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Abstract 
The main aim of this paper is to explain why the Weinberg-Salam angle in the electro-weak gauge 

group satisfies ( )Wθ =
1sin
2

. We study the gauge potentials of the electro-weak gauge group from 

our wave equation for electron + neutrino. These potentials are space-time vectors whose com-
ponents are amongst the tensor densities without derivative built from the three chiral spinors of 
the wave. The ( ) ( )U SU×1 2  gauge invariance allows us to identify the four potential space-time 
vectors of the electro-weak gauge to four of the nine possible vectors. One and only one of the nine 
derived bivector fields is the massless electromagnetic field. Putting back the four potentials 
linked to the spinor wave into the wave equation we get simplified equations. From the properties 
of the second-order wave equation we obtain the Weinberg-Salam angle. We discuss the implica-
tions of the simplified equations, obtained without second quantification, on mass, charge and 
gauge invariance. Chiral gauge, electric gauge and weak gauge are simply linked. 
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1. Introduction 
L. de Broglie found [1] the wave associated to the movement of any particle in 1924. P. A. M. Dirac found his 
wave equation in 1928 [2]. L. de Broglie and his students considered this wave equation as the true wave equa-
tion of the electron, not the Schrödinger equation, because it was relativistic; it gave the spin 1/2 property; it 
gave the true results for the spectroscopy of light. The solutions in the H atom case were calculated immediately 
by C. G. Darwin [3]. All awaited results were obtained: the true number of energy levels, all quantum numbers 
compatible with the spin 1/2. L. de Broglie published his work on the Dirac equation in 1934 [4]; next he stu-

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2015.614215
http://dx.doi.org/10.4236/jmp.2015.614215
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


C. Daviau, J. Bertrand 
 

 
2081 

died the photon and he obtained a quantum wave for the photon from two spinors [5] [6]. Our article follows the 
method initiated there. This theory of light was not successful at this time, because the photon conserved the 
mass of the spinor wave, and this mass broke the gauge symmetry. We shall see that these defects are avoided 
here, because we start from a wave equation where the mass term is compatible with the gauge symmetry. Next 
the gauge theory of weak interactions was brought closer electromagnetism by the Weinberg-Salam model [7] 
and G. Lochak built the theory of a leptonic magnetic monopole [8]-[10]. From this magnetic monopole he got 
an extension of de Broglie’s theory of light [11]-[13]. 

We previously have obtained a wave equation for a pair electron + neutrino [14] and we have generalized this 
equation as a wave equation for all objects of the first generation, electron, neutrino, quarks u and d with three 
states of color each, and their antiparticles [15]. This wave equation is form invariant under the ( ) *

32,GL Cl=

group of invertible elements in the Clifford algebra of space 3Cl . It has a mass term and nevertheless it is gauge 
invariant under the ( ) ( ) ( )1 2 3U SU SU× ×  gauge group of the standard model, in a way that gives automati-
cally the insensitivity of the electron and its neutrino to strong interactions. The first consequence of this is a se-
paration of the wave equation into a lepton part and a quark part. If the quark part is cancelled the wave is re-
duced to the electron + neutrino case, gauge invariant under the ( ) ( )1 2U SU×  group of electro-weak interac-
tions. If the neutrino wave is cancelled the wave equation is reduced to an equation for the electron alone which 
has the Dirac equation as linear approximation [16]-[21]. Since the wave equation has not lost its mass term it is 
easy to account for inertia and gravitation [22] [23]. We shall follow notations and results explained there, and a 
first chapter explains the three Clifford algebras needed by the standard model. Since we study here only elec-
tro-weak interactions we shall need only two of these three algebras, the 3Cl  algebra of space and the 1,3Cl  
algebra of space-time. Following de Broglie’s idea, we have previously studied, in Chapter 4 of [23] a way to 
construct by anti-symmetrical product the quantum wave of a photon from two spinor waves. The electromag-
netic potential is a space-time vector A A µ

µσ=  and the electromagnetic field is a space-time bivector  
F E iH= +

 

 satisfying: 
†

1 3 2
ˆ; ; ,A i F A µ

µφ σ φ σ= = ∇ ∇ = ∂                                 (1.1) 

where ˆM s v iw ip M s v iw ip= + + + = − + −
   

  is the main automorphism of 3Cl ; 1φ  and 2φ  are two Dirac 
spinors. This gives for the dilation D defined from any element *

3M Cl∈ : 

( ) † † 1; .;x x D x D x MxM A MAM F MFMµ µ ν
µ ν µσ σ −′ ′ ′ ′= = = = = =                   (1.2) 

This is the awaited transformation, because the electromagnetic potential moves with the charges and must 
then be a contravariant space-time vector, while the electromagnetic field of two photons 1F  and 2F  must 
transform as each photon field, and this is the case if the electromagnetic field F of a system of two photons is 

1 2 2 1F F F F F= + . With the link that we always use between the space algebra and the space-time algebra: 

