot become infected via contact with an infected deer. 

3) Once infected, a deer will die from the disease. (Note, in actuality, there are 
cases where a deer survives the infection, but it is rare.) 

4) Individuals in both populations will die naturally by both density 
independent and density dependent factors. 

5) By the law of mass action, we assume that infection transmission is 
proportional to the population densities of deer and midges. 

6) Deer will frequently travel out of and into a geographic area (a patch), but 
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midges do not (as the amount of dispersal in midge populations is negligible). 
A compartmental diagram of the proposed HD model is seen in Figure 1, and 

a summary of parameters and variables is given in Table 1. All parameters are 
assumed to be non-negative. Given the above-mentioned assumptions and the 
model diagram, the set of delayed differential equations representing the model 
is given by 

( )

( ) ( )

( ) ( ) ( )

( )

( )

2

0

2 0

2

2

d
d

e d

d
e d
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µ σ µ

∞ −

∞ −

= − − + + +

+ −

= − + + + + + −

= − − + +

= − + +

∫

∫ (1) 

In absence of the disease, population growths of deer and midges are 
 
Table 1. Summary of the variables and parameters used in the delayed HD model (1). 

Symbol Description 

( )SD t  Number of susceptible deer at time t 

( )ID t  Number of infected deer at time t 

( )ND t  Total deer population at time t 

Dβ  Infection rate (deer) 

Dλ  Birth rate (deer) 

ρ  Harvest rate 

Dµ  Death rate (deer), density independent 

2Dµ  Death rate (deer), density dependent 

Sd  Net flux rate, susceptible deer 

Id  Net flux rate, infected deer 

Dγ  Pathogenic induced death rate (deer) 

Sδ  Probability of death per unit of time of a susceptible deer during migration 

Iδ  Probability of death per unit of time of an infected deer during migration 

( )SM t  Number of susceptible midges at time t 

( )IM t  Number of infected midges at time t 

( )NM t  Total midge population at time t 

Mβ  Infection rate (midges) 

Mλ  Birth rate (midges) 

σ  Efficacy rate of midge control measures 

Mµ  Death rate (midges), density independent 

2Mµ  Death rate (midges), density dependent 

Note: All variables and parameters are non-negative. The specific parameter values used in the analysis will 
be indicated in Table 2, Section 4. 
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Figure 1. A compartmental diagram of the HD model (1) with population dispersal. 
Dashed lines represent the HD transmission between the vector and host. Deer migration 

into the patch is denoted by g∫  and migration out of the patch is denoted by Sd  and 

Id . See Table 1 for a summary of the parameters and variables. 
 
formulated with logistic growth models. These are the terms that include Dλ , 

Mλ , 2Dµ , and 2Mµ  in model (1). Similar to [14], the carrying capacity for the 
deer population exists and must be positive. Hence, it is required that 

1 : D D SH dλ µ ρ> + +                        (2) 

and 

2 : .D D D IH dλ µ ρ γ> + + +                       (3) 

Also, the carrying capacity for midges exists and is positive. Thus, 

3 : .M MH λ µ σ> +                           (4) 

Individual deer immigrate from the patch at a constant per capita rate ( Sd  
and Id ) and return z units of time after their departure. The integrals in the 
first two equations of model (1) are distributed delay terms representing the 
influx of susceptible and infected deer, respectively, from all points in time in 
the past up to and including the present time [15]. The function ( )g z  in the 
integrals is a probability density function for the time it takes for a deer to 
disperse given that the deer survives the trip, and ( )dg z z  is the probability 
that a successfully dispersing deer departing at time t completes the trip 
between time t z+  and dt z z+ + . As ( )g z  is a probability density function, 
it is normalized so that ( )

0
d 1g z z

∞
=∫ . The functions e S zδ−  and e I zδ−  in the 

integrals are the probabilities of a deer surviving a trip of duration z given 
constant probabilities per unit of time Sδ  and Iδ  for the mortality during 
travel of susceptible and infected deer, respectively. All deer migrating back 
into this single patch originated in the patch; in other words, there are no new 
deer entering the patching that originated from somewhere else. Hence, we are 
studying a herd of deer concentrated within a patch with the ability of 
migrating in and out of it. 
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3. Analysis of the Single-Patch Model 
3.1. Linear Stability Analysis 

In this section, we provide a formal procedure of linear stability analysis which 
leads to the characteristic equation and the stability conditions for the 
equilibrium solutions. Specifically, Disease Free Equilibrium (DFE) (i.e., * 0ID =  
and * 0IM = ) and Endemic Equilibrium (EE) are the constant solutions of 
model (1). In epidemiology, a stable DFE is always desired whereas a stable EE 
can be of great concern. The first two equations of model (1) have an integral 
influx term that may be simplified by the following method. Letting 

[ ] ( ) ( )1
2, , , ,D I S

S I S I D N D S D N S
N

M Df D D M M D d D D
D

β
λ µ ρ µ= − − + + +  (5) 

we rewrite the first equation as 

[ ] ( ) ( ) ( )1

0

d
, , , e d .

d
S zS

S I S I S S
D f D D M M d g z D t z z
t

δ∞ −= + −∫        (6) 

Similarly, we rewrite the second equation as 

[ ] ( ) ( ) ( )2

0

d , , , e d ,
d

I zI
S I S I I I

D f D D M M d g z D t z z
t
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where 

[ ] ( ) ( )2
2, , , .D I S

S I S I D D I D N I
N

M Df D D M M d D D
D

β
µ ρ γ µ= − + + + +     (8) 

As the bottom two equations of model (1) have no integral term, we let [ ]3f  
and [ ]4f  equal the right-hand side of the third and fourth equations in model 
(1), respectively. Let a solution ( ) ( ) ( ) ( )( ), , ,S I S ID t D t M t M t  of model (1) 
nearby an equilibrium solution ( )* * * *, , ,S I S IE D D M M=  be in the form of 

( ) ( ) ( ) ( )
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* *
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 

 

              (9) 

for some ( )SD t , ( )ID t , ( )SM t , and ( )IM t . Using the Taylor expansion, we 
linearize the first equation in model (1) about equilibrium E by substituting (9) 
into (6) and dropping the nonlinear terms. Thus, the first equation of model (1) 
is linearized as follows. 
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We know that equilibrium E satisfies the first equation of model (1), hence 
[ ] ( ) ( )1 * * * * *

0
, , , e d 0,S z

S I S I S Sf D D M M d D g z zδ∞ −+ =∫           (11) 

and thus 

( ) ( )* * * * *
10

e d , , , .S z
S S S I S Id D g z z f D D M Mδ∞ − = −∫            (12) 

Substituting (12) into (10) yields 
[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

( ) ( )

1 1 1 1

0

d
d

e d .S

S
S I S I

S I S I

z
S S

D f f f fE D E D E M E M
t D D M M

d g z D t z zδ∞ −

∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂

+ −∫



   



(13) 

Applying the same procedure to equation (7), we get that the second equation 
of model (1) is linearized by 

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

( ) ( )

2 2 2 2

0

d
d

e d .I

I
S I S I

S I S I

z
I I

D f f f fE D E D E M E M
t D D M M

d g z D t z zδ∞ −

∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂

+ −∫



   



(14) 

Using Equations (9)-(14), model (1) is linearized about equilibrium E and 
takes the form 

( ) ( ) ,Y t AY t′ =                          (15) 

where ( ) ( ) ( ) ( ) ( )
T

, , ,S I S IY t D t D t M t M t =  
     and A is the Jacobian matrix 

evaluated at E. However, the specific form of matrix A cannot be extracted due 
to the presence of the integral terms in (13) and (14). To bypass this issue, we 
use the Fundamental Theorem of linear systems of differential equations [16] 
and look for exponential solutions of the form 

( )
( )
( )
( )

1

2

3

4

e e .

S

I t t

S

I

rD t
rD t

R
rM t
rM t

λ λ

   
   
   = =   
   
    









                  (16) 

We also let g  be the (one-sided) Laplace transform of the travel-time 
distribution ( )g z . That is, 

( ) ( )
0

e d .xzg x g z z
∞ −≡ ∫                     (17) 

We have the following Lemma. 
Lemma 1 The Laplace transform g  is a positive, decreasing function that is 

bounded above by 1 for all non-negative values of x . 
Proof. Let ( )g z  be a probability density function as described above. 

Because the function e xz−  is positive for all real x and fixed z, e 1xz− =  when 
0x = , and e xz−  decreases for all 0x > . Therefore, it must be the case that 
( )0 e 1xzg z −< ≤  and ( )e xzg z −  decreases for all non-negative x. Thus,  

( ) ( )
0

e dxzg x g z z
∞ −≡ ∫  is a positive decreasing function bounded above by 1. 

By substituting (16) into (15) and simplifying the terms, we get the specific 
form of matrix A, and 15 is rewritten as 
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[ ] ( ) ( )
[ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) ( )
[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

1 1 1 1

2 2 2 2
1

2
3 3 3 3

3

4

4 4 4 4

0
0
0
0

S S
S I S I

I I
S I S I

S I S I

S I S I

f E f E f E f E
d g

D D M M

f E f E f E f E rd g
D D M M r

rf E f E f E f E
rD D M M

f E f E f E f E
D D M M

λ δ λ

λ δ λ

λ

λ

 ∂ ∂ ∂ ∂
+ + − 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂     + + −     ∂ ∂ ∂ ∂   = 

  ∂ ∂ ∂ ∂ 
−       ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
 −

∂ ∂ ∂ ∂  





.



 (18) 

The linear system in (18) has a nontrivial solution if and only if the 
determinant of the matrix is zero. This leads to the characteristic equation 
corresponding to model (1) linearized about E. Before deriving the characteristic 
equation, we prove the existence of DFE. 

Proposition 1 The disease free equilibrium of model (1) exists if and only if 
( )( )1D D S Sd gλ µ ρ δ> + + −   and M Mλ µ σ> +  are satisfied. 

Proof. Noting that * 0ID = , *
N SD D= , and 

d
0

d
SD

t
=  at the DFE, the first  

equation in model (1) gives us 
( ) ( )( )*

2

1D D S S
S

D

d g
D

λ µ ρ δ

µ

− + − −
=



. Similarly,  

* 0IM =  and *
N SM M= , and the third equation of model (1) gives rise to  

( )*

2

M M
S

M

M
λ µ σ

µ
− +

= . As * 0SD >  and * 0SM >  by parameter assumptions, the  

disease free equilibrium exists. 
Remark 1 The inequalities (2) and (4) and Lemma 1 imply that the conditions 

of Proposition 1 are always satisfied. Hence, the DFE always exists and it is given 
by 

( ) ( )( )

( )

*

2
*

*

2
*

1

0

0

D D S S
S

D

I

M M
S

M

I

d g
D

D

M

M

λ µ ρ δ

µ

λ µ σ
µ

− + − −
=

=
− +

=

=



              (19) 

By linearizing model (1) about the DFE, we get the characteristic equation 

( )( ) 0,det J λ =                         (20) 

where ( )J λ  is the matrix in (18) evaluated at E DFE= , and it simplifies to 

( )

( )
( )

( )

( )

*
1 2

2
*

*
3 2*

*

4*

0
0 0

0

0 0

D D S D

D

M S
M M S

S

M S

S

J D
J

M
J MJ

D

M
J

D

λ λ µ β
λ β

β
λ λ µλ

β
λ

 − −
 
 
 
 − −=
 
 
 
  

       (21) 
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such that 

( ) ( )*
1 22 ,D D S D S S SJ d D d gλ λ µ ρ µ λ δ λ= − − − − + + −        (22) 

( ) ( )*
2 2 ,D D I D S I IJ d D d gλ µ ρ γ µ λ δ λ= − − − − − + + −        (23) 

( ) *
3 22 ,M M M SJ Mλ λ µ σ µ λ= − − − −                 (24) 

and 

( ) *
4 2 .M M SJ Mλ µ σ µ λ= − − − −                    (25) 

Hence, the characteristic equation (20) is rewritten 

( ) ( ) ( ) ( )
*

1 3 2 4 * 0.D M S

S

MJ J J J
D

β β
λ λ λ λ

 
− = 

 
            (26) 

Since ( )1J λ  and ( )2J λ  are not polynomials, the Routh-Hurwitz criteria 
[17] is not applicable for determining stability. However, with a specific form of 
( )g z , we may compute the roots of the characteristic equation and determine 

the necessary and sufficient conditions for the stability of the DFE. 

