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Abstract 
A new method for calculation of non-relativistic energy spectrum of Coulomb three-body systems 
with two identical particles has been developed. The novelty of the method is the introduction of 
an expansion of the wave function on harmonic oscillator (HO) functions with different sizes in the 
Jacobi coordinates instead of only one unique size parameter in the traditional approach. The 
method presented obeys the principles of antisymmetry and translational invariance. The theo-
retical formulation has been illustrated by evaluation of ground state energies of a number of 
Coulomb three-body systems with two identical particles for zero HO excitation energy. The ana-
lytical solution of this problem in case of only one size parameter has been derived. The obtained 
results show significant advantage of the base with different sizes over the traditional approach 
for investigation of the bound state problem of quantum systems. 
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1. Introduction 
Obviously, the theoretical description of quantum systems should obey the principles of antisymmetry and 
translational invariance. Taking into account the principle of translational invariance is especially important for 
a few body systems. However, it is well known that this approach has to cope with the formidable calculation 
difficulties. A description of the many-particle wave functions in terms of the intrinsic (Jacobi) coordinates turns 
out to be unfeasible because of the antisymmetrization requirements of the Pauli principle. As a consequence, 
the best-known methods for an atoms and molecules description, such as the Shell Model or the Hartree-Fock 
Self-Consistent Field Method [1], are employing only the non-translationally invariant wave-functions that are 
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constructed by antisymmetrization procedure in single particle variables. Since electron and nuclei masses ratio 
is approximately equal to 10−4, this certainly restricts the precision of such kind of calculations. The problem is 
even more severe in atomic nuclei and hadrons calculations where neglecting of translational invariance will 
produce the unacceptable error of order 1/A, where A is baryon charge of corresponding nucleus. On the other 
hand, the methods that consistently line the principles of antisymmetrization and translational invariance are not 
yet able to perform calculations for systems with larger particle number. The well known representatives of 
these kinds of methods are based on the Faddeev [2], Faddeev-Jakubovsky [3], and functional-differential equa-
tions [4] or on the expansions in a large basis of harmonic oscillator functions (HO) [5]-[11]. So, the further 
progress in theoretical description of many-particle quantum systems should be supported by revision of tradi-
tional and development of new significantly more effective calculation methods. It should be pointed that there 
exist a wide variety of the methods that start with antisymmetrization in single particle variables and only then 
project out the excited states of the centrum of mass motion, thus ensuring the translational invariance of the 
calculations (see, e.g., [12] and references therein). However, this approach may cope with enormous technical 
problems since the projection procedure should be performed in very large single particle bases even for systems 
with small number of particles. This problem can be solved only by using the HO basis which is known of its 
exceptional property to ensure translational invariance in finite subspaces (i.e. complete Nℏω spaces) formed 
with transition to intrinsic coordinates. The distinct advantage of intrinsic coordinates is that they may be intro-
duced with individual size parameters (oscillator lengths). In general, the number of different size parameters 
could amount up to the number of intrinsic coordinates. In this respect, the flaw of single particle bases is that 
since the identity of the particles constituting the system there must be used only one unique oscillator length. 

The purpose of the present paper is to consider ab initio approach based on an expansion of the wave function 
on HO functions with different sizes in the Jacobi coordinates. The method under preposition revisits and ex-
tends the traditional HO basis expansion methods that are known of the employment the same oscillator length 
for all Jacobi coordinates. Introduction of the larger number of variational size parameters may produce intrinsic 
coordinates that are more adapted to better grasp the physical contents of the quantum systems. The proposed 
approach is implemented in a new HO basis expansion method for handling the non-relativistic energy spectrum 
calculation problem of Coulomb three-body systems with two identical particles. The three-particle systems are 
very abundant in the nature and of great interest in many fields of physics: molecular, atomic, nuclear and ha-
dronic physics among others. The internal motions of particles in such systems are particularly often subjected 
to Coulomb interaction. Three-body Coulomb systems with two identical particles include the two electron 
atoms/ions, a variety of diatomic molecular ions, e.g. hydrogen and its isotops, as well as the exotic mesonic 
systems or positronium ion. It should be noted, that there exist a lot of different highly accurate approximations 
of wave functions and energy levels for three-body Coulomb systems states that are constructed by exponential 
expansion based variational approach (see, e.g., [13] and references therein). However, in spite of very accurate 
results, the wave functions in these types of calculations are constructed mostly with the intuitions. This cir-
cumstance severe restricts the perspectives of this approach in application to systems with larger number of par-
ticles. A serious advantage of the approach proposed in this paper is that it can be straightforward extended to 
the systems containing more particles. It should be stressed the universality of this approach, i.e. the calculation 
of the ground state and excited states may be performed by the same computational procedure. This is not the 
case for most of other methods. Although it is possible to deal with all types of forces in this formalism, we con-
sider in this paper only Coulomb interactions. It is well known that the treatment of Coulomb potential in the 
harmonic oscillator basis is a hard computational problem due to the slow convergence of calculation results. So, 
the investigation of this case may provide sensitive test of the efficiency of the method and give valuable insight 
of its applicability in the solution of more complicated problems, e.g., systems with a larger number of particles, 
non-central potentials containing a strong attraction at short distances, and so on. The application of the theoret-
ical formulation has been illustrated by calculation of ground state energies of a number of Coulomb three-body 
systems with two identical particles in zeroth order approach (i.e. zero HO excitation energy). The results ob-
tained in basis with different sizes are compared with the ones calculated in traditional basis with the same os-
cillator length for each Jacobi coordinate. 

