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Abstract 
Drought stress at the reproductive stage causes severe damage to productivity 
of wheat. However, little is known about the metabolites associated with 
drought tolerance. The objectives of this study were to elucidate changes in 
metabolite levels in wheat under drought, and to identify potential metabolites 
associated with drought stress through untargeted metabolomic profiling using a 
liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based 
technique called Isotopic Ratio Outlier Analysis. Metabolomic analysis was 
performed on flag leaves of drought-stressed and control (well-watered) 
plants after 18 days of post-anthesis drought stress at three-hour intervals 
over a 24-hour period. Out of 723 peaks detected in leaves, 221 were identified 
as known metabolites. Sixty known metabolites were identified as important 
metabolites by 3 different methods, PLS-DA, RF and SAM. The most pro-
nounced accumulation due to drought stress was demonstrated by trypto-
phan, proline, pipecolate and linamarin, whereas the most pronounced de-
crease was demonstrated by serine, trehalose, N-acetyl-glutamic acid, 
DIBOA-glucoside etc. Three different patterns of metabolite accumulation 
were observed over 24-hour period. The increased accumulated metabolites 
remained higher during all 8 time points in drought stressed leaves. On the 
contrary, metabolites that showed decreased level remained significantly low-
er during all or the most time points. However, the levels of some decreased 
metabolites were lower during the day, but higher during night in drought 
stressed leaves. Both univariate and multivariate analyses predicted that  
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N-acetyl-glutamic acid, proline, pipecolate, linamarin, tryptophan, and 
DIBOA-glucoside could be potential metabolite biomarkers, and their levels 
could serve as indicators of drought tolerance in wheat. 
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1. Introduction 

Wheat is one of the most widely produced and consumed cereal grains world-
wide and global wheat demand is expected to rise in excess of 880 million metric 
tons by 2050 [1]. Production of major crops, including wheat, is declining in 
some regions of the world due to climate change, especially progressive drought 
stress, induced by either declining rainfall or higher water stress allied with a hot 
climate [2] [3] [4]. Water stress accompanied by other abiotic stresses can de-
crease potential crop yield by >50% [5]. Water stress during the flowering stage 
and onwards in wheat typically interrupts photosynthesis and increases translo-
cation of carbohydrates from source to sink, reduces grain number, weight and 
yield, accelerates phasic development, reduces grain filling duration and en-
hances senescence [6] [7] [8] [9] [10]. Genetic improvement is the most effective 
and sustainable method to reduce the detrimental effect of water stress. Howev-
er, the genetic improvement of traits that confer stress tolerance can only be 
achieved when we have a better understanding of the biochemical mechanism 
controlling those traits. The analyses of biologically important molecules are ne-
cessary to understand which molecules are influencing stress tolerance mechan-
isms in wheat plants. Under water-stress, plants produce an array of biomole-
cules including different metabolites [11]. Plants can modify their physiology to 
acclimate to abiotic conditions through metabolic changes [12] [13]. Changes in 
the metabolic level in an organism are likely correlated with the phenotype, as 
metabolites are the end-products of biological systems [14]. Other than the 
changes in the level of metabolites, little is known about their complex metabolic 
regulation under water stress or potential role in developing climate resilient wheat. 

Crop yield has shown significant correlation with metabolites under drought 
[15]. Metabolic composition is highly variable in a wide variety of plants includ-
ing major crops like wheat [16], rice [17], maize [15], and cassava [14]. These 
metabolic changes in plants have also occurred due to progressive water deficit 
conditions accompanied by lower leaf water potentials [18]. Water stress induces 
metabolic changes and accumulation of metabolites including proline, ascorbic 
acid, glutathione, phenolics, and detoxifying enzymes in cereals [19] [20]. Bowne 
et al. (2012) studied metabolic responses in wheat grown under contrasting wa-
ter levels (drought and irrigated conditions) and reported that amino acids, most 
notably proline, tryptophan, and the branched chain amino acids, including leu-
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cine, isoleucine, and valine exhibited higher levels of expression in the leaves of 
drought grown plants [21]. Additionally, different metabolites including phe-
nolic compounds, amino acids, fatty acids, organic acids, carbohydrates, and 
sterol-based compounds can be altered depending on the phenology and physi-
ological status of the plant under stress [22]. Stress tolerance is a polygenic trait 
that needs to be incorporated in wheat to develop climate resilient germplasm. 
Quantitative trait loci can be identified and tagged on genomic regions in a plant 
using suitable biomarkers through application of molecular breeding techniques. 
If a set of water stress related metabolic biomarkers can be identified for wheat, 
they could be used as targeted, fast, and low-cost diagnostic tools to select supe-
rior performing lines in breeding programs. 

Metabolic profiling allows for comprehensive analyses of a range of metabo-
lites that have great value in both phenotyping and plant diagnostics [23]. Recent 
progress in mass spectrometry with advanced data processing technology allows 
simultaneous measurement of hundreds of chemically different metabolites and 
investigates more thoroughly the regulation of metabolic networks to study their 
influence on complex traits. Such metabolic profiling can meaningfully contri-
bute to the study of stress biology in wheat and could offer a set of drought re-
lated metabolite biomarkers. To date, there are insufficient biomarkers available 
to adequately screen cereal crops for drought tolerance or susceptibility. The ob-
jectives of this study were: 1) to elucidate the differential metabolite accumula-
tion in wheat leaves under post-anthesis drought stress conditions over 24 hours 
time period, and the involvement of those metabolites in different pathways in 
relation to drought tolerance and 2) to identify potential metabolite biomarkers 
associated with drought stress in wheat. To achieve this objective, we employed a 
non-targeted LC-HRMS Isotopic Ratio Outlier Analysis (IROA) Global Meta-
bolomics method [24] for identifying metabolites from the leaf tissue of the 
drought stressed and control wheat plants at 8 time points of 24-hour period. 

2. Materials and Methods 
2.1. Plant Material and Growth Conditions 

The soft winter wheat variety ‘SS8641’ (GA-881130/2*GA-881582) is widely 
grown in the southeastern USA, developed by the University of Georgia Wheat 
Breeding Program, and was subjected to post-anthesis drought stress and 
LC-HRMS based untargeted metabolic profiling in this study. The SS8641 is a 
mid-maturing, high yielding wheat variety and has high test weight with good 
straw strength. It showed resistance to Hessian fly biotypes B and E, and pos-
sesses powdery mildew genes Pm1 and rust resistance genes Lr37/Yr17/Sr38. 
Since the wheat flag leaf is a vital source of energy assimilates during grain filling 
[25] [26], we initially screened a collection of soft wheat germplasm (developed 
by different US public wheat breeding programs) for thylakoid membrane (in-
direct assessment of Photosystem II damage) and chlorophyll damage under 
water stress at flag leaf. The SS8641 wheat genotype showed minimal thylakoid 
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membrane and chlorophyll damage under long-term water stress. This finding 
led to further investigation of metabolites accumulated during grain filling un-
der drought stress in SS8641. 

Initially, seeds of SS8641 were exposed to vernalization at 4˚C for 6 weeks to 
induce flowering. After vernalization, three germinated seeds were planted in 
each pot and kept in an environmentally controlled greenhouse located at the 
campus of the University of Florida in Gainesville. The greenhouse was main-
tained at day/night temperature of 20/15˚C ± 0.5˚C (16 h daylight and 8 h night 
time) with a relative humidity of 50% ± 2%. Plants were manually irrigated at 
three day intervals and maintained at 100% field capacity (FC) until exposed to 
drought stress. Plants were also fertilized with two splits of 12 g of Scott’s Os-
mocote (20-4-8 NPK fertilizer) during the experimental period: one at 7 days 
and another split at 45 days after transplanting. Once plants reached the flower-
ing stage, pots were randomly assigned to two different watering regimes with 
three replications as follows: control treatment (well-watered, 100% FC) and 
drought treatment (water-deficit, 25% FC). To determine FC, the weights of pot 
plus dried soil weight were recorded as average 2.24 kg, then pots were irrigated 
to 100% FC and average weight increased to 3.44 kg (moisture content was as-
sessed as 1.20 kg/pot). Pots in the control treatment were maintained at 100% 
FC, while drought treatments were maintained up to 25% of the FC. After 18 
days of the drought treatment, plants were characterized for photosystem and 
chlorophyll damages, and flag leaves were collected for metabolic profiling.  

2.2. Physiological Characterization 

Chlorophyll fluorescence (the ratio of variable, Fv, to maximum fluorescence, 
Fm) and SPAD chlorophyll content were used as indirect methods to assess thy-
lakoid membrane [27] [28] and chlorophyll damages due to stress following the 
methods described by Talukder et al. (2014) [29]. As photosystem II is housed at 
the thylakoid membrane, damage to thylakoid membrane is considered as an in-
dicator of damage to photosystem II under stress condition. The lower ratio of 
Fv/Fm indicates more damage to Photosystem II due to stress. Measurements of 
Fv/Fm were taken on the abaxial surface of intact flag leaves at one third of the 
length from the ligule after 30 min of dark adaptation on three flag leaves of each 
plant (biological replication). Fluorescence was measured using a pulse modular 
fluorometer (Model OS5-FL, Opti-Sciences, Hudson, NH, USA) in both the 
control and drought stressed leaves at 18 days after flowering. A self-calibrating 
SPAD chlorophyll meter (Model 502, Spectrum Technologies, Plainfield, IL) was 
used to measure chlorophyll content on the same flag leaves and leaf blade areas 
where chlorophyll fluorescence measurements were taken. In each treatment 
(control and drought), chlorophyll content was measured from three flag leaves 
(3 different plants) and the average of three measurements was used to represent 
chlorophyll content. The lower value of SPAD chlorophyll content indicates 
more damage to chlorophyll due to stress. 
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Plasma membrane damage (PMD) was measured using the method described 
by Ristic and Cass (1993) [30]. Leaf disks (diameter = 5 mm) were collected 
from six individual flag leaves within each biological replication after the 
drought treatment and placed in de-ionized water (24 ml) in sealed vials. The 
vials were shaken overnight on a shaker at 5˚C. Electrical conductivity (µS/cm) 
of the aqueous solution was measured with a Metter Toledo (Seven-Multi S70) 
conductivity meter. The tissue samples were then autoclaved for 20 min. The 
conductivity of the solution was again measured after shaking the samples over-
night at 5˚C. The percent electrolyte leakage was calculated based on the con-
ductivity before and after autoclaving. The average value of six flag leaves within 
each biological replication was used to estimate %PMD according to the formu-
la, [(%LD − %LC)/(X − %LC)] × 100, where LD and LC are electrolyte leakages un-
der drought stress and control conditions respectively, and X is assumed to be 
100% leakage corresponding to 100% membrane damage. 

