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Abstract 
There are several examples of spaces of univariate functions for which we have a 
characterization of all sets of knots which are poised for the interpolation problem. 
For the standard spaces of univariate polynomials, or spline functions the mentioned 
results are well-known. In contrast with this, there are no such results in the bivariate 
case. As an exception, one may consider only the Pascal classic theorem, in the in-
terpolation theory interpretation. In this paper, we consider a space of bivariate piece-
wise linear functions, for which we can readily find out whether the given node set is 
poised or not. The main tool we use for this purpose is the reduction by a basic sub-
problem, introduced in this paper. 
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1. Introduction 

Consider the interpolation problem with a finite dimensional space of univariate func- 
tions S and a set of knots 1, , ,mt t ∈   that is for a given data { }1: , , mc c c=   find a 
function s S∈  satisfying the conditions  

( ) , 1, , .i is t c i m= =                          (1) 

We say that the set of knots is poised for S if for any data c  there is a unique 
function s S∈  satisfying the conditions (1). A necessary condition of the poisedness is  

dim .m S=  

There are several cases of spaces S of univariate functions for which we have a 
characterization of all poised sets. 
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Suppose that nS π≡  is the space of polynomials of degree at most n. We have that 
dim 1.n nπ = +  Then, according to the Lagrange theorem, all sets of knots { }1 1, , nt t +  
are poised. 

Now suppose that 
1, ; , ,:

mn m n x xS S S≡ =


 is the space of spline functions of order n 
and 1: :ma x x b= < < =  are the knots of the space (see, e.g., [1]). Here ,n ms S∈  means 
that s is piecewise polynomial function of degree at most 1,n −  s vanishes outside of 
the segment [ ],a b  and s belongs to the differentiability class ( )2 .n−  We have that 

,dim n mS m n= −  and the set of interpolation knots { }1, , m nt t −  is poised if and only if 
the following conditions are satisfied:  

, 1, , .i i i nx t x i m n+< < = −  

This result is due to Schoenberg and Whitney [2] [3]. In the univariate case there are 
also several characterization results concerning the trigonometric interpolation. 

In contrast with this there are no such results in the bivariate case. As an exception 
one may consider only the Pascal classic theorem, in the interpolation theory inter- 
pretation (see, e.g., [4]). To present it let 2S ≡ Π  be the space of bivariate polynomials 
of total degree at most 2. We have that 2dim 6.Π =  Let also 1Π  be the space of 
bivariate linear functions, 1dim 3.Π =  Then consider any set of 6 nodes { }1 6, ,A A  
in the plane. Construct 3 new nodes as follows:  

1 12 45 2 23 56 3 34 61, ,B B B= ∩ = ∩ = ∩       

where ij  is the line passing through the nodes iA  and .jA  Then according to the 
Pascal theorem the 6 nodes { }1 6, ,A A  are lying in a conic if and only if the 3 nodes 
{ }1 2 3, ,B B B  are collinear. To arrange the case connected with the parallel pairs of lines 
one may replace the plane with the projective one. The interpolation version of this 
result is: 

Theorem 1.1 (Pascal) Any 6 nodes { }1 6, ,A A  in the plane are poised for 2Π  if 
and only if the set of respective 3 nodes { }1 2 3, ,B B B  is poised for 1.Π  

Note that the latter poisedness condition with 1Π  merely means that 1 2 3, ,B B B  
are not collinear. 

Next we are going to introduce the space of bivariate functions we will consider in 
this paper. For this we need some preliminaries. 

Let us define a strip of triangles. Fix a sequence of points in the plane  

{ }1 2: , , nV V +=   

for the vertices of triangles. Then consider the n triangles  

[ ]1 2: , , , 1, , .i i i iV V V i n+ +∆ = =                       (2) 

Note that by a triangle we mean the closed set bounded by the sides of the triangle. 
The sequence of the triangles  

{ }1: , , n∆ = ∆ ∆  

makes a triangulation of the following strip (see Figure 1)  

1
: .n

ii=
∆ = ∆
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Figure 1. The strip ∆ .  

 
Sometimes it is convenient to call itself ∆  a strip, too. 
Here we require that the intersection of any neighboring triangles i∆  and  

1, 1, , 1,i i n+∆ = −  is the common side [ ]1 2, ,i iV V+ +  any pair of triangles i∆  and  

2 , 1, , 2,i i n+∆ = −  have a single common point which is the vertex 2 ,iV +  and all the 
other pairs of the triangles are disjoint. 

