[1]
|
Ann-based predictive model of geometrical deviations in dry turning of AA7075 (Al-Zn) alloy
Measurement,
2025
DOI:10.1016/j.measurement.2024.116355
|
|
|
[2]
|
Roughness prediction of end milling surface for behavior mapping of digital twined machine tools
Digital Twin,
2024
DOI:10.12688/digitaltwin.17819.2
|
|
|
[3]
|
Development of Surface Roughness Prediction and Monitoring System in Milling Process
Engineering, Technology & Applied Science Research,
2024
DOI:10.48084/etasr.6664
|
|
|
[4]
|
Machine learning and artificial intelligence in CNC machine tools, A review
Sustainable Manufacturing and Service Economics,
2023
DOI:10.1016/j.smse.2023.100009
|
|
|
[5]
|
Roughness prediction of end milling surface for behavior mapping of digital twined machine tools
Digital Twin,
2023
DOI:10.12688/digitaltwin.17819.1
|
|
|
[6]
|
Roughness prediction of end milling surface for behavior mapping of digital twined machine tools
Digital Twin,
2023
DOI:10.12688/digitaltwin.17819.1
|
|
|
[7]
|
Machine learning and artificial intelligence in CNC machine tools, A review
Sustainable Manufacturing and Service Economics,
2023
DOI:10.1016/j.smse.2023.100009
|
|
|
[8]
|
Roughness prediction of end milling surface for behavior mapping of digital twined machine tools
Digital Twin,
2023
DOI:10.12688/digitaltwin.17819.1
|
|
|
[9]
|
Soft computing techniques for modelling and multi-objective optimization of magnetic field assisted powder mixed EDM process
Neural Computing and Applications,
2022
DOI:10.1007/s00521-022-07498-6
|
|
|
[10]
|
MACHINE LEARNING-BASED MODELING AND OPTIMIZATION IN HARD TURNING OF AISI D6 STEEL WITH ADVANCED AlTiSiN-COATED CARBIDE INSERTS TO PREDICT SURFACE ROUGHNESS AND OTHER MACHINING CHARACTERISTICS
Surface Review and Letters,
2022
DOI:10.1142/S0218625X22501372
|
|
|
[11]
|
Neural-Network-Based Approaches for Optimization of Machining Parameters Using Small Dataset
Materials,
2022
DOI:10.3390/ma15030700
|
|
|
[12]
|
Neural-Network-Based Approaches for Optimization of Machining Parameters Using Small Dataset
Materials,
2022
DOI:10.3390/ma15030700
|
|
|
[13]
|
Artificial Intelligence‐Based Surface Roughness Estimation Modelling for Milling of AA6061 Alloy
Advances in Materials Science and Engineering,
2021
DOI:10.1155/2021/5576600
|
|
|
[14]
|
An improved algorithm to predict the mechanical properties of nuclear grade 316 stainless steel under elevated-temperature liquid sodium
Journal of Nuclear Science and Technology,
2021
DOI:10.1080/00223131.2021.1918591
|
|
|
[15]
|
Artificial Intelligence-Based Surface Roughness Estimation Modelling for Milling of AA6061 Alloy
Advances in Materials Science and Engineering,
2021
DOI:10.1155/2021/5576600
|
|
|
[16]
|
An improved algorithm to predict the mechanical properties of nuclear grade 316 stainless steel under elevated-temperature liquid sodium
Journal of Nuclear Science and Technology,
2021
DOI:10.1080/00223131.2021.1918591
|
|
|
[17]
|
Experimental study and analysis of surface roughness of the flow formed H30 alloy tubes
Materials Today: Proceedings,
2021
DOI:10.1016/j.matpr.2020.09.647
|
|
|
[18]
|
Data-driven framework for the prediction of cutting force in turning
IET Collaborative Intelligent Manufacturing,
2020
DOI:10.1049/iet-cim.2019.0055
|
|
|
[19]
|
Data‐driven framework for the prediction of cutting force in turning
IET Collaborative Intelligent Manufacturing,
2020
DOI:10.1049/iet-cim.2019.0055
|
|
|
[20]
|
A Comparative Study between Regression and Neural Networks for Modeling Al6082-T6 Alloy Drilling
Machines,
2019
DOI:10.3390/machines7010013
|
|
|
[21]
|
Cognitive Social Mining Applications in Data Analytics and Forensics
Advances in Social Networking and Online Communities,
2019
DOI:10.4018/978-1-5225-7522-1.ch008
|
|
|
[22]
|
A Comparative Study between Regression and Neural Networks for Modeling Al6082-T6 Alloy Drilling
Machines,
2019
DOI:10.3390/machines7010013
|
|
|
[23]
|
Application of Fuzzy Logic in the Analysis of Surface Roughness of Thin-Walled Aluminum Parts
International Journal of Precision Engineering and Manufacturing,
2019
DOI:10.1007/s12541-019-00229-3
|
|
|
[24]
|
Research on Establishing Prediction Model for Aerospace Aluminum Alloy Milling Force with the Help of RBF Neural Network
Proceedings of the International Conference on Information Technology and Electrical Engineering 2018 - ICITEE '18,
2018
DOI:10.1145/3148453.3306259
|
|
|
[25]
|
MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
Brazilian Journal of Chemical Engineering,
2018
DOI:10.1590/0104-6632.20180354s20160664
|
|
|
[26]
|
Dynamic Bayesian Network-Based Approach by Integrating Sensor Deployment for Machining Process Monitoring
IEEE Access,
2018
DOI:10.1109/ACCESS.2018.2846251
|
|
|