2.3. Measurements of Growth and Yield 

Plants were harvested after physiological maturity and oven-dried at 60˚C for 
five days. After drying, total biomass was measured per plant. The spikes were 
hand threshed and the chaff was cleaned off. Grain weight was measured and the 
harvest index was calculated by dividing grain weight/total biomass. Grain yield 
per spike was calculated by dividing total grain weight by spike number. Grain 
number per spike was calculated by dividing total grain number by the number 
of spikes for that plant. Two hundred grains were randomly selected and 
weighed, and converted to 1000-grain weight. 

2.4. Leaf Tissue Collection and Sample Preparation for 
Metabolomics 

Flag leaves were collected in 3-hour increments (06:00 AM; 09:00 AM; 12:00 
noon; 15:00 PM; 18:00 PM, 21:00 PM, 24:00 PM and 03:00 AM) over a 24 hour 
time period. Collected flag leaf from each pot was considered a biological repli-
cation. A triplicate samples were collected at each sampling time point as our 
experiment was maintained in a well environmentally controlled greenhouse 
and experimental treatments showed high accuracy within replication. Sampled 
leaf tissues were frozen in liquid nitrogen immediately after collection and then 
stored at −80˚C until processing. Leaf tissue samples were lyophilized and 
ground using a tissuelyser (24 samples per treatment for a total of 48 samples). 
For metabolomic analysis, 5 mg of experimental material was weighed and add-
ed to 5 mg of freshly ground wheat internal standard (IS). The IS was an isotop-
ically labeled wheat leaf that had been grown in an atmosphere of 13C labeled 
carbon dioxide resulting in a uniform and universal labeling of approximately 
97% (IROA Technologies) [24]. Next, 500 µl of methanol/10mM aqueous am-
monium acetate (50:50) was added to the dried powder and vortexed for 1 min 
at room temperature. The resulting mixture was further sonicated for 20 min, 
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and centrifuged at 17,000 G for 10 minutes at 4˚C. A 350 µl aliquot of the su-
pernatant was transferred to a clean dry eppendorf tube, and dried under a gen-
tle nitrogen gas stream (at 30˚C). The dried sample was reconstituted in 100 µl 
of 0.1% aqueous format. 

2.5. Untargeted Metabolomics 

The reconstituted samples were analyzed for untargeted metabolites on a Liquid 
Chromatography High Resolution Mass Spectrometery (LC-HRMS) platform. 
Untargeted metabolomics profiling was performed on a Thermo Q-Exactive 
Oribtrap mass spectrometer with Dionex UHPLC and autosampler. All samples 
were analyzed in positive and negative modes with heated electrospray ioniza-
tion with a mass resolution of 35,000 at m/z 200. Chromatographic separation 
was achieved on an ACE 18-pfp 100 × 2.1 mm, 2 µm column with mobile phase 
A as 0.1% formic acid in water and mobile phase B as acetonitrile. The flow rate 
was 350 µL/min and column temperature was 25˚C. Total run time per sample 
was 21 minutes. Quality assurance and quality control (QA/QC) guidelines were 
followed during untargeted profiling of assays with the addition of sta-
ble-isotopic internal standards to evaluate reproducibility, injection standards, 
and the repeated analysis of a large pooled plasma sample. Injection reproduci-
bility was typically less than 10% even without a ratio to an internal standard. 
The native Thermo “.raw” output files were converted to .mzXML files using 
ProteoWizard (Version 2). 

2.6. Metabolic Data Processing 

One of the greatest challenges of most metabolic profiling experiments is the 
ability to differentiate peaks of biological origin from artifact peaks, and to ac-
curately identify and quantitate the peaks of interest. Since we used an 
IROA-labeled plant material as our internal standard this study followed the 
IROA “Phenotypic” global labeling and bioinformatics protocols in which the 
Internal Standard (IS) is labeled at 95% 13C. Therefore, all biological compounds 
are paired natural abundance (NA) and IS, and each pair carries distinct mole-
cular signatures. Molecules can be distinguished from each sample set, as they 
have differing masses [31] [32]. 

For IROA, control and drought treated samples were analyzed as a single 
composite sample by LC-MS. Algorithms pair identified biological peaks, and 
unlabeled NA artifacts were identified and discarded. All biological compounds 
had two paired peaks; the peak from the 12C-media is mirrored by a second peak 
from the 13C-media. The distance between the monoisotopic peaks readily iden-
tified the number of carbons in the compound. The corresponding M+1 and M−1 
peaks (and M+2 and M−2 etc. peaks) which are a mass difference of 1.00335 amu 
(mass difference between a 12C and 13C isotope), gave the IROA peaks a charac-
teristic U-shape “smile” pattern. Accurate mass together with the knowledge of 
the number of carbons in a molecule greatly facilitated metabolite identification. 
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The ClusterFinder program was used to identify, align and quantitate the IROA 
peaks in the .mzXML files. The files were scanned for IROA peaks down to an 
intensity level of 1 million in both positive and negative modes with an assumed 
maximum of 10 ppm mass error. Settings for the experimental samples in the 
nontargeted analysis assumed a natural abundance (1.1%) isotopic balance while 
the IS was assumed to have a 97% isotopic balance. The resulting list of IROA 
peaks was manually curated to define 394 compounds that were seen in both the 
IS and in the experimental samples. Once the physical attributes for the 494 
compounds were identified, a targeted analysis for all of these compounds was 
imposed on every sample. This resulted in a non-sparse dataset, i.e. there was a 
value for every compound for every sample and the dataset was exported for 
analysis. The metabolites were annotated by searching against an in-house me-
tabolite database, Mass Spectrometry Metabolite Library of Standards (MSMLS) 
(http://iroa.com/page/Mass%20Spectrometry%20Metabolite%20Library%20of%
20Standards). 

2.7. Metabolic Data Analysis 

Data tables with metabolite peaks (mz/rt) at 8 time points under both drought 
and control conditions were formatted as comma separated values (.csv) files 
and uploaded to the MetaboAnalyst 3.0 server (http://www.metaboanalyst.ca) 
[33]. To shrink any possible variance and to improve the performance for 
downstream statistical analysis, metabolite data generated by LC-HRMS were 
checked for data integrity and normalized using Metabo Analyst’s normalization 
protocols (selecting normalization by sum, log transformation and auto-scaling) 
for statistical analysis. 

Univariate analysis (t-test and one way ANOVA) was applied to calculate the 
statistical significance and fold change of the metabolites between two group 
means (drought over control). As the multivariate methods take all the variables 
into consideration, we applied multivariate methods for comprehensive data 
analysis e.g. supervised methods- Partial Least Squares Discriminant Analysis 
(PLS-DA), Random Forest (RF) classification, and unsupervised me-
thod-Hierarchical clustering with heatmap. The supervised method, PLS-DA 
was used to maximize the difference of metabolic profiles between control and 
drought groups to enable the detection of metabolites exist in the biological 
samples. A heat map was generated based on the Pearson distance measure and 
the Ward clustering algorithm, showing top 60 metabolites selected by PLS-DA 
VIP (variable importance in projection) score using a significance level of P ≤ 
0.05, and post-hoc analysis of Fisher’s LSD. The samples were arranged accord-
ing to their sampling time points in both control and drought groups. The im-
portant metabolites were identified by using 3 different methods separately: 
SAM (Significant Analysis of Metabolites), PLS-DA and RF. 

The pathway analysis was performed using Metabo Analyst for the identified 
important metabolites using Oryza sativa japonica and Arabidopsis thaliana 
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pathway libraries. The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database (http://www.genome.ad.jp/kegg/pathway.html) was also used 
for the metabolites that were not found in the rice and Arabidopsis pathway li-
braries. To identify the potential biomarkers associated with drought stress, the 
Receiver Operating Characteristic (ROC) curve based ‘Biomarker Analysis’ 
module of the MetaboAnalyst was applied. Both classical univariate ROC curve 
analysis and multivariate ROC curve exploratory analysis were used to identify 
the promising biomarkers with high sensitivity and high specificity. 

3. Results 
3.1. Physiological Traits 

We measured physiological traits to assess the impact of the drought stress 18 
days after stress initiation at anthesis. The chlorophyll content (SPAD value), 
maximum quantum efficiency of PSII (Fv/Fm) and electrolyte leakage (%) were 
determined on flag leaves for both control (well-watered) and drought condi-
tions (Table 1). Drought stress caused a significant reduction (~11%; p < 0.05) 
in chlorophyll content of wheat flag leaves compared to control. The photosyn-
thetic apparatus (PSII) was damaged to some extent which was apparent from 
the reduced Fv/Fm value under drought condition (Table 1), although the re-
duction was not statistically significant. Electrolyte leakage, in contrast, in-
creased substantially (~18%) under drought condition compared to control re-
sulting in ~30% damage to plasma membranes of the drought stressed plants. 

3.2. Morphological Traits 

Total shoot biomass at maturity, grain weight/plant, grain weight/spike, 
1000-grain weight, grains/spike, and harvest index showed significant reduction 
under drought stress compared to control condition as expected (Table 1). 

 
Table 1. Physiological and morphological traits of SS8641 wheat line under post-anthesis drought stress and control conditions. 

Traits Control (Mean ± SE) Drought (Mean ± SE) 

SPAD chlorophyll content 60.1 ± 0.8 53.4 ± 1.8 

Chlorophyll a florescence (Fv/Fm) 0.781 ± 0.003 0.746 ± 0.017 

Electrolyte leakage (%) 38.4 ± 0.7 57.1 ± 0.7 

Plasma membrane damage (PMD %) - 30.4 ± 0.5 

Total shoot dry biomass at maturity (g/plant) 16.0 ± 2.1 10.4 ± 0.1 

Grain weight/plant 7.5 ± 0.6 5.1 ± 0.1 

1000 grain weight (g) 49.4 ± 0.3 41.0 ± 1.5 

Number of grains/spike 27.8 ± 1.7 24.1 ± 1.5 

Grain weight/spike (g) 1.8 ± 0.1 1.3 ± 0.1 

Harvest Index 44.4 ± 1.9 40.0 ± 0.4 

SE = Standard Error. 
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3.3. Profiling of Leaf Metabolites 

Metabolite profiling by LC-HRMS detected a total of 723 peaks from wheat flag 
leaves. Among the detected peaks, 221 were identified as known metabolites 
(266 including duplications) and the remaining peaks were unknown metabo-
lites. The identified compounds included amino acids, sugars, organic acids, or-
ganic compounds, polyamines, fatty acids, nucleosides/nucleobases and other 
compounds. 

