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Abstract 
This article studies a semilinear parabolic first initial-boundary value problem 
with a concentrated nonlinear source in an infinitely long cylinder. We study 
the effects of the strength of the source on quenching. Criteria for global ex-
istence of the solution and for quenching are investigated. 
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1. Introduction 

The quenching phenomena have been studied since 1975 [1]. The quenching 
models have many applications in science and engineering. For example, the mod-
els may include combustion, ignition, thermal explosion and damage of material. 
In some situation, the model involves a concentrated source, such as in a chemical 
reaction process due to the effect of a catalyst, or in the ignition of a combustible 
medium through the use of either a heated wire or a pair of small electrodes to 
supply a large amount of energy to a very confined area [2]. In 2006, the 
quenching problem with a concentrated source has been posted correctly in a 
multi-dimensional bounded domain by Chan [3]. In this paper, we study the 
quenching problem with a concentrated nonlinear source in the unbounded 
domain, the infinitely long cylinder. 

Let R and b be positive real numbers such that b < R, D be a two-dimensional 
ball centered at the origin with a radius R or { }2 :D x x R= ∈ < ,  

{ }2 :D x x R∂ = ∈ = , B be a two-dimensional ball centered at the origin with a 
radius b or { }2 :B x x b= ∈ < , and { }2 :B x x b∂ = ∈ = . We also let Ω  
and ω be the infinitely long cylinders centered at the origin with the radii R and 
b respectively. Namely, ( ),DΩ = × −∞ ∞ , ( ),D∂Ω = ∂ × −∞ ∞ , ( ),Bω = × −∞ ∞ , 
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and ( ),Bω∂ = ∂ × −∞ ∞ . For 3x∈ , let υ(x) denote the unit outward normal at 
x ω∈∂ , and ( )xωχ  be the characteristic function which is 1 for x ω∈  and 0 
for x ω∉ . We study the following problem in the infinitely long cylinder Ω  
with a concentrated nonlinear source on ∂ω: 

( ) ( ) ( ]

( ) ( ) ( ]

in 0, ,

,0 0 on , , 0 on 0, ,

t

x
u u f u T

u x u x t T

ωχα
υ

∂ 
− ∆ = Ω× 

∂ 
= Ω = ∂Ω× 

          (1.1) 

where α and T are positive real numbers, Ω  is the closure of Ω , f is a given 
function such that ( )lim

u c
f u−→

= ∞  for some positive constant c, and f(u) and 
its derivatives ( )f u′  and ( )f u′′  are positive for 0 u c≤ < . The problems 
with a concentrated source on the surface of a ball in N

  have been studied by 
Chan and Tragoonsirisak ([4] [5] [6]). 

A solution u of (1.1) is said to quench in a finite time if there exists a number 
( )0,qt ∈ ∞  such that 

( ){ }sup , : as .qu x t x c t t−∈Ω → →
 

For convenience, let ( )1 2,x x x=  be a point in the two-dimensional Eucli-
dean space 2 . Due to the symmetry, the three-dimensional problem (1.1) is 
equivalent to the following two-dimensional problem: 

( ) ( ) ( ]

( ) ( ) ( ]

in 0, ,

,0 0 on , , 0 on 0, ,

B
t

x
u u f u D T

u x D u x t D T

χ
α

ν
∂ 

− ∆ = × 
∂ 

= = ∂ × 

          (1.2) 

where ν(x) denote the unit outward normal at x B∈∂ , and ( )B xχ  denote the 
function which is 1 for x B∈  and 0 for x B∉ . For ease of reference, since D is 
bounded, let us state the results by Chan [3] in the following theorem. 

Theorem 1.1. There exists some qt  such that for 0 qt t≤ < , the integral eq-
uation has a unique continuous nonnegative solution u. Furthermore, u is a 
nondecreasing function of t. If qt  is finite, then at qt , u quenches everywhere 
on ∂B only. 

Note that D and B are both the balls centered at the origin. By radial symme-
try, the problem (1.2) can be written in the polar form: 

( ) ( ) ( ) ( ]

( ) [ ] ( ) ( ) ( ]

1 in 0, 0, ,

,0 0 on 0, , 0, , 0 on 0, ,

t rr r

r

u u u r b f u R T
r

u x R u t u R t T

αδ − − = − × 

= = = 

       (1.3) 

where r x= , and ( )r bδ −  is the Dirac delta function. Clearly, every solution 
u(r) of (1.3) is a radially symmetric solution of (1.2). 