It is easily seen that the sides [ ]2, , 1, , ,i iV V i n+ =   together with the sides [ ]1 2,V V  
and [ ]1 2, ,n nV V+ +  form the boundary of the strip ∆  (see Figure 1). We call these 
sides boundary sides. The remaining sides of the triangles are called interior sides of the 
strip. Let us call also the sides [ ]1 2,V V  and [ ]1 2, ,n nV V+ +  the left and right (boundary) 
sides of the strip ,∆  respectively, and denote  

( ) [ ] ( ) [ ]1 2 1 2: , , : , .n nl V V r V V+ +∆ = ∆ =  

For a triangle i∆  given in (2) we call the sides [ ]1,i iV V +  and [ ]1 2, ,i iV V+ +  the left 
and right sides of it, respectively. 

Denote by ( )S ∆  the linear space of continuous piecewise linear functions on .∆  
More precisely, ( )s S∈ ∆  means that 

i) 1, 1, , .
i

s i n
∆
∈Π =   

ii) ( ).s C∈ ∆  
Here 

Ds  means the restriction of s on D. 
Definition 1.2 A set of nodes { }1: , , mA A=   is called poised for the space ( )S ∆  

if for any data { }, 1, ,ic i m=   the interpolation problem  

( ) , 1, , ,i is A c i m= =                          (3) 

has exactly one solution ( ).s S∈ ∆   
Let us denote the interpolation problem (3) by { }, .∆   
The aim of this paper is the characterization of all poised sets for the space ( ).S ∆  

The following is a necessary condition of the poisedness:  

( )# dim .m S= = ∆                          (4) 

To prove this consider the fundamental functions of the interpolation  

( ) , 1, , ,is S i m∈ ∆ = 

  defined by the interpolation conditions  
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( ) , , 1, , ,j
i j is A i j mδ= = 

  

where δ  is the symbol of Kronecker. 
Obviously the fundamental functions are linearly independent and for the solution of 

the interpolation problem (3) we have the following formula of Lagrange:  

1
.

m

i i
i

s c s
=

= ∑   

Thus, the fundamental functions form a basis for ( )S ∆  and we get (4). 
Now, let us show that the set of vertices   is a poised set for ( ).S ∆  Indeed, 

having the values of a linear function at the vertices of a triangle ,  1, , ,i i n∆ =   we 
recover it in a unique way on the triangle. On the other hand it is easily seen that the 
recovered piecewise linear function is continuous on .∆  Thus, the dimension of 

( )S ∆  equals to the number of the vertices in the strip :∆   

( )dim 2.S n∆ = +                            (5) 

In view of (4) we obtain that any poised set   for the space ( )S ∆  consists of 
2n +  nodes:  

# 2.n= +                              (6) 

Let us call interpolation problem { },∆   satisfying this condition exact. In the cases 
# 2n< +  and # 2n> +  we call the problem { },∆   underdetermined and over- 
determined, respectively. 

Denote by  

, 1, , 2,i i nσ = +

  

the fundamental polynomials with respect to the poised set  . They form a basis for 
the space ( ).S ∆  Thus we have the following representation for any piecewise linear 
function ( ) :s S∈ ∆   

( )
2

1
.

n

i i
i

s s V σ
+

=

= ∑   

In view of this representation the interpolation problem (3) reduces to m linear 
equations with 2n +  unknowns, which are the values a piecewise linear function at 
the vertices  . Hence an exact interpolation problem { },∆   is poised if and only if 
the following Vandermonde determinant does not vanish:  

{ }, 0,V ∆ ≠                              (7) 

where  

{ }

( ) ( )
( ) ( )

( ) ( )

1 1 1 2

2 1 2 2
,

2 1 2 2

.

n

n

n n n

A A
A A

V

A A

σ σ
σ σ

σ σ

+

+
∆

+ + +

=





  



 

 



 

 

Thus our main problem can be formulated in terms of Vandermonde determinant in 
the following way: 
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Characterize all exact sets   for which the Vandermonde determinant does not 
vanish, i.e., (7) holds. 

The following two propositions are basic Linear Algebra facts.  
Proposition 1.3 Given an exact problem { }, .∆   Then each of the following con- 

ditions is equivalent to the poisedness of { },∆  : 

i) All fundamental functions , 1, , 2,is i n∈∆ = +

  exist. 
ii) ( ) , 0 0.s S s s∈ ∆ = ⇒ =


  

Proposition 1.4 Given a problem { },∆   Then the following hold: 
i) If the problem is underdetermined then there is a function ( )s S∈ ∆  such that  

0, and 0.s s= ≠


 
ii) If the problem is overderdetermined then there is a node in   for which no 

fundamental function exists. 

