[1]
|
Sulfated Flavonoids from Phyllospadix (Zosteraceae) Taxa from Baja California, Mexico
ACS Omega,
2025
DOI:10.1021/acsomega.4c10402
|
|
|
[2]
|
New insight on antioxidants and anti-obesity properties of two seagrasses Thalassia hemprichii and Zostera marina: an integrated molecular docking simulation with in vitro study
F1000Research,
2024
DOI:10.12688/f1000research.135221.2
|
|
|
[3]
|
Antimicrobial and cytotoxic activities of flavonoid and phenolics extracted from Sepia pharaonis ink (Mollusca: Cephalopoda)
BMC Biotechnology,
2024
DOI:10.1186/s12896-024-00880-3
|
|
|
[4]
|
Anti-phototoxicity and anti-melanogenesis activities of eelgrass Zostera marina and its phenolic constituents
Fitoterapia,
2024
DOI:10.1016/j.fitote.2023.105817
|
|
|
[5]
|
Characterization of high value products in the side-stream of Laminaria hyperborea alginate production - Targeting the phenolic content
Algal Research,
2023
DOI:10.1016/j.algal.2023.103109
|
|
|
[6]
|
Characterization of high value products in the side-stream of Laminaria hyperborea alginate production - Targeting the phenolic content
Algal Research,
2023
DOI:10.1016/j.algal.2023.103109
|
|
|
[7]
|
Phenolic chemistry of the seagrass Zostera marina Linnaeus: First assessment of geographic variability among populations on a broad spatial scale
Phytochemistry,
2023
DOI:10.1016/j.phytochem.2023.113788
|
|
|
[8]
|
Flavonoids from Erigeron annuus
Chemistry of Natural Compounds,
2023
DOI:10.1007/s10600-023-04109-1
|
|
|
[9]
|
Phenolic chemistry of the seagrass Zostera marina Linnaeus: First assessment of geographic variability among populations on a broad spatial scale
Phytochemistry,
2023
DOI:10.1016/j.phytochem.2023.113788
|
|
|
[10]
|
New insight on antioxidants and anti-obesity properties of two Indonesian seagrass Thalassia hemprichii and Zostera marina: an integrated molecular docking simulation with in vitro study
F1000Research,
2023
DOI:10.12688/f1000research.135221.1
|
|
|
[11]
|
Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition
Horticulturae,
2022
DOI:10.3390/horticulturae8121211
|
|
|
[12]
|
Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass
Separations,
2022
DOI:10.3390/separations9070182
|
|
|
[13]
|
Comparative Study of the Pharmacological Properties of Luteolin and Its 7,3′-Disulfate
Marine Drugs,
2022
DOI:10.3390/md20070426
|
|
|
[14]
|
Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition
Horticulturae,
2022
DOI:10.3390/horticulturae8121211
|
|
|
[15]
|
Seasonal variation of phenolic compounds in Zostera marina (Zosteraceae) from the Baltic Sea
Phytochemistry,
2022
DOI:10.1016/j.phytochem.2022.113099
|
|
|
[16]
|
Seasonal variation of diarylheptanoids in Zostera marina (Zosteraceae) from the Baltic Sea, impact of drying on diarylheptanoids and phenolics, and first report of 3-keto-steroids
Biochemical Systematics and Ecology,
2022
DOI:10.1016/j.bse.2022.104446
|
|
|
[17]
|
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds
Applied Sciences,
2022
DOI:10.3390/app12031766
|
|
|
[18]
|
Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry
Plants,
2022
DOI:10.3390/plants11050630
|
|
|
[19]
|
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds
Applied Sciences,
2022
DOI:10.3390/app12031766
|
|
|
[20]
|
Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry
Plants,
2022
DOI:10.3390/plants11050630
|
|
|
[21]
|
Seasonal variation of phenolic compounds in Zostera marina (Zosteraceae) from the Baltic Sea
