[1]
|
Improvement of crop production in controlled environment agriculture through breeding
Frontiers in Plant Science,
2025
DOI:10.3389/fpls.2024.1524601
|
|
|
[2]
|
Improving genomic prediction of vitamin C content in spinach using GWAS-derived markers
BMC Genomics,
2025
DOI:10.1186/s12864-025-11343-0
|
|
|
[3]
|
Characterization of Stemphylium Species Associated with Stemphylium Leaf Spot of Spinach (Spinacia oleracea)
Plant Disease,
2024
DOI:10.1094/PDIS-10-23-2223-RE
|
|
|
[4]
|
Optimizing Convolutional Neural Networks and Support Vector Machines for Spinach Disease Detection: A Hyperparameter Tuning Study
2023 4th IEEE Global Conference for Advancement in Technology (GCAT),
2023
DOI:10.1109/GCAT59970.2023.10353280
|
|
|
[5]
|
Smart Plant Breeding for Vegetable Crops in Post-genomics Era
2023
DOI:10.1007/978-981-19-5367-5_6
|
|
|
[6]
|
Phenotypic Diversity and Association Mapping of Ascorbic Acid Content in Spinach
Frontiers in Genetics,
2022
DOI:10.3389/fgene.2021.752313
|
|
|
[7]
|
Genome-wide association study and genomic prediction of white rust resistance in USDA GRIN spinach germplasm
Horticulture Research,
2022
DOI:10.1093/hr/uhac069
|
|
|
[8]
|
Fine Mapping and Identification of a Candidate Gene of Downy Mildew Resistance, RPF2, in Spinach (Spinacia oleracea L.)
International Journal of Molecular Sciences,
2022
DOI:10.3390/ijms232314872
|
|
|
[9]
|
Fine Mapping and Identification of a Candidate Gene of Downy Mildew Resistance, RPF2, in Spinach (Spinacia oleracea L.)
International Journal of Molecular Sciences,
2022
DOI:10.3390/ijms232314872
|
|
|
[10]
|
High resolution mapping and candidate gene identification of downy mildew race 16 resistance in spinach
BMC Genomics,
2021
DOI:10.1186/s12864-021-07788-8
|
|
|
[11]
|
Genomics and Marker-Assisted Improvement of Vegetable Crops
Critical Reviews in Plant Sciences,
2021
DOI:10.1080/07352689.2021.1941605
|
|
|
[12]
|
Research advances and prospects of spinach breeding, genetics, and genomics
Vegetable Research,
2021
DOI:10.48130/VR-2021-0009
|
|
|
[13]
|
A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.)
Euphytica,
2020
DOI:10.1007/s10681-020-02585-y
|
|
|
[14]
|
Single‐marker and haplotype‐based association analysis of anthracnose (Colletotrichum dematium) resistance in spinach (Spinacia oleracea)
Plant Breeding,
2020
DOI:10.1111/pbr.12773
|
|
|
[15]
|
Single‐marker and haplotype‐based association analysis of anthracnose (
Colletotrichum dematium)
resistance in spinach (
Spinacia oleracea
)
Plant Breeding,
2019
DOI:10.1111/pbr.12773
|
|
|
[16]
|
Developing Growth-Associated Molecular Markers Via High-Throughput Phenotyping in Spinach
The Plant Genome,
2019
DOI:10.3835/plantgenome2019.03.0027
|
|
|
[17]
|
Developing Growth‐Associated Molecular Markers Via High‐Throughput Phenotyping in Spinach
The Plant Genome,
2019
DOI:10.3835/plantgenome2019.03.0027
|
|
|
[18]
|
A SNP mutation affects rhizomania-virus content of sugar beets grown on resistance-breaking soils
Euphytica,
2018
DOI:10.1007/s10681-017-2098-7
|
|
|
[19]
|
Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing
PLOS ONE,
2017
DOI:10.1371/journal.pone.0188745
|
|
|
[20]
|
Genetic diversity and association mapping of mineral element concentrations in spinach leaves
BMC Genomics,
2017
DOI:10.1186/s12864-017-4297-y
|
|
|