2. Subproblems 

For a given strip ∆  denote by , ,m
k k m n∆ ≤ ≤ ≤  the following part of it  

{ }1: , , , .m
k k k m+∆ = ∆ ∆ ∆  

For a problem { }, ,∆  denote by { }, ,
m

k
∆  the subproblem with the function 

space ( ) ,m
kS ∆  and the set of nodes ,m m

k k= ∩∆   i.e., 

{ } { }, : , .
m m m

k kk
∆ = ∆   

Problems with Boundary Conditions 

Denote by ( ):S ∆  the linear space of continuous piecewise linear functions on ∆  
vanishing at the left (boundary) side of the strip ∆ , i.e.,  

( ) ( ) ( ){ }: , 0 .lS s S s
∆

∆ = ∈ ∆ =  

In the similar way one can define the space of functions vanishing at the right side of 
the strip ,∆  i.e.,  

( ) ( ){ }( :) , 0 .rS s S s
∆

∆ = ∈ ∆ =  

One may define also the space of functions vanishing at the both left and right sides 
of the strip ,∆  i.e.,  

( ) ( ) ( ) ( ){ }: : , 0 .l rS s S s s
∆ ∆

∆ = ∈ ∆ = =  

By counting the number of vertices of the strip where a function from the space may 
differ from 0,  we get, in the same way as in the proof of (5), that  

( ) ( ) ( )dim : dim : and dim : : 2.S S n S n∆ = ∆ = ∆ = −  

Denote the interpolation problems with the spaces ( ) ( ): , : ,S S∆ ∆  ( ): : ,S ∆  and a 
node set   by { }:, ,∆   { }: , ,∆   { }: :, ,∆   respectively. 

As we will see below the poisedness of interpolation problems with boundary con- 
ditions readily can be reduced to the previous general interpolation problems by just 
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adding two nodes in the left or/and right sides of the strip. 
For this purpose it is convenient to use the following notation for the strip ∆  

{ }1 22 : , ,V V+ = ∪   

where 1V  and 2V  are the two vertices of ( ).l ∆  

{ }1 22 : , ,n nV V+ ++ = ∪   

where 1nV +  and 2nV +  are the two vertices of ( ).r ∆  Denote also  

{ }1 2 1 22 2 : , , , .n nV V V V+ ++ + = ∪   

Let us call two interpolation problems equivalent if both they are poised or both they 
are not poised. By using Proposition 1.3, ii), we readily get  

Proposition 2.1 The folllwing pairs of interpolation problems are equivalent: 
{ }:,∆   and { }, 2 ,∆ +  

{ }: ,∆   and { }, 2 ,∆ +  

{ }: :,∆   and { }, 2 2 .∆ + +   
Note that in the subproblem { }, 2

m

k
∆ +  we have that  

{ }1 22 : , ,m mV V+ ++ = ∪   

where 1mV +  and 2mV +  are the two vertices of ( ).m
kr ∆  The situation is similar with 

the sets 2+  and 2 2.+ +  

3. Reductions of Interpolation Problems 

Below we bring a main theorem regarding the reduction of an interpolation problem 
having an exact or overdetermined subproblem.  

Theorem 3.1 Suppose that { },∆   is an exact problem where the strip ∆  consists 
of n triangles and { },

m

k
∆   is a subproblem, where 1 k m n≤ ≤ ≤ . 

Then the following hold. 
i) If the subproblem { },

m

k
∆   is exact and not poised, or overdetermined, then the 

problem { },∆   is not poised. 
ii) If the subproblem { },

m

k
∆   is poised then the problem { },∆   is poised if and 

only if the both following two reduced problems  

{ } { }1

1 1
, 2 , , 2 ,

k n

m

−

+
∆ + ∆ +                     (8) 

are exact and poised.  
Note that in the cases 1k =  and m n=  we have just one reduced problem instead 

of two.  
Proof. Suppose first that the subproblem { },

m

k
∆   is exact and not poised, or 

overdetermined. Then, in view of Propositions 1.3, i), and 1.4, ii), there is a node 
m
kA∈  which does not have a fundamental function. Then, evidently the same node 

A does not have a fundamental function for the whole node set ,  too. Hence, in 
view of Proposition 1.3, i), we get that the problem { },∆   is not poised. 

Now consider the case when the subproblem { },
m

k
∆   is poised. 

Let us assume that the both reduced problems in (8) are poised. Then let us prove 
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that the problem { },∆   is poised, too. Notice first that the problem { },∆   is exact. 
Thus, by following Proposition 1.3, ii), assume that ( ) , 0.s S s∈ ∆ =


 Now, since the 

subproblem { },
m

k
∆   is poised, we conclude that s vanishes on the triangles  

, , 1, , .i i k k m∆ = +   Therefore s vanishes at the right side of the triangle 1k−∆  and at 
the left side of the triangle 1.m+∆  Thus we have that { }1

