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Abstract 
In this paper, it is discussed a framework combining traditional expected utility and weighted en- 
tropy (EU-WE)—also named mean contributive value index—which may be conceived as a deci- 
sion aiding procedure, or a heuristic device generating compositional scenarios, based on infor- 
mation theory concepts, namely weighted entropy. New proofs concerning the maximum value of 
the index and the evaluation of optimal proportions are outlined, with emphasis on the op- 
timal value of the Lagrange multiplier and its meaning. The rationale is a procedure of max- 
imizing the combined value of a system expressed as a mosaic, denoted by characteristic val- 
ues of the states and their proportions. Other perspectives of application of this EU-WE 
framework are suggested. 
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1. Introduction 
Shannon entropy has been widely used in ecological studies as a measure of diversity at different scales in space, 
from local community level to landscapes and regions. Guiasu and Guiasu [1] [2] provide an extensive literature 
review covering the properties and applications of these measures of diversity in general, and, concerning landscape 
metrics, there are also several reviews of the theme, (e.g., [3]-[5]), Shannon entropy being recommended for 
landscape management as it is considered an index sensitive to the presence of rare habitats [6]. 

The core of the rationale that relates utility and information theory concepts can be summarized as it was 
stated by Bernardo [7], recognizing the decision problem underlying a problem of statistical inference: expected 
information may be conceived as expected utility. 

1.1. Statistical Entropy and Diversity 
Under the scope of a general theory of communication, Shannon [8] defined entropy as a measure of how much 
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choice is involved in the selection of an event, or of how uncertain we are of the outcome, and settled the for- 
mula 1 logn

i iiH K p p
=

= − ∑  where the constant 0K >  merely amounts to a choice of a unit of measure. He- 
retrieved previous work of Hartley [9] outlining a quantitative measure whereby the capacities of various sys- 
tems to transmit information might be compared, taking a measure of information as the logarithm of the num- 
ber of possible symbol sequences. Jaynes [10] wrote that entropy as a concept may be regarded as a measure of 
our degree of ignorance as to the state of a system and that quantity H  measures in a unique way the amount 
of uncertainty represented by a probability distribution. Also, entropy is claimed to be a measure of the average 
randomness of a stochastic system [11] and it is referred to be the only meaningful functional for measuring un- 
certainty and information in probability theory [12]. The information value of an event is defined as log ip−  so 
formula H denotes the mean information value of a sample space, related to the coexistence of a multi-state sys- 
tem or a mosaic. 

Rènyi [13] generalized Shannon entropy as a 1-parameter functional family ( ) ( )1log 1n q
q iiH p q

=
= −∑ , un-  

der the scope of measures of entropy and information defined on the set of generalized probability distributions, 
entailing that 1limq qH H→ = . Rènyi generalized entropy function has been recently referred to as a continuum 
of diversity measures [14]. Hill [15] proved that the exponential form of Rènyi entropies expq qN H= —he 
called diversity numbers—has an immediate connection with diversity indices used in Ecology: the richness in 
species, the exponential form of Shannon entropy and the inverse of Simpson’s index. 

1.2. Weighted Entropy and Utility 
Weighted entropy was first proposed by Bellis and Guiasu [16] taking into account the two basic concepts of 
objective probability and subjective utility, thus defining the information supplied by the event iE  with a 
probability ip  and an utility iu —the last meaning the value of an outcome relative to a specified goal—with 
the formula ( ), logi i i iI u p ku p= − , and k > 0. Guiasu [17] derived the principle of maximum information ob-
taining the probability distribution maximizing weighted entropy—he later called useful entropy [18]—and Ag-
garwal and Picard [19] settled a general overview of information measures with preference, the preference of an 
event being defined as the product of its probability and utility. Several applications with weighted entropy were 
performed in the middle eighties: for instance, Batty [20] used weighted entropy to discuss the spatial pattern of 
aggregation in cities, while Nawrocki and Harding [21] used state-value weighted entropy as a measure of in- 
vestment risk; Taneja and Tuteja [22] extended the concept to derive the characterization of a quantita- 
tive-qualitative measure of inaccuracy. Later, Guiasu and Guiasu [23] revised the theme under ecology analysis, 
noting that, whenever measuring the diversity of ecosystems, additional information—such as absolute abun- 
dance, economic significance or ecological importance of species—has to be taken into account, reflected in the 
weights, a concept that was further extended to joint weighted entropy related to the joint probability distribution 
assigned to pairs of species [24]. 

