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Abstract 
In this paper, we established a connection between a square matrix “A” of order “n” and a matrix 

( )n n nX x x x x+ +=1 1 2 1, , , ,  defined through a new approach of the recursion relation i ix Ax+ =1 . 
(where x1  is any column matrix with n real elements). Now the new matrix nX +1  gives us a cha-
racteristic equation of matrix A and we can find the exact determination of Eigenvalues and its Ei-
genvectors of the matrix A. This new approach was invented by using Two eigenvector theorems 
along with some examples. In the subsequent paper we apply this approach by considering some 
examples on this invention. 
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1. Introduction 
In this article, we present results connecting the Eigenvalues and vectors [1]-[5] of a square matrix “A” of order 
“n” and a matrix ( )1 1 2 1, , , ,n n nx x x x+ +=X   defined (where x1 is any column matrix with n elements) through 
the recursion relation 1i ix x+ = A . these results will be useful in the context of exact determination of 
Eigenvectors of a matrix associated with a specific Eigenvalue when the minimal polynomial is known. 
However this problem, of considerable interest in the field of numerical matrix analysis, is being considered in a 
separate study. 

2 Basic Points 
Before presenting these Eigenvector theorems, it is useful to introduce a few notations and some rather obvious 
lemmas. 
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Let A be a matrix with n Eigenvalues iλ  and associated Eigenvectors ( )1,2, ,iu i n=   Unless stated 
otherwise, these roots are assumed to be distinct. Similarly we define ( ) ( )1

n
iiM λ λ λ

=
= −∏  the minimal (and 

under the assumption of distinctness, also the characteristic) Polynomial [6] of A. 
kS : a set of distinct indices’s, a subset of set { }1,2, ,n . 
( )kSP : the vector of n components of the coefficients of ( )

k jj S λ λ
∉

−∏  in reverse order, with trailing 
zeroes. 

( )r kSP : the same vector as ( )kSP  but with leading zeroes; ( )r n k≤ −  
When { }S α= , a singleton, we shall write { }( )Sα α= =P P . 

( )ijv=V : the Vander monde matrix [7], defined by 1i
ij jV λ −= , , 1, 2, ,i j n=  . 

( )1 2, , ,n nw w w=W  : an nth order matrix with the following structure. The column 1jw + , ( )0,1, , 1j n= −  
has the last element as ja , successive elements of 1jw +  from below being obtained by accumulating 
successive terms in the expansion of ( )1 ja + .  

( ), ;a r nq : the left justified n-component vector of coefficients of ( )1 n ra −−  in the reverse order. 
( ), ;s a r nq : same vector as q above, but with S leading zeroes. 

J: the Jacobi Block matrix [7] [8] with diagonal elements and super diagonal elements1 
je : the j-th column of the identity matrix. 
jα : appropriate scalars as need be. 

3. Main Results 
The following useful lemmas are rather obvious: 

LEMMA 1: T
i i iα=V P e  

LEMMA 2: ( )T
kk i ii SS α

∈
= ∑V P e  

LEMMA 3: ( )T
k

r
r k i i ii SS α λ

∈
= ∑V P e  

LEMMA 4: ( ) 1, ; r
n iia r n

=
= ∑W q e  

For clarity we shall illustrate these notations and results by way of illustrations. 
ILLUSTRATION 0: 

let 4n = ; { } { }1 2 3 4 1 25, 8, 7, 9, 2 and 3,1S Sλ λ λ λ= = = = = = . 