3.2. Basic Reproduction Number 

The basic reproduction number 0R  is defined as the expected number of 
secondary infections produced by a single case of an infection introduced to a 
completely susceptible population [18]. When 0 1R > , the infection will spread 
as the number of infected individuals increases. When 0 1R < , the infection will 
die out in the long run. Thus, we seek conditions and parameter values so that 

0 1R < . 
The magnitude of 0R  determines the severity of infection. Larger values of 

0 1R >  lead to faster disease spread, whereas smaller values of 0 1R <  lead to 
the disease dying out more rapidly. Using the Next Generation Matrix (NGM) 
approach [19] [20], the expression for 0R  can be derived. Specifically, the next 
generation matrix is given by 1K FV −= , and the spectral radius of K is equal to 

0R . The elements of matrix F, using the extended definition of the matrix F [21], 
represent new infections, where the entry ( ),i j  of F represents the rate at 
which secondary individuals appear in class i per individual of type j. The 
elements of matrix V are the transition of infections. 

In order to calculate the 0R  expression, we make some simplifying 
assumptions in our model. In particular, we assume the integral terms in the 
first and second equations of model (1) are simplified to 

( ) ( ) ( ) ( )
0

e dS z
S S Sg z D t z z g D tδ δ

∞ − − =∫              (27) 

and 

( ) ( ) ( ) ( )
0

e dI z
I I Ig z D t z z g D tδ δ

∞ − − =∫              (28) 

respectively. 
Remark 2 The assumptions in (27) and (28) result in a positive outflow of 

deer out of the patch. The first equation of model (1) contains the expression  
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( ) ( ) ( )
0

e dS z
S S S Sd D t d g z D t z zδ∞ −− + −∫ . Using (27), this simplifies to 

( )( ) ( )1S S Sd g D tδ −  which is negative by the above Lemma. In other words,  

there are more susceptible deer leaving the patch than entering it. The same is 
true for the infected deer as concluded from the second equation of model (1) 
and assumption (28). 

Using the assumptions in (27) and (28), we get that 

( )
*

*

,
0

I I D

M S

S

d g
F M

D

δ β

β

 
 =  
  



                      (29) 

1

2

0
,

0
V

V
V

 
=  
 

                         (30) 

and 

( )
1 21

*

*
1

,
0

I I D

M S

S

d g
V V

FV
M

V D

δ β

β
−

 
 
 =  
 
  



                   (31) 

where 
*

1 2D D I D SV d Dµ ρ γ µ= + + + +                  (32) 

and 
*

2 2 .M M SV Mµ σ µ= + +                    (33) 

As mentioned earlier, the basic reproduction number 0R  is the spectral 
radius of 1FV − . Since 1FV −  is a positive definite matrix, 0R  is equal to the 
largest eigenvalue of 1FV − . After simplifying, the expression for 0R  can be 
written as 

[ ] [ ]( ) [ ]21 1 2
0 0 0 0

1 4 ,
2

R R R R
 

= + + 
 

              (34) 

where 

[ ] ( )1
0

1

,I Id g
R

V
δ

=


                        (35) 

representing the contribution of deer migration to disease outbreaks, and 

[ ]
*

2
0 *

1 2

,D M S

S

MR
VV D
β β

=                        (36) 

representing the effects of the deer-midge interactions on disease outbreaks. 
Therefore, the migration effects of infected deer and the effects of deer-midge 
interactions within the patch on HD outbreaks can be studied separately. 

1) Pure migration effects ( [ ]2
0 0R = ). This occurs when either Dβ  or Mβ  is 

zero, and thus there is no transmission of the disease between the midges and 
the deer (or vice-versa) within the patch. Using Equation (34), [ ]2

0 0R =  implies 
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[ ]1
0 0R R= . In reality, this can effectively occur when the midge population in the 

patch is negligible. It can be seen that [ ]1
0R  is a concave down increasing  

function of Id . Thus, the flux rate of infected deer Id  may increase [ ]1
0R . 

From Equation (32), we get that [ ] ( )1
0lim

Id IR g δ→∞ =  . Using Lemma 1, 
( ) 1Ig δ ≤ . Therefore, Id  alone cannot cause an outbreak even though it 

increases the [ ]1
0R  value. In fact, using Equations (32) and (35), it can be easily 

shown that [ ]1
0 1R <  for all parameter values of the model. Hence, assumptions 

(27) and (28) are underestimating the migration effects of deer population on 
disease outbreak. 

2) Residential effects ( [ ]1
0 0R = ). This occurs when 0Id = , which means that 

infected deer have limited mobility and cannot leave or enter the patch due to 
illness. In this case, [ ]1

0 0R =  implies [ ]2
0 0R R= . In this case, an epidemic may 

be prevented if [ ]2
0 1R < . This, in fact, may be possible as the harvest rate, ρ , is 

a part of the expression of [ ]2
0R . On the other hand, small values of 2V  (i.e., 

low mortality of midges) may result in an outbreak. 
The following proposition indicates the effects of parameter values on 0R  in 

general. 
Proposition 2 The basic reproduction number 0R  is defined in Equation (34) 

and it has the following properties: 
1) 0R  is an increasing function of Sδ  and Sd . 
2) 0R  is a decreasing function of Iδ . 
3) 0R  is an increasing function of Id  if Sd  or the product D Mβ β  is 

sufficiently small. 
4) 0R  is a decreasing function of Id  if Sd  or the product D Mβ β  is 

sufficiently large. 
Proof. Part (i): As shown below, the partial derivative of 0R  with respect to 

Sδ  is positive. 

( )

( ) [ ]( ) [ ]

*
0

21 2*
2 1 2 0 0

0.
4

D M S S S

S
D S

d M gR

VV D R R

β β δ
δ µ

′−∂
= >

∂
+



         (37) 

Note that ( ) 0Sg δ′ <  because ( )Sg δ  is a decreasing function (See Lemma 
1). Similarly, the partial derivative of 0R  with respect to Sd  is positive. 

( ) ( )( )
[ ]( ) [ ]

( )( ) ( )( )

( ) ( )( )
( )

2

0
2 321 21 1

0 0

*
*

2 12*
2 2 1

1 11
2 24

0.
1

I I S I I S

S

D M S
D S

D S S

d g g d g gR
d V VR R

M D V
V V D g

δ δ δ δ

β β
µ

µ δ

− −∂ = +
∂ 

+ 


+ + >
− 

   



(38) 

Part (ii): The partial derivative of 0R  with respect to Iδ  is negative. 

( ) ( )
[ ]( ) [ ]

0
21 221

1 0 0

1 0.
2 4

I I I I

I

d g d gR
V V R R

δ δ
δ

 
 ′∂

= + < 
∂  + 

 

 

         (39) 
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To prove statements (iii) and (iv), note that the partial derivative of 0R  with 
respect to Id  is given by 

( )( )
[ ]( ) [ ]

( ) ( )( )2 *
110

2 *21 22 11 2
1 0 0

1
22 4

I I II I D M S

I S

d V d gg V dR M
d VV V DV R R

δδ β β −−∂  = + −
∂  

+  





(40) 

Also note that *
1 2 0I D D D SV d Dµ ρ γ µ− = + + + > . The expression 

( ) ( )( )2 *
1

*
1 2

0
2

I I I D M S

S

d V d g M
V V D

δ β β−
− >



            (41) 

is equivalent to 

( ) ( )( )2* *
2 1 12 0.I S I I D M Sd V D V d g V Mδ β β− − >           (42) 

Recall that 
( ) ( )( )*

2

1D D S S
S

D

d g
D

λ µ ρ δ

µ

− + − −
=



. When Sd  is sufficiently 

small, ( ) ( )( )2*
2 1I S I Id V D V d g δ−   will be sufficiently large and the inequality  

holds. When D Mβ β  is sufficiently small, *
12 D M SV Mβ β  will be sufficiently  

small and the inequality holds. Thus 0 0
I

R
d
∂

>
∂

. Similarly, when either Sd  or the 

product D Mβ β  is sufficiently large, 0 0
I

R
d
∂

<
∂

. 

Remark 3 Proposition 2 implies that the flux rate Id  of infected deer can 
have two opposing effects based on the value of Sd  or the product D Mβ β . 
Because the directional behavior of 0R  changes due to the value of these, there 
must be critical values ( [ ]c

Sd  and ( )[ ]c
D Mβ β ) such that 0R  is an increasing 

function of Id  when Sd  or D Mβ β  are below either of the critical values and 

0R  is a decreasing function of Id  when Sd  or D Mβ β  are above either of 
them. 

The following Lemma is associated with the structure of the 0R  expression 
in equation (34). 

Lemma 2 For , 0a b ≥ , 1a b+ <  if and only if ( )21 4 1
2

a a b+ + < . 

Proof. (⇒) If 1a b+ < , then 1b a< − . Also, as 0 1a≤ < , 2 2a a− = − . 
Thus, 

( ) ( )( ) ( )
( ) ( )

2 2 21 1 14 4 1 4 4
2 2 2

1 12 2 1
2 2

a a b a a a a a a

a a a a

+ + < + + − = + − +

= + − = + − =
  (43) 

(⇐) 

( )2

2

2

1 4 1
2

4 2

4 2

a a b

a a b

a b a

+ + <

+ + <

+ < −                      (44) 
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2 24 4 4
4 4 4

1

a b a a
a b

a b

+ < − +
+ <
+ <

 

Remark 4 Let [ ]1
0a R=  and [ ]2

0b R= . Using Lemma 2, we get that 0 1R <  is 
equivalent to [ ] [ ]1 2

0 0 1R R+ < . As indicated in [22] [23], the expression [ ] [ ]1 2
0 0R R+  

is known as a Type-Reduction number which can be more accurate than 0R  to 
calculate the minimum disease eradication efforts. 