The supervised clustering method, Partial Least Squares-Discriminant Analy-
sis (PLS-DA) was performed for two conditions at 8 different time points. Five 
PLS-components (PCs) explained 66.5% of the total variation, with the first and 
second PCs contributing 45.1% and 8.5%, respectively (Figure 1). Drought and 
control samples were clearly separated across the eight different sampling points 
in the scores plot between PC1 and PC2 (Figure 1) with minimum overlapping 
within the group. This separation of drought and control samples clearly indi-
cates the altered state of metabolite levels in the wheat leaves under drought 
condition. 

One hundred fifty two metabolites were found significantly different (t-test, p 
< 0.05) between drought and control conditions (Supplemental Table S1). Of 
these, volcano plot analysis identified 112 known metabolites which had a fold 
change ≥1.5 (drought/control, either positive or negative) in drought treated 
plants compared to controls. Among different metabolite groups, accumulation 
of a number of amino acids significantly increased in the drought treated leaves 
compared to control, including tryptophan (7.1 fold), proline (3.9 fold), pheny-
lalanine (1.8 fold), tyrosine (1.6 fold) and isoleucine (1.5 fold). However, the lev-
el of some amino acids and their derivatives, including serine (−2.4 fold), gluta-
thione (−2.3 fold), glutamine (−1.9 fold), 4-Aminobutanoate (GABA, −1.9 fold), 
and threonine (−1.9 fold) decreased under drought stress (Supplemental Table 
S1). The levels of sugars and their derivatives, including sucrose (−2.0 fold), raff-
finose (−2.0 fold), trehalose (−2.1 fold), sedoheptulose (−1.7 fold), 
6-(α-D-glucosaminyl)-1D-myo-inositol ((GlcN)1 (Ino)1, −2.9 fold), xylonate 
(−2.1 fold) decreased in flag leaves of drought induced plants compared to con-
trol (Supplemental Table S1). A large number of organic compounds and or-
ganic acids including those involved in the Krebs cycle (for example, pyruvate, 
phosphonatoenolpyruvate, alpha-ketoglutaric acid) were also reduced under 
drought stress with the exception of phenyl pyruvate (1.7 fold), pipecolate (2.2 
fold), and linamarin (3.3 fold). In addition, fatty acids (e.g. linoleate, palmitoleic 
acid etc.), amines (spermidine, piperidine), nucleosides (adenine, guanosine) 
and other metabolites (indoline, sesbanimide, aminoimidazoleribotide, carbeta-
mide, pyridoxal, etc.) were also differentially accumulated under drought stress 
(Supplemental Table S1). 

Significantly different metabolites were analyzed by hierarchical clustering 
with heat map in order to visualize the effect of drought stress over the control at 
eight different time points (Figure 2). The heatmap formed two major clusters  
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Figure 1. Partial least square discriminant analysis (PLS-DA) and 2D Scores plot for the wheat SS8641 leaves over the 24 h time 
period (8 time points) under control (irrigated) and drought conditions. Samples under control and drought condition at different 
time points did not overlap with each other (although overlapped within group), indicating an altered state of metabolite levels in 
the wheat leaves. 
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Figure 2. Heatmap showing levels of top metabolites based on partial least square discriminant analysis (P LS-DA) VIP scores at 8 
different time points under control and drought conditions. The heatmap was generated using “Pearson” for distance measure 
and “Ward” for clustering algorithm. The hierarchical clustering was performed only on the metabolites and the samples were 
arranged based on their time points in two groups. 

 
with opposite pattern of metabolite accumulation. The first cluster was 
represented by metabolites that accumulated to high levels under drought stress, 
including tryptophan, proline, linamarin and pipcolate. The second cluster in-
cluded metabolites that decreased ≥1.5 fold under drought compared to control, 
including serine, 4-Aminobutanoate (GABA), oxidized glutathione, sucrose, 
DIBOA-glucoside, raffinose, arabinose, N-acetyl-DL-glutamic acid, Pyruvate, 
glycerate, nicotinate, tribenuron methyl, palmitoleic acid, nandrolone, calystegin 

https://doi.org/10.4236/ajps.2017.812205


M. A. Rahman et al. 
 

 

DOI: 10.4236/ajps.2017.812205 3035 American Journal of Plant Sciences 
 

B2, slaframine, pyridoxal and others. The clustering of metabolites in two groups 
clearly indicates the metabolic changes in flag leaves under stress condition. 

A comparison of statistical models was carried out to identify the important 
metabolites associated with drought condition using: SAM, PLS-DA and RF 
(Table 2). The SAM plot identified 61 significantly different compounds with  
 

Table 2. Important metabolites with their identifier number (KEGG ID/PubChemCID(*)/UNDP ID), molecular formula (MF), 
identified through Partial Least Square Discrepant Analysis (PLS-DA), Random Forest (RF) and Significant Analysis of Metabo-
lites (SAM). (KEGG Kyoto Encyclopedia of Genes and Genomes, UNDP = United Natural Products Database). 

Name of metabolites Compound ID 
Molecular 
Formula 

Compound type 
SAM 

(d.value) 
RF (Mean 

Decrease Accuracy) 
PLS-DA 

**(VIP score) 

L-Proline C00148 C5H9NO2 Amino acid 3.034 0.0180 1.369 

L-Tryptophan C00078 C11H12N2O2 Amino acid 2.745 0.0024 1.284 

L-Aspartate C00049 C4H7NO4 Amino acid −2.017 0.0016 1.099 

L-Serine C00065 C3H7NO3 Amino acid −1.978 0.0012 1.078 

L-Threonine C00188 C4H9NO3 Amino acid −1.965 0.0023 1.091 

4-Aminobutanoate (GABA) C00334 C4H9NO2 Amino acid −2.184 0.0045 1.151 

L-Carnitine C00318 C7H15NO3 
Amino acid 
derivative 

−2.609 0.0051 1.336 

Clithioneine UNPD 118571 C13H22N4O5S 
Amino acid 
derivative 

−2.037 0.0019 1.136 

D-(+)-Trehalose C01083 C12H22O11 Sugar −2.827 0.0053 1.376 

Sucrose C00089 C12H22O11 Sugar −2.573 0.0028 1.268 

D-Threo-L-galacto-octose 16019992* C8H16O8 Sugar −2.513 0.0065 1.299 

D-(-)-Arabinose C00216 C5H10O5 Sugar −2.188 0.0066 1.202 

D-(+)-Raffinose C00492 C18H32O16 Sugar −2.071 - 1.103 

N-Acetyl-D-Fucosamine C15480 C8H15NO5 Sugar −1.892 0.0027 1.053 

6-(α-D-glucosaminyl)-1D- 
myo-inositol, (GlcN)1 (Ino)1 

C15658 C12H23NO10 Sugar alcohol −2.775 0.0033 1.331 

Bis-D-fructose 2',1:2,1' 
-dianhydride 

C04333 C12H20O10 Sugar dianhydride −2.720 0.0064 1.313 

D-xylonate C00502 C5H10O6 Sugar acid −3.090 0.0204 1.469 

alpha-Methylene gamma 
-butyrolactone 

68352* C5H6O2 Sugar acid −2.114 - 1.120 

Spermidine C00315 C7H19N3 Amine −2.106 0.0078 1.130 

Palmitoleic acid C08362 C16H30O2 Fatty acid −1.949 0.0015 1.062 

N-Acetyl-DL-glutamic acid C00624 C7H11NO5 Organic acid −3.467 0.0267 1.568 

Guanidinoproclavaminic acid C06657 C9H16N4O4 Organic acid −2.892 0.0064 1.395 

Gluconic acid C00257 C6H12O7 Organic acid −3.163 0.0092 1.468 

Cerheptaric acid UNPD64017 C7H12O8 Organic acid −2.576 0.0029 1.292 

Pipecolate C00408 C6H11NO2 Organic acid 2.442 - 1.121 

Lactobionic acid 7314* C12H22O12 Organic acid −2.228 0.0029 1.203 
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Continued 

12-Hydroxyjasmonic acid C21385 C12H18O4 Organic acid −2.170 0.0019 1.161 

D-Saccharic acid C00818 C6H10O8 Organic acid −2.170 0.0025 1.119 

Glutarate C00489 C5H8O4 Organic acid −2.009 0.0051 1.076 

alpha-Aminoadipate C00956 C6H11NO4 Organic acid −2.004 0.0012 1.135 

Phosphonatoenolpyruvate C00074 C3H2O6P Organic acid −1.930 - 1.064 

Nicotinate C00253 C6H5NO2 Organic acid −1.896 0.0026 1.110 

Glycerate C00258 C3H6O4 Organic acid −1.892 - 1.043 

Pyruvate C00022 C3H4O3 Organic acid −1.890 0.0019 1.083 

DIBOA-glucoside C15772 C14H17NO9 Organic compound −3.455 0.0126 1.529 

Lilioside A 101277416* C11H20O9 Organic compound −3.047 0.0119 1.472 

Tribufos 5125* C12H27OPS3 Organic compound −2.784 0.0079 1.405 

P-Cymene C06575 C10H14 Organic compound −2.782 0.0105 1.385 

5'-O-beta-D-Glucosylpyridoxine C03996 C14H21NO8 
Organic compound 

(Vit B6) 
−2.751 0.0055 1.391 

Strophanthobiose 14236734* C13H24O9 Organic compound −2.706 0.0072 1.356 

Tribenuron methyl C10962 C15H17N5O6S Organic compound −2.703 0.0036 1.318 

Eupalitin 3-O-sulfate 44259774* C17H14O10S Organic compound −2.590 0.0077 1.354 

Linamarin C01594 C10H17NO6 Organic compound 2.494 0.0025 1.187 

Pruyanaside B 
UNDP 
145434 

C33H36O16 
Organic compound 
(Phenolicglucoside) 

−2.430 0.0030 1.281 

Oxidized glutathione C00127 C20H32N6O12S2 
Organic compound 

(antioxidant) 
−2.419 0.0017 1.240 

Slaframine C06185 C12H20N2O3 Organic compound −2.331 0.0044 1.224 

Fructoselysine 6-phosphate C16489 C12H25N2O10P 
Phosphorylated 

compound 
−2.588 0.0036 1.274 

1-(Indol-3-yl)propanol 
3-phosphate 

C04229 C11H14NO4P 
Phosphorylated 

compound 
−2.318 0.0020 1.242 

Nicotinamide C00153 C6H6N2O Organic compound −2.308 0.0040 1.219 

Nandrolone C07254 C18H26O2 Organic compound −2.194 0.0024 1.194 

Glucogallin C01158 C13H16O10 Organic compound −2.147 0.0017 1.187 

Calystegin B2 C10851 C7H13NO4 Organic compound −2.137 0.0027 1.154 

Asperuloside C09769 C18H22O11 Organic compound −2.062 0.0093 1.101 

1,2,3-Trihydroxybenzene C01108 C6H6O3 Organic compound −2.026 - 1.100 

4-Nitroacetophenone C02803 C8H7NO3 Organic compound −1.987 0.0013 1.052 

Beta-Cymaropyranose C08234 C7H14O4 Organic compound −1.968 - 1.101 

2-Valeryl-SN-glycero 
-3-phosphocholine 

24779499* C13H28NO7P Others −2.457 0.0020 1.305 

Carbetamide C11075 C12H16N2O3 Others −2.446 0.0015 1.264 

4-Hydroxy-2-butynal C02648 C4H4O2 Others −2.384 0.0018 1.203 

Pyridoxal C00250 C8H9NO3 Others −2.295 0.0031 1.207 

**Only variance for component 1 has been shown. 
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the delta value of 1.6, FDR of 0.001 and with less than one (0.5) false positive. 
Similarly the most important metabolites were also identified by PLS-DA me-
thod based on the VIP score using five-component model. Random Forest clas-
sification ranked the important metabolites in order of decreasing prediction 
accuracy (Mean Decrease Accuracy) using 5000 trees (permutation) with an 
overall (OOB, out-of-bag) error of 0.0417. Overall the results were quite similar 
across all three methods. The top most important 60 metabolites which were 
identified by at least 2 different methods are shown in Table 2. These important 
metabolites included different amino acids, sugars, organic acids/compounds, 
amines, fatty acids and others. 