The paper is organized in the following way. In Section 2 we present the basic equations of our formalism 
which lead to the compact expression for the intrinsic Hamiltonian matrix elements of the problem. In Section 3 
we calculate the ground state energies of Coulomb three-body systems with two identical particles for zero HO 
excitation energy. The energies are compared to the values obtained in the traditional approach, when available. 
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Section 4 is devoted for conclusions. 

2. Coulomb Three-Body Systems with Two Identical Particles 
The Hamiltonian of three-particle system, with masses 1m  and 2 3m m= , and charges equal 1Z  and 2 3Z Z=  
interacting with Coulomb potential in laboratory reference frame can be written as sum of single-particle and 
two-particle operators 

( ) ( )1 2 3

22 2
2

1 2 3 1 2
1 2 1 2 1 3 2 3

1 1ˆ , ,
2 2r r r

Z cH Z Z c
m m

α
α

 
= − ∆ − ∆ + ∆ + + +  − − − 

 

r r r
r r r r r r

，           (2.1) 

where α is fine structure constant, and ir  the i-th particle radius vector. Let us assume that two (of the three) 
particles are identical. In order to get attractive interaction, one of the particles must be positive and the two oth-
ers negative, or vice-versa. The two identical particles obviously have the equal masses. Therefore, it may be in-
troduced the convenient Jacobi coordinates that not depend on the masses: 

( )1 1 2 3

2 2 3

1 ,
2

.

 = − +

 = −

ξ r r r

ξ r r
                                   (2.2) 

The reduced masses that correspond to the introduced Jacobi coordinates are defined by 

1 2 2
0 1 2 1 2

0

2
2 , , .

2
m m mm mν ν ν
ν

= + = =                             (2.3) 

The denominators of the expressions of the Coulomb interactions between the first and two identical particles 
in the Jacobi coordinates acquire the form: 

1 2 1 2

1 3 1 2

1 ,
2
1 .
2

− = −

− = +

r r ξ ξ

r r ξ ξ
                                    (2.4) 

So, the intrinsic Hamiltonian of the considered three-particle system in the Jacobi coordinates will be 

( )
1 2

22 2
2

. 1 2 1 2
1 2 2

1 2 1 2

1 1ˆ , .
1 12 2
2 2

intr
Z cH Z Z cξ ξ
α

α
ν ν ξ

 
 
 = − ∆ − ∆ + + +
 − + 
 

 

ξ ξ
ξ ξ ξ ξ

           (2.5) 

Since the identity of two particles the mean values of two terms in the intrinsic Hamiltonian corresponding to 
the Coulomb interactions between the first and two identical particles are equal. Therefore the intrinsic Hamilto-
nian may be replaced by the equivalent one with only one doubled term of interaction: 

( )
1 2

22 2
2

. 1 2 1 2
1 2 2

1 2

1ˆ , 2 .
12 2
2

intr
Z cH Z Z cξ ξ
α

α
ν ν ξ

= − ∆ − ∆ + +
−

 

ξ ξ
ξ ξ

                 (2.6) 

In this paper, we introduce different sizes in the Jacobi coordinates instead of only one unique size parameter 
in the traditional approach. Therefore, in our method the standard procedure of transformation to dimensionless 
Jacobi coordinates takes the form: 

.i i ib=ξ ρ                                         (2.7) 

Here ib  are the dimensionless harmonic oscillator length parameters, one for each Jacobi coordinate (indi-
cated with index 1,2i = ) that implies a unique size for HO functions 

2 ,i
i i

b
ν ω

=
                                        (2.8) 
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where iω  are the parameters with dimension of angular frequency and 1, 2i =  is the index of the reduced 
masses (2.3). The matrix of the intrinsic Hamiltonian will be calculated with the basis functions constructed of 
single-particle HO functions depending on the dimensionless Jacobi coordinates iρ . In these coordinates the 
mean values of the kinetic energy terms of intrinsic Hamiltonian coincide with the mean values of the corres-
ponding kinetic energy terms of single-particle HO Hamiltonian 

( )21 .
2 ii iρω ρ−∆ +                                      (2.9) 

The eigenfunctions of this Hamiltonian are orthogonal and normalized radial harmonic-oscillator wave func-
tions that in dimensionless Jacobi coordinates have the form 

( ) ( )
2 1

2222 !
e ,

3
2

i
ii

i i i

i
i i i

i i

R L
ρ

λλ
η λ η

η
ρ ρ ρ

η λ

+−
= ⋅

 Γ + + 
 

                       (2.10) 

here the quantum numbers for dimensionless Jacobi coordinates iρ  are displayed: 2i i inη λ= +  is the number 
of harmonic oscillator quanta; 0,1, 2,in =   is the principal oscillator quantum number; iλ  is the orbital an-
gular momenta; ( )L x  is the Laguerre polynomial, and ( )xΓ  is the gamma function [14]. The intrinsic Ha-
miltonian in the dimensionless Jacobi coordinates takes the form 