Proposition 3 Under the assumptions (27) and (28), the DFE of model (1) is 
locally asymptotically stable if and only if [ ] [ ]1 2

0 0 1R R+ <  or, equivalently, 

0 1R < . 
Proof. (⇐) We determine stability conditions at the DFE by using the 

Jacobian of the system of equations. The DFE is locally asymptotically stable if 
the real parts of all eigenvalues of the Jacobian matrix are negative as explained 
in Section 3.1. Using assumptions (27) and (28), the Jacobian matrix evaluated at 
the DFE is given by: 

*
1 2

2
*

*
3 2*

*

4*

0
0 0

,0

0 0

D D S D

D

M S
M M S

S

M S

S

A D
A

MA A M
D

M A
D

λ µ β
β

β
λ µ

β

 − −
 
 
 
 = − −
 
 
 
  

         (45) 

where ( )( )( )*
1 21 2D D S S D SA d g Dλ µ ρ δ µ= − − − − + , ( )2 1I IA d g Vδ= − ,  

*
3 2M M M SA s Mλ µ σ µ= − − − , and 4 2A V= − . The characteristic equation of this 

matrix, using Λ  for the eigenvalues, is 

( ) ( )( ) ( )( )
*

1 3 2 4 * .D M S

S

Mf A A A A
D

β β 
Λ = −Λ −Λ −Λ −Λ − 

 
     (46) 

For the first eigenvalue 1A , we note that since the DFE must satisfy 0SD′ = , 
we can show that ( ) ( )*

2 1D D S D S S S S Sd D d g V d gλ µ ρ µ δ δ= + + + − = −  .  
Therefore, 

( )( )( )
( )( ) ( )( )( )

*
1 2

* *
2 2

*
2

1 2

1 2

0

D D S S D S

D S D S S S D S S D S

D S

A d g D

d D d g d g D

D

λ µ ρ δ µ

µ ρ µ δ µ ρ δ µ

µ

− − − − +

= + + + − − − − − +

= − <



  (47) 

Similarly, for the second eigenvalue, given that the DFE must satisfy 0SM ′ = , 
we can show *

2M M M SMλ µ σ µ= + + , and thus  
* *

3 2 22 0M M M S M SA M Mλ µ σ µ µ= − − − = − < . 
For the remaining two eigenvalues, we rewrite the part of the characteristic 

equation in brackets as 

( )
*

2
2 4 2 4 * 0.D M S

S

MA A A A
D

β β
Λ − + Λ + − =              (48) 

This is a quadratic of the form 2 b cΛ + Λ + . According to the Routh-Hurwitz 
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criteria [17], the roots of a quadratic will have negative real parts if the linear 
coefficient and the constant term are positive. The linear coefficient is 
( )2 4A A− +  and is positive as shown below. 

( )
( )

( )( )

2 4 1 2

*
2 2

*
2 21 0

I I

I I D D I D S

I I D D I D S

A A d g V V

d g d D V

d g d D V

δ

δ µ ρ γ µ

δ µ ρ γ µ

+ = − −

= − − − − − −

= − − − − − − − − <







  (49) 

If [ ] [ ]1 2
0 0 1R R+ < , then 

( )

( )

( )

*

*
1 1 2

*

2 1 2*

*

1 2 2 *

1

0

I I D M S

S

D M S
I I

S

D M S
I I

S

d g M
V VV D

Md g V VV
D

MVV d g V
D

δ β β

β β
δ

β β
δ

+ <

+ <

− − >







             (50) 

Hence, the constant term of the characteristic equation 

( )( )

( )

* *

2 4 1 2* *

*

1 2 2 * 0

D M S D M S
I I

S S

D M S
I I

S

M MA A d g V V
D D

MVV d g V
D

β β β β
δ

β β
δ

− = − − −

= − − >





         (51) 

Therefore, both roots of the quadratic (i.e. the two eigenvalues) must have 
negative real parts. Thus, under the given conditions, the system is stable at DFE. 

(⇒) If the DFE of model (1) is locally asymptotically stable, then by Theorem 
8.12. iii of [24], the real parts of all eigenvalues of the Jacobian matrix A are  

negative. By (50), this occurs when ( )
*

1 2 2 * 0D M S
I I

S

MVV d g V
D

β β
δ− − >  which is 

the same as [ ] [ ]1 2
0 0 1R R+ < . 

We must now prove the existence of an endemic equilibrium solution in the 
proposed model. However, this is difficult as two of the variables, SD  and ID , 
are contained within the integral dispersion terms. Therefore, we utilize a 
technique called the chain trick [15] to reduce model (1) to an ODE model. 

3.3. Reduction to ODE Model 

Using the chain trick method [15], we can rewrite the first two equations as 

( )( )

( )( )

2

2

d
d

d
d

S D I S
D N D S D N S S

N

D I SI
D D I D N I I

N

D M DD d D D D
t D

M DD d D D D
t D

β
λ µ ρ µ

β
µ ρ γ µ

= − − + + + +

= − + + + + +
    (52) 

where 

( ) ( )
0

e dS z
S S SD d g z D t z zδ∞ −= −∫                  (53) 

and 
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( ) ( )
0

e d .I z
I I ID d g z D t z zδ∞ −= −∫                 (54) 

These quantities are treated as new model variables, so we may now 
differentiate both of them and amend the existing set of equations. 

In time delay models, there are two distributions that are commonly used. The 
first is a uniform distribution with mean τ  given by 

( )
1 , for 1 1

2 2
0, elsewhere.

u
g u

ρ ρ
τ τ

τρ
    − ≤ ≤ +    =    



            (55) 

The second is the gamma distribution given by 

( ) ( )
1 e ,

p p uug u
p

αα− −

=
Γ

                    (56) 

where , 0pα ≥  are parameters which determine the shape of the distribution 
and the mean of the distribution is p α . In the case when 1p = , the result is 
the exponential distribution, ( ) e zg z αα −= . Using (56) with 1p = , the  

expression for 
d
d

SD
t

 is computed to be: 

( ) ( )

( ) ( ) ( )
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− −− −

−∞
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−∞
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=

=

∫

∫

∫

∫

∫

           (57) 

Thus, by the product rule for differentiation, 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

d
e e d e e

d
S S S S

tt u t uS
S S S S

S S S

D D u u d D t
t

D D

δ α δ α δ α δ αα δ α α

δ α α

− + + − + +

−∞
= − + +

= − + +

∫ (58) 

The simplification is the same for ID , and so the delayed model in (1) is 
reduced to the ODE model formulated by 

( )

( )

( )

( )

( ) ( )
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2

2
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d d
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D d D D d D

t D
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D MM M M
t D

D DD D D D
t t

β
λ µ ρ µ

β
µ ρ γ µ

β
λ µ σ µ

β
µ σ µ

δ α α δ α α

= − − + + + +

= − + + + + +

= − − + +

= − + +

= − + + = − + +,

   (59) 

The disease free equilibrium (DFE) is computed to be 
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( ) ( )( )
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+
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=

=
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+
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       (60) 

In the next section, we provide the numerical simulations of the ODE model 
(59) and the 0R  expression (34). 

4. Numerical Simulations 

Using Matlab 9.1, we generated the surface plots of 0R  values based on the 
model parameters [ ]1

0R  and [ ]2
0R  (See Figure 2). As proven in Proposition 2,  

 

 
Figure 2. Numerical simulations of 0R  as a function of the selected model parameters. (a) 0R  values increase with Id  
provided Sd  values are small. When Sd  values are large, 0R  decreases with Id ; (b) 0R  increases both with D Mβ β  and Id ; 

(c) 0R  increases with Sδ  and decreases with Iδ ; (d) 0R  increases linearly with [ ]1
0R  and increases parabolically with [ ]2

0R . 
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Figure 2(a) shows that 0R  is an increasing function with respect to Sd . The 
influx of additional, susceptible deer into a patch leads to an increased number 
of potential interactions with infected midges and thus an increase in the 
number of infections overall. Figure 2(c) shows that 0R  is an increasing 
function with respect to Sδ  and a decreasing function with respect to Iδ . 
Figure 2(a) and Figure 2(b) demonstrate the behavior of 0R  with respect to 
the influx of infected deer, Id . For smaller values of Sd  or D Mβ β , 0R  is an 
increasing function with respect to Id ; for larger values of Sd  or D Mβ β , it is 
a decreasing function with respect to Id . Thus, there must be a critical value 
( [ ]c

Sd  or ( )[ ]c
D Mβ β ) where the behavior changes. 

If we consider 0R  as a function of the deer-midge interactions, then 0R  is 
essentially a linear function of [ ]1

0R  and a function of the square root of [ ]2
0R . 

The graph of 0R  would be increasing and concave down with respect to an 
increase in [ ]2

0R  (See Figure 2(d)). This is consistent with what we would 
expect to happen. As the amount of interaction increases, so does the number of 
potential new infections with a greater chance of an outbreak occurring. Plus, as 
a greater proportion of the deer population becomes infected, the rate of 
increase of 0R  must decrease as the number of uninfected deer will 
consequently drop. 

We also demonstrate numerically that the solutions of model (1) converge to 
the endemic equilibrium if 0 1R >  and achieves a disease free equilibrium if 

0 1R < . To do this, a MATLAB code was written utilizing the ODE45 solver, and 
the results were verified against the computed 0R  value for a given set of 
parameters. At time 0t = , we have the following initial values: ( )0 30SD = , 

( )0 10ID = , ( )0 20SM = , ( )0 5IM = , ( )0 10SD = , and ( )0 1ID = . See Table 
2 for the specific parameter values used for the numerical simulations. 

Figure 3(a) and Figure 3(c) show the long-term behavior of the four classes 
of deer populations-total susceptible, total infected, susceptible influx, and 
infected influx-plotted on the same graph, while Figure 3(b) and Figure 3(d) 
show the long-term behavior of the susceptible and infected midge populations. 
 
Table 2. Parameter values used in model simulation and the calculated 0R  values. 

Parameter 
Value when 

0 0.40R =  
Value when 

0 2.19R =  Parameter 
Value when 

0 0.40R =  
Value when 

0 2.19R =  

Dβ  0.2 1.1 Dγ  0.35 0.1 

Dλ  0.9 0.9 Mβ  0.2 1.6 

ρ  0.2 0.2 Mλ  0.9 0.9 

Dµ  0.1 0.1 σ  0.2 0.2 

2Dµ  0.2 0.5 Mµ  0.05 0.05 

Sd  0.3 0.1 2Mµ  0.05 0.05 

Id  0.3 0.42    

Note: The 0R  values are consistent with the numerical simulations shown in Figure 3. Similar results 
were obtained using different sets of parameter values. 
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Figure 3. (a) (b) When the basic reproduction number 0 1R < , the system stabilizes to its disease free equilibrium and the number 
of infected deer, the number of dispersing infected deer, and the number of infected midges tends to zero as t increases; (c) (d) 
When the basic reproduction number 0 1R > , the system stabilizes to its endemic equilibrium. See Table 2 for the specific values 
used and the corresponding values of 0R . 

 
Figure 3(a) and Figure 3(b) indicate that when 0 1R < , the system will stabilize 
to its disease free equilibrium. Figure 3(c) and Figure 3(d) show that when 

0 1R > , the system will stabilize to an endemic equilibrium. These outcomes are 
robust for large sets of initial values and parameter values. 

5. Discussion 

In this paper, we have developed a distributed delay model for transmission 
dynamics of HD in a deer population. Though mathematical models for disease 
and HD specifically are established, we chose to focus on how the dynamics are 
affected by the dispersion (migration) of deer specifically and how the basic 
reproduction number is affected by these dispersion rates (i.e., Sd  and Id ). 
The results show that there are critical values for the interaction parameters 
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( )[ ]c
D Mβ β  and rates of susceptible deer dispersion [ ]c

Sd . Hence, possible 
outbreaks could be avoided by controlling how and where these deer move. 

