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ABSTRACT 
This note elaborates Suppes’ (1977, Erkenntnis Vol. 11, No. 1, pp 233-250) derivation of the logarithmic function 
as a consumer’s cardinal utility function on money income levels, in which the consumer’s preferences are speci-
fied by a level comparison relation and a difference comparison relation. Without assuming Suppes’ hypothesis 
(Bernoulli’s hypothesis or Weber-Fechner law), which asserts that the utility values are proportional to the loga-
rithmic values of income levels, it is shown that the representability of the two relations by logarithmic utility 
function can be characterized only by the three (mutually independent) axioms on the relations. 
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1. Introduction 
The logarithmic utility function on money income levels 
is widely adapted as a utility function representing a 
consumer’s preferences on income levels in the models 
of the welfare economics and the growth theory1. Specif-
ically, the logarithmic utility function is used as a typical 
utility function representing the law of diminishing mar-
ginal utilities, which is a key property of utility functions 
in the models leading some equity-regarding prescrip-
tions such as the progressive income tax schedule. In the 
neoclassical (Paretian) utility theory, a consumer’s pre-
ferences on income levels is specified by a level compar-
ison relation and a level comparison relation is re-pre- 
sented by the logarithmic utility function if and only if 
the relation satisfies the monotonicity axiom, i.e., the 
larger levels of income are more desirable. However, the 
relation is represented by the logarithmic function as an 

ordinal utility function2. Consequently, the equilibria or 
solutions of the specific economic models depend on the 
selections of the utility representations, if the definitions 
of the equilibria or solutions involve the cardinal proper-
ties of the utility functions. For example, the Nash bar-
gaining solution is not well-defined, if the utility repre-
sentations are determined unique up to monotone trans-
formations. 

Suppes [7] Section 2 derives the logarithmic utility 
function based on a cardinal utility representation theo-
rem ([7] Theorem 2) for a general class of preferences 
including non-monotonic preferences, in which individu-
al preferences are specified by the difference comparison 
relation as well as the level comparison relation. Con-
cretely, Suppes shows that the utility representation is 
determined unique up to positive affine transformations, 

1Watts [1] introduces a poverty index, which can be interpreted as 
the differences of the logarithmic utility values. See [2,3] for the 
Watts index. For the examples in the growth theory, see [4] Proposi-
tions 4 and 5, [5] Chapter 6 Example 6.4, and [6] Appendix Figure 
A2-2. 

2Namely the following three statements for a (rational) level compari-
son relation R on positive income levels are mutually equivalent: 1) the 
relation R satisfies the monotonicity axiom, i.e., x y xRy> ⇒  and 
not yRx; 2) the relation R is represented by the logarithmic function, 
i.e., log logxRy x y⇔ ≥ ; 3) the relation R is represented by any 
function in M and no function in MC represents R, where M is the set 
of all increasing functions on the income levels. 
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which means that the derived utility function is a cardin-
al utility function representing the two relations simulta-
neously, and then the equilibria or solutions involving the 
cardinal properties are well-defined under the utility re-
presentation. However, Suppes ([7] Section II Hypothe-
sis U) assumes that the utility values are proportional to 
the logarithmic values of income levels to determine the 
logarithmic utility function among the general class of 
utility functions3. 

In this paper, without assuming such a superficial hy-
pothesis on the derived utility values, it is shown that the 
representability of the two relations by logarithmic func-
tion can be characterized only by the axioms on the rela-
tions. Specifically, a pair of the relations on the alterna-
tives is called a preference structure, and it is shown that 
a preference structure is represented by the logarithmic 
function as a cardinal utility function if and only if the 
preference structure satisfies the (mutually independent) 
three axioms: monotonicity, consistency and homogene-
ity axioms. The homogeneity axiom is the new axiom 
introduced by this paper and the monotonicity and con-
sistency axioms are standard axioms in the cardinal utili-
ty theory based on the difference comparisons.  

2. The Model and Results  
We introduce some fundamental concepts and definitions 
used in the cardinal utility theory based on the difference 
comparisons and show the characterization result for the 
logarithmic utility function4. 