1 1 1 1
5 8 7 9
25 64 49 81

125 512 343 729

 
 
 =
 
 
 

V  

2 3 2

2 3 2

4 2 3 2

2 3

1 1 2 1 3 3 1
1 1 2 1 3 3
1 1 2 3
1

a a a a a a
a a a a a a
a a a a a

a a a

 + + + + + +
 

+ + + + + =
 + + +
 
  

W  

{ }( )
( )( )( ){ }
( )( )( ){ }

( )

2 1

1 3 4

3 2

T

Coefficient vector of

Coefficient vector of

2

    = 5 7 9 21 143 315

315,143, 21,1

S

λ λ λ λ λ λ

λ λ λ λ λ λ

= =

= − − −

− − − = − + −

= − −

P P

 

( )TT
2 20, 3,0,0 3= − = −V P e  

( ) ( )( ){ }
( )( ){ } ( )

2 2 4

T2

Coefficient vector of

Coefficient vector 8 9 = 12 72 72, 17,1 ,of 0

S λ λ λ λ

λ λ λ λ

= − −

= − − − + = −

P
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( ) ( )TT
2 1 312,0,2,0 12 2S = = −V P e e  

( ) ( )T
1 2 0,72, 17,1S = −P  

( ) ( ) ( ) ( )TT
1 2 1 360,0,14,0 12 5 2 7S = = +V P e e  

( ) ( ){ } ( )T4 1 3 2coefficient vector,1; 4  o 1 ,3 , 3 1f ,a a a a a−= − = − −q  

( ) ( )T
4 1,1; 4 1,0,0,0a = =W q e  

( ) ( ){ } ( )4 3 Tcoefficient vector of,3; 4 1 ,1,0,0 ;a a a−= − = −q  

( )T 3
4 11,1,1,0 ii== = ∑W q e  

( ) ( )T
1 ,3;4 0, ,1,0 ;a a= −q  

( )T
4 1 1, 1, , 0a a a= + +W q  

( ) ( )T
2 ,3; 4 0,0, ,1 ;a a= −q  

( )T2 2 2
4 2 2 1, 2 , , 0a a a a a= + + +W q  

3

1 0
0 1
0 0

λ
λ

λ

 
 =  
  

J  

2

2 2
3

2

2 1
0 2
0 0

λ λ
λ λ

λ

 
 

=  
 
 

J  

3 2

3 3 2
3

3

3 3
0 3
0 0

λ λ λ
λ λ

λ

 
 

=  
 
 

J  

1 2
1 2

1
3 10

0 0

m m m

m m m

m

mC mC
mC

λ λ λ
λ λ

λ

− −

−

 
 

=  
 
 

J  

Now for the 

3.1. First Eigenvector Theorem  
Let 1−=A U UΛ   
where ( )1 2, , , ndiag λ λ λ= Λ , then T

n =X UV . Proof is obvious once it is noted that if 1 ix = ∑u , then 
k

k i ix λ= ∑ u   
Since eigenvectors are unique up to scale, it is obvious that, by proper scaling one can always have, For 

arbitrary 1x , the relation 1 ix = ∑u  (provided of-course tha 1x  lies in the full-space, but in no Proper 
subspace) with the set { }1 2, , , nu u u  as basis. 

COROLLARY 1.1: n i i iα=X P u  
COROLLARY 1.2: ( )

kn k i ii SS α
∈

= ∑X P u   

COROLLARY 1.3: ( )
k

r
n r k i i ii SS α λ

∈
= ∑X P u   
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COROLLARY 1.4: Let 1 2, a ibα α = ±  be a pair of complex conjugate Eigenvalues of A and Let ( )i±u v  
be the associated Eigenvectors where u, v are real vectors. 

Let { }2 1, 2S = .  
Then ( )2 2n S =X P u  and ( ) ( )1 2 2n S a b= −X P u v . 
Another analogous corollary, in respect of Eigenvalues ( )a b±  where b  is a surd is obvious. 
ILLUSTRATION 1.1:  

let 

7 0 3 1
4 5 6 2
4 4 6 3
4 4 8 5

− 
 − =
 −
 

− 

A  and 1

2
3
3
2

 
 
 =
 
 
 

X   

Then 4

2 7 31 145
3 9 37 165
3 8 34 158
2 6 30 150

 
 
 =
 
 
 

X ;  

( ) ( )( )( )( )4 3 211 41 61 30 1 2 3 5M λ λ λ λ λ λ λ λ λ= − + − − = − − − − . 