0 0
0 0

00 1 0
; ; ; , 1, 2,3,

00 0 1
jj j

j j
j

I
I j

I
σ

γ γ σ σ γ γ σ σ
σ

−    
= = = = = = − = = − =    

     
        (1.3) 

and 

0 00 0
; ; ; ,ˆ ˆˆ ˆ0 00 0

A F
A

FA
µ µ

µ µ

φ
γ γ

φ

∇       
∂ = ∂ = = = = Ψ =            ∇      

A F                 (1.4) 

we get a potential which changes sign when we exchange the indexes: 

12 1 210 2 2 210 1 21 12; .γ γ= Ψ Ψ −Ψ Ψ = −A A A                                 (1.5) 

(Ψ  is the reverse of Ψ ). Since our wave equation has a mass term containing a ρ  which is itself a complicated 
function of the spinor wave Ψ  it is impossible to get the very beautiful electromagnetism of L. de Broglie from 
two different spinor waves, and we must use the same wave. But if we use 1 2Ψ = Ψ  in Equation (1.5) the elec-
tromagnetic field disappears! Nevertheless we have another possibility, using the same ρ  if 2 1Ψ = Ψ , the 
charge conjugate of 1Ψ . In the standard model of quantum physics, the charge conjugate of 

ˆ ˆl

e n
n e
 

Ψ =  
 

                                            (1.6) 
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where e is the wave of the electron; n is the wave of the electronic neutrino; p is the wave of the positron and a, 
the wave of the anti-neutrino, satisfies: 

1 1 32 32 3 2 0 1 2 3; ; ; ; .
ˆ ˆ ll

p a
p e a n

a e
σ σ γ γ γ γ γ γ γ γ

 
= − = − Ψ = = Ψ = = 

 
i i               (1.7) 

Therefore searching for anti-symmetrical products with Ψ  and its charge conjugate is equivalent to searching 
anti-symmetrical products with Ψ  alone. 

2. Tensor Densities without Derivative 
The quantum wave of the pair electron + neutrino is a function Ψ  of space and time into the space-time alge-
bra [23]: 

* *
1 2 2

* *
2 1 1

*
11 2

*
22 1

0
; 2 ; 2 ;

ˆ ˆ 0

0
ˆ ˆ2 ; 2 ,

0

e n
x e n

n e

e n

ξ η ζ
ξ η ζ

ζη ξ
ζη ξ

   − − 
Ψ = = =    

     
 −  

= =   
  



                  (2.1) 

where ξ  is the right Weyl spinor of the electron, η  is the left Weyl spinor of the electron and ζ  is the left 
Weyl spinor of the electronic neutrino. In the standard model there is no right neutrino. We have explained that 
this experimental rule gives usually an invertible Ψ  ([23], Sec. 6.4). 

Therefore, with the 12 real parameters of the Ψ  wave, 78 12 13 2= ×  tensor densities without derivative 
are available, and we shall review them here. With the D dilation of Equation (1.2) we use 

( )
( )

†

† † 1

ˆ ; det e ;
ˆ ˆ ˆdet e ; e .

i

i i

M M M r MM MM

M r MM M M M r M

θ

θ θ− −

= = = =

= = = =
                          (2.2) 

Under the dilation D the wave is transformed with only one M not two like x or ∇ : 
ˆ ˆ ˆˆ ˆ ˆ ˆ; ; ; ; ; .e Me n Mn e Me n Mn M M µ

µσ′ ′ ′ ′ ′ ′ ′= = = = ∇ = ∇ ∇ = ∂                    (2.3) 

We shall use also 
*

123 3
*

21

001 1
2 ; 2 .

02 20
L e R e

ξησ σ
ξη

 −  − +
= = = =   

  
                      (2.4) 

Each chiral spinor L, R and n allows us to get 10 4 5 2= ×  tensor densities, forming a space-time vector and 
a space-time bivector: 

† † †
1 1 1; ; ; ; ; .R L n R L nD RR D LL D nn S R R S L L S n nσ σ σ= = = = = =               (2.5) 

The jD , , ,j R N n=  are covariant space-time vectors, satisfying †
j jD MD M′ =  and †

j jD D=  while the 
jS  are bivectors satisfying j jS MS M′ =  and j jS S= − . Since these bivectors transform under D differently 

from the gauge fields, they cannot be used directly to get these gauge fields. On the contrary the aD  are similar 
to the potentials of the gauge interaction. With each pair R L− , R n−  and L n−  we get 16 tensor densities 
forming one general even term in space-time (8 components) and one general odd term (also 8 components). We 
shall use: 

1 1 1

1 2 1 2 2 1 1 1 1

3 3

2 ; 2 ; ; ,

2 ; 2 ; ; ,

2 ; 2 ; ; .