Green’s function corresponding to the problem (1.3) is given by 

( )
( )

( )
2

0 02 2
1 1

2, ; , expn n n

n n

x x r x
g r t J J t

R R RR J x

ξξξ τ τ
∞

=

        = − −       
           

∑   (1.4) 

where J₀ and J₁ are the Bessel functions of the first kind of order 0 and 1 respec-
tively, and xn is the nth root of the Bessel function J₀(x). The integral equation 
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corresponding to the problem (1.3) is given by 

( ) ( ) ( )( )
0

, , ; , , d .
t

u r t g r t b f u bα τ τ τ= ∫               (1.5) 

A solution u of (1.5) is said to quench in a finite time if there exists a number 
( )0,qt ∈ ∞  such that 

( ) [ ]{ }sup , : 0, as .qu r t r R c t t−∈ → →
 

We note from Theorem 1.1 that ( ),u r t  attains its maximum at r b= . If tq is 
finite, then at tq, u quenches only at r b= . 

In Section 2, we show that there exists a unique positive number *α  such 
that u exists globally for *α α≤  and quenches in a finite time for *α α> . We 
also derive a formula for computing *α . In Section 3, we study the effects of b 
and R on quenching. 

2. The Critical Value α* 

In this section, we study the effect of α on quenching. We modify the techniques 
used in proving Lemma 1 of Chan and Wong [7] for a singular parabolic prob-
lem to establish the following lemma. 

Lemma 2.1. ( )
0

lim , ; , d
t

t g b t b τ τ→∞ ∫  is bounded. 
Proof. The Green function from (1.4) can be written as 

( )
( )

( )
2 2

02 2
1 1

2, ; , exp .n n

n n

x b xbg b t b J t
R RR J x

τ τ
∞

=

       = − −      
           

∑   (2.1) 

Since each term under the summation is positive and R is positive, ( ), ; ,g b t b τ  is 
also positive. Next, we will prove that the Green’s function (2.1) is bounded. 

By using the asymptotic formula of ( ) ( )2 2NJ z−  (cf. Zwillinger ([8], p. 562)), 

( ) ( )
1 2

1
2

2

2 π 2 πcos
π 2 2 4N

NJ z z O z
z

−
−

  −    = − − +     
     

       (2.2) 

for large positive value z. Since cos 1z ≤  and 1 0z− →  as z →∞ , there exists 
a positive constant k₁ and z₀ such that for 0z z> , 

( )1 2
2 1

2

.Nz J z k− ≤                       (2.3) 

Since ( ) ( )1 2
2 2Nz J z−  is continuous on [ ]00, z , it follows from (2.3) that for 

0z ≥ , there exists a positive constant k₂ such that 

( ) 2
2 1 2

2

.N
kJ z
z− ≤

 
Let 2N =  and nz x b R= . We have 

( ) ( )

1 2 1 2
2 2

0 1 2 1 2 1 2
.n

n n

x b k R k RJ
R x b x b

  ≤ = 
 

               (2.4) 

For large n, it follows from (2.2) that 
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( ) ( )( )
1 2

1
2

2

2 π 2 πcos ,
π 2 2 4N n n n

n

NJ x x O x
x

−
−

    −  = − − +     
       

( ) ( )( )
1 2

1

2

2 π 2 πsin .
π 2 2 4N n n n

n

NJ x x O x
x

−    −  = − − +     
     

     (2.5) 

Since ( ) ( )2 2 0nNJ x− = , 

( )( )1π 2 πcos 0
2 2 4n n

Nx O x − −  − − + =  
    

or 

π 2 πcos 0 as .
2 2 4n

Nx n −  − − → →∞  
    

Therefore, 

π 2 πsin 1 as .
2 2 4n

Nx n −  − − → →∞  
    

Hence, there exists an integer N such that for n N> , 

π 2 π 1sin .
2 2 4 2n

Nx −  − − ≥  
  

                 (2.6) 

From (2.5) and (2.6), we have 

( )
1 2 1 2

2

2 1 1 .
π 2 2πN n

n n

J x
x x

   
≥ ⋅ =   
     

By letting 2N = , we have 

( ) ( )1 1 2
1 2π .n nJ x x

−
≤                     (2.7) 

It follows from (2.1), (2.4) and (2.7) that 

( ) ( )
( )

( )

( ) ( )

2 21 221 2 2
2 1 2 1 2

1

2 2
2

1

2, ; , 2π exp

4π
exp

n
n

n n

n

n

xk Rg b t b b x t
RR x b

k x
t

R R

τ τ

τ

∞

=

∞

=

         ≤ − −             
  ≤ − −  
   

∑

∑
 

which converges uniformly for t in any compact subset of ( ],Tτ . 
Then, there exists a constant k₃ such that 