Casquilho et al. [25] derived independently the main results concerning weighted entropy, under a 1-para- 
meter generalization of Shannon formula focused on an ecological and economic application at the landscape 
level, from which followed the EU-WE framework here discussed—weighted entropy was then named mean 
informative value index and EU-WE framework was defined as mean contributive value index. These results 
were applied to discuss compositional scenarios of forest ecomosaics [26]-[28], with a non-linear utility scope 
where the concept of contributive value plays a central role: contributive value is a relational form of value, it is 
the value that some part confers on the whole of which it is a part, because this contribution is conditioned by 
the presence and extent of other parts [29], so emphasizing that the contributive value of a part should not be 
confused with the value that this part has on its own, independently from the context [30]. The value that a part 
has on its own was referred to as a characteristic, or intrinsic, value. 

Ricotta [31] mentioned weighted entropy as a contribute towards bridging the gap between ecological diver- 
sity indices and measures of biodiversity and Allen et al. [32] used a related, unconstrained, form of weighted 
entropy under the scope of phylogenetic measures. 

The work presented here has some similarity with a decision aiding procedure based on expected utility and 
Shannon entropy [33], though here we use weighted entropy. The objectives of this paper include proving and 
discussing the mathematical properties of the optimal solution and providing a critical analysis of an expected 
utility and weighted entropy framework (EU-WE) as a conceptual device generating relative compositional sce- 
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narios of mosaics based on optimality criteria. 

2. Methodology 
In what follows a new set of the results and proofs are presented, equivalent, but different, from those presented 
before, e.g., [25], now indexed to the optimal value of the Lagrange multiplier, which allows for an insightful in- 
terpretation, anchoring the optimal solution of this EU-WE framework with weighted entropy. 

2.1. Index KU 
We will be dealing with proportions, defining a normalized measure space. Proportions are relative extension 
measures—as well as relative frequencies and probabilities—the difference is that proportions reflect the exten- 
sion of actual, or presumably effective, states of a system, and probabilities are possibility measures of events 
compatible with Kolmogorov’s axiomatic definition. Nevertheless, the two concepts are intimately linked under 
the scope of objective or physical probabilities, which often uses probability practically as a synonym for pro- 
portion [34]. Anscombe and Aumann [35] pointed out that physical probabilities can be determined empirically 
by noting the proportion of successes in some trials. Either as proportions, relative frequencies, or probabilities, 
these real numbers denote the same mathematical object, a simplex, with different connotations or semantic in- 
junctions, depending on the context. 

Assume that a system is characterized by a scenario of the world defined as the set of n elementary states, or 
sample space: { } 1

n
i i

S s
=

= ; also assume that 0iw >  is a real positive number denoting a characteristic value of 
the state of the system applying the injective function ( )i iW s w= ; the power set [ ]SΩ =℘  is the set of events, 
members of the collection generated by S; elementary states occur linked to the discrete distribution denoted as 

{ } 1

n
i i

p p
=

=  with 0ip ≥  and 1 1n
ii p

=
=∑  defining a 1n −  simplex. The structure ( ), ,S pΩ  is a normalized 

measure space, with the condition 0jp =  meaning the absence of the indexed j state. 
Next we outline an information based family of utility functions: ( )1 logi i iy u p= −  for 1, ,i n=  ; symbol 𝑈𝑈 

defines a monotone increasing transformation of the original characteristic values such as ( )i iu U w=  with
0iu > . We can assign proportions or probabilities [ ]Pr i iY y p= =  for 1, ,i n=   and the utility functions 

here defined are the product of utilities and context values, i i iy u c=  where the context value is expressed by
1 logi ic p= −  with range 1 ic≤ < +∞ , and the term log ip−  is the information value relative to elementary 

state i. Context values ic  increase with correspondent information values, meaning that scarcity is considered 
as if it entails more relevance, which is the case, for instance, with the methodology outlined by Haddock et al. 
[36], where the use of scarcity weights to assess impacts in landscape changes reflect the analogy that “endan-
gered habitats” have a similar status of endangered species. 