RL RL RL RL RL

nL nL nL nL nL

Rn n Rn Rn Rn Rn

P RL a S P LR a S a RL LR S RL LR
P n L a S P L n a S a n L L n S n L L n

P Rn a S P nR a S a Rn nR S Rn nR

σ σ σ σ σ σ

= = + = = − = + = −

= = + = − = − = − = +

= = + = = − = + = −

     (2.6) 

We get: 

( ) ( ) ( )* * * * * * * *
1 1 1 2 2 2 1 2 2 1 3 1 1 2 22 ; 2 ; 2 .a a aξη ξ η ζ η ζ η ξ ζ ξ ζ= + = − = +               (2.7) 

Next we shall use for the odd terms in space-time: 
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( )
( )

† † †
1 1

† † † †
1 1 1 1

† † † † † † †

† † †
1 1

† †
1 1

2 ; 2 ,

; ,

2 ; 2 ; ; ,

2 ; 2 ,

;

RL RL RL RL RL RL

RL RL

Ln Ln Ln Ln Ln Ln Ln Ln

Rn Rn Rn Rn Rn Rn

Rn Rn

I D id R L I D id L R

D R L L R d i R L L R

I D id nL I D id Ln D nL Ln d i nL Ln

I D id R n I D id n R

D R n n R d i

σ σ

σ σ σ σ

σ σ

σ σ

= + = = − =

= + = − +

= + = = − = = + = − +

= + = = − =

= + = ( )† †
1 1 .R n n Rσ σ− +

      (2.8) 

3. The Wave Equation 
A double link exists between the wave equation and its Lagrangian density because the wave equation is ob-
tained from the Lagrangian density by variational calculus and, this is new, the Lagrangian density is exactly the 
scalar part of the invariant wave equation ([23], Sec. B.3): 

( )
( )

( )

* * *
012 1 1 2 2 3 3

* * * * *
1 2 1 3 2 1 3

2
2 1 3 1 2 1 3

012

0; ,

1 ,ˆ ˆ ˆ ˆ ˆ ˆ

.

m a a a a a a

a R L a n a n a L a R

a L a R a R L a n a n

m

γ ρχ ρ

σ σ
χ

ρ σ σ

γ ρχ

Ψ + = = + +

 + + + − +
 =
 + + − + 

= Ψ Ψ +

D

D

                 (3.1) 

This means that when we write the wave equation with R, L and n or when we use the variational calculus to 
get the wave equation, we encounter the same equations which read in the R case: 

( )

( )

( )

( )

1 1 3

* *
1 1 3

† † * *
1 1 3

† †
1 1 3

ˆ ˆ ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ ,

.

mR ig BR i a L a n

mR ig BR i a L a n

mR ig R B i a L a n

mR ig RB i a L a n

ρ

ρ

ρ

ρ

∇ = − − +

∇ = + +

∇ = + +

∇ = − − +

                             (3.2) 

Next the L spinor satisfies: 

( ) ( )

( ) ( )

* * 1 2 31 2
1 2 1

1 2 31 2
1 2 1

ˆ ˆ ˆˆ ˆ ,
2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ,
2 2

g gmL i BL i a R a n i W n iW n W L

g gmL i BL i a R a n i W n iW n W L

σ
ρ

σ
ρ

∇ = − − + + + −

∇ = + − − − −
 

( )† † * *1
1 2 1

ˆ ˆ
2
g mL i L B i a R a nσ

ρ
∇ = − − − + ( † 12 ˆ

2
gi n W † ˆin W+ )† 3ˆ ,L W−              (3.3) 

( )† †1
1 2 12

g mL i LB i a R a nσ
ρ

∇ = + + − ( 12

2
gi nW 2inW− − )3 .LW  

And the n spinor satisfies: 

( ) ( )

( ) ( )

* * 1 2 31 2
3 2 1

1 2 31 2
3 2 1

ˆ ˆˆ ˆ ˆ ,
2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2 2

g gmn i Bn i a R a L i W L iW L W n

g gmn i Bn i a R a L i W L iW L W n

σ
ρ

σ
ρ

∇ = − + − + + − +

∇ = + + − + +
 

( )† † * *1
3 2 1

ˆ ˆ
2
g mn i n B i a R a Lσ

ρ
∇ = − + − − + ( 1†2 ˆ

2
gi L W † 2ˆiL W− + )† 3ˆ ,n W             (3.4) 

( ) ( )† † 1 2 31 2
3 2 1 .

2 2
g gmn i nB i a R a L i LW iLW nWσ

ρ
∇ = − − + − + +  
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4. Derivative 
In de Broglie’s work on light [5] [6] the electromagnetic field F E iH= +

 

 and the electromagnetic space-time 
vector A such as ˆF A= ∇  are physical quantities which can be obtained from the spinor waves. F is a bivector 
and A is a contravariant vector. All laws of electromagnetism are form invariant under *

3Cl  (see [18] and [23] 
chapter 4). In the dilation defined in (1.2) A and F become 

† 1; .A MAM F MFM −′ ′= =                                   (4.1) 

The tensor densities of the Dirac theory have been intensively studied by L. de Broglie [4] and his students, 
especially O. Costa de Beauregard [24] and T. Takabayasi [25]. With the mathematical tool of Clifford algebra 
they have been also studied by D. Hestenes [26] [27], R. Boudet [28] [29] and one of us [30]. The problem with 
these tensors comes from the non-commutativity of the multiplication in space and space-time algebra, coming 
from the dimension 3 of space: 