2.1. The Model 
The set of all possible levels of money income is the set 
of positive real numbers denoted by X ≡ R++. A level 
comparison relation R is a complete and transitive binary 
relation on X. The expression xRy means that x is pre-
ferred to y. The symmetric and asymmetric parts of R are 
denoted by I and S, respectively. A difference compari-
son relation R∗ on X is a complete and transitive quater-
nary relation on X. The expression (x → y)R∗(z → w) 
means that the transition (path) from x to y is preferred to 
the transition from z to w. We assume that all the possi-
ble transitions (x → y) are completed for a fixed length of 
time interval and the underlying price vector is fixed over 
the time interval; otherwise, the money income levels are 

assumed to be adjusted suitably (PPP adjustment). The 
symmetric and asymmetric parts of R∗ are denoted by I∗ 
and S∗, respectively. A preference structure on X is a 
pair of a level comparison relation R and a difference 
comparison relation R∗ on X. The preference structure on 
X is denoted by (R, R∗). A preference structure (R, R∗) on 
X is represented by a real-valued function u on X if and 
only if the following two assertions hold:   

1) ( ) ( )xRy u x u y⇔ ≥  for all , Xx y ∈ ,   
2) ( ) ( ) ( ) ( ) ( ) ( )*x y R z w u y u x u w u z→ → ⇔ − ≥ −  

for all , , , Xx y z w∈ . This definition implies that, for a 
given real-valued function u on X, there uniquely exists a 
preference structure (R, R∗) which is represented by the 
function u, i.e., if ( ),a aR R∗  and ( ),b bR R∗  are 
represented by u, then ( ) ( ), ,a a b bR R R R∗ ∗= . Specifically, 
let ( )0 0,R R∗  be the preference structure represented by 
the logarithmic function, i.e.,  

3) 0  log logxR y x y⇔ ≥  for all , Xx y ∈ ,  
4) ( ) ( )0 log log log logx y R z w y x w z∗→ → ⇔ − ≥ −  

for all , , , Xx y z w∈ . Since the logarithmic function is 
monotone, the condition 3) means that R0 is the mono-
tone level comparison relation. For 0R∗ , we need a lem-
ma proved in Appendix B: 

Lemma 1 log log log logy x w z− ≥ − ⇔ (y/x)R(w/z) ⇔ 
( ) ( )y x x w z z− ≥ −  for all , , , Xx y z w∈ . 

It follows from Lemma 1 that the condition 4) means 
that the difference comparison relation 0R∗  is deter-
mined by the simple rule that the differences with larger 
growth rates are more desirable, i.e.,  

( ) ( ) ( ) ( )0x y R z w y x x w z z∗→ → ⇔ − ≥ − . 

2.2. Results 
We introduce the following axioms to characterize the 
representability of a preference structure by the logarith-
mic function:  

Monotonicity x y xSy> ⇒  for all , Xx y ∈ .  
Consistency There exists some Xz ∈  such that 

( ) ( )z x R z y xRy∗→ → ⇔  for all , Xx y ∈ . 
Homogeneity ( ) ( )x y I tx ty∗→ →  for all , Xx y ∈  

and all t > 0.  
The monotonicity axiom means that the larger levels 

of income are more desirable, and the consistency axiom 
means that there exists some Xz ∈  such that the dif-
ference comparison on ( )z x→  and ( )z y→  coin-
cides with the level comparison on x and y for all 

, Xx y ∈ . The homogeneity axiom means that two transi-
tions are indifferent if one transition is given by multip-
lying a positive number both for the initial and ending 
levels of another transition. Then we have the following 
proposition: 

Proposition Let (R, R∗) be a preference structure on X 
and let L be a set of real-valued functions f on X defined 
by L = {f: there exist a > 0 and b such that  

3In the literature of psychophysics, almost the same hypothesis called 
Weber-Fechner law is assumed for deriving a logarithmic function to 
represent the relationship between the stimuli and sensations. For the 
Weber-Fechner law, see [8]. In case of the expected utility function, 
which is also determined unique up to positive affine transformations, 
almost the same hypothesis stated in a differential form is assumed by 
Bernoulli to derive the logarithmic utility function. For the derivation 
of logarithmic utility function based on Bernoulli hypothesis, see [9] 
Section 3 and [10] Historical Note 6 Classic logarithmic utility. 
4For the cardinal utility theory based on the difference comparisons, 
see [11-13]. 
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( ) logf x a x b= ⋅ +  for all Xx ∈ }. Then the following 
three statements are mutually equivalent:  

1) (R, R∗) satisfies the monotonicity, consistency and 
homogeneity axioms;  

2) (R, R∗) coincides with ( )0 0,R R∗ , i.e., (R, R∗) is 
represented by the logarithmic function; 

3) (R, R∗) is represented by any function in L and no 
function in LC represents (R, R∗). 