1 2 0ks − +
=

  and { }12 0.n
m

s
++

=
  

Finally, since the problems in (8) are poised, we obtain that s vanishes on the triangles 
, 1, , 1i i k∆ = −  and , 1, 2, , .i i m m n∆ = + +   Hence s vanishes on all triangles of .∆  
Next let us assume that the problem { },∆   is poised and prove that the both 

reduced problems in (8) are poised, too. Let us show first that these reduced problems 
are exact. There are 1k −  and n m−  triangles in the reduced problems (8), respectively. 
Thus for exactness we need 1k +  and 2n m− +  nodes, respectively, altogether  

3n k m+ − +  nodes. It is easily seen that indeed, in two mentioned problems together 
we have that many nodes. Indeed, this is the number of the nodes in   minus the 
number of the nodes in m

k  and plus 4, i.e., ( )2 3 4 3.n m k n k m+ − − + + = + − +   
Latter ( )4 2 2= +  nodes come from the added nodes in the boundary in the node sets 

2+  and 2+ . 
Now, assume by way of contradiction that a subproblem in (8) is not exact. 

Therefore one of the subproblems, say the first problem in (8), is underdetermined, and 
another is overdetermined. Then, in view of Proposition 1.4, i), there is a function 

( )1
1
ks S −∈ ∆  such that  

{ }1 21
0, and 0.ks s− +

= ≠


                     (9) 

Thus s here vanishes on 1
1
k−  and, since of “+2”, also on the right side of the 

triangle 1.k−∆  Now let us extend this function s from 1
1
k−∆  till the whole strip ∆  

by defining it to be 0 on the triangles ,  , 1, , .i i k k n∆ = +   Denote by s  the extended 
function. Then it is easily seen that ( ) , 0s S s∈ ∆ = 


 and 0.s ≠  This, in view of 

Proposition 1.3, ii), means that the problem { },∆   is not poised, which contradicts 
our assumption. 

Finally, let us show that the both reduced problems in (8) are poised. Assume by way 
of contradiction that one of them, say the first, is not poised. Since it is exact, we can 
use Proposition 1.3, ii), to get that there is a function ( )1

1
ks S −∈ ∆  such that the 

relation (9) is satisfied. From here we continue in the same way as in the above step, 
after the relation (9). 

4. The Basic Interpolation Problems 

Let us denote by “3” the problem with a strip consisting of a triangle and at least three 
nodes inside. The respective basic problem, denoted briefly by “ 3 B ”, is a “3” problem 
with exactly three nodes, which are non-collinear. 

Then, let us denote by “ 2 2+ ” the problem with a strip consisting of two triangles 
and exactly two nodes in each of them. Note that in this case no node can lie in the 
interior side of the strip. We call a problem “ 2 2+ ” basic and denote it by “ 2 2 B+ ” if 
in each triangle the line passing through the two nodes there does not intersect the 
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other triangle. Note that in the case of “ 2 2 B+ ” problem no node can coincide with a 
vertex of the strip. 

Next consider an interpolation problem denoted by “ 2 1 1 2, ,m+ + + + ” where m is 
the number of 1’s. This is the interpolation problem with a strip consisting of 2m +  
triangles such that each of the first and the last triangles contains exactly two nodes and 
each of the other m triangles contains exactly a node. Note that in this case no node can 
be located in an interior side of the strip. We call a problem “ 2 1 1 2, m+ + + + ” basic 
and denote it by “ 2 1 1 2,m B+ + + + ” if the line passing through the two nodes in 
each of the first and the last triangles does not intersect the neighboring triangle. 

Note that the “ 2 2+ ” problem can be considered as a special case of the  
“ 2 1 1 2, m+ + + + ” problem, where 0.m =  

The Poisedness of the Basic Problems 

Let us start this section with a simple lemma. Suppose that two nodes ,A B  of a node 
set   belong to a triangle of .∆  Denote by ,A B′ ′  the points of intersection of the 
line passing through A  and B  with the sides of the triangle. Let us call { },A B′ ′  the 
intersection pair of { }, .A B  Denote by ′  the set of the nodes received from   by 
replacing the pair { },A B  with { },A B′ ′  there. We call the set ′  the line trans- 
formation of the set   with respect to the pair { }, .A B  

Two node sets   and   are called line-equivalent if one of them can be obtained 
from the other by means of several line transformations. 

Lemma 4.1 The exact interpolation problems { },∆   and { },∆   are equivalent, if 
the node sets   and   are line-equivalent.  

Proof. In view of Proposition 1.3, ii), it suffices to verify that  

( ) ( ), 0 , 0,s S s s S s ′∈ ∆ = ⇔ ∈ ∆ =
 

                (10) 

where the node set ′  is the line transformation of the set   with respect to an 
appropriate pair of nodes { }, .A B ⊂   Now notice that (10) readily follows from the 
evident fact that  

( ) ( ) ( ) ( )0 0,s A s B s A s B′ ′= = ⇔ = =  

where { },A B′ ′  is the intersection pair of { }, .A B  Indeed, each side of this equiva- 
lence means merely that s  vanishes on the line passing through A  and .B   

The proof of the following proposition contains an easy algorithm for verifying the 
poisedness of basic problems.  