( )
1 2

2
2

. 1 2 1 2 1 2
2 2

1 1 2 2

1 1 1ˆ , 2 .
12 2
2

intr
Z cH Z Z c
bb b

ρ ρ
α

ω ω α
ρ

= − ∆ − ∆ + +
−



  ρ ρ
ρ ρ

           (2.11) 

Let us rewrite the intrinsic Hamiltonian (2.11) in terms of dimensionless energy quantities. The greatest sim-
plification may be achieved by introducing 2ω  energy units. In this case, two new variational parameters are 

2

.i
i

i

cν
γ

ω
=



                                    (2.12) 

These new variational parameters will replace the following ratios in the dimensionless expression of the in-
trinsic Hamiltonian 

2
1 2

12
2 1

,
ω γ

ν
ω γ

 
=  

 





                                 (2.13) 

and 

1 1

2 12 2

,
b
b

γ
ν γ

=                                    (2.14) 

here 12 1 2ν ν ν= . 
Further simplification of the expression of dimensionless intrinsic Hamiltonian may be achieved taking use of 

the expression 
2 2
2 2 2cγ ω ν= .                                  (2.15) 

Finally, the dimensionless intrinsic Hamiltonian takes the form 

( )
1 2

2
. 1 2 1 2 2

122 2 2
2 22 1 2

1 1 2 2
12

ˆ , 21 1 1 1 .
2 2 1 1

2

intrH Z Z Z
c ρ ρ

α α
ν

γ ρν γ γ
γ γ

ν

= − ∆ − ∆ + +
−

ρ ρ

ρ ρ
            (2.16) 

Here, no assumptions are made that some parts of the Hamiltonian are negligible in comparison to others. It 
should be noted, that since the product 2

2cν  is the constant, the mean values of the intrinsic Hamiltonian (2.11) 
and dimensionless intrinsic Hamiltonian (2.16) will have variational minimum at the same values of the varia-
tional parameters 1γ  and 2γ . 



A. Deveikis 
 

 
294 

The matrix of the obtained intrinsic Hamiltonian is calculated on the bound angular moment harmonic oscil-
lator functions that can be expressed in terms of the first particle and two identical particle functions utilizing the 
angular momentum Clebsch-Gordan coefficients 

( ) ( ){ } ( ) ( )
1 1 2 23 1 1 2 231 23

1 231 23

1 23
1 1 2 2 3 1 1 2 2 3 ,

j jj
j j

j j j m j mjm j j jm m

j j j
m m mη η η η

 
Ψ ⊗Ψ Ψ Ψ 

 
= ∑ρσ ρ σ σ ρσ ρ σ σ    (2.17) 

here 1j , 23j  and j  are total angular moment a quantum numbers of the states of the first particle, two iden-
tical particles and the three-particle system correspondingly; m is the magnetic quantum number of correspond-
ing angular momentum; iσ  is spin variables of the i-th particle. Vector coupling of angular moment a is de-
noted by { }⊗  . The function depending on the first Jacobi coordinate is composed of angular momentum 
and spin functions 

( ) ( ) ( ) ( )
1 1 1 1 1 11 1 1

1 1 11 1

1 1 1
1 1 1 1 1 1, ,

j s
s

j m s
s j

s j
R

m λ
λ

η η λ λ µ µ
λµ µ

λ
ρ ϑ ϕ α

µ µ
 

Ψ =  
 

∑ ρσ σ              (2.18) 

where ( )
1 1 1 1,

λλ µ ϑ ϕ  is a spherical harmonic, ( )
1 1 1ss µα σ  is a spin-1/2 function in the spin space, 1s  is the 

spin quantum number of the first particle, 
1λ

µ  and 
1s

µ  are the magnetic quantum numbers of orbital momen-
tum and spin for the dimensionless Jacobi coordinate 1ρ  (associated with the first particle). The same self-  
explanatory structure have the wave function depending on the second Jacobi coordinate: 

( ) ( ) ( ) ( )
2 23 2 2 2 2323 2 23

2 23 232 23

2 23 23
2 2 3 2 2 2 2 3, ,

j s
s

j m s
s j

s j
R

m λ
λ

η η λ λ µ µ
λµ µ

λ
ρ ϑ ϕ α

µ µ
 

Ψ =  
 

∑ ρ σ σ σ σ        (2.19) 

here ( )2 2 2 2, ,ρ ϑ ϕ=ρ  and we use the simplified notation for the number of HO quanta and orbital angular 
moment a quantum numbers, i.e. 