One of the primary limitations of this study is the lack of actual parameter 
values. Although the qualitative behavior of model (1) remains fairly distinctive, 
(i.e., convergence to DFE or EE) for large sets of parameter values, many of the 
values were chosen randomly. It is our goal to estimate some of the parameter 
values using data from the Missouri Department of Conservation concerning the 
prevalence of HD in Missouri’s white-tailed deer. Nevertheless, the graphs 
presented in Figure 2 and Figure 3 show consistent tendencies in the behavior 
in the model. We also have not considered behavior in a multi-patch system, 
where migrating individuals leave one patch and eventually enter a neighboring 
patch, nor did we consider a delay in the traveling time. Holt [25] and Weisser et 
al. [26] extended their results to a system of multiple patches joined through a 
pool of dispersing individuals. Moreover, the proposed model (1) does not 
include the effect of predators on the population of white-tailed deer. As a prey 
species, deer are linked with local predators. In Missouri, the coyote is one such 
predator. Some coyote predator studies have been done, but these are admittedly 
outdated. However, deer make up a portion of a coyote’s diet and that large 
increases or decreases in predator populations may influence deer mortality 
rates [28]. Finally, our model assumed only one vector for the transmission of 
HD. With the species richness of the Culicoides genus, we may reasonably 
expect more and different interaction rates and different levels of control 
efficacy [27]. We also note that weather has an effect on both the midge 
population and the life cycle of the HD virus [2] [29]. Midge populations thrive 
in damper areas, and in 2012, there was an above average amount of rain in the 
late winter/early spring, filling ponds and other water bodies in Missouri [28]. In 
addition, record warm temperatures in that spring and summer may cause 
midges to become more active sooner than normal [28]. Next, the high 
temperatures caused water sources to dry up, and not only did the resulting mud 
flats become ideal breeding areas for subsequent generations of midges, but also 
caused deer to visit water sources more frequently due to lower water content in 
the plants they ate as part of their diet. These same high temperatures also cause 
female midges to lay more eggs, and Wittmann et al. also revealed that higher 
temperatures decrease the extrinsic incubation period of the HD virus within the 
midges [30]. Thus, the virus develops faster and allows a midge to infect more 
deer during its life span. None of these factors have been considered in the 
model (1). Instead, the main focus has been on migration effects of deer 
population on overall HD dynamics within a patch. 

6. Conclusion 

The above mentioned limitations demand model extensions to study the 
effectiveness of control and preventive strategies. Deer species are important 
members of the ecosystem as they feed on brush and grass in a given area and 
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keep them in check. In conclusion, the present work is the first step towards 
inclusion of migration effects of deer population modeling of HD dynamics. The 

0R  expression provides insights into the effects of deer movement on the spread 
of disease. 

References 
[1] Flinn, E. and Sumners, J. (2013a) Breaking Down the Hemorrhagic Disease Out-

break. Missouri Conservationist, 74, 24-29. 

[2] Sleeman, J.M., Howell, J.E., Knox, W.M. and Stenger, P.J. (2009) Incidence of He-
morrhagic Disease in White-Tailed Deer Is Associated with Winter and Summer 
Climactic Conditions. EcoHealth, 6, 11-15.  
https://doi.org/10.1007/s10393-009-0220-6 

[3] Foster, N.M., Breckon, R.D., Luedke, A.J., Jones, R.H. and Metcalf, H.E. (1977) 
Transmission of Two Strains of Epizootic Hemorrhagic Disease Virus in Deer by 
Culicoides variipennis. Journal of Wildlife Diseases, 13, 9-16.  
https://doi.org/10.7589/0090-3558-13.1.9 

[4] Ross, R. (1911) The Prevention of Malaria. John Murray, London. 

[5] Macdonald, G. (1957) The Epidemiology and Control of Malaria. Oxford University 
Press, London. 

[6] Lou, Y. and Zhao, X.-Q. (2009) The Periodic Ross-Macdonald Model with Diffusion 
and Advection. Applicable Analysis, 89, 1067-1089.  
https://doi.org/10.1080/00036810903437804 

[7] Wang, W. and Zhao, X.-Q. (2011) A Nonlocal and Time-Delayed Reaction Diffu-
sion Model of Dengue Transmission. SIAM Journal of Applied Mathematics, 71, 
147-168. https://doi.org/10.1137/090775890 

[8] Fitzgibbon, W.E., Morgan, J.J. and Webb, G.B. (2017) An Outbreak Vector-Host 
Epidemic Model with Spatial Structure: The 2015-2016 Zika Outbreak in Rio De 
Janeiro. Theoretical Biology and Medical Modeling, 14, 7.  
https://doi.org/10.1186/s12976-017-0051-z 

[9] Neubert, M.G., Klepac, P. and Van Den Driessche, P. (2001) Stabilizing Dispersal 
Delays in Predator-Prey Metapopulations Models. Theoretical Population Biology, 
61, 339-347. https://doi.org/10.1006/tpbi.2002.1578 

[10] Klepac, P., Neuber, M.G. and Van Den Driessche, P. (2007) Dispersal Delays, Pre-
dator-Prey Stability, and the Paradox of Enrichment. Theoretical Population Biolo-
gy, 7, 436-444. https://doi.org/10.1016/j.tpb.2007.02.002 

[11] Park, A.W., Magori, K., White, B.A. and Stallknecht, D.E. (2013) When More 
Transmission Equals Less Disease: Reconciling the Disconnect between Disease 
Hotspots and Parasite Transmission. PLoS ONE, 8, e61501.  
https://doi.org/10.1371/journal.pone.0061501 

[12] Purdue University, Extension E-250-W. Biting Midges: Biology and Public Health 
Risk. https://extension.entm.purdue.edu/publichealth/insects/bitingmidge.html  

[13] Sedda, L., Brown, H.E., Purse, B.V., Burgin, L., Gloster, J. and Rogers, D.J. (2012) A 
New Algorithm Quantifies the Roles of Wind and Midge Flight Activity in the Blu-
etongue Epizootic in Northwest Europe. Proceedings: Biological Sciences, 279, 
235462.  
http://www.jstor.org.proxy.library.umkc.edu/stable/41549546  
https://doi.org/10.1098/rspb.2011.2555 

[14] Ngwa, G. and Shu, W. (1999) A Mathematical Model for Endemic Malaria with Va-

https://doi.org/10.4236/jamp.2017.511184
https://doi.org/10.1007/s10393-009-0220-6
https://doi.org/10.7589/0090-3558-13.1.9
https://doi.org/10.1080/00036810903437804
https://doi.org/10.1137/090775890
https://doi.org/10.1186/s12976-017-0051-z
https://doi.org/10.1006/tpbi.2002.1578
https://doi.org/10.1016/j.tpb.2007.02.002
https://doi.org/10.1371/journal.pone.0061501
https://extension.entm.purdue.edu/publichealth/insects/bitingmidge.html
http://www.jstor.org.proxy.library.umkc.edu/stable/41549546
https://doi.org/10.1098/rspb.2011.2555


G. Baygents, M. Bani-Yaghoub 
 

 

DOI: 10.4236/jamp.2017.511184 2282 Journal of Applied Mathematics and Physics 
 

riable Human and Mosquito Populations. United Nations Educational Scientific 
and Cultural Organization and International Atomic Energy Agency, The Abdus 
Salam International Centre for Theoretical Physics, Miramare-Trieste. 

[15] Kuang, Y. (1993) Delay Differential Equations with Applications in Population Dy-
namics. Academic Press, Inc., San Diego. 

[16] Perko, L. (2001) Differential Equations and Dynamical Systems. 3rd Edition, Sprin-
ger, New York. https://doi.org/10.1007/978-1-4613-0003-8 

[17] Routh, E.J. (1877) A Treatise on the Stability of a Given State of Motion: Particular-
ly Steady Motion. Macmillan, London. 

[18] Dietz, K. (1993) The Estimation of the Basic Reproduction Number for Infectious 
Diseases. Statistical Methods in Medical Research, 2, 23-41.  
https://doi.org/10.1177/096228029300200103 

[19] Bani-Yaghoub, M., Gautam, R., Ivanek, R., van den Driessche, P. and Shuai, Z. 
(2012) Reproduction Numbers for Infections with Free-Living Pathogens Growing 
in the Environment. Journal of Biological Dynamics, 6, 923-940.  
https://doi.org/10.1080/17513758.2012.693206 

[20] Van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and 
Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Trans-
mission. Mathematical Biosciences, 180, 29-48.  
https://doi.org/10.1016/S0025-5564(02)00108-6 

[21] Hurford, A., Cownden, D. and Day, T. (2010) Next-Generation Tools for Evolutio-
nary Invasion Analyses. Journal of the Royal Society Interface, 7, 561-571.  
https://doi.org/10.1098/rsif.2009.0448 

[22] Heesterbeek, J.A.P. and Dietz, K. (1996) The Concept of R0 in Epidemic Theory. 
Statistica Neerlandica, 50, 89-110.  
https://doi.org/10.1111/j.1467-9574.1996.tb01482.x 

[23] Heesterbeek, J.A.P. and Roberts, M.G. (2007) The Type-Reproduction Number T in 
Models for Infectious Disease Control. Mathematical Biosciences, 206, 3-10.  
https://doi.org/10.1016/j.mbs.2004.10.013 

[24] Jordan, D.W. and Smith, P. (1999) Nonlinear Ordinary Differential Equations: An 
Introduction to Dynamical Systems. Oxford University Press, Oxford. 

[25] Holt, R.D. (1984) Spatial Heterogeneity, Indirect Interaction, and the Coexistence of 
Prey Species. American Naturalist, 124, 377-406. https://doi.org/10.1086/284280 

[26] Weisser, W.W., Jansen, V.A.A. and Hassell, M.P. (1997) The Effects of a Pool of 
Dispersers on Host-Parasitoid Systems. Journal of Theoretical Biology, 189, 413-425.  
https://doi.org/10.1006/jtbi.1997.0529 

[27] Park, A.W., Cleveland, C.A., Dallas, T.A. and Corn, J.L. (2016) Vector Species 
Richness Increases Haemorrhagic Disease Prevalence through Functional Diversity 
Modulating the Duration of Seasonal Transmission. Parasitology, 143, 874-879.  
https://doi.org/10.1017/S0031182015000578 

[28] Flinn, E. and Sumners, J. (2013b) State of the States Deer Herd. Missouri Conserva-
tionist, 74, 24-29.  