Proposition 4.2 The problems “ 3 B ” and “ 2 1 2 B+ + ” are always poised. 
The problem “ 2 1 1 2, ,m B+ + + + ” where 1,m ≠  may be poised or not, depen- 

ding on the configuration of nodes. Moreover, if the problem is not poised then it 
becomes poised after changing the location of one of the two nodes in the first or the 
last triangle, such that the slope of the line passing through the two nodes is changed. 

Note that the case 0m =  here concerns the problem “ 2 2 .B+ ” 
Proof. The case of “ 3 B ” is obvious. 
Consider the problem “ 2 1 2 B+ + ” (see Figure 2). Suppose that { }1 2 3, ,∆ = ∆ ∆ ∆   
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Figure 2. The problem “ 2 1 2 B+ + ”.  

 
and { }1 2 1 2, , , ,A A B C C= , where 1 2 1 2, , ,A A B∈∆ ∈∆  1 2 3, .C C ∈∆  In view of Lem- 
ma 4.1 we may replace the node set   with the set { }1 2 1 2, , , , ,A A B C C′ ′ ′ ′ ′=  where 
{ }1 2,A A′ ′  and { }1 2,C C′ ′  are the intersection pairs of the respective pairs from .  
Since the problem { },∆   is basic we have that the nodes 1 2 1 2, , ,A A C C′ ′ ′ ′  belong to the 
four sides of the triangles 1∆  and 3 ,∆  which are boundary sides of the strip ,∆  one 
node in each side (see Figure 2). Now suppose by way of contradiction that the 
problem { }, ′∆   is not poised. This in view of Proposition 1.3, ii), means that there is 
a function ( )s S∈ ∆  such that 0s ′ =

 while 0.s ≠  Then it is easily seen that 

1
0s

∆
≠  and therefore ( )1 0.s V ≠  Assume without loss of generality that ( )1 0.s V >  

Then, since s is linear and ( ) ( )1 2 0s A s A′ ′= =  we get readily that ( )2 0s V <  and  
( )3 0.s V <  Now, in view of the latter condition and ( ) ( )1 2 0,s C s C′ ′= =  we get readily 

that ( )5 0s V >  and ( )4 0.s V <  Thus s assumes negative values at all the vertices of the 
triangle 2∆  and it vanishes at 2 ,B∈∆  which is a contradiction. 

Finally, consider the problem “ 2 1 1 2, ,m B+ + + + ” where 1.m ≠  Suppose that 
{ }1 2, , m+∆ = ∆ ∆  and { }1 2 1 1 2, , , , , ,mA A B B C C=  , where  

1 2 1 1 1 2 2, , , , .i i mA A B C C+ +∈∆ ∈∆ ∈∆  
Assume that the problem { },∆   is not poised. This in view of Proposition 1.3, ii), 

means that there is a function s such that  

( ) , 0 and 0.s S s s∈ ∆ = ≠


                      (11) 

It is easily seen that 
1

0.s
∆
≠  Indeed, 

1
0s

∆
=  implies that s vanishes at the left side 

of 2 .∆  Then, in view of the condition ( )1 0,s B =  where 1 2B ∈∆  we conclude that 

2
0.s

∆
=  Notice that 1B  does not belong to the left (or right) side of the triangle, since 

the problem is basic. Continuing this way we obtain 0, 2, , 2
i

s i m
∆
= = +  and thus 

0,s =  contradicting our assumption. In the same way we get that  

2
0.

m
s

+∆
≠                              (12) 

By replacing s, if necessary, with a nonzero constant multiple of it, assume that 
( )1 1.s V =  Now, in view of the condition ( ) ( )1 2 0,s A s A= =  where 1,iA ∈∆  the func- 

tion ( )s S∈ ∆  is determined on 1.∆  Indeed, the nodes 1 1 2, ,V A A  are not collinear 
since the problem is basic. Hence s is determined at the left side of the second triangle 

2 .∆  Next, we have that ( )1 0,s B =  where 1 2B ∈∆  does not belong to the left (or 
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right) side of the triangle. Thus we get that s is determined on 2 .∆  Continuing this 
way we get that s is determined on 1.m+∆  Now s is determined at the left side of the 
last triangle 2 .m+∆  By using the condition ( )1 0,s C =  where 1 2 ,mC +∈∆  we con- 
clude, in view of (12), that the zero set of s in 2m+∆  is a line   passing through 1.C  
Thus if the last node 2C  lies in this line then we have that s vanishes at 2C  too. 
Hence the condition (11) holds, which, in view of Proposition 1.3, ii), means that the 
problem is not poised. While the condition 2C ∉   implies that s vanishes on 2m+∆  
which contradicts (12) and whence (11). Thus the problem is poised in this case. This 
consideration makes clear also the “moreover” part of Proposition. 