( ) ( ) ( ) ( ).AB A B A B A B A Bµ
µγ∂ = ∂ + ∂ ≠ ∂ + ∂                         (4.2) 

A solution must exist to this problem. First, since Feynman graphs act equally for fermions and bosons, the 
dynamics of both fermions and bosons must come from same laws. Now we know that the Lagrangian mechan-
ism, for all fermions, comes from the real part of the wave equation. None meta-physical principle rules that 
physical laws necessary come from a Lagrangian density. Then the dynamics of bosons must also come directly 
from the wave equation of fermions, and only from this wave equation. Now every user of Feynman graphs 
thinks that all this theory results from a unique Lagrangian density, giving not only the dynamics of the fermion 
wave, but also the dynamics of the gauge bosons. But the link between boson fields and potential terms is not 
deduced from the Lagrangian density, it is postulated as definition of the potentials, or to get a simplified 
second-order equation, or to follow the rules of the gauge group. In the lone electromagnetic domain two links  

are used between potential and field: ˆF A= ∇  in de Broglie’s electromagnetism, and ( )1 ˆ ˆ
2

F A A= ∇ − ∇  in  

classical electromagnetism. How must we choose? None of these two different derivatives comes from a La-
grangian density. Then we must consider only a derivative using the spinor wave equation. Naming A  the de-
rivative of A we shall use in space-time algebra: 

( ) ( ); .Y X Y X X= Ψ Ψ = ∂Ψ Ψ −Ψ Ψ∂                               (4.3) 

For instance with 

†
0

0 0
; ; ,ˆ ˆ 00

n
n n n n n

n

D n
D nn

nD
γ

   
= = Ψ Ψ Ψ = =       

D                       (4.4) 

we get 

( )

0 0

† †

†

†

†

0 00 0 0 00 0
ˆ ˆˆ ˆ0 0 0 00 00 0

0ˆˆ 0 0 0 0
ˆˆ ˆ0 00 0 0

ˆˆ

n n n n n

n

n

n

n I n In n
n I n In n

Dn n n n
n nn n D

D n n n n

γ γ= ∂Ψ Ψ −Ψ Ψ ∂

∇ ∇           
= −              ∇ ∇           

 ∇       ∇  = − =           ∇ ∇        

= ∇ −

D  





 ( ).∇

            (4.5) 

Therefore if we set n nF D=   two awaited properties are satisfied: nF  is a bivector in space-time, because 
n nF F= −  and nF  transforms under the dilation D defined in (1.2) as follows 
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( ) ( ) ( )† 1 1ˆ ˆ ˆˆ ˆnF n n n n M M Mn Mn− −′ ′ ′ ′ ′ ′ ′= ∇ − ∇ = ∇ ( ) ( ) 1† † 1ˆMn Mn M M
− −− ∇  

( )1 ˆM n nM−= ∇ ( )( )1† † † 1ˆMn n M M M
− −− ∇  

( ) ( ) ( )1 1ˆe ei iM r n n r Mθ θ− −= ∇ ( )† 1ˆMn n M −− ∇                               (4.6) 

( ) ( )† 1 1ˆˆ ,nM n n n n M MF M− − = ∇ − ∇ =   

which means that nF  transforms as a gauge field. 

5. Gauge Fields 
We name aF  the bivector derivative of the space-time vector aD : 

; ; ; ; ; ,

; ; .
R R L L n n RL RL Rn Rn Ln Ln

RL RL Rn Rn Ln Ln

F D F D F D F D F D F D

f d f d f d

= = = = = =

= = =

     

  

                   (5.1) 

From †
RD RR=  we get 

( ) ( )†ˆ ˆ ,RF R R R R= ∇ − ∇                                    (5.2) 

and using (3.2) we have 

( ) ( ) ( )* *
1 1 3

ˆ ˆ .R R R
mF ig BD D B i a LR RL a nR Rn
ρ
 = − + − + −                      (5.3) 

With (2.6) and since 
ˆ ˆ,B D BD DB∧ = −                                        (5.4) 

is the form of the exterior product of the space-time algebra in space algebra, we get 

( )* *
1 1 3 .R R RL Rn

mF ig B D i a S a S
ρ

= ∧ − +                                 (5.5) 

Next we get 

( ) ( ) ( )

( ) ( )

† * *1
1 2

1 2 1 2 32

ˆ ˆ
2

1 .
2 2 2

L L L RL nL

Ln Ln Ln Ln L

g mF D L L L L i B D i a S a S

g ii W D W d W d W D W D

ρ
= = ∇ − ∇ = − ∧ − +

 + ∧ + ∧ + − ∧ + ∧ − ∧  



             (5.6) 

Similarly we get 

( ) ( ) ( )

( ) ( )

† * *1
3 2

1 2 1 2 32

ˆˆ
2

1 .
2 2 2

n n n Rn nL

Ln Ln Ln Ln n

g mF D n n n n i B D i a S a S

g ii W D W d W d W D W D

ρ
= = ∇ − ∇ = − ∧ + − +

 + ∧ + ∧ + ∧ − ∧ + ∧  



              (5.7) 