Proposition is proved in Appendix A. The three 
axioms in the assertion 1) of Proposition are mutually 
independent, which can be proved by constructing the 
counter examples: Define a preference structure ( )1 1,R R∗  
by 

( ) ( )1 1andxI y x y I z w∗→ →  

for all , , , Xx y z w∈ . The preference structure ( )1 1,R R∗  
satisfies the homogeneity and consistency axioms, but it 
does not satisfy the monotonicity axiom, which implies 
that the monotonicity axiom is independent. Let 2R∗  be 
a difference comparison relation defined by  

( ) ( ) ( ) ( )2    x y R z w y x x w z z∗→ → ⇔ − ≤ −  

for all , , , Xx y z w∈ , and let 3R∗  be a difference com-
parison relation defined by  

( ) ( ) ( ) ( )3x y R z w y x w z∗→ → ⇔ − ≥ −  

for all , , , Xx y z w∈ . Letting R0 be the monotonic level 
comparison relation again, the preference structure 
( )0 2,R R∗  satisfies the monotonicity and homogeneity 
axioms, but it does not satisfy the consistency axiom, 
which implies that the consistency axiom is independent. 
In fact, it holds that 2S01 and ( ) ( )21 2z S z∗→ →  for all 

Xz ∈ . The preference structure ( )0 3,R R∗  satisfies the 
monotonicity and consistency axioms, but it does not 
satisfy the homogeneity axiom, which implies that the 
homogeneity axiom is independent.  

3. Conclusions  
A consumer’s preferences over money income levels are 
specified by a level comparison relation and a difference 
comparison relation. A pair of the relations is called a 
preference structure and it is shown that a preference 
structure is cardinally represented by the logarithmic 
function if and only if the preference structure satisfies 
the three mutually independent axioms on the preference 
structures. This result clarifies the mutually independent 
axioms characterizing the preference structure represented 
by the logarithmic function as a cardinal utility function. 
In particular, this result enables us to interpret the per 
capita national income measured by the logarithmic scale 
as the utility level of the income, and axiomatically cha- 

racterizes the simple rule evaluating the differences of 
per capita national income levels based on their growth 
rates under the monotonic level comparison relation. 
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Appendix A  
Proof of Proposition: We can easily show that the asser-
tion 3) implies the assertion 2) and that the assertion 2) 
implies the assertion 1). First, we show that the assertion 
1) implies the assertion 2). Suppose that (R, R∗) satisfies 
the three axioms. By the contraposition of the monoto-
nicity axiom that 

    for all , XxRy x y x y⇒ ≥ ∈ .         (1) 

Since R is a complete and transitive binary relation on X, 
it holds that  

for all , Xx y xIy x y= ⇒ ∈ .         (2) 

It holds by the monotonicity axiom and (2) that 

for all , Xx y xRy x y≥ ⇒ ∈ .         (3) 

Hence it holds by (1) and (3) that  

for all , Xx y xRy x y≥ ⇔ ∈ .        (4) 

Since ( )log ⋅  is increasing on X, it holds by (4) that  
log log for all ,x y xRy x y X≥ ⇔ ∈ . 

Let s be an element in X satisfying the condition in the 
consistency axiom, i.e., 

( ) ( ) for all , XxRy s x R s y x y∗⇔ → → ∈ .    (5) 

It holds by the homogeneity axiom that  

( ) ( )( ) ( ) ( )( )andx y I s sy x z w I s sw z∗ ∗→ → → → , 

which implies that 

( ) ( )
( )( ) ( )( ).

x y I z w

s sy x I s sw z

∗

∗

→ →

⇔ → →
      (6) 

We have by (5) that 

( )( ) ( )( ) ( ) ( )s sy x R s sw z sy x R sw z∗→ → ⇔ .  (7) 

Moreover, we have by (4) that   

( ) ( ) ( ) ( )
( ) ( ) .

sy x R sw z y x R w z

y x x w z z

⇔

⇔ − ≥ −
      (8) 

Hence it holds by (6), (7) and (8) that 

( ) ( )
( ) ( ) for all , , , X.

x y R z w

y x x w z z x y z w

∗→ →

⇔ − ≥ − ∈
    (9) 

It holds by (9) and Lemma 1 that  

( ) ( ) log log log logx y R z w y x w z∗→ → ⇔ − ≥ −  

for all , , , Xx y z w∈ . Thus the assertion 2) holds. 
Second, we will show that the assertion 2) implies the 

assertion 3). Suppose that the assertion 2) holds, i.e., 
( ) ( )0 0, ,R R R R∗ ∗= . Since the assertion 2) implies the 

assertion 1), ( )0 0,R R∗  satisfies the three axioms. More-
over, we can easily show that ( )0 0,R R∗  is represented 
by any function in L. There remains to show that no 
function in LC represents ( )0 0,R R∗ . Suppose that a 
real-valued function g on X represents ( )0 0,R R∗ , i.e., it 
holds that  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

0

and

for all , , , X

xR y g x g y

x y R z w g y g x g w g z
x y z w

∗

⇔ ≥

→ → ⇔ − ≥ −

∈

 

(10) 
Define a function f: R → R by ( ) ( )tf t g e=  for all 

t ∈ R . Then it holds that  

( ) ( ) ( )loglog for all xf x g e g x x X= = ∈ .    (11) 

We need a lemma proved in Appendix B: 
Lemma 2: 1)  

( ) ( ) ( ) ( )f f f fβ α δ γ β α δ γ− = − ⇔ − = −  

for all , , ,α β γ δ ∈ R . 2) ( )f ⋅  is continuous and in-
creasing on R. 

