[1]
|
A review on blockchain for DNA sequence: security issues, application in DNA classification, challenges and future trends
Multimedia Tools and Applications,
2024
DOI:10.1007/s11042-023-15857-1
|
|
|
[2]
|
A novel apache spark-based 14-dimensional scalable feature extraction approach for the clustering of genomics data
The Journal of Supercomputing,
2024
DOI:10.1007/s11227-023-05602-8
|
|
|
[3]
|
iProm-Yeast: Prediction Tool for Yeast Promoters Based on ML Stacking
Current Bioinformatics,
2024
DOI:10.2174/0115748936256869231019113616
|
|
|
[4]
|
DNA Barcoding
Methods in Molecular Biology,
2024
DOI:10.1007/978-1-0716-3581-0_23
|
|
|
[5]
|
iProm-Yeast: Prediction Tool for Yeast Promoters Based on ML Stacking
Current Bioinformatics,
2024
DOI:10.2174/0115748936256869231019113616
|
|
|
[6]
|
DNA Barcoding
Methods in Molecular Biology,
2024
DOI:10.1007/978-1-0716-3581-0_23
|
|
|
[7]
|
Analysis of Emerging Variants of Turkey Reovirus using Machine Learning
Briefings in Bioinformatics,
2024
DOI:10.1093/bib/bbae224
|
|
|
[8]
|
Shift-Equivariant Similarity-Preserving Hypervector Representations of Sequences
Cognitive Computation,
2024
DOI:10.1007/s12559-024-10258-4
|
|
|
[9]
|
Machine learning for the advancement of genome-scale metabolic modeling
Biotechnology Advances,
2024
DOI:10.1016/j.biotechadv.2024.108400
|
|
|
[10]
|
MycoAI: Fast and accurate taxonomic classification for fungal ITS sequences
Molecular Ecology Resources,
2024
DOI:10.1111/1755-0998.14006
|
|
|
[11]
|
Improving Alzheimer’s Disease Prediction Through Convolutional Neural Networks
2024 International Conference on Circuit, Systems and Communication (ICCSC),
2024
DOI:10.1109/ICCSC62074.2024.10616903
|
|
|
[12]
|
LaCOme: Learning the latent convolutional patterns among transcriptomic features to improve classifications
Gene,
2023
DOI:10.1016/j.gene.2023.147246
|
|
|
[13]
|
SARS-CoV-2 virus classification based on stacked sparse autoencoder
Computational and Structural Biotechnology Journal,
2023
DOI:10.1016/j.csbj.2022.12.007
|
|
|
[14]
|
LaCOme: Learning the latent convolutional patterns among transcriptomic features to improve classifications
Gene,
2023
DOI:10.1016/j.gene.2023.147246
|
|
|
[15]
|
Research Anthology on Bioinformatics, Genomics, and Computational Biology
2023
DOI:10.4018/979-8-3693-3026-5.ch043
|
|
|
[16]
|
Research Anthology on Bioinformatics, Genomics, and Computational Biology
2023
DOI:10.4018/979-8-3693-3026-5.ch017
|
|
|
[17]
|
Research Anthology on Bioinformatics, Genomics, and Computational Biology
2023
DOI:10.4018/979-8-3693-3026-5.ch024
|
|
|
[18]
|
A Deep Learning Approach to Outbreak Virus Classification: Utilizing Bidirectional GRU on DNA Sequence of SARS-CoV-2, Zika, Ebola, and MERS
2023 11th International Conference on Cyber and IT Service Management (CITSM),
2023
DOI:10.1109/CITSM60085.2023.10455546
|
|
|
[19]
|
International Conference on Innovative Computing and Communications
Lecture Notes in Networks and Systems,
2023
DOI:10.1007/978-981-19-2821-5_44
|
|
|
[20]
|
A review on blockchain for DNA sequence: security issues, application in DNA classification, challenges and future trends
Multimedia Tools and Applications,
2023
DOI:10.1007/s11042-023-15857-1
|
|
|
[21]
|
Intelligent Sustainable Systems
Lecture Notes in Networks and Systems,
2023
DOI:10.1007/978-981-99-1726-6_44
|
|
|
[22]
|
Convolutional Neural Networks: A Promising Deep Learning Architecture
for Biological Sequence Analysis
Current Bioinformatics,
2023
DOI:10.2174/1574893618666230320103421
|
|
|
[23]
|
Seq-HyGAN: Sequence Classification via Hypergraph Attention Network
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management,
2023