Now we let 

0
; .ˆ 0R L n

A
A D D D

A
 

= − − =   
 

A                                (5.8) 

This vector satisfies 
† †

3 3 ,A e e n nσ σ= +                                          (5.9) 

and we get 
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021 021

† † † †
3 3 3 3 3 3 3 3

† † † †
3 3 3 3 3 3 3 3

.
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n e e n n n e e e n n e e e n n
e e n n e n n e n n e e n e e n

γ γ

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ

Ψ Ψ − Ψ Ψ

   − − + + +
= +   

− − + − − − −   

i i 

         (5.10) 

This, with (1.7), gives 

( ) ( )031 031 021 021
1 1 .
2 2c cγ γ γ γ= Ψ Ψ −Ψ Ψ = Ψ Ψ − Ψ ΨA i i                           (5.11) 

This vector is then similar to the space-time potential A  built by L. de Broglie in his electromagnetic field 
of the photon, and in the work of G. Lochak [11]-[13] and one of us [18] (see also [23], Chapter 4). And we re-
mark that with our wave equation we get the photon without mass term, because: 

( ) ( )1 2 31 22 .
2 2

R L n

R L n Ln Ln n L

F F F F
ig igB D D D W D W d W D D

= − −

 = ∧ + + − ∧ + ∧ + ∧ − 
       (5.12) 

A detailed study of the nine space-time vectors available from the 78 tensor densities without derivative 
shows that this field is the only field without mass term. Since the photon is moving at the limit velocity, we 
know that its mass is null, then we may identify A to the electromagnetic potential and F to the electromagnetic 
field. This means that these tensors are both quantum quantities and classical quantities. The electromagnetic 
field F is exactly the bivector E iH+

 

 with real components of pre-quantum optics. Moreover the zero proper 
mass of the photon does not need a symmetry breaking of the gauge, it is perfectly compatible with the gauge 
symmetry. The main difference from classical physics is the double aspect of each gauge boson, made of a 
space-time vector potential and of its derivative which is a space-time bivector. 

The previous calculation of LF  and nF  shows the necessity to study also LnD  and Lnd . We get 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

† †

* * *1
3 1 2

1 2 32

ˆ ˆ ˆˆ

2
2

   .
2

Ln Ln

Ln RL Rn L n

L n L n Ln

F D n L n L L n L n

ig imD B a S a S a S S

ig W D D iW D D W id

ρ

= = ∇ − ∇ + ∇ − ∇

 = ∧ + − − + − 

 + ∧ + + ∧ − + + ∧ − 



               (5.13) 

( ) ( ) ( ) ( )
( )

( ) ( )

† †

* * *1
3 1 2

1 2 32

ˆ ˆ ˆˆ

2
2

   .
2

Ln Ln

Ln RL Rn L n

n L L n Ln

f d i n L in L i L n iL n

ig md B a S a S a S S

g W D D iW D D W D

ρ

= = ∇ + ∇ − ∇ − ∇

 = ∧ + − − + 

 + ∧ − + ∧ + − ∧ 



                    (5.14) 

6. Gauge Invariance 
We have explained [17] [19] [23] how the electro-weak gauge reads in the Clifford algebra. The ( )1U  part of 
the gauge uses a B potential which is a space-time vector and the gauge transformation reads 

( ) ( ) ( ) ( ) 33 22
0

1

exp ; ; exp e e ,

2 ,

iS S P S

B B
g

σ θθθ

θ

′Ψ = Ψ = Ψ = Ψ      

′ = − ∇

i

                 (6.1) 

which gives 
2e ; e ; e ;i i iR R L L n nθ θ θ− −′ ′ ′= = = † † † † † † † †; ; ; .R R RR L L LL n n nn n L nL′ ′ ′ ′ ′ ′ ′ ′= = = =          (6.2) 

Then B may be any linear combination of RD , LD , nD , LnD  and Lnd . But RLD , RLd , RnD  and Rnd  
are excluded, because they are changed in the gauge transformation. Next for the ( )2SU  gauge group we have 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 2 21 2 3

exp ,

2exp exp exp ,

sin
exp 1 cos ,

; .

j j
j j

j
j

S

W P S W P S S
g

a
S a P S

a

S A P a a a a

µ µ µ

+

Ψ = Ψ  
 

′ ′ = − ∂ −   
 

Ψ = Ψ + − + Ψ + Ψ      

= = + +

                 (6.3) 

For the group generated by 3P  we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( )

( ) ( ) ( )

3

3 3

1 2 3
1 2 3

1 2 3
3 3

2

exp cos sin ,

exp e ; exp e ,

2e e e e e e e e ,

R L

L L L L L

L

L L L L

P

P P

W P W P W P

W W W
g

θ θ

µ µ µ

θ θ θ θ θ θ θ θ
µ µ µ µ

θ θ θ

θ θ

γ γ θ

−

− − − −

  Ψ = Ψ +Ψ −   
′    Ψ = Ψ = Ψ −

 