It is worth mentioning that if the restriction of s on the left side of triangle 2m+∆  has 
a zero (as it will happen in the case of “ 2 1 2 B+ + ”) denoted by C then the basic 
problem is poised, wherever the two last nodes 1C  and 2C  are situated. Indeed, 
otherwise we would have that the zero-line   of s in the last triangle passes through 

1 2, ,C C  and C, which contradicts the fact that the problem is basic. 

5. Reductions by Basic Subproblems 
5.1. Reduction by “3/B” 

In the case of basic subproblem “ 3 B ” we have a poised subproblem with one triangle. 
Thus we get from Theorem 3.1, ii), the following  

Corollary 5.1 Assume that { },∆   is an exact problem, where the strip consists of n 
triangles. Assume also that a triangle , 1 ,k k n∆ ≤ ≤  contains exactly 3 non-collinear 
nodes. Then the interpolation problem { }, ,∆   is poised if and only if the both 
following two reduced problems  

{ } { }1

1 1
, 2 , , 2 ,

k n

k

−

+
∆ + ∆ +                     (13) 

are exact and poised. 
Note that in the cases 1k =  and k n=  we have just one reduced problem instead 

of two. 

5.2. Reduction by “2 + 1 + ··· + 1 + 2/B” 

For this case we get from Theorem 3.1 the following  
Corollary 5.2 Assume that { },∆   is an exact problem, where the strip consists of n 

triangles. Assume also that the subproblem { } 2
, , 1 2,

k m

k
k n m

+ +
∆ ≤ ≤ − −  is basic of 

type “ 2 1 1 2, m B+ + + + ,” where 0, 1.m m≥ ≠  Then the problem is not poised if 
the subproblem is not poised. In the case when the subproblem is poised the problem 
{ },∆   is poised if and only if the both following two reduced problems  

{ } { }1

1 3
, 2 , , 2 ,

k n

k m

−

+ +
∆ + ∆ +                      (14) 

are exact and poised. 
Note that in the cases 1k =  and 2k n m= − −  we have just one reduced problem 

instead of two. 
Since, by Proposition 4.2, the basic problems of type “ 2 1 2 B+ + ” are always poised 
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we get from Theorem 3.1, ii), the following  
Corollary 5.3 Assume that { },∆   is an exact problem, where the strip consists of n 

triangles. Assume also that the subproblem { } 2
, , 1 2,

k

k
k n

+
∆ ≤ ≤ −  is basic of type 

“ 2 1 2 B+ + ”. Then the problem { },∆   is poised if and only if the both following two 
reduced problems  

{ } { }1

1 3
, 2 , , 2 ,

k n

k

−

+
∆ + ∆ +   

are exact and poised.  
Note that in the cases 1k =  and 2k n= −  we have just one reduced problem 

instead of two. 

6. Existence of a Reduction 

In this section we prove that every exact problem has a subproblem of type “3”, “ 2 2+ ”, 
or “ 2 1 1 2,m+ + + + ”. Next, we show that by applying line-transformations to this 
subproblem, we can reduce it to a basic subproblem or determine that the given exact 
problem is not poised. After this, by following the algorithm pointed out in the proof of 
Proposition 4.2, we may verify whether the basic subproblem is poised or not. If not 
then, in view of Theorem 3.1, i), we conclude that the given exact problem is not poised 
either. If the basic subproblem is poised then we may apply the respective reduction, 
given by Corollaries 5.1, 5.2, or 5.3. Thus we have a complete solution of the poisedness 
problem. 

Theorem 6.1 Assume that { },∆   is an exact problem. Then it has a subproblem of 
type “3”, “ 2 2+ ”, or “ 2 1 1 2,m+ + + + ”. Moreover, by using line-transformations, we 
either determine that the problem is not poised, or we reduce the node set   to   
such that the line-equivalent problem { },∆   has a basic subproblem of type “ 3 B ”, 
“ 2 2 B+ ”, or “ 2 1 1 2,m B+ + + + ”.  

Proof. Suppose that a triangle contains more than 3 nodes, or exactly 3 collinear 
nodes. Then the problem obviously is not poised and also we have a type “3” sub- 
problem. If a triangle contains exactly 3 non-collinear nodes then we have a type “ 3 B ” 
basic subproblem. 