Setting a∗ = f(1) − f(0) > 0 and b∗ = f(0), we will prove 
that f(t) = a∗t + b∗ for all t ∈ R . Suppose that t is a ra-
tional number, i.e., there exists a pair of integers (p, q) 
such that  

, 0 and 0t q p q p= ≥ ≠ .          (12) 
Using the induction arguments with respect to 

0,1, 2,q = 
 for a fixed p ≠ 0, it holds by Lemma 2 1) 

that  

( ) ( ) ( ) ( )1 0 0

for all integers 0 and 0

f q p f p f q f

q p

= − +  
≥ ≠

     (13) 

Case 1 (t ≥ 0) Setting q = p in (13), we have that  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1 1 0 0 and

1 1 0 0 .

f f p f p f

f p f f p f

= − +  
= − +  

 

Hence, we have by (13) and this that   

( ) ( ) ( ) ( ) ( )1 0 0f q p q p f f f= − +   . 

Since a∗ = f(1) − f(0) and b∗ = f(0), we have that  

( ) for all rational numbers 0f t a t b t∗ ∗= + ≥ .  

Since ( )f ⋅  is continuous on R by Lemma 2 2), we have 
that  

( ) for all real numbers 0f t a t b t∗ ∗= + ≥ . 

Case 2 (t < 0) It holds by (12) that p < 0. Setting q = − 
p > 0 in (13), we have that  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 0 0 and

1 0 1 0 .

f f p f p f

f p f f p f

− = − − +  
= − − +  

 



M. MIYAKE 

OPEN ACCESS                                                                                         TEL 

11 

Hence we have by (13) and this that   

( ) ( ) ( ) ( ) ( )0 1 0f q p q p f f f= − − +   . 

Since ( ) ( ) ( ) ( )1 0 0 1f f f f− = − −  by Lemma 2 1), 
we have that a∗ = f(0) − f(−1) > 0. Hence we have that 

( )  for all rational numbers 0f t a t b t∗ ∗= + < . 
Since ( )f ⋅  is continuous on R by Lemma 2 2), we 

have that  

( ) for all real numbers 0f t a t b t∗ ∗= + < . 

Thus it holds by (11) that ( ) ( )log Lg a b∗ ∗⋅ = ⋅ + ∈  
and that no function in LC represents ( )0 0,R R∗ .      � 

Appendix B  
Proof of Lemma 1 It holds that  

log log log logy x w z− ≥ −  

⇔ ( ) ( )log logy x w z≥  

⇔ ( ) ( )y x w z≥  

⇔ ( ) ( ) ( ) ( )y x x x w z z z− ≥ −  

⇔ ( ) ( )y x x w z z− ≥ −  

for all , , , Xx y z w∈ .      �  
Proof of Lemma 2 1) Since ( )0 0,R R∗  satisfies the 

three axioms, it holds by Lemma 1 and (10) that 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
0

for all , , , X.

y x w z
y x x w z z

x y I z w

g y g x g w g z
x y z w

∗

=

⇔ − = −

⇔ → →

⇔ − = −

∈

   (14) 

For any , , ,α β γ δ ∈ R , set x∗ = eα, y∗ = eβ, z∗ = eγ and 
w∗ = eδ. Then we have by (14) that 

( ) ( ) ( ) ( ).

y x w z

g y g x g w g z

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

=

⇔ − = −
  

It holds by this and (11) that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

–

.

y x w z

g y g x g w g z

f f f g

β α δ γ

β α δ γ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

− = ⇔ =

⇔ − = −

⇔ − = −

  

2) Since g(x) is (strictly) increasing on X by (10), and 
since et is (strictly) increasing on R, f(t) ≡ g(et) is (strictly) 
increasing on R. Hence it holds by [14] Chapter 5 Theo-
rem 3 p.100 that there are at most countable number of 
points at which f is not continuous. Thus there is a point 
α in R at which f is continuous. Let β be a point in R, and 
let {βm} be a sequence in R converging to β. Define a 
sequence {αm} in R by  

  for all 1, 2,m m mα α β β= − + =  . 

Hence we have Lemma 2 1) that 

( ) ( ) ( ) ( )  for all 1, 2,m mf f f f mα α β β− = − = 
. 

Since limαm = α and f is continuous at α, we have that 

( ) ( )lim mf fβ β= .      � 

 
 

 
 
 
 