The EU-WE framework here to be discussed, denoted index UK , is then defined using the expected value 
operator [ ].E , evaluating the weighted average of the values iy , with the suitable decomposition 

[ ] 1 1 logn n
i i i i ii iE Y u p u p p

= =
= −∑ ∑ , 

rewritten in Equation (1) as 

U UK U H= +                                       (1) 

where UH  means the weighted entropy of the utilities iu  and U  is traditional expected utility. Obviously, 
denoting ( )1 logi i ih p p= −  we may rewrite (1) as 1

n
U i iiK u h

=
= ∑  which may be interpreted as a nonlinear- 

expected utility because the terms ih  aren’t additive proportions or probabilities: although they verify the unita- 
ry hypercube condition, as we have that 

0
lim 0

i
ip

h+→
=  thus allowing for the extension 0 1ih≤ ≤ , we also see  

that the sum 1
n

ii h
=∑  equates 1 H+ , with H  denoting Shannon entropy. 

2.2. Optimal Proportions and Maximum Value of Index KU 

Building auxiliary Lagrange function defined as ( ) ( )1 11 log 1n n
i i i ii iL u p p pα

= =
= − − −∑ ∑  we can find the par-  

tial derivatives evaluated as logi i iL p u p α∂ ∂ = − −  for 1, ,i n= 
, from what follows, solving the equations  



J. P. Casquilho 
 

 
548 

0iL p∂ ∂ = , the results: log 0i iu pα = − >  if ] [0,1ip ∈  and ( )expi ip uα= −  with the closure condition  
( )0L α∂ ∂ =  re-expressed as ( )1exp 1n

ii uα
=

− =∑ . 
The numeric solution of this equation will be denoted *α  and we can prove it is unique, following a corol-  

lary of Bolzano theorem. If we define ( ) ( )1exp 1n
iif uα α

=
= − −∑  we observe that ( )f α  has a strictly nega-  

tive derivative computed as ( ) ( ) ( )1 1 exp 0n
i iif u uα α

=
′ = − − <∑  hence ( )f α  is strictly decreasing; the  

following calculus of limits confirm the existence and the uniqueness of the solution: ( )0
lim 1 0f n

α
α+→

= − >   
if 2n ≥  and ( )lim 1fα α→+∞ = − , so there is only one real value such that ( ) 0f α = .  
 

Thus, the critical point of index UK  has coordinates defined by (2): 

( )* *exp for 1, ,i ip u i nα= − =                             (2) 

As expression (2) depends on the value of *α  first we have to solve numerically the equation that defines the 
closure condition in the simplex, what implies solving Equation (3) for *α  

( )*
1: exp 1 0n

ii uα α
=

− − =∑                               (3) 

It can also be proven that each optimal coordinate *
ip  increases with the correspondent characteristic value, 

or utility, and decreases when the other utilities increase [26] [27], as it should be expectable, lying within the 
open interval ( )0,1 . 

Next, let us prove that the critical point is a maximum in analogy with Guiasu procedure [17]. We build the  
auxiliary function ( ) ( )1 11 logn n

U i i i ii iA K u p p pα α
= =

= − = − −∑ ∑  and rearrange the terms obtaining the se-  

quence of equalities: 

( ) ( ) ( )( )( )1 1 1log 1 log 1 log expn n n
i i i i i i i i i i i ii i ip u u p u p p u u p p uα α α

= = =
− − = − − = −∑ ∑ ∑  

and eventually get the equivalent mathematical expression for the auxiliary function 

( ) ( ) ( )( )( )1 exp exp 1 log expn
i i i i i iiA u u p u p uα α α

=
= − −∑ . 

Using the auxiliary result ( ) ( )1 log 1i i if x x x= − ≤  if 0ix >  we have that the maximum point is located at 
1ix =  with the maximum value becoming ( )1 1f = ; then, replacing ( )expi i ix p uα=  we conclude that in-  

equality ( )1 expn
i iiA u uα

=
≤ −∑  holds, and the maximum value is ( )* *

1 expn
i iiA u uα

=
= −∑  which is reached  

if and only if we have the replacement ( )* *expi ip uα= − , thus verifying the result (2) as the maximum point 
coordinates. 

2.3. The Optimal Value of the Lagrange Multiplier of Index KU 
Retrieving auxiliary function A  we can rewrite: * * * *

1
n

U i iiA K u pα
=

= − = ∑  and the optimal value of the La-  
grange multiplier evaluates as * * * * *

1 1 logn n
U i i i i ii iK u p u p pα

= =
= − = −∑ ∑  entailing the result: 

( )* *
UH pα =                                       (4) 

Formula (4) is the weighted entropy of the optimal solution of index UK  defined as ( )* * *
1 , , np p p=   eva- 

luated by Formula (2) after numerical evaluation of Equation (3); note that this is not to be confused with the 
maximum point of weighted entropy itself. 

