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Abstract 
The stability of a heat-conducting flow due to the pumping of a fluid around 
the annulus of horizontal porous cylinders is studied. The basic flow is under 
the action of radial flow and a radial temperature gradient. The objects of in-
vestigations are different regimes and bifurcations which may arise in this 
flow. 
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1. Introduction 

Due to the technological and engineering importance, the investigation of the 
stability of curved flows has been a source of interest for several years. 

Experimental studies of main flow in curved pipes carried out by Eustice [1] 
[2] pointed out the secondary flow formation that analytically confirmed by 
Dean [3]. His stability analysis has shown that flow between two horizontal 
cylinders becomes unstable for small axisymmetric disturbances when the Dean 
number exceeds the critical value. Above this value, there appear pairs of 
counter-rotating streamwise-oriented vortices known as Dean vortex flows. 
Later on, this theoretical analysis has been confirmed by W. Reid [4], G. 
Hammerlin [5] and experimentally by D. Browster et al. [6]. 

The stability investigation of Dean flow was continued by many authors (see 
[7]-[13]). 

Important results were obtained also in the study of Dean flow stability of 
complex fluids. [14] and [15] present experimental and numerical analysis of the 
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behavior of physiological flow in a curved pipe. The numerical study of 
magnetohydrodynamic viscous steady biofluid flow through a curved pipe with 
circular cross section can be found in [16]. [17] is devoted to the analytical study 
of conductive fluids in highly conductive curved pipes. The influence of porous 
channel with a radial flow and the effect of a radial temperature gradient on the 
stability of Dean flow have been considered in [18] [19]. The Dean flow stability 
of a heat-conducting fluid between horizontal porous cylinders with a radial 
temperature gradient and a radial flow has been studied in [20] [21]. 

In these papers, investigations are mainly carried out in the linear 
approximation, which allows one to judge the first loss of stability of main flow. 
It was shown that the first instability of the basic steady flow can be not only a 
monotonic instability leading to the Dean vortices but also can be oscillatory 
instability resulting in a time-periodic secondary regime. 

For practical purposes, it is important to consider the transitions to more 
complex regimes, the appearance of which precedes the development of higher 
instability and leads to turbulence. 

For Dean flow stability, the numerical and experimental investigations of 
transitions to turbulence were carried out, for instance, in [22] [23] [24] [25]. In 
[22], the linear stability of axisymmetric Dean vortex flow to non-axisymmetric 
perturbations is considered. Two different nonaxisymmetric flows, undulating 
and twisting Dean vortex flow, are found to be associated with the two 
transitions. In [23], the stability of the Dean-type flow is studied experimentally 
and comparied with instabilities and transitions in the Taylor-Couette flow. In 
[24], the effect of curvature on laminar channel flow is studied experimentally. It 
is shown that two types of secondary instabilities, with distinctly different 
frequencies, are at hand simultaneously, and their spatial distribution and 
growth are determined. In [25], numerical study of transitions that occur with 
increasing Reynolds number in a curved chanel is performed. 

Our aim is to study possible transitions to complex modes in a heat-coducting 
flow between horizontal porous cylinders with radial flow and radial temperature 
gradient. The linear analysis of that problem for small axisymmetric perturbations 
has been performed in [20] [21]. Investigating the transitions to more complex 
modes, we are interested in the structures of transitions to turbulence in this 
flow, depending on the parameters of the problem. Based on the nonlinear 
analysis, we can predict the existence of quasiperiodic oscillations and chaotic 
regimes for certain small absolute values of parameters of the problem. 

2. Formulation of the Problem 

We consider the steady flow in an annulus between the fixed horizontal heated 
cylinders to be maintained by a constant azimuthal pressure gradient in the 
presence of a radial flow through the porous cylinders and of a radial temperature 
gradient. We denote the radii and temperature of the inner and outer cylinders 
by 1R , 2R  and 1T , 2T , respectively. A constant flow through the annulus is 
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Figure 1. Horizontal concentric cylinder system.  

 
maintained by a suitable pumping circuit. It is assumed that the fluid inflow 
through one cylinder is equal to the fluid outflow through the other. The system 
that will be considered here is shown in Figure 1. Point A denotes the delivery 
side, while B denotes the suction side of the pump. The annulus is partially filled 
with the liquid. There is a partition in the annulus at the air-liquid interface to 
maintain the azimuthal pressure gradient. The radial flow through the porous 
cylinders may be either outward or inward. 