2 232 23λ λλ µ λ µ≡ . The spin function of two identical particles have the form 

( ) ( ) ( )
23 2 323 2 3

2 3 232 3

2 3 23
2 3 2 3 .

s s s
s s

s s s
s s s

s s s
µ µ µ

µ µ
α α α

µ µ µ
 

=  
 

∑σ σ σ σ                   (2.20) 

Let us denote the introduced vector coupled basis functions of three-particle system by ket vector 

( ) ( )( )1 1 1 1 2 2 23 23, , , .js j s j jmη λ η λ                               (2.21) 

Let us list the conditions that should be imposed on the quantum numbers in these functions. At first, the 
wave functions (2.21) should be antisymmetric under permutation of two identical fermions. This imposes the 
well-known condition: 2 23sλ +  should be an even number. At second, the total spin of the two identical par-
ticles with spin of 1/2 could take on only two values: 23 0,1s = . At third, the total angular momentum, is con-
served, so its quantum numbers may take on only the integer values within the range: 1 23 1 23j j j j j− ≤ ≤ + . 
Finally, the parity conservation imposes the condition: ( ) 1 21 λ λ π+− = , here π  is the total parity of the three- 
particle wave function (the same for bra and ket functions in the Hamiltonian matrix element). As is usually ac-
cepted, the π  is related to the maximum number of total excitation oscillator quanta maxE  by formula 

( ) max1 Eπ = − . 
The expectation values of kinetic energy operators of Hamiltonian (2.16) after application of the Wigner- 

Eckart theorem, may be expressed by reduced matrix element 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

1, , , , , ,
2

01 1, , , , , , ,
0 22 1

j j

j j

s j s j jm s j s j j m

j j
s j s j j s j s j j

m mj

ρ

ρ

η λ η λ η λ η λ

η λ η λ η λ η λ

′ ′ ′ ′ ′ ′ ′ ′ ′− ∆

 
′ ′ ′ ′ ′ ′ ′ ′= ∆ − ∆ ′+ 

′
′



′

    (2.22) 

represented as double-bar matrix element. The Clebsh-Gordan coefficient in this expression is Kronecker sym-
bol for total angular momentum and its magnetic quantum numbers of the basis. The reduced matrix element of 
operator acting only on coordinates of first particle may be expressed in terms of 6j coefficient and the reduced 
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matrix element between the single-particle functions depending only on coordinates of the first particle [15] 

( ) ( ){ } ( ) ( ) ( ) ( ){ }

( ) ( )( ) ( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2

1 2

2 2 2 2 1 1 1 1

1 2 1 1 2

1 2
, 1 1 1

1

1 2 1 2 1 .

k
j j j jj j

j j j k k
j j j j

U

j j j
j j U

j j k

α α α α

α α α α

ψ ψ ψ ψ

δ ψ ψ

′ ′ ′ ′

+ + +
′ ′ ′ ′

′

′

⊗ ⊗

 
= − ′+ +  ′ ′

x x x x x

x x x
       (2.23) 

Since the considered Hamiltonian is a scalar in angular-momentum space, the tensorial rank of the kinetic 
energy operator is zero ( )0k = . After application of Equation (2.23), the expression of the reduced matrix ele-
ment of the first kinetic energy term takes the form 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

1 23

2 2 23 23 2 2 23 23 1

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

1 23
, 1 1 1 1 1 1 1 1'

1

1, , , , , , ,
2

11 2 1 , , , .
0 2

j j j
s j s j

s j s j j s j s j j

j j j
j s j s j

j j

ρ

η λ η λ ρ

η λ η λ η λ η λ

δ η λ η λ+ +
′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′− ∆

  ′ ′ ′ ′= − + ⋅ − ∆ 
 

′

       (2.24) 

Due to zero value of one of the parameters of the 6j coefficient, it may be significantly simplified [14], there-
fore, the matrix element of the first kinetic energy term may be written as 

( ) ( )( ) ( ) ( )( )

( )
( ) ( )

1

2 2 23 23 2 2 23 23 1 1 1

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

, , , , 1 1 1 1 1 1 1 1
1

1, , , , , , ,
2

1 1, , , .
22 1j j

j j

jm j m s j s j j j

s j s j jm s j s j j m

s j s j
j

ρ

η λ η λ ρ

η λ η λ η λ η λ

δ δ δ η λ η λ′ ′′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′− ∆

′ ′ ′ ′= − ∆
+

′

          (2.25) 

Applying the same formula (2.23) for orbital momentum we may further simplify the reduced matrix element 

( ) ( ) ( ) ( )1 1 1

1 1 1 1

1 1 1
1 1 1 1 1 1 1 1 , 1 1 1 1 1'

1 1

1 1, , , 1 ,2 1
02 2

s j
s s

j s
s j s j j

j
λ

ρ ρ

λ
η λ η λ δ η λ η λ

λ
+ +

′
 ′ ′ ′ ′ ′− ∆ = − + − ∆ 
 

   (2.26) 

After returning from the reduced to the ordinary matrix element 

1 1 1 11 1 1 1 1 1 1 1 1
1 12 1 ,
2 2

m mρ λ ρ λη λ η λ λ η λ η λ′ ′− ∆ = + − ∆                    (2.27) 

the matrix element of the first kinetic energy term assumes the form 

( ) ( )( ) ( ) ( )( )1

2 2 23 23 2 2 23 23 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

, , , , 1 1 1 1

1, , , , , , ,
2

2
.1

j j

s j s j j j s s

s j s j jm s j s j jm

m m

ρ

η λ η λ λ λ λ ρ λ

η λ η λ η λ η λ

δ δ δ δ η λ η λ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′− ∆

′= − ∆

            (2.28) 

The matrix element of the first kinetic energy operator in the HO basis depending on the coordinate 1ρ : 

( ) ( )

( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1

2
1 1 1 1 1 1 1 1

0

1 1 , 1 1 1 , 1 1 1 1 , 1

1 1 d
2 2

1 3 1 32 1 .
2 2 2 2

m m R Rλ ρ λ η λ ρ η λ

η η η η η η

η λ η λ ρ ρ ρ ρ

η λ δ η η λ δ η η λ δ

∞

′

′ ′ ′− +

 ′− ∆ = − ∆ 
 

      = + + + + + + + + +      
       

∫
         (2.29) 

The second kinetic energy term of Hamiltonian (2.16) may be evaluated similar way using the formula that 
expresses the reduced matrix element of operator acting only on coordinates of two identical particles of the 
three-particle coupled state in terms of 6j coefficient and the reduced matrix element between the single-particle 
functions depending only on coordinate 2ρ  [15]. Then for the matrix element of the second kinetic energy term, 
between the coupled three-particle harmonic oscillator functions, we find that 
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( ) ( )( ) ( ) ( )( )

( )

2

1 1 1 1 1 1 1 1 23 23 23 23 2 2

2 2 2 2 2 2

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

, , , ,

2 2 , 2 2 2 , 1 2 2 2 , 1

1, , , , , , ,
2

1 3 1 32 1 .
2 2 2 2

j j

s j s j j j s s

s j s j jm s j s j jmρ

η λ η λ λ λ

η η η η η η

η λ η λ η λ η λ

δ δ δ δ

η λ δ η η λ δ η η λ δ

′ ′ ′ ′ ′ ′ ′

′ ′ ′− +

′ ′ ′ ′ ′ ′ ′ ′− ∆

=

      + + + + + + + + +      
       

        (2.30) 

The single-particle Coulomb term as well as the second kinetic energy term of the Hamiltonian (2.16) de-
pends on the same Jacobi coordinate, so its angular part will be calculated analogously. Then for the matrix 
element of the single-particle Coulomb term, between the coupled three-particle harmonic oscillator functions 

( ) ( )( ) ( ) ( )( )

( ) ( )
1 1 1 1 1 1 1 1 23 23 23 23 2 2 2 2 2 2

1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23
2

2
, , , , 2 2 2 2

20

1, , , , ,

.

, ,

1 d

j j

s j s j j j s s

s j s j jm s j s j jm

R Rη λ η λ λ λ η λ η λ

η λ η λ η λ η λ
ρ

δ δ δ δ ρ ρ ρ ρ
ρ

∞

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

= ∫
             (2.31) 

The matrix element of the two-particle Coulomb term assumes the form 

( ) ( )( ) ( ) ( )( )1 1 1 1 2 2 23 23 1 1 1 1 2 2 23 23

1 1 2 2
12

1, , , , , , , .
1 1

2

j js j s j jm s j s j jmη λ η λ η λ η λ
γ γ

ν

′ ′ ′ ′ ′ ′ ′ ′

−ρ ρ
     (2.32) 

We calculate this matrix element by means of Talmi-Moshinsky brackets. In order to apply the Talmi-    
Moshinsky the moments of the coupled three-particle harmonic oscillator functions should be recoupled in the 
following form [15] 

( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

12 123

1 1 1 1 2 2 23 23

1 1 2 2 12 1 23 123 1 2 12 1 23 123 1 1 1 2 23 23
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, , , , , , , , , .
s

s j s j j

s s s j s s s j s j s j j
λ

η λ η λ

η λ η λ λ λ λ λ λ λ= ⋅∑
   (2.33) 

So, the reduced matrix element of the two-particle Coulomb term actually becomes the expansion in terms of 
the transformation matrices and reduced matrix elements with new momentum coupling scheme 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
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s s s j s j s j j

s s s j s j s j j

s s s

λ λ

η λ η λ η λ η λ
γ γ

ν

λ λ λ λ λ

λ λ λ λ λ

η λ η λ λ

′ ′

′ ′ ′ ′ ′ ′ ′ ′

−

=

′ ′ ′ ′ ′ ′ ′ ′ ′ ′⋅

⋅

∑

ρ ρ

( ) ( )( )1 1 2 2 12 1 23 123

1 1 2 2
12

1 , , , .
1 1

2

j s s s jη λ η λ λ
γ γ

ν

′ ′ ′ ′ ′ ′ ′ ′

−ρ ρ

      (2.34) 

The reduced matrix element of the two-particle Coulomb term on the functions with new coupling scheme 
may be further simplified 
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( ) ( )( ) ( ) ( )( )

( ) ( )
1 23 123 1 23 123
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s s s s s s
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γ γ
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δ η λ η λ λ η λ η λ λ
γ γ

ν

′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

−

′ ′ ′ ′ ′=
−

ρ ρ

ρ ρ

         (2.35) 

The expectation value of the two-particle Coulomb operator from Equation (2.16) can be obtained by ex-
pressing them in a single-particle form. This may be accomplished by means of new Jacobi coordinates. The or-
thogonal transformation to that Jacobi coordinates is 

1 0

2 1

1
1 1 .