Optimal proportions are indifferent to a linear positive transformation in the utilities, such as a change of scale 
or units of measure. In particular, if we replace the utilities iu  by its normalized (and dimensionless) form 

i i iv u u= ∑ —acknowledging that the iv ’s are intrinsically merged within another simplex—the optimal solu- 
tions *

ip  are the same as those evaluated with the original utilities iu , and the optimal Lagrange multiplier 
value becomes also normalized as ** *

iuα α= ∑ . 
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2.4. Range of Index KU 

The minimum value of index UK  is { } 1, ,
min minU i mi n

K u u
=

= =


 which is a straightforward result because  

weighted entropy verifies 0UH ≥ ; as U UK U H= +  defined in (1) the second term of the sum vanishes at the 
vertexes of the simplex and the first term takes the minimum value when mU u=  so the result holds. The 
maximum value of the index max UK  may be calculated with optimal proportions by direct substitution as  

* * * *
1 1 logn n

U i i i i ii iK u p u p p
= =

= −∑ ∑  or, equivalently, indexed to the optimal value of the Lagrange multiplier eva-  
luated in (3), obtaining the expression 

( )( )* * *
1 exp 1n

U i i iiK u u uα α
=

= − +∑                             (5) 

Thus, since UK  is a continuous function in the proportions { } 1, ,i i n
p

= 

, defined in a compact set—the simp- 
lex—we have the general result, following Bolzano-Weierstrass theorem, concerning the range of the EU-WE 
here discussed: *

m U Uu K K≤ ≤ , the last term of the double inequality referred to in Equation (5). 

2.5. Exemplification 
As an example, we retrieve characteristic economic values of forest habitats from [27] and exemplify the use of 
the formulas presented in this paper. In the case, we have { }112,618,91,136,191W =  and with neutral utilities 
of the form ( ) , for 1, ,5i iU w w i= =   we obtain for Equation (3) the following expression: 

* * * **

618 91 136 191112e e e e e 1
α α α αα

− − − −−
+ + + + = , 

which solved numerically for *α  gives the value * 310.31α = . Then, applying Formula (2), rounding up to 
three decimals, we get: *

1 0.063p = ; *
2 0.605p = ; *

3 0.033p = ; *
4 0.102p =  and *

5 0.197p = . 
Using these optimal values and evaluating Formula (4) we obtain 310. 43 which is quite similar to the value 

of *α  evaluated numerically, except for the influence of small rounding errors, thus confirming that the opti- 
mal value of the Lagrange multiplier is the weighted entropy of the optimal point of index UK . Finally, com- 
puting (5) we get the maximum value of the index: * 745.88UK = . 

Other utilities could have been used besides the neutral, either convex, risk-taking utilities, as it would be the 
case with ( ) 2

i iU w w=  or concave, risk-averting utilities, such as ( )i iU w w= ; the first type would promote 
the proportions related to higher characteristic values penalizing the remnant, and the second type, on the con- 
trary, would enhance a more balanced optimal composition solution. 

3. Discussion 
The EU-WE framework here discussed emphasizes the notion of contributive value of each component of a 
mosaic—or stable state of a simultaneous multi-state system—depending both on context and utility values. 
Others seem to identify contributive value with utility itself (see [37]), which is not the case here, where tradi-
tional expected utility is balanced by the weighted entropy of the utilities. We remark that weighted entropy—or 
related forms of Shannon entropy—though it has already a long history of almost half a century since its first 
reference [16], is yet being referred to as a risk measure in portfolio selection strategies (e.g. [38] [39]). 

The static nonlinear optimization procedure presented here may be applied with focus on compositional sce- 
narios generated under active adaptive ecosystem management paradigm sensu Gunderson et al. [40], a rein- 
forcement process, or as a dynamic system: if the characteristic values, or the correspondent utilities, change in 
time, so will change the optimal proportions, addressing the issue of whether the mosaic will after some time 
converge to a steady state or be continuously changing (see [41]). Clark et al. [42] point out that utility analysis 
has been used in environmental policy design studies to help articulate conflicting experiences and simplify 
comparisons of policies, though it is also useful remember that the precautionary principle advises that resilience 
of an ecosystem may be lost because of activities that focus on an optimal control strategy of a single target va-
riable [43]. Last, let us recall that decision analysis concerns with the balancing of factors that influence a deci-
sion, in a procedure that incorporates uncertainties, values, and preferences, in a basic structure that models the 
decision [44], and recently it was proposed a semiotic interpretation of weighted entropy as mean contextual re-
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levance of events indexed to a sample space and a context of utility [45]. 
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