In the cylindrical coordinates ( ), ,r zϕ  with the z-axis coinciding with that of 
the cylinders, the Navier-Stokes equations as wall as those for heat transfer, 
continuity and state are the form [26]:  

( )

( )
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(1) 

where { }, ,r zV v v vϕ′ ′ ′ ′=  is the velocity vector; T ′  is temperature; ′Π  is 
pressure; ρ′  is the fluid density; t  is time; ν , χ , β  are, respectively, the 
coefficients of kinematic viscosity, thermal diffusivity and thermal expansion, 

0ρ ; and 0T  denote constant density and temperature, respectively. 
Operators ∆  and ∇  in the cylindrical coordinates are of the form  

2 2 2

2 2 2 2

1 1 1, , , .
r r r r zr r z ϕϕ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
∆ = + + + ∇ =  

∂ ∂ ∂ ∂∂ ∂ ∂  
 

Equation (1) are considered under the condition  
2

12π

0 1

d d 0,

R
R

zv r rρ ϕ′ ′ =∫ ∫
                       

(2) 

which ensures the absence of the fluid discharge through the cavity cross-section 
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of the cylinders. 
Let us assume that on the surface of the cylinders the following boundary 

conditions  

( )

( )

0 1 1

0
2 2
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(3) 

are fulfilled, where 2

1

RR
R

= . 

Problem (1)-(3) possesses a group of symmetries ( ) ( )2 2SO O= ∗G  which 
are invariant with respect to rotations Lδϕ  near the cylinder axis, to shifts hLϕ  
along that axis, and also to inversion J . These factors act on the vector-function 
( ), , ,r zF v v v Tϕ  according to the rules  
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for any real δ  and h . 
As is easily seen, problem (1)-(3) admits an exact solution  
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where  
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and 0 1U R
ν

=  is the radial Reynolds number, rP ν
χ

=  is the Prandtl number.  

The radial flow is inward for 0<  (converging flow) and outward for 0>  
(diverging flow). 

The flow with the velocity vector 0V , temperature 0T  and pressure 0Π  will 
be called the Dean stationary flow of a heat-conducting fluid with a radial 
temperature gradient and a radial flow. 
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3. Nonlinear System for Perturbations 

A solution of problem (1)-(3) is sought in the form  

( )0 0 0, , , , .r zV V V v v v T T Tϕ′ ′ ′= + = + Π = Π +Π
          

(6) 

Taking into account that the main stationary flow is a rotating shear flow, we 

denote rotation shear S  by mV
d

, where mV  is an average velocity in the azimuthal  

direction, 2 1d R R= −  is a gap width between cylinders. Introducing dimensionless 
variables for time, velocity, temperature and pressure by S , 2R , 2SR , 2 1T T− , 

Sνρ′  in the system (1), for the vector-functions { }, , ,r zF v v v Tϕ=  and 
{ }1 1, , ,r zF u u u Tϕ= , we obtain the following nonlinear problem of finding 

perturbations V , T  and Π :  
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Note, that 

1
2

2

Ree
dD
R

 
=  

 
 is the Dean number. 

Problem (7) is written in terms of the Boussinesq approximation, which is 
based on the assumption that the thermal expansion coefficient is small [27]. In 
the sequel it will always be assumed that the velocity, temperature and pressure 
components are periodic with respect to z and ϕ  with the known periods 
2π α  and 2π m , respectively. Thus the solution of the problem depends on 
the 7 dimensional parameters: azimuthal and radial Reynolds numbers, Rayleigh 
and Prandtl numbers, the ratio of the radii of cylinders R, axial and azimuthal 
wave numbers α , m , respectively. 

4. Neutral Curves 

The theoretical and experimental studies have shown that after the loss of 
stability of Dean flow there occured secondary modes via either axisymmetric or 
nonaxisymmetric disturbances as Dean vortices and oscillatory modes in the 
form of traveling waves. To study the transition to complex regimes of special 
attention are the points of intersection of neutral curves, corresponding to the 
two above-mentioned kinds of the secondary flows, since at these points with a 
high probability may appear various regimes, including the complex one. 

Let ( )0 0Ra ,Re  be the point lying on the plane of parameters ( )Ra,Re  and 
corresponding to the intersection of the neutral curves corresponding to the 
monotonic ( 0m = ) axisymmetric and oscillatory nonaxisymmetric loss of 
stability of main flow (3). In this paper we will explore the complex modes that 
may appear in the vicinity of intersection points of neutral curves corresponding 
to the vortex and azimuthal wave bifurcations. Under the definite values of 
parameters of the problem, the neutral curves may be nonintersecting that 
indicates that under the corresponding values of parameters of the problem we 
cannot expect the appearance of complex regimes. 