DOI:10.1145/3583780.3615057
|
|
|
[24]
|
Proceedings of World Conference on Artificial Intelligence: Advances and Applications
Algorithms for Intelligent Systems,
2023
DOI:10.1007/978-981-99-5881-8_7
|
|
|
[25]
|
Computing for Data Analysis: Theory and Practices
Data-Intensive Research,
2023
DOI:10.1007/978-981-19-8004-6_5
|
|
|
[26]
|
LaCOme: Learning the latent convolutional patterns among transcriptomic features to improve classifications
Gene,
2023
DOI:10.1016/j.gene.2023.147246
|
|
|
[27]
|
Histone-Net: a multi-paradigm computational framework for histone occupancy and modification prediction
Complex & Intelligent Systems,
2023
DOI:10.1007/s40747-022-00802-w
|
|
|
[28]
|
Handbook of Research on Quantum Computing for Smart Environments
Advances in Systems Analysis, Software Engineering, and High Performance Computing,
2023
DOI:10.4018/978-1-6684-6697-1.ch024
|
|
|
[29]
|
Data Science for Genomics
2023
DOI:10.1016/B978-0-323-98352-5.00020-3
|
|
|
[30]
|
Bayesian Pyramids: identifiable multilayer discrete latent structure models for discrete data
Journal of the Royal Statistical Society Series B: Statistical Methodology,
2023
DOI:10.1093/jrsssb/qkad010
|
|
|
[31]
|
New proposal of viral genome representation applied in the classification of SARS-CoV-2 with deep learning
BMC Bioinformatics,
2023
DOI:10.1186/s12859-023-05188-1
|
|
|
[32]
|
Deep learning and support vector machines for transcription start site identification
PeerJ Computer Science,
2023
DOI:10.7717/peerj-cs.1340
|
|
|
[33]
|
Bayesian Pyramids: identifiable multilayer discrete latent structure models for discrete data
Journal of the Royal Statistical Society Series B: Statistical Methodology,
2023
DOI:10.1093/jrsssb/qkad010
|
|
|
[34]
|
International Conference on Innovative Computing and Communications
Lecture Notes in Networks and Systems,
2023
DOI:10.1007/978-981-19-2821-5_44
|
|
|
[35]
|
The Genomics of Industrial Process Through the Qualia of Markovian Behavior
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2022
DOI:10.1109/TSMC.2022.3150398
|
|
|
[36]
|
A comprehensive survey on computational learning methods for analysis of gene expression data
Frontiers in Molecular Biosciences,
2022
DOI:10.3389/fmolb.2022.907150
|
|
|
[37]
|
Systematic Literature Review: Virus Prediction Based on DNA Sequences using Machine Learning and Deep Learning method
2022 10th International Conference on Cyber and IT Service Management (CITSM),
2022
DOI:10.1109/CITSM56380.2022.9935921
|
|
|
[38]
|
Histone-Net: a multi-paradigm computational framework for histone occupancy and modification prediction
Complex & Intelligent Systems,
2022
DOI:10.1007/s40747-022-00802-w
|
|
|
[39]
|
TSSNote-CyaPromBERT: Development of an integrated platform for highly accurate promoter prediction and visualization of Synechococcus sp. and Synechocystis sp. through a state-of-the-art natural language processing model BERT
Frontiers in Genetics,
2022
DOI:10.3389/fgene.2022.1067562
|
|
|
[40]
|
Classification of Macromolecules Based on Amino Acid Sequences Using Deep Learning
Engineering, Technology & Applied Science Research,
2022
DOI:10.48084/etasr.5230
|
|
|
[41]
|
Classification with 2-D convolutional neural networks for breast cancer diagnosis
Scientific Reports,
2022
DOI:10.1038/s41598-022-26378-6
|
|
|
[42]
|
Classification of Macromolecules Based on Amino Acid Sequences Using Deep Learning
Engineering, Technology & Applied Science Research,
2022
DOI:10.48084/etasr.5230
|
|
|
[43]
|
Classification with 2-D convolutional neural networks for breast cancer diagnosis
Scientific Reports,
2022
DOI:10.1038/s41598-022-26378-6
|
|
|
[44]
|
An Approach to DNA Sequence Classification Through Machine Learning