[29] Mellor, P.S., Boorman, J. and Baylis, M. (2000) Culicoides Biting Midges: Their Role 
as Arbovirus Vectors. Annual Review of Entomology, 45, 307-340.  
https://doi.org/10.1146/annurev.ento.45.1.307 

[30] Wittmann, E.J., Mellor, P.S. and Baylis, M. (2002) Effect of Temperature on the 
Transmission of Orbiviruses by the Biting Midge, Culicoides sonorensis. Medical 
and Veterinary Entomology, 16, 147-156.  
https://doi.org/10.1046/j.1365-2915.2002.00357.x 

https://doi.org/10.4236/jamp.2017.511184
https://doi.org/10.1007/978-1-4613-0003-8
https://doi.org/10.1177/096228029300200103
https://doi.org/10.1080/17513758.2012.693206
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1098/rsif.2009.0448
https://doi.org/10.1111/j.1467-9574.1996.tb01482.x
https://doi.org/10.1016/j.mbs.2004.10.013
https://doi.org/10.1086/284280
https://doi.org/10.1006/jtbi.1997.0529
https://doi.org/10.1017/S0031182015000578
https://doi.org/10.1146/annurev.ento.45.1.307
https://doi.org/10.1046/j.1365-2915.2002.00357.x


Journal of Applied Mathematics and Physics, 2017, 5, 2283-2290 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2017.511185  Nov. 29, 2017 2283 Journal of Applied Mathematics and Physics 
 

 
 
 

Bianchi Type-V Cosmological Models for Perfect 
Fluid with Time-Varying Gravitational and 
Cosmological Constant 

Mohammed Aman Ullah, Mohammad Amjad Hossain, Mohammad Moksud Alam 

Department of Mathematics, University of Chittagong, Chittagong, Bangladesh 

 
 
 

Abstract 
Einstein’s field equations with variable gravitational and cosmological con-
stants are considered in presence of perfect fluid for locally-rotationally- 
symmetric (LRS) Bianchi type-V space-time discussion in context of the par-
ticle creation. We present new shear free solutions for both absence and pres-
ence of particle creation. The solution describes the particle and entropy gen-
eration in the anisotropic cosmological models. We observe that time varia-
tion of gravitational and cosmological constant is needed for particle creation 
phenomena. Moreover, we obtained the particle production rate ( )tΓ  for 
this model and discussed in detail. 
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1. Introduction 

Einstein field equation in general relativity [1] and cosmology contains two pa-
rameters: Newton’s gravitational constant G and the cosmological constant Λ . 
A number of authors have considered the cosmological model with the cosmo-
logical constant Λ  as a function of cosmic time. An important role of cosmo-
logical constant with the relation 2t−Λ ∝  studied by Berman et al. [2] and 
Berman [3] [4]. The time variation of the gravitational constant G was first pro-
posed by Dirac [5] and extensively discussed in the literature by Weinberg [6]. 
Lau [7], Lau and Prokhovnik [8] proposed generalized field equations with 
time-dependent G and Λ , since then many authors have investigated cosmo-
logical models with variables G and Λ . Arbab [9] has discussed a viscous model 
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with variable G and Λ  claiming that energy is conserved. Singh et al. [10] dis-
cussed a number of classes of solutions to Einstein’s field equations with variable 
G and Λ , and bulk viscosity for a flat Robertson-Walker universe in the 
framework of general relativity. 

The Bianchi cosmologies which are spatially homogeneous and anisotropic 
play an important in theoretical cosmology and have been much studied since 
1960s. Coley [11] has investigated Bianchi type-V spatially homogeneous im-
perfect fluid cosmological models which contain both viscosity and heat flow. 
Coley and Hoogen [12] have studied a locally-rotationally-symmetric (LRS) Bi-
anchi type-V metric for imperfect fluid source with both viscosity and heat 
conduction. Singh and Beesham [13] have presented LRS Bianchi type-V cos-
mological models in the presence of perfect fluid with heat conduction. Singh 
[14] has extended the work to LRS Bianchi type-V cosmological models and ob-
tained solutions of the field equations in general relativity. A number of studies 
in cosmological model are performed using the gravitational constant and cos-
mological constant with cosmic time variable in the context of isotropic perfect 
fluid [9] [15] [16] and anisotropic [17] [18] [19] [20]. 

Recently, particle creation and in the absence of particle creation in cosmolo-
gy and its phenomenological description are discussed in detail by Singh [21]. 
Previously, it was also attracted a lot of interests shown in [22] [23]. 

In this paper, we have studied the evolution and dynamics of a perfect fluid 
LRS Bianchi type-V models with variable G and Λ  which describe the particle 
creation. We also try to present the exact solutions of Einstein’s field equations 
in the case of particle creation and in the absence of particle creation. 

2. Field Equations 

We consider a LRS Bianchi type-V space time with the metric [11] 

( ) ( )( )2 2 2 2 2 2 2 2d d d e d dxs t A t x B t y z= − + + +              (1) 

where ( )A t  and ( )B t  are the cosmic scale functions. The Einstein’s field eq-
uations with time-dependent G and Λ  are given by Abdel-Rahaman [15]. 

( ) ( )1 8π
2ij ij ij ijR g R G t T t g− = − + Λ                  (2) 

where the energy-momentum tensor ijT  is that of a perfect fluid. 
For perfect fluid, ijT  is given by 

( )ij i j ijT p u u pgρ= + +                         (3) 

where ρ  is the matter density, p  is the thermodynamics pressure and iu  is 
the four-velocity vector of the fluid satisfying 1i

iu u = − . In a co-moving coor-
dinate system, the field Equations (2), for the metric (1), in case of (3), read as 
[18]: 

( ) ( )
2

2 2

12 8πB B G t p t
B B A
+ − = − + Λ

 

,                (4) 
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( ) ( )2

1- 8πA B A B G t p t
A B A B A
+ + = − + Λ

  

,              (5) 

( ) ( )
2

2 2

32 8πA B B G t t
A B B A

ρ+ − = + Λ
  

,             (6) 

0A B
A B
− =
 

                           (7) 

where dot denotes the ordinary derivative with respect to the cosmic time t and 
double dot stands for second derivative w.r. to the same. 

The vanishing of the covariant divergence of the Einstein tensor leads to the 
following useful equation 

( ) 2
8π

A B Gp
A B G G

ρ ρ ρ
   Λ

+ + + = − +   
   

  

           (8) 

The average scale factor R for the LRS Bianchi type-V model is defined as 

( )
1

2 3R AB=                          (9) 

The generalized mean Hubble parameter H can be defined as in [24] 

1 2
3

a A BH
a A B

 
= = + 

 

 

                      (10) 

The physical quantities of observation of interest in cosmology and the expan-
sion scalar θ , the average anisotropy parameter pA  and the shear scalar 2σ , 
are defined as [21] 

; 2i
i

A Bu
A B

θ
 

= = + 
 

 

                     (11) 

23

1

1
3

i
p

i

H H
A

H=

− =  
 

∑                     (12) 

2
2 1 1

2 3
ij

ij
A B
A B

σ σ σ
 

= = − 
 

 

                   (13) 

The particle content of the early universe is formed from a non-interacting 
comoving relativistic fluid having a particle number density ( )n t  and obeying 
the equation of state of the form 

1
1

0
0

n n
αρ

ρ

+ 
=  

 
                       (14) 

p αρ=                           (15) 

where 0 0n ≥  and 0 0ρ ≥  are constants and 0 1α≤ ≤ . Equation (8) can be 
written, using Equations (14)-(15), in the form of a particle balance equation 

( )3n Hn t n+ = Γ                        (16) 

where ( )tΓ  is the particle production rate given by 
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( ) ( ) ( )
( )
( ) ( )1

1 8π
t

t G t
G t tα ρ

 Λ
Γ = − + 

+   



               (17) 

For particle creation, it is required that Equation (17) satisfies ( ) 0tΓ ≥ . This 
implies that the space-time can produce matter, while the reverse case is ther-
modynamically forbidden. Which leads to 

( )
( ) ( ) 0

8π
t

G t
tρ

Λ
+ ≤



                      (18) 

The entropy S generated during the particle creation is given by 

( )
( )
( ) ( ) ( ) 3d 1

d 8π
tST G t t R

t G t t
ρ

ρ
 Λ

= − + 
  



              (19) 

which can be written as 

( ) ( ) ( )
31d

d
t RS t

t T
α ρ+

= Γ                  (20) 

In a cosmological fluid where the density and pressure are functions of the 
temperature only, i.e. ( )Tρ ρ=  and ( )p p T= , the entropy is given by [6] 

( ) ( )3 31p a a
S

T T
ρ α ρ+ +

= =                 (21) 

The total entropy of the cosmological fluid function of the particle production 
rate is given by 

( )d
0e

t tS S Γ∫=                          (22) 

where 0 0S ≥  is a constant of integration. In the case of no particle production, 
i.e. ( ) 0tΓ = , we have the usual particle conservation law of the standard cos-
mology, i.e. 

( )3 1 0pHρ α+ + =                     (23) 

( ) ( )8π 0t G tρΛ + =                     (24) 

For the case of entropy ( ) 0 constantS t S= = , and thus the change of entropy 
is zero. 

3. Solution of Field Equations 

From Equation (7), we have  

B kA=                              (25) 

where k is constant of integration. 
From Equations (4) and (5), we have  

2 2

2 2

B A
B A

=


                             (26) 

Using the relations (25) and (26), Equations (5) and (6) yields 

( )
2

2 2

22 2 8π 1A A G
AA A

α ρ− − = +
 

                (27) 
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Again, from the Equations (5) and (6), we have 

( )( )
2

2 2

42 8π 2 4A AG t p
A A A

ρΛ + − = + −
 

             (28) 

As described in [21], we have a system of five Equations (4)-(8) with six un-
knowns, namely , , , ,A B G ρ Λ  and p . To find the exact solution of the field 
equations, we use the power law equation. The particle creation is described due 
to the variation of G and Λ  as shown in [18]. We obtain the solution for ρ , 
G  and Λ  in the following two cases: 

3.1. In the Absence of Particle Creation: 

Consider the left part of Equation (8) equal to zero i.e. 

( ) 2 0A Bp
A B

ρ ρ
 

+ + + = 
 

 

  

Using the Equations (25) and (15), the above equation can be written as 

i.e. ( )3 1 0A
A

ρ α
ρ
+ + =





 

i.e. ( )
1

3 1

k
A α

ρ
+

=                           (29) 

where 1k  is integrating constant. Now, using Equation (29), Equation (27) re-
duces to 

( ) ( ) { }
3 1

2

1

1
4π 1

AG t A AA
k

α

α

+

= − −
+

                    (30) 

Again, using the Equations (25) and (26), Equations (5) + (6) give 
2

2 2

2 3 1 3 1
1 1 1

A A
A A A

α α
α α α

+ +   Λ = ⋅ + ⋅ − ⋅   + + +   

 

             (31) 

Also, from the right side of Equation (8) gives 

0
8π

G
G G
ρ

Λ
+ =

 

 

i.e. 2 3 0
3 1

AA A α
α
+

− + =
+

   

i.e. ( )e e
2

t tA γ γβ
γ

−= −                       (32) 

where β  and γ  are constants. So, 

( )e e
2

t tkB γ γβ
γ

−= −                       (33) 

and 3 2R AB=  which gives  

( )e e
2

t tkR γ γβ
γ

−= −                    (34) 

The Hubble parameter and deceleration parameter are respectively given by 
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2

2

1 e
1 e

t

tH
γ

γγ
−

−

 +
=  

− 
, ( )

22
2

2

1 e tanh
1 e

t

tq t
γ

γ γ
−

−

 −
= − = − 

+ 
     (35) 

The energy density, gravitational and cosmological constants and expansion 
scalar are given by 

( ) ( )

( ){ } ( )

3 1

3 1

2

e et t

k α

αγ γ

γ
ρ

β

+

+
−

=
−

                   (36) 

( ) ( ) ( )
3 12 3 1

1

1 . e e
4π 1 2

t tG t
k

α
αγ γβ β

α γ

+
+− −

= − +  
         (37) 

( ) ( )
2 2 22

2

e e 3 43 e e
1e e

t t
t t

t tt
γ γ

γ γ
γ γ

α γ
γ

α β

− −−
−

 + +
Λ = − ⋅ −  +− 

       (38) 

( )
( ) ( )
e e

3 3 coth
e e

t t

t t
t

γ γ

γ γ
θ γ γ γ

−

−

+
= =

−
               (39) 

The above discussion, it is clear that the Hubble’s parameter, energy density, 
cosmological constant, deceleration parameter and expansion scalar are de-
creasing as functions of time. But only gravitational constant is increasing as 
functions of time. 

Some authors [5] [16] considered that G the cosmological constant is a de-
creasing parameter as function of time, while some other [9] [25] are taken G as 
increasing as function of time. 