Over the course of 24 hours 89 metabolites exhibited significant fluctuations 
(ANOVA, P ≤  0.05, Fisher’s LSD) across the 8 sampled time-points between the 
two treatments (Supplemental Table S2). The most significant metabolites in-
cluding tryptophan, proline, pipecolate, linamarin, indoline and phenylalanine 
remained significantly higher under drought stress compared to control across 
all 8 time points with the highest peak at 18 h (3 pm) (Figure 3). On the con-
trary, there were several sugars, fatty acid, organic acids, polyamines and amino 
acids which were significantly higher in control compared to drought stress 
across most or all of time points (Figure 3). Fluctuations were also seen based 
on day and night cycles. For example, levels of serine, aspartate, raffinose, 
myo-inositol, spermidine, gluconic acid, DIBOA-glucoside and tribenuron me-
thyl increased beginning at 06 h and remained high during the day time and 
then decreased at night (21 h) in control leaves, whereas their levels were low 
during day time but increased at or after 24 h during night in drought stressed 
leaves. 

To better elucidate the biological functions of identified metabolites, a path-
way analysis was performed using Oryzasativa and Arabidopsis thaliana as the 
pathway libraries. As expected, these metabolites were involved in number of 
different pathways (Table 3). As the rice and Arabidopsis pathway libraries do 
not have all the compounds, KEGG website was also used to find their metabolic 
pathways. 

3.4. Identification of Metabolite Biomarkers 

Applying a ROC (Receiver Operating Characteristic)-curve based approach of 
biomarker analysis [33], MetaboAnalyst 3.0 identified eight metabolites with 
high AUC values (Area under ROC curve, >0.84) as potential biomarkers for 
drought tolerance based on classical univariate ROC curve analysis module. 
These included N-acetyl-glutamic acid, L-tryptophan, L-proline, linamarin, pi-
pecolate, L-isoleucine, malonate and piperidine (Figure 4). The highest AUC 
value (0.92) with highest sensitivity (0.9) and specificity (0.9) was found for 
N-acetyl-glutamic acid followed by tryptophan (AUC: 0.90; 0.9, 0.8) and proline 
(AUC: 0.89, 1, 0.9). Out of these 8 potential biomarkers, 6 metabolites were also 
predicted as potential biomarkers by multivariate ROC curve exploration module,  
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Figure 3. Significantly different levels of selected metabolites (ANOVA, P  ≤ 0.05, Fisher’s LSD) in the wheat flag leaves at 8 dif-
ferent time points (03 h, 06 h, 09 h, 12 h, 15 h, 18 h, 21 h, 24 h) during 24 hours of day-night period under drought and control 
conditions. Dotted line (----) and solid line indicate the metabolite levels under control and drought conditions, respectively. Er-
ror bars represent standard errors of the mean at each time point. 
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Table 3. Selected metabolites and their involvement in different pathways identified by Pathway Analysis of MetaboAnalist 3 us-
ing Oryzasativa japonica and Arabidopsis thaliana as the pathway libraries. 

Compound Pathway involved 

L-Proline Arginine and proline metabolism, Aminoacyl-tRNA biosynthesis 

L-Tryptophan 
Glycine, serine and threonine metabolism, Aminoacyl-tRNA biosynthesis, Phenylalanine, tyrosine and 
tryptophan biosynthesis (Shikimate pathway), Glucosinolate biosynthesis, Tryptophan metabolism,  

4-Aminobutanoate (GABA) Arginine and proline metabolism, Alanine, aspartate and glutamate metabolism, Butanoate metabolism 

L-Serine 
Glycine, serine and threonine metabolism, Aminoacyl-tRNA biosynthesis, Cyanoamino acid metabolism, 
Cysteine and methionine metabolism, Methane metabolism, Sulfur metabolism, Sphingolipid metabolism 

Threonine Aminoacyl-tRNA biosynthesis, Valine, leucine and isoleucine biosynthesis 

Sucrose Galactose metabolism, Starch and sucrose metabolism 

Raffinose Galactose metabolism 

N-Acetyl-DL-glutamic acid Arginine and proline metabolism 

Aspartate 

Glycine, serine and threonine metabolism, Arginine and proline metabolism, Carbon fixation in photosynthetic 
organisms, Alanine, aspartate and glutamate metabolism, Aminoacyl-tRNA biosynthesis, Cyanoamino acid 
metabolism, beta-Alanine metabolism, Cysteine and methionine metabolism, Lysine biosynthesis, Nicotinate 
and nicotinamide metabolism 

Pyruvate 

Glycine, serine and threonine metabolism, Carbon fixation in photosynthetic organisms, Alanine, aspartate and 
glutamate metabolism, Cysteine and methionine metabolism, Citrate cycle (TCA cycle), Butanoate metabolism, 
Pyruvate metabolism, C5-Branched dibasic acid metabolism, Glycolysis or Gluconeogenesis, Valine, leucine 
and isoleucine biosynthesis, Pantothenate and CoA biosynthesis, Terpenoid backbone biosynthesis 

Phosphoenolpyruvic acid 
Carbon fixation in photosynthetic organisms, Citrate cycle (TCA cycle), Pyruvate metabolism, Phenylalanine, 
tyrosine and tryptophan biosynthesis, Glycolysis or Gluconeogenesis 

Nicotinate Nicotinate and nicotinamide metabolism 

Glyceric acid Glycerolipid metabolism 

Oxidized glutathione Glutathione metabolism 

Spermidine Arginine and proline metabolism, beta-Alanine metabolism, Glutathione metabolism 

Palmitoleic acid Fatty acid biosynthesis 

Pyridoxal Vitamin B6 metabolism 

Linamarin Cyanoamino acid metabolism; biosynthesis of secondary metabolites 

Pipecolate Lysine degradation; biosynthesis of secondary metabolites 

Malonate Pyrimidine metabolism; beta-Alanine metabolism 

Alpha-Aminoadipate Lysine biosynthesis; lysine degradation; biosynthesis of secondary metabolites 

Piperidine Tropane, piperidine and pyridine alkaloid biosynthesis; protein digestion and absorption 
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Figure 4. Potential biomarkers predicted by classical univariate ROC curve analysis. The left-side plot of the individual metabolite 
figure is showing ROC (receiver operating characteristics) curve with 95% confidence interval (shadowed) and the solid red dot 
indicates the optimal cutoff with the associated sensitivity and specificity values. The right-side box-and-whisker plot shows the 
distribution of abundance values of individual metabolite in control and drought sample with the optimal cutoff as a horizontal 
dotted red line. 
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namely, N-acetyl-glutamic acid, L-proline, L-tryptophan, linamarin, pipecolate, 
and malonate (Figure 5). In multivariate module, biomarker (feature) selection, 
ROC curve-based model building and performance evaluation are performed 
multiple times using Monte-Carlo cross validation (MCCV). The potential bio-
markers, L-proline, DIBOA-glucoside N-acetyl-glutamic acid, malonate, pipe-
colate and tryptophan have the selection frequency of 1.0 (i.e. selected 100% of 
the time in the model) on the SVM feature selection algorithm. The metabolite 
DIBOA-glucoside having selection frequency of 1.0 in multivariate module also 
 

 
Figure 5. Biomarker identification/prediction by Multivariate ROC curve based exploratory analysis. The ROC curves were gen-
erated using an algorithm based on Monte-Carlo cross validation (MCCV) through balanced subsampling coupled with linear 
SVM (Support vector machine) for the classification method and SVM built-in for the feature ranking method. (a) Overview of all 
ROC curves created by MetaboAnalyst from 6 different biomarker models using different number of features (5, 10, 15, 25, 50 and 
100) with their corresponding AUC value and confidence interval; (b) Graph showing the predictive accuracies of 6 different bio-
marker models. The red dot shows the highest accuracy for the 15-feature panel of model 3; (c) ROC curve for selected biomarker 
model 3; (d) Top 10 potential biomarkers predicted based on their frequencies of being selected during cross validation. 
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had high AUC value of 0.82 and high sensitivity (0.8) and specificity (0.7) in un-
ivariate analysis. 

4. Discussion 

Drought stress can severely affect physiological and morphological mechanisms 
that could potentially affect performance, functionality and ultimately survival of 
plants. To maintain growth and productivity, plants must adapt to stress condi-
tions by exercising specific tolerance mechanisms. The alternation of different 
attributes related to photosynthesis is a good indicator of stress tolerance. Dam-
age to photosynthetic capacity due to water stress during grain filling can limit 
supply of assimilates to growing grain and thus reduces yield potential. Chloro-
phyll fluorescence, SPAD chlorophyll content, and electrolyte leakage or plasma 
membrane damage are very sensitive and quick responding variable for moni-
toring water stress. In the present study, drought stressed flag leaves exhibited a 
reduction of chlorophyll fluorescence, SPAD chlorophyll content and higher 
electrolyte leakage, which indicate significant damage to photosystem II and the 
plasma membrane due to drought stress at grain filling stage of wheat [34] [35]. 
This declining photochemical activity and membrane integrity of wheat plants 
(SS8641) under drought was also reflected in lower shoot dry biomass, grains 
spike−1, grain weight plant−1 and harvest index compared to the control. 