International Journal of Reliable and Quality E-Healthcare,
2022
DOI:10.4018/IJRQEH.299963
|
|
|
[45]
|
DNA Computing: Concepts for Medical Applications
Applied Sciences,
2022
DOI:10.3390/app12146928
|
|
|
[46]
|
Biomedical Sensing and Analysis
2022
DOI:10.1007/978-3-030-99383-2_1
|
|
|
[47]
|
Advances in Computing and Data Sciences
Communications in Computer and Information Science,
2022
DOI:10.1007/978-3-031-12638-3_22
|
|
|
[48]
|
Convolutional Neural Network Applied to SARS-CoV-2 Sequence Classification
Sensors,
2022
DOI:10.3390/s22155730
|
|
|
[49]
|
An Approach to DNA Sequence Classification Through Machine Learning
International Journal of Reliable and Quality E-Healthcare,
2022
DOI:10.4018/IJRQEH.299963
|
|
|
[50]
|
Communication and Intelligent Systems
Lecture Notes in Networks and Systems,
2022
DOI:10.1007/978-981-19-2130-8_87
|
|
|
[51]
|
BERT contextual embeddings for taxonomic classification of bacterial DNA sequences
Expert Systems with Applications,
2022
DOI:10.1016/j.eswa.2022.117972
|
|
|
[52]
|
A Configurable and Fully Synthesizable RTL-Based Convolutional Neural Network for Biosensor Applications
Sensors,
2022
DOI:10.3390/s22072459
|
|
|
[53]
|
Towards a robust out-of-the-box neural network model for genomic data
BMC Bioinformatics,
2022
DOI:10.1186/s12859-022-04660-8
|
|
|
[54]
|
Machine Learning and Systems Biology in Genomics and Health
2022
DOI:10.1007/978-981-16-5993-5_4
|
|
|
[55]
|
Multiple Sequence Alignments
2022
DOI:10.1007/978-3-662-64473-7_2
|
|
|
[56]
|
CNN-LSTM based classification of polo like kinase family of Proteins: An emerging cancer drug target
Materials Today: Proceedings,
2022
DOI:10.1016/j.matpr.2022.02.395
|
|
|
[57]
|
COVID‐19: A systematic review and update on prevention, diagnosis, and treatment
MedComm,
2022
DOI:10.1002/mco2.115
|
|
|
[58]
|
A comprehensive tool for rapid and accurate prediction of disease using DNA sequence classifier
Journal of Ambient Intelligence and Humanized Computing,
2022
DOI:10.1007/s12652-022-04099-y
|
|
|
[59]
|
Communication and Intelligent Systems
Lecture Notes in Networks and Systems,
2022
DOI:10.1007/978-981-19-2130-8_87
|
|
|
[60]
|
Deep Learning Model to Detect Diabetes Mellitus Based on DNA Sequence
Intelligent Automation & Soft Computing,
2022
DOI:10.32604/iasc.2022.019970
|
|
|
[61]
|
BERT contextual embeddings for taxonomic classification of bacterial DNA sequences
Expert Systems with Applications,
2022
DOI:10.1016/j.eswa.2022.117972
|
|
|
[62]
|
An Optimized Neural Network with Bat Algorithm for DNA Sequence Classification
Computers, Materials & Continua,
2022
DOI:10.32604/cmc.2022.021787
|
|
|
[63]
|
Alignment-free sequence comparison: A systematic survey from a machine learning perspective
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2022
DOI:10.1109/TCBB.2022.3140873
|
|
|
[64]
|
Alignment-free sequence comparison: A systematic survey from a machine learning perspective
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2022
DOI:10.1109/TCBB.2022.3140873
|
|
|
[65]
|
The Genomics of Industrial Process Through the Qualia of Markovian Behavior
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2022
DOI:10.1109/TSMC.2022.3150398
|
|
|
[66]
|
DNA Computing: Concepts for Medical Applications
Applied Sciences,
2022
DOI:10.3390/app12146928
|
|
|
[67]
|
Convolutional Neural Network Applied to SARS-CoV-2 Sequence Classification
Sensors,
2022
DOI:10.3390/s22155730
|
|
|
[68]
|
A Configurable and Fully Synthesizable RTL-Based Convolutional Neural Network for Biosensor Applications
Sensors,
2022
DOI:10.3390/s22072459
|
|
|
[69]
|
BERT contextual embeddings for taxonomic classification of bacterial DNA sequences