3.2. In the Case of Particle Creation 

Let us consider, mA at=  and rG bt= , where , ,a b m  and r  are constants. 
Now, we have from Equation (27) 

( ) 2 2 2

1 2 1 2 1
8π 1 r m r

m
b t a b t

ρ
α + +

 = ⋅ − ⋅ 
+  

             (40) 

( ) ( )
( )

2

2 2 2

3 1 2 1 3 1 1
1 1 m

m m
t

t a t
α α

α α
+ − +

Λ = ⋅ − ⋅
+ +

            (41) 

which satisfies the Equation (8). 
The particle production rate is given by (17) 

( )
( ) ( )2 2 2 1 3

2 2 2 4

6 1 4 2 3 11
1 2 2

m

m

a m t m m t rt
tma t t

α α

α

+

+

   + − + +   Γ = + 
+  −    

    (42) 

The other physical quantities are 

3 mH
t

=                             (43) 

; 3i
i

mu
t

θ = =                           (44) 

The physical quantities such as energy density, cosmological constant, Hub-
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ble’s parameter and expansion scalar are decreasing with the increasing of the 
time and tend to zero when time tends to infinity. The particle creation decreas-
ing when time increasing and tends to zero when time tends to infinity. The 
mass within the co-moving volume 3V R∝  is given by 3

pnM Rρ= , where n  
is the number density of the particles and pM  the particle mass. 

4. Conclusion 

We have obtained solution for two cases: viz absence of particle creation and for 
particle creation of Einstein’s field equation of a locally-rotationally-symmetric 
Bianchi type-V universe with cosmological constant and gravitational constant 
as a cosmic time. The physical quantities are realistic i.e. they behave physically 
for cosmological cases. The particle production rate ( )tΓ  decreasing when 
time is increasing but when time tends to zero ( )tΓ  tends to infinity which is 
also physical because of Big bang theory. 
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Abstract 
According to the characteristics and requirements of urban vegetable logistics 
and distribution, the optimization model is established to achieve the mini-
mum distribution cost of distribution center. The algorithm of artificial bee 
colony is improved, and the algorithm based on MATLAB software is de-
signed to solve the model successfully. At the same time, combined with the 
actual case, the two algorithms are compared to verify the effectiveness of the 
improved artificial bee colony algorithm in the optimization of urban vegeta-
ble distribution path. 
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1. Introduction 

City vegetable logistics is engaged in transportation, warehousing and other se-
ries of vegetable logistics activities within the city limits, it is one of the logistics, 
business flow and information flow, according to different customers on the de-
livery time and quantity of vegetables and other requirements, to provide perso-
nalized service for customers and distribution [1]. As the characteristics of the 
city itself, making the city vegetable logistics and distribution with a wide range 
of customers, the number of customer points, customer points between the dis-
tribution distance is relatively close to the characteristics of urban vegetable lo-
gistics and distribution generally use the car for distribution, not only because 
the special truck has the advantages of strong maneuverability, flexible response 
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[2], and these advantages can also meet the customer a small number of goods, 
the number of purchases, delivery to the door of the consumer characteristics. In 
addition, the urban vegetable logistics and distribution of urban residents have a 
great impact on daily life. It is necessary to construct a reasonable urban vegeta-
ble logistics and distribution system not only to meet the requirements of time-
liness, convenience, distribution environment and high distribution efficiency, 
but also should meet the characteristics of urban customers, distribution flow 
and other characteristics [3]. 

Urban vegetable logistics distribution vehicle routing problem can be de-
scribed as: there are a number of customers need the distribution center to de-
liver a certain amount of goods, the specific location of each customer point is 
known. The distribution center with the delivery task has the same type of dis-
tribution vehicle, and the quantity meets the demand, all the delivery vehicles 
have the same carrying capacity of [4]. The vehicles that carry the goods depart 
from the distribution center, along the planned route, the goods to the customer 
on the route of the hands of the final return to the distribution center. There are 
certain conditions in the distribution process constraints, each customer can 
only be a distribution vehicle responsible for the distribution of the task, the 
time of delivery of the goods within the time required by the customer, other-
wise given the appropriate delivery vehicle must be punished [5] [6]. In this pa-
per, the establishment of the model first considers the requirements of the cus-
tomer point to the delivery time, and then considers the optimization model 
with the total cost as the goal, which is based on the load and distance con-
straints of the vehicle. Using the improved artificial bee colony algorithm, using 
MATLAB software programming solution, combined with the case, to verify the 
feasibility and effectiveness of improving the artificial bee colony algorithm. 

2. Establishment of Model 
2.1. Assumptions 

As a result of the actual distribution, we will encounter a variety of practical 
problems, from a different point of view, to solve the problem achieved by the 
target results are not the same, in order to study and establish the issue of urban 
vegetable distribution mathematical model [7]. Here make the following as-
sumptions: 1) The starting point of each delivery vehicle for the distribution 
center, and ultimately return to the distribution center. 2) The total delivery 
amount of each distribution route is less than the maximum load of the vehicle. 
3) The distance traveled by each delivery vehicle shall not exceed its distance. 4) 
Each customer can only be completed by a car distribution, the cost of each ve-
hicle start and travel unit distance is known. 

2.2. Model Establishment 

In order to facilitate the description of the constructed model, the following 
symbols are defined: 
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(a) { }| 0,1, 2, ,S i i n= =  : collection of a single distribution center and all of 
its customers, 0i =  is the distribution center, 1,2, ,i n=   is customer who 
provides delivery services by the distribution center; 

(b) { }| 0,1, 2, ,K k k m= =  : a set of vehicles that can be used by the distribu-
tion center; 

(c) Q : the maximum load of a vehicle, in which the vehicle is the same type 
of vehicle; 

(d) iq : the customer needs, that is, distribution center should be provided for 
the customer point of delivery, 1,2, ,i n=  ; 

(e) D : the maximum distance of the vehicle is the same type of vehicle, so the 
maximum distance is the same; 

(f) ijd : the distance from the point i to the point j, , 0,1, 2, ,i j n= 
; 

(g) ijt : the time is used from point i to point j, , 0,1, 2, ,i j n= 
; 

(h) 0C  is the fixed cost of the vehicle, the starting cost required for each ve-
hicle to be delivered, 1C  is the distance traveled by the vehicle, the cost per unit 
length of time per vehicle; 

(m) it : the time at which the vehicle serves the customer, 0,1,2, ,i n=  ; 
(p) ikS : the time period during which the vehicle provides services to the 

customer, ikeS  and iklS  are the starting and ending time of vehicles serving 
customers respectively, 0,1, 2, ,i n=  ; 

(r) ,i iET LT : the customer service time window start and end time, during 
this time to provide delivery services is the highest customer satisfaction, 

0,1,2, ,i n=  ; 
(v) ( )i ikP S : the penalty cost caused by the service of the customer, that is, the 

punitive cost caused by the failure to provide service at the time of customer sa-
tisfaction. 

(w) ijkx : whether or not the vehicle provides service from the customer to the 
customer, , 0,1, 2, ,i j n= 

, 1,2, ,k m= 
; 

(q) iky : whether the vehicle provides the customer with the delivery, 
1,2, ,i n=  , 1,2, ,k m= 

, 
The decision variables for the problem are as follows: 

1 the vehicle is served from point to point
, 0,1, 2, , ; 1, 2, ,

0 otherwiseijk
i j

x i j n k m
= = =


   

1 the task of customer is done by vehicle
1,2, , ; 1, 2, ,

0 otherwiseik

i k
y i n k m

= = =


   

In this question, the penalty coefficient is introduced and the opportunity cost 
is expressed as the unit weight per unit time. When the distribution vehicle fails 
to provide service in the customer satisfaction period, it will be punished in cer-
tain proportion. When the actual delivery time is earlier than the service time 
window, the penalty coefficient is α, when the actual delivery time is later than 
the service time window, the penalty coefficient is β. ( )i ikP S  formula of penalty 
cost is as follows: 
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( )
( )

( )
0 , 0,1,2, ,

i i ike ike i

i ik i ike ikl i

i ikl i ikl i

q ET S S ET
P S ET S S LT i n

q S LT S LT

α

β

 − <


= ≤ ≤ =
 − >


 (2-1) 

When the cost of cargo damage is calculated, it is assumed that the damage 
rate of the vegetables is related to the time of the vegetables in the prescribed 
low-temperature transportation environment, and the deterioration rate of the 
vegetables is constant and the deterioration rate of the vegetables is constant and 
the metamorphic function [8] as follows: 

e t
i iQ Q C δ−′ =                          (2-2) 

Among them, iQ  the product is the quality of the goods in good condition, 
t  is the product experience the logistics time, δ  is the product of the sensitiv-
ity coefficient of time, C  for the product at a constant temperature deteriora-
tion of a constant speed change. In the metamorphic function, the product is 
more sensitive to time, the δ  value is relatively small, on the contrary, the val-
ue is larger. 

The cost of the entire distribution process is: 

( )
1

1 e ike
n

S
i

i
H q C pδ−

=

= −∑                       (2-3) 

p  is the unit of the value of the loss of vegetable products. 
The VRPSTW studied in this paper will be time cost, with the lowest total cost 

as the optimization target. The objective function is shown in (2-4). 

( ) ( )1 0 0
1 0 0 1 0 1 1

min 1 e ike
m n n n n m n

S
ij ijk i ik i k i

k i j i i k i
Z C d x P S C x q C pδ−

= = = = = = =

= + + + −∑∑∑ ∑ ∑∑ ∑  (2-4) 

The constraints are: 

1
, 1, 2, ,

n

i ik
i

q y Q k m
=

≤ =∑ 
                   (2-5) 

1
1, 1, 2, ,

m

ik
k

y i n
=

= =∑ 
                     (2-6) 

0
1

m

k
k

y m
=

=∑                            (2-7) 

0
1

1, 1, 2, ,
n

jk
j

x k m
=

= =∑                        (2-8) 

0
1

1, 1, 2, ,
n

i k
i

x k m
=

= =∑ 
                    (2-9) 

0
, 1, 2, , ; 1, 2, ,

n

ijk jk
i

x y j n k m
=

= = =∑  
               (2-10) 

0
, 0,1, , ; 1, 2, ,

n

ijk ik
j

x y i n k m
=

= = =∑                  (2-11) 

0 0
, 1, 2, ,

n n

ij ijk
i j

d x D k m
= =

≤ =∑∑                     (2-12) 
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0,1, , 0,1, , ; 1, 2, ,ijkx i j n k m= = = 
            (2-13) 

0,1, 0,1, , ; 1, 2, ,iky i n k m= = =               (2-14) 

( )1 ,

0,1, , ; 0,1, , ; 1, 2, ,
ike i ijk ij ijk ijk jkeS t x t x M x S

i n j n k m

+ + − − ≤

= = =  

           (2-15) 

( )1 , 0,1, , ; 0,1, , ; 1, 2, ,ikl ij ijk ijk jkeS t x M x S i n j n k m+ − − ≤ = = =    (2-16) 

, 0,1, , ; 1, 2, ,ikl ike i ikS S t y i n k m= + = =         (2-17) 

, 0,1, , ; 1, 2, ,ike ikS My i n k m≤ = =            (2-18) 

0, , 0,1, , ; 1, 2, ,ike ikl ikeS S S i n k m≥ ≥ = =          (2-19) 

0 00, 0, 1, 2, ,ke klS S k m= = =                  (2-20) 

The description of the constraint is as follows: Equation (2-5) indicates that 
the total demand for all customers per vehicle service does not exceed the capac-
ity limit of the vehicle. (2-6) (2-8) means that each customer point can only be 
delivered by one car. Type (2-7) means that each vehicle from the distribution 
center. (2-9) means that each car finally returns to the distribution center. (2-10) 
means that each car if the arrival point must be service. (2-11) means that if the 
vehicle is customer service, the vehicle will leave the point after the task is com-
pleted. Equation (2-12) indicates that the total travel distance of each vehicle 
must not exceed its travel distance limit. (2-15) and (2-16) show the time rela-
tionship in which the vehicle arrives at two customers in their distribution route. 
Equation (2-17) indicates the relationship between the starting and ending time 
of the vehicle for customer service. (2-18) means that if the vehicle does not pro-
vide delivery to the customer, the vehicle will not reach the customer. Equation 
(2-19) represents the time limit for the start and end of the service time for the 
customer service. Equation (2-20) indicates that the departure time of the vehicle 
from the distribution center is zero. 