Now, let us assume that no triangle of ∆  contains more than 2 nodes. 
Step 1. Let us verify that the problem { },∆   contains a subproblem of type “ 2 2+ ”, 

or “ 2 1 1 2,m+ + + + ”. 
Let us throw away those triangles of ∆  which do not contain nodes from .  Let 

us throw away also those triangles of ∆  which contain just one node from   located 
in an interior side of .∆  By saying a node is thrown we mean that it does not belong to 
the remained triangles. 

Notice that only a node located in an interior side of the strip can be thrown. 
Moreover, this can happen only if the both neighboring triangles were thrown, i.e., if it 
is the only node in the interior side and also the only node in the both neighboring 
triangles. 

Assume that after this operation the connected blocks of remained triangles in ∆  
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are  
1 2
1 2
, , , ,l

l

kk k
k k k

′′ ′∆ ∆ ∆                          (15) 

where 1 1 2 21 .l lk k k k k k n′ ′ ′≤ ≤ < ≤ < < ≤ ≤  
Now, let us verify that for a block here the number of nodes (from  ) is greater or 

equal to the number of triangles plus two. 
Assume by way of contradiction that for all blocks in (15) the number of nodes does 

not exceed the number of triangles plus one. Then we get that the number of nodes in 
all above connected blocks is less than or equal to the number of triangles in all 
connected pieces plus l , where l  is the number of blocks in (15). 

Next, consider the breaks, i.e., the dropped blocks. For each break we have that the 
number of nodes, i.e., number of the thrown nodes in the above mentioned operation, 
is less than or equal to the number of triangles there minus 1. Indeed, a such node (in 
an interior side of ∆ ) is thrown if both triangles containing it where thrown. Thus we 
can assign two thrown triangles to each thrown node. Also note that all the triangles 
assigned are different. Hence the number of nodes in all above mentioned breaks is less 
than or equal to the number of the triangles there minus 1l − , since there are at least 

1l −  breaks. 
Thus we may conclude that the number of nodes in ∆  does not exceed the number 

of triangles there plus ( )( )1 1 .l l= − −  This contradicts the assumption that the pro- 
blem { },∆   is exact. 

Now assume, without loss of generality, that in the first block 1
1

k
k
′∆  the number of 

nodes from   is greater or equal to the number of triangles there plus two. Note that 
if a triangle in this block contains only one node then it is not located in its left or right 
side, otherwise the triangle would be thrown away before. 

Since no triangle contains three nodes, we get that there is a triangle in this block 
containing two nodes. Consider the first such triangle ,k∆  i.e., a such triangle with the 
minimal subscript 1.k i≥  If both the two nodes here are lying in the right side of the 
triangle then the next triangle 1k+∆  contains only these two nodes. Now notice that in 
the triangles from 

1i
∆  till 1,k+∆  the number of nodes equals to 1 2,k i− +  i.e., the 

number of triangles here. This means that there is another triangle in the first block, 
following 1,k+∆  containing two nodes, such that at least one node is not lying in the 
right side of the triangle. 

Then consider the first such triangle .k ′∆  If one of the two nodes here is in the right 
side of the triangle then the next triangle 1k ′+∆  also contains two nodes, because 
otherwise it would be thrown away before. Now notice that in the triangles from 

1i
∆  

till 1,k ′+∆  the number of nodes does not exceeds 1 3,k i′ − +  i.e., the number of 
triangles here plus 1. This means that there is another triangle in this series, denoted by 

,l∆  following 1,k ′+∆  containing two nodes, which do not lie in its right side. This will 
be the first triangle of the desired subproblem. 

Now notice that in the triangles from 1,k ′+∆  till ,l∆  the number of nodes equals to 

1 2,l i− +  i.e., the number of triangles here plus 1. This means that there is another 
triangle in the first block, following ,l∆  containing two nodes. Denote by l ′∆  the 
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first such triangle. This will be the last triangle of the desired subproblem. First notice 
that each triangle between l∆  and ,l ′∆  if there is a such, contains just one node, 
which, as was mentioned earlier, cannot be located in its left or right side. Therefore no 
node in l ′∆  belongs to the left side of the triangle, since otherwise 1l ′−∆  would con- 
tain a node in its right side. Note also that in this case 1l ′−∆  does not coincide with 

,l∆  since the latter has no node in its right side. 
Thus the subproblem { },

l

l

′
∆   is of type “ 2 2+ ”, or “ 2 1 1 2,m+ + + + ” with 

1.m ≥  
Step 2. Next, by using line-transformations, we either reduce this subproblem to a 

basic subproblem or determine that the problem { },∆   is not poised. 
First suppose that the subproblem { },

l

l

′
∆   is of type “ 2 2+ ”. If it is not basic then 

the line through the two nodes in a triangle intersects its interior side. Then by 
replacing these two nodes with their intersection pair we will have in the other triangle 
one more node, i.e., three nodes. This case was considered in the beginning of the 
proof. 