Expert Systems with Applications,
2022
DOI:10.1016/j.eswa.2022.117972
|
|
|
[70]
|
Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning
Biomedical Signal Processing and Control,
2021
DOI:10.1016/j.bspc.2021.102539
|
|
|
[71]
|
Enhancing Machine Learning Prediction in Cybersecurity Using Dynamic Feature Selector
Journal of Cybersecurity and Privacy,
2021
DOI:10.3390/jcp1010011
|
|
|
[72]
|
The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers
Entropy,
2021
DOI:10.3390/e23101357
|
|
|
[73]
|
ncRDense: A novel computational approach for classification of non-coding RNA family by deep learning
Genomics,
2021
DOI:10.1016/j.ygeno.2021.07.004
|
|
|
[74]
|
A Recurrent Neural Network approach for whole genome bacteria identification
Applied Artificial Intelligence,
2021
DOI:10.1080/08839514.2021.1922842
|
|
|
[75]
|
Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning
Scientific Reports,
2021
DOI:10.1038/s41598-020-80363-5
|
|
|
[76]
|
Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning
Biomedical Signal Processing and Control,
2021
DOI:10.1016/j.bspc.2021.102539
|
|
|
[77]
|
Deep-BSC: Predicting Raw DNA Binding Pattern in Arabidopsis Thaliana
Current Bioinformatics,
2021
DOI:10.2174/1574893615999200707142852
|
|
|
[78]
|
A deep bidirectional recurrent neural network for identification of SARS-CoV-2 from viral genome sequences
Mathematical Biosciences and Engineering,
2021
DOI:10.3934/mbe.2021440
|
|
|
[79]
|
Advances in Computing and Data Sciences
Communications in Computer and Information Science,
2021
DOI:10.1007/978-3-030-81462-5_43
|
|
|
[80]
|
The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers
Entropy,
2021
DOI:10.3390/e23101357
|
|
|
[81]
|
Classification of DNA Sequences with k-mers Based Vector Representations
2021 Innovations in Intelligent Systems and Applications Conference (ASYU),
2021
DOI:10.1109/ASYU52992.2021.9599084
|
|
|
[82]
|
Classification of Chromosomal DNA Sequences Using Hybrid Deep Learning Architectures
Current Bioinformatics,
2021
DOI:10.2174/1574893615666200224095531
|
|
|
[83]
|
Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning
Biomedical Signal Processing and Control,
2021
DOI:10.1016/j.bspc.2021.102539
|
|
|
[84]
|
Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
Studies in Big Data,
2021
DOI:10.1007/978-3-030-59338-4_20
|
|
|
[85]
|
Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning
Scientific Reports,
2021
DOI:10.1038/s41598-020-80363-5
|
|
|
[86]
|
Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos
Medical Image Analysis,
2021
DOI:10.1016/j.media.2021.101973
|
|
|
[87]
|
Comparison of machine learning and deep learning techniques in promoter prediction across diverse species
PeerJ Computer Science,
2021
DOI:10.7717/peerj-cs.365
|
|
|
[88]
|
Enhancing Machine Learning Prediction in Cybersecurity Using Dynamic Feature Selector
Journal of Cybersecurity and Privacy,
2021
DOI:10.3390/jcp1010011
|
|
|
[89]
|
A new approach for detection Alzheimer's Disease with machine learning using Whole Genomic and Single Nucleotide Polymorphism-Chip data
2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC),
2021
DOI:10.1109/CCWC51732.2021.9376121
|
|
|
[90]
|
Deep Learning for SARS COV-2 Genome Sequences
IEEE Access,
2021
DOI:10.1109/ACCESS.2021.3073728
|
|
|
[91]
|
Soft Computing: Theories and Applications
Advances in Intelligent Systems and Computing,
2021
DOI:10.1007/978-981-16-1696-9_17
|
|
|
[92]
|
Analysis of DNA Sequence Classification Using CNN and Hybrid Models
Computational and Mathematical Methods in Medicine,
2021
DOI:10.1155/2021/1835056
|
|
|
[93]
|