Ψ = Ψ   
′ ′ ′+ + Ψ

= Ψ + Ψ + Ψ − − 
 

∂ Ψ −

i i

i i i i i i i i

i

i i i

        (6.4) 

which gives 

( )( )
( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( )

1 2 3
1 2 3

1 2 1 2
3 3

3

2

1 1 2

2 2 1

3 3

2

cos 2 sin 2 sin 2 cos 2

2 ,

cos 2 sin 2 ,

cos 2 sin 2 ,
2 ,

L

L L

L

W P W P W P

W W W W

W
g

W W W

W W W

W W
g

µ µ µ

µ µ µ µ

µ µ

θ θ γ θ θ γ

θ

θ θ

θ θ

θ

′ ′ ′+ + Ψ

   = − Ψ + + Ψ   
 

+ − ∂ Ψ − 
 
′ = −

′ = +

′ = − ∇

i

i
             (6.5) 

while the gauge transformation of the wave gives 

e 0
,ˆ ˆˆ ˆ 0 e

; e ; e ,

i

i

i i

L n L n

n L n L

R R L L n n

θ

θ

θ θ

−

−

′ ′    
=       ′ ′     

′ ′ ′= = =

 

† 22 e 2i
Ln LnD id n L nθ′ ′ ′ ′+ = = † ,L                                  (6.6) 

( ) ( )
( ) ( )

cos 2 sin 2 ,

cos 2 sin 2 .
Ln Ln Ln

Ln Ln Ln

D D d

d d D

θ θ

θ θ

′ = −

′ = +
 

This implies that the identification 1
LnW D= , 2

LnW d=  is possible. For the group generated by 1P  we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( )

( ) ( ) ( )

3 3

3 3 3 3 3

1 3

1 1

1 2 3
1 2 3

1 2 3
3 3 3

2

exp cos sin ,

' exp e ; exp e ,

2e e e e e ,

R L

L L L L L

L

L L L L

P

P P

W P W P W P

W W W
g

θγ θγ

µ µ µ

θγ θγ θγ θγ θγ
µ µ µ µ

θ θ θ γ

θ θ

γ γ θ γ

−

− − − −

Ψ = Ψ +Ψ +      
Ψ = Ψ = Ψ − Ψ = Ψ      

′ ′ ′+ + Ψ

 
= Ψ + Ψ + Ψ − − ∂ Ψ 
 

i i

i i i i i

i

i i i

       (6.7) 

which gives 
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( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 2 3
1 2 3

1 2 3 2 3
3 3

2

1 1

2
2 2 3

3 3 2

2 cos 2 sin 2 sin 2 cos 2 ,

2 ,

cos 2 sin 2 ,

cos 2 sin 2 ,

L

L L L

W P W P W P

W W W W W
g

W W
g

W W W

W W W

µ µ µ

µ µ µ µ µ µθ γ θ θ γ θ θ

θ

θ θ

θ θ

′ ′ ′+ + Ψ

 
   = − ∂ Ψ + − Ψ + + Ψ −     

 

′ = − ∇

′ = −

′ = +

i i

   (6.8) 

while the gauge transformation of the wave gives 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )( )

( )( ) ( )

3

3

cos sin
,ˆ ˆ sin cosˆ ˆ

; cos sin ; cos sin ,

cos 2 sin 2 ,

cos 2 sin 2 .
Ln Ln n L

n L n L Ln

L n L n i
in L n L

R R L L i n n n i L

d d D D

D D D D d

θ σ θ
σ θ θ

θ θ θ θ

θ θ

θ θ

′ ′    − 
=        −′ ′     

′ ′ ′= = + = +

′ = + −

′ ′− = − −

                   (6.9) 

The gauge derivative of the wave equation for electron + neutrino is then compatible with the identification: 
1

2

3

,

,

.

Ln

Ln

n L

W D

W d

W D D

=

=

= −

                                         (6.10) 

7. Simplified Wave Equations and Weinberg-Salam Angle 
The Weinberg-Salam angle and the 0Z  are so defined: 

( ) ( )1 2

3 2 2 0
1 2 1 2

cos sin ,

.

W W
eq g g
c

g B g W g g Z

θ θ= = =

− + = +

                                 (7.1) 

From this definition results: 

( )3 0

31 1

2

e ,

.

WiB iW A iZ

g gB A W
q g

θ+ = +

= −
                                       (7.2) 

We have seen that R L nA D D D= − −  is required by the null mass of the photon. We have just obtained 
3

n LW D D= − , then this allows us to identify: 

( ) ( )1 1 1 1 1 1 1

2 2 2

.R L n n L R L n
g g g g g g gB D D D D D D D D
q g q g q g q

   
= − − − − = + − − +   

   
          (7.3) 

Now the knowledge of the gauge potentials B, 1W , 2W  and 3W  allows us to simplify the wave equations. 
In (3.3) we have: 

( ) ( ) ( )

( ) ( )

1 2 3

1 2 3

† † † * * *
2 1 2 1 2 1

ˆˆ ˆ
ˆ ˆˆ ˆ

ˆ ˆˆ2 2 0 3 .