( ) ( )

( )

( )
( )

2
3

0 0
1

2
3

0
1

22
3

2 2
1

, ; , d exp d

exp d

1 exp

t t n

n

t n

n

n

n n

k x
g b t b t

R R

k x
t

R R

x tk R
R Rx

τ τ τ τ

τ τ

∞

=

∞

=

∞

=

  ≤ − −  
   

  = − −  
   

      = ⋅ − −       

∑∫ ∫

∑∫

∑
 

and 
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( )
( )0 3 2

1

1lim , ; , d .
t

t n n

g b t b k R
x

τ τ
∞

→∞ =

≤ ∑∫
 

For large n, since ( )( ) ( )2 2
nO x O n=  (cf. Watson ([9], p. 506)), ( )2

11 nn x∞

=∑  
converges and bounded. Therefore, there exists a constant k₄ such that 

( )
0 4lim , ; , d .

t

t
g b t b k Rτ τ

→∞
≤∫                   (2.8) 

Thus, the lemma is proved.                                           
Theorem 2.2. The solution u of (1.3) exists globally for α sufficiently small. 
Proof. For any ( )0, qt t∈ , it follows from Theorem 1.1 that u attains its abso-

lute maximum at r b= . For ( ), 2u r t c≤ , since ( ) 0f u′ > , we have  
( ) ( )2f u f c≤ . It follows from (1.5) and (2.8) that 

( ) ( )

( )

4

0

0

, , ; , d
2

lim , ; , d
2

2

t

t

t

cu b t f g b t b

cf g b t b

cf k R

α τ τ

α τ τ

α

→∞

 ≤  
 
 ≤  
 
 ≤  
 

∫

∫

 
for some constant k₄. By choosing α sufficiently small, namely, 

( ) 4

,
2 2

c
f c k R

α ≤
 

we have ( ) ( ), , 2u r t u b t c≤ ≤  for ( )0,t∈ ∞ . Thus, the Theorem is proved.  
Theorem 2.3. The solution u of (1.3) quenches in a finite time for α suffi-

ciently large. 
Proof. From (1.4) and (1.5), we have 

( )
( )

( ) ( ) ( )( )
20

0

0

2 2
1 1

2, e , d .n

n n

x R t

n n

t

x b x rJ J
b R Ru r t f u b

R J x
τα τ τ

∞
− −

=

    
        =  
   

  

∫ ∑

 
At the maximum value r b= , since ( ) 0f u′ > , we have 

( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( ) ( )

( )( )

2

2

2

2

0

2 2
1 1

2

0

2 2
1 1

2

0

2 2
1 1

0

0

0 2
, e d

0 2
e d

0 2 1 e

n

n

n

n

x R t

n n

n

x

t

R t

n n

n

x R t

n n n

t

x bJ
f b R

u b t
R J x

x bJ
f b R

R J x

x bJ
R

f b
J x x

τ

τ

α
τ

α
τ

α

∞
− −

=

∞
− −

=

∞
−

=

         ≥  
   

 
 

         =  
   

 
 
         = −
  




∫

∫

∑

∑

∑ .








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Since each term of the series is positive, we have 

( ) ( )
( )
( ) ( )

( )( )2
1

2
0 1

2 2
1 1 1

, 0 2 1 e .x R tJ x b R
u b t f b

J x x
α −  ≥ ⋅ −

    
As t →∞ , 

( )( )2
11 e 1.x R t−− →

 
Thus, there exists some ( )0,t ∈ ∞  such that for t t≥  , 

( )21 11 e .
2

x R t−− ≥
 

Then, for t t≥  , 

( )
( ) ( )

( ) ( )

2
0 1

2 2
1 1 1

0
, .

f J x b R b
u b t

J x x

α  ≥
    

By choosing α sufficiently large, say 

( ) ( )
( ) ( )

2 2
1 1 1

2
0 1

,
0

J x x c

f J x b R b
α

  ≥
    

we have ( ),u b t c≥  which implies that u quenches in a finite time. This proves 
the theorem.                                                       

We state without proof of the following result since its proof is similar to that 
of Theorem 2.4 of Chan and Tragoonsirisak [10] for a quenching problem in an 
infinite strip. 