3. Improved Artificial Bee Colony Algorithm 

Human beings based on the nature of bees to collect honey activities, summed 
up the artificial anthropocentric algorithm theory and to describe. The take bee 
(the lead bee) to go out looking for honey, and then by jumping dancing and 
another worker bees in the form of probability to share the source of food in-
formation, follow the bee and reconnaissance bee first wait, until the bees bring 
back the food source information, then choose to follow the honey or find the 
food near the source to find nectar. From the above description can be learned 
to adopt bees, follow the bee and reconnaissance bee be able to achieve the iden-
tity of the conversion. 

3.1. Parameter Initialization 

According to the constructed path optimization model, the number of custom-
ers to remove the distribution center is n − 1. The number of vehicles partici-
pating in the distribution center is defined by m, and Q is the number of vehicles 
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in each distribution vehicle. In the actual urban vegetable distribution vehicle 
routing problem, qi represents customer demand. The expression formula for 
setting N before the initialization phase is as follows: 

1 1
n

ii q
N m

q
=

 
 = − +
 
 

∑
                       (3-1) 

Population size N = 50; N/2 indicates the number of food sources is also the 
number of honey mining bee; single maximum limit = 20; maximum number of 
iterations MaxCycle = 500. 

Solution of the initialization function [solu] = Initial (num), this method is 
used to generate the problem of the initial solution. Method of production: by 
looking for the nearest customer service point, one by one distribution, and meet 
the constraints. 

The solution space is defined by V[N][n][n], and the initial feasible solution 
number is denoted by N. 

[ ][ ][ ]0 1, ,v i j i N j n= − ∈ ∈                      (3-2) 

3.2. Evaluation Method of Profitability 

Based on the optimization model of the urban vegetable distribution VRP prob-
lem created by the objective function Formula (2-4), we can see that the actual 
problem to achieve is to minimize the total distribution costs. Artificial colony 
algorithm uses the reciprocal of the minimum distribution cost as the fitness 
function, so that the high cost corresponds to the low fitness and the small food 
source income value. 

3.3. Population Update 

The algorithm at the beginning of operation, there is not much difference in the 
probability of each food source is worker to find the number of iterations, a 
gradual increase in worker, not only to expand the search probability of each 
food source, and previously set good pheromone is gradually cut, resulting in 
not being left in to find a food source on early in the process of iterative phero-
mone is nearly equal to zero. In addition, in the posterior iteration of the algo-
rithm, the algorithm will generate local extreme value because of the large 
amount of information gathered on the path. The update formula is as follows: 

( )
( ) ( ) ( )
( ) ( ) ( )

1
max

1
min

,
1

,

N
ij ij

ij N
ij ij

Q N Q N Q Q
Q N

Q N Q N Q Q

ε

ε

ρ

ρ

+

−

 + ∆+ = 
+ ∆





        (3-3) 

Formula: ( )N Nε τ= , τ  is a constant. According to this formula can be 
achieved with the change of the pheromone solution to adjust the use of such 
methods can improve the efficiency of the ABC algorithm in the global scope, 
and can effectively prevent the local extreme situation. 

When the algorithm is in different iterative stages, the algorithm can not only 
avoid the local optimization but also accelerate the convergence speed. The set-
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ting of the constant is as shown in Equation (3-4). 

1 1

2 1 2

3 2 max

, 0
,
,

N N
N N N
N N NC

δ
δ δ

δ

≤ <
= ≤ <
 ≤ <

               (3-4) 

3.4. Nectar Selection 

Follow the bee according to the nectar fitness value corresponding to the se-
lected probability to choose the appropriate honey to go honey, the formula is as 
follows: 

1

i
i N

i
i

fitP
fit

=

=
∑

                           (3-5) 

Follow the bee according to the nectar fitness value corresponding to the se-
lected probability to choose the appropriate honey to go honey, the formula such 
as follow the bee to a certain probability in the poor near the nectar to find a new 
source. Compare the current nectar and the previous nectar fitness value, if the 
former is greater than or equal to the latter, then use the current nectar to re-
place the previous nectar, otherwise, remain unchanged. 

3.5. Population Elimination 

When the bees (or follow bees) continuous limit failed to search better circula-
tion nectar, this solution is determined (i.e. the nectar will fall into the local op-
timal solution). Bees (or follow bees) to give up the nectar, and into the investi-
gation bee, continue to search for new nectar, the search formula is: 

[ ]( )min max min0,1ij j j jx x rand x x= + −                  (3-6) 

4. Case Analysis 

The distribution center of an enterprise provides distribution service for 15 cus-
tomer points. The distribution center is represented by the serial number 0, and 
the serial number 1 - 15 represents 15 clients respectively. The enterprise uses 
the same type of freight car for 15 customer point distribution. Among them, the 
maximum carrying capacity of each car is 5 tons, the vehicle fixed cost is 100, the 
consumption time cost of 250 vehicles, earlier than the time window to the cus-
tomer point penalty cost is 250 per ton per hour, the vehicle later arrived time 
windows penalty cost customers per ton of 300 per hour. The distribution center 
and customer information statistics are shown in Table 1. It is necessary to ar-
range vehicles to complete the distribution task, so that the total cost of the dis-
tribution cost and the penalty cost is the least, so as to find the reasonable dis-
tribution route for the distribution center. Data processing was carried out by 
Matlab2010 software. 

Distribution center and customer distribution status are shown in Figure 1. 
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Table 1. Distribution center and customer information. 

number X Y qi ETi LTi Sik 

0 4 0 0 0 230 0 

1 6.6 7.6 0.6 146 166 20 

2 7.8 4.1 1.2 61 81 20 

3 3.6 2.2 1.1 76 96 20 

4 3.8 2.8 0.8 53 73 20 

5 5 1.5 1.2 67 87 20 

6 0.5 3.8 0.9 116 136 20 

7 5.3 7.9 0.8 90 110 20 

8 0 2 0.6 135 155 20 

9 1 2.5 1 117 137 20 

10 2.5 2.3 1.2 114 134 20 

11 7.1 0.5 0.7 148 168 20 

12 4.1 6.8 0.9 92 112 20 

13 6.4 9 1 84 104 20 

14 3.8 5.1 0.8 102 122 20 

15 10.5 11.5 0.7 128 148 20 

 

 
Figure 1. Distribution center and customer distribution. 

4.1. Case Solving and Analysis 

The number of leading bees accounted for 50%, followed by bees accounted for 
10%, reconnaissance bees accounted for 40%, A = 1.5, B = 2, the number of itera-
tions Nmax = 200, of which 50 times before the iteration, Delta 1 = 100, the 
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middle 51 - 150 times, Delta 2 = 50, 50 times after the iteration, Delta 3 = 200. 
The distribution route diagram and convergence process of artificial bee colony 
algorithm are shown in Figure 2, and the distribution route diagram and con-
vergence process of artificial bee colony algorithm are improved, as shown in 
Figure 3. 

4.2. Comparison of Different Algorithms 

In order to facilitate the comparison, the paper analyzes the data of the same en-
terprise and the customer point of the same group. On the basis of the same dis-
tance, traffic volume and distance limit, the optimization process of vehicle 
routing problem under soft time window constraint is simulated, The optimal 
target value of the algorithm is the total cost of distribution, and the specific data 
of the number of iterations of the total distribution vehicle convergence are 
shown in Table 2. 

Comparison of the case data can be seen, the same customer restrictions on 
the distance, distance, volume, when the time constraint is not too strict, is the 
vehicle routing problem with soft time windows, an improved artificial bee co-
lony algorithm in general distribution vehicle problems and artificial bee colony 
algorithm is the same, but the distribution of the total cost savings of 1091.78; 
 

 
Figure 2. Distribution route and convergence process for algorithm. 
 

 
Figure 3. Improved route and convergence process for algorithm. 
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Table 2. Result comparison. 

case cost vehicle Iteration times 

1 11547.11 1 68 

2 10455.33 1 50 

 
and convergence the speed of the improved artificial bee colony algorithm is 
faster. The main reason is the analysis algorithm, improved artificial bee colony 
algorithm with variable neighborhood search update strategy, the best individual 
search direction is better than stronger, compared with the traditional artificial 
bee colony algorithm, optimize the operation speed and quality optimization. 

5. Conclusion 

Logistics and distribution activities is an important part of the logistics system to 
achieve the optimization of vehicle routing that can directly optimize the logis-
tics and distribution activities, not only can improve the economic efficiency of 
enterprises, but also to help achieve the logistics management of scientific. Ve-
hicle routing problem as a combinatorial optimization problem, has a strong 
theory, application value, in the field of logistics and distribution has been wide-
ly used [9]. Although the degree of attention to the research of vehicle routing 
problem is growing, but the expansion of the basic distribution routing problem 
with time constraint is not deep enough, but has yet to find the solution more 
quickly and accurately, so there are many scholars pay close attention in the li-
mited time to find the most satisfactory solution to the problem of [10]. On the 
basis of the previous scholars’ research, this paper studies the vehicle routing 
problem with time constraints, takes into account the influence of time on the 
distribution path, analyzes the different criteria of the customer’s time require-
ments, but the problems studied in this paper do not consider the actual distri-
bution. The impact of road conditions on the speed of the road, in the next step 
can also be added to the peak period, the impact of non-peak time on the speed 
of the introduction of real-time changes in speed to study. 
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Abstract 
In this paper we obtain an empirical mass formula of even-A nuclei based on 
residual proton-neutron interactions. The root-mean-squared deviation 
(RMSD) from experimental data is at an accuracy of about 150 Kev. While for 
heavy nuclei, we give another formula that fits the experimental data better 
(RMSD ≈ 119 Kev). We have successfully described the experimental data of 
nuclear masses and predicted some unknown masses (like 200Ir not involved in 
AME2003, the deviation of our predicted masses from the value in AME2012 
is only about 82 keV). The predictive power of our formula is more competi-
tive than other mass models. 
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1. Introduction 

The study of nuclear masses and energy levels has always been one of the most 
challenging frontiers in the field of nuclear physics. There are two types to de-
scribe and understand the nuclear masses, one of which is global relations, and 
the other is local. Some global nuclear mass models such as Weizäscker model 
[1], Duflo-Zuker model [2], the finite range droplet model [3], a recent macros-
copic-microscopic mass formula [4] [5] [6] etc., successfully produce the meas-
ured masses with accuracy at the level of 300 - 600 Kev. However, the global 
mass models require more physics and more information about nuclear force to 
get better description of the nuclear masses. On the other hand, the local mass 
relations, such as the isobaric multiplet mass equation (IMME), the Gar-
vey-Kelson (GK) relations, which use the predicted nuclear masses and the resi-
dual proton-neutron interactions to evaluate the mass. It is found that the local 
mass relations are just approximately satisfied in known masses, so it has a good 
potential to predict the unknown masses. 
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In this paper, our purpose is to obtain a residual proton-neutron interactions 
formula of even-A nuclei from those of neighboring nuclei. In Section II we in-
troduce the residual proton-neutron interactions and obtain our formula based 
on the proton-neutron interactions between the last proton and the last neutron. 
Then we introduce two modifications to improve our formula. The RMSD from 
experimental data is about 150 Kev. And for heavy nuclei, we obtain another 
formula fits with the experimental data even more precise. With our further re-
finement of heavy nuclei, the RMSD gets even smaller to about 120 Kev. In Sec-
tion III we successfully predict some unknown masses. The result shows that the 
predict power of our formula is competitive with others. In Section IV we dis-
cuss and summarize the results of this paper. 