To construct neutral curves, we assume that the perturbations V , 
temperature T  and pressure Π  are infinitely small. Neglecting in (7) the 
nonlinear terms and seeking for a solution of that problem in the case of 
axisymmetric monotone perturbations, we obtain the following spectral problem  

( ) ( )0 1 0 1 0 0 1,
Re , , 0, 0,r RM N p r

=
− Φ = ∇ ∇ Φ = Φ =

         
(8) 

where  

( ) ( ) ( ) ( ){ } ( )0 0 0 0 0 0 0, , , e , e .i z i zu r v r iw r r p q rα ατΦ = =
        

(9) 

By the substitution of (9) into (8), after dividing the variables in (8) we obtain 
the spectral problem for the ordinary differential equations  

2 0
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where 
2

2

d 1 d
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L
r rr
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 . 

The neutral curves corresponding to the bifurcation of azimuthal waves 
origination are found by solving the spectral problem  

( ) ( )1 1 1 1 1 1 1,Re Re , , 0, 0.r RM N ic p r
=

− − Φ = ∇ ∇ Φ = Φ =
      

(11) 

A solution of problem (11) is sought in the form  
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(12) 

where c is the unknown frequency of autooscillations, m is the azimuthal wave 
number. Substitution of (12) into (11) after dividing the variables in (11), we get 
the spectral problem for the ordinary differential equations:  
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where  
2 2

1 2 2

d 1 d .
dd

mL
r rr r
−

= + −
  

Problems of eigenvalues (10) and (13) have been solved by the shooting 
method for fixed  , α , R , m , Pr , Ra . Thus, for the fixed values of these 
parameters we established the dependence of the critical value of the azimuthal 
Reynolds number Re and the neutral mode frequency c corresponding to the 
bifurcation of vortices and azimuthal waves origination on a Rayleigh number 
Ra. Further, using the Newton method, we minimize the difference between the 
obtained critical values of Re. This allows us to calculate with sufficient exactness 
the values 0Ra , 0Re  and 0c  corresponding to the point of intersection of 
neutral curves. 

The calculations in this paper were performed for the case 2R =  (radius of 
the outer cylinders is two times greater than that of the inner ones), 0,1m = , for 
various values of axial wave number α , Pr 0.71=  and for small absolute 
values   ( 3 3≤ ≤ ). The results of calculations are presented in Table 1. 

As our calculations show, these intersections of neutral curves take place 
especially when temperature of the outer cylinder is higher than that of the inner 
one ( )0Ra 0>  for sufficiently large values of the wave axial number and when  
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Table 1. The points of intersection of neutral curves.  

  
8α =  5α =  4α =  

0Ra  0Re  0c  0Ra  0Re  0c  0Ra  0Re  0c  

3 3.627 20.9 2.795 0.714 68.445 2.473 0.873 87.84 2.49 

2 3.14 22.07 2.792 0.667 82.88 2.458 0.809 81.245 2.472 

1.5 2.52 24.45 2.7826 0.65 59.86 2.456 0.778 77.421 2.4709 

0.5 2.084 26.938 2.763 0.64 53.09 2.473 0.75 68.464 2.492 

0.2 1.675 30.2 2.727 0.65 51.488 2.48 0.7524 65.438 2.507 

−0.3 - - - 0.7 46.25 2.52 0.772 60.164 2.541 

−0.5 - - - 0.72 44.73 2.525 0.785 58.028 2.558 

−1 - - - 0.84 39.73 2.593 0.835 52.86 2.606 

−1.5 - - - 1.036 34.038 2.6678 0.902 48.268 2.6604 

−3 - - - 1.784 25.479 2.877 1.157 39.24 2.824 

 
the liquid moves through the inner cylinder to the outer one. This indicates that 
short-wave axially directed perturbations generating vortices and azimuthal 
waves are interacting, and hence one may expect the appearance of complex 
regimes. If values of the axial wave numbers decrease, i.e., for the corresponding 
long-wave perturbations there are also an intersections of neutral curves for the 
converging flow. 

If temperature of the inner cylinder exceeds that of the outer one ( )0Ra 0< , 
neutral curves do not intersect, and thus it is difficult to expect the occurrence of 
complex modes. 