In addition to physiological and morphological traits, levels of metabolite ac-
cumulation during stress at a particular growth stage can provide a more specific 
and accurate indication of stress tolerance. In the present study, the non-targeted 
metabolite profiling revealed significant changes in 152 metabolites in wheat flag 
leaves under drought stress condition compared to control. Of these differen-
tially accumulated metabolites, 60 metabolites were identified as the most im-
portant metabolites by three different methods: PLS-DA, RF and SAM, which 
included an array of different amino acids, sugars, organic acids or compounds, 
polyamines, fatty acids and their derivatives. Amino acids including tryptophan, 
proline, phenylalanine, tyrosine and isoleucine accumulated up to 7.1 fold in 
drought treated flag leaves compared to control, although the levels of some 
amino acids (e.g. serine, glutathione, glutamine, GABA, threonine) decreased 
due to drought stress. The accumulation of amino acids under drought stress has 
been reported previously in several studies [18] [21] [36]. An increased level of 
amino acids is considered to improve stress tolerance in plants through different 
mechanisms, such as osmotic adjustment, detoxification of reactive oxygen spe-
cies, and intracellular pH regulation (see review by Krasensky and Jonak 2012 
[37]). 

Tryptophan acts as an osmolyte in ion transport regulation and in modulating 
stomatal opening, and maintaining water balance between air and plant [38]. 
Increased accumulation of tryptophan in wheat under drought is also supported 
by previous studies [21] [39] [40] [41]. Higher levels of tyrosine and phenylala-
nine under drought stress are also consistent with a study by Bowne et al. (2012) 
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[21]. The aromatic amino acids, tryptophan, tyrosine and phenylalanine are the 
precursors of different secondary metabolites including indoleacetate, lipid pre-
cursor and lignin in shikimate pathway, which plays a vital role in stress toler-
ance [42] [43] [44]. 

Proline level was increased in flag leaves under drought conditions and the 
accumulation of proline has been correlated with stress tolerance in a wide range 
of plants by different scientists [45] [46]. Proline serves as a compatible solute 
and helps plants to avoid oxidative stress by preserving osmotic balance or cell 
turgor, stabilizing membranes, stopping electrolyte leakage, and by keeping re-
duced concentrations of reactive oxygen species (ROS) [47] [48] [49]. Further-
more, the increased level of branched chain amino acids (e.g. isoleucine) under 
drought stress was reported in tolerant cultivars of wheat [21] [39] [40], barley 
[50], and Arabidopsis [51], and similar result was found in this study. Taylor et 
al. (2004) reported that branched chain amino acids are a source of alternate 
energy when Arabidopsis plants were under sugar starvation, which is a com-
mon phenomenon under stress [52]. 

Sugars and their derivatives were significantly reduced under drought stress. 
Lower accumulation of glucose and sucrose is potentially due to reduced photo-
synthetic capacity, as demonstrated by lower chlorophyll fluorescence and SPAD 
chlorophyll content, of the drought stressed leaves at the grain filling stage [34] 
[35]. In addition, enhanced maturity under stress condition may have resulted in 
increased partitioning of carbohydrates from source (leaf) to sink (grain). Dep-
leted starch content in drought-stressed barley flag leaves compared to control 
has been reported under stress condition [53]. Trehalose is reported to be accu-
mulated at a moderate level under abiotic stress and serves as an osmolyte to 
stabilize proteins and membranes [54] [55]. The trehalose of drought stressed 
leaves in our study may have been utilized as an osmolyte to provide the drought 
tolerance observed in the genotype SS8641. Myo-inositol acts as precursor of 
many metabolites especially raffinose that are involved in stress tolerance by 
providing membrane stability and antioxidative functions [56]. Decreased levels 
of raffinose of the drought stressed leaves can be accounted to the drought to-
lerance of the wheat plants (SS8641). Obata et al. (2015) also reported lower le-
vels of raffinose and myo-inositol in a tolerant maize genotype and suggested 
that that these could be due to the use of raffinose family oligosacchardises 
(RFOs) by the tolerant genotypes as their carbon sources [15]. 

The lower accumulation of sugars was further accompanied by reduced levels 
of organic acids or compounds including pyruvate, phosphoenolpruvate, 
α-ketoglutaric acid which are involved in Krebs cycle in leaves of stressed plants. 
Drought stress in our study didn’t trigger higher accumulation of organic acids 
or compounds except pipecolate and linamarin. A decreased level of organic ac-
ids or compounds was reported in wheat [21] and soybean [36] under drought 
stress in tolerant genotypes. In contrast, the consistent higher accumulation of 
pipecolate and linamarin at all time points upon drought stress indicates their 
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potential role in drought tolerance of wheat. 
Pipecolate is reported to have a defensive action on proteins and nucleic acid 

structures by maintaining a stable osmotic status in plants under variable soil 
water and salt stress [57]. Bowne et al. (2012) also found significantly changed 
levels of pipecolate among wheat leaves grown under drought stress compared 
to control [21]. Drought stress led to a significantly higher accumulation of li-
namarin level in the leaves. Linamarin is a cyanogenic glycoside, which plays an 
important role in nitrogen transport [58] and can act as an immediate chemical 
defense against insect and pathogen infestation by discharging toxic cyanide 
[59]. Higher level of linamarin was reported in cassava leaf under drought stress 
[14]. Our study first demonstrated a consistent higher accumulation of linama-
rin under drought stress at different time points in wheat flag leaves which indi-
cates that linamarin has a strong relationship with drought tolerance in wheat at 
grain filling stage. The accumulated linamarin under drought stress could fur-
ther be hydrolysed to release hydrogen cyanide, which can act as precursor of 
amino acids. This is potentially attributed to higher accumulation of amino acids 
under drought conditions in our study. 

The level of different metabolites changed in wheat flag leaves at 8 different 
time points across a diel cycle and they changed differently under drought and 
control conditions (Figure 3, Supplemental Table S2). Metabolites showed 
mostly 3 different diel patterns of accumulation in flag leaves at 8 different time 
points. Most of the amino acids (e.g. tryptophan, proline, indoline, phenylala-
nine) and some organic acids (e.g. pipecolate, linamarin) were accumulated and 
remained higher in drought stressed leaves over the 24 hrs of day-night period 
with the maximum accumulation at 3 pm compared to controls. But the levels of 
sugars, fatty acid, organic acids, amines and some amino acids were lower in 
drought plants over the most or all of time points compared to controls. Our 
study also showed that the levels of serine, aspartate, raffinose, myo-inositol, 
spermidine, gluconic acid, DIBOA-glucoside and tribenuron methyl remained 
higher during day time but decreased at night under control condition but the 
diel pattern of metabolite accumulation became completely opposite under 
drought condition. This pattern of metabolite accumulation was also reported by 
Benard et al. (2015) [60] where sucrose and serine were accumulated during day 
time and decreased at night under control condition. 

The pathway analysis by using MetaboAnalyst was able to link with 33 meta-
bolic and biosynthesis pathways of the KEGG pathway database and Rice Anno-
tation Project database (Table 3). The aromatic amino acids such as phenylala-
nine, tyrosine and tryptophan are produced via the shikimate pathway having 
fundamental roles in plant reproduction, development, pest-defense, and envi-
ronmental stresses [43] [61]. Serine, glycine, and threonine all can be converted 
to the 3-carbon a-ketoacid pyruvate or pyruvate which was downregulated in 
this study under drought stress. Pyruvate is the end product of glycolysis in the 
cytosol, and could be transported by mitochondrial pyruvate carriers (MPCs) 
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into mitochondria for consequent cellular substance and energy metabolism 
[62]. Arginine and proline metabolism is one of the unique pathways for the 
biosynthesis of the amino acids. The regulatory mechanisms controlling proline 
metabolism, intercellular and intracellular transport, and connections of proline 
to other metabolic pathways are all imperative to the in vivo functions of proline 
metabolism [63]. Proline accumulated mostly in the cytosol due to water stress 
reduces cytoplasmic acidosis and conserves NADP+/NADPH ratios well-suited 
with metabolism [64]. Upon relief of stress, the proline metabolic pathway re-
duces mitochondrial oxidative phosphorylation and produces ATP for repairing 
of stress-induced damages [49] [64]. The increased or decreased levels of meta-
bolites in our study integrated with their linked major metabolic pathways and 
biosynthetic processes presents a complicated process of drought stress res-
ponses in wheat. 

We also conducted the analysis to find potential metabolite biomarkers asso-
ciated with drought tolerance in wheat for the screening of drought tolerant ge-
netic resources of wheat. Obata et al. (2015) opined that promising metabolic 
traits were stronger in explaining variability in maize grain yield than classical 
agronomic yield components [15]. Six metabolites namely N-acetyl-glutamic 
acid, tryptophan, proline, linamarin, pipecolate, malonate and DIBOA-glucoside 
were identified as potential biomarkers by classical univariate and multivariate 
analysis. The finding of proline and tryptophan accumulation in drought tole-
rant wheat genotype was not something new. They were already reported as as-
sociated with their abiotic stress tolerance by several studies in different crops 
[37]. But the identification of N-acetyl-glutamic acid, linamarin, pipecolate and 
DIBOA-glucoside in wheat genotype to be associated with drought tolerance was 
not reported earlier and could be promising metabolite biomarkers for screening 
the tolerant genotypes. However, further investigation needs to be conducted in 
a panel of wheat germplasm with different genetics backgrounds to draw a com-
prehensive conclusion. 

5. Conclusion 

This study is the first study in wheat which used a non-targeted LC-HRMS Iso-
topic Ratio Outlier Analysis (IROA) Global Metabolomics method to identify 
accumulated metabolites in flag leaves under drought and control conditions at 
8 time points during 24 hours day-night period. The study reports increased or 
decreased level of numerous metabolites simultaneously and consistently at dif-
ferent time points. Some of metabolites received considerable research attention 
under drought stress, but many of these did not. Metabolites like tryptophan, 
proline, pipecolate, linamarin, N-acetyl-glutamic acid, DIBOA-glucoside ac-
crued to a greater level after drought stress, which was likely the indication of 
acclimation in responses to the drought stress. Elevated tryptophan and proline 
are common in other crops and are not surprising, but increased levels of pipco-
late, linamarin, and decreased levels of N-acetyl-glutamic acid and DIBOA-glucoside 
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in response to drought stress have not been widely reported. These metabolites 
may serve as metabolite biomarkers for screening drought stress tolerance in 
wheat germplasms to develop climate resilient wheat. The finding of these me-
tabolites could potentially be the effect of genetic variation, as we used soft wheat 
which is different than other wheat genotypes used in the study before, including 
in Bowne et al. (2012) [21]. This difference indicates that global wheat commu-
nity needs to use diverse set of germplasms for studying metabolite accumula-
tion under drought stress. That will improve our understanding on metabolic 
control of complex stress conditions including drought in wheat. In addition, we 
employed LC-HRMS analysis with IROA method which was not also reported in 
wheat before. This technique is sensitive and potentially more robust than Nuc-
lear magnetic resonance (NMR) and gas chromatography-mass spectrometry 
(GC-MS) technology as it can identify metabolites in low concentration and has 
better capacity to control FDR rate. Although some of these newly identified 
metabolites are promising as biomarkers for improving drought stress tolerance 
in wheat, their correlation to drought tolerance in wheat and other cereal crops 
requires further investigation. 
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Supplemental Table 1. List of significant metabolites with their compound type and identifier (KEGG ID/PubChemCID(*)/ 
ChEBI ID/UNDP ID), molecular formula (MF), mass-to-charge ratio (m/z), retention time (RT), P-value, false discovery rate 
(FDR) and fold change (Drought/Control, D/C). (KEGG = Kyoto Encyclopedia of Genes and Genomes, ChEBI = Chemical Enti-
ties of Biological Interest, UNDP = United Natural Products Database). 