Ln Ln n L

W n iW n W L

W iW n W L D id n D D L

nL n nn L LL L n a n a a nσ σ σ

+ −

= + − = + − −

= − + = − − + = −

                (7.4) 

We get also 
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† *
1

2 2 2
* *1 1 1
1 2 2 1

2

ˆ ˆ ˆ; 0,

3ˆ .
2 2 2 2

R LD L RR L a R D L

g g gm mL i a R i g a n
q g q

σ
ρ ρ

= = =

   
∇ = − + − − − +   

   

                    (7.5) 

Next for the wave equation of R we use 

† † † † † *1 1 1 1 1
1

2 2

ˆ ˆ ˆ ˆ ˆ ˆ; 0; ;g g g g gBR RR R LL R nn R RR R LL R a L
q g q g q

   
= + − − + = =   

   

† *
3

ˆ ,nn R a n=      (7.6) 

and we get 
2 2 2 2

* *1 1 1 1
1 3

2 2

ˆ .g g g gm mR i a L i a n
g q g qρ ρ

   
∇ = + − + − −   

   
                         (7.7) 

At the second order we get: 

( ) ( )
2 2 2 2

* *1 1 1 1
1 1 1

2

2 2 2 2 2 22
*1 1 1 1 1 1

1 12
2 2

ˆ ˆ ˆ ˆ
2 2

ˆ
2 2

g g g gm m mL i a R i a i a L
q q g q

g g g g g gm m a a L
q g q q g q

ρ ρ ρ

ρρ

     
∇ ∇ = − + ∇ + = − + − + − +     

     
    

= − + + − + − +    
     

 



           (7.8) 

We get a similar relation with ( )ˆ R̂∇ ∇  and these two terms are the only ones if 0n = . The second order 
wave equation coming from the Dirac equation (and the same comes from the Schrödinger equation) has no 
term mq  which should couple directly mass and charge. It is then necessary that: 

( )

2 2 2
21 1 1
1

2 2

2
2

1 10 ,
2 2

12 ; sin .
2 2W

g g g g
q g q g q

q qg q
g q

θ

 
= + − = − 

 

= = = =

                            (7.9) 

This means: first that the standard model of quantum mechanics, where too many parameters are available, 
has now one of these parameters fixed. Secondly this comfort the identification that we have made between 
gauge potentials and space-time vectors linked to the spinor wave. It is also possible to get the value of wθ  from 
the calculation of ( )ˆ R̂∇ ∇ . These two calculations do not need to consider n, because the second order equation 
coming from the Dirac wave equation accounts only the electromagnetic part of the electro-weak gauge. 

We get also 

( )
2
1

1

* *
1 2 1

* *
1 3

3 2 2cos ; ; ,
2 2 33

2ˆ 2 ,
3

2ˆ 2 .
3

W
gq qg
q

m q mL i a R i q a n

m q mR i a L i q a n

θ

σ
ρ ρ

ρ ρ

= = =

   
∇ = − + − +   

   
   

∇ = − + −   
   

                     (7.10) 

And we also have: 

1
2 12 .
3 3R L ng B q D D D = − − 

 
                         (7.11) 

We then get for the neutrino part of the wave: 

( ) ( )
( )

1 2 3

† † † * * *
2 1 2 1 2 1

ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ2 2 0 3 ,

Ln Ln n LW L iW L W n D id L D D n

Ln L nn n LL n La L a a Lσ σ σ

− + = − + −

= + − = + − − =
             (7.12) 
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which gives with (3.4) and (7.11) 

( )* * *1
3 2 1 2 1

1

* *
3 2 1

2 2 1ˆ ˆ 3
2 3 3

2 8ˆ .
3 3

R L n
g q mn i D D D n i a R a L iq a L

g

m q m qn i a R i a L

σ σ
ρ

σ
ρ ρ

 ∇ = − − − + − + + 
 

   
∇ = − + + +   

   

             (7.13) 

There are many simplifications in our previous calculations, for instance (5.12) becomes 

( ) ( )1 22 2 4 .
2 3R L n R L n R L R n L n

ig qF F F F B D D D i D D D D D D= − − = ∧ + + = ∧ + ∧ + ∧         (7.14) 

The electromagnetic field appears as second behind the space-time vectors. From the beginning of quantum 
mechanics the potential terms are in the wave equations, the electromagnetic field is only used as coming from 
the potential space-time vector. 

