[1]
|
Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change
Plants,
2024
DOI:10.3390/plants13030449
|
|
|
[2]
|
Effect of light and temperature on the content of some biologically active substances in Deschampsia antarctica tissue culture
Biopolymers and Cell,
2024
DOI:10.7124/bc.000AAE
|
|
|
[3]
|
B-Chromosome Variability in Plants and Animals under Extreme Environments
Генетика,
2023
DOI:10.31857/S0016675823080040
|
|
|
[4]
|
A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain
Applied Microbiology and Biotechnology,
2023
DOI:10.1007/s00253-023-12405-7
|
|
|
[5]
|
Prediction and analysis of stress-inducible ICE transcription factors in Deschampsia antarctica
Biopolymers and Cell,
2023
DOI:10.7124/bc.000A8E
|
|
|
[6]
|
Commonalities between the Atacama Desert and Antarctica rhizosphere microbial communities
Frontiers in Microbiology,
2023
DOI:10.3389/fmicb.2023.1197399
|
|
|
[7]
|
B Chromosome Variability in Plants and Animals under Extreme Environments
Russian Journal of Genetics,
2023
DOI:10.1134/S1022795423080045
|
|
|
[8]
|
Meta‐analysis of Antarctic phylogeography reveals strong sampling bias and critical knowledge gaps
Ecography,
2022
DOI:10.1111/ecog.06312
|
|
|
[9]
|
Characterization of the Cell Wall Component through Thermogravimetric Analysis and Its Relationship with an Expansin-like Protein in Deschampsia antarctica
International Journal of Molecular Sciences,
2022
DOI:10.3390/ijms23105741
|
|
|
[10]
|
Molecular Diversity and Phylogeny Reconstruction of Genus Colobanthus (Caryophyllaceae) Based on Mitochondrial Gene Sequences
Genes,
2022
DOI:10.3390/genes13061060
|
|
|
[11]
|
Biological Soil Crusts as Ecosystem Engineers in Antarctic Ecosystem
Frontiers in Microbiology,
2022
DOI:10.3389/fmicb.2022.755014
|
|
|
[12]
|
Characterization of the Cell Wall Component through Thermogravimetric Analysis and Its Relationship with an Expansin-like Protein in Deschampsia antarctica
International Journal of Molecular Sciences,
2022
DOI:10.3390/ijms23105741
|
|
|
[13]
|
Molecular Diversity and Phylogeny Reconstruction of Genus Colobanthus (Caryophyllaceae) Based on Mitochondrial Gene Sequences
Genes,
2022
DOI:10.3390/genes13061060
|
|
|
[14]
|
Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions
Beilstein Journal of Nanotechnology,
2022
DOI:10.3762/bjnano.13.71
|
|
|
[15]
|
Involvement of Lipids in Adaptations of Higher Vascular Plants to the Conditions of West Spitsbergen
Biology Bulletin Reviews,
2022
DOI:10.1134/S2079086422050061
|
|
|
[16]
|
Comparative Analysis of Promoters of DREB2B Transcription Factor Genes in Deschampsia antarctica and Other Grasses
Cytology and Genetics,
2022
DOI:10.3103/S0095452722050048
|
|
|
[17]
|
Determination of stomatic density, index, and area as exposition biomarkers of pollution in Deschampsia antárctica Desv. (Poaceae)
Ecotoxicology,
2022
DOI:10.1007/s10646-022-02589-5
|
|
|
[18]
|
Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis—a Comparison
Microbial Ecology,
2022
DOI:10.1007/s00248-021-01891-9
|
|
|
[19]
|
Склад та антиоксидантні властивості екстрактів Deschampsia antarctica É. Desv. з різних місцезростань Морської Антарктики
Reports of the National Academy of Sciences of Ukraine,
2022
DOI:10.15407/dopovidi2022.05.068
|
|
|
[20]
|
Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants
FEMS Microbiology Ecology,
2022
DOI:10.1093/femsec/fiac099
|
|
|
[21]
|
Current status of Belgica antarctica Jacobs, 1900 (Diptera: Chironomidae) distribution by the data of Ukrainian Antarctic Expeditions
Ukrainian Antarctic Journal,
2021
DOI:10.33275/1727-7485.2.2021.679
|
|
|
[22]
|
Heat Shock Tolerance in Deschampsia antarctica Desv. Cultivated in vitro Is Mediated by Enzymatic and Non-enzymatic Antioxidants
Frontiers in Plant Science,
2021
DOI:10.3389/fpls.2021.635491
|
|
|
[23]
|
First record of the endophytic bacteria of Deschampsia antarctica Ė. Desv. from two distant localities of the maritime Antarctic
Czech Polar Reports,
2021
DOI:10.5817/CPR2021-1-10
|
|
|
[24]
|
Preliminary estimates of the number and diversity of the culturable endophytic bacteria from Deschampsia antarctica and Colobanthus quitensis
Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv,
2021
DOI:10.7124/visnyk.utgis.19.1-2.1437
|
|
|
[25]
|
Multiple late‐Pleistocene colonisation events of the Antarctic pearlwortColobanthus quitensis(Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora
Journal of Biogeography,
2020
DOI:10.1111/jbi.13843
|
|
|
[26]
|
Multiple late‐Pleistocene colonisation events of the Antarctic pearlwort
Colobanthus quitensis
(Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora
Journal of Biogeography,
2020
DOI:10.1111/jbi.13843
|
|
|
[27]
|
Fungal Endophytes Enhance the Photoprotective Mechanisms and Photochemical Efficiency in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to UV-B Radiation