Sl# Compound name 
Compound 

ID 
MF 

Compound 
type 

m/z RT t.stat p. value FDR 
Fold Change 

(D/C) 

 
Amino acids and 
their derivatives 

         

1 
4-Aminobutanoate 
(GABA) 

C00334 C4H9NO2 Amino acid 102.0562 0.82 6.0031 2.87E−07 1.72E−06 −1.92 

2 5-oxo-L-proline C01879 C5H7NO3 Amino acid 130.0503 1.84 2.4005 0.020473 0.030014 −1.14 

3 Clithioneine UNPD118571 C13H22N4O5S 
Amino acid 
derivative 

347.1313 6.27 6.0628 2.33E−07 1.44E−06 −1.71 

4 Glutathione C00051 C10H17N3O6S Amino acid 306.0758 1.61 3.4984 0.0010502 0.002194 −2.29 

5 L-Aspartate C00049 C4H7NO4 Amino acid 132.0292 0.73 5.473 1.77E−06 7.91E−06 −1.89 

6 L-Carnitine C00318 C7H15NO3 
Amino acid 
derivative 

162.1124 1.28 7.9845 3.12E−10 6.55E−09 −2.01 

7 L-glutamine C00303 C5H10N2O3 Amino acid 145.0617 0.73 4.6058 3.26E−05 9.37E−05 −1.93 

8 L-Isoleucine C16434 C6H13NO2 Amino acid 132.1021 2.44 -2.6682 0.010495 0.017219 1.47 

9 L-Phenylalanine C00079 C9H11NO2 Amino acid 164.0709 5.52 -3.013 0.0041963 0.007468 1.77 

10 L-Proline C00148 C5H9NO2 Amino acid 116.0706 0.89 -6.332 9.19E−08 6.23E−07 3.90 

11 L-Serine C00065 C3H7NO3 Amino acid 104.035 0.75 4.9825 9.32E−06 3.32E−05 −2.36 

12 L-Threonine C00188 C4H9NO3 Amino acid 118.0508 0.76 5.4282 2.06E−06 9.02E−06 −1.90 

13 L-Tryptophan C00078 C11H12N2O2 Amino acid 205.098 6.36 -5.7215 7.56E−07 3.95E−06 7.11 

14 N-Acetyl-D-Tryptophan C03137 C13H14N2O3 
Amino acid 
derivative 

245.0926 7.8 2.1166 0.039736 0.055262 −1.15 

15 N-hydroxy-L-valine C20313 C5H11NO3 
Amino acid 
derivative 

134.0817 0.93 4.1862 0.0001266 0.000332 −1.73 

16 Oxidized glutathione C00127 C20H32N6O12S2 Amino acid 611.1441 3.74 6.6817 2.74E−08 2.21E−07 −2.21 

17 
S-phospho-L-cysteine(2-) 
residue 

CHEBI: 61975 C3H4NO4PS 
Amino acid 

residue 
181.9621 0.69 4.4705 5.07E−05 0.00014 −1.76 

18 Tyrosine C01536 C9H11NO3 Amino acid 182.0819 3.16 -2.4198 0.019539 0.0291 1.61 

 
Sugars and their 
derivatives 

         

19 D-(-)-Arabinose C00216 C5H10O5 Sugar 149.0448 0.83 6.6977 2.59E−08 2.18E−07 −1.75 

20 D-(+)-Raffinose C00492 C18H32O16 Sugar 527.1589 0.97 5.345 2.74E−06 1.13E−05 −1.97 

21 D-(+)-Trehalose C01083 C12H22O11 Sugar 377.0853 0.92 7.4476 1.95E−09 2.95E−08 −2.07 

22 
Decyl beta-D- 
maltopyranoside 

CHEBI: 67097 C22H42O11 Sugar 481.2579 11.56 2.2757 0.027565 0.039648 −1.24 

23 Deoxyribose C01801 C5H10O4 Sugar 133.0511 1.82 3.7356 0.0005156 0.001152 −2.71 

https://doi.org/10.4236/ajps.2017.812205


M. A. Rahman et al. 
 

 

DOI: 10.4236/ajps.2017.812205 3054 American Journal of Plant Sciences 
 

Continued 

24 D-Glucosamine C00329 C6H13NO5 Sugar 180.087 0.84 2.9512 0.0049675 0.008621 −1.37 

25 D-Glucose C00031 C6H12O6 Sugar 179.055 0.82 2.3984 0.020581 0.030014 −1.35 

26 D-Threo-L-galacto-octose 16019992* C8H16O8 Sugar 239.0763 0.89 7.7616 6.66E−10 1.27E−08 −1.82 

27 Lichenin C00478 C6H10O5 Sugar 161.0444 0.8 3.0431 0.0038627 0.006933 −1.69 

28 N-Acetyl-D-Fucosamine C15480 C8H15NO5 Sugar 206.1027 1.46 5.0824 6.66E−06 2.50E−05 −2.30 

29 Sedoheptulose C02076 C7H14O7 Sugar 209.0657 0.85 5.1809 4.78E−06 1.89E−05 −1.64 

30 Sucrose C00089 C12H22O11 Sugar 365.1054 0.93 6.95 1.08E−08 1.14E−07 −1.96 

31 
Alpha-Methylene 
Gamma-butyrolactone 

68352* C5H6O2 Sugar acid 99.0441 0.91 5.5991 1.15E−06 5.62E−06 −1.97 

32 D-Arabinono-1,4-lactone C00652 C5H8O5 Sugar acid 147.0291 1.49 2.1823 0.034229 0.048898 −1.10 

33 D-Glucono-1,5-lactone C00198 C6H10O6 Sugar acid 177.0396 0.96 3.4477 0.0012195 0.002486 −1.93 

34 D-xylonate C00502 C5H10O6 Sugar acid 195.0504 0.75 9.3838 2.96E−12 1.55E−10 −2.06 

35 Threonate C01620 C4H8O5 Sugar acid 135.0298 0.81 2.0257 0.048623 0.067176 −1.09 

36 
6-(α-D-glucosaminyl)-1D- 
myo-inositol (GlcN)1 (Ino)1 

C15658 C12H23NO10 Sugar alcohol 342.1388 0.84 7.1051 6.34E−09 7.40E−08 −2.90 

37 
Bis-D-fructose 
2',1:2,1'-dianhydride 

C04333 C12H20O10 
Sugar 

dianhydride 
325.113 0.91 7.1369 5.68E−09 7.02E−08 −2.36 

 Amines          

38 Piperidine C01746 C5H11N Amine 86.0966 2.45 -2.6375 0.011354 0.018483 1.50 

39 Spermidine C00315 C7H19N3 Amine 146.1657 0.58 5.7159 7.70E−07 3.95E−06 −1.90 

 Fatty acids          

40 2-Hydroxyheptanoic acid 2750949* C7H14O3 Fatty acid 145.086 8.05 5.4186 2.13E−06 9.14E−06 −1.85 

41 Linoleate C01595 C18H32O2 Fatty acid 279.2313 14.58 3.6415 0.0006853 0.001499 −1.79 

42 Palmitoleic acid C08362 C16H30O2 Fatty acid 253.216 14.89 4.8821 1.30E−05 4.35E−05 −2.10 

 Nucleosides/Nucleobases          

43 Adenine C00147 C5H5N5 Nucleobase 134.0462 5.31 4.4942 4.69E−05 0.000131 −1.63 

44 Adenosine C00212 C10H13N5O4 Nucleoside 268.1043 5.31 3.6589 0.0006504 0.001438 −1.51 

45 Deoxyadenosine C00559 C10H13N5O3 Nucleoside 252.1093 5.37 2.5426 0.014433 0.022618 −1.36 

46 Guanine C00242 C5H5N5O Nucleobase 152.0569 5.43 2.4568 0.017852 0.02697 −1.34 

47 Guanosine C00387 C10H13N5O5 Nucleoside 282.0831 5.4 3.0836 0.003453 0.006361 −1.30 

48 Uracil C00106 C4H4N2O2 Nucleobase 113.0347 2.73 2.9045 0.0056354 0.009621 −1.12 

49 Uridine C00299 C9H12N2O6 Nucleoside 243.0619 2.73 2.3685 0.022118 0.032033 −1.07 

 Organic acids          

50 12-Hydroxyjasmonic acid C21385 C12H18O4 Organic acid 227.1284 8.66 5.843 4.98E−07 2.82E−06 −2.37 

51 
2-(Acetamidomethylene) 
succinate 

C01215 C7H9NO5 Organic acid 188.0558 2.07 4.7742 1.87E−05 6.03E−05 −2.09 
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52 
2(alpha-D-mannosyl)- 
D-glycerate 

C11544 C9H16O9 Organic acid 267.0717 0.87 5.0184 8.26E−06 3.02E−05 
 

53 
2-Hydroxybutane-1,2,4- 
tricarboxylate (Homocitrate) 

C01251 C7H10O7 Organic acid 205.0348 5.37 3.2377 0.0022384 0.004353 −1.61 

54 2-Hydroxyphenylacetic acid C05852 C8H8O3 Organic acid 153.0557 7.69 4.8975 1.24E−05 4.20E−05 −1.60 

55 
2-Methyl-4-oxo- 
pentadecanoic acid 

5312897* C16H30O3 Organic acid 269.2115 13.12 2.4012 0.020441 0.030014 −2.39 

56 4-Acetamidobutanoate C02946 C6H11NO3 Organic acid 144.0662 5.82 2.5042 0.01588 0.02452 −1.13 

57 
4-Carboxylatomethylenebut- 
2-en-4-olide 

CHEBI: 57263 C6H3O4 Organic acid 140.0109 0.68 4.1734 0.0001319 0.000342 −1.61 

58 4-Hydroxyphenylglyoxylate C03590 C8H6O4 Organic acid 165.018 6.78 3.2823 0.0019702 0.003941 −2.18 