1 2 3 41, 2, 3, 5λ λ λ λ= = = =  

Hence ( )1 2 3 4

30 15 10 6
31 23 17 11

, , ,
10 9 8 6
1 1 1 1

− − − − 
 
 = =
 − − − −
 
 

P P P P P   

and 

U. diag ( )1 2 3 4 4

8 3 4 24
16 6 8 24

, , ,
24 9 8 24
24 12 8 24

α α α α

− − − 
 − − − = =
 − − −
 
− − − 

X P   

Let { }2 1, 4S = .  

Then ( )2

6
5

1
0

S

 
 − =
 
 
 

P , ( )1 2

0
6
5

1

S

 
 
 =
 −
 
 

P   

And ( ) ( )( ) ( )4 2 1 2 1 4 1 4

8 32
10 34

, , 5
12 36
12 36

S S

 
 
 = = + +
 
 
 

X P P u u u u  

where 1

2
4
6
6

 
 
 =
 
 
 

u , 4

6
6
6
6

 
 
 =
 
 
 

u   

ILLUSTRATION 1.2:  

Let 
4 6 10

12 2 6
6 2 6

 
 = − 
 − 

A  and 3

1 20 148
1 8 244
1 2 92

 
 =  
 − 

X   
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We have ( ) ( )( )3 2 212 44 240 10 2 24M λ λ λ λ λ λ λ= − + − = − − +   
A has 1 10λ =  as one real root and 2,3 1 23iλ = ±  as two complex conjugate roots. 

Hence 3 1

132
252

72

 
 =  
 − 

X P  is the Eigenvector for 10λ = . 

{ }( )3 2 3

10 10
2,3 1 2 2

0 8
S U

−   
   = = = − =   
   −   

X P X  

( ) ( )3 1 2 3

0 52
10 164 2 23
1 112

S U V
−   

   = − = = −   
   −   

X P X  from which we get the complex conjugate Eigen vectors 

i±U V   

where 
5
1
4

 
 = − 
 − 

U ; 
31

1 83
23 52

 
 = − 
  

V .  

We shall now state  

3.2. The Second Eigenvector Theorem (The Generalized Eigenvector Theorem) 
Let 1−=A UJU ; then n n=X UW  and hence ( )1 , ;r

i i ni q r nα λ
=

=∑ u X .  
Proof is obvious once it is observed that ( ) 1, ; r

q in r nλ = ∑W e . 
ILLUSTRATION 2: 

Let 
2 1 0
1 3 1
1 0 4

 
 = − 
 − 

A  and 3

4 10 23
2 3 1
1 0 10

 
 = − 
 − 

X   

We have the minimal polynomial of degree 3, as ( ) ( )33M λ λ= − , 
This is also the characteristic polynomial.  
Hence 1−=A UJU  

where 
3 1 0
0 3 1
0 0 3

 
 =  
  

J   

1u , 2u , 3u  are such that 1 13=Au u ;  
2 2 13= +Au u u , and 3 3 23= +Au u u . 

taking ( )1 2 3

9 3 1
, , 6 1 0

1 0 0

− 
 = = − 
  

Q q q q   

where ( )3, ;3i q i=q ,  

We get ( )1 1 2 1 2 3 3

1 2 4
, , 1 3 2

1 3 1

− − 
 + + + = = − − 
 − − 

u u u u u u X Q   

where ( )1 2 3

1 1 6
, , 1 2 5

1 2 4

− − 
 = − − 
 − − 

u u u   
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4. Summary 
Extensions of these two theorems and their corollaries to cases where the minimal polynomial is a proper factor 
of the characteristic polynomial and hence, for some of the multiple Eigenvalues at least, the associated 
Eigenspace is of dimension more than one is obvious though explicit proof is slightly cumbersome. 

The proposed method can be used in many mathematical subsequence applications viz., in most of the big 
data analysis, image processing and multivariate data analysis.  
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