Frontiers in Ecology and Evolution,
2020
DOI:10.3389/fevo.2020.00122
|
|
|
[28]
|
Global Vegetation
2020
DOI:10.1007/978-3-030-49860-3_14
|
|
|
[29]
|
The Ecological Role of Micro-organisms in the Antarctic Environment
Springer Polar Sciences,
2019
DOI:10.1007/978-3-030-02786-5_12
|
|
|
[30]
|
Antarctic Extremophiles: Biotechnological Alternative to Crop Productivity in Saline Soils
Frontiers in Bioengineering and Biotechnology,
2019
DOI:10.3389/fbioe.2019.00022
|
|
|
[31]
|
Karyological Study of Siberian Larch Species Larix sibirica and Larix gmelinii in Taimyr
Cytology and Genetics,
2019
DOI:10.3103/S0095452719030046
|
|
|
[32]
|
A methodological proposal for the recovery of palynomorphs from snow and ice samples
Acta Botanica Brasilica,
2018
DOI:10.1590/0102-33062018abb0002
|
|
|
[33]
|
Range-wide pattern of genetic variation in Colobanthus quitensis
Polar Biology,
2018
DOI:10.1007/s00300-018-2383-5
|
|
|
[34]
|
Seeds of non-native species in King George Island soil
Antarctic Science,
2017
DOI:10.1017/S0954102017000037
|
|
|
[35]
|
Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species
PLOS ONE,
2017
DOI:10.1371/journal.pone.0175760
|
|
|
[36]
|
Phenotypic variability and genetic differentiation in continental and island populations of Colobanthus quitensis (Caryophyllaceae: Antarctic pearlwort)
Polar Biology,
2017
DOI:10.1007/s00300-017-2152-x
|
|
|
[37]
|
The influence of short-term cold stress on the metabolism of non-structural carbohydrates in polar grasses
Polish Polar Research,
2017
DOI:10.1515/popore-2017-0012
|
|
|
[38]
|
Comprehensive characterization of cultivated in vitro Deschampsia antarctica E. Desv. plants with different chromosome numbers
Cytology and Genetics,
2017
DOI:10.3103/S009545271706010X
|
|
|
[39]
|
How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae)
Botanical Journal of the Linnean Society,
2017
DOI:10.1093/botlinnean/box070
|
|
|
[40]
|
Peculiarities of chromosomal variability in cultured tissues of Deschampsia antarctica Desv. plants with different chromosome numbers
Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv,
2016
DOI:10.7124/visnyk.utgis.14.1.542
|
|
|
[41]
|
Enhanced tolerance of Deschampsia antarctica Desv. to the mutagenic effect of cadmium ions
Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv,
2016
DOI:10.7124/visnyk.utgis.14.1.546
|
|
|
[42]
|
Ecophysiological traits of Antarctic vascular plants: their importance in the responses to climate change
Plant Ecology,
2016
DOI:10.1007/s11258-016-0585-x
|
|
|
[43]
|
Adaptation of the seed reproduction system to conditions of Maritime Antarctic in Deschampsia antarctica E. Desv.
Russian Journal of Developmental Biology,
2016
DOI:10.1134/S1062360416030073
|
|
|
[44]
|
Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic
PLOS ONE,
2015
DOI:10.1371/journal.pone.0138878
|
|
|
[45]
|
Morphological and Ultrastructural Changes of Organelles in Leaf Mesophyll Cells of the Arctic and Antarctic Plants of Poaceae Family Under Cold Influence
Arctic, Antarctic, and Alpine Research,
2015
DOI:10.1657/AAAR0014-019
|
|
|
[46]
|
Comparative analysis of Deschampsia antarctica Desv. population adaptability in the natural environment of the Admiralty Bay region (King George Island, maritime Antarctic)
Polar Biology,
2015
DOI:10.1007/s00300-015-1704-1
|
|
|
[47]
|
Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors
Cytology and Genetics,
2015
DOI:10.3103/S0095452715020085
|
|
|
[48]
|
Generative reproduction of Antarctic grasses, the native species Deschampsia antarctica Desv. and the alien species Poa annua L.
Polish Polar Research,
2015
DOI:10.1515/popore-2015-0016
|
|
|
[49]
|
Germination capacity of five polar Caryophyllaceae and Poaceae species under different temperature conditions
Polar Biology,
2015
DOI:10.1007/s00300-015-1740-x
|
|
|
[50]
|
Genetic diversity of Colobanthus quitensis across the Drake Passage
Plant Genetic Resources,
2014
DOI:10.1017/S1479262113000270
|
|
|
[51]
|
Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling
Acta Physiologiae Plantarum,
2014
DOI:10.1007/s11738-014-1551-7
|
|
|
[52]
|
Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with antarctic hair grass (Deschampsia antarctica Desv)
Polar Biology,
2013
DOI:10.1007/s00300-012-1264-6
|
|
|
[53]
|
Deschampsia antarctica E. Desv. plants with different chromosome number cultivated in vitro. Probabilistic relations of three adaptability indices with genome size
Faktori eksperimental'noi evolucii organizmiv,
1970
DOI:10.7124/FEEO.v20.782
|
|
|
[54]
|
Tubulin genes-introne length polymorphism in Deschampsia antarctica Desv. from maritime Antarctic
Faktori eksperimental'noi evolucii organizmiv,
1970
DOI:10.7124/FEEO.v20.743
|
|
|