2. The Residual Proton-Neutron Interactions 

The residual proton-neutron interaction plays an important role in the evolution 
of collective, deformation and phase transition [7] [8] [9] [10], so it has attracted 
many attentions [11]-[17]. The proton-neutron interactions between the last i 
protons and j neutrons is given by 

( ) ( ) ( ) ( ) ( ), , , , , .ip jnV Z N B Z N B Z i N j B Z N j B Z i N− = + − − − − − −  (1) 

The famous formula GKL and GKT were derived from the neutron-proton 
interactions between the last neutron and proton [18] [19]. The relationship 
between Garvey-Kelson quality is a semi empirical relationship between 6 adja-
cent nuclear mass. If the interaction between neighboring nuclei changes slowly 
in the local range, it can be completely counteracted by the addition and sub-
traction of many adjacent nuclei. Garvey-Kelson mass relationship has two 
common relationships: 

( ) ( ) ( )
( ) ( ) ( )

, 1 1, 1 1,

, 1 1, 1, 1 0,

M N Z M N Z M N Z

M N Z M N Z M N Z

+ + − − + +

− − − − − + + =
        (2) 

( ) ( ) ( )
( ) ( ) ( )

, 1 1, 1 1,

, 1 1, 1, 1 0,

M N Z M N Z M N Z

M N Z M N Z M N Z

− + − + + +

− + − − − + − =
        (3) 

where ( ),M N Z  denotes the mass of a nucleus with neutron number N and 
proton number Z. Equation (2) is called the longitudinal Garvey-Kelson relation 
(GKL), and Equation (3) the transverse (GKT). 

In this section, we use the residual proton neutron interactions between the 
last proton and the last neutron to form our formula. According to the Equation 
(1), it is easy to obtain that the residual proton-neutron interactions between the 
last proton and the last neutron is defined as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 , , 1, 1 , 1 1,

, 1, 1 , 1 1,
p nV Z N B Z N B Z N B Z N B Z N

M Z N M Z N M Z N M Z N
− = + − − − − − −

= + − − − − − −
 (4) 

The Garvey-Kelson mass relations require six nuclei, but our formula requires 
only four. So our formula involves less number of nuclei, its predictions in itera-
tive extrapolations is the more reliable, and its deviations are smaller in the 
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extrapolation process. 
In recent years, many papers tried to find formulas to describe and evaluate 

the nuclear masses, but many of them have a large RMSD. In this work, we focus 
on the even-A nuclei, through the study on the neighboring nuclei with the da-
tabase in AME2012 [20]. 

For the residual nuclear proton-neutron interactions which 42A ≥ , we cal-
culate the 1 1p nVδ −  as shown in Figure 1. Based on that, we empirically obtained 
the residual proton-neutron interactions formula of even-A nuclei. The formula 
is as follows: 

( ) ( ) ( ) ( )1 1

2

, 1 1, , 1, 1

515.6 62.78 0.1079 keV

p nV B Z N B Z N B Z N B Z N

AA

δ − = + + − − − − +

≅ + +
    (5) 

1 1p nVδ −  is the average values of 1 1p nVδ −  for nuclei with the same mass num-
ber A. 

We find that the average binding energy of our predicted mass agrees well 
with the specific binding energy curve. We successfully describe and predict 
some even-A nuclear masses by using these equations and some known experi-
mental nuclear masses in AME2012 for calculation of 1 1p nVδ − . 

It can be seen from the Figure 1 that the interaction of proton-neutron is 
 

 
Figure 1. Circles show that the residual proton-neutron interactions 1 1p nVδ − .The curve is 

plotted by using the average values of 1 1p nVδ −  for nuclei with the same mass number A, 

expressed as 1 1p nVδ −
. The smoothed curve are plotted in terms of equation 

( )1 1 2

515.6 62.78 0.1079 keVp nV A
A A

δ − = + +  for even-A nuclei with 42A ≥ . 
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more stable in the heavy nuclei region than in the light nuclei region. 
In order to better describe the quality of the nucleus, we will improve the 

above formula with some amendments, donated by 1 1
cal
p nVδ −  as the final im-

provement results [4] [5] [6]. The first is called the Coulomb correction, denoted 
by C∆ : 

( ) 4 3 7 3 4 3 2 7 3 1 3 4 34 2 4 4, ,
9 3 9 9C CZ N a Z A ZA Z A Z A− − − − ∆ ≈ − − + + 

 
 

the second is called the symmetry energy correction, denoted by sym∆ : 

( )
( )

1
3

1, ,
2

sym sym symZ N a b A
A IA

−∆ = +
+

 

where ( )I N Z A= −  and 10.51Ca = , 20126syma = , 61.25symb = −  as para-
meters [17] [21]. 

The revised ( )1 1 ,p nV Z Nδ −  is as follows: 

( ) ( ) ( )1 1 1 1, , , .cal
p n p n C symV Z N V Z N Z Nδ δ− −= − ∆ − ∆            (6) 

The improvement of these two corrections on our predicted 1 1p nVδ −  is about 
5 keV. Although the two contributions are small, but with more understanding 
of the symmetry energy of the nucleus, we believe that these contributes will be-
come more important in the future. 

In order to describe the nuclear mass obtained by our theory vividly, we 
compare the average RMSD of the nuclear mass with the experimental data to 
represent the difference, and the formula is as follows: 

( )2

1

1 .
n

exp cal
i i

i
M M

n
σ

=

= −∑  

The RMSD is about 150 Kev. In Figure 2 we show deviations (in units of keV) 
between our calculated 1 1

cal
p nVδ −  by applying Equations (6) and those experi-

mental data of binding energies compiled in AME2012 [20]. It can be seen that 
the RMSDs of these 1 1p nVδ −  decrease with A. The description is better in the 
medium mass nucleus and heavy nucleus. 

As early as 1960s, the nuclear structure theory predicts the existence of a 
number of new elements in the long life near the proton number Z = 114 and 
neutron number N = 184 (i.e. island of super heavy nuclei) and the island of su-
per heavy nuclear plays an important role in the entire nuclear physics field. So 
for the heavy nuclei, we obtain another formula to describe the mass and it fits 
more closely with the experimental data. And in order to achieve better result, 
the different parameters are given between even-even nuclei and odd-odd nuclei, 
the formula is as follows: 

( )1 1 2 .p n
a bV A c

AA− = + +                       (7) 

Parameter a b c 

Even-even −9464 146.3 −0.06435 

Odd-odd 46000 −324.1 0.9124 
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Figure 2. (Color online) Deviations (in units of keV) of our calculated 1 1

cal
p nVδ −  by using 

Equations (6) with respect to those extracted from experimental binding energies [Equa-
tion (4)], for the nuclei with 16A ≥ . 
 

When we use the Equation (6) to describe the nuclear masses, the RMSD is 
about 150 Kev, but if we try the Equation (7) where A > 200, the RMSD is 119 
Kev, it shows that our formula of heavy nuclei is more accurate. 

Figure 3 displays the difference between the experimental values and calcu-
lated values, we compare it with Ref [21], one can see that our result is better. 

3. Mass Predictions 

Through above study, we find our formula has a good performance in describing 
the nuclear masses. In this section, we use our formula and the residual pro-
ton-neutron interaction to predict the nuclear mass not obtained in the experi-
ment. Based on the Equation (4), we can obtain 

( ) ( ) ( ) ( ) ( )1 1, 1, , 1 1, 1 .p nM Z N M Z N M Z N M Z N V Aδ −= − + − − − − +  

The unknown mass ( ),M Z N  is predicted by using the three nuclei masses 
around it and the ( )1 1 ,p nV Z Nδ −  we empirical obtained. 

Now let’s focus on a few examples of our predictions. Table 1 shows mass 
excess of some nuclei are not predictive in ame 2003 or ame 2012 databases. 
These unknown masses are important not only in the context of astrophysics, 
but also in the nuclear structure. Interestingly, our predicted values show good 
in comparison with the experimental results. For 182Lu, the deviation of our pre-
dicted masses from the value in AME2012 is only ∼63 keV. Three additional  
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(a) 

 
(b) 

Figure 3. Shows the RMSDs of even-A nuclei. (a) represents the odd-odd nuclei; (b) 
represents the even-even nuclei. We obtain the even-A nuclear masses from some expe-
rimentally known nuclear masses and the residual proton-neutron interactions formula. 
Comparing calculated values with the AME2012 databases obtain the RMSDs. The trian-
gles are plotted by using the RMSDs of our calculated values. The circles are plotted by 
using the formula in Ref [21]. 
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Table 1. Mass excess of some mass nuclei with us and predicted results in the AME2003 
database and the AME2012 databsae. (keV). 

Nucleus AME2003 AME2012 predM  
52Ni −22,650 −23,470 −23,187 

74Sr −40,700 −40,830 −40,952 

86As −59,150 −58,962 −58,316 

98Kr −44,800 −44,310 −44,555 

126Pr −60,260 −60,320 −60,573 

148Tm −39,270 −38,765 −38,713 

164Re −27,640 −27,523 −27,422 

182Lu −41,880 −41,880 −41,817 

190At null null 10,290 

200Ir null −21,611 −21,693 

202Pt −22,600 −22,692 −22,592 

224Np null 31,876 31,793 

232Am 43,400 43,268 43,376 

272Mt 133,890 133,582 133,671 

286Ed 168,120 169,725 169,700 

 
nuclei are 202Pt, 232Am and 286Ed, the differences between our predicted values 
and those in AME2012 are approximately 100 keV. It seems our formula shows a 
great accuracy and can be used predict nuclear masses. 

4. Discussion and Conclusions 

In this paper, we obtain the residual proton-neutron interactions formula to de-
scribe and predict the mass of even-A nuclei. In order to improve the accuracy 
of the 1 1p nVδ − , we use the average value of the 1 1p nVδ −  (denoted as 1 1p nVδ −  
modification) and introduce two modifications. 

For further understanding of the super heavy nuclei, we use another formula 
to describe the 1 1p nVδ − , and its results fit the experiment data more accurate, 
one can see that the RMSD decreases considerably. 

Then we investigate the predictive power of these new formulas by numerical 
experiments. They are competitive with other local mass relations. The deviation 
of predicted results from experimental values is less compared with other mod-
els. 

Based on results so far, our method of studying the neighboring nuclei has a 
good performance. We can predict other unknown masses by using our empiri-
cal formula to provide useful reference points for experimental physics. 
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