A novel feature extraction method based on highly expressed SNPs for tissue-specific gene prediction
Journal of Big Data,
2021
DOI:10.1186/s40537-021-00497-9
|
|
|
[94]
|
ncRDense: A novel computational approach for classification of non-coding RNA family by deep learning
Genomics,
2021
DOI:10.1016/j.ygeno.2021.07.004
|
|
|
[95]
|
Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA
Gene,
2020
DOI:10.1016/j.gene.2020.100035
|
|
|
[96]
|
Machine Learning based models for examining differences between modern and ancient DNA in dental calculus
2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
2020
DOI:10.1109/SYNASC51798.2020.00036
|
|
|
[97]
|
Predicting Protein Phosphorylation Sites Based on Deep Learning
Current Bioinformatics,
2020
DOI:10.2174/1574893614666190902154332
|
|
|
[98]
|
Immutable DNA Sequence Data Transmission for Next Generation Bioinformatics Using Blockchain Technology
2nd International Conference on Data, Engineering and Applications (IDEA),
2020
DOI:10.1109/IDEA49133.2020.9170715
|
|
|
[99]
|
Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA
Frontiers in Bioengineering and Biotechnology,
2020
DOI:10.3389/fbioe.2020.01032
|
|
|
[100]
|
DNA sequence classification based on MLP with PILAE algorithm
Soft Computing,
2020
DOI:10.1007/s00500-020-05429-y
|
|
|
[101]
|
Nanoporous Materials for Gas Storage
Green Energy and Technology,
2020
DOI:10.1007/978-3-030-19642-4_32
|
|
|
[102]
|
Advances in Decision Sciences, Image Processing, Security and Computer Vision
Learning and Analytics in Intelligent Systems,
2020
DOI:10.1007/978-3-030-24322-7_6
|
|
|
[103]
|
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019
Advances in Intelligent Systems and Computing,
2020
DOI:10.1007/978-3-030-31129-2_48
|
|
|
[104]
|
Tap water fingerprinting using a convolutional neural network built from images of the coffee-ring effect
The Analyst,
2020
DOI:10.1039/C9AN01624D
|
|
|
[105]
|
Machine-Learning Methods for Computational Science and Engineering
Computation,
2020
DOI:10.3390/computation8010015
|
|
|
[106]
|
Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks—A Case Study on Genome Gap-Filling
Computers,
2020
DOI:10.3390/computers9020037
|
|
|
[107]
|
DeepTE: a computational method for de novo classification of transposons with convolutional neural network
Bioinformatics,
2020
DOI:10.1093/bioinformatics/btaa519
|
|
|
[108]
|
High-Performance Virus Detection System by using Deep Learning
2020 IEEE Congress on Evolutionary Computation (CEC),
2020
DOI:10.1109/CEC48606.2020.9185808
|
|
|
[109]
|
Phenotype Prediction of DNA Sequence Data: A Machine- and Statistical Learning Approach
2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),
2020
DOI:10.1109/CIBCB48159.2020.9277703
|
|
|
[110]
|
Mobile Devices and Smart Gadgets in Medical Sciences
Advances in Medical Technologies and Clinical Practice,
2020
DOI:10.4018/978-1-7998-2521-0.ch011
|
|
|
[111]
|
Mobile Devices and Smart Gadgets in Medical Sciences
Advances in Medical Technologies and Clinical Practice,
2020
DOI:10.4018/978-1-7998-2521-0.ch009
|
|
|
[112]
|
DeepTE: a computational method for de novo classification of transposons with convolutional neural network
Bioinformatics,
2020
DOI:10.1093/bioinformatics/btaa519
|
|
|
[113]
|
Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks—A Case Study on Genome Gap-Filling
Computers,
2020
DOI:10.3390/computers9020037
|
|
|
[114]
|
Machine-Learning Methods for Computational Science and Engineering
Computation,
2020
DOI:10.3390/computation8010015
|
|
|
[115]
|
Advances in Decision Sciences, Image Processing, Security and Computer Vision
Learning and Analytics in Intelligent Systems,
2020
DOI:10.1007/978-3-030-24322-7_6
|
|
|
[116]
|