Theorem 2.4. If ( ),u r t C≤  for some constant ( )0,C c∈ , then ( ),u r t  
converges from below to a solution ( ) ( )lim ,tU r u r t→∞=  of the nonlinear 
two-point boundary value problem: 

( ) ( ) ( )

( ) ( )

1 in 0, ,

  0 0.

rr r

r

U U r b f U R
r

U U R

αδ − − = − 

= = 

            (2.9) 

Moreover, 

( ) ( ) ( )( ); ,U r G r b f U bα=                  (2.10) 

where 

( )
( )
( )

ln , 0 ,
;

ln ,

R r
G r

R r r R

ξ ξ ξ
ξ

ξ ξ

≤ ≤= 
< ≤

               (2.11) 

is Green’s function corresponding to problem (2.9). 
The next result shows that there exists a critical value *α  for α . The proof 

of the following theorem is similar to that for Theorem 2.5 of Chan and Tra-
goonsirisak [10]. 

Theorem 2.5. There exists a unique *α , 

( ) ( )

( )
( )( )

*

0

1 sup ,
ln U b c

U b
b R b f U b

α
< <

 
= ⋅   

 
              (2.12) 
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such that u exists globally for *α α≤ , and u quenches in a finite time for 
*α α> . 

Proof. Let us construct a sequence { }nu  in ( ) ( ]0, 0,R T×  by ( )0 , 0u r t = , 
and for 0,1,2,n = ..., 

( ) ( ) ( ) ( ]
( ) [ ]

( ) ( ) ( ]

1

1

1 1

in 0, 0, ,

,0 0 for 0, ,

0, , 0 for 0, ,

n n

n

n n

Hu r b f u R T

u r r R

u t u R t t T
r

αδ+

+

+ +

= − ×

= ∈

∂
= = ∈

∂  
where ( )2 2 1H t r r r= ∂ ∂ − ∂ ∂ − ∂ ∂ . From (1.5), 

( ) ( ) ( )( )
01 , , ; , , d .
t

n nu r t g r t b f u bα τ τ τ+ = ∫            (2.13) 

Since ( )0 0f > , and ( ), ; , 0g r t b τ > , it follows from (2.13) that ( ) ( )1 0, ,u r t u r t>  
in ( ) ( ]0, 0,R T× . Using the principle of mathematical induction, we have 

1 2 10 n nu u u u−< < < < <  in ( ) ( ]0, 0,R T×  for any positive integer n. Since 

nu  is an increasing sequence as n increases, it follows from the Monotone Con-
vergence Theorem (cf. Stromberg ([11], pp. 266-268)) that 

( ) ( ) ( )( )
0

, , ; , , d ,
t

u r t g r t b f u bα τ τ τ= ∫  

where ( ) ( )lim , ,n nu r t u r t→∞ = . To show that the larger the α, the larger the so-
lution, let β be a positive number such that β α< . We construct the sequence 
{ }nv  by ( )0 , 0v r t = , and for 0,1,2,n = ..., 

( ) ( ) ( )( )1 0
, , ; , , d .

t
n nv r t g r t b f v bβ τ τ τ+ = ∫  

Similarly, we have 1 2 10 n nv v v v−< < < < <  in ( ) ( ]0, 0,R T× , and 

( ) ( ) ( ) ( )( )
0

, lim , , ; , , d .
t

nn
v r t v r t g r t b f v bβ τ τ τ

→∞
= = ∫  

Because n nu v>  for any positive integer n, we have u v≥ . Hence, the solution 
u is a nondecreasing function of α. Since the solution u of the problem is unique, 
it follows from Theorems 2.2 and 2.3 that there exists a unique *α  such that u 
exists globally for *α α<  and quenches in a finite time for *α α> . 

The critical value *α  is determined as the supremum of all positive values α 
for which a solution U of (2.9) exists. Since U(r) attains its maximum at r b= , 
it follows from (2.10) and (2.11) that 

( ) ( )( )ln .RU b b f U b
b

α  =  
   

Hence, we have (2.12). 
To show that u exists globally when *α α= , we consider the function 
( ) ( )s s f sψ = . Since ( ) 0sψ >  for 0 s c< < , and ( ) ( )0 0 lim

s c
sψ ψ−→

= = , a 
direct computation shows that ( )sψ  attains its maximum when ( ) ( )1s f sψ ′= , 
where ( )0,s c∈  by the Rolle Theorem. Thus, ( ) ( ) ( )( )( )0sup U b c U b f U b< <  
occurs with ( ) ( )0,U b c∈ . This implies that when *α α= , ( )U r  exists and is 
bounded away from c. Therefore, u exists globally when *α α= .            
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For illustration, let ( ) ( )1 1f u u= − . By a direct computation, ( ) ( )1U b U b−    
attains its supremum at ( ) 1 2U b = . Hence, for given R and b, we have 

( )
* 1 .