59 4Z-Decenedioic acid 9543671* C10H16O4 Organic acid 199.0974 8.39 3.7448 0.0005013 0.001132 −1.75 

60 5-Acetamidopentanoate C03087 C7H13NO3 Organic acid 158.0817 6.46 2.4351 0.018822 0.028234 −1.42 

61 5-Aminolevulinate C00430 C5H9NO3 Organic acid 132.0651 2.7 2.5055 0.015828 0.02452 −1.24 

62 
5-Guanidino-3-methyl- 
2-oxopentanoic acid 

CHEBI:64288 C7H13N3O3 Organic acid 188.1009 5.47 4.0764 0.0001793 0.000448 −2.95 

63 5-sulfosalicylate C16199 C7H6O6S Organic acid 216.9809 5.96 4.0911 0.0001712 0.000433 −1.79 

64 alpha-Aminoadipate C00956 C6H11NO4 Organic acid 160.0614 1.3 5.4988 1.62E−06 7.56E−06 −1.87 

65 alpha-Hydroxyisobutyric acid 11671* C4H8O3 Organic acid 103.0403 2.38 3.0967 0.0033296 0.006243 −1.38 

66 alpha-Ketoglutaric acid C00026 C5H6O5 Organic acid 145.014 1.32 3.7597 0.0004791 0.001094 −1.72 

67 Azelaic acid C08261 C9H16O4 Organic acid 187.0972 7.95 4.0362 0.0002034 0.000491 −1.58 

68 Canadensic acid - C11H18O4 Organic acid 213.113 8.97 2.6014 0.012447 0.019954 −1.15 

69 Cerheptaric acid UNPD64017 C7H12O8 Organic acid 223.0471 0.86 6.9092 1.25E−08 1.25E−07 −2.62 

70 D-2-hydroxyisocaproate C03264 C6H12O3 Organic acid 131.0712 7.96 4.1465 0.0001436 0.000368 
−1.44 

 

71 D-Saccharic acid C00818 C6H10O8 Organic acid 209.0299 0.77 5.2882 3.32E−06 1.34E−05 −2.01 

72 Gabaculine C12110 C7H9NO2 Organic acid 138.055 6.48 3.5968 0.0007838 0.00168 −1.28 

73 Gluconic acid C00257 C6H12O7 Organic acid 195.0504 0.75 8.9261 1.33E−11 5.57E−10 −2.23 

74 Glutarate C00489 C5H8O4 Organic acid 131.0343 4.53 4.9398 1.08E−05 3.75E−05 −2.44 

75 Glycerate C00258 C3H6O4 Organic acid 105.0181 0.84 4.7171 2.26E−05 6.93E−05 −2.56 

76 Guanidinoproclavaminic acid C06657 C9H16N4O4 Organic acid 243.1092 5.22 8.3335 9.58E−11 2.46E−09 −2.54 

77 Lactobionic acid 7314* C12H22O12 Organic acid 357.1023 0.78 5.7819 6.14E−07 3.34E−06 −1.63 

78 Malonate C00383 C3H4O4 Organic acid 103.0038 1.16 2.1551 0.036425 0.051685 −1.19 

79 N-Acetyl-DL-glutamic acid C00624 C7H11NO5 Organic acid 188.0558 1.73 11.105 1.31E−14 2.75E−12 −3.78 

80 Nicotinate C00253 C6H5NO2 Organic acid 122.0246 1.44 5.9 4.09E−07 2.38E−06 −1.64 

81 Oxaloglutarate C05533 C7H8O7 Organic acid 203.0188 1.83 3.4969 0.001055 0.002194 −1.45 

82 Pantothenate C00864 C9H17NO5 Organic acid 218.1026 5.64 2.1499 0.036856 0.051834 −1.14 
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83 Phenylpyruvate C00166 C9H8O3 Organic acid 165.0551 3.3 -2.5748 0.013313 0.021179 1.68 

84 Phosphonatoenolpyruvate C00074 C3H2O6P Organic acid 165.9665 0.72 5.0944 6.40E−06 2.44E−05 −2.02 

85 Pipecolate C00408 C6H11NO2 Organic acid 130.0864 1.28 -4.5763 3.59E−05 0.000102 2.17 

86 Pyruvate C00022 C3H4O3 Organic acid 87.0085 1.31 5.7788 6.21E−07 3.34E−06 −1.63 

87 Quinate C00296 C7H12O6 Organic acid 191.055 0.86 4.6342 2.97E−05 8.77E−05 −2.50 

88 Sebacic acid C08277 C10H18O4 Organic acid 201.1126 8.57 4.4566 5.30E−05 0.000145 −1.85 

89 Shikimate C00493 C7H10O5 Organic acid 173.0448 1.11 2.6138 0.012061 0.019484 1.21 

90 Suberic acid C08278 C8H14O4 Organic acid 173.0816 7.63 4.0376 0.0002026 0.000491 −1.57 

 Organic compounds          

91 
1-(Indol-3-yl)propanol 
3-phosphate 

C04229 C11H14NO4P 
Phosphorylated 

compound 
256.0813 1.37 6.7493 2.17E−08 1.98E−07 −1.98 

92 Fructoselysine 6-phosphate C16489 C12H25N2O10P 
Phosphorylated 

compound 
387.1141 1.04 7.0276 8.28E−09 9.15E−08 −1.96 

93 1,2,3-Trihydroxybenzene C01108 C6H6O3 
Organic 

compound 
127.0394 5.31 5.5453 1.38E−06 6.60E−06 −1.78 

94 2-Aminophenol C01987 C6H7NO 
Organic 

compound 
110.0603 2.14 2.9358 0.0051793 0.008915 −1.48 

95 3-Indoleacetonitrile C02938 C10H8N2 
Organic 

compound 
157.085 5.82 3.3726 0.0015182 0.003066 −2.07 

96 3-tert-Butyl-5-methylcatechol C03929 C11H16O2 
Organic 

compound 
181.1222 10.08 4.9364 1.09E−05 3.75E−05 −1.66 

97 4-Hydroxybenzoate C00156 C7H6O3 
Organic 

compound 
137.0235 8.66 3.7608 0.0004774 0.001094 −1.95 

98 4-Nitroacetophenone C02803 C8H7NO3 
Organic 

compound 
166.058 7.19 4.7636 1.93E−05 6.15E−05 −1.76 

99 5-Hydroxyisourate C11821 C5H4N4O4 
Organic 

compound 
185.032 0.74 3.8129 0.000407 0.00095 −1.66 

100 
5'-O-beta-D- 
Glucosylpyridoxine 

C03996 C14H21NO8 
Organic 

compound 
332.1333 4.05 8.5242 5.05E−11 1.77E−09 −2.00 

101 alpha-Sinensal C09729 C15H22O 
Organic 

compound 
219.1748 12.13 4.2018 0.0001205 0.00032 −2.19 

102 Asperuloside C09769 C18H22O11 
Organic 

compound 
413.1083 6.91 5.4836 1.71E−06 7.79E−06 −1.84 

103 
Aurantio-obtusin 
beta-D-glucoside 

C10303 C23H24O12 
Organic 

compound 
493.1328 8.2 4.7143 2.28E−05 6.93E−05 −1.55 

104 Benzoate C00180 C7H6O2 
Organic 

compound 
121.0291 7.61 3.6032 0.0007688 0.001664 −1.80 

105 beta-Cymaropyranose C08234 C7H14O4 
Organic 

compound 
163.097 6.27 5.3973 2.29E−06 9.63E−06 −2.78 

106 beta-Damascenone CHEBI: 67251 C13H18O 
Organic 

compound 
191.1437 8.43 4.2446 0.0001051 0.000283 −1.42 
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107 Calystegin B2 C10851 C7H13NO4 
Organic 

compound 
174.0768 2.53 5.6104 1.11E−06 5.53E−06 −3.08 

108 Carlinoside C10026 C26H28O15 
Organic 

compound 
579.1354 6.83 3.4986 0.0010497 0.002194 −1.36 

109 Citrinin C16765 C13H14O5 
Organic 

compound 
251.0911 7.44 4.6398 2.91E−05 8.74E−05 −1.61 

110 D-Glucuronolactone 
C02670 

 
C6H10O7 

Organic 
compound 

193.0351 0.87 2.9683 0.0047414 0.008338 −1.32 

111 DIBOA-glucoside C15772 C14H17NO9 
Organic 

compound 
342.0826 5.98 9.6755 1.15E−12 8.05E−11 −3.28 

112 Diethyl maleate 5271566* C8H12O4 
Organic 

compound 
171.0658 7.62 3.9569 0.0002607 0.000622 −2.11 

113 
Dihydro-4,4-dimethyl- 
2,3-furandione 

C01125 C6H8O3 
Organic 

compound 
127.0403 6.66 3.2591 0.0021054 0.004171 −1.85 

114 Dimethylmaleate C00922 C6H8O4 
Organic 

compound 
143.0343 6.03 3.4655 0.0011572 0.002382 −1.85 

115 Eupalitin 3-O-sulfate 44259774* C17H14O10S 
Organic 

compound 
409.0229 8.7 7.7014 8.18E−10 1.43E−08 −1.96 

116 Furfural diethyl acetal C14280 C9H14O3 
Organic 

compound 
169.0859 9.88 3.064 0.0036454 0.006604 −1.43 

117 Ginnalin C 44512371* C13H16O9 
Organic 

compound 
315.0719 6.05 3.2523 0.002147 0.004214 −1.65 

118 Glucogallin C01158 C13H16O10 
Organic 

compound 
331.0673 5.67 6.1362 1.81E−07 1.15E−06 −1.95 

119 Lilioside A 101277416* C11H20O9 
Organic 

compound 
295.1027 5.42 9.9518 4.75E−13 4.98E−11 −2.17 

120 Linamarin C01594 C10H17NO6 
Organic 

compound 
246.0972 6.67 -5.0156 8.34E−06 3.02E−05 3.31 

121 Nandrolone C07254 C18H26O2 
Organic 

compound 
275.2008 10.44 6.3569 8.43E−08 5.90E−07 −2.06 

122 Nicotinamide C00153 C6H6N2O 
Organic 

compound 
123.0553 1.67 6.7209 2.39E−08 2.09E−07 −2.04 

123 P-Cymene C06575 C10H14 
Organic 

compound 
135.1168 7.25 8.305 1.05E−10 2.46E−09 −2.23 

124 Phytuberin C09709 C17H26O4 
Organic 

compound 
293.1754 11.62 3.8982 0.0003129 0.000738 −1.84 

125 Propyl cinnamate C06360 C12H14O2 
Organic 

compound 
191.1062 8.11 3.0877 0.0034137 0.006344 −1.42 

126 Pruyanaside B UNDP145434 C33H36O16 
Organic 

compound 
687.1929 8.27 7.1476 5.48E−09 7.02E−08 −1.98 

127 Slaframine C06185 C12H20N2O3 
Organic 

compound 
241.1553 5.41 6.7947 1.85E−08 1.77E−07 −1.89 
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128 Strophanthobiose 14236734* C13H24O9 
Organic 

compound 
323.135 6.11 8.4282 6.97E−11 2.09E−09 −1.95 

129 Succinic anhydride C19524 C4H4O3 
Organic 

compound 
101.0234 2.26 2.1479 0.037024 0.051834 −1.21 

130 Tarennoside C11654 C16H22O9 
Organic 

compound 
357.1181 6.93 4.0711 0.0001823 0.00045 

−1.45 

 