1
1 1

d
d d

d
d d

 
    + + =        −

+ + 

y
y

ρ
ρ

                           (2.36) 

The same transformation to Jacobi coordinates should be accomplished for the wave functions. By means of 
Talmi-Moshinsky brackets the two particle harmonic oscillator functions may be expanded in terms of vector 
coupled products of the single Jacobi variable functions [16] 

( ) ( ){ }
( ) ( ){ }

1 1 2 2 12 12

0 0 1 1 12 120 0 1 1

1 2

0 1 0 0 1 1 12 1 1 2 2 12
,

, ,: | , : d

λ

λ

η λ η λ λ µ

ε σ ε σ λ µ
ε σ ε σ

ϕ ϕ

ϕ ϕ ε σ ε σ λ η λ η λ λ

⊗

= ⊗∑ y y

ρ ρ
             (2.37) 

here 0ε  and 0σ  are oscillator quanta and angular momentum quantum numbers, associated with the center- 
of-mass motion, 1ε  and 1σ  are corresponding quantum numbers of relative motion. The Jacobi coordinate 
with the zero index is proportional to the center-of-mass coordinate, and Jacobi coordinate with the index equal 
to one is proportional to their relative coordinate. The various quantum numbers appearing in the Talmi-   
Moshinsky brackets are constrained by triangular inequalities, by parity conservation and by conservation of the 
number of quanta. The two-particle Coulomb operator will depend only on the one variable in the new basis if 
the parameter d of the Talmi-Moshinsky brackets takes the form 

2
2

12
1

1
4

.d γ
ν

γ
 

=  
 

                                 (2.38) 

Then, in the denominator of the two-particle Coulomb operator may be expressed 

1 1 2 2 1
12

1 1
2

,Cγ γ
ν

− = yρ ρ                               (2.39) 

here we introduce for brevity the factor C which is defined 

2
2

1 122
12 1

2
12

1

1 1 1 .
411

4

C γ
γ ν

ν γγν
γ

 
= + 

  
+  

 

                       (2.40) 

Thus for the reduced matrix element of the two-particle term of the Hamiltonian (2.16) one obtains 
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          (2.41) 

The reduced matrix element in Equation (2.41) may be simplified similarly as the kinetic energy terms 

( ) ( )

( ) ( )
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= + ∫

y
                  (2.42) 

here the radial harmonic-oscillator wave functions have the same form (2.10) and the integral may be obtained 
most easily by direct numerical integration. Then for the reduced matrix element of the two-particle Coulomb 
term, between the functions with coupled orbital angular momenta 
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             (2.43) 

Finally, the matrix element of the two-particle Coulomb term between the initial coupled three-particle har-
monic oscillator functions takes the form 
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here, the summation parameters are under restrictions: 

1 1 2 0ε η η ε= + − ; 1 1 2 0ε η η ε′ ′ ′= + − ; 0 1 12 0 1σ σ λ σ σ− ≤ ≤ + ; 

mj—may take any allowed value for given j; ( ) ( ) ( )1 2 1 2 max1 1 1 Eλ λ λ λ π′ ′+ +− = − = = − ; 2 23sλ +  and 2 23sλ′ +   
are even numbers; 23 0,1s =  (takes only two values); 1 23 1 23j j j j j− ≤ ≤ +  and 1 23 1 23j j j j j′ ′ ′ ′− ≤ ≤ + ; 
( ) ( )1 2 1 21 1η η η η′ ′+ +− = − . In the expansion (2.44), we always consider all the basis states (2.37) with a number of 
quanta less or equal to a given number maxE . This is the well-known prescription for HO bases to treat correctly 
the Pauli principle. 

3. Ground State Energies Evaluation 
A new method for calculation of non-relativistic energy spectrum of Coulomb three-body systems with two 
identical particles has been applied for calculation of ground state energies in zeroth order approach (with zero 
HO excitation energy). In this case, the Hamiltonian matrix has only one matrix element, therefore the applica-
tion of variation principle for ground state energies calculations is significantly simplified. The traditional ap-
proach based on HO basis considers that the harmonic oscillator wave function have the same size (or the same 
scale) in all Jacobi coordinates. The proposed approach transforms to the traditional one with the simple substi-
tution 1 2γ γ γ= = . In this case, the zeroth order matrix element of the dimensionless intrinsic Hamiltonian 
(2.16) takes the form 

( ) 2
. 1 2 1 2 12 2

122 2 2 2
2 12

ˆ , 8 23 1 3 1 1 10 0 .
4 4 4

intrH Z Z Z
c

α ν α
ν

γ γν γ γ π πν
= + + +

+

ρ ρ
            (3.1) 

The minimization of this function may give an analytical expression for variable parameter γ , which is cho-
sen to minimize the zeroth order ground-state eigenvalue 

( ) 2
12 12

min 2 2
1 2 12 2 12

1 43
4 4 4Z Z Z

ν νπγ
α ν ν

+ +
= −

+ +
.                       (3.2) 

So, for one variable parameter the considered variation eigenvalue problem could be solved analytically, that 
significantly simplify the analysis of bound state problem. The dependence of the zeroth order ground-state ei-
genvalue (with one variable parameter minγ γ= ) of the dimensionless intrinsic Hamiltonian on the mass ratio 

2 1m m  of the particles and charge 1Z  of the non-identical particle is illustrated in Figure 1. 
Figure 1 shows that the ground-state eigenvalues have pronounced minima at some values of mass ratio 
2 1m m . As charge 1Z  of the non-identical particle increases, these ground-state eigenvalues lay lover. How-

ever, at large values of mass ratio 2 1m m  of three-body Coulomb systems with two identical particles their 
binding energies calculated within the framework of the traditional approach become positive. Figure 1 displays 
calculation results only for electrons as identical particles, however the dependences of binding energies for 
other sort of identical particles with the same mass ratio 2 1m m  will differ only with scaling factor 2