5. The Amplitude System and Transitions 

To investigate the secondary flows and the appearance of high instabilities in the 
flow (3) we use the nonlinear theory of bifurcation of hydrodynamic flows with 
cylindrical symmetry (see [28]-[33]). 

This theory allows one to find various liquid motion regimes existing in the 
vicinity of the points of intersection of neutral curves corresponding to the two 
types of secondary instability-vortices and azimuthal waves in the Dean flow. 
This theory has been applied in a rather wide class of problems, such, for 
example, as the Couette flow [34], the flow between permeable cylinders [35] 
[36] [37] [38] [39], a heat-conducting liquid flow between rigid and permeable 
cylinders [40] [41] [42] [43] [44]. 

The problems are reduced to the investigation of nonlinear dynamical 
autonomous systems of the amplitude equation, which is a generalization of 
Landaus amplitude equation. 

The ( ) ( )2 2SO O∗  symmetry enables one to reduce the six-dimensional 
amplitude system with unknown complex amplitudes 0η , η , 1η  to the 
four-dimensional motor subsystem for the modules of the amplitudes with free 
parameters σ , µ  (the damping decrements of the monotonic and oscillatory 
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perturbations, respectively). To the equilibria of this system, which is lying on 
the invariant subspaces, there correspond the motions of a fluid, which has the 
concrete physical nature [32]-[44]: main stationary flow; vortex flows, i.e., a 
secondary stationary axisymmetric flow; purely azimuthal waves, i.e., secondary 
oscillatory modes; spiral waves, i.e., secondary autooscillatory modes; mixed 
azimuthal waves, i.e., three frequency regimes; equilibria not lying on the 
invariant subspaces, i.e., equilibria of a general state, each of them corresponds 
to a quasiperiodic two-frequence solution of the amplitude system. 

As our calculations shows, depending on the parameter values of the problem, 
the motor subsystem may have no equilibria or may have equilibria of the above 
mentioned types. It is found, that transition schemes may turn out to be both 
rather complicated and absolute trivial. 

We present here the scheme of equilibria bifurcations of the motor subsystem, 
which we consider most interesting and allowing us to judge about the 
transitions characteristic of the considered system of small absolute values of 
radial Reynolds number  . 

Consider in detail the case for 3=  (dividing flow), 4α =  (perturbations 

are π
2

 periodical in the axial direction), 0Ra 0.873=  (temperature of the 

outer cylinder is higher than that of the inner one). 
For 0σ <  and 0rµ <  ( rµ  is the real part of damping decrement of 

oscillatory perturbations µ ) the equilibria fail to take place, but for 0rµ >  of 
all the equilibria of the motor subsystem there exist only unstable main 
stationary flow and unstable purely azimuthal waves. 

For 0σ =  and 0rµ <  there exist only stable main stationary flow,but for 
0rµ >  there are unstable main stationary flow and vortices. 

For 0σ >  and 0rµ <  the unstable main stationary flow and vortices exists 
fon any values of free parameters; vortices are stable for 2

r rµ µ<  and unstable 
for 2

r rµ µ> . 
For 0σ > , 0rµ >  the transitions associated with bifurcations are 

graphically shown in Figure 2. 
The single lines show J-symmetric equilibria, the double lines indicate 

J-connected pair of equilibria. Stable equilibria are drawn by solid lines and 
unstable equilibria by dotted lines. The circles are the points at which the motor 
subsystem cycles bifurcate. 

For 0rµ =  from main flow (3) there simultaneowly bifurcate unstable pure 
azimuthal waves and unstable J-connected pair of spiral waves. Spiral waves are 
stable for 4

r rµ µ> , for 4
r rµ µ=  from them bifurcates an unstable connected 

pair of general equilibria. This pair exists in the range 4 8
r r rµ µ µ< <  and 

disappear for 8
r rµ µ=  merging with unstable mixed azimuthal waves. On the 

other hand at the point 9
r rµ µ=  mixed azimuthal waves merging with purely 

azimuthal waves. 
For 3

r rµ µ= , of a set of limit symmetric cycles of the motor subsystem in the 
form of number eight are branching off from mixed azimuthal waves and exists  
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Figure 2. Bifurcation values: 1 0rµ = , 2 2.75rµ = , 3 2.95rµ = , 4 3.025rµ = , 5 3.265rµ = , 6 3.8rµ = , 

7 4.003rµ = , 8 4.05rµ = , 9 4.1rµ = .  
 