Advances in Decision Sciences, Image Processing, Security and Computer Vision
Learning and Analytics in Intelligent Systems,
2020
DOI:10.1007/978-3-030-24322-7_6
|
|
|
[117]
|
Tuning the Performance of Synthetic Riboswitches using Machine Learning
ACS Synthetic Biology,
2019
DOI:10.1021/acssynbio.8b00207
|
|
|
[118]
|
An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts
Marine Pollution Bulletin,
2019
DOI:10.1016/j.marpolbul.2019.110530
|
|
|
[119]
|
Deep Feature Extraction for Pap-Smear Image Classification
Proceedings of the 2019 5th International Conference on Computer and Technology Applications,
2019
DOI:10.1145/3323933.3324060
|
|
|
[120]
|
Deep Feature Extraction for Pap-Smear Image Classification
Proceedings of the 2019 5th International Conference on Computer and Technology Applications,
2019
DOI:10.1145/3323933.3324060
|
|
|
[121]
|
Prediction of Plant Lipocalin Genes based on Convolutional Neural Networks
Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science,
2019
DOI:10.1145/3349341.3349451
|
|
|
[122]
|
Investigating Differences between Ancient and Modern Bacterial DNA in Dental Calculus via Autoencoders
2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
2019
DOI:10.1109/SYNASC49474.2019.00027
|
|
|
[123]
|
Prediction of Plant Lipocalin Genes based on Convolutional Neural Networks
Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science - AICS 2019,
2019
DOI:10.1145/3349341.3349451
|
|
|
[124]
|
Multiple Sequenzalignments
2019
DOI:10.1007/978-3-662-58811-6_2
|
|
|
[125]
|
Tuning the Performance of Synthetic Riboswitches using Machine Learning
ACS Synthetic Biology,
2019
DOI:10.1021/acssynbio.8b00207
|
|
|
[126]
|
Artificial Intelligence in Medical Imaging
2019
DOI:10.1007/978-3-319-94878-2_14
|
|
|
[127]
|
Advances in Computational Intelligence
Advances in Intelligent Systems and Computing,
2019
DOI:10.1007/978-3-030-11479-4_17
|
|
|
[128]
|
Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network
Neural Networks,
2018
DOI:10.1016/j.neunet.2018.03.016
|
|
|
[129]
|
SpliceRover: interpretable convolutional neural networks for improved splice site prediction
Bioinformatics,
2018
DOI:10.1093/bioinformatics/bty497
|
|
|
[130]
|
DRTHIS: Deep ransomware threat hunting and intelligence system at the fog layer
Future Generation Computer Systems,
2018
DOI:10.1016/j.future.2018.07.045
|
|
|
[131]
|
Perspectives and applications of machine learning for evolutionary developmental biology
Molecular Omics,
2018
DOI:10.1039/C8MO00111A
|
|
|
[132]
|
A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites
International Journal of Molecular Sciences,
2018
DOI:10.3390/ijms19092817
|
|
|
[133]
|
Advances in Bioinformatics and Computational Biology
Lecture Notes in Computer Science,
2018
DOI:10.1007/978-3-030-01722-4_9
|
|
|
[134]
|
SpliceRover: interpretable convolutional neural networks for improved splice site prediction
Bioinformatics,
2018
DOI:10.1093/bioinformatics/bty497
|
|
|
[135]
|
A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites
International Journal of Molecular Sciences,
2018
DOI:10.3390/ijms19092817
|
|
|
[136]
|
Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
Genes,
2017
DOI:10.3390/genes8110326
|
|
|
[137]
|
Combined Use of k-Mer Numerical Features and Position-Specific Categorical Features in Fixed-Length DNA Sequence Classification
Journal of Biomedical Science and Engineering,
2017
DOI:10.4236/jbise.2017.108030
|
|
|
[138]
|
Near perfect protein multi-label classification with deep neural networks
Methods,
2017
DOI:10.1016/j.ymeth.2017.06.034
|
|
|
[139]
|
Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
Genes,
2017
DOI:10.3390/genes8110326
|
|
|