[1]
|
Analysing orbits around the Moon for the Garatéa-L Mission
Astrophysics and Space Science,
2024
DOI:10.1007/s10509-024-04297-4
|
|
|
[2]
|
Searching For Optimal Areas of Circumlunar Space for Placement of Satellites Moving in Circular Orbits
Russian Physics Journal,
2024
DOI:10.1007/s11182-024-03215-z
|
|
|
[3]
|
Improved Numerical Model of Motion of Artificial Satellites of the Moon and its Application in Research Features of the Dynamics of Circumlunar Objects
Solar System Research,
2024
DOI:10.1134/S0038094624700539
|
|
|
[4]
|
The LimPa mission: a small mission proposal to characterize the enigmatic lunar dust exosphere
Earth, Planets and Space,
2024
DOI:10.1186/s40623-024-02106-4
|
|
|
[5]
|
Усовершенствованная численная модель движения искусственных спутников Луны и ее применение в исследовании особенностей динамики окололунных объектов
Astronomičeskij vestnik,
2024
DOI:10.31857/S0320930X24060139
|
|
|
[6]
|
Mapping Long-Term Natural Orbits about Titania, a Satellite of Uranus
Symmetry,
2022
DOI:10.3390/sym14040667
|
|
|
[7]
|
Lifetime Extension of Ultra Low-Altitude Lunar Spacecraft with Low-Thrust Propulsion System
Aerospace,
2022
DOI:10.3390/aerospace9060305
|
|
|
[8]
|
Mapping Long-Term Natural Orbits about Titania, a Satellite of Uranus
Symmetry,
2022
DOI:10.3390/sym14040667
|
|
|
[9]
|
Lifetime Extension of Ultra Low-Altitude Lunar Spacecraft with Low-Thrust Propulsion System
Aerospace,
2022
DOI:10.3390/aerospace9060305
|
|
|
[10]
|
Numerical Modeling of the Dynamics of Artificial Satellites of the Moon
Solar System Research,
2022
DOI:10.1134/S0038094622040074
|
|
|
[11]
|
Low selenocentric orbits stability analysis
Engineering Journal: Science and Innovation,
2020
DOI:10.18698/2308-6033-2020-10-2023
|
|
|
[12]
|
Analysis of lifetime extension capabilities for CubeSats equipped with a low-thrust propulsion system for Moon missions
Acta Astronautica,
2019
DOI:10.1016/j.actaastro.2018.11.040
|
|
|