Finally, suppose that the subproblem { },
l

l

′
∆   is of type “ 2 1 1 2,m+ + + + ”, with 

1.m ≥  Now, if this subproblem is not basic then in the same way as in the previous 
case we may reduce it by line transformation to a problem of the same type, where the 
number of 1’s equals to 1.m −  Thus we may complete readily the proof by using in- 
duction on m, where the first step of induction corresponds to the case 0m =  
considered already. 

7. Final Remarks 
7.1. Some Necessary Conditions of Poisedness 

Consider a problem { }, ,∆   where the strip consists of n triangles. Denote the 
number of nodes from   in the triangles 1, , , , 1 ,k k m k m n+∆ ∆ ∆ ≤ ≤ ≤  by :m

kν   

:= # .m m
k kν   

The following proposition gives some necessary conditions of poisedness. 
Proposition 7.1 Given a poised problem { }, ,∆   where the strip consists of n 

triangles. Then for each k and , 1 ,m k m n≤ ≤ ≤  we have that  

1 3.m
km k m kν− − ≤ ≤ − +                       (16) 

Moreover, in the cases 1k =  and m n=  we have stricter inequalities:  

1 2, 1 3.m n
km m n k n kν ν≤ ≤ + − + ≤ ≤ − +                (17) 

Proof. Let us prove first the right inequality in (16): 

3.m
k m kν ≤ − +                         (18) 

Indeed, suppose conversely that 4.m
k m kν ≥ − +  Then the subproblem { }, ,

m

k
∆   is 

overdetermined. Therefore the problem { }, ,∆   in view of Theorem 3.1, is not poised, 
which is a contradiction. 

In particular, we get from (18) that  
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1
1 12, 1.n k

m n m kν ν −
+ ≤ − + ≤ +                      (19) 

Now, in view of the relations 1 12m n
mnν ν += + −  and 1

12n k
k nν ν −= + −  we get the 

inequalities in the left sides in (17). 
Finally, let us verify the left inequality in (16). In view of (19) we have  

( ) ( )1
1 12 2 1 2 1.m k n

k mn n k n m m kν ν ν−
+= + − − ≥ + − + − − + = − −  

From the particular case 2m k= +  of (16) we have that  
21 5, 1, , .k

k k nν +≤ ≤ =   

Therefore, if in an exact problem { },∆   some three successive triangles do not 
contain nodes then the problem is not poised. 

Also, in view of (17), we have that an exact problem is not poised if there are no 
nodes in the first or the last triangles of the strip. 

In the last subsection we consider the case when there are no nodes in two successive 
triangles which do not include the first or the last triangles of the strip. 

7.2. Reduction “0 + 0” 

Theorem 7.2 Given an exact problem { }, ,∆   where the strip consists of n triangles. 
Suppose that some two successive triangles k∆  and 1,k+∆  where 2 2,k n≤ ≤ −  do 
not contain nodes. Then the problem { },∆   is poised if and only if the both fol- 
lowing two reduced problems  

{ } { }1

1 2
, , , ,

k n

k

−

+
∆ ∆                         (20) 

are exact and poised. 
Proof. Let us assume that the both reduced problems in (20) are poised. Notice that 

then the problem { },∆   is exact. Now let us prove, by following Proposition 1.3, ii), 
that the problem { },∆   is poised, too. Thus, assume that ( ) , 0.s S s∈ ∆ =


 From 

here we get that 1
1

0ks − =


 and 
2

0.n
k

s
+
=


 Since the two subproblems in (20) are poised, 

we conclude that s vanishes on the triangles , 1, , 1i i k∆ = −  and  
, 2, 3, , .i i k k n∆ = + +   Therefore s vanishes also at the left side of the triangle k∆  

and at the right side of the triangle 1.k+∆  In particular s vanishes at all the vertices of 
triangles k∆  and 1.k+∆  Thus it vanishes on these two triangles too. Hence 0.s =  

Next let us assume that the problem { },∆   is poised and prove that the both 
reduced problems in (20) are poised. 

Let us show first that the both reduced problems in (13) are exact. There are 1k −  
and 1n k− −  triangles in the reduced problems (20), respectively. Therefore for exact- 
ness we need 1k +  and 1n k− +  nodes, respectively, altogether 2n +  nodes. Now, 
assume by way of contradiction that a subproblem in (20) is not exact. Then a sub- 
problem is overdetermined and the other is underdetermined. Therefore, by Theorem 
3.1, i), the problem is not poised, which is a contradiction. 

Finally, let us show that both the reduced problems in (20) are poised. Assume by 
way of contradiction that one of them is not poised. Then again, by Theorem 3.1, i), the 
problem is not poised, which is a contradiction. 
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