4 lnb R b
α =

 

3. Critical Location of the Source b* and Radius R* 

In this section, we fix α, and study the effect of the location of the source b and 
the effect of the radius R on quenching. 

Lemma 3.1. 
1) If 

( )

( )
( )( )0

1ln sup ,
U b c

U bRb
b f U bα < <

   ≤ ⋅        
               (3.1) 

then u exists globally. 
2) If 

( )

( )
( )( )0

1ln sup ,
U b c

U bRb
b f U bα < <

   > ⋅        
               (3.2) 

then u quenches in a finite time. 
Proof. 1) (3.1) is equivalent to *α α≤ . By Theorem 2.5, u exists globally. 
2) Since (3.2) is equivalent to *α α> , it follows from Theorem 2.5 that u 

quenches in a finite time.                                             
Let ϕ be a function given by ( ) ( )ln ln lnb b R b b R b bφ = = − . 
Lemma 3.2. ϕ(b) attains its maximum at b R e= . Note that ( )R e R eφ = . 
Proof. We have 

( ) ln 1,Rb
b

φ  ′ = − 
   

which is equal to 0 when b R e= . Since 

( ) 1 0,b
b

φ′′ = − <
 

by the second derivative test, ϕ(b) attains its maximum at b R e= .          
Theorem 3.3. For given α and R, 
1) if 

( )

( )
( )( )0

1 sup ,
U b c

U bR
e f U bα < <

 
≤ ⋅   

   

then u exists globally for any b. 
2) if 

( )

( )
( )( )0

1 sup ,
U b c

U bR
e f U bα < <

 
> ⋅   

   
there exist *b  and **b  such that u exists globally for *b b≤  or **b b≥ , and 
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quenches in a finite time for * **b b b< < . 
Proof. 1) Using Lemmas 3.1 and 3.2, the theorem can be proved. 
2) We have 

( )
( )
( )

attains its maximum at ,

0 for ,

0 for .

b b R e

b b R e

b b R e

φ

φ

φ

= 


′ > < 
′ < > 

              (3.3) 

We note from the assumption that 

( )

( )
( )( )0

1 sup .
U b c

U b R R
e ef U b

φ
α < <

   ⋅ < =       
 

To solve 

( )
( )( )0 ( )

1ln sup ,
U b c

U bRb
b f U bα < <

   = ⋅        
               (3.4) 

for b, since the constant on the right-hand side is smaller than the maximum of 
the function on the left-hand side, it follows from (3.3) that (3.4) have two solu-
tions. Let us denote the solution less than R/e by *b , and the one larger than R/e 
by **b . From Lemmas 3.1 and 3.2, we have proved the theorem.             

We note from Theorem 3.3 (1) that when R is sufficiently small, u exists glo-
bally for any location of the source b. 

Corollary 3.4. For given α, there exists a unique 

( )

( )
( )( )

*

0
sup
U b c

U beR
f U bα < <

 
= ⋅   

   
such that u exists globally for *R R≤ . For *R R> , the solution may or may not 
quench (depending on the location of the source b). 

For illustration, let ( ) ( )1 1f u u= − , and 1α = . A direct computation gives 

( ) ( ) ( ){ }0sup 1 1 4U b c U b U b< < − =   . From Corollary 3.4, 

* .
4
eR =

 
If R is smaller than or equal to e/4, then u exists globally (for any location of the 
source b). If R is larger than e/4, then the quenching may occur (depend on the 
location of the source b). Let 1R = . By using a graphing calculator to solve 
(3.4), namely, 

1 1ln ,
4

b
b

  = 
 

 

it follows from Theorem 3.3 (2) that we have * 0.1161b ≈  and ** 0.6995b ≈  
(round to four decimal places). 

4. Conclusions 

Our analysis of the nonlinear parabolic problem (1.1) shows that the strength of 
the source, the size of the domain and the location of the concentrated source 
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inside the domain have impacts on the occurrence of quenching. When the 
strength of the source and the size of the domain are large enough, it was found 
that the quenching can be prevented by locating the concentrated source suffi-
ciently close to the boundary of the cylinder. 

The fractional diffusion problem with a concentrated source in one-dimensional 
domain was recently studied ([12] [13]). Many problems in the real world in-
volve more than one dimension. Based on the current study here, the fractional 
diffusion problem with a concentrated source in multi-dimensional domain 
would be the future work. 
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