Phytochemistry,
2022
DOI:10.1016/j.phytochem.2022.113099
|
|
|
[22]
|
Comparative Study of the Pharmacological Properties of Luteolin and Its 7,3′-Disulfate
Marine Drugs,
2022
DOI:10.3390/md20070426
|
|
|
[23]
|
Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass
Separations,
2022
DOI:10.3390/separations9070182
|
|
|
[24]
|
Seasonal variation of diarylheptanoids in Zostera marina (Zosteraceae) from the Baltic Sea, impact of drying on diarylheptanoids and phenolics, and first report of 3-keto-steroids
Biochemical Systematics and Ecology,
2022
DOI:10.1016/j.bse.2022.104446
|
|
|
[25]
|
Variation in Phenolic Chemistry in Zostera marina Seagrass along Environmental Gradients
Plants,
2021
DOI:10.3390/plants10020334
|
|
|
[26]
|
Microbial Transformation of Galangin Derivatives and Cytotoxicity Evaluation of Their Metabolites
Catalysts,
2021
DOI:10.3390/catal11091020
|
|
|
[27]
|
Insights on the Inhibitory Power of Flavonoids on Tyrosinase Activity: A Survey from 2016 to 2021
Molecules,
2021
DOI:10.3390/molecules26247546
|
|
|
[28]
|
Microbial Transformation of Galangin Derivatives and Cytotoxicity Evaluation of Their Metabolites
Catalysts,
2021
DOI:10.3390/catal11091020
|
|
|
[29]
|
Variation in Phenolic Chemistry in Zostera marina Seagrass along Environmental Gradients
Plants,
2021
DOI:10.3390/plants10020334
|
|
|
[30]
|
Chemical Analysis of Selected Seaweeds and Seagrass from the Adriatic Coast of Montenegro
Chemistry & Biodiversity,
2019
DOI:10.1002/cbdv.201900327
|
|
|
[31]
|
Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression
Antioxidants,
2019
DOI:10.3390/antiox8040087
|
|
|
[32]
|
Surface chemical defence of the eelgrass Zostera marina against microbial foulers
Scientific Reports,
2019
DOI:10.1038/s41598-019-39212-3
|
|
|
[33]
|
Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression
Antioxidants,
2019
DOI:10.3390/antiox8040087
|
|
|
[34]
|
Chemical Analysis of Selected Seaweeds and Seagrass from the Adriatic Coast of Montenegro
Chemistry & Biodiversity,
2019
DOI:10.1002/cbdv.201900327
|
|
|
[35]
|
Surface chemical defence of the eelgrass Zostera marina against microbial foulers
Scientific Reports,
2019
DOI:10.1038/s41598-019-39212-3
|
|
|
[36]
|
Surface chemical defence of the eelgrass Zostera marina against microbial foulers
Scientific Reports,
2019
DOI:10.1038/s41598-019-39212-3
|
|
|
[37]
|
Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities
Molecules,
2018
DOI:10.3390/molecules23020480
|
|
|
[38]
|
Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities
Molecules,
2018
DOI:10.3390/molecules23020480
|
|
|
[39]
|
Characterization of Polyphenolic Content in the Aquatic Plants Ruppia cirrhosa and Ruppia maritima —A Source of Nutritional Natural Products
Molecules,
2017
DOI:10.3390/molecules23010016
|
|
|
[40]
|
Characterization and seasonal variation of individual flavonoids in Zostera marina and Zostera noltii from Norwegian coastal waters
Biochemical Systematics and Ecology,
2017
DOI:10.1016/j.bse.2017.08.003
|
|
|
[41]
|
Characterization of Polyphenolic Content in the Aquatic Plants Ruppia cirrhosa and Ruppia maritima —A Source of Nutritional Natural Products
Molecules,
2017
DOI:10.3390/molecules23010016
|
|
|
[42]
|
Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina
Biofouling,
2017
DOI:10.1080/08927014.2017.1383399
|
|
|
[43]
|
Systems Biology of Marine Ecosystems
2017
DOI:10.1007/978-3-319-62094-7_9
|
|
|