 
Figure 3. Bifurcation values: 1 0rµ = , 2 0.8rµ = , 3 4.259rµ = , 4 4.88rµ = , 5 6.3rµ = , 6 10.009rµ = , 

7 15.285rµ = .  
 

in the range 3 5
r r rµ µ µ< < . They were calculated by using the software prepared 

in [34] [42], which enabled us to investigate the evolution, stability and bifurcatios 
of cycles for various values of the problem. The limit cycles of similar forms as 
the phase trajectories branching off from the mixed azimuthal waves are repeatedly 
met in the works (see, for example, [34]-[44]) when considering concrete problems 
between rotating vertical cylinders. In our case, the cycles are unstable and have no 
bifurcations. They exists in the small range 4.003 4.01rµ< <  and merges with 
the mixed azimuthal waves. 

Consider the case 0.5= −  (converging flow), 4α =  (perturbations are 
π 2  periodical in the axial direction), the Rayleigh number 0Ra 0.785=  
(temperature of the outer cylinder is higher than that of the inner) for 0σ > . 
The transitions associated with the bifurcation are graphically shown in Figure 
3. 
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In comparison to the case under consideration for diverging flow, the picture 
of bifurcations for converging flow becomes more complicated. 

A characteristic feature of the transitions in this case are the existence of 
several stable equilibria in the range changes rµ , for example, 2 4

r r rµ µ µ< < . 
For the values of a free parameter belonging to such ranges, in the experiments, 
the hysteresis phenomena are observed [42]. 

In this case, in contrast to the case 0>  for 4
r rµ µ= , from the mixed 

azimuthal waves branch off the nonsymmetric limit stable cycles similar to the 
deformed number eight, they lose their stability because of bifurcations of the 
period duplications at the point 5.3rµ =  and from it branches off a 
J-connected pair of stable II—revolution nonsymmetric cycles which exist for 
5.3 5.7rµ< < . A further increase of rµ  leads to the formation of another series 
of duplications of J-connected pairs of cycles which for 5.9rµ =  results in to 
the generation of J-connected pair of chaotic attractors; the form of their phase 
trajectories differs slightly from that of the trajectories of the generated cycles; 
changes gradually its form and disappears for 6.2rµ = . It can be calculated in a 
very narrow range of variation of the parameter.In the same way, as well as with 
vertical cylinders (see [44]), we can judge about the appearance of complex 
regimes. 

6. Conclusions 

In paper under consideration, we have examined possible transitions to complex 
modes in a heat-conducting flow produced by pumping a fluid around the 
annulus of a system of fixed porous horizontal cylinders. The liquid is under the 
action of a radial flow and a radial temperature gradient.  

1) Neutral curves corresponding to vortices and azimuthal waves are 
calculated. 

2) It is established that for diverging flow with small absolute values of radial 
Reynolds numbers and for sufficiently large values of the wave axial number, the 
intersections of neutral curves take place especially when temperature of the 
outer cylinder is higher than that of the inner one ( )0Ra 0> . This indicates that 
the short-wave axially directed perturbations generating vortices and azimuthal 
waves are interacting, and hence one may expect the appearance of complex 
regimes. If values of the axial wave numbers decrease, i.e., for the corresponding 
long-wave perturbations there are also intersections of neutral curves for the 
converging flow.  

If temperature of the inner cylinder exceeds that of the outer one ( )0Ra 0< , 
neutral curves do not intersect, and thus it is difficult to expect the occurrence of 
complex modes.  

1) Equilibria of a motor subsystem which are lying on the invariant subspaces 
are calculated. They correspond to stationary or periodic regimes of the fluid 
motion. 

2) Equilibria of a general state are calculated. They corresponds to a quasiperiodic 
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two-frequency solution of the amplitude system. 
3) It is shown that for a converging flow there are several stable equilibria on 

the range of change rµ . For the values of a free parameter belonging to such 
ranges, in the experiments, hysteresis phenomena are observed [42]. 

4) It is established that for the certain values of the problem, there exist stable 
or unstable limit cycles of the motor subsystem. 

5) It is shown that for converging flow, when temperature of the outer 
cylinder is higher than that of the inner one, the sequential duplications of a 
period of stable limit cycles lead to the generation of chaotic attractors and 
consequently as well as with vertical cylinders [43], we can judge about the 
appearance of complex regimes. 
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