Now if we follow T. Socroun [31] who incorporates the constants into the potentials we use: 

1
3

2;b a ; w .B qAg g W= ==                                 (7.15) 

Then Equations (5.8), (6.10) and (7.11) imply the simple equality: 
4a 3b w.= +                                        (7.16) 

The electromagnetic boson a  is then the sum of the chiral boson 3 b
4

 and of the weak boson 1 w
4

. This is  

the key to understand the 0P  operator, equivalent in the initial Weinberg-Salam model to the weak isospin: in a 
gauge transformation of the ( )1U  part of the electro-weak gauge group the gauge transformation reads: 

2

1

2 ; e ; e ; e ,i i iB B B R R R L L L n n n
g

θ θ θθ − −′ ′ ′ ′= − ∇ = = =               (7.17) 

and we have 

( )

3
1 1

3

2

2 32 2
3

2 1 22 2
3

qg B g B A W
q

q A W
q g

θ θ

θ θ

 ′ = − ∇ = − − ∇ 
 

   
= − ∇ − − ∇   

     

                       (7.18) 

The ( )1U  gauge appears then as composed, in any order, of an electric gauge and a weak gauge: 

( ) 2 2

3 3 3

2

2

1

1 2 ; e ; e ;

2 ; ; e ; e

2 ; e ; e e ; e .

i i

i i

i i i i

A A A R R R L L L n n
q

W W W R R L L n n
g

B B B R R L L L n n
g

θ θ

θ θ

θ θ θ θ

θ

θ

θ

−

−

− −

′ ′ ′ ′= − ∇ = = =

′ ′′ ′ ′′ ′ ′′ ′= − ∇ = = =

′ ′′ ′′ ′ ′′= − ∇ = = = =

  





                (7.19) 

This is true only with 2 2g q=  and could be a departure to get ( ) 1sin
2Wθ = . The projector 0P  or the weak 

isospin are then a direct consequence of the structure of the lepton wave. 

8. Concluding Remarks 
The parameter Wθ  has been experimentally found near 30° . Since this value was not issued from the calcula- 
tions by approximation used in the standard model of quantum physics, an explanation has been studied in a 
frame containing both the electro-weak gauge and the ( )3SU  group of chromodynamics. These theories 
known as great unified models were able to get the value 30° , but they predicted a disintegration of the proton 
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which was never observed. Then the problem of this value was not solved. Our calculation respects all known 
properties of the quantum wave included in this standard model, but we do not use the second quantification. 
The wave considered here is the initial wave of L. De Broglie, a physical wave propagating in space and time 
with spin 1/2 property. This wave is fully relativistic, since the group ( )2,SL   used in the Dirac theory is a 
subgroup of the group of form invariance ( ) *

32,GL Cl= , made of all invertible elements of the space algebra. 
The theory of light built by L. de Broglie was able to account for the photon of A. Einstein, but his construc-

tion started from the linear Dirac equation, so his photon had a mass which was never observed. And this mass 
term was breaking the gauge symmetry. The problem of the mass was also present in the Weinberg-Salam mod-
el of electro-weak interactions. The electron and the neutrino of this model have lost mass. Since it was neces-
sary somewhere to account for the mass of the electron, a complicated mechanism of spontaneous symmetry 
breaking was invented. Even if the Higgs boson is now observed, this symmetry breaking is not able to reduce 
the too great number of parameters of the standard model. 

Actually the symmetry breaking is useless in the frame developed here, based on a wave equation with mass 
term which is both form invariant (then relativistic) and fully gauge invariant under the gauge group 
( ) ( ) ( )1 2 3U SU SU× ×  of the standard model. Since the group of form invariance is greater there are new 

strains and less freedom: it is the reason of our ability to calculate a parameter like Wθ , free in the frame of the 
linear quantum mechanics, non-free with our non-linear wave equation or of our ability to link weak gauge and 
electromagnetic gauge in (7.19). Even if the gauge group is made of two different groups, the electro-weak 
gauge is a completely unified frame, since the ( )1U  gauge is totally linked to the electric and 3W  gauges. 

The simplified wave Equations (7.10) and (7.13) give also a new understanding of mass and charge. The mass 
term of the Dirac equation links the derivative of the left wave to the right wave and vice-versa. Why? The rea-
son comes from the structure of the wave, with left and right spinors in a different column, and from the trans-
formation under a dilation of the derivative: 

1ˆ ˆ ˆ ,X X M X−′ ′∇ ∇ = ∇                                 (8.1) 

Then ∇  must apply to X̂ , not X, and 1 1e iM r Mθ− − −= . This e iθ−  term explains the necessary presence  
of the *

ja  which is transformed by * * *ˆ
j j ja a Ma′ =

† *e i
jM r aθ−= . Since there are 3 such terms this introduces  

a degree of freedom which shall give the 3-dimensional gauge group ( )2SU . But then the R̂∇  for instance 
which transforms into 1ˆ ˆR M R−′ ′∇ = ∇  cannot be directly linked to *

1a L  which transforms into: 
* * 2 1 *

1 1 1e .ia L r a ML r M a Lθ− −′ ′ = =                            (8.2) 

We have a 2r  factor which must be compensated. This may be done by two ways: m ρ  where m and 
1 ρ  bring each a 1r−  factor or by q alone which brings a 2r−  factor (see [23], Sec 4.1.2). The form (7.10) 
(7.13) of the wave equation is not free, but is constrained by the group of form invariance. All this cannot be 
deducted from the usual field theory which arbitrarily supposes 1r = . The greater group of invariance brings 
not only new strains but also a better understanding of physical laws. 
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