131 Tribenuron methyl C10962 C15H17N5O6S 
Organic 

compound 
396.095 7.05 6.6517 3.04E−08 2.36E−07 −8.57 

132 Tribufos 5125* C12H27OPS3 
Organic 

compound 
315.1056 5.96 7.3501 2.73E−09 3.82E−08 −2.29 

 Others          

133 
2-Valeryl-SN-glycero- 
3-phosphocholine 

24779499* C13H28NO7P Others 342.1754 6.27 7.4451 1.97E−09 2.95E−08 −2.17 

134 3-Methyleneoxindole C02796 C9H7NO Others 144.0455 8.55 3.1847 0.0026012 0.005012 −1.66 

135 4-Hydroxy-2-butynal C02648 C4H4O2 Others 85.0283 0.91 6.1651 1.64E−07 1.07E−06 −2.15 

136 5-O-Methylembelin C10373 C18H28O4 Others 307.1891 10.02 2.5484 0.014227 0.022463 −1.60 

137 Alancine UNPD150686 C19H27NO5 Others 350.2113 8.46 5.1702 4.95E−06 1.93E−05 −1.80 

138 Aminoimidazoleribotide C03373 C8H14N3O7P Others 296.0659 0.77 2.825 0.0069704 0.01171 −1.53 

139 bhos#16 CHEBI:79258 C16H30O7 Others 335.2074 9.97 2.7686 0.0080872 0.013479 −1.91 

140 Carbetamide C11075 C12H16N2O3 Others 237.124 5.42 6.4542 6.02E−08 4.36E−07 −2.41 

141 Cyclohexylisocyanate 18502* C7H11NO Others 126.0917 6.94 2.9665 0.0047644 0.008338 −1.14 

142 Deoxyribonolactone C02674 C5H8O4 Others 131.0346 5.05 2.4719 0.017201 0.026367 −1.65 

143 Goniothalenol C09930 C13H12O4 Others 233.0815 7.44 4.7745 1.87E−05 6.03E−05 −1.68 

144 Hyptolide 101228910* C18H24O8 Others 367.1387 8.59 4.6235 3.07E−05 8.96E−05 
−1.47 

 

145 Indoline 10328* C8H9N Others 120.0807 5.52 -3.0638 0.003648 0.006604 1.60 

146 
L-alpha- 
Glycerophosphocholine 

657272* C8H20NO6P Others 258.1104 0.78 4.7518 2.01E−05 6.31E−05 −1.80 

147 Luteoayamenin 44258370* C28H32O16 Others 623.1613 7.3 2.8932 0.0058099 0.009839 −1.34 

148 Mechlorethamine C07115 C5H11Cl2N Others 156.0426 0.81 2.4599 0.017715 0.026958 −1.36 

149 Pandangolide 1 11557800* C12H20O5 Others 243.1236 8.22 3.1737 0.0026832 0.005123 −1.09 

150 Parthenolide C07609 C15H20O3 Others 249.1483 11.66 3.1625 0.002769 0.005239 −1.25 

151 Pyridoxal C00250 C8H9NO3 Others 168.0659 1.5 6.5337 4.57E−08 3.43E−07 −1.94 

152 Sesbanimide 163490* C15H21NO7 Others 328.1395 5.55 -2.6999 0.0096736 0.015996 2.02 
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Supplemental Table 2. List of 89 significantly different levels of metabolites (ANOVA, P  ≤  0.05, Fisher’s LSD) in the wheat flag 
leaves at 8 different time points (3 h, 6 h, 9 h, 12 h, 15 h, 18 h, 21 h, 24 h) during 24 hours of day under drought and control con-
ditions with their P-value, false discovery rate (FDR) and significant pairs of time points. 

Sl# Metabolites p value FDR 

1 TRIBUFOS 1.29E−05 0.001372 

2 N-ACETYL-DL-GLUTAMIC ACID 2.03E−05 0.001372 

3 DIBOA-GLUCOSIDE 2.71E−05 0.001372 

4 LILIOSIDE A 8.43E−05 0.003079 

5 LICHENIN 0.000101 0.003079 

6 ALPHA-AMINOADIPATE 0.000128 0.003244 

7 N-HYDROXY-L-VALINE 0.000174 0.003635 

8 5-GUANIDINO-3-METHYL-2-OXOPENTANOIC ACID 0.000217 0.003635 

9 L-CARNITINE 0.000279 0.003635 

10 GLUCONIC ACID 0.000281 0.003635 

11 EUPALITIN 3-O-SULFATE 0.000281 0.003635 

12 TRIBENURON METHYL 0.000304 0.003635 

13 STROPHANTHOBIOSE 0.000327 0.003635 

14 1-INDOL-3-YLPROPANOL 3-PHOSPHATE 0.000359 0.003635 

15 ADENINE 0.000434 0.003635 

16 L-PROLINE 0.000437 0.003635 

17 4Z-DECENEDIOIC ACID 0.000465 0.003635 

18 2-VALERYL-SN-GLYCERO-3-PHOSPHOCHOLINE 0.000477 0.003635 

19 D-XYLONATE 0.00048 0.003635 

20 LACTOBIONIC ACID 0.000493 0.003635 

21 GLCN1 INO1 0.000502 0.003635 

22 D-TREHALOSE 0.000547 0.003776 

23 5'-O-BETA-D-GLUCOSYLPYRIDOXINE 0.000751 0.004964 

24 4-HYDROXY-2-BUTYNAL 0.000893 0.005583 

25 4-CARBOXYLATOMETHYLENEBUT-2-EN-4-OLIDE 0.000918 0.005583 

26 3-METHYLENEOXINDOLE 0.001308 0.007648 

27 OXIDIZED GLUTATHIONE 0.001402 0.007892 

28 P-CYMENE 0.001729 0.009051 

29 CERHEPTARIC ACID 0.001731 0.009051 

30 BIS-D-FRUCTOSE 2',12,1'-DIANHYDRIDE 0.001786 0.009051 

31 PARTHENOLIDE 0.001913 0.009379 

32 D-THREO-L-GALACTO-OCTOSE 0.003424 0.016057 
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Continued 

33 GLYCERATE 0.003633 0.016057 

34 DIHYDRO-4,4-DIMETHYL-2,3-FURANDIONE 0.003668 0.016057 

35 BETA-CYMAROPYRANOSE 0.003697 0.016057 

36 GUANIDINOPROCLAVAMINIC ACID 0.004071 0.01719 

37 NICOTINAMIDE 0.004608 0.018929 

38 ALPHA-METHYLENE GAMMA-BUTYROLACTONE 0.005008 0.020033 

39 SUCROSE 0.005287 0.020132 

40 1,2,3-TRIHYDROXYBENZENE 0.005298 0.020132 

41 L-SERINE 0.005855 0.021701 

42 L-PHENYLALANINE 0.005996 0.021701 

43 DEOXYRIBOSE 0.006232 0.021781 

44 CALYSTEGIN B2 0.006387 0.021781 

45 ALPHA-KETOGLUTARIC ACID 0.006491 0.021781 

46 FRUCTOSELYSINE 6-PHOSPHATE 0.006764 0.021781 

47 GLUTATHIONE 0.006947 0.021781 

48 PRUYANASIDE B 0.006965 0.021781 

49 SLAFRAMINE 0.007022 0.021781 

50 SESBANIMIDE 0.007351 0.022347 

51 PALMITOLEIC ACID 0.008661 0.025812 

52 GLUCOGALLIN 0.009096 0.026576 

53 ADENOSINE 0.009305 0.026576 

54 GUANINE 0.009442 0.026576 

55 D-ARABINOSE 0.010386 0.028704 

56 D-GLUCONO-1,5-LACTONE 0.011433 0.031033 

57 2ALPHA-D-MANNOSYL-D-GLYCERATE 0.012334 0.032891 

58 5-OXO-L-PROLINE 0.012912 0.033838 

59 PYRIDOXAL 0.015342 0.039525 

60 D-GLUCOSE 0.015823 0.040084 

61 GONIOTHALENOL 0.016758 0.041757 

62 5-SULFOSALICYLATE 0.018782 0.046046 

63 12-HYDROXYJASMONIC ACID 0.019325 0.046626 

64 SEBACIC ACID 0.022335 0.053045 

65 CARBETAMIDE 0.023491 0.054932 

66 L-GLUTAMINE 0.024783 0.056838 

67 DIMETHYLMALEATE 0.025162 0.056838 
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68 CLITHIONEINE 0.025427 0.056838 

69 NICOTINATE 0.026448 0.0578 

70 ALANCINE 0.026989 0.0578 

71 CITRININ 0.027199 0.0578 

72 L-ALPHA-GLYCEROPHOSPHOCHOLINE 0.027379 0.0578 

73 4-AMINOBUTANOATE 0.028627 0.059608 

74 N-ACETYL-D-FUCOSAMINE 0.03025 0.06146 

75 L-TRYPTOPHAN 0.030326 0.06146 

76 INDOLINE 0.031295 0.062591 

77 DECYL BETA-D-MALTOPYRANOSIDE 0.0318 0.062773 

78 D--RAFFINOSE 0.03439 0.066434 

79 2-HYDROXYPHENYLACETIC ACID 0.034528 0.066434 

80 D-SACCHARIC ACID 0.035523 0.067494 

81 AURANTIO-OBTUSIN BETA-D-GLUCOSIDE 0.038175 0.071636 

82 PIPECOLATE 0.039397 0.073028 

83 LINOLEATE 0.040494 0.074158 

84 URACIL 0.044783 0.080305 

85 SPERMIDINE 0.045363 0.080305 

86 LINAMARIN 0.045435 0.080305 

87 QUINATE 0.046014 0.080393 

88 PANDANGOLIDE 0.047594 0.081527 

89 SEDOHEPTULOSE 0.047736 0.081527 
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