2cν . 
Therefore, the result that the binding energy of considered systems calculated within the framework of the tradi-
tional approach becomes positive at large values of mass ratio 2 1m m  is quite general one. This is in strict 
contradiction to the well-established result that all Coulomb three-body systems consisting of two identical par-
ticles have at least one stable bound state against dissociation [17]. Some characteristic of the obtained depen-
dencies of the zeroth order ground-state eigenvalues calculated within the framework of the traditional approach 
for the specified charges 1Z  (with minγ γ= ) are presented in Table 1. The first column tabulates the values of 
mass ratio ( ) a2 x1 mm m  up to which there exists at least one bound state for the considered three-body systems. 
In the following two rows the minima of the zeroth order ground-state eigenvalues are given as a function of the 
mass ratio 2 1m m . The last column contain the limit of the minima of the zeroth order ground-state eigenvalues 
when 2 1 0m m → . Thus, for 2 1 0m m →  we have the “atomic” limit consisting of two light identical particles 
and a heavy one, on the other hand, for 2 1m m →∞  there is the “molecular” limit consisting of two identical 
heavy particles and a light one. So, the mass ratio 2 1m m  represents the degree of adiabaticity of the consi-
dered system. The dependence of the zeroth order ground-state eigenvalue of the Hamiltonian (3.1) on the mass 
relation 2 1m m  of the particles, charge 1Z  of the non-identical particle, and the parameter minγ  chosen to 
minimize the ground-state eigenvalue is presented in Table 1. 
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Figure 1. The dependence of the zeroth order ground-state eigenvalue (in eV) of the Hamiltonian (3.1) on the mass ratio 
m2/m1 of the particles and charge Z1 of the non-identical particle when identical particles are electrons. The parameter γmin is 
chosen to minimize the ground-state eigenvalue. Every curve is labelled by their Z1 value and scaled by corresponding fac-
tors: 1 (Z1 = 1), 5.3 (Z1 = 2), 10.8 (Z1 = 3), and 16 (Z1 = 4). 

 
Table 1. The characteristics of dependence of the zeroth order ground-state eigenvalue (with one variable parameter γ) on 
mass ratio m2/m1 and charge Z1 of the non-identical particle when the charge of any of the identical particles is Z2 = −1. 
(m2/m1)max is the upper mass ratio limit for which there exists at least the one bound state of the Coulomb three-body systems 
with two identical particles (electrons) in zeroth order approach; Emin is the minimum of the zeroth order ground-state eigen-
value at specified value of mass ratio m2/m1; the last column displays the limit of the zeroth order ground-state eigenvalue for 
infinitely small mass m2 or infinitely large mass m1. 

Z1 (m2/m1)max 
Minima of the zeroth order ground-state eigenvalue 

2 1 0 minlimm m E→  [eV] 
m2/m1 Emin [eV] 

1 3.3729833 0.1096903 −7.8698498 −7.6737421102 

2 7.4372539 0.1806895 −46.200551 −43.757705135 

3 11.458261 0.2049790 −116.74959 −109.40677610 

4 15.468719 0.2172762 −219.54332 −204.62095501 

 
It should be noted that the results presented in Table 1 remain unchanged if the signs of charges Z1 and Z2 are 

reversed. 
In the presented method the minimization must be done in a two dimensional space (γ1 and γ2). To search the 

minimum of the matrix element of Hamiltonian (2.16) for zero excitation HO energy, we apply our modified 
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Golden section search method [18] alternatively for parameters γ1 and γ2. This method is well-known of its sta-
bility and is fast enough in this case of one minimised function (computation time takes about few seconds). For 
the bound states, the parameters γ1 and γ2 are calculated by minimization of the corresponding zeroth ground- 
state eigenvalue of the Hamiltonian (2.17). Aiming to demonstrate the possibilities of our method, we have cal-
culated the zero order binding energies for a large set of three-body Coulomb systems with two identical par-
ticles. These results are presented in Table 2. 

The tabulated in Table 2 calculation results for considered Coulomb three-body systems with two identical 
particles consist of the following elementary particles: e-electron, e+-positron, μ-and K±-mesons, p-proton, d- 
deuteron, t-tritium, α-the nucleus of the helium atom, and Li+-the ion of the lithium atom (7Li). We have used 
the masses of these particles presented in the data tables [19]. In Table 2 all three-body systems are specified by 
their mass ratio m2/m1. The two columns indicated by ( )0 0H γ  presents the zeroth order ground-state ei-
genvalues minE  calculated within the framework of the traditional approach and the parameter γ chosen to mi-
nimize the corresponding ground-state eigenvalues. The second three columns indicated by ( )1 20 , 0H γ γ  
displays the zeroth order ground-state eigenvalues minE  and values of variable parameters, γ1 and γ2, which 
give the lowest energy of corresponding binding energies. Modern highly sophisticated and accurate variational 
computations of the three-body bound states allow one to determine up to 40 correct decimal digits in the total 
energy (see, e.g., [20] and references therein). These very accurate energy values we name numerically “exact” 

exactE  and present in the last column of the Table 2. The analysis of bound state problem of Coulomb systems 
with two identical particles with the presented method shows its distinct advantages over the traditional ap-
proach. At first, the zeroth order ground-state binding energies calculated with different sizes in the Jacobi coor-
dinates are significantly lover than that calculated with only one size parameter for all Jacobi coordinates. At 
second, the proposed method correctly predicts at least one stable bound state for all Coulomb three-body sys-
tems consisting of two identical particles. This is not the case for traditionWal approach which produces un-
physical positive eigenvalues in the “molecular” limit, i.e. when mass ratio m2/m1 is large. The examples of such 
systems are epp and μpp which binding energies are not presented in Table 2. The proposed method correctly 
gives the bounding of ground-state for these systems. 
 
Table 2. The non-relativistic binding (total) energies minE  (in eV) for the ground-states of Coulomb systems with two iden-
tical particles. Energies are for values of parameters γ, γ1 and γ2, which give the lowest energy for zero excitation HO energy. 
The “exact” numerical binding energies of ground-states are also indicated. 

System m2/m1 
( )0 0H γ  ( )1 20 , 0H γ γ  

exactE  [eV] 
γ minE  [eV] γ1 γ2 minE  [eV] 

epp 1.83615e3 ― ― 194.546 289936 −10.1292 −16.2490 

μpp 8.88024 ― ― 208.885 1684.44 −1843.36 −2781.64 

K−pp 1.90058 620.533 −1675.03 242.289 557.833 −6124.19 −9104.26 

e+ee 1 348.751 −3.67619 264.445 403.637 −4.8282 −7.1295 

pμμ 1.12610e−1 322.249 −1627.21 333.194 239.273 −1857.25 −2654.93 

αμμ 2.83466e−2 143.534 −9203.26 146.102 83.6813 −12684.6 −15865.3 

μee 4.83633e−3 351.589 −7.69146 354.278 217.100 −10.1128 −14.2875 

K+ee 1.03509e−3 352.971 −7.67761 355.218 216.327 −10.1586 −14.3451 

pee 5.44617e−4 353.151 −7.67578 355.317 216.217 −10.1645 −14.3525 

dee 2.72444e−4 353.251 −7.67476 355.382 216.160 −10.1678 −14.3567 

tee 1.81920e−4 353.284 −7.67443 355.403 216.141 −10.1689 −14.3581 

He 1.37093e−4 147.950 −43.7617 148.959 81.7264 −63.2268 −79.0029 

Li+ 7.82082e−5 93.5727 −109.413 94.3232 50.1224 −162.412 −198.080 
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4. Conclusions 
In this paper the new HO basis expansion method for calculation of non-relativistic energy spectrum of three- 
body systems with two identical particles has been developed. The proposed formalism consistently outlines the 
principles of antisymmetrization and translational invariance. Compared with the traditional approach, the me-
thod is based on an expansion of the wave function on HO functions with different sizes in the Jacobi coordi-
nates. The advantage of this treatment steams from the introduction of more appropriate degrees of freedom that 
better reflects the basic physics of the system. The efficiency of the method is based on the very fast computa-
tion procedure for Talmi-Moshinsky brackets calculations [16]. The computation of many-particle operators 
matrix elements in HO basis can be significantly simplified using the Talmi transformations. One of the novel-
ties developed in this paper is the calculation of the Hamiltonian matrix elements on the HO functions with two 
different oscillator lengths by means of Talmi-Moshinsky brackets. This formalism is particularly well suited for 
very asymmetric systems (for example one light and two heavy particles). The complications of proposed ap-
proach as compared to the traditional one are due to the necessity to perform a double minimization on both dif-
ferent sizes in the Jacobi coordinates instead of a single minimization on an unique size parameter. Nevertheless, 
since this treatment grasps better the physical contents of the system, it may be expected that for a given number 
of HO quanta, the precision achieved can be increased as compared to the traditional approach. 

The method was applied for estimation of ground state energies of a number of Coulomb three-body systems 
with two identical particles for zero HO excitation energy. The binding of ground state is obtained for all Cou-
lomb three-body systems with two identical particles. It is consistent with well established results [17]. This is 
not the case in the traditional approach with only one oscillator length where in zeroth order approach the nega-
tive energy of ground state for very asymmetric systems cannot be obtained. For considered three-body systems, 
this result is confirmed by the analysis of the derived compact solution for ground state energy with only one 
size parameter. The advantages of the developed approach with different sizes in the Jacobi coordinates let us 
expect that the proposed simple and efficient zeroth order calculation procedure may be successfully generalized 
to any many-particle quantum system for testing of the existence of bound ground states. 

In this paper we focused on the three-body systems where the interaction potential was limited to the Cou-
lomb interaction only. The method is quite general, however, and can be applied to problems if other interaction 
potentials are used. The proposed approach may be generalized to problems of more than three particles. The 
addition of another particle introduces one more Jacobi coordinate with corresponding size parameter (for ex-
ample three size parameters in case of four-body systems). The generalization of this approach may provide 
consistent and effective treatment of principle of translational invariance in many-particle quantum systems. 
This could greatly improve the zeroth order calculation results and considerable increase the rate of convergence 